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Abstract 
 

To understand the genetic basis and selective forces acting on longevity, it is useful to examine 

lifespan variation among closely related species, or ecologically diverse isolates of the same 

species, within a controlled environment. In particular, this approach may lead to understanding 

mechanisms underlying natural variation in lifespan. Here, we analyzed 76 ecologically diverse 

wild yeast isolates and discovered a wide diversity of replicative lifespan. Phylogenetic analyses 

pointed to genes and environmental factors that strongly interact to modulate the observed aging 

patterns. We then identified genetic networks causally associated with natural variation in 

replicative lifespan across wild yeast isolates, as well as genes, metabolites and pathways, many 

of which have never been associated with yeast lifespan in laboratory settings. In addition, a 

combined analysis of lifespan-associated metabolic and transcriptomic changes revealed unique 

adaptations to interconnected amino acid biosynthesis, glutamate metabolism and mitochondrial 

function in long-lived strains. Overall, our multi-omic and lifespan analyses across diverse 

isolates of the same species shows how gene-environment interactions shape cellular processes 

involved in phenotypic variation such as lifespan. 

 

Introduction 

Diverse selective forces (mutation, selection, drift) generate enormous variation within 

and among species. [1, 2]. Consequently, many morphological, behavioral and physiological 

phenotypes (traits) vary within and between species in natural populations [3-7]. For example, 

genetic variation in natural populations of many organisms can differentially affect their neural 

and endocrine functions, leading to variation in quantitative life-history traits such as fitness and 

age at maturation [8, 9]. Variation in another fitness trait, lifespan, has also attracted much 

attention [10-12]. Across eukaryotic species, longevity can differ over many orders of 

magnitude, from days to centuries, e.g. the Greenland shark (Somniosus microcephalus) may live 

for more than 500 years whereas some species live only several days [13-15]. Longevity also 

varies among individuals of the same species, indicating that variability of lifespan is not 

constrained at the level of species, and that the molecular determinants of lifespan vary within 

the same genetic pool [16-21]. 
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What, then, are the factors that determine the lifespan of individuals? The molecular 

pathways that underlie the genetic and environmental determinants of lifespan are among the 

most intensely studied areas in the aging field [18, 19, 22-26]. Laboratory animal models have 

shown that longevity can be extended by environmental [27-30], dietary [31-33], 

pharmacological [34-37] and genetic interventions [38-40]. However, many of these laboratory-

adapted populations are constrained by genetic and environmental background [41-43]. For 

example, artificially created mutant strains may show longer lifespan under laboratory settings 

but demonstrate reduced fitness in their natural environment [44-47]. A more integrated 

approach is needed to understand how the natural environment and natural selection interact to 

shape lifespan and associated life-history traits. 

In order to better understand the impact of natural genetic variation on lifespan, we 

studied 76 wild isolates of the budding yeast to capture the molecular signatures of evolved 

diversity of lifespan. This collection included 40 diploid isolates of Saccharomyces cerevisiae 

and 36 diploid isolates of Saccharomyces paradoxus [48, 49]. Their niches include human-

associated environments, such as breweries and bakeries, and different types of wild ecological 

niches, such as trees, fruits, vineyards, and soils across different continents. There was also a 

group of clinical isolates; S. cerevisiae strains isolated from immunocompromised patients. S. 

cerevisiae and S. paradoxus are closely related (share a common ancestor between 0.4 and 3 

million years ago), with 90% genome identity, and can mate and produce viable progeny [50, 

51]. Earlier genome sequencing of these isolates revealed allelic profiles, their ploidy status, and 

a phylogeny of these isolates [48-50]. Based on these studies, it was shown that while some of 

these strains fall into distinct lineages with unique genetic variants, almost half of the strains 

have mosaic recombinant genomes arising from outcrosses between genetically distinct lineages 

of the same species [49]. Because of their wide ecological, geographical, and genetic diversity, 

natural isolates of the budding yeast Saccharomyces have become an important model system for 

population/evolutionary genomics [52] and to study the complex genetic architecture of lifespan 

[18, 53-57]. Therefore, these strains offer a powerful genetic pool to understand how natural 

genetic variation may shape lifespan variation. 

Accordingly, we assayed the replicative lifespan (RLS) of ~3,000 individual cells 

representing these isolates under two different conditions: yeast peptone dextrose (YPD, with 2% 

glucose), and yeast peptone glycerol (YPG, 3% glycerol as a respiratory carbon source), and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2020.11.09.374488doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.374488
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

identified up to 10-fold variation in median RLS under each condition. Although little is known 

about the life histories of these wild isolates they face different, niche-specific evolutionary 

pressures for adaptation to different stresses [49-52]. To understand how different genotypes 

arrive at different lifespan phenotypes, we further analyzed endophenotypes (gene expression, 

metabolite abundance) to characterize the molecular patterns associated with condition-specific 

lifespan variation. Following characterization of transcripts and metabolites with significant 

association with longevity, we identified pathways associated with median RLS across these 

isolates. Our data showed that the naturally arising variation in genotype can cause large 

differences in lifespan, which are associated with distinct patterns of gene expression and 

metabolite abundances. These analyses revealed connected pathways that have not been 

previously associated with lifespan variation in a laboratory setting. Altogether, we present the 

most comprehensive analysis to date of how the environment and genetic variation interact to 

shape aging and the associated life-history traits. 

 

Results 

Growth characteristics and lifespan variation across wild isolates 

First, we monitored growth characteristics of natural yeast isolates on standard glucose media 

(i.e. during fermentation) and on media with a non-fermentable substrate, glycerol, as a carbon 

source (i.e. during respiration), using an automated growth analyzer, and calculated the doubling 

time. Most wild isolates grew faster than the diploid laboratory wild type (WT) BY4743 strain 

under both conditions, with an average doubling time of 65 minutes in YPD and 125 minutes in 

YPG (Fig. 1A, Table S1). Importantly, most of these strains grew at a similar rate on YPD, and 

variation in growth rate on YPG was also relatively small among them, indicating that these 

laboratory-optimized culture conditions are suitable for supporting nutritional needs of these 

strains and for RLS analysis (Fig. 1A). 

Next, we assayed RLS of these isolates at 30°C on both growth conditions (YPD and 

YPG media). Under the YPD condition, we observed a remarkable ~10-fold variation in median 

and maximum RLS (Pearson correlation coefficient = 0.65 between median and maximum RLS, 

p < 0.00001) across these isolates (Fig. 1B, 1C, Fig. S1A, Table S1). The average median RLS 

of S. paradoxus strains (29.7) was significantly higher (p = 2.7x10-9) than the average median 

RLS of S. cerevisiae strains (22.7) (Fig. 1C, S1A). Among the 76 strains analyzed, S. paradoxus 
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strain Y7 showed the longest median RLS (RLS=42), whereas S. cerevisiae strain Y10 exhibited 

the shortest median RLS, with 50% of Y10 cells ceasing division after producing only four 

daughters (Table S1). 

Glycerol as a growth substrate can extend both RLS and chronological lifespan (CLS) 

[58, 59]. In the case of CLS, the increased longevity is caused by a switch from fermentation to 

respiration [58]; however, mechanisms by which glycerol affects RLS are unclear, since 

respiratory metabolism is not always required for RLS extension in laboratory WT strains [59]. 

