

1 **Title:** A single nuclei transcriptomic analysis of the Atlantic salmon gill through smoltification  
2 and seawater transfer

3 **Authors:** Alexander C. West<sup>1</sup>, Yasutaka Mizoro<sup>2</sup>, Shona H. Wood<sup>1</sup>, Louise M. Ince<sup>3</sup>, Marianne  
4 Iversen<sup>1</sup>, Even H. Jørgensen<sup>1</sup>, Torfinn Nome<sup>4</sup>, Simen Rød Sandve<sup>4</sup>, Andrew S. I. Loudon<sup>2</sup> and  
5 David G. Hazlerigg<sup>1</sup>

6 <sup>1</sup>Arctic Chronobiology and Physiology, University of Tromsø, Framstredet 42, 9019 Tromsø,  
7 Norway

8 <sup>2</sup>Division of Diabetes, Endocrinology & Gastroenterology, School of Medical Sciences, Faculty  
9 of Biology, Medicine and Health, University of Manchester, UK

10 <sup>3</sup>University of Geneva, Centre Médical Universitaire (CMU), Department of Pathology and  
11 Immunology, Switzerland

12 <sup>4</sup>Centre for Integrative Genetics, Department of Animal and Aquaculture Sciences,  
13 Norwegian University of Life Sciences, 1432 Ås, Norway

14 \*Correspondence: david.hazlerigg@uit.no

15

16 **Abstract**

17 Anadromous salmonids begin life adapted to the freshwater environments of their natal  
18 streams before a developmental transition, known as smoltification, transforms them into  
19 marine-adapted fish. In the wild, the extending photoperiods of spring stimulates  
20 smoltification, typified by radical reprogramming of the gill from an ion-absorbing organ to  
21 ion-excreting organ. Prior work has highlighted the role of specialized “mitochondrion-rich”

22 cells in delivering this phenotype. However, transcriptomic studies identify thousands of  
23 smoltification-driven differentially regulated genes, indicating that smoltification causes a  
24 multifaceted, multicellular change; but direct evidence of this is lacking.

25 Here, we use single-nuclei RNAseq to characterize the Atlantic salmon gill during smoltification  
26 and seawater transfer. We identify 20 distinct clusters of nuclei, including known, but also  
27 novel gill cell types. These data allow us to isolate cluster-specific, smoltification-induced  
28 changes in gene expression. We also show how cellular make-up of the gill changes through  
29 smoltification. As expected, we noted an increase in the proportion of seawater  
30 mitochondrion-rich cells, however, we also identify a reduction of several immune-related  
31 cells. Overall, our results provide unrivaled detail of the cellular complexity in the gill and  
32 suggest that smoltification triggers unexpected immune reprogramming directly preceding  
33 seawater entry.

34 **Keywords:** Atlantic salmon, smoltification, photoperiod, seasonal, gill

35

36 **Introduction**

37 The Atlantic salmon migrates between fresh and seawater environments <sup>1</sup>. Atlantic salmon  
38 eggs hatch in freshwater streams where they develop for 1-4 years. On reaching a critical size  
39 threshold, young “parr” animals are sensitized by several weeks of winter photoperiod (day-  
40 lengths), after which long, summer-like photoperiods stimulates the parr to transform into a  
41 marine-adapted “smolt” fish <sup>2</sup>. This process, known as smoltification, drives divergent  
42 expression of endocrine factors that collectively deliver phenotypic remodeling, of length,  
43 weight, silvering, and in particular: gill physiology <sup>1</sup>.

44        The salmonid gill is a complex multifunctional organ, essential for gas exchange,  
45    nitrogenous waste excretion, pH balance and osmoregulation <sup>3</sup>. It is also a major mucosal  
46    immune barrier harboring a dedicated lymphoid tissue <sup>4</sup>. Structurally, the gills are arranged in  
47    symmetrical arches, each of which are populated by numerous filament structures, which are  
48    themselves densely flanked with lamellae. The gill is composed of seven major cell types <sup>5</sup>.  
49    Pavement cells (PVCs) have an enlarged surface area on the apical membrane, and form the  
50    majority of the epithelium <sup>6</sup>. Pillar cells (PCs), which are structural cells, define the blood  
51    spaces within the lamellae <sup>7</sup>. Goblet cells (GCs) reside in the filament epithelium and excrete  
52    mucus <sup>8</sup>. Non-differentiated progenitor cells (NDCs) colonize basal and intermediate layers of  
53    the gill epithelium <sup>9</sup>. Chemosensory neuroepithelial cells (NECs) lie along the length of the  
54    efferent edge of the gills and are innervated by the central nervous system <sup>10</sup>. Mitochondrion-  
55    rich cells (MRCs) and their adjacent accessory cells (ACs), finally, are located at the trough  
56    between two lamellae where they abundantly express the channels and pumps required to  
57    maintain the osmotic gradients between blood plasma and both fresh- and seawater <sup>11-13</sup>.

58        Under freshwater,  $\text{Na}^+$  ions are directly or indirectly exchanged for protons across the  
59    apical membrane then transported into the blood *via* the sodium potassium ATPase (NKA) on  
60    the basolateral membrane <sup>14-16</sup>.  $\text{Cl}^-$  ions, meanwhile, are exchanged or channeled across the  
61    apical membrane then enter the blood through an undefined channel <sup>17-20</sup>. Under saltwater,  
62    basolateral NKA generates a chemical and electrical gradient, motivating both loss of  $\text{Cl}^-$  ions  
63    *via* apical CFTR channels and paracellular escape of  $\text{Na}^+$  ions <sup>13,21</sup> (reviewed in <sup>22</sup>).

64        Smoltification converts the Atlantic salmon gill from a freshwater-adapted organ to a  
65    seawater-adapted organ. Rising cortisol and growth hormone along with falling prolactin  
66    propels smoltification. This change in endocrinology coincides with a switch in anatomical and

67 molecular phenotypes of MRCs and ACs, cell types which to date comprise the major focus of  
68 smoltification of gill physiology<sup>1,12,23</sup>. Smoltification is, however, a complex developmental  
69 transition and the smolt gill phenotype likely extends far beyond changing MRC and AC cell  
70 phenotype. Therefore, to realize the complexities of smoltification-driven changes in gill  
71 physiology we adopt a new strategy, single-nuclei RNAseq, which provides transcriptional  
72 responses to smoltification and seawater transfer at individual nuclei-level resolution.

73 **Results & Discussion**

74 **A single-nuclei survey of Atlantic salmon gill cells**

75 We profiled 18,844 individual nuclei from eight Atlantic salmon gill samples from four distinct  
76 physiological states (Figure 1A). To define shared correlation structure across datasets we  
77 pooled replicate samples and integrated all four states using diagonalized canonical  
78 correlation analysis followed by L2 normalization. We next identified pairs of mutual nearest  
79 neighbors (MNNs) to identify anchors: cells that represent shared biological states across  
80 datasets. Anchors were then used to calculate “correction” vectors allowing all four states to  
81 be jointly analyzed as an integrated reference<sup>24</sup>. Unsupervised graph clustering partitioned  
82 the nuclei into 20 clusters, which we visualized using a uniform manifold approximation and  
83 projection (UMAP) dimension reduction technique (Figure 1B).

