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Abstract

Single-cell RNA sequencing (scRNA-seq) revolutionised our understanding of disease biology
and presented the promise of transforming translational research. We developed Besca, a
toolkit that streamlines scRNA-seq analyses according to current best practices. A standard
workflow covers quality control, filtering, and clustering. Two complementary Besca modules,
utilizing hierarchical cell signatures or supervised machine learning, automate cell annotation
and provide harmonised nomenclatures across studies. Subsequently, Besca enables
estimation of cell type proportions in bulk transcriptomics studies. Using multiple heterogeneous
SscRNA-seq datasets we show how Besca aids acceleration, interoperability, reusability, and
interpretability of SCRNA-seq data analysis, crucial aspects in translational research and

beyond.
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Introduction

Major breakthroughs in our understanding of rare cell types, tissue heterogeneity, cell
differentiation and transcriptional regulation have been enabled by the increased resolution in
detecting gene expression provided by single-cell RNA-sequencing (scRNA-seq). Encouraged
by early successes, pharmaceutical research has also embraced the technology, to accelerate
drug discovery. In this context, sScRNA-seq is used to better understand disease phenotypes [1],

to assess drug targets [2], to characterize microphysiological systems [3] and to measure cell-


https://doi.org/10.1101/2020.08.11.245795
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.245795; this version posted September 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

type-specific pharmacology and toxicity of drug candidates [4], among others. In addition,
ScRNA-seq assists characterization of in vitro and in vivo disease and safety models by offering

insights in cell-to-cell communication [5], cell activation [6] or differentiation trajectories [7].

Current challenges in the analysis of single-cell transcriptomics data are predominantly related
to the biological interpretation of the analysis results rather than to the computation thereof [8].
Whereas the computational part can be automated, biological interpretation requires manual
user interaction. By putting our focus on accelerating the cell type annotation process, which is
currently a bottleneck in scRNA-seq analyses [9], we aim to streamline the analysis process to
ensure that researchers invest their time where it is most effective and to allow for consistent
biological investigation. Therefore, we automate and standardize multiple analysis steps as far
as possible, in line with current best practices in the community [10-12]. An automated and
standardized solution will allow researchers to take full advantage of the rapidly growing

amount, size, and scope of single cell data generated [13,14].

Here, we introduce Besca, a toolkit for the rapid and standardized analysis of SCRNA-seq
experiments and the utilisation thereof for the deconvolution of bulk RNA-seq data (Fig. 1).
Besca is an open-source Python library that is compatible with and extends Scanpy [15], one of
the most established and up-to-date single-cell analysis toolkits. Besides functionalities to
analyse scRNA-data, Besca also provides the Besca proportions estimate (Bescape) module,
which integrates two cell deconvolution methods: SCDC [16] and MuSiC [17]. Beyond RNA-
focused studies, Besca supports analysis of datasets generated by the recently developed
CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) [18] method, hence

accounting for multimodal analysis.
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Fig. 1 Besca provides streamlined single-cell transcriptomics data analysis modules and
exchange file formats. a Well-defined interoperable input and output file formats, cluster
metrics, a quality control report and a signature storage ensure reusability of data. b The
standard workflow internalizes a raw count matrix and generates a quality control report

as well as a processed dataset post filtering, normalization, highly variable gene
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selection, batch correction, and clustering. c,d: Clusters identified from the standard
workflow are annotated using either signature-based hierarchical cell annotation (Sig-
annot module, c) or a supervised machine learning-based algorithm trained on
previously annotated datasets (Auto-annot module, d). e The annotated datasets can be
used to deconvolute bulk RNA-seq data based on gene expression profiles generated

from annotated single-cell datasets utilizing the Bescape module.

As Besca builds upon and extends concepts and functions from Scanpy, it seamlessly
integrates with other ecosystem tools for visualisation or specialised analyses tools such as
scVelo [19] and CellRank (http://cellrank.org/) for cellular trajectory and fate [20] analysis or
Scirpy [21] for T-cell receptor analysis. We envision Besca to accelerate translational research
by providing streamlined analysis workflows, ranging from standardized quality control and

filtering to harmonised cell annotation.

The Bescape module provides a framework to reuse these cell annotations by exploiting
scRNA-seq expression profiles for cell deconvolution (Fig. 1e). This adds value to bulk RNA-seq
studies, especially in larger clinical settings that do not yet have the capacity to perform scRNA-
seq and where signals are often confounded by heterogeneity related to distinct cell type
composition [22]. The resulting estimated cell compositions can then be used directly as
biomarkers or as covariates towards getting more robust differential gene expression results for

understanding disease biology or treatment responses.

In this manuscript, we exemplify how using Besca makes analysis results more comparable
between studies. We also demonstrate how to transfer learnings from one study to another, for
instance by reusing cell type annotations, and from one application to another, for instance by

using single-cell gene expression profiles for cell deconvolution of bulk RNA-seq. To
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demonstrate how Besca can be applied to a wide variety of biological samples, we reprocessed
publicly available single-cell data from ten studies (see Table 1 and Methods). We show how
the Besca toolkit can be used to obtain biological insights quickly and generate reusable results
from these highly diverse datasets. Further examples can be found in the supplementary
material, example workbooks on GitHub

(https://github.com/bedapub/besca publication results), and in the tutorials available from the

documentation (https://bedapub.github.io/besca/).