While we observed a significant (p < 0.05, Wilcoxon Rank Sum Test) median RLS increase in 

32 strains on YPG with 24 strains significantly decreased median RLS; and the remaining seven 

strains showed no significant changes (Fig. 1D, Fig. S1B, Table S1). For example, S. cerevisiae 

strain BC187 showed a significantly increased median RLS on glycerol (37.5 in YPG versus 32 

in YPD), and. S. paradoxus strain KPN3829 also showed a similar increase (21 in YPD and 35 in 

YPG) (Table S1). On the other hand, S. cerevisiae strain YJM975 showed a significant decrease 

(median RLS = 31 in YPD and 23 in YPG) (Table S1). 

We further dissected the effect of carbon source on RLS by comparing median RLS 

variation between YPD and YPG conditions. Interestingly, strains with the shortest RLS on YPD 

tended to achieve the longest lifespans on YPG, while the long-lived strains on YPD generally 

did not show a further RLS increase (Fig. S1B, S1C Pearson correlation coefficient = -0.51 

between median RLS on YPD and median RLS on YPG, p < 0.0001). A similar observation was 

shown under CR conditions in the case of single-gene deletions, where the shortest-lived strains 

tended to yield the largest lifespan extension when subjected to CR [60]. Overall, we observed 

significant differences in lifespan across these strains on both conditions. The observed lifespan 

pattern on YPG conditions in comparison to those on YPD suggests that long-lived strains might 

reside in environments with low fermentable carbon sources, so that they undergo distinct 

metabolic regulation to metabolize respiratory carbon sources. As such, they did not show 

further RLS extension when grown in glycerol. 

Endophenotype variation across wild isolates 

While many previous large-scale omics studies on aging have focused on genome-wide 

association [53, 61-63], recent comparative studies on transcriptomics [64, 65], proteomics [66-

68], metabolomics [69-71] and ionomics [72] have begun to shed light on molecular patterns and 
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mechanisms associated with the aging process. For example, it has been suggested that natural 

variation is associated with extensive changes in gene expression, translation and metabolic 

regulation, which in turn may affect fitness under different stress conditions [73, 74]. In fact, 

gene expression variation has repeatedly been postulated to play a major role in adaptive 

evolution and phenotypic plasticity [74, 75], as well as specific phenotypic outcomes such as 

changes in morphology [76] and lifespan [77]. Similarly, comparative studies of metabolite 

profiles have been utilized to describe the genotype to phenotype relations in model organisms 

[78, 79]. Accordingly, we aimed to explain lifespan differences among these wild-derived yeast 

isolates by analyzing their gene expression variation (based on transcriptomics analyses) and 

differences in their metabolite levels (based on metabolomics analyses). 

In the case of the transcriptome, we obtained ≥ 5 million 150-bp paired-end RNA-seq 

reads for each strain grown on YPD. For metabolomics analyses, we applied targeted metabolite 

profiling using liquid chromatography-mass spectrometry (LC-MS). After filtering and quality 

control, the data set contained RNA-seq reads for 5,376 genes and 166 metabolites identified 

commonly across all isolates (Table S2). The expression profiles between strains were similar to 

one another, with Spearman correlation coefficients of strain pairs ranging between 0.59 and 

0.93 (except the pairing involving Q59.1, CBS5829, YPS606, and UFRJ50791, with the range 

between 0.21 and 0.79) (Fig. S2). To determine whether the previously published sequence-

based evolutionary relationships [49] were reflected in their gene expression variation, we 

constructed gene expression phylograms using a distance matrix of 1 minus Spearman 

correlation coefficients and the neighbor-joining method [80]. The resulting topology of species-

specific trends was largely consistent with their phylogeny with a clear separation between S. 

cerevisiae and S. paradoxus strains (Fig. 2A); however, at the intra-species level, the topology 

was not consistent with the phylograms of genomic data. 

To visualize endophenotypic variation between these two species and across the strains of 

the same species, we performed principal component analysis (PCA) on each type of data. PCA 

of the transcriptome revealed a pattern resembling the phylogenetic relationship, with the first 

three PCs explaining ~49 % of total variance in gene expression (Fig. 2B, Fig. S3A). Although 

some S. paradoxus strains clustered with S. cerevisiae, we observed clear species segregation 

based on PC2 (except for some outlier strains that were separated by PC1). PCA of 
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metabolomics data revealed a similar structure with the first three PCs explaining ~41% of total 

variance in metabolite levels, and PC2 somewhat separating the species (Fig. 2C, Fig. S3B). 

To understand the basis of this segregation pattern, we performed pathway enrichment 

analysis by combining the 500 top genes (250 with positive weights and 250 with negative 

weights) and 40 top metabolites (20 with positive weights and 20 with negative weights) 

contributing to each PC, respectively. This integrative analysis of genes and metabolites (see 

Materials and Methods) contributing to PC1 revealed a distinct set of Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathways, including RNA degradation, MAPK signaling pathway, 

cell cycle, pantothenate and CoA biosynthesis, ribosome biogenesis and pentose phosphate 

pathway (Fig. 2D, Table S3). The analysis of genes and metabolites for PC2 revealed the KEGG 

pathways related to ribosome, autophagy, endocytosis, cell cycle, mRNA surveillance, and 

nucleotide excision repair (Fig. 2E, Table S3). These results suggest that these processes 

diverged most significantly across the wild isolates of two species of Saccharomyces genus and 

may account for their phenotypic diversity, including lifespan. It should be noted, however, that 

we do not know exactly what each PC represents, unless it perfectly aligns or correlates with 

some known variables. In addition, either biological (e.g. phylogenetic structure), technical (e.g. 

data normalization or batch effect), or mixed effects of both may render PCA biased [81]. 

 

Relationship between endophenotypes and lifespan 

To identify endophenotypes (transcripts and metabolites) correlating with lifespan 

variation across wild isolates, we applied the phylogenetic generalized least-squares (PGLS) 

method to account for phylogenetic relationships among the strains and test for different models 

of trait evolution [82, 83]. Regression was performed between endophenotypic values and 

median RLS under different models of trait evolution and the best-fit model was then selected 

based on maximal likelihood. To assess the robustness of these relationships, we repeated the 

regression after taking out one yeast strain at a time and only those regressions that remained 

significant were further considered. This ensured the overall relationship did not depend on a 

particular isolate.  

With the PGLS approach, we identified 73 transcripts with significant correlation with 

median RLS (Padj ≤ 0.01; 39 with positive correlation and 34 with negative correlation) (Table 

S2). Among the top hits with positive correlation were a putative zinc finger protein coding gene 
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CMR3 (Padj=3.3x10-9), histone acetyltransferase (HAT) gene HPA2 (Padj=0.0002), 

Transcription factor TEC1 (Padj=9.3x10-6) and zing regulated protein gene ZRG8 (Padj=0.006) 

(Fig. 3A, Table S2). The top hits with negative correlation included the genes coding for cyclin-

dependent kinase Pho85p interacting proteins PCL1 (Padj=0.0008) and PCL2 (Padj=0.001), 

regulator of Ty1 transposon protein coding gene RTT107 (Padj=0.007), and inositol 

monophosphatase gene INM1 (Padj=0.006) (Fig. 3B, Table S2). Next, to assess if any of our 

transcript hits were previously implicated in yeast lifespan, we extended our list of significant 

genes to 357 genes by selecting a cutoff at Padj=0.05 and compared these with the genes 

associated with RLS in laboratory WT strain listed in the GenAge database [84]. GenAge 

identifies 611 genes from the published literature with effects on RLS (decreased or increased) of 

laboratory yeast strains (595 deletion mutants and 16 overexpressed genes) (Table S4). Of 5,376 

genes whose expression was measured across the wild isolates, there were 39 genes present in 

both our list and GenAge, 23 of which showed the same direction of correlation with RLS. For 

example, INM1, RTT107, PPH3 and BSC1 genes increase RLS when deleted (GenAge database) 

and are associated with increased RLS when their transcript levels decrease across wild isolates 