84 Lists of co-expressed marker genes define individual clusters. We categorized  
85 individual clusters using gene ontology analysis of marker gene lists and unique expression of  
86 known marker genes. This approach allowed us to infer cell types including fresh- and  
87 seawater MRCs, ACs, neuroendothelial cells, goblet cells, non-differentiated cells, pillar cells,  
88 lymphatic endothelial cells and several types of blood cell. We also identified a novel  
89 population of fibrocyte-like cells, and several types of vascular- and endothelial-like cells that

90 partitioned across several clusters, together suggesting greater complexity in gill cytology that  
91 previously appreciated (Figure 1B).

92 We then defined expression signatures for each cell cluster. Our analysis re-identified  
93 several known marker genes, but also identifying several novel cell-type markers (Figure 1C).  
94 For example, the accessory cell signature included highly restricted expression of Slc26a6, an  
95 apical membrane Cl<sup>-</sup>/HCO<sub>3</sub><sup>-</sup> exchanger, associated with gill function but until now  
96 misattributed to expression within MRCs<sup>25,26</sup>. We were interested to note that the markers  
97 defining the erythrocyte population, including beta-globin, were expressed widely among all  
98 cell types. It is unclear exactly what role extra-erythroid haemoglobin plays in the gill,  
99 however, mammalian studies suggest that haemoglobin, in addition to its oxygen carrying  
100 capacity, may play an antimicrobial role<sup>27</sup>. As a major mucosal immune barrier, this capacity  
101 may be pertinent to the gill<sup>28</sup>.

102 **Major changes in cell composition during smoltification**

103 To understand how gene expression and cellular complexity changes within the gill during  
104 smoltification and seawater transfer we compared the snRNAseq profiles at different  
105 developmental points (Fig 2A, for confirmation of smolt status see<sup>29</sup>). The abundance of six  
106 nuclei clusters changed dramatically (>3 fold change in percentage abundance) during  
107 smoltification (Figure 2B). SW MRCs increased in proportion steadily from T1-T4, consistent  
108 with previous descriptions of Atlantic salmon gill physiology. We also observed a marked  
109 increase in vascular cell number, with the major differences occurring between T2 and T3,  
110 suggesting that this vascular cell cluster proliferate in line with growth rates (Figure 2C).  
111 Interestingly, four immune-related nuclei clusters representing T cells, myeloid cells, dendritic  
112 cells and lymphatic endothelial cells fell dramatically during smoltification (Figure 2D).

113 Changes in cell abundance occurred with a similar profile in all immune-associated cell  
114 clusters, with consistent decline observed between T1-T3. In contrast, 24h SW transfer does  
115 not appear to affect immune-cell abundance directly. These results highlight the complex and  
116 dynamic changes in cellular composition that occur in the gill during smoltification.

117 **Cell cluster-specific expression of smoltification-associated factors**

118 Next, we wanted to identify cluster types where smoltification drives changes in local gene  
119 regulation. For statistical power, we cross-referenced our snRNAseq analysis with whole gill  
120 RNAseq analysis of T1-T3, identifying 9746 genes differentially regulated by smoltification  
121 (FDR <0.01). Pearson clustering of these genes resolved five major clusters that were  
122 associated with immune response, structural morphogenesis, autophagy, catabolism and  
123 mitochondrial respiration (Figure 3A). Within our analysis we identified a number of “classical”  
124 smoltification-related genes. As expected, CFTR was highest under constant light (LL), and was  
125 highly localized in expression to MRCs (Figure 3B). We also identified the reciprocal regulation  
126 of sodium-potassium ATPase subunits, specifically, suppression of NKAa1a and increase in  
127 NKAa1b <sup>12</sup>. Inspection of cellular localization within our snRNAseq dataset showed that  
128 expression of these genes were, as anticipated, highest within the MRCs and ACs (Figure 3B).

129 Our previous work identified genes whose expression are predicated on exposure to  
130 several weeks of short-photoperiod exposure<sup>29</sup>. In Atlantic salmon, these “winter-dependent”  
131 genes are analogous to vernalization dependent genes in *Arabidopsis*<sup>30</sup>, where a dosage of  
132 exposure to a winter-like stimulus (in *Arabidopsis*, cold; in Atlantic salmon, short photoperiod)  
133 controls the presentation of a seasonal phenotype under summer-like stimulus (in  
134 *Arabidopsis*, warmth and long days; in Atlantic salmon, long photoperiod). Winter-dependent  
135 genes are therefore intrinsically linked to unidirectional smolt development, and may play a

136 mechanistic role in pre-adaptation of the gill for seawater migration. Surprisingly, canonical  
137 markers of smolt status, including the reciprocal expression of NKA subunits, are not winter  
138 dependent, meaning that their expression is passive to photoperiod rather than life history  
139 progression<sup>29</sup>.

140 Using our RNAseq dataset we identified novel, winter dependent genes. Next, we  
141 mined our snRNAseq dataset to identify the cell clusters that express these factors (Figure S1).  
142 Of particular interest was Cuzd1, a gene associated with carcinogenesis, whose expression  
143 was tightly localized to non-differentiated cells <sup>31</sup>. We also identified Rhag, an ammonium  
144 transporter thought to be erythrocyte specific in mammals, but here predominantly expressed  
145 in the vascular cell (VC 3) cluster <sup>32</sup>; and Hg2a (CD74) a ubiquitously expression multi-  
146 functional protein linked to immune defense <sup>33</sup>. Taken together our data show that  
147 smoltification engages all gill cells in diverse regulatory phenotypes.

148 **Cell cluster-specific expression of seawater transfer-associated factors**

149 Smoltification manifests when the Atlantic salmon smolts migrate downstream and arrive in  
150 the marine environment, thereby committing to an oceanic life <sup>1</sup>. To gain insight into this  
151 critical step we compared RNA profiles of gill samples between smolts in freshwater and 24h  
152 in seawater using whole gill RNAseq, identifying 144 induced and 107 suppressed genes  
153 (FDR<0.01). Gene ontologies showed that the induced gene cohort was significantly  
154 associated with keratinization, whereas the suppressed gene cohort related to immune  
155 function (Figure 4A). We cross-referenced our whole gill RNAseq data against our snRNAseq  
156 data to isolate cell-type specificity of gene expression. These data highlight the restricted  
157 expression of key up-regulated genes (Figure 4B). For example, we localize the expression of  
158 an enzyme involved in both ionic and acid/base balance, carbonic anhydrase, to MRCs <sup>34,35</sup>.

