
	 1	

The global and promoter-centric 3D genome organization temporally resolved 
during a circadian cycle  
 
Masami Ando-Kuri1,2,+, Rodrigo G. Arzate-Mejía1,+, Jorg Morf 3,4, Jonathan Cairns3, 
Cesar A. Poot- Hernández5, Simon Andrews6, Csilla Várnai3,7,8, Boo Virk6, Steven W. 
Wingett6, Peter Fraser3,9 and Mayra Furlan-Magaril1*  
 

1 Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad 
Nacional Autonónoma de México, 04510, Mexico City. 
2 Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 
0RE, UK.   
3 Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK. 
4 Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre 
Cambridge, CB2 0AW, UK. 
5 Unidad de Bioinformática y Manejo de Información, Instituto de Fisiología Celular, 
Universidad Nacional Autonónoma de México, 04510, Mexico City. 
6 Bioinformatics Group, The Babraham Institute, Cambridge, CB22 3AT, UK. 
7 Centre for Computational Biology, University of Birmingham, Birmingham B15 2FG, UK 

8 Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 
2SY, UK  
9 Department of Biological Science, Florida State University, Tallahassee, FL, USA.  

 
 
+ These authors contributed equally  
* Corresponding and first author, email: mfurlan@ifc.unam.mx 
 
 
Summary  
 
Circadian gene expression is essential for organisms to adjust cellular responses and 
anticipate daily changes in the environment. In addition to its physiological importance, 
the clock circuit represents an ideal, temporally resolved, system to study transcription 
regulation. Here, we analysed changes in spatial mouse liver chromatin conformation 
using genome-wide and promoter-capture Hi-C alongside daily oscillations in gene 
transcription in mouse liver. We found circadian topologically associated domains 
switched assignments to the transcriptionally active, open chromatin compartment and 
the inactive compartment at different hours of the day while their boundaries stably 
maintain their structure over time. Individual circadian gene promoters displayed 
maximal chromatin contacts at times of peak transcriptional output and the expression of 
circadian genes and contacted transcribed regulatory elements, or other circadian 
genes, was phase-coherent. Anchor sites of promoter chromatin loops were enriched in 
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binding sites for liver nuclear receptors and transcription factors, some exclusively 
present in either rhythmic or stable contacts. The circadian 3D chromatin maps provided 
here identify the scales of chromatin conformation that parallel oscillatory gene 
expression and protein factors specifically associated with circadian or stable chromatin 
configurations. 
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Introduction 
 
Circadian variation of gene expression in the liver is essential to temporally coordinate 
metabolic processes including lipid and glycogen metabolism, and maintain organism 
homeostasis. Considerable progress has been made in understanding circadian 
transcription regulation (Takahashi, 2017; Zhang, et al., 2014), however, the impact of 
3D chromatin configuration dynamics over the course of a day in circadian oscillations of 
gene expression has not been fully characterized. 
 
Previous work on chromatin contacts restricted to individual, candidate genomic loci has 
provided evidence that the circadian gene Dbp forms inter-chromosomal contacts with 
~200kb genome blocks, which fluctuate in strength over the course of a day in cultured 
cells (Aguilar-Arnal et al., 2013). At higher resolution enhancer-promoter contacts for 
core-clock gene Cry1 and clock output genes Mreg, Slc45a3, Gys2 have been shown to 
oscillate in a daily and Arntl-dependent manner in liver (Mermet et al., 2018; Yeung & 
Naef, 2018). In contrast, analysis of Arntl cistrome showed quite stable contacts 
between Arntl occupied regulatory elements (Beytebiere et al., 2018). Also Nr1d1 
circadian gene forms invariant contacts to a nearby super-enhancer with the help of 
Cohesin throughout the circadian cycle (Xu et al., 2016). Finally, genome-wide Hi-C 
studies at two time points of a day-night cycle suggested that circadian target genes of 
the Nr1d1 repressor protein form contacts within their respective Topological 
Associating Domains (TADs), that can be dynamic over time (Y. H. Kim et al., 2018b).  
 