(this study). (Table S4). However, the overall pattern of overlapping genes as well as the 

direction of correlation did not reach statistical significance (Fisher’s exact test, p ≥ 0.05). It 

should be noted that many of the RLS associated genes listed in GeneAge are reported from 

single gene KO studies and there has been no comprehensive studies examining gene 

overexpression on a genome-wide scale. This raises a possibility that the genes we identified 

here might not necessarily be over-represented among the lifespan-related genes from other 

studies. It is also possible that the genetic architecture of trait variation in natural populations 

may differ from that which is assumed from studies of lab strains, including extensive single-

gene studies of lifespan variation in yeast [85]. The lack of overlap between the genes whose 

expression correlates with lifespan variation in wild isolates and genes that affect RLS in single-

mutant studies on laboratory WT background supports this possibility. Considering this, we then 

asked if trait variation in wild isolates and lab strains may converge at the transcriptome in a way 

that may be detectable at the level of gene expression, or at the level of biological pathway. To 

do this we examined the gene expression patterns across wild isolates with those of 1,376 

laboratory knock-out strains (KO) strains [86] whose RLS was quantified [85] previously (Fig. 

4, Fig. S4A, S4B Table S1). We calculated an association of gene expression with different 
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measures of RLS (mean RLS, median RLS, and maximum RLS) across KO strains. Our analysis 

revealed around 400 significant genes (Padj=0.05) associated with three types of RLS measures, 

and more than 1000 genes associated with median RLS (Fig. 4A). To compare the RLS-

associated transcriptomes of wild isolates and lab strains, we then calculated a correlation matrix 

of RLS-associated gene expression changes across KO strains and wild isolates (Fig. 4B). We 

found no positive correlation between RLS associated gene expression changes across KO 

strains and RLS associated gene expression changes across natural isolates (Fig. 4B). 

We then performed functional enrichment (GSEA) of genes associated with RLS across 

deletion and wild isolates to see if associations with RLS may converge at the level of the 

biological pathway. We find that the transcripts associated with RLS in these two populations 

enrich distinct sets of biological pathways (Fig. 4C). For the genes correlating positively with 

longevity across the KO strains, the enriched terms included cellular responses to stress, 

ribosome, translation, cellular senescence, and DNA repair (Fig. 4C). On the other hand, terms 

enriched in wild isolates included TCA cycle, oxidative phosphorylation, and lipid metabolic 

process, regulation of apoptosis, and autophagy (Fig. 4C). Overall, our comparative analyses of 

lifespan associated gene expression signatures in laboratory adapted yeast strains versus wild 

isolates suggest that different genetic trajectories might have evolved at transcript level across 

wild isolates to regulate lifespan. 

Next, we searched for metabolites whose abundances associate with RLS across wild 

yeast isolates. The metabolome represents a snapshot of regulation downstream of both the 

transcriptome, and proteome and it has been effectively used for characterizing phenotypic 

variation that includes lifespan [69-71]. Among 166 metabolites that we examined, 31 exhibited 

significant association with median RLS (Padj ≤ 0.05) (Table S2). Among the top hits, 

tryptophan, lactate, 2-hydroxyglutarate, 3-hydroxypropionic acid, 2-hydroxyisobutyrate, 2-

hydroxybutyrate, and phenyllactic acid correlated positively (Fig. 5A), whereas lysine, 

quinolinic acid, propionate, Se-methylselenocysteine showed negative correlation (Fig. 5B). Our 

metabolite list also included several related short chain fatty acids, with positive correlation to 

RLS (SCFAs: 3- hydroxypropionic acid, 2-hydroxyisobutyrate, 2-hydroxybutyrate and 2-

hydroxyglutarate), which are known to be involved in redox regulations, epigenetic modification, 

and energy generation [87-88]. Having identified transcripts and metabolites associated with 
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lifespan, we aimed to investigate interaction among them to better understand biological causes 

of lifespan variation and mechanisms of longevity across the wild isolates. 

 

Molecular signatures of lifespan extension across wild isolates 

To understand the molecular basis of RLS variation in wild isolates, we applied an 

integrated pathway approach [89]. A combined metabolomics and transcriptomics data analysis 

revealed a potential role for differential metabolic regulation of tryptophan (Trp), lysine (Lys) 

and branched chain amino acid (BCAAs) biosynthesis as well as valine (Val) and isoleucine 

(Iso). For example, our metabolome data revealed that Trp abundance correlates positively with 

RLS (Fig. 5). In addition, we found that quinolinic acid (QA), an intermediate in the Trp 

catabolic pathway (also known as the kynurenine (KYN) pathway) [90, 91] correlates negatively 

with median RLS (Fig. 5), suggesting a possible inhibition of Trp degradation, corresponding to 

an increased Trp abundance in long-lived strains. Further evidence for metabolic regulation of 

Trp in long-lived strains came from our transcriptome data wherein BNA2 (indoleamine 2,3-

dioxygenase) gene, which supports the first rate-limiting step of Trp catabolism [91], was 

significantly downregulated (Padj = 0.02) in long-lived wild isolates (Fig. 3B, Fig. S5). These 

observations draw a complete picture for the observed Trp abundance in long-lived strains. 

Similarly, a link between our transcriptome and metabolome data provided insights into 

Lys metabolism. We observed a negative correlation between Lys abundance and lifespan (i.e., 

long-lived strains tend to have less Lys) (Fig. 5). Additionally, our transcriptome data showed 

negative correlations of two homocitrate synthase genes, LYS20 and LYS21, controlling the first 

rate-limiting step of Lys biosynthesis by catalyzing condensation of Acetyl-CoA and alpha-

ketoglutarate (α-KG) to produce homocitrate (Fig. S6, Fig. S7). Together, these observations 

support the idea of decreased Lys levels in long-lived strains. It is also of interest that while they 

did not reach significance, all genes (with the exception of ARO8) involved in Lys biosynthesis 

showed a trend for decreased expression in long-lived strains (Table S2). Interestingly, previous 

studies have shown the connection between Trp and Lys metabolism both at genetic and 

metabolic levels. For example, it has been shown that 3-hydroxyanthranilic acid, an intermediate 

from Trp degradation, can be used as a substrate to synthesize α-ketoadipate [92, 93], which is 

then converted by ARO8 to Lys (Fig. S7). In this regard, glutamate (Glu) dependent ARO8 

activity is involved in both Trp and Lys catabolic pathways (Fig. S5, S7). In addition, at the 
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genetic level, while individual knock-out lines of BNA2, LYS20 or LYS21 are not lethal, it was 

found that the combined deletion of BNA2 and LYS20 or BNA2 with LYS21 causes synthetic 

lethality [94], possibly by causing Lys auxotrophy. In the light of these observations, our data 

suggest that the observed occurred differences in Trp and Lys metabolism are not random. 

Decreased Trp catabolism in long-lived strains might limit α-ketoadipate production, which in 

turn could affect Lys biosynthesis. 

Our analyses also revealed negative correlations between RLS and transcript abundance 

for all genes (negative correlation) involved in BCAA biosynthesis from pyruvate in long-lived 

strains (Fig. S8, Table S2). On the other hand, we did not observe any changes in Val, Leu and 

Ile abundance (Table S2). This observation raises a possibility that intracellular homeostasis of 

these BCAAs might be regulated through other resources (e.g. extracellular import) [95]. 