Tissue Bone marrow and peripheral blood Intestine Pancreas
Area of interest Healthy R RETE e Naccne Ulcerative colitis  Crohn's disease Mouse Colorectal cancer | Type Il Diabetes " 2ncreatic ductal Healthy
acute leukemia responsivenes adenocarcinoma
Dataset PBMC3k Granja2019 Kotliarov2020 Smillie2019 Martin2019 Haber2017 Lee2020 Segerstolpe2016 Peng2019 Baron2016
0:5:2:1:;‘3 10xgenomics.com  GSE139369 10‘350332; ‘;;“C‘C'" SCP259 GSE134809 GSE92332 GSE132465 E-MTAB-5061 PRICA001063 GSE84133

Processed data  10.5281/zenodo.3 10.5281/zenodo.3 10.5281/zenodo.3 | 10.5281/zenodo.3 10.5281/zenodo.3 10.5281/zenodo.3 10.5281/zenodo.3 | 10.5281/zenodo.3 10.5281/zenodo.3 10.5281/zenodo.3

Dol 948150 944753 938290 960617 862132 935782 967538 928276 969339 968315
CITE-seq No Yes Yes No No No No No No No
standard S,N N N N N N N N N N
workflow
Sig-annot,
signature-based N M N M, N N N N S,N N S,N N

cell annotation

Auto-annot,
supervised cell M, s,N M s, N m*s,N M, S,N M, S,N M, S,N - S,N S,N S,N
annotation

Bescape, bulk

RNA-seq - - MR - - - - MR
deconvolution
M = Main manuscript; S = \tary material; N = on GitHub (https://github.com/bedapub/besca_publication_results); R = R Markdown on GitHub (https://github.com/bedapub/bescape)

*Fig.2; *Fig. 3; “Fig. 4; Fig. 5; °Fig. 6

Table 1 Dataset overview, including hematopoietic cells of peripheral blood and bone

marrow (orange), intestine (blue) and pancreas (green) in health and disease.
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Results

A standard workflow streamlining scRNA-seq and CITE-seq

analyses

The Besca standard workflow offers a standardized series of steps, starting from a gene-by-cell
count matrix and ending with cell clustering (Fig.1b). Based on Scanpy [15], the workflow
provides standard processes to treat single-cell transcriptomics data in a reproducible and
comparable manner. Good practices and FAIR (findability, accessibility, interoperability,
reusability) principles [23] enable comparisons between all datasets analysed with Besca
improving translational research. The steps of single-cell analysis are described at length by
Luecken and Theis [11]. Besca’s standard workflow detailed in the Methods follows these steps

and in addition allows for the processing of CITE-seq [18] data.

The standard workflow generates a quality control (QC) report and a log file which summarize
the performed analysis (Fig. 1a). For future reuse, all of the analysis results are written to files in
interoperable data formats (see Methods) including output files of precomputed metrics, such as
average gene expression or marker gene rankings (Fig. 1a). Additional downstream analyses
such as automated cell type annotation can be run directly on the output of the standard
workflow. The cell type annotation of the clusters can be performed using the Sig-annot (Fig. 1c)
or Auto-annot (Fig. 1d) methods described thereafter and a re-clustering framework is available
to decipher cell populations with higher resolution. In addition, functions for recurrent
visualizations are implemented to illustrate gene expression variation under certain conditions

(e.g. treatment effect) or to show the cell type composition found in the analysed dataset. The
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standard workflow and subsequent manual cell type annotation are exemplified in

Supplementary Figure S1 utilizing the PBMC3k dataset.

A gene signature management system

The integration of multiple scRNA-seq datasets allows for the accumulation of knowledge and
insights about biological tissues, cells, cell states, and diseases. As the development of suitable
scRNA-seq integration data increases, a key challenge in single-cell data analysis workflows is
the accurate dissemination of this knowledge and the appropriate reuse of the information
gathered. In particular, it is of utmost importance to be able to re-apply gene signatures
extracted from individual studies across studies and within analyses. To this end, we connected

Besca to the Geneset Management System (GeMS) (https://github.com/bedapub/GeMS).

GeMS is a light web-based platform that enables the centralized management of genesets
using structured formats and a local application programming interface for geneset information
retrieval and organization. The application is built on top of the Flask micro-framework

(https://flask.palletsprojects.com) using MongoDB (http://www.monogdb.com), an open-source,

document-based database as its backend.

Once GeMS is deployed, Besca allows the export of gene signatures to the GeMS database (for
example a geneset of marker genes from distinct populations) and the retrieval of user-defined
signatures (Fig. 1a). It is also possible to check for geneset similarity to avoid redundancy within
the database and check for signature specificity. GeMS is distributed with initial public genesets
extracted from Reactome [24], CREEDS [25], CellMarker [26] and MSigDB [27,28] and can be
filled with new genesets. Besca allows for direct usage of these genesets for signature
enrichment analysis and can compute bi-directional scores combining up and down-regulated

genes into one metric. Besca is distributed with signatures related to different tissue types
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including hematopoietic, intestinal and pancreatic cell types as well as an extended list of

immune-related signatures.

Automated and harmonized cell type annotation

Cell type identification in sScCRNA-seq poses great challenges, mainly related to the lack of a
biological consensus of what a cell type actually represents and a patchy overview of existing
cell types and their identity footprints on the transcriptomic level [29,8]. During recent years, a
large number of approaches and computational methods have been developed to address the
attribution of cells to discrete types, however a one-fit-for-all approach is still lacking [30]. At the
most basic level, cell types are attributed iteratively to individual clusters after manual inspection
of the expression of a handful of markers according to expert biological knowledge of the
studied system. Importantly, the vast majority of SCRNA-seq-based publications have taken this
approach in the past (see e.g. [31-39]). However, such an approach is limited by the availability
of expert knowledge, does not scale to processing a large number of samples, and is poorly

reproducible across individual studies.

In order to standardize this process, while maintaining the flexibility of adjusting marker genes
and expression cut-offs across studies according to prior knowledge, we developed Sig-annot
(Fig. 1c), a Besca module that provides a hierarchical signature-enrichment approach for cell
type annotation (see next paragraph). To guarantee consistency across studies and
communities, beyond scRNA-seq, the proposed cell type annotation schemas are based on the
Cell Ontology [40], which is accessible via the Experimental Factor Ontology [41]. The
controlled vocabularies at different cell type hierarchies are summarized in an annotation sheet
(Supplementary Table S1) and can be easily extended with further cell types. Newly generated

cell type annotations in this manuscript provide the most fine-grained annotation as DBlabel
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assignment, which follows the Cell Ontology whenever possible, as well as higher level

annotations according to the annotation sheet.