159 We also show that ATP-binding cassette sub-family A member 12 (Abca12), a gene important  
160 in epidermal lipid barrier formation <sup>36</sup>, is broadly expressed, but particularly concentrated in  
161 MRCs (SW), pavement, vascular, and non-differentiated cells. Interestingly, we show that a  
162 protein chaperone that helps regulate chromatin state, nucleoplasmin <sup>37,38</sup>, is expressed  
163 specifically in non-differentiated, vascular and pavement cells groups, suggesting that these  
164 cell types undergo a change in chromatin status under seawater exposure.

165 **Conclusions**

166 Our results bring insightful cellular resolution to the complexity of the Atlantic salmon gill and  
167 the compositional changes that occur during smoltification. Of particular interest was the  
168 suppression of immune cell types, which correlates with reduction in immune-related genes  
169 and suppression of immune function during smoltification <sup>39-41</sup>. These data are a puzzle. The  
170 marine environment is awash with parasites, bacteria and viruses to which the salmon is  
171 potentially vulnerable, so loss of immune function would make little sense. Future work  
172 should focus on why and how the immune system is affected in aquaculture. Conceivably  
173 these data point towards an adaptive immunological reprogramming that helps to avoid  
174 immune shock when the salmon transition between the distinctive pathogen complements of  
175 fresh- and seawater habitats <sup>42,43</sup>. Alternatively, artificial smolt production may drive abnormal  
176 immunosuppression. The constant light routinely used to stimulate smolts would profoundly  
177 undermine the immune defenses of mammals *via* disruption of the circadian clock <sup>44</sup>.

178 Our data also shows that smoltification-driven transcriptional regulation occurs not  
179 only in MRCs and ACs, but also in other distinctive cell types including pavement cells, vascular  
180 cells and non-differentiated cells. We anticipate that novel gene function within the context

181 of cell function will be a priority for future investigation, and will be assisted by the novel suite  
182 of marker genes which we present here.

183

184 **References**

- 185 1. Stefansson, S. O., Björnsson, B. T., Ebbesson, L. O. E. & McCormick, S. D.  
186 Smoltification. in *Fish Larval Physiology* 639–681 (2008).
- 187 2. Strand, J. E. T., Hazlerigg, D. & Jørgensen, E. H. Photoperiod revisited: is there a critical  
188 day length for triggering a complete parr–smolt transformation in Atlantic salmon  
189 *Salmo salar*? *J. Fish Biol.* **93**, 440–448 (2018).
- 190 3. Evans, D. H., Piermarini, P. M. & Choe, K. P. The multifunctional fish gill: Dominant site  
191 of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous  
192 waste. *Physiol. Rev.* **85**, 97–177 (2005).
- 193 4. Koppang, E. O. *et al.* Salmonid T cells assemble in the thymus, spleen and in novel  
194 interbranchial lymphoid tissue. *J. Anat.* **217**, 728–739 (2010).
- 195 5. Wilson, J. M. & Laurent, P. Fish gill morphology: Inside out. *J. Exp. Zool.* **293**, 192–213  
196 (2002).
- 197 6. Laurent, P. & Dunel-Erb, S. *The Pseudobranch: Morphology and Function. Fish*  
198 *Physiology* vol. 10 (1984).
- 199 7. Newstead, J. D. Fine structure of the respiratory lamellae of teleostean gills. *Zeitschrift*  
200 *für Zellforsch. und Mikroskopische Anat.* **79**, 396–428 (1967).
- 201 8. Rojo, M. C., Blánquez, M. J. & González, M. E. A histochemical study of the distribution

202 of lectin binding sites in the developing branchial area of the trout *Salmo trutta*. *J.*  
203 *Anat.* **189**, 609–621 (1996).

204 9. Laurent, P., Dunel-Erb, S., Chevalier, C. & Lignon, J. Gill epithelial cells kinetics in a  
205 freshwater teleost, *Oncorhynchus mykiss* during adaptation to ion-poor water and  
206 hormonal treatments. *Fish Physiol. Biochem.* **13**, 353–370 (1994).

207 10. Dunel-Erb, S., Chevalier, C. & Laurent, P. Distribution of neuroepithelial cells and  
208 neurons in the trout gill filament: comparison in spring and winter. *Can. J. Zool.* **72**,  
209 1794–1799 (1994).

210 11. Hootman, S. R. & Philpott, C. W. Accessory cells in teleost branchial epithelium. *Am. J.*  
211 *Physiol. - Regul. Integr. Comp. Physiol.* **7**, (1980).

212 12. McCormick, S. D., Regish, A. M., Christensen, A. K. & Björnsson, B. T. Differential  
213 regulation of sodium – potassium pump isoforms during smolt development and  
214 seawater exposure of Atlantic salmon. 1142–1151 (2013) doi:10.1242/jeb.080440.

215 13. Sardet, C., Pisam, M. & Maetz, J. The surface epithelium of teleostean fish gills. *J. Cell*  
216 *Biol.* **80**, 96–117 (1979).

217 14. Edwards, S. L., Tse, C. M. & Toop, T. Immunolocalisation of NHE3-like  
218 immunoreactivity in the gills of the rainbow trout (*Oncorhynchus mykiss*) and the  
219 blue-throated wrasse (*Pseudolabrus tetrius*). *J. Anat.* **195**, 465–469 (1999).

220 15. Yan, J. J., Chou, M. Y., Kaneko, T. & Hwang, P. P. Gene expression of Na<sup>+</sup>/H<sup>+</sup>  
221 exchanger in zebrafish H<sup>+</sup>-ATPase-rich cells during acclimation to low-Na<sup>+</sup> and acidic  
222 environments. *Am. J. Physiol. - Cell Physiol.* **293**, 1814–1823 (2007).

223 16. Hirata, T. *et al.* Mechanism of acid adaptation of a fish living in a pH 3.5 lake. *Am. J.*

224                   *Physiol. - Regul. Integr. Comp. Physiol.* **284**, (2003).

225   17. Hiroi, J., McCormick, S. D., Ohtani-Kaneko, R. & Kaneko, T. Functional classification of  
226                   mitochondrion-rich cells in euryhaline Mozambique tilapia (*Oreochromis*  
227                   *mossambicus*) embryos, by means of triple immunofluorescence staining for  $\text{Na}^+/\text{K}^+$ -  
228                   ATPase,  $\text{Na}^+/\text{K}^+/2\text{Cl}^-$  cotransporter and CFTR anion channel. *J. Exp. Biol.* **208**, 2023–  
229                   2036 (2005).

230   18. Hiroi, J., Yasumasu, S., McCormick, S. D., Hwang, P. P. & Kaneko, T. Evidence for an  
231                   apical  $\text{Na}-\text{Cl}$  cotransporter involved in ion uptake in a teleost fish. *J. Exp. Biol.* **211**,  
232                   2584–2599 (2008).