The other metabolites that showed a significant correlation to RLS were lactic acid (LA), 

phenyl-lactic acid (PLA), tyrosine (Tyr) and aspartic acid (Asp) (Table S2). Although the 

synthesis of LA from pyruvate is well studied, the metabolic regulation and function of PLA, a 

product of the shikimate pathway, are less clear. Previously, it was found that yeast produces 

PLA through a nonspecific activity of lactate dehydrogenase from phenylpyruvate, a metabolite 

derived from chorismate in the shikimate pathway [96] (Fig. S5). Interestingly, Tyr is also 

synthesized via the shikimate pathway (Fig. S5) and its abundance negatively correlates with 

RLS. The decreased ARO2 (synthesizes chorismate from shikimate) expression might explain the 

decreased abundance of Tyr in long-lived strains. Similarly, one can expect a decreased Trp 

abundance, which is also synthesized through the shikimate pathway (Fig. S5). However, our 

data revealed an increased level of Trp in long-lived strains. Therefore, we relate this observation 

to the decreased BNA2 expression (see above). 

Finally, since amino acid metabolism is directly related to glycolytic and/or TCA cycle 

intermediates (Fig. 6), we analyzed differences in metabolites and genes involved in these 

central metabolic processes between short- and long-lived strains. Analysis of the data based on 

metabolomics and transcriptomics approaches suggested a decreased glycolytic rate and 

increased TCA cycle activity in long-lived strains (Fig. 6). For example, we found that glycolytic 

genes such as FBA1, TDH2, PGK1, ENO2 and CDC19 were negatively correlated with RLS, 

while TCA cycle genes such as CIT1, IDP1 and KGD1 were positively correlated with RLS 

(Table S2).  These observations are consistent with the pathway enrichment analysis revealing 
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increased TCA cycle and oxidative phosphorylation in long-lived strains. To further examine 

this, we measured basal oxygen consumption rate (OCR) of wild yeast isolates and verified the 

increased respiration rate in long-lived strains. To determine if the observed pattern of median 

RLS variation can be partly explained by this increased mitochondrial function, we tested a 

potential relationship between OCR and median RLS. Our analysis revealed a significant 

positive correlation (R=0.28, Padj=0.016) between OCR and median RLS (Fig. S9A, Table S5). 

Furthermore, we tested whether the increased OCR can be simply explained by total 

mitochondrial copy number by analyzing protein abundance of mitochondrial marker protein 

Por1 by Western blots. We observed a similar abundance of Por1 across the strains, arguing 

against alteration in mitochondrial copy number in long-lived strains (Fig. S9B). Overall, this 

data suggests a possible role of mitochondrial function in lifespan variation across wild yeast 

isolates. 

In summary, our joint omics analyses revealed consistent changes associated with 

increased lifespan at both metabolome and transcriptome levels, pointing to decreased glycolytic 

activity and amino biosynthesis and increased mitochondrial activity (TCA cycle and 

mitochondrial respiration) even under conditions of excess fermentative carbon source (glucose). 

These findings suggest common changes responsible for modulating lifespan across a broad 

diversity of wild yeast isolates. 

 

Experimental testing of Glu and Trp metabolism in regulation of longevity 

To further understand the molecular mechanisms that support the long life of yeast wild 

cells, we paid particular attention to the association between decreased Trp degradation (KYN 

pathway) and RLS. Our data highlight the importance of Trp metabolism in lifespan regulation 

in long-lived strains. We found that even though the Trp biosynthesis pathway (shikimate 

pathway) is suppressed, Trp levels were increased, possibly due to decreased transcript 

abundance of BNA2, which controls the first-rate limiting step in Trp degradation. This data 

suggest that Trp abundance itself might be important for longevity and that long-lived strains 

might compensate for decreased Trp biosynthesis by inhibiting Trp degradation. To test this idea, 

we examined the lifespan effect of increased BNA2 dosage in three long- and short-lived strains. 

Consistent with the findings from transcriptomic data, the increased expression of BNA2 caused 

a significant decrease in median RLS in two out of three long-lived strains tested and 
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significantly decreased maximum RLS in all long-lived strains tested (Fig. 7A). The increased 

expression of BNA2 in short-lived strains did not result in a consistent RLS pattern. Among the 

three short-lived strains tested, two decreased median and maximum RLS significantly, and 

caused a significant increase in median RLS in one strain (Fig. 7B). Additional data are needed 

to fully clarify whether changes in Trp levels or some intermediate metabolites from KYN 

pathway such as QA are critical for the observed lifespan variation; however, our data support a 

role for Trp homeostasis in longevity. 

The observation of decreased glycolysis, increased SCFAs abundance and increased 

lactic acid synthesis from pyruvate in long-lived strains seems to disagree with the findings from 

transcriptome and the experimental work that suggest increased TCA cycle activity and 

respiration. While our findings from both metabolomics and transcriptomics data suggest a 

decreased substrate availability for the TCA cycle, increased TCA cycle activity may be fueled 

by alternative substrates. We hypothesize that compartment-specific glutamate (Glu) to alpha 

ketoglutarate (α-KG) flux, a reaction mainly controlled by NAD+ dependent mitochondrial Glu 

dehydrogenase, GDH2 in mitochondria [97-99], might support increased TCA activity. In this 

case, spared Glu (due to decreased Glu-dependent amino acid biosynthesis) can support citrate 

synthesis to fuel TCA cycle via α-KG conversion. Along with decreased glycolysis and a 

decrease in Glu-dependent amino acid biosynthesis, compartment specific Glu to α-KG flux 

might be important for extended longevity in long-lived strains. In fact, our findings suggest that 

Glu utilization is limited in long-lived strains; however, the observation of no significant 

alteration in Glu abundance is consistent with the idea that long-lived strains may utilize Glu in 

some other pathway. In support of this model, we found that transcript abundance of GLN1, an 

enzyme responsible for synthesis of glutamine (Gln) from Glu (Fig. 6) in mitochondria, 

negatively correlates with lifespan (Table S2). To test the possibility that GDH-mediated Glu to 

α-KG flux is important for supporting the lifespan of long-lived strains, we overexpressed GLN1 

in three long- and three short-lived strains. Overexpression of GLN1 is expected to decrease the 

Glu pool, and thus perhaps α-KG synthesis. We found that GLN1 overexpression significantly 

decreased both median and maximum RLS of long-lived strains tested (Wilcoxon rank sum tests, 

p < 0.05) (Fig. 7A). Among the three short-lived strains tested, two significantly increased 

median and maximum RLS, while the remaining strain showed no significant lifespan changes 

(Fig. 7B). Thus, the data support the idea that the mitochondrial Glu pool may have a role in 
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longevity across wild isolates. Although it needs additional experimental evidence, we think that 

increased NADH levels in long-lived strains might be due to increased NAD+-dependent GDH2 

activity, which catalyzes the conversion of Glu to α-KG in mitochondria. 

     Although initially yeast was considered as Krebs-negative (i.e. cannot utilize TCA 

cycle intermediates as carbon sources for growth) [100], later on α-KG was shown to be 

catabolized, under the condition of co-consumption with low glucose [101]. To investigate 

whether wild isolates can utilize α-KG as an alternative carbon source, we cultured them in the 

medium containing low glucose and α-KG, α-KG only and YP (yeast extract peptone without 

glucose) medium (Fig. 8A, Fig. S10). To our surprise, we found that many of these wild isolates 

showed weak growth even on the YP medium, which was not supplemented with any carbon 

source (Fig. S10). It is possible that some compounds in yeast extract may promote weak growth 

of these isolates, and we think that it might be α-KG. To prove this, we supplemented YP and 

YPD medium with α-KG (10g/l) and observed that many of the strains showed improved growth, 

further supporting utilization of α-KG for growth on the medium lacking glucose (Fig. 8A, Fig. 