Sig-annot, Besca’s signature-based hierarchical cell annotation

schema

Sig-annot is Besca's streamlined version of the manual process of cluster attribution based on
marker gene enrichment including ready-to-go annotation schemas for a broad range of cell
types, with a particular focus on immune cells. The flexible, multi-level identification schemas
are based on a configuration file containing the cell types and their relations as well as the
corresponding cell type signatures (see Methods). Default configuration files for human and
mouse are provided, covering a large range of tissues and cell types (human: Supplementary
Table S2, mouse: Supplementary Table S3). These files are easily customisable and users are
free to provide additional schemas or annotations. The corresponding cell type signatures
provided with Besca (Supplementary Table S4) are derived and adapted from various SCRNA-
seq experiments and publications, with subsequent manual curation. As demonstrated here,
they can be applied across tissues and potentially even species (with some dataset-specific
adjustments) and represent a fast and consistent way of determining the most likely cell type

composition in complex, large-scale scRNA-seq experiments.

For convenience, we have implemented various functions to guide the annotation based on the
Sig-annot framework, and also provide visualisation at individual steps. For instance, one can
visualise the relation between the individual cell types as a graph (Fig. 2a), plot the enrichment
of individual signatures across all clusters in the dataset as a heatmap (Fig. 2b), directly
generate annotations at distinct levels in the cell hierarchy and add these in bulk to the AnnData

(https://anndata.readthedocs.io) metadata.
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Fig. 2 Besca’s Sig-annot module applied. a Overview of the cell type hierarchy provided
with Besca’s Sig-annot module and employed for annotating the datasets in the current
manuscript. b-e: Granja2019 data containing hematopoietic cells of multiple healthy

donors from blood and bone marrow, probed by CITE-seq. b Hierarchically clustered
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heatmap showing enrichment of main signatures employed in the annotation across
Leiden clusters, facilitating the evaluation of cluster attribution. ¢ Overview of clustering
in 2D UMAP space. d Overview of one of the signatures employed in cell annotation;
neutrophils are typically rare in sSCRNA-seq experiments because of their sensitivity to
cell isolation protocols, but can be clearly detected in the Granja2019 dataset based on
the Besca included signature. e Sig-annot cell type attribution at level 1, consisting of
major cell types such as T cells and myeloid cells. All detected populations are broadly
consistent with the original annotation (g). f Sig-annot cell type attribution at level 3, the
highest resolution provided in Besca's cell annotation schema. The detected populations
are consistent with the original Granja annotation (g), cover T cell subsets with higher
granularity and attribute the previously unknown ("14_Unk" and "26_UnKk") clusters as
well. g Original cell type attribution as obtained from Granja et al. Annotated cell
populations are highly consistent with clusters obtained from the reanalysis of the

original data following the Besca standard workflow.

To exemplify this approach and its utility across samples of various origin and characteristics,
we apply it to recent publicly available datasets covering most known hematopoietic cell types
[42] and show that we are able to reproduce and enhance the original expert-driven annotations
[31,32] (Fig. 2 and 3). As one of the datasets also contains information on the expression of a
large number of surface protein markers, we can confirm that our cell type attribution is in line
with our current protein-level understanding of hematopoietic cell biology (Fig. 3b and d,

Supplementary Figure S2).
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Fig. 3 Sig-annot applied to Kotliarov2020 data containing hematopoietic cells of multiple
healthy donors from blood, probed by CITE-seq. a RNA sighature-based cell type
attribution at level 2, consisting of cell subtypes such as CD4+ T cells and classical
monocytes. b Protein-marker based annotation using a gating method of classical FACS
markers at a similar hierarchical depth as described in (a). Cell attribution is highly
consistent with the automated RNA based results. ¢,d RNA signature-based (c) and
protein-based (d) cell type attribution at the most fine-grained level 3. Even immune cell
subtypes such as memory versus naive B cells or rare populations such as regulatory T

cells and plasmacytoid dendritic cells are correctly attributed.
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We note that in our annotations, we employed the same set of signatures and configuration
files, successfully obtaining consistent annotations of hematopoietic cells derived from
independent experiments, each with distinct levels of resolution and cell type frequency and
representation, covering human blood and bone marrow. Importantly, our approach is
automated, in the sense that only minimal changes (if any) are required for re-annotating each
dataset should e.qg. filtering/clustering be modified. It is also fully reproducible if the signature
matrix and configuration files are stored for each annotation event. The distinct levels provide
flexibility in terms of the annotation depth - one can easily choose to inspect differences
between myeloid cells and T cells, or alternatively examine myeloid cell subsets, as each cell is
attributed all hierarchical annotation levels present in the configuration file. Finally, we
demonstrate that our approach is also applicable to more complex settings such as
heterogeneous tumor samples, as exemplified by the annotation of publicly available colorectal

cancer and pancreatic cancer data (see Supplementary Figures S3 and S4).

Auto-annot, Besca’s supervised machine learning module for cell

type annotation

In addition to the signature-based annotation approach, Besca provides the Auto-annot module
(Fig. 1d), a supervised machine learning workflow for automated cell type annotation based on
well annotated training datasets. Recently, supervised machine learning has become a popular
alternative to signature-based cell type annotation [43—46]. Benchmarking studies of such

methods revealed that tailored single-cell classifiers or deep learning algorithms do not perform
significantly better than conventional general purpose machine-learning methods [30,47].

Therefore, we implemented methods for supervised machine learning based on support vector

machines (SVMs) or logistic regression. One or multiple annotated reference datasets can be
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used to train a classifier for the annotation of a test dataset. Further details of the

implementation are described in the Methods.

We demonstrate the application of Auto-annot on scRNA-seq data from healthy PBMCs. The
datasets Kotliarov2020 and Granja2019 (Table 1, [31,32]) were used to train a logistic
regression model, which was then tested on the PBMC3k dataset (Table 1,

https://www.10xgenomics.com/). The training data includes far more cells and is annotated

more fine-grained, a scenario we expect when training on deeply annotated datasets derived

from cell atlases and predicting cell identities in smaller newly sequenced datasets.

