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Abstract

Anadromous salmonids begin life adapted to the freshwater environments of their natal
streams before a developmental transition, known as smoltification, transforms them into
marine-adapted fish. In the wild, the extending photoperiods of spring stimulates
smoltification, typified by radical reprogramming of the gill from an ion-absorbing organ to

ion-excreting organ. Prior work has highlighted the role of specialized “mitochondrion-rich”
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cells in delivering this phenotype. However, transcriptomic studies identify thousands of
smoltification-driven differentially regulated genes, indicating that smoltification causes a

multifaceted, multicellular change; but direct evidence of this is lacking.

Here, we use single-nuclei RNAseq to characterize the Atlantic salmon gill during smoltification
and seawater transfer. We identify 20 distinct clusters of nuclei, including known, but also
novel gill cell types. These data allow us to isolate cluster-specific, smoltification-induced
changes in gene expression. We also show how cellular make-up of the gill changes through
smoltification. As expected, we noted an increase in the proportion of seawater
mitochondrion-rich cells, however, we also identify a reduction of several immune-related
cells. Overall, our results provide unrivaled detail of the cellular complexity in the gill and
suggest that smoltification triggers unexpected immune reprogramming directly preceding

seawater entry.

Keywords: Atlantic salmon, smoltification, photoperiod, seasonal, gill

Introduction

The Atlantic salmon migrates between fresh and seawater environments !. Atlantic salmon
eggs hatch in freshwater streams where they develop for 1-4 years. On reaching a critical size
threshold, young “parr” animals are sensitized by several weeks of winter photoperiod (day-
lengths), after which long, summer-like photoperiods stimulates the parr to transform into a
marine-adapted “smolt” fish 2. This process, known as smoltification, drives divergent
expression of endocrine factors that collectively deliver phenotypic remodeling, of length,

weight, silvering, and in particular: gill physiology *.
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The salmonid gill is a complex multifunctional organ, essential for gas exchange,
nitrogenous waste excretion, pH balance and osmoregulation 3. It is also a major mucosal
immune barrier harboring a dedicated lymphoid tissue *. Structurally, the gills are arranged in
symmetrical arches, each of which are populated by numerous filament structures, which are
themselves densely flanked with lamellae. The gill is composed of seven major cell types °.
Pavement cells (PVCs) have an enlarged surface area on the apical membrane, and form the
majority of the epithelium . Pillar cells (PCs), which are structural cells, define the blood
spaces within the lamellae 7. Goblet cells (GCs) reside in the filament epithelium and excrete
mucus 8. Non-differentiated progenitor cells (NDCs) colonize basal and intermediate layers of
the gill epithelium °. Chemosensory neuroepithelial cells (NECs) lie along the length of the
efferent edge of the gills and are innervated by the central nervous system 1°, Mitochondrion-
rich cells (MRCs) and their adjacent accessory cells (ACs), finally, are located at the trough
between two lamellae where they abundantly express the channels and pumps required to

maintain the osmotic gradients between blood plasma and both fresh- and seawater 11713,

Under freshwater, Na* ions are directly or indirectly exchanged for protons across the
apical membrane then transported into the blood via the sodium potassium ATPase (NKA) on

14-16_CI- ions, meanwhile, are exchanged or channeled across the

the basolateral membrane
apical membrane then enter the blood through an undefined channel 7-2°. Under saltwater,

basolateral NKA generates a chemical and electrical gradient, motivating both loss of Cl" ions

via apical CFTR channels and paracellular escape of Na* ions 32! (reviewed in 22).

Smoltification converts the Atlantic salmon gill from a freshwater-adapted organ to a
seawater-adapted organ. Rising cortisol and growth hormone along with falling prolactin

propels smoltification. This change in endocrinology coincides with a switch in anatomical and
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molecular phenotypes of MRCs and ACs, cell types which to date comprise the major focus of
smoltification of gill physiology 1223, Smoltification is, however, a complex developmental
transition and the smolt gill phenotype likely extends far beyond changing MRC and AC cell
phenotype. Therefore, to realize the complexities of smoltification-driven changes in gill
physiology we adopt a new strategy, single-nuclei RNAseq, which provides transcriptional

responses to smoltification and seawater transfer at individual nuclei-level resolution.