S10). 

Finally, to connect increased respiration, α-KG utilization and extended lifespan, we 

eliminated mitochondrial DNA (mtDNA, rho0) in three long-lived strains. We assayed their 

growth in medium supplanted with α-KG. We found that elimination of mtDNA in long-lived 

strains abolished their growth ability in the medium supplemented with α-KG as a sole carbon 

source (Fig. 8A). We further measured RLS of these rho0 isolates under 2% glucose conditions 

to understand whether blocking respiration would affect their lifespan. Our analysis revealed that 

the loss of mtDNA caused a significant reduction in RLS in all three strains tested (Wilcoxon 

rank sum tests, p < 0.05) (Fig. 8B). Overall, these data further support the idea that α-KG 

utilization and increased mitochondrial respiration are connected to each other and utilization of 

α-KG requires active mitochondria. Perhaps, under the conditions of decreased amino acid 

synthesis α-KG utilization could increase respiration which in turn may increase lifespan. 

 

DISCUSSION 

The budding yeast has contributed significantly to our understanding of genetics and cell biology 

and has become an important model of aging, ever since Mortimer discovered the yeast RLS 

phenotype [13]. With the power of genetics and experimental tools, yeast has provided various 
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clues for understanding the aging process in eukaryotes and yielded hypotheses that have been 

further tested in other organisms, including mammals [102, 103]. From this perspective, the 

natural isolates we analyze in the current study offer an excellent new model for yeast aging 

studies [18, 53-57], allowing us to leverage  the enormous genetic variation found among natural 

isolates to study cellular processes that affect lifespan variation in nature, in a way not possible 

with the standard approach of deletion mutants in lab strain. In fact, these studies revealed 

several previously known, as well as novel, cellular processes and genetic factors that together 

determine replicative lifespan of yeast. For example, QTL analysis revealed a possible role of 

rDNA origin activation, nutrition sensing pathways and serine biosynthesis in modulation of 

replicative and chronological lifespan in wild yeast isolates. In addition, both initial and age 

associated increase in cell size found to be negatively correlated with RLS. In general, these 

studies pointed out diet-dependent metabolic regulations in lifespan regulation [18, 53-57]. 

In this study, we further advanced these findings by utilizing -omics approaches across 

highly diverse aging phenotypes. Our comparison of gene expression changes and longevity 

signatures across laboratory-adapted long-lived mutants and long-lived natural isolates identified 

many genes and pathways associated with longevity. However, further studies are needed to 

determine their individual and collective roles in lifespan variation. At the pathway level, the 

transcriptomic and the metabolomic data suggest that respiratory metabolism is important for 

longevity, as long-lived strains are characterized with increased TCA cycle and oxidative 

phosphorylation activities.  This is also consistent with prior data that genetic induction of 

respiration in the PSY316 laboratory-adapted strain is sufficient to increase RLS [104].  In 

addition, we found that short-lived strains when grown with glucose as the primary carbon 

source (YPD) tend to achieve the largest lifespan gains when grown on glycerol (YPG) that 

induces a metabolic shift away from fermentation and toward respiration. In contrast, strains that 

are long-lived on YPD generally did not show a further RLS increase. Taken together, these 

findings suggest possible adaptive mechanisms under glucose conditions that suggest a 

metabolic shift from fermentation to respiration to increase mitochondrial metabolism in long-

lived isolates. Accordingly, further increase in respiration by shifting the carbon source from 

glucose to glycerol was not beneficial in those long-lived strains. 

In addition, our combined analyses of transcriptome and metabolome data pinpointed a 

regulation of interconnected amino acid biosynthetic pathways, which are down-regulated in 
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long-lived strains. Amino acids are the building blocks of proteins, and it is known that 

individual supplementation or restriction of several different amino acids can exert both pro- and 

anti-longevity effects mainly through a well-studied target of rapamycin (TOR) pathway [105, 

106]. For example, restriction of BCAAs was shown to increase both healthspan and longevity in 

mice [107, 108]. Jiang and colleagues first reported that reducing the amino acid content of the 

media can increase RLS in a short-lived laboratory yeast strain [109].  Similarly, Asp restriction 

[110] or treatment with the glutamine synthetase inhibitor methionine sulfoximine [111] can 

extend RLS by inhibiting TOR. Our data are consistent with the idea that decreased amino acid 

biosynthesis plays a role in a longer lifespan of wild isolates and that this is associated with 

decreased glycolytic activity and increased mitochondrial function. 

Among the amino acids that are found to be associated with lifespan, Trp appears to be 

particularly relevant for lifespan regulation. Recently, a decrease in KYN metabolic pathway 

activity through RNAi knock-down of TDO-2 (BNA2 ortholog) expression (knock-down) was 

found to robustly extend lifespan, [112] while complete knock-out of TDO-2 expression 

diminished the positive lifespan effect in C. elegans [113]. Increased KYN pathway activity and 

alteration in KYN pathway metabolites with age have also been observed in humans, suggesting 

a possible conserved role for this pathway in lifespan regulation [114, 115]. In addition, a study 

across 26 mammalian species found that species characterized by increased KYN pathway 

activity were shorter-lived [110]. In yeast, it was shown that deletion of BNA2, which encodes 

the protein that controls the first rate limiting step in Trp catabolism, decreased RLS, while 

increased BNA2 dosage (overexpression) increased RLS in diploid laboratory WT cells [116]. 

We observed that transcript abundance of BNA2 negatively correlated with lifespan across wild 

isolates. Consistent with this observation, we found that increased BNA2 dosage caused a 

significant lifespan reduction in long-lived strains as well as short-lived strains. These data 

support the model that decreased KYN pathway activity is associated with increased lifespan 

across wild isolates. Due to decreased shikimate pathway activity, increased BNA2 dosage 

possibly caused increased activation of the KYN pathway by increasing Trp degradation, which 

in turn resulted in decreased intracellular Trp pool for protein translation in long-lived strains. 

On the other hand, short-lived strains are already characterized with increased BNA2 abundance 

and further increase in BNA2 dosage might increase KYN pathway metabolic intermediates (e.g. 

kynurenine, QA) and result      in further lifespan reduction. Perhaps, the direct way to test the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2020.11.09.374488doi: bioRxiv preprint 

https://www.sciencedirect.com/topics/medicine-and-dentistry/rapamycin
https://doi.org/10.1101/2020.11.09.374488
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

role of Trp in lifespan regulation should be to analyze the effect of decreased expression of 

BNA2 in short-lived strains, which will directly increase the abundance of Trp, in a similar 

fashion to that in long-lived strains. Although our data differ from the recently published report 

in which BNA2 overexpression increased lifespan [116], it is possible that Trp metabolic 

regulation and KYN pathway activity might follow different metabolic and genetic trajectories 

across wild isolates in comparison to the laboratory adapted strain used in that study, which had 

been cultured on a medium with high glucose and abundant Trp over many generations. 