The resulting automated annotation (Fig. 4b) broadly reproduces the reference annotation (Fig.
4a,f), and also highly overlaps with the unsupervised Leiden clustering from Besca’s standard
workflow (Fig. 4c). For B cells, it provides even higher resolution than the reference annotation
correctly separating them into memory and naive B cells (Fig. 4b,f), as independently confirmed
by the according signatures (Fig. 4d,e). The automated annotation for T cells shows some
ambiguity, which reveals the limitations of the method (Fig. 4a,f). Still, the specific IL7R-max
CD8 T cells were correctly identified (Fig. 4f) showing that accurate subdivisions within T cells
are possible. In order to avoid false positive annotations it is possible to set a threshold for cells
with low annotation scores. The threshold approach labels most of the ambiguous T cells as
unknowns (Fig. 4g and Supplementary Figure S5), removing almost all misclassifications at the
cost of some cell types. As a result, central memory CD4 T cells remain virtually undetected.
However, little changes occur when it comes to other cell types, including IL7R-max CD8 T

cells, suggesting that this approach indeed only flags out ambiguous attributions.
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Fig. 4 Auto-annot applied to PBMCs using a logistic regression model trained on the
Kotliarov2020 and Granja2019 datasets and tested in the PBMC3k dataset. a Overview
of DBlabel annotations in 2D UMAP space for the PBMC3k test dataset. b Auto-annot

largely recovers the original cell types. Finer divisions are uncovered in B cells, but
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resolution is lost for some T cell subtypes. ¢ Overview of Leiden clustering in 2D UMAP
space shows high overlap with predictions and illustrates the difficulty of finding
subclusters in overlapping T cell communities. d The memory B cell signature supports
the separation of the B cell cluster in (b). e Idem for the naive B cell signature. f The
confusion matrix shows that misclassifications, if they do occur, generally misannotate
very similar cell types. g Overview of Auto-annot labels with threshold. Ambiguity in
some T cell subtypes leads to classification as unknown, all other cell types remain
identified. The corresponding confusion matrix can be found in Supplementary Figure

S5.

It is notable how accurate the supervised approach works with a fine-grained training
annotation. Still, an automated annotation based on less fine-grained cell types leads to even
clearer results in the sense that multiple different cell types being co-located in the same broad
cell type class from the reference annotation does not occur when we applied it to broader cell

types (see Optimised Classes in the Supplementary Material and Supplementary Figure S6).

We performed additional cross-validation of the supervised Auto-annot approach on
hematopoietic cells using the Granja2019 and Kotliarov2020 datasets on their own (see
Supplementary Figures S7 and S8) and on pancreatic cells utilizing the Segerstolpe2016,
Peng2019, and Baron2016 annotations in three different combinations (see Supplementary
Figures S9, S10 and S11). Together, our results show that the approach works best when the
training set contains all cell types present in the test set, and when transcriptional differences

between cell types are large and stable.
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Cross-validation of newly identified intestinal cell types as an
application of Auto-annot

Recent studies revealed the intestinal cell type composition utilizing single-cell transcriptomics
of intestinal biopsies taken from inflammatory bowel disease (IBD) patients (including ulcerative
colitis and Crohn’s disease), healthy donors, or mice, as reviewed recently in [48]. However, the
utilized cell type nomenclatures are inconsistent between these studies and various novel cell
types were discovered. Here we show how to use Besca’s supervised machine learning method
Auto-annot to cross-validate these disparate cell type annotations. We focus on two major
studies: Smillie2019 (human colon epithelium and lamina propria during ulcerative colitis) [33]
and Martin2019 (human ileum lamina propria during Crohn’s disease) [34]. In addition, we
perform cell type annotation across species using the Haber2017 dataset (mouse small

intestine epithelium) [35].

Firstly, we use the Smillie2019 and Martin2019 datasets to train a model with one dataset and
apply it to the other, respectively. Both datasets were processed with Besca’s standard workflow
and cell type annotations were adopted from the respective publications. Both studies provide a
coarse cell type annotation (Fig. 5a left) as well as a fine grained cell type annotation (see
Supplementary Figure S12 and for Smillie2019 fine-grained fibroblasts Fig. 5d left). Epithelial
cell annotations are missing from the Martin2019 author’s annotation, because those cells were
excluded in the original study. Therefore, they are labelled as “unknown” in our comparison. The
Auto-annot module identifies the corresponding cell types in the unseen dataset, respectively
(Fig. 5a,b,c and Supplementary Figure S12). Still, there remains some ambiguity mainly within

lymphocytes.
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Fig. 5 Supervised machine learning to compatre intestinal cell type annotations in
scRNA-seq data. a UMAP representations of the coarse-grained cell types annotated in
the Smillie2019 and Martin2019 datasets based on author’s annotations (left) and
predictions based on Besca’s Auto-annot module (right). b,c Confusion matrices
comparing the true labels from the author’s annotation and the cell types predicted in the

Smillie2019 dataset from the Martin2019 annotation (b) and in the Martin2019 dataset
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predicted from Smillie2019 (c). d Discovery of inflammatory or activated fibroblasts point
to the same cell community in both studies as exemplified in the Smillie2019 dataset by
the author’s annotation (left) and prediction from Martin2019 (right). e UMAP
representations of the mouse small intestinal epithelial cells from Haber2017 showing
the reference DBIlabel cell type annotation (left) and cell types predicted from

Smillie2019 human colon (right), and f the corresponding confusion matrix.

In both studies a new type of disease-relevant fibroblasts was discovered and named
inflammatory fibroblasts in ulcerative colitis [33] or activated fibroblasts in Crohn’s disease [34].
Here, we show how our machine learning approach could clearly confirm that these two
fibroblast communities belong to the same cell type (Fig. 5d and Supplementary Figure S12).
The comparison revealed further differences in the cell type annotation for the enteric nervous
systems and B cells, which could be driven by biological differences, experimental differences,
or simply different cell type nomenclatures used (Supplementary Figure S12). The results show
that our approach can be used to match cell type identities across studies and obtain a more

cohesive picture of a tissue’s cell type composition.

Finally, we performed a cross-species comparison. The Haber2017 small intestine mouse
dataset includes only epithelial cells and was used as a test dataset. As the training dataset we
chose the Smillie2019 human colon dataset and trained the machine learning model on the
epithelial cells only. This approach clearly identified enterocytes, enteroendocrine cells, goblet
cells and brush (tuft) cells (Fig. 5e,f). The overall gradient from stem and transit amplifying cells
to precursor and fully differentiated cells was mainly reproduced, but with less accuracy than the
aforementioned discrete cell types (Fig. 5e,f). Paneth cells led to confusion in this scenario,
because they are highly abundant in the mouse small intestine [35], but mainly absent in colon

and not annotated in the human colon training data [33]. Similar results were achieved by using
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the fine-grained annotation from Smillie2019 and by the reverse prediction from mouse to
human (see Supplementary Figure S13). The results show that a cross-species prediction is

generally possible and can provide important insights for translational research.