Results & Discussion

A single-nuclei survey of Atlantic salmon gill cells

We profiled 18,844 individual nuclei from eight Atlantic salmon gill samples from four distinct
physiological states (Figure 1A). To define shared correlation structure across datasets we
pooled replicate samples and integrated all four states using diagonalized canonical
correlation analysis followed by L2 normalization. We next identified pairs of mutual nearest
neighbors (MNNs) to identify anchors: cells that represent shared biological states across
datasets. Anchors were then used to calculate “correction” vectors allowing all fours states to
be jointly analyzed as an integrated reference ?4. Unsupervised graph clustering partitioned
the nuclei into 20 clusters, which we visualized using a uniform manifold approximation and

projection (UMAP) dimension reduction technique (Figure 1B).

Lists of co-expressed marker genes define individual clusters. We categorized
individual clusters using gene ontology analysis of marker gene lists and unique expression of
known marker genes. This approach allowed us to infer cell types including fresh- and
seawater MRCs, ACs, neuroendothelial cells, goblet cells, non-differentiated cells, pillar cells,
lymphatic endothelial cells and several types of blood cell. We also identified a novel

population of fibrocyte-like cells, and several types of vascular- and endothelial-like cells that
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90 partitioned across several clusters, together suggesting greater complexity in gill cytology that

91  previously appreciated (Figure 1B).

92 We then defined expression signatures for each cell cluster. Our analysis re-identified
93  several known marker genes, but also identifying several novel cell-type markers (Figure 1C).
94  For example, the accessory cell signature included highly restricted expression of Slc26a6, an
95 apical membrane CI/HCOs exchanger, associated with gill function but until now
96 misattributed to expression within MRCs 2>26, We were interested to note that the markers
97 defining the erythrocyte population, including beta-globin, were expressed widely among all
98 cell types. It is unclear exactly what role extra-erythroid haemoglobin plays in the gill,
99  however, mammalian studies suggest that haemoglobin, in addition to its oxygen carrying
100  capacity, may play an antimicrobial role ?’. As a major mucosal immune barrier, this capacity

101  may be pertinent to the gill 2.

102  Major changes in cell composition during smoltification

103  To understand how gene expression and cellular complexity changes within the gill during
104  smoltification and seawater transfer we compared the snRNAseq profiles at different
105  developmental points (Fig 2A, for confirmation of smolt status see?®). The abundance of six
106  nuclei clusters changed dramatically (>3 fold change in percentage abundance) during
107  smoltification (Figure 2B). SW MRCs increased in proportion steadily from T1-T4, consistent
108  with previous descriptions of Atlantic salmon gill physiology. We also observed a marked
109 increase in vascular cell number, with the major differences occurring between T2 and T3,
110  suggesting that this vascular cell cluster proliferate in line with growth rates (Figure 2C).
111  Interestingly, four immune-related nuclei clusters representing T cells, myeloid cells, dendritic

112 cells and lymphatic endothelial cells fell dramatically during smoltification (Figure 2D).
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113  Changes in cell abundance occurred with a similar profile in all immune-associated cell
114  clusters, with consistent decline observed between T1-T3. In contrast, 24h SW transfer does
115  not appear to affect immune-cell abundance directly. These results highlight the complex and

116  dynamic changes in cellular composition that occur in the gill during smoltification.

117  Cell cluster-specific expression of smoltification-associated factors

118  Next, we wanted to identify cluster types where smoltification drives changes in local gene
119  regulation. For statistical power, we cross-referenced our snRNAseq analysis with whole gill
120  RNAseq analysis of T1-T3, identifying 9746 genes differentially regulated by smoltification
121 (FDR <0.01). Pearson clustering of these genes resolved five major clusters that were
122 associated with immune response, structural morphogenesis, autophagy, catabolism and
123  mitochondrial respiration (Figure 3A). Within our analysis we identified a number of “classical”
124  smoltification-related genes. As expected, CFTR was highest under constant light (LL), and was
125  highly localized in expression to MRCs (Figure 3B). We also identified the reciprocal regulation
126  of sodium-potassium ATPase subunits, specifically, suppression of NKAala and increase in

127  NKAalb 2. Inspection of cellular localization within our snRNAseq dataset showed that

128  expression of these genes were, as anticipated, highest within the MRCs and ACs (Figure 3B).

129 Our previous work identified genes whose expression are predicated on exposure to
130  several weeks of short-photoperiod exposure??. In Atlantic salmon, these “winter-dependent”
131  genes are analogous to vernalization dependent genes in Arabidopsis®®, where a dosage of
132 exposure to a winter-like stimulus (in Arabidopsis, cold; in Atlantic salmon, short photoperiod)
133  controls the presentation of a seasonal phenotype under summer-like stimulus (in
134  Arabidopsis, warmth and long days; in Atlantic salmon, long photoperiod). Winter-dependent

135 genes are therefore intrinsically linked to unidirectional smolt development, and may play a
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136  mechanistic role in pre-adaptation of the gill for seawater migration. Surprisingly, canonical
137  markers of smolt status, including the reciprocal expression of NKA subunits, are not winter
138 dependent, meaning that their expression is passive to photoperiod rather than life history

139  progression?°.