233   19. Tang, C. H., Hwang, L. Y. & Lee, T. H. Chloride channel CLC-3 in gills of the euryhaline  
234                   teleost, *tetraodon nigroviridis*: Expression, localization and the possible role of  
235                   chloride absorption. *J. Exp. Biol.* **213**, 683–693 (2010).

236   20. Preest, M. R., Gonzalez, R. J. & Wilson, R. W. A pharmacological examination of  $\text{Na}^+$   
237                   and  $\text{Cl}^-$  transport in two species of freshwater fish. *Physiol. Biochem. Zool.* **78**, 259–  
238                   272 (2005).

239   21. Marshall, W. S., Lynch, E. M. & Cozzi, R. R. F. Redistribution of immunofluorescence of  
240                   CFTR anion channel and NKCC cotransporter in chloride cells during adaptation of the  
241                   killifish *Fundulus heteroclitus* to sea water. *J. Exp. Biol.* **205**, 1265–1273 (2002).

242   22. Evans, D. H. Freshwater fish gill ion transport: August Krogh to morpholinos and  
243                   micropores. *Acta Physiol. (Oxf)* **202**, 349–359 (2011).

244   23. Lorgen, M. *et al.* Functional divergence of type 2 deiodinase paralogs in the Atlantic  
245                   salmon. *Curr. Biol.* **25**, 936–941 (2015).

246 24. Stuart, T. *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-  
247 1902.e21 (2019).

248 25. Leguen, I., Le Cam, A., Montfort, J., Peron, S. & Fautrel, A. Transcriptomic analysis of  
249 trout gill ionocytes in fresh water and sea water using laser capture microdissection  
250 combined with microarray analysis. *PLoS One* **10**, 1–22 (2015).

251 26. Boyle, D., Clifford, A. M., Orr, E., Chamot, D. & Goss, G. G. Mechanisms of Cl- uptake in  
252 rainbow trout: Cloning and expression of slc26a6, a prospective Cl-/HCO3- exchanger.  
253 *Comp. Biochem. Physiol. -Part A Mol. Integr. Physiol.* **180**, 43–50 (2015).

254 27. Saha, D. *et al.* Hemoglobin Expression in Nonerythroid Cells: Novel or Ubiquitous? *Int.*  
255 *J. Inflam.* **2014**, (2014).

256 28. Koppang, E. O., Kvellestad, A. & Fischer, U. *Mucosal Health in Aquaculture Fish*  
257 *mucosal immunity: gill. Mucosal Health in Aquaculture* (Elsevier Inc., 2015).  
258 doi:10.1016/B978-0-12-417186-2/00005-4.

259 29. Iversen, M. *et al.* RNA profiling identifies novel, photoperiod history dependent  
260 markers associated with enhanced saltwater performance in juvenile Atlantic salmon.  
261 *PLoS One* **15**, 1–21 (2020).

262 30. Song, J., Angel, A., Howard, M. & Dean, C. Vernalization - a cold-induced epigenetic  
263 switch. *J. Cell Sci.* **125**, 3723–3731 (2012).

264 31. Liaskos, C., Rigopoulou, E. I., Orfanidou, T., Bogdanos, D. P. & Papandreou, C. N.  
265 CUZD1 and Anti-CUZD1 Antibodies as Markers of Cancer and Inflammatory Bowel  
266 Diseases. *2013*, (2013).

267 32. Tilley, L. *et al.* A new blood group system , RHAG : three antigens resulting from amino

268 acid substitutions in the Rh-associated glycoprotein. 151–159 (2010)

269 doi:10.1111/j.1423-0410.2009.01243.x.

270 33. Su, H., Na, N., Zhang, X. & Zhao, Y. The biological function and significance of CD74 in

271 immune diseases. *Inflamm. Res.* **66**, 209–216 (2017).

272 34. Houde, A. L. S. *et al.* Salmonid gene expression biomarkers indicative of physiological

273 responses to changes in salinity and temperature, but not dissolved oxygen. *J. Exp.*

274 *Biol.* **222**, (2019).

275 35. Zbanyszek, R. & Smith, L. S. Changes in carbonic anhydrase activity in coho salmon

276 smolts resulting from physical training and transfer into seawater. *Comp. Biochem.*

277 *Physiol. -- Part A Physiol.* **79**, 229–233 (1984).

278 36. Akiyama, M. The roles of ABCA12 in epidermal lipid barrier formation and

279 keratinocyte differentiation. *Biochim. Biophys. Acta - Mol. Cell Biol. Lipids* **1841**, 435–

280 440 (2014).

281 37. Bouleau, A. *et al.* Maternally inherited npm2 mRNA is crucial for egg developmental

282 competence in zebrafish. *Biol. Reprod.* **91**, 1–9 (2014).

283 38. Chen, P. *et al.* Nucleoplasmin is a limiting component in the scaling of nuclear size

284 with cytoplasmic volume. *J. Cell Biol.* **218**, 4063–4078 (2019).

285 39. Jensen, I., Overrein, M. C., Fredriksen, B. N., Strandskog, G. & Seternes, T. Differences

286 in smolt status affect the resistance of Atlantic salmon (*Salmo salar* L.) against

287 infectious pancreatic necrosis, while vaccine-mediated protection is unaffected. *J. Fish*

288 *Dis.* **42**, 1271–1282 (2019).

289 40. Johansson, L. H., Timmerhaus, G., Afanasyev, S., Jørgensen, S. M. & Krasnov, A.

290 Smoltification and seawater transfer of Atlantic salmon (*Salmo salar* L.) is associated  
291 with systemic repression of the immune transcriptome. *Fish Shellfish Immunol.* **58**,  
292 33–41 (2016).

293 41. Nuñez-Ortiz, N. *et al.* Atlantic salmon post-smolts adapted for a longer time to  
294 seawater develop an effective humoral and cellular immune response against  
295 Salmonid alphavirus. *Fish Shellfish Immunol.* **82**, 579–590 (2018).

296 42. Lee, S.-Y. & Eom, Y.-B. Analysis of Microbial Composition Associated with Freshwater  
297 and Seawater. *Biomed. Sci. Lett.* **22**, 150–159 (2016).

298 43. Wang, Y. *et al.* Comparison of the levels of bacterial diversity in freshwater, intertidal  
299 wetland, and marine sediments by using millions of illumina tags. *Appl. Environ.*  
300 *Microbiol.* **78**, 8264–8271 (2012).

301 44. Scheiermann, C., Gibbs, J., Ince, L. & Loudon, A. Clocking in to immunity. *Nature*  
302 *Reviews Immunology* vol. 18 423–437 (2018).

303 45. Matson, K. J. E. *et al.* Isolation of adult spinal cord nuclei for massively parallel single-  
304 nucleus RNA sequencing. *J. Vis. Exp.* **2018**, 1–12 (2018).

305 **Material and Methods**

306 **Animal welfare statement**

307 The Atlantic salmon smoltification experiment was conducted as part of the routine, smolt  
308 production at Kårvik havbruksstasjonen, approved by the Norwegian Animal Research  
309 Authority (NARA) for the maintenance of stock animals for experiments on salmonids. This is  
310 in accordance with Norwegian and European legislation on animal research.