The KYN pathway activity could also be related to NAD+ homeostasis since Trp 

degradation is the major route for NAD+ synthesis [117]. Accordingly, we hypothesized that the 

observed unchanged NAD+ abundance across yeast isolates might be explained by the increased 

activity of the downstream NAD+ salvage pathway (Fig. S5). In fact, we found that the 

expression of the nicotinamidase gene, PNC1, in the salvage pathway positively correlates with 

lifespan (Fig. 3). Nicotinamide (NAM) is a by-product generated during Sir2p-mediated 

deacetylation and can be taken up from the medium. The stress-induced nicotinamidase Pnc1p in 

yeast is responsible for the clearance of NAM by converting it to nicotinic acid (NA), which is a 

precursor for NAD+ biosynthesis via the salvage pathway [118, 119] (Fig. S5). Increased 

expression of PNC1 alone has been shown to modulate intracellular NAD+ homeostasis and to 

increase RLS [116, 117]. In addition to the hypothesis that the increased salvage pathway 

activity might compensate for NAD+ biosynthesis in long-lived strains with decreased KYN 

activity, our finding of increased lactate abundance in these strains could be interpreted as an 

alternative route for NAD+ regeneration. During lactic acid fermentation, two molecules of 

pyruvate are converted to two molecules of lactic acid. This reaction also supports oxidation of 

NADH to NAD+. Previously, it has been shown in both yeast and mammalian cells that when 

NAD+ demand is higher relative to ATP turnover, cells engage in anaerobic glycolysis, despite 

available oxygen [120]. Our data also suggest that a similar mechanism might have evolved to 

regulate NAD+ homeostasis in cells with decreased KYN pathway activity. Overexpression of 

BNA2 might also interfere with these adaptive changes in long-lived strains, which in turn 

decreases lifespan. Our molecular identification of adaptive metabolic changes may prove useful 

in uncovering additional mechanisms regulating cellular NAD+ metabolism and their association 

with the aging process in future studies. 
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A potential connection between altered amino acid biosynthesis and the TCA cycle that 

may be particularly relevant for lifespan determination is Glu metabolism. Other than being a 

precursor in many amino acid biosynthetic pathways, Glu is an important carbon and nitrogen 

carrier, and can be catabolized to α-KG, an intermediate of the TCA cycle through a deamination 

reaction catalyzed by GDH2 as well as by other transaminases such as BAT1, BAT2 and ARO8 

during amino acid biosynthesis. The movement of α-KG through the TCA cycle represent the 

major catabolic step for the production of nucleotides, lipids, and amino acids [121]. Here, we 

also showed that wild yeast isolates can use α-KG as an alternative carbon source for growth. We 

hypothesize that mitochondria specific Glu to α-KG conversion by GDH2 might be an important 

determinant of lifespan regulation. In fact, increasing utilization of the Glu pool towards Gln 

resulted in a significant decrease in lifespan in long-lived strains. Based on these data, both 

compartment specific Glu to α-KG conversion by GDH activity and utilization of α-KG for 

energetic and/or anabolic purposes might result in longer lifespan across wild isolates. Hence, 

our data suggest a possible mechanism that niche-specific nutrient depletion promotes halting the 

biosynthetic machinery (e.g. amino acid biosynthesis, glycolysis) and alleviates catabolic 

processes of alternative carbon sources to provide energy maintenance in long-lived strains by 

increasing respiration. Recently, α-KG emerged as a master regulator metabolite [122]. There 

have been many enzymes found to be regulated by α-KG, characterized as an epigenetic 

regulator, and identified as a regulator of lifespan in C. elegans [123] and mouse [124]. In C. 

elegans, α-KG was found to decrease ATP levels by blocking mitochondrial complex V activity, 

thereby reducing oxygen consumption. This effect was found to be mTOR-dependent [123]. 

Similarly, α-KG was found to extend lifespan in fruit fly by inhibiting mTOR and activating 

AMPK signaling [125]. In mid-aged mice, α-KG supplementation decreased systemic 

inflammatory cytokines leading to health and lifespan benefits [124]. More recently, an analysis 

of 178 genetically characterized inbred fly strains revealed α-KG-dependent lifespan regulation 

under dietary restricted conditions [126]. However, in yeast, the effect of α-KG supplementation 

on lifespan regulation has never been tested. It was shown that yeast can actively transport α-KG 

from medium to cytosol and into mitochondria [100, 101]. In addition, in contrast with the 

findings in C. elegans, α-KG supplementation was found to increase oxygen consumption in 

yeast [100]. Also, α-KG supplementation was shown to increase oxidative stress resistance in 

yeast [127]. Similarly, a dietary role of Glu in aging has been tested in different model 
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organisms, including yeast. Initially, Glu restriction was found to increase yeast chronological 

lifespan (CLS) [128]; however, later on, it was shown that Glu supplementation also has a 

positive effect on CLS [110]. Similarly, in C. elegans, medium supplemented with a lower dose 

(1-5 mM) of Glu was found to extend lifespan [105]. However, the role and mechanisms of Glu 

metabolism in lifespan regulation are not well understood. Both α-KG and Glu are involved in 

epigenetic and redox regulations that all have been implicated in lifespan regulation [124, 129] 

and might also provide a mechanism for lifespan extension in long-lived strains. Furthermore, 

catalysis of Glu to α-KG also yields NH4, which has been shown to be involved in regulation of 

mTOR1 and mTOR2 signaling [130, 131] and lifespan. All these findings from different 

organisms suggest complicated mechanisms of beneficial effects of a-KG, which needs further 

investigation. 

Overall, our research takes advantage of natural variation in yeast lifespan that has arisen 

in response to mutation, selection and genetic drift, and uses this variation to identify the 

potential causal roles that gene expression and metabolism play in shaping lifespan within the 

same species. Our data revealed a novel mechanism wherein different life history trajectories 

contribute to mitochondrial metabolism. Hence, the TCA cycle represents a central metabolic 

hub to provide metabolites to meet the demands of proliferation and other cellular processes. 

With respect to this, modification of TCA metabolic fluxes and metabolite levels in response to 

environmental pressures might therefore account for cellular adaptation and plasticity in the 

changing environment which might also affect lifespan of these wild isolates. We further provide 

molecular insights into the unique metabolic adaptation involving linked pathways, involving in 

Glu and a-KG metabolisms in regulation of mitochondrial function and their possible association 

with lifespan variation. Further understanding of how gene-environment interactions modulates 

genes and pathways associated with longevity may open new therapeutic applications to slow 

aging and delay the onset of age-related diseases through diet, lifestyle, or pharmacological 

interventions. In future studies, it might yield important information to investigate the role of α-

KG metabolism in amino acid and caloric restricted lifespan regulation. 

 

Materials and Methods 

Yeast strains and growth conditions 
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Many of the diploid wild isolates of S. cerevisiae and S. paradoxus (68 isolates) were obtained 

from the Sanger Institute [49] and the remaining 8 isolates of S. cerevisiae were gifted by Justin 

Fay from Washington University [48]. Detailed information about strains used in this study is in 

Supplementary Table 1. The diploid laboratory WT strain BY4743 was purchased from the 

American Type Culture Collection. For testing the growth effect, strains were cultured overnight 

in a 96–well plate incubator at 300C in YPD medium. Next day, 1µl from overnight culture was 

transferred to the YP, YP + α-KG (10g/l) or YPD (0.02% glucose) + α-KG and growth was 

monitored in 96 well plate using Epoch2 (BioTek, Winooski, VT, USA) kinetic growth analyzer 

by analyzing optical density of OD600. For expression of genes of interest, we used modified 

p426GPD high copy plasmid by inserting a hygromycin (HYG) cassette along with its promoter 

and terminator at the XbaI restriction site. HYG cassette was amplified from pGAD32 plasmid 

with PCR. Using modified p426GPD, we inserted GLN1 and BNA2 gene cassettes individually at 

the BamHI/XhoI restriction sites for overexpression. Yeast transformation was performed using 

standard lithium acetate method. Growth rates were determined using a BioScreen-C instrument 

(Bioscreen C MBR, Piscataway, NJ, USA) by the analysis of optical density in the OD600 range, 

and doubling times were calculated with an R script by analyzing fitting spline function from 

growth curve slopes [132]. The maximum slope of the spline fit was used as an estimate for the 

growth rate and doubling time for each evolved line, in combination with the YODA software 

package [133]. Finally, mtDNA was eliminated by culturing cells in YPD medium, 

supplemented with 10 µg/ml and ethidium bromide (EtBr). Briefly, logarithmically growing cells 

(OD600=0.5) were incubated at room temperature with agitation for approximately 24 h. 