140 Using our RNAseq dataset we identified novel, winter dependent genes. Next, we
141  mined our snRNAseq dataset to identify the cell clusters that express these factors (Figure S1).
142  Of particular interest was Cuzdl, a gene associated with carcinogenesis, whose expression
143 was tightly localized to non-differentiated cells 3!. We also identified Rhag, an ammonium
144  transporter thought to be erythrocyte specificin mammals, but here predominantly expressed
145 in the vascular cell (VC 3) cluster 3%; and Hg2a (CD74) a ubiquitously expression multi-
146  functional protein linked to immune defense 33. Taken together our data show that

147  smoltification engages all gill cells in diverse regulatory phenotypes.

148  Cell cluster-specific expression of seawater transfer-associated factors

149  Smoltification manifests when the Atlantic salmon smolts migrate downstream and arrive in
150 the marine environment, thereby committing to an oceanic life 1. To gain insight into this
151  critical step we compared RNA profiles of gill samples between smolts in freshwater and 24h
152  in seawater using whole gill RNAseq, identifying 144 induced and 107 suppressed genes
153  (FDR<0.01). Gene ontologies showed that the induced gene cohort was significantly
154  associated with keratinization, whereas the suppressed gene cohort related to immune
155  function (Figure 4A). We cross-referenced our whole gill RNAseq data against our snRNAseq
156  data to isolate cell-type specificity of gene expression. These data highlight the restricted
157  expression of key up-regulated genes (Figure 4B). For example, we localize the expression of

158  an enzyme involved in both ionic and acid/base balance, carbonic anhydrase, to MRCs 3435,
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159  We also show that ATP-binding cassette sub-family A member 12 (Abcal2), a gene important
160 in epidermal lipid barrier formation 3¢, is broadly expressed, but particularly concentrated in
161  MRCs (SW), pavement, vascular, and non-differentiated cells. Interestingly, we show that a
162  protein chaperone that helps regulate chromatin state, nucleoplasmin 3738, is expressed
163  specifically in non-differentiated, vascular and pavement cells groups, suggesting that these

164  cell types undergo a change in chromatin status under seawater exposure.

165 Conclusions

166  Our results bring insightful cellular resolution to the complexity of the Atlantic salmon gill and
167 the compositional changes that occur during smoltification. Of particular interest was the
168  suppression of immune cell types, which correlates with reduction in immune-related genes
169  and suppression of immune function during smoltification 3°-41, These data are a puzzle. The
170  marine environment is awash with parasites, bacteria and viruses to which the salmon is
171  potentially vulnerable, so loss of immune function would make little sense. Future work
172 should focus on why and how the immune system is affected in aquaculture. Conceivably
173  these data point towards an adaptive immunological reprogramming that helps to avoid
174  immune shock when the salmon transition between the distinctive pathogen complements of
175  fresh- and seawater habitats 4243, Alternatively, artificial smolt production may drive abnormal
176  immunosuppression. The constant light routinely used to stimulate smolts would profoundly

177  undermine the immune defenses of mammals via disruption of the circadian clock %4,

178 Our data also shows that smoltification-driven transcriptional regulation occurs not
179  onlyin MRCs and ACs, but also in other distinctive cell types including pavement cells, vascular

180 cells and non-differentiated cells. We anticipate that novel gene function within the context
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of cell function will be a priority for future investigation, and will be assisted by the novel suite

of marker genes which we present here.
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Material and Methods

Animal welfare statement

The Atlantic salmon smoltification experiment was conducted as part of the routine, smolt

production at Karvik havbruksstasjonen, approved by the Norwegian Animal Research

Authority (NARA) for the maintenance of stock animals for experiments on salmonids. This is

in accordance with Norwegian and European legislation on animal research.
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311  Experimental Design

312  Atlantic salmon (Salmo salar, Aquagene commercial stain) were raised from hatching in
313  freshwater, under continuous light (LL, > 200 lux at water surface) at ambient temperature
314  (~10°C). Juvenile salmon were housed in 500 L circular tanks and fed continuously with
315 pelleted salmon feed (Skretting, Stavanger, Norway). At seven months of age parr (mean
316  weight 49.5g) were sampled for T1 (experiment start). Two days later remaining parr were
317  equally distributed between two 100L circular tanks, and over the next seven days the
318  photoperiod was incrementally reduced to a short photoperiod (SP, 8h light:16h darkness). T2
319 sampling occurred on experimental day 53 (44 days on SP), remaining parr were transferred
320 back to LL on experimental day 60. T3 sampling occurred on experimental day 110 (50 days
321  after return to LL), then a sub-cohort of fish were netted out and transferred to full strength

322 seawater for 24h before the final T4 collection.

323  RNAseq Analysis

324  Gill samples were collected, RNA extracted and libraries prepared, sequenced and mapped as
325 lversen et al (2020). Raw counts were analysed using EdgeR (ver. 3.30.0), using R (ver. 4.0.2)
326  and RStudio (ver. 1.1.456). An ANOVA-like test was used to identify differential expressed
327 genes between T1-T3 samples. Clustering analysis was performed using Pearson correlation,
328 and heapmaps rendered using the R package pheatmap. An exact test was performed to

329 identify differential expressed genes between T3 and T4.

330  Single nuclei RNAseq Analysis

331  Gills for single nuclei analysis were collected on dry ice and stored at -80°C. Duplicate samples
332  were processed for T1-T4. Nuclei were released by detergent mechanical lysis, then samples

333  were homogenized (30s) and nuclei isolated by sucrose gradient . Libraries were created
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334  using Chromium Single Cell 3’ GEM, Library & Gel Bead Kit v3 (10x technologies) by University

335 of Manchester genomic technology core facility (UK). Raw data was converted to counts per

336  cell using Cell Ranger (10x Technologies, ver. 3.1.0) and processed using NCBI annotations.

337 The R package Seurat (ver. 3.1.5) was used to perform an integrated analysis using all

338  snRNAseq data 24, further details in results and discussion. Raw data will be available following

339  peer-reviewed publication.
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358 Figure Legends

359  Figure 1. Single nuclei RNAseq analysis of Atlantic salmon gill tissue. A) Gill tissue processing.
360 B) UMAP plot of pooled cell data from 18844 cells representing eight samples from four
361 collection states. The plot indicates 20 separate cell clusters. C) Expression of marker genes in
362 20 cell clusters. From left to right: hierarchical relatedness of difference cell clusters; total cells
363  in each cluster; UMI number in each cell cluster; gene features in each cell cluster; violin plots
364  showing expression pattern of marker genes for each cluster. Abbreviations: ACs - accessory
365 cells, DCs - dendritic cells, ECs - epithelial cells, fib - fibrocytes, GCs - goblet cells, LECs -
366 lymphatic endothelial cells, MCs - myeloid cells, MRC - mitochondrion-rich cells, NDCs - non-
367 differentiated cells, PVCs, pavement cells, RBCs - red blood cells (erythrocytes), TCs - T cells,

368  VCs - vascular cells.

369  Figure 2. Comparative abundance of cell clusters at different sampling points. A) Experimental
370 design. Fish were kept in constant light (LL) from hatching then transferred to short
371  photoperiod (SP; 8L:16D) for 8 weeks before being returned to constant light (LL) for 8 weeks.
372  Finally the fish were transferred to sea water for 24h. Sample points are indicated T1-T4. B)
373  Subset of cell clusters from T2, T3 and T4 (green and red dots) overlaid on T1 cells (grey dots).
374  C) Increasing abundance of sea-water mitochondrion-rich cells (MRCs SW) and vascular cells
375  (VC 3) during smoltification C) Decreasing abundance of leukocytes and immune-associated

376  cells during smoltification.
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377  Figure 3. Photoperiodic changes in gill gene expression and localized cell cluster expression.
378 A) Heat map representing 9746 genes differentially regulated (FDR <0.01) from T1-T3.
379  Regulatory patterns for 5 major cluster are shown as amplitude index and 95% confidence
III

380 limits. Major gene ontology terms for each cluster are shown. B) RNAseq data for “classica

381 smoltification-related genes and violin plots showing their cluster specific expression.

382  Figure 4. Sea-water transfer-associated changes in gill gene expression and localized cell
383  cluster expression. A) Genes differentially regulated (FDR <0.01) by 24h seawater transfer.
384  Major gene ontology terms for each cluster are shown. B) RNAseq data for sea-water transfer-

385 related genes and violin plots showing their cluster specific expression.

386  Supplemental Figure 1. RNAseq data for winter-dependent genes and violin plots showing

387 their cluster specific expression.
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