311 **Experimental Design**

312 Atlantic salmon (*Salmo salar*, Aquagene commercial stain) were raised from hatching in  
313 freshwater, under continuous light (LL, > 200 lux at water surface) at ambient temperature  
314 (~10°C). Juvenile salmon were housed in 500 L circular tanks and fed continuously with  
315 pelleted salmon feed (Skretting, Stavanger, Norway). At seven months of age parr (mean  
316 weight 49.5g) were sampled for T1 (experiment start). Two days later remaining parr were  
317 equally distributed between two 100L circular tanks, and over the next seven days the  
318 photoperiod was incrementally reduced to a short photoperiod (SP, 8h light:16h darkness). T2  
319 sampling occurred on experimental day 53 (44 days on SP), remaining parr were transferred  
320 back to LL on experimental day 60. T3 sampling occurred on experimental day 110 (50 days  
321 after return to LL), then a sub-cohort of fish were netted out and transferred to full strength  
322 seawater for 24h before the final T4 collection.

323 **RNAseq Analysis**

324 Gill samples were collected, RNA extracted and libraries prepared, sequenced and mapped as  
325 Iversen et al (2020). Raw counts were analysed using EdgeR (ver. 3.30.0), using R (ver. 4.0.2)  
326 and RStudio (ver. 1.1.456). An ANOVA-like test was used to identify differential expressed  
327 genes between T1-T3 samples. Clustering analysis was performed using Pearson correlation,  
328 and heatmaps rendered using the R package pheatmap. An exact test was performed to  
329 identify differential expressed genes between T3 and T4.

330 **Single nuclei RNAseq Analysis**

331 Gills for single nuclei analysis were collected on dry ice and stored at -80°C. Duplicate samples  
332 were processed for T1-T4. Nuclei were released by detergent mechanical lysis, then samples  
333 were homogenized (30s) and nuclei isolated by sucrose gradient <sup>45</sup>. Libraries were created

334 using Chromium Single Cell 3' GEM, Library & Gel Bead Kit v3 (10x technologies) by University  
335 of Manchester genomic technology core facility (UK). Raw data was converted to counts per  
336 cell using Cell Ranger (10x Technologies, ver. 3.1.0) and processed using NCBI annotations.  
337 The R package Seurat (ver. 3.1.5) was used to perform an integrated analysis using all  
338 snRNAseq data <sup>24</sup>, further details in results and discussion. Raw data will be available following  
339 peer-reviewed publication.

340

341 **Acknowledgements**

342 The authors thank all of the animal staff at Kårvik havbruksstasjonen for their expert care of  
343 the research animals, and the University of Manchester Genomics Technology core facility  
344 (UK) for performing chromium 10x library preparation for snRNAseq. ACW is supported by the  
345 Tromsø forskningsstiftelse (TFS) grant awarded to DGH (TFS2016DH). The Sentinel North  
346 Transdisciplinary Research Program Université Laval and UiT awarded to DGH supports this  
347 work. SHW is supported a grant from the Tromsø forskningsstiftelse (TFS) starter grant  
348 TFS2016SW. Experimental costs were covered by HFSP grant “Evolution of seasonal timers”  
349 RGP0030 /2015 awarded to ASIL and DGH.

350

351 **Author Contributions**

352 Conceptualization, A.C.W., Y.M., E.H.J., A.S.I.L and D.G.H; Resources, A.C.W, Y.M and M.I.;  
353 Investigation, A.C.W., Y.M., M.I. E.H.J and D.G.H; Formal Analysis, A.C.W, Y.M., L.M.I., T.N and  
354 S.R.S; Visualization, A.C.W and S.H.W; Writing – Original Draft, A.C.W and S.H.W; Writing –

355      Review & Editing, All; Supervision, A.S.I.L and D.G.H; Project Administration, A.S.I.L and D.G.H;  
356      Funding Acquisition, A.S.I.L and D.G.H.

357

358      **Figure Legends**

359      **Figure 1.** Single nuclei RNAseq analysis of Atlantic salmon gill tissue. A) Gill tissue processing.  
360      B) UMAP plot of pooled cell data from 18844 cells representing eight samples from four  
361      collection states. The plot indicates 20 separate cell clusters. C) Expression of marker genes in  
362      20 cell clusters. From left to right: hierarchical relatedness of difference cell clusters; total cells  
363      in each cluster; UMI number in each cell cluster; gene features in each cell cluster; violin plots  
364      showing expression pattern of marker genes for each cluster. Abbreviations: ACs - accessory  
365      cells, DCs - dendritic cells, ECs - epithelial cells, fib - fibrocytes, GCs - goblet cells, LECs -  
366      lymphatic endothelial cells, MCs - myeloid cells, MRC - mitochondrion-rich cells, NDCs - non-  
367      differentiated cells, PVCs, pavement cells, RBCs - red blood cells (erythrocytes), TCs - T cells,  
368      VCs - vascular cells.

369      **Figure 2.** Comparative abundance of cell clusters at different sampling points. A) Experimental  
370      design. Fish were kept in constant light (LL) from hatching then transferred to short  
371      photoperiod (SP; 8L:16D) for 8 weeks before being returned to constant light (LL) for 8 weeks.  
372      Finally the fish were transferred to sea water for 24h. Sample points are indicated T1-T4. B)  
373      Subset of cell clusters from T2, T3 and T4 (green and red dots) overlaid on T1 cells (grey dots).  
374      C) Increasing abundance of sea-water mitochondrion-rich cells (MRCs SW) and vascular cells  
375      (VC 3) during smoltification C) Decreasing abundance of leukocytes and immune-associated  
376      cells during smoltification.

377 **Figure 3.** Photoperiodic changes in gill gene expression and localized cell cluster expression.

378 A) Heat map representing 9746 genes differentially regulated (FDR <0.01) from T1-T3.

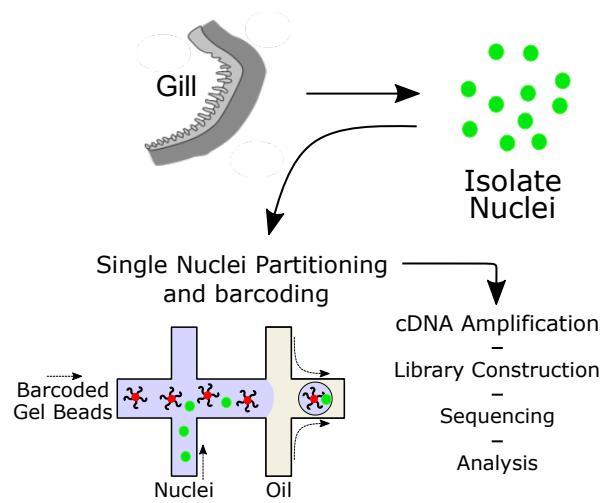
379 Regulatory patterns for 5 major cluster are shown as amplitude index and 95% confidence