Following a second and third treatment with the same concentration of EtBr for 24 h, the cells 

were diluted (1:100) in water and plated on YPD to obtain single colonies. After then, several 

individual colonies were selected for testing their growth ability on YPG plates. Colonies, which 

were unable to grow on YPG were selected as rho0. 

Replicative lifespan assay 

RLS was determined using a modification of our previously published protocol [134]. Yeast cell 

cultures for each strain were freshly started from frozen stocks on YPD plates and grown for 2 

days at 30     0C prior to dissections. Several colonies were streaked onto new YPD with 2% 

glucose, YPD with 0.05% glucose or YPG plates with 3% glycerol using pipette tips. After 
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overnight growth, ~100 dividing cells were lined up. After the first division, newborn daughter 

cells were chosen for RLS assays using a dissection microscope. For each natural isolate, at least 

two independent assays were performed using at least sets of 20 cells for each assay. Each assay 

included 20–80 mother cells of BY4743 strain as well, which was used in every experiment as a 

technical control. For RLS analysis of wild isolates harboring expression plasmids, individual 

colonies were picked up from selection medium (HYG) and YPD medium supplemented with 

200 microgram/mL HYG were used for RLS determination of these cells. Survival analysis and 

Gompertz modeling was performed using the survival and flexsurv packages in R, respectively. 

Measurement of basal oxygen consumption rate and western blot analysis 

To investigate metabolic respiration differences across wild isolates OCR, (pmol/min) was 

measured using a Seahorse XFe96 analyzer (Agilent, Santa Clara, CA, USA). Cells grown 

overnight in YPD were diluted to OD600=0.01 in the morning, and cells were grown to reach the 

OD600=0.25-0.5. Then, cell culture was diluted to OD600=0.02 in YPD and placed in a XFe96 

cell culture plate coated with 15 microliter 0.01% poly-L-lysine and attached to the plate 

according to the previously published protocol [135]. Basal OCR was measured for 5 cycles 

at 30 oC.  To examine the expression of mitochondrial proteins, western blotting was carried out 

with antibodies against mitochondrial outer membrane protein Por1 (Abcam, Cambridge, MA, 

USA, cat:ab110326). For each strain, 10 mL logarithmically growing cells were collected and 

proteins were isolated according to previously published protocol [18]. The membranes were 

stripped and developed with antibodies against phosphoglycerate kinase (Pgk1; Life 

Technologies, Grand Island, NY, USA, cat: 459250) as an internal loading control. 

RNA-sequencing and data analysis 

Three independent cultures for each strain were collected at the OD600=0.4 on YPD medium to 

isolate RNA from each culture using Quick-RNA 96 Kit from Zymo Research (Cat. number: 

R1053). To prepare RNA-seq libraries, Illumina TruSeq RNA library preparation kits were used 

according to the user manual, and RNA-seq libraries were loaded on Illumina HiSeq 4000 

platform to produce 150 bp paired-end sequences. After quality control and adapter removal, the 

STAR software package [136] was used to map the reads against a pseudo reference genome of 

each strains, in which we replaced identified nucleotide changes in the S288c reference genome. 
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Read alignment rate for transcriptome data against pseudo genome varied between 92-97% 

across S. cerevisiae strains and 93-99% across S. paradoxus strains (Fig. S11). Read counts per 

gene were calculated using feature     Counts [137]. To filter out genes with low numbers of 

reads, we used filterByExpr function from the edgeR package and resulted in an expression set 

of 5,376 genes across replicates of wild isolates. 

Metabolite profiling and data analysis 

A portion of the cell pellet collected for RNA-seq analyses was also used for targeted metabolite 

profiling using liquid chromatography-mass spectrometry (LC-MS). 1 ml of MeOH:H2O mixture 

(8:2, v/v) was added to the samples, swirled at 550 rpm on a mixer for 5 minutes and then 

transferred to an Eppendorf tube, they were sonicated in an ice bath for 10 min, centrifuged at 

4°C at 14,000 rpm for 15 min, and 600 µl of supernatant was collected into a new tube and dried 

in a vacuum centrifuge at 30 °C for 2.5 hrs. Samples were reconstituted in 1 mL and injected into 

a chromatography system consisting of a dual injection valve setup allowing injections onto two 

different LC columns with each column dedicated to an ESI polarity. 5 µL were injected on the 

positive mode column and 10 µL on the negative side column. The columns were a matched pair 

from the same production lot number and were both a Waters BEH amide column (2.1 x 150 

mm). Auto sampler was maintained at 4 °C and column oven was set to 40 °C. Solvent A (95% 

H2O, 3% acetonitrile, 2% methanol, 0.2% acetic acid with 10 mM ammonium acetate and 5 µM 

medronic acid and Solvent B (5% H2O, 93% acetonitrile, 2% methanol, 0.2% acetic acid with 10 

mM ammonium acetate 5 µM medronic acid) were used for sample loading. After completion of 

the 18-minute gradient, injection on the opposite column was initiated and the inactive column 

was allowed to equilibrate at starting gradient conditions. A set of QC injections for both 

instrument and sample QC were run at the beginning and end of the sample run. Data was 

integrated by Multiquant 3.0.2 software. Peaks were selected based on peak shape, a signal-to-

noise of 10 or better and retention times consistent with previously run standards and sample 

sets. Analysis of the dataset was performed using R (version 3.6.0). All the metabolites with ≥ 

40% missingness were excluded, and a total of 166 metabolites were included in the imputation 

step. We imputed the remaining missing values using the K-nearest neighbors imputation 

method implemented in the R impute package. The log2-transformed abundance was Cyclic 

LOESS normalized prior to imputation. 
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Principal component analysis (PCA) 

Principal component analysis was performed on preprocessed data (e.g. normalized and imputed 

log2 abundance of the metabolomic data, and the log2-counts per million (CPM) values of the 

filtered and TMM normalized RNAseq data) using the R prcomp function. To identify the 

underlying pathways, the factors in each of the first three principal components were ranked by 

their contributions, and pathway enrichment analysis was performed on the top 500 transcripts 

using Network Analyst [138] and on the top 40 metabolites using MetaboAnalyst [89] platforms. 

Phylogenetic regression by generalized least squares 

R packages ‘nmle’ and ‘phylolm’ were used to perform phylogenetic regression by generalized 

least squares method to identify RLS association of transcripts and metabolites [18]. We tested 

four models of trait evolution: (i) complete absence of phylogenetic relationship (‘Null’); (ii) 

Brownian Motion model (‘BM’); (iii) BM transformed by Pagel’s lambda (‘Lambda’); and (iv) 

Ornstein–Uhlenbeck model (‘OU’). The parameters for Lambda and OU models were estimated 

simultaneously with the coefficients using maximum likelihood. The best-fit model was selected 

based on maximum likelihood. Strength of correlation was based on the p-value of regression 

slope. To confirm robustness of results, regression was performed by leaving out each strain, one 

at a time, and computing P values using the remaining strains. 