ScRNA-seqg-informed cell deconvolution through Bescape

Cell deconvolution aims to estimate cell type proportions from bulk sample transcriptomic data
based on cell type specific gene expression profiles (GEPSs). Derivation of GEPs relevant for
different bulk RNA-seq experiments has remained a challenge. As scRNA-seq data is being
collected and annotated at an unprecedented rate, this offers the potential to leverage on the
newly gathered knowledge [49]. Besca’s deconvolution framework Bescape facilitates the usage

of established deconvolution methods directly on any scRNA-seq data of choice (Fig. 1e).

Most available tools do not offer the flexibility to introduce user defined cell specific GEPs,
instead relying solely on the authors’ carefully curated ones. The application and performance of
the cell deconvolution results are then limited to the scope of the tissue and cell types
embedded in the curated set. For example, GEPs derived from microarray data from
haematological malignancies will have a limited scope of application in deconvoluting cell
proportions from bulk RNA-seq sequenced from solid tumour biopsies. In other words, the
performance of the results cannot be disentangled between the algorithm itself and the cell type

specific gene expression embedded in different tools.

The Bescape module aims to leverage on the data collected from the ongoing effort in the
understanding of scRNA-seq signals as basis vectors to estimate the cell composition in
heterogeneous bulk RNA-seq readouts. As the deconvolution algorithms have made significant

progress over the past years [50,51], the focus is now being placed on the specificity of the
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GEPs that are used as basis vectors to estimate the cell composition addressing platform,
tissue and indication variability [52]. This is where Besca'’s standard workflow and automated

cell type annotations from scRNA-seq have a direct impact.

In order to allow for simple incorporation of reference scRNA-seq datasets to generate GEPs for
cell types of interest and addressing challenges such as collinearity of closely related cell types,
Bescape includes two recent cell deconvolution tools, SCDC [16] and MuSIC [17] (see
Methods). Furthermore, as most deconvolution methods are implemented in R (https://www.r-
project.org/) packages, several steps are needed to run the deconvolution module seamlessly in
the background. In short, Bescape provides a containerized environment to run the different
tools (see also Supplementary Figure S14). More specifically, it first provides a notebook with
the combination of Python and R scripts for the conversion of an AnnData h5ad file

(https://anndata.readthedocs.io) to an eSet object

(https://www.rdocumentation.org/packages/Biobase/topics/eSet) needed to run the

deconvolution algorithm in R. In addition, Bescape provides a notebook in Python to run the

deconvolution in a Docker image (https://docs.docker.com/) based on a user specified reference

eSet scRNA-seq and a bulk RNAseq dataset.

To extract the information from a reference scRNA-seq dataset, two sets of GEPs are
generated from the Besca workflow immediately following the cell type annotation step: (1)
GEPs can either be generated using all genes from the scRNA-seq reference dataset without
performing any feature selection, these are extracted from the functionality provided by SCDC
and MuSiC or (2) based on a subset of highly variable gene expressions defined in the standard
workflow. The first set of GEPs is extracted and suitable for use by MuSiC and SCDC where
subsequent weighing of the different genes is performed. The second set of GEPs can be used

as input basis matrix for a multitude of cell deconvolution tools such as EPIC [53] and
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CIBERSORT [51]. The resulting GEPs derived from the Segerstolpe2016 and Kotliarov2020
datasets (Table 1, [32,37]) utilizing both strategies are shown for comparison in Supplementary

Figures S15-S18.

Here, we focus on the first strategy, applied to both datasets, utilizing SCDC by example, as it
shows how to leverage scRNA-seq data to demonstrate Bescape’s functionality best. Bulk RNA-
seq was simulated from the pancreatic islets [37] and hematopoietic CITE-seq [32] datasets
using the GEPs across all genes from the raw count. The use of simulated bulk RNA-seq,
where the ground truth of the in-silico ad-mixture is known, allows validation of the estimated
cell proportions (see Methods). The estimated proportions from these simulated data using
SCDC correlate highly with the ground truth across samples for both datasets (Fig. 6a,b).The
estimated proportions show high Pearson correlation with the ground truth, and corresponding
low root mean square deviation (RMSD) and mean absolute deviation (mAD), in both tissues for
all the cell types that were annotated from the Besca workflow (Tables 2 and 3). There are a few
exceptions where the cell type GEPs are less well defined (see Supplementary Figures S15 and

S17).
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Fig. 6 Cell deconvolution using Bescape. a Measured versus predicted cell proportions
in pancreatic islets bulk RNA-seq simulated from Segerstolpe2016. b Measured versus

predicted cell proportions in hematopoietic bulk RNA-seq simulated from Kotliarov2020.
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¢ Estimated cell proportions for real pancreatic islets bulk RNA-seq between type 2
diabetes patients and healthy controls. d Estimated pancreatic beta cells proportions for

real pancreatic islets bulk RNA-seq between type 2 diabetes patients and healthy

controls.

Cell type Pearson correlation RMSD mAD
blood vessel endothelial cell 0.68 0.017 0.010
enteroendocrine cell 0.52 0.064 0.047
fibroblast 0.87 0.020 0.017
macrophage 0.98 0.004 0.002
pancreatic A cell 0.97 0.043 0.033
pancreatic acinar cell 0.99 0.049 0.024
pancreatic D cell 0.88 0.023 0.018
pancreatic ductal cell 0.83 0.075 0.043
PP cell 0.87 0.041 0.033
type B pancreatic cell 0.94 0.055 0.040

Table 2 SCDC deconvolution results based on simulated bulk RNA-seq from SCDC

GEPs on pancreatic islets reference scRNA-seq from Segerstolpe2016.

Cell type Pearson correlation RMSD mAD
B cells 0.98 0.009 0.007
CD4 T cells 0.79 0.075 0.062
CD8T cells 0.90 0.021 0.016
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classical monocytes 0.99 0.014 0.011
DN T cells 0.13 0.078 0.058
ILCs 0.81 0.031 0.024
mDCs 0.75 0.009 0.008
non-classical monocytes 0.81 0.009 0.007
not determined 0.56 0.033 0.026
pDCs 0.61 0.003 0.002

Table 3 SCDC deconvolution results based on simulated bulk RNA-seq from SCDC

GEPs on hematopoietic reference CITE-seq data from Kotliarov2020.