Even if there is evidence of dynamic and stable contacts from candidate circadian 
genes, we still lack an understanding of what factors distinguish rhythmic and constant 
genomic contacts formed by circadian genes with maxima of transcriptional output 
(acrophases) at different times, and how common these types of chromatin contacts are 
when analysing all the circadian gene promoters in the genome. Also, a high-resolution 
genome-wide promoter centric panorama of all circadian contacts resolved in time is still 
missing. Here we present data from in-nucleus Hi-C and Promoter Capture Hi-C (P-CHi-
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C) at 4 time points during a day in mouse adult liver. We provide for the first time a 
temporally resolved genome-wide contact analysis at different scales, encompassing 
genomic compartments (A, B compartments), mega to kilo-base domains (TADs) and 
high-resolution coverage of contacts from all individual gene promoters including 
circadian gene promoters. We identify instances in which genomic A/B compartment 
assignment changes in parallel to circadian modulation of histone modifications in 
chromatin and oscillatory gene expression. Many of the circadian genes with 
accompanying changes in A/B assignment are found in TADs that remain constant 
during the day. Exploring gene promoter interactions at restriction fragment resolution 
through P-CHi-C, we found circadian gene promoters form dynamic and stable contacts, 
increasing their number of genomic contacts at the acrophase of the corresponding 
transcriptional units. Furthermore, we found a set of liver nuclear receptors (i.e., Nr5a2) 
binding motifs enriched at both dynamic and constant circadian contacting regions and 
some transcription factor (TF) binding motifs unique for dynamic or constant promoter 
contacts (i.e. Immediate early factors Tcfap2 and Fos:Jun). The contacts formed by 
diurnal and nocturnal circadian gene promoters were found biased towards enhancers 
and other circadian promoters with day and night time transcriptional activity, 
respectively. Finally we found that core clock associated gene promoters engage in 
more dynamic interactomes than output circadian genes in the liver. Together our 
results provide evidence that genome conformation dynamics are coupled with circadian 
transcriptional fluctuations at different genomic scales and constitute a detailed 3D map 
of the liver gene promoter-interactome over a 24 hours cycle. 
 
Results. 
 
Circadian A/B Chromatin Compartments switch between open and closed 
configurations throughout the day 
 
To study global genome architecture during a circadian cycle we performed in-nucleus 
Hi-C (see methods) on mouse adult liver with three replicates at four different time 
points during a cycle (ZT0, 6, 12 and 18), with ZT0 and ZT12 being the beginning of the 
light and dark phase, respectively. A section of individual livers from pool a and b were 
processed in parallel for RNA-seq. We produced high-quality Hi-C data sets 
characterized by the elevated percentage of valid pairs (~80%), low PCR duplicates 
(less than 2%) and high cis:trans interaction ratios obtained (~80:20%) (Table S1). In 
total we obtained ~2 billion valid Hi-C read pairs from mouse adult liver across a 
circadian cycle (Table S1).  
  
To detect open, transcriptionally active and closed, silent genomic compartments (A and 
B compartments, respectively) we performed PCA analysis (Lieberman-Aiden et al., 
2009) on Hi-C data at different time points throughout the circadian cycle, at 100kb bin 
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resolution. Changes in chromatin compartments have been associated with changes in 
transcription and chromatin states during cell differentiation and mouse early 
development (Bonev et al., 2017; Dixon et al., 2015). As expected PC1 values 
partitioned the liver genome into chromatin compartments (Figure 1A,B Figure S1 A,B). 
We then compared the eigenvectors of the different time points and identified changes 
in the sign of regional PC1 values, indicative of compartment switching between all time 
point pairs (Figure 1A,B Figure S1C one-way ANOVA p-value <2e-16). These genomic 
regions, termed Oscillatory Chromatin Compartments (OCCs) spanned 440.4 Mb of the 
mouse genome (Figure 1A,B individual replicates and merged data, respectively). The 
rest of the genome retained the same compartment identity during the 24 hour cycle 
(Figure S1A,B individual replicates and merged data, respectively, S1D). We found 
OCCs with compartment assignments ZT0=A, ZT6=A, ZT12=B, ZT18=A (AABA) being 
the most abundant type in the genome covering 194.7Mb (Figure S1E).  
 
To relate chromatin compartments with transcription we performed stranded ribosomal 
RNA-depleted total RNA-seq. We obtained ~ 500,000,000 number of 150 bp reads per 
timepoint (4 biological replicates each) reaching ~2,000,000,000 total reads (Table S2). 
Spearman correlation analysis showed good correlation between the 4 biological 
replicates (Figure S2G, ZT0 and 12 shown). Genes with differential expression between 
at least one pair of time points were identified (q-value <0.01) and classified as 
circadian. In total we detected 1257 circadian gene transcripts (Figure S2A Table S3). 
Inspection of individual gene expression profiles from our RNