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 15 

Abstract 16 

Anadromous salmonids begin life adapted to the freshwater environments of their natal 17 

streams before a developmental transition, known as smoltification, transforms them into 18 

marine-adapted fish. In the wild, the extending photoperiods of spring stimulates 19 

smoltification, typified by radical reprogramming of the gill from an ion-absorbing organ to 20 

ion-excreting organ. Prior work has highlighted the role of specialized “mitochondrion-rich” 21 
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cells in delivering this phenotype. However, transcriptomic studies identify thousands of 22 

smoltification-driven differentially regulated genes, indicating that smoltification causes a 23 

multifaceted, multicellular change; but direct evidence of this is lacking. 24 

Here, we use single-nuclei RNAseq to characterize the Atlantic salmon gill during smoltification 25 

and seawater transfer. We identify 20 distinct clusters of nuclei, including known, but also 26 

novel gill cell types. These data allow us to isolate cluster-specific, smoltification-induced 27 

changes in gene expression. We also show how cellular make-up of the gill changes through 28 

smoltification. As expected, we noted an increase in the proportion of seawater 29 

mitochondrion-rich cells, however, we also identify a reduction of several immune-related 30 

cells. Overall, our results provide unrivaled detail of the cellular complexity in the gill and 31 

suggest that smoltification triggers unexpected immune reprogramming directly preceding 32 

seawater entry. 33 

Keywords: Atlantic salmon, smoltification, photoperiod, seasonal, gill 34 

 35 

Introduction 36 

The Atlantic salmon migrates between fresh and seawater environments 1. Atlantic salmon 37 

eggs hatch in freshwater streams where they develop for 1-4 years. On reaching a critical size 38 

threshold, young “parr” animals are sensitized by several weeks of winter photoperiod (day-39 

lengths), after which long, summer-like photoperiods stimulates the parr to transform into a 40 

marine-adapted “smolt” fish 2. This process, known as smoltification, drives divergent 41 

expression of endocrine factors that collectively deliver phenotypic remodeling, of length, 42 

weight, silvering, and in particular: gill physiology 1.  43 
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The salmonid gill is a complex multifunctional organ, essential for gas exchange, 44 

nitrogenous waste excretion, pH balance and osmoregulation 3. It is also a major mucosal 45 

immune barrier harboring a dedicated lymphoid tissue 4. Structurally, the gills are arranged in 46 

symmetrical arches, each of which are populated by numerous filament structures, which are 47 

themselves densely flanked with lamellae. The gill is composed of seven major cell types 5. 48 

Pavement cells (PVCs) have an enlarged surface area on the apical membrane, and form the 49 

majority of the epithelium 6. Pillar cells (PCs), which are structural cells, define the blood 50 

spaces within the lamellae 7. Goblet cells (GCs) reside in the filament epithelium and excrete 51 

mucus 8. Non-differentiated progenitor cells (NDCs) colonize basal and intermediate layers of 52 

the gill epithelium 9. Chemosensory neuroepithelial cells (NECs) lie along the length of the 53 

efferent edge of the gills and are innervated by the central nervous system 10. Mitochondrion-54 

rich cells (MRCs) and their adjacent accessory cells (ACs), finally, are located at the trough 55 

between two lamellae where they abundantly express the channels and pumps required to 56 

maintain the osmotic gradients between blood plasma and both fresh- and seawater 11–13.  57 

Under freshwater, Na+ ions are directly or indirectly exchanged for protons across the 58 

apical membrane then transported into the blood via the sodium potassium ATPase (NKA) on 59 

the basolateral membrane 14–16. Cl- ions, meanwhile, are exchanged or channeled across the 60 

apical membrane then enter the blood through an undefined channel 17–20. Under saltwater, 61 

basolateral NKA generates a chemical and electrical gradient, motivating both loss of Cl- ions 62 

via apical CFTR channels and paracellular escape of Na+ ions 13,21 (reviewed in 22).  63 

Smoltification converts the Atlantic salmon gill from a freshwater-adapted organ to a 64 

seawater-adapted organ. Rising cortisol and growth hormone along with falling prolactin 65 

propels smoltification. This change in endocrinology coincides with a switch in anatomical and 66 
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molecular phenotypes of MRCs and ACs, cell types which to date comprise the major focus of 67 

smoltification of gill physiology 1,12,23. Smoltification is, however, a complex developmental 68 

transition and the smolt gill phenotype likely extends far beyond changing MRC and AC cell 69 

phenotype. Therefore, to realize the complexities of smoltification-driven changes in gill 70 

physiology we adopt a new strategy, single-nuclei RNAseq, which provides transcriptional 71 

responses to smoltification and seawater transfer at individual nuclei-level resolution.  72 