380 limits. Major gene ontology terms for each cluster are shown. B) RNAseq data for “classical”

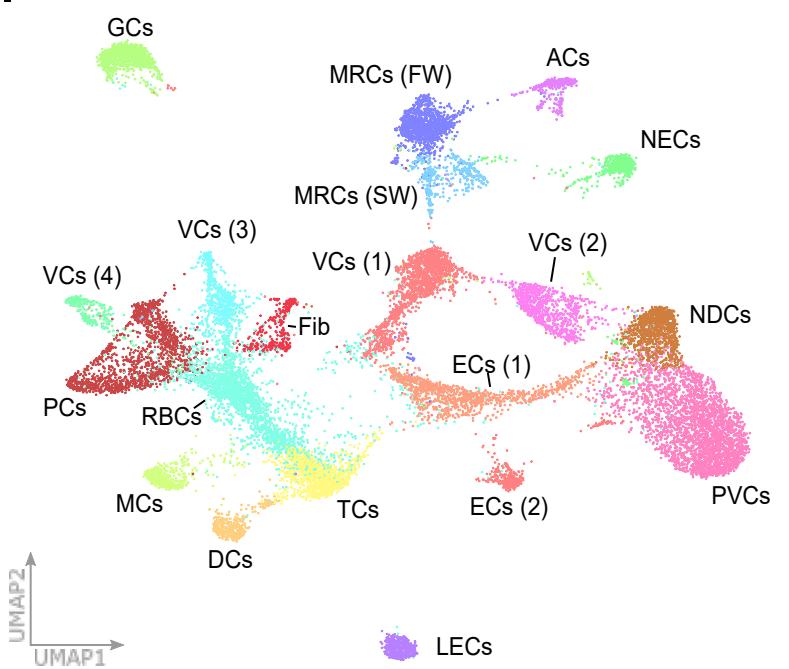
381 smoltification-related genes and violin plots showing their cluster specific expression.

382 **Figure 4.** Sea-water transfer-associated changes in gill gene expression and localized cell

383 cluster expression. A) Genes differentially regulated (FDR <0.01) by 24h seawater transfer.


384 Major gene ontology terms for each cluster are shown. B) RNAseq data for sea-water transfer-

385 related genes and violin plots showing their cluster specific expression.


386 **Supplemental Figure 1.** RNAseq data for winter-dependent genes and violin plots showing

387 their cluster specific expression.

A.



B.



C.

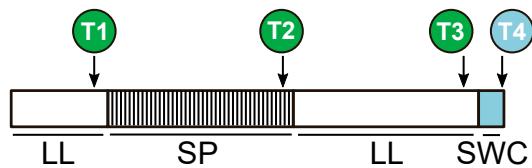
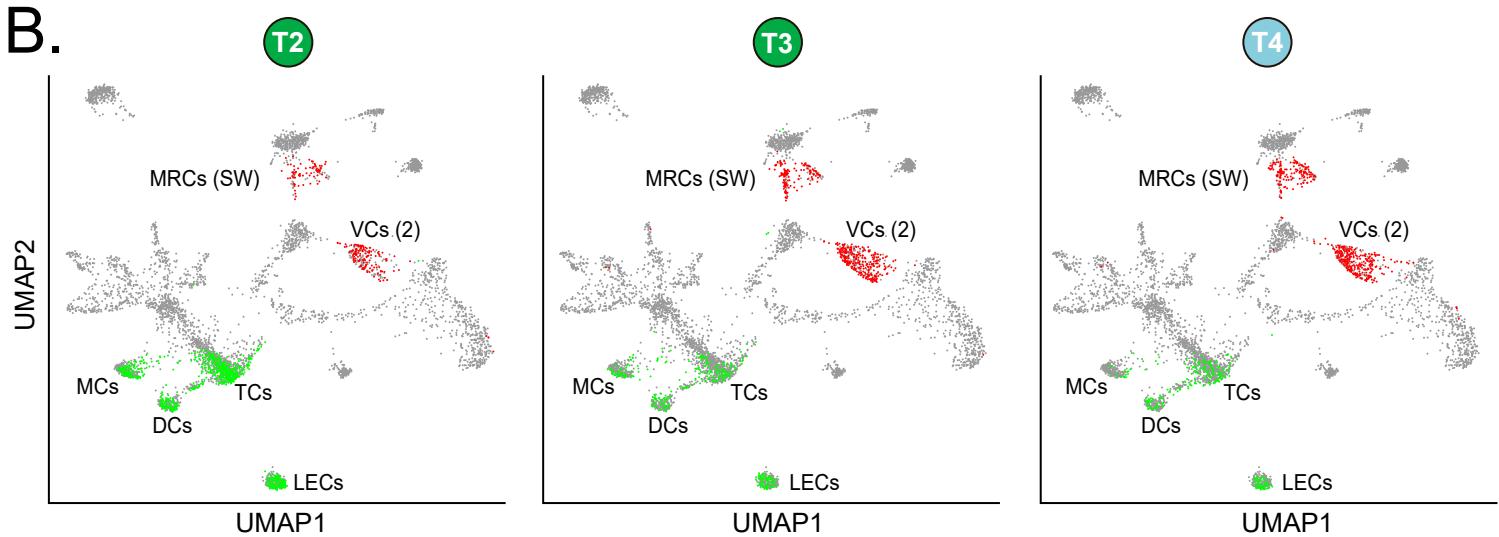
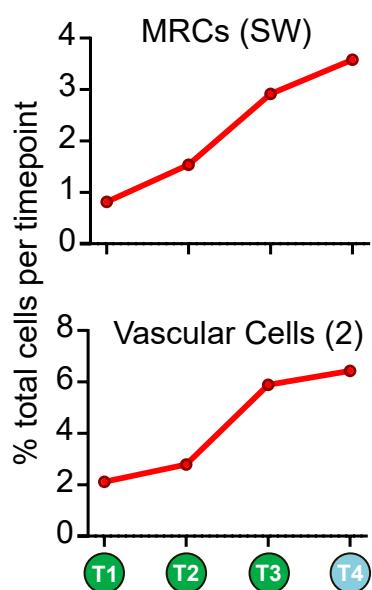





Figure 1.


A.



B.



C.



D.