Gene expression signature associated with RLS across deletion strains 

Gene expression data on deletion mutants was obtained from GSE45115, GSE42527 and 

GSE42526 [86]. The corresponding RLS lifespan data for mutant strains was from [85]. Based 

on the raw data from the number of replicates, we calculated median, mean and maximum RLS, 

together with corresponding standard errors (SE) for each deletion strain. In total, this resulted in 

1,376 deletion strains, for which both RLS and gene expression data were available. logFC of 

individual genes corresponding to each mutant strain compared to control samples were used for 

subsequent analysis. 

To identify genes associated with RLS across KO strains linear models in limma were 

used [139]. We found genes associated with median, mean and maximum RLS both in linear and 

logarithmic scale, and BH adjustment was performed to account for multiple hypotheses [140]. 

Genes with adjusted p-value < 0.05 were considered significant. To determine statistical 
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significance of the overlap between genes associated with different metrics of RLS, we 

performed Fisher exact test separately for up- and downregulated genes, considering 6,170 genes 

as background. 

Comparison between signatures of RLS across deletion and natural strains 

To compare gene expression signatures associated with different metrics of RLS across 

deletion and natural Saccharomyces strains, we calculated Spearman correlation coefficients 

between corresponding gene expression slope coefficients in a pairwise manner. Clustering of the 

Spearman correlation matrix was performed with the complete hierarchical approach. 

To increase the signal within the correlation matrix, the union of top 1000 statistically 

significant genes from each of the two signatures in a pair was used to calculate Spearman 

correlation coefficient. To get an optimal gene number for removal of noise, we looked at how the 

total number of significantly correlated pairs of signatures depended on the number of genes used 

to calculate the correlation coefficient. As a threshold for significance, we considered BH adjusted 

p-value < 0.05 and Spearman correlation coefficient > 0.1. 

To determine statistical significance of the overlap between transcripts associated with 

different metrics of RLS across deletion and natural strains, we performed Fisher exact test, 

considering 4,712 genes as background. To identify genes whose deletions are associated with 

longer or shorter lifespan in S. cerevisiae strains, we compared the distribution of RLS across 

samples corresponding to certain deletion strains with the distribution of median RLS across all 

measured deletion strains. For that we used Mann-Whitney test. Genes with BH adjusted p-value 

< 0.05 were considered significant. Overlap of these genes with lifespan-associated genes across 

natural strains was assessed with the Fisher exact test with BH adjusted p-value threshold of <0.05. 

Functional enrichment analysis 

For the identification of functions enriched by genes associated with RLS across deletion 

and natural strains, we performed gene set enrichment analysis (GSEA) [141] on a ranked list of 

genes based on log10(p-value) corrected by the sign of regulation, calculated as: 

−(𝑝𝑣)  × 𝑠𝑔𝑛(𝑏), 

where pv and b are p-value and slope of expression of a certain gene, respectively, and sgn is 

signum function (is equal to 1, -1 and 0 if value is positive, negative and equal to 0, respectively). 
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REACTOME, KEGG and GO biological process (BP) from Molecular Signature Database 

(MSigDB) were used as gene sets for GSEA [142]. We utilized the fgsea package in R for GSEA 

analysis. Adjusted p-value cutoff of 0.1 was used to select statistically significant functions. 

We visualized several manually chosen statistically significant functions with a heatmap colored 

based on normalized enrichment score (NES). Clustering of functions has been performed with 

hierarchical complete approach and Euclidean distance. Combined integrative analysis of 

transcriptomics and metabolomics data for pathway analysis was performed by using joint-

pathway analysis option in MetabolAnalyst 5.0 [89]. 
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Figures:  

 

 

 

 

 
 

Figure 1: Doubling time and replicative lifespan of yeast wild isolates. A) Distribution of 

mean doubling time (DT, in minutes) on YPD (2% glucose) and YPG (3% glycerol). B) 

Examples of lifespan curves for the selected strains. Black curve shows lifespan under YPD 

conditions, and red curve under YPG conditions. C) Median replicative lifespan (RLS) 

distribution across S. cerevisiae (red) and S. paradoxus (turquoise) isolates grown in YPD. D) 

Distribution of median RLS across different conditions. Source data is provided as 

Supplementary Table 1. 
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Figure 2: Endophenotypic variation across strains. (A) Phylogenetic relationship based on the 

transcriptome data of 76 strains of two species. Principal component analysis (PCA) of (B) 

transcriptomics and (C) metabolomics. Percent variance explained by each principal component 

(PC) is shown in parentheses. Pathway enrichment analysis for combined top genes and 

metabolites contributing to (D) PC1 and (E) PC2. Some of the enriched KEGG pathways are 

shown in each panel. PCA loadings can be found in Supplementary Table 3. 
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Figure 3: Selected genes whose expression correlates with median RLS. (A) Gene expression 

level (log2-cpm) of CMR3, ZRG8, and PNC1 positively correlates with median RLS. (B) 

Transcript abundance of PHO85, RTT107, and BNA2 negatively correlates with median RLS. 

Regression slope P values can be found in Supplementary Table 2, which is also the source data 

file for these analyses. 
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Figure 4: Comparative analysis of lab yeast knockout (KO) and wild isolates. (A) Significant 

genes (Padj < 0.05) associated with maximum, median and mean RLS (or log maximum, median 

and mean) across deletion strains based on transcriptomics data obtained from 1,376 KO strains. 

Genes positively and negatively associated with RLS (upregulated and downregulated, 

respectively) are significantly shared across different metrics of RLS (Fisher exact test p < 0.05). 

(B) Denoised correlation matrix of gene expression effects across single-gene deletion strains 

(KO), and those that we measure across the wild isolates      that are associated with RLS . 

Correlation coefficient is calculated using union of top 1,000 statistically significant genes for each 

pair of signatures with Spearman method. LM: Linear model; PGLS: phylogenetic regression least 

squares. (C) Functional enrichment of genes associated with RLS across deletion and natural 

strains. Cells are colored based on normalized enrichment score (NES). Supplementary Table 1 

and 2 are provided as source data files for these analyses. 
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Figure 5: Selected metabolites correlating with median RLS. (A) Abundance (LC-MS 

counts) of lactate, Trp, and hydroxyisobutyrate that positively correlate, and (B) abundance of 

quinolinic      acid, Lys, and NAD that negatively correlate with median RLS. Regression slope P 

values can be found in Supplementary Table 2. This file is also provided as a source data file for 

these analyses.  
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Figure 6: Summary of metabolic changes associated with RLS. (A) Summary depiction of 

genes and metabolites from the inter-connected glycolytic pathway, TCA cycle and amino acid 

metabolism that are found to be associated with RLS. Associated genes are colored in red 

(negatively associated with RLS) or green (positively associated with RLS). Depiction of (B) 

shikimate pathway and (C) lactate and ethanol biosynthetic pathways are shown with the same 

color code representation. Glutamate is highlighted in yellow. 
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Figure 7. RLS effect of GLN1 and BNA2 overexpression in selected long- and short-lived 

strains. Lifespan curves for control (Gray), BNA2 (Black), and GLN1 (red) overexpression in 

(A) long and (B) short lived strains. Lifespan data and significance of lifespan changes can be 

found in Supplementary Table 1. 
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Figure 8: Growth properties of long-lived trains in medium supplemented with α-KG and 

effect of mtDNA elimination on α-KG utilization and RLS. (A) The growth of three long-

lived strain were further supported with α-KG supplementation (10g/l). However, strains lost the 

ability of α-KG utilization upon mtDNA elimination (red). Growth data of OD600 measurement 

can be found in Supplementary Table 1. (B) Elimination of mtDNA significant reduced RLS in 

all three long lived strains. Lifespan data and significance of lifespan changes can be found in 

Supplementary Table 1. 
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