Following the SCDC manuscript [16], we utilized the study of type 2 diabetes [54] for which the
difference in the estimated beta pancreatic cell proportions between type 2 diabetic patients and
healthy controls provides a measure for validation of the deconvolution results. Estimated
proportions obtained from the real bulk RNA-seq for all 10 cell types using Besca cell annotation
is shown in Fig. 6¢. The estimated pancreatic beta cells are tested and do show the expected
lower cell proportions in the type 2 diabetes patients as compared to healthy subjects as shown

in Fig. 6d.

It is important to note that the success of cell deconvolution can be measured based on two
merits. First, on the accuracy to known proportions estimated based on a known or proxy
ground truth either on simulated bulk RNA-seq data or from matched samples measured with
more traditional single-cell means (e.g. immunohistochemistry or flow cytometry). Although this
is the preferred measure of success, validating the results compared to a ground truth obtained
using known cell types can be difficult as these more traditional methods for studying cell

heterogeneity rely on a limited repertoire of markers of known cell types. Secondly, the success
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can also be measured based on the results obtained from embedding estimated cell proportions
as covariates in prognostic and predictive models. Indication of success here is harder to

determine a priori and would need to be carefully investigated to avoid overfitting.

Discussion

No two cells are identical; neither are two scRNA-seq experiments. Cells are extracted from
different tissues, treated according to lab-specific protocols, and sequenced with a variety of
technologies. Still, the vast amount of available scRNA-seq studies provokes the ambition to
reuse the valuable experimental data and to re-assess them by comparing between studies.
Streamlined and standardized workflows, such as those presented here, strive to find balance
between automation and flexibility, which brings efficiency, reusability, and reproducibility of
data processing. The loss in flexibility is compensated by bringing scRNA-seq results to a level

that allows for cross-study comparisons and finally integration into larger cell atlases.

Besca’s Sig-annot module implements such a process by automatizing cell type annotation
through an unsupervised clustering approach followed by signature-based hierarchical cell type
identification. It mirrors the manual annotation approach, but enforces a harmonized annotation
schema and hence guarantees comparability between studies. It also captures knowledge of
cell type markers that is gained in this process in explicit gene signatures that can be easily
shared, re-assessed and improved across different conditions, studies, and technologies. This
signature-based approach is valuable for specific tissues and disease phenotypes as an
approach to harmonize annotations across various cell atlases, which is critical for holistic
disease understanding (see e.g. [1,48,55]). Still, each tissue and fine-grained cell type needs to

be incorporated and optimized for in the annotation schema.
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In contrast, supervised approaches overcome certain challenges faced by unsupervised
clustering [56] and therefore generalize better. Importantly, they allow for the utilization of
curated high-quality annotations by transferring them to new studies efficiently. Such
approaches not only allow for the comparison of cell annotations between studies, but even
across species. They depend on well annotated reference datasets containing harmonized cell
type annotations. We expect cell atlas projects (see e.g. [55,57—61]) to provide such
annotations in the near future for all major tissues, which would allow for a wide applicability of
supervised approaches. Furthermore, the cell type annotation can also be resolved with

correlation-based approaches such as singleR [62], sScMCA [63], or SCMAP [64].

Various examples in this manuscript and previous studies show that the automation of cell type
annotation is feasible to a certain extent and technically not too complex. As cells can be
grouped by multiple orthogonal criteria such as surface markers, functions, cell cycle states,
differentiation stages, or activation levels, a clear definition of concrete cell types remains
controversial and a more general concept of cell types will be needed in the future [29]. Setting
aside the controversy in cell type definition, our work already provides tools and best practices
to achieve better reference cell annotations and to share the gene signatures that capture the
knowledge about how they were derived. Like the human reference genome (which does not
ultimately reflect a human genome consensus [65] and still serves many practical purposes)
accelerated genomic research, such reference cell type annotations will accelerate our
understanding of biological systems even though they reflect only a subset of a cell’s

characteristics.

Finally, these cell type definitions help investigate changes in cell composition and differentially
expressed genes within certain cell types, which are often postulated as indications of disease

progression or response to stimulation and perturbation [66]. While scRNA-seq offers the
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possibility to investigate these hypotheses, the current cost as well as the technical and
logistical challenges associated with the technology are preventing large scale studies [67],
particularly in a clinical trial setting. Although this is likely to improve over time as the technology
matures, large numbers of biological replicates are currently measured using bulk RNA-seq. In
these samples, heterogeneity resulting from the distinct cell type composition of the probed
material can often confound the signals, making it difficult to interpret results. By leveraging
annotated reference scRNAseq datasets in combination with cell deconvolution methods, the
cell composition of bulk RNA-seq samples can be robustly estimated. This information can then
either be used directly as biomarkers or as covariates towards inferring more robust differential

gene expression results.

Conclusions

In sum, the core benefits of adopting Besca for sScRNA-seq data analysis are automation,
standardization, and reusability. This is achieved (1) by a generalized standard workflow,
including CITE-seq data processing, (2) by the automation of the cell type annotation process
with two complementary approaches, (3) by managing knowledge about cell type marker gene
signatures in GeMS, (4) by informing deconvolution algorithms to make better use of bulk
transcriptional data, and (5) by building upon the widely used Scanpy toolkit. We expect that
Besca, published as an open-source software contribution to the community, will promote
interoperability, reusability, and interpretability of sScRNA-seq data. Finally, Besca will be part of
the many components that pave the way for a reference catalogue of cell types and their
reactions to various perturbations. This catalogue will allow a deeper understanding of human

diseases and their interventions.
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Methods

Example data

The following publicly available single-cell datasets from ten studies were reprocessed (see also
Table 1). Three datasets cover blood- and bone-marrow-derived hematopoietic cells:

e PBMC3K (https://doi.org/10.5281/zen0d0.3948150) includes healthy peripheral blood

mononuclear cell (PBMC) samples from one donor, a reference dataset often used in

single-cell tutorials based on 10X Genomics data (https://www.10xgenomics.com/).

e Granja2019 (https://doi.org/10.5281/zenodo.3944753) includes bone marrow

mononuclear cell (BMMCs) and PBMC samples from healthy donors [31]. In addition to
scRNA-seq, several protein markers were also probed by CITE-seq.

e Kotliarov2020 (https://doi.org/10.5281/zenodo.3938290) includes baseline PBMC

samples from healthy donors, who were high and low responders to influenza vaccines
[32]. In addition to scRNA-seq, a high number of protein markers were also probed by
CITE-seq.