Results & Discussion 73 

A single-nuclei survey of Atlantic salmon gill cells 74 

We profiled 18,844 individual nuclei from eight Atlantic salmon gill samples from four distinct 75 

physiological states (Figure 1A). To define shared correlation structure across datasets we 76 

pooled replicate samples and integrated all four states using diagonalized canonical 77 

correlation analysis followed by L2 normalization. We next identified pairs of mutual nearest 78 

neighbors (MNNs) to identify anchors: cells that represent shared biological states across 79 

datasets. Anchors were then used to calculate “correction” vectors allowing all fours states to 80 

be jointly analyzed as an integrated reference 24. Unsupervised graph clustering partitioned 81 

the nuclei into 20 clusters, which we visualized using a uniform manifold approximation and 82 

projection (UMAP) dimension reduction technique (Figure 1B).  83 

Lists of co-expressed marker genes define individual clusters. We categorized 84 

individual clusters using gene ontology analysis of marker gene lists and unique expression of 85 

known marker genes. This approach allowed us to infer cell types including fresh- and 86 

seawater MRCs, ACs, neuroendothelial cells, goblet cells, non-differentiated cells, pillar cells, 87 

lymphatic endothelial cells and several types of blood cell. We also identified a novel 88 

population of fibrocyte-like cells, and several types of vascular- and endothelial-like cells that 89 
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partitioned across several clusters, together suggesting greater complexity in gill cytology that 90 

previously appreciated (Figure 1B).  91 

We then defined expression signatures for each cell cluster. Our analysis re-identified 92 

several known marker genes, but also identifying several novel cell-type markers (Figure 1C). 93 

For example, the accessory cell signature included highly restricted expression of Slc26a6, an 94 

apical membrane Cl-/HCO3 exchanger, associated with gill function but until now 95 

misattributed to expression within MRCs 25,26. We were interested to note that the markers 96 

defining the erythrocyte population, including beta-globin, were expressed widely among all 97 

cell types. It is unclear exactly what role extra-erythroid haemoglobin plays in the gill, 98 

however, mammalian studies suggest that haemoglobin, in addition to its oxygen carrying 99 

capacity, may play an antimicrobial role 27. As a major mucosal immune barrier, this capacity 100 

may be pertinent to the gill 28. 101 

Major changes in cell composition during smoltification 102 

To understand how gene expression and cellular complexity changes within the gill during 103 

smoltification and seawater transfer we compared the snRNAseq profiles at different 104 

developmental points (Fig 2A, for confirmation of smolt status see29).  The abundance of six 105 

nuclei clusters changed dramatically (>3 fold change in percentage abundance) during 106 

smoltification (Figure 2B). SW MRCs increased in proportion steadily from T1-T4, consistent 107 

with previous descriptions of Atlantic salmon gill physiology. We also observed a marked 108 

increase in vascular cell number, with the major differences occurring between T2 and T3, 109 

suggesting that this vascular cell cluster proliferate in line with growth rates (Figure 2C). 110 

Interestingly, four immune-related nuclei clusters representing T cells, myeloid cells, dendritic 111 

cells and lymphatic endothelial cells fell dramatically during smoltification (Figure 2D).  112 
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Changes in cell abundance occurred with a similar profile in all immune-associated cell 113 

clusters, with consistent decline observed between T1-T3. In contrast, 24h SW transfer does 114 

not appear to affect immune-cell abundance directly. These results highlight the complex and 115 

dynamic changes in cellular composition that occur in the gill during smoltification. 116 

Cell cluster-specific expression of smoltification-associated factors 117 

Next, we wanted to identify cluster types where smoltification drives changes in local gene 118 

regulation. For statistical power, we cross-referenced our snRNAseq analysis with whole gill 119 

RNAseq analysis of T1-T3, identifying 9746 genes differentially regulated by smoltification 120 

(FDR <0.01). Pearson clustering of these genes resolved five major clusters that were 121 

associated with immune response, structural morphogenesis, autophagy, catabolism and 122 

mitochondrial respiration (Figure 3A). Within our analysis we identified a number of “classical” 123 

smoltification-related genes. As expected, CFTR was highest under constant light (LL), and was 124 

highly localized in expression to MRCs (Figure 3B). We also identified the reciprocal regulation 125 

of sodium-potassium ATPase subunits, specifically, suppression of NKAa1a and increase in 126 

NKAa1b 12. Inspection of cellular localization within our snRNAseq dataset showed that 127 

expression of these genes were, as anticipated, highest within the MRCs and ACs (Figure 3B).  128 

Our previous work identified genes whose expression are predicated on exposure to 129 

several weeks of short-photoperiod exposure29. In Atlantic salmon, these “winter-dependent” 130 

genes are analogous to vernalization dependent genes in Arabidopsis30, where a dosage of 131 

exposure to a winter-like stimulus (in Arabidopsis, cold; in Atlantic salmon, short photoperiod) 132 

controls the presentation of a seasonal phenotype under summer-like stimulus (in 133 