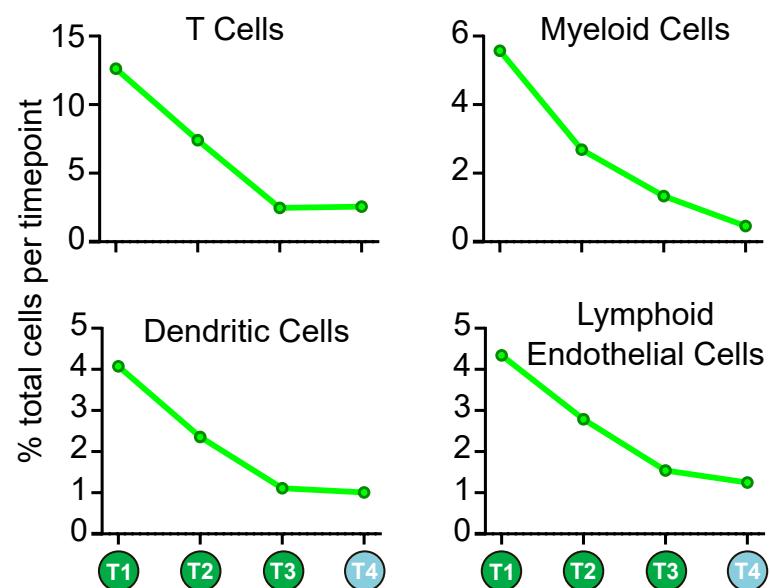
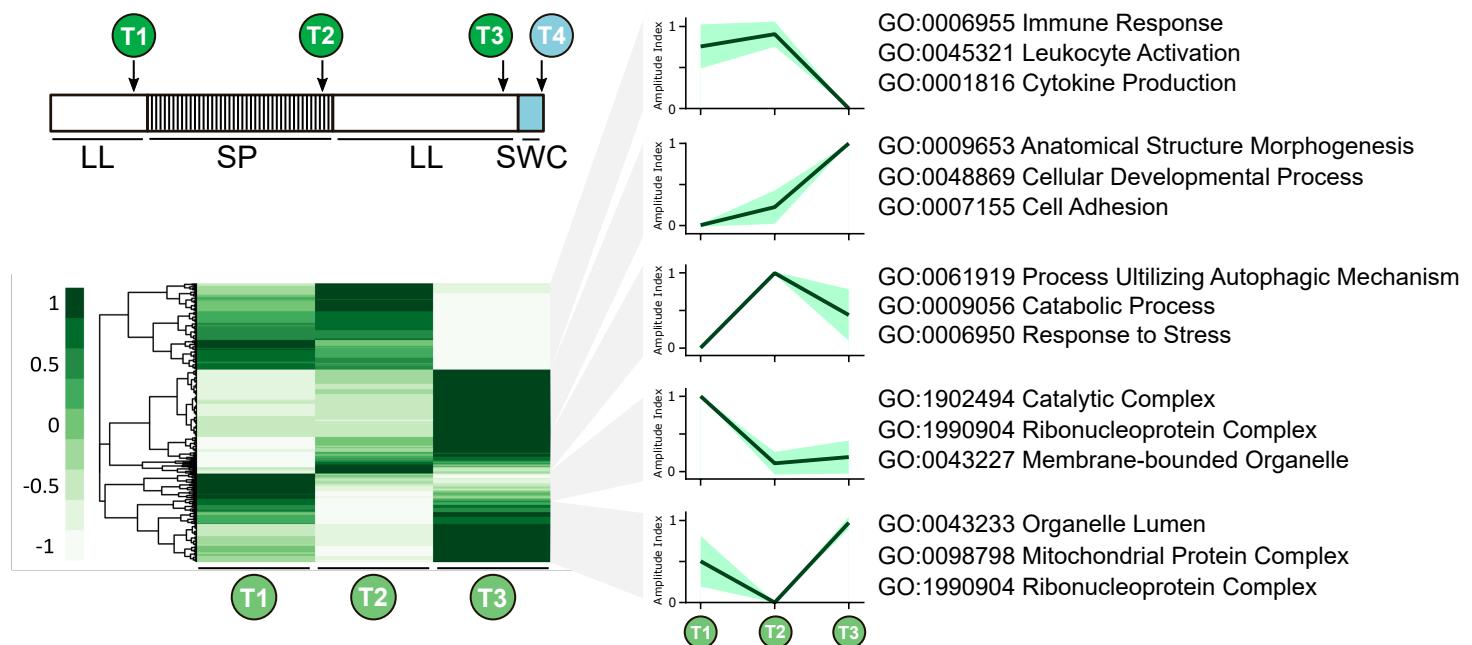
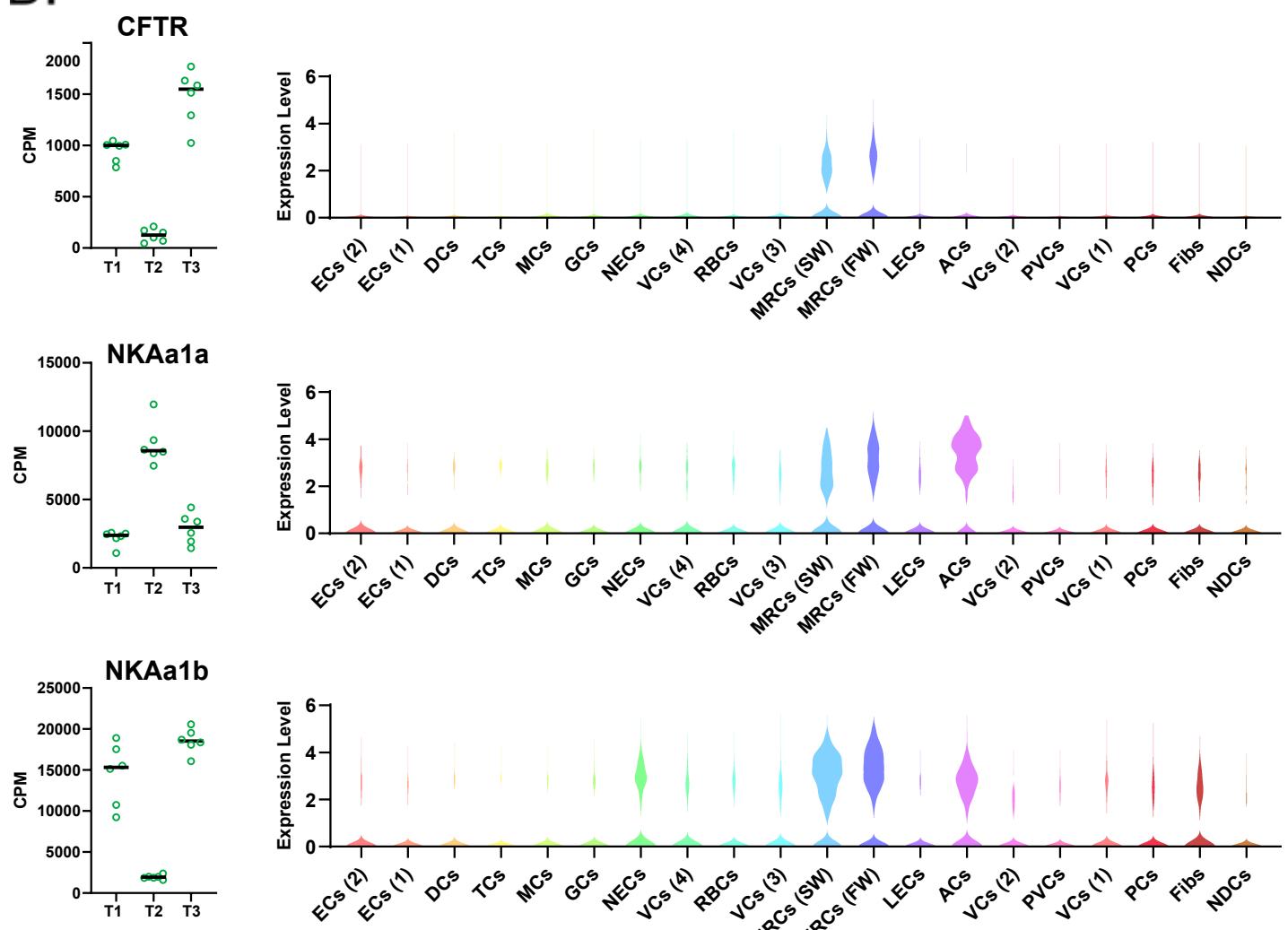
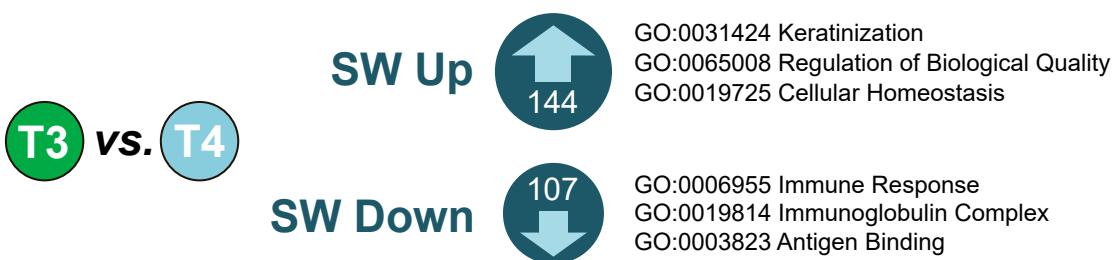