Four datasets reveal the intestinal cell composition:

e Smillie2019 (https://doi.org/10.5281/zen0d0.3960617) includes colon epithelium and

lamina propria samples from healthy donors and ulcerative colitis patients [33].

e Martin2019 (https://doi.org/10.5281/zenodo.3862132) includes ileal lamina propria

samples from Crohn’s disease patients [34].

e Haber2017 (https://doi.org/10.5281/zeno0d0.3935782) includes murine small intestine

samples [35].

e Lee2020 (https://doi.org/10.5281/zenodo.3967538) includes tumor and non-malignant

colon samples from colorectal cancer (CRC) patients [36].
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Three datasets are pancreas-derived:

e Segerstolpe2016 (https://doi.org/10.5281/zen0d0.3928276) includes pancreatic islet

cells from healthy donors and type 2 diabetic patients [37].

e Peng2019 (https://doi.org/10.5281/zenodo.3969339) includes tumor and non-malignant

pancreatic samples from pancreatic ductal adenocarcinoma (PDAC) and non-pancreatic
tumor patients [38].

e Baron2016 (https://doi.org/10.5281/zenodo.3968315) includes pancreatic samples from

healthy donors [39].

Besca’s standard workflow

Besca’s standard workflow starts with loading the count matrix obtained from a preprocessing
pipeline (demultiplexing, read alignment, feature counting), and the annotation of the matrix,
including barcodes, genes and, if available metadata associated to the datasets, including
biological (e.g. donor, experimental condition) and technical (e.g. batches, protocols differences)
variables. Before proceeding with analysis, quality control (QC) is performed. This includes
visualizing drop-outs and sequencing saturation as well as performing cell and gene filtering.
During cell filtering all barcodes that do not correspond to viable cells are removed. Cell filtering
is performed on the basis of three QC covariates: the number of counts per barcode, the
number of genes per barcode, and the contribution from mitochondrial genes per barcode. Each
of the covariates are examined for outliers by thresholding as described in [11]. During gene
filtering, transcripts which are only expressed in a few cells are removed to reduce dataset
dimensionality. As recommended by Luecken and Theis [11], the filtering threshold for genes
should be set to the minimum cell cluster size that is of interest. As QC filtering is highly

dependent on the dataset the filtering thresholds need to be defined by the user before running
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the workflow. Correctly chosen thresholds are verified through knee-plot graphics within the

pipeline.

After QC, the expression values are normalized. Normalization is performed using count depth
scaling and count values are log(x+1)-transformed. To reduce dataset dimensionality before
clustering, the highly variable genes within the dataset are selected. By default, genes are
defined as being highly variable when they have a minimum mean expression of 0.0125, a
maximum mean expression of 3 and a minimum dispersion of 0.5. Technical variance is
removed by regressing out the effects of count depth and mitochondrial gene content and the
gene expression values are scaled to a mean of 0 and variance of 1 with a maximum value of
10. It needs to be mentioned here that correction of mitochondrial gene content might not be
considered a technical variance correction but removal of biological variability. If this correction
is not desired, the threshold for mitochondrial gene content correction can be set to 1. Based on
the best practices suggested by Luecken and Theis, technical variance should be corrected
before selection of highly variable genes. In Besca’s standard workflow though this order is
reversed, due to regress-out being a very time-consuming computational process which can be
significantly sped up by only calculating corrected values for the previously selected highly
variable genes. For larger datasets it is absolutely essential to reduce dimensionality

beforehand for regress-out to even complete.

Finally, dimensionality reduction and clustering is performed. The first 50 principle components
are calculated and used as input for calculation of the 10 nearest neighbours. The
neighbourhood graph is then embedded into two-dimensional space using the UMAP (Uniform
Manifold Approximation and Projection) algorithm [68]. Cell communities are detected using the

Leiden algorithm [69] at a resolution of 1 by default.
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For CITE-seq data, the protein marker abundance values are loaded separately to the gene
expression values and stored in its own data object. Previously determined cell barcode filtering
to identify viable cells on the basis of gene expression values is applied to the CITE-seq data.
Unlike gene expression counts, protein marker counts are normalized using centred log ratios. If
less than 50 markers were measured the entire count matrix is used as input for the nearest
neighbour calculation otherwise, as in the gene expression data, the first 50 principal
components are calculated. The rest of the CITE-seq pipeline is analogous to the gene
expression pipeline. At the end of the workflow the results are homogenized into one data object
which contains clustering and visualization results of both gene expression and protein

abundance from CITE-seq data.

Analysis results are exported into interoperable file formats to allow FAIR data management of
analysis results. This includes the Matrix Market exchange format

(https://math.nist.gov/MatrixMarket/formats.html) for sparse count matrices, GCT

(https://software.broadinstitute.org/software/igv/GCT) for dense count matrices, and simple tab-

separated or comma-separated values formats for metadata and as interface for the cell
deconvolution package Bescape, respectively. Clustering results or cell type labelling can be
exported including pre-computed average expression and ranked marker gene lists per cluster

or cell type.

Annotation of cell types based on CITE-seq data

A fine-grained annotation of the cells contained within the Kotliarov2020 dataset [32] was
generated on the basis of the labelled protein antibody counts from CITE-seq. The normalized
protein counts were exported to FCS files using the R package flowCore [70,71] (R package

version 2.0.1) and loaded into FlowJo™ Software (FlowJo™ Software Mac Version 10.6.2.
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Ashland, OR: Becton, Dickinson and Company; 2019). The gating strategy used to identify
individual cell populations is outlined in Supplementary Figure S2. Gating of individual cell
populations was based on the gating strategy utilized in [72]. Barcodes from identified cell
populations were exported from FlowJo™ Software to csv files and loaded into Besca for

visualization.