Arabidopsis, warmth and long days; in Atlantic salmon, long photoperiod). Winter-dependent 134 

genes are therefore intrinsically linked to unidirectional smolt development, and may play a 135 
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mechanistic role in pre-adaptation of the gill for seawater migration. Surprisingly, canonical 136 

markers of smolt status, including the reciprocal expression of NKA subunits, are not winter 137 

dependent, meaning that their expression is passive to photoperiod rather than life history 138 

progression29.   139 

Using our RNAseq dataset we identified novel, winter dependent genes. Next, we 140 

mined our snRNAseq dataset to identify the cell clusters that express these factors (Figure S1). 141 

Of particular interest was Cuzd1, a gene associated with carcinogenesis, whose expression 142 

was tightly localized to non-differentiated cells 31. We also identified Rhag, an ammonium 143 

transporter thought to be erythrocyte specific in mammals, but here predominantly expressed 144 

in the vascular cell (VC 3) cluster 32; and Hg2a (CD74) a ubiquitously expression multi-145 

functional protein linked to immune defense 33. Taken together our data show that 146 

smoltification engages all gill cells in diverse regulatory phenotypes. 147 

Cell cluster-specific expression of seawater transfer-associated factors 148 

Smoltification manifests when the Atlantic salmon smolts migrate downstream and arrive in 149 

the marine environment, thereby committing to an oceanic life 1. To gain insight into this 150 

critical step we compared RNA profiles of gill samples between smolts in freshwater and 24h 151 

in seawater using whole gill RNAseq, identifying 144 induced and 107 suppressed genes 152 

(FDR<0.01). Gene ontologies showed that the induced gene cohort was significantly 153 

associated with keratinization, whereas the suppressed gene cohort related to immune 154 

function (Figure 4A). We cross-referenced our whole gill RNAseq data against our snRNAseq 155 

data to isolate cell-type specificity of gene expression. These data highlight the restricted 156 

expression of key up-regulated genes (Figure 4B). For example, we localize the expression of 157 

an enzyme involved in both ionic and acid/base balance, carbonic anhydrase, to MRCs 34,35. 158 
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We also show that ATP-binding cassette sub-family A member 12 (Abca12), a gene important 159 

in epidermal lipid barrier formation 36, is broadly expressed, but particularly concentrated in 160 

MRCs (SW), pavement, vascular, and non-differentiated cells. Interestingly, we show that a 161 

protein chaperone that helps regulate chromatin state, nucleoplasmin 37,38, is expressed 162 

specifically in non-differentiated, vascular and pavement cells groups, suggesting that these 163 

cell types undergo a change in chromatin status under seawater exposure.  164 

Conclusions 165 

Our results bring insightful cellular resolution to the complexity of the Atlantic salmon gill and 166 

the compositional changes that occur during smoltification. Of particular interest was the 167 

suppression of immune cell types, which correlates with reduction in immune-related genes 168 

and suppression of immune function during smoltification 39–41. These data are a puzzle. The 169 

marine environment is awash with parasites, bacteria and viruses to which the salmon is 170 

potentially vulnerable, so loss of immune function would make little sense. Future work 171 

should focus on why and how the immune system is affected in aquaculture. Conceivably 172 

these data point towards an adaptive immunological reprogramming that helps to avoid 173 

immune shock when the salmon transition between the distinctive pathogen complements of 174 

fresh- and seawater habitats 42,43. Alternatively, artificial smolt production may drive abnormal 175 

immunosuppression. The constant light routinely used to stimulate smolts would profoundly 176 

undermine the immune defenses of mammals via disruption of the circadian clock 44. 177 

 Our data also shows that smoltification-driven transcriptional regulation occurs not 178 

only in MRCs and ACs, but also in other distinctive cell types including pavement cells, vascular 179 

cells and non-differentiated cells. We anticipate that novel gene function within the context 180 
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of cell function will be a priority for future investigation, and will be assisted by the novel suite 181 

of marker genes which we present here.  182 

 183 
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Material and Methods 305 

Animal welfare statement 306 

The Atlantic salmon smoltification experiment was conducted as part of the routine, smolt 307 

production at Kårvik havbruksstasjonen, approved by the Norwegian Animal Research 308 

Authority (NARA) for the maintenance of stock animals for experiments on salmonids. This is 309 

in accordance with Norwegian and European legislation on animal research.  310 
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Experimental Design 311 

Atlantic salmon (Salmo salar, Aquagene commercial stain) were raised from hatching in 312 

freshwater, under continuous light (LL, > 200 lux at water surface) at ambient temperature 313 