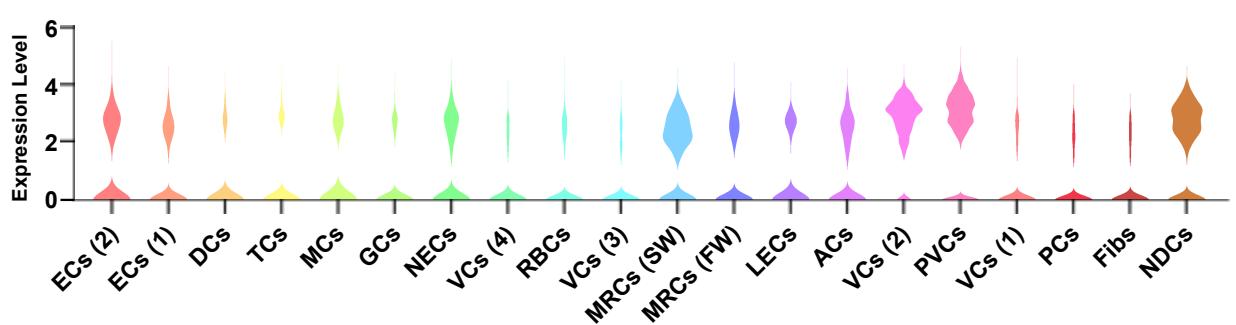
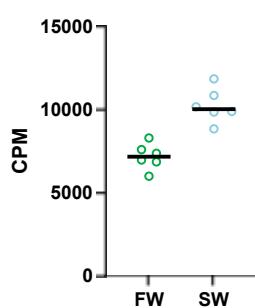

Figure 2.

**A.**

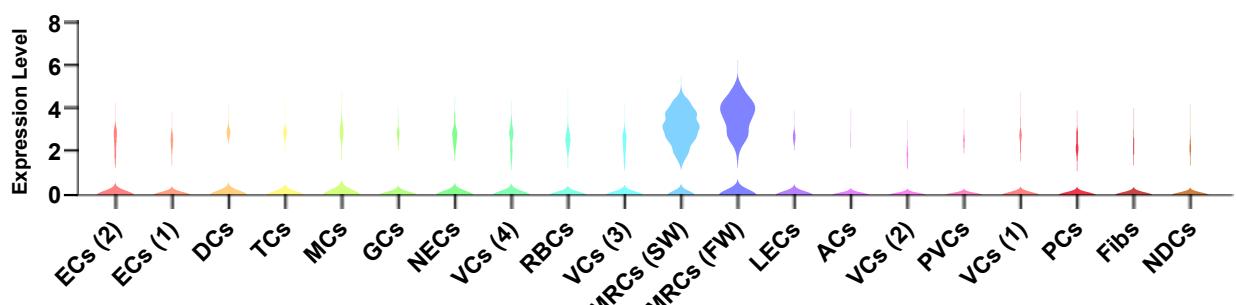
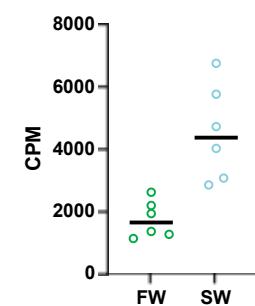


**B.**




Figure 3.

A.


B.

**Abca12**



**Carbonic Anhydrase**



**Nucleoplasmin**

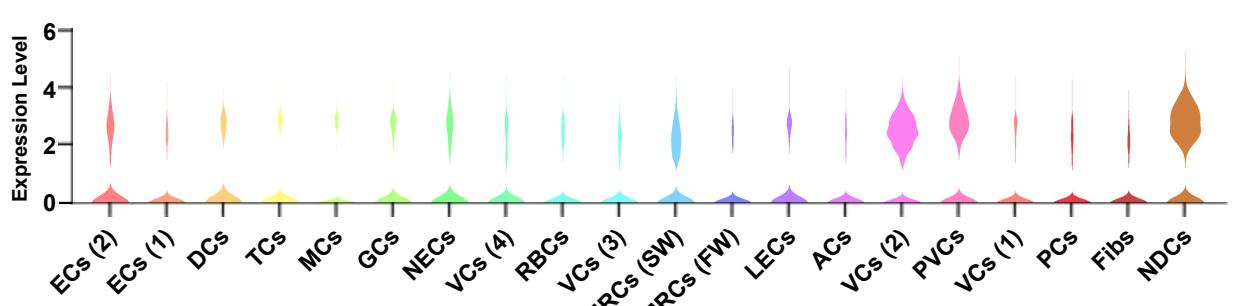
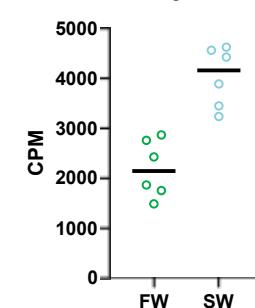




Figure 4.