Sig-annot, signature-based automated cell type annotation

The annotation process has three components:
1. a nomenclature table with long and short names, according to Cell Ontology [40]
o see Supplementary Table S1 and

https://github.com/bedapub/besca/blob/master/besca/datasets/nomenclature/Cell

Types vl.tsv

2. a configuration file including all the cell types to be considered, their parent (or "none"), a
factor to be multiplied with the cut-off for scoring a cluster positive or negative for the
signature based on the Mann-Whitney test and the order in which to consider the
signatures (only first positive one matching a cluster will be taken into account). Two
distinct default configuration files are provided with Besca, covering mouse and humans.
Users are free to adjust the parameters in the files, and tailor these according to tissues
or dataset.

o Human: Supplementary Table S2 and

https://github.com/bedapub/besca/blob/master/besca/datasets/genesets/CellNam

es scseqCMs6 config.tsv

o Mouse: Supplementary Table S3 and

https://github.com/bedapub/besca/blob/master/besca/datasets/genesets/CellNam

es scseqCMs6 config.mouse.tsv
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a GMT file with the signatures, in line with the nomenclature table.
o see Supplementary Table S4 and

https://github.com/bedapub/besca/blob/master/besca/datasets/genesets/CellNam

es scseqCMs6 sigs.gmt

Auto-annot, supervised automated cell type annotation

Besca’s Auto-annot module, a supervised machine learning workflow, can be run independently

from the standard workflow and works as follows:

Initially the training datasets are merged to form a combined training dataset using
Scanorama [73], in the case where multiple training datasets are available, and
complemented with the testing dataset. A parameter specifies if the resulting integrated
gene expression matrix contains the intersection of all genes, the intersection of
previously selected highly variable genes, or genes of a previously defined signature.

Secondly, the Python package scikit-learn (https://scikit-learn.org) is used to train a

classifier based on the merged training datasets. Two classification approaches are
implemented, SVM and logistic regression. For SVM, one can choose between SVM
with linear kernel (linear); SVM with linear kernel using stochastic gradient descent
(sgd); SVM with radial basis function kernel (rbf), which should be used on small
datasets only due to longer runtime. For logistic regression, the options are multinomial
loss (logistic_regression); logistic regression with one versus rest classification, without
normalised probability scores (logistic_regression_ovr); logistic regression with elastic
loss, cross validated among multiple 11 ratio (logistic_regression_elastic). We
recommend logistic_regression as default option.

Finally, the fitted model is used to predict cell types in the test dataset and predictions

are added to the metadata. A probability threshold can be defined for logistic regression
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classifiers, to classify only cells reaching the defined threshold. In order to compare the
predicted cell types to a ground truth already annotated in the test datasets, a report can
be generated including precision, recall, and F1 metrics as well as confusion matrix and

automatically annotated UMAP plots.

Bescape, cell deconvolution

At the core of the cell deconvolution algorithm is a regression based problem. The concept is
not novel, it has already been investigated for microarray data [74]. The combination of how
newly derived cell specific GEP from scRNA-seq data can be used is the key factor that has
evolved considerably over time. At a broad level, there are two categories of cell deconvolution,
it is either a full deconvolution where neither the source nor the mixing process is known or a
partial deconvolution where there is priori knowledge of the sources or the mixing process.
Although a completely unsupervised approach can be taken, where the non-negative matrix
factorization is suitable, it has been proven to show low accuracy and difficulty in handling the
collinearity of the genes [16]. The research focus is placed on partial deconvolution with known
signatures used as bases to estimate the proportions in the bulk tissue. Such approaches have
been developed using constrained least squares regression (EPIC) [53] and v-support vector
regression (CIBERSORT) [51]. These methods either use microarray or a mixture of bulk RNA
and scRNA-seq data to build a single GEP as a basis vector. Two distinct sets of cell type
specific GEPs are generated as part of the toolkit. Equipped with the derived GEPs, the users

will have the choice to apply the deconvolution algorithm of their choice.

Two recent methods have been included in the cell deconvolution module allowing for direct
incorporation of reference scRNA-seq datasets and addressing some of the shortcomings of

previous methods. The first sScRNA-seq reference dataset based method is MuSIiC [17]. In short,
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this method uses a constrained least square regression but factors in the weighing of the
different genes to reduce the impact of the residuals on the fit from genes that are less
informative in terms of cell types differentiation and thus, eliminates the need for preselection of
genes. Most importantly, it addresses the hierarchical nature of cell lineages with a recursive
tree guided search, similar to gating strategy in FACS, by first grouping similar cell types into the
same cluster and estimating cluster proportions, then recursively repeating the previous step
within each cluster identified. At each recursion stage, the focus is only on differentially
expressed genes across cell types within the cluster. Consequently, the residuals are
determined on only the subset of genes important to differentiate the cells within the cluster as

opposed to being diluted by genes which share a common profile.

The second method included in the Bescape module is SCDC [16], an ensemble approach
allowing for multiple scRNA-seq reference datasets. In short, similar to MuSiC, a weighted non-
negative least square regression is adopted but differs slightly on how the weights are assigned
to the genes. The salient point of the method is an additional layer of abstraction being
introduced by assigning different weights for each reference scRNA-seq dataset. Higher weights
are attributed to reference datasets that can fit the gene expression profiles of bulk RNA-seq

samples better based on defined performance metric.

Generating simulated bulk

Simulated bulk RNA-seq was generated to evaluate the estimated proportions of the selected
cell types with ground truth from a known in-silico mixture. The annotated scRNA-seq data can
be used directly by SCDC and MuSiC where no user specified feature selection based on
marker genes is needed, instead a higher weight is assigned to features showing high variability

across annotated cell types and low variability across samples [16,17]. The simulated bulk is
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based on linear regressions where the cell fractions (weights) are taken from a uniform
distribution, thus without factoring in any prior knowledge of the range of cell proportions of the
different cell types, and scaled for the total to add up to 1. The GEPs of the cell types constitute
the basis matrix needed to construct the bulk RNA-seq vector. This step is repeated for several

instances representing different subjects’ bulk RNA-seq data.

Notes

This publication is part of the Human Cell Atlas: www.humancellatlas.org/publications.
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