(~10oC). Juvenile salmon were housed in 500 L circular tanks and fed continuously with 314 

pelleted salmon feed (Skretting, Stavanger, Norway). At seven months of age parr (mean 315 

weight 49.5g) were sampled for T1 (experiment start). Two days later remaining parr were 316 

equally distributed between two 100L circular tanks, and over the next seven days the 317 

photoperiod was incrementally reduced to a short photoperiod (SP, 8h light:16h darkness). T2 318 

sampling occurred on experimental day 53 (44 days on SP), remaining parr were transferred 319 

back to LL on experimental day 60. T3 sampling occurred on experimental day 110 (50 days 320 

after return to LL), then a sub-cohort of fish were netted out and transferred to full strength 321 

seawater for 24h before the final T4 collection.  322 

RNAseq Analysis 323 

Gill samples were collected, RNA extracted and libraries prepared, sequenced and mapped as 324 

Iversen et al (2020). Raw counts were analysed using EdgeR (ver. 3.30.0), using R (ver. 4.0.2) 325 

and RStudio (ver. 1.1.456). An ANOVA-like test was used to identify differential expressed 326 

genes between T1-T3 samples. Clustering analysis was performed using Pearson correlation, 327 

and heapmaps rendered using the R package pheatmap. An exact test was performed to 328 

identify differential expressed genes between T3 and T4. 329 

Single nuclei RNAseq Analysis 330 

Gills for single nuclei analysis were collected on dry ice and stored at -80oC. Duplicate samples 331 

were processed for T1-T4. Nuclei were released by detergent mechanical lysis, then samples 332 

were homogenized (30s) and nuclei isolated by sucrose gradient 45. Libraries were created 333 
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using Chromium Single Cell 3ʹ GEM, Library & Gel Bead Kit v3 (10x technologies) by University 334 

of Manchester genomic technology core facility (UK). Raw data was converted to counts per 335 

cell using Cell Ranger (10x Technologies, ver. 3.1.0) and processed using NCBI annotations. 336 

The R package Seurat (ver. 3.1.5) was used to perform an integrated analysis using all 337 

snRNAseq data 24, further details in results and discussion. Raw data will be available following 338 

peer-reviewed publication. 339 
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 357 

Figure Legends 358 

Figure 1. Single nuclei RNAseq analysis of Atlantic salmon gill tissue. A) Gill tissue processing. 359 

B) UMAP plot of pooled cell data from 18844 cells representing eight samples from four 360 

collection states. The plot indicates 20 separate cell clusters. C) Expression of marker genes in 361 

20 cell clusters. From left to right: hierarchical relatedness of difference cell clusters; total cells 362 

in each cluster; UMI number in each cell cluster; gene features in each cell cluster; violin plots 363 

showing expression pattern of marker genes for each cluster. Abbreviations:  ACs - accessory 364 

cells, DCs - dendritic cells, ECs - epithelial cells, fib - fibrocytes, GCs - goblet cells, LECs - 365 

lymphatic endothelial cells, MCs - myeloid cells, MRC - mitochondrion-rich cells, NDCs - non-366 

differentiated cells, PVCs, pavement cells,  RBCs - red blood cells (erythrocytes), TCs - T cells, 367 

VCs - vascular cells. 368 

Figure 2. Comparative abundance of cell clusters at different sampling points. A) Experimental 369 

design. Fish were kept in constant light (LL) from hatching then transferred to short 370 

photoperiod (SP; 8L:16D) for 8 weeks before being returned to constant light (LL) for 8 weeks. 371 

Finally the fish were transferred to sea water for 24h. Sample points are indicated T1-T4.  B) 372 

Subset of cell clusters from T2, T3 and T4 (green and red dots) overlaid on T1 cells (grey dots). 373 

C) Increasing abundance of sea-water mitochondrion-rich cells (MRCs SW) and vascular cells 374 

(VC 3) during smoltification C) Decreasing abundance of leukocytes and immune-associated 375 

cells during smoltification. 376 
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Figure 3. Photoperiodic changes in gill gene expression and localized cell cluster expression. 377 

A) Heat map representing 9746 genes differentially regulated (FDR <0.01) from T1-T3. 378 

Regulatory patterns for 5 major cluster are shown as amplitude index and 95% confidence 379 

limits. Major gene ontology terms for each cluster are shown. B) RNAseq data for “classical” 380 

smoltification-related genes and violin plots showing their cluster specific expression. 381 

Figure 4. Sea-water transfer-associated changes in gill gene expression and localized cell 382 

cluster expression. A) Genes differentially regulated (FDR <0.01) by 24h seawater transfer. 383 

Major gene ontology terms for each cluster are shown. B) RNAseq data for sea-water transfer-384 

related genes and violin plots showing their cluster specific expression. 385 

Supplemental Figure 1. RNAseq data for winter-dependent genes and violin plots showing 386 

their cluster specific expression. 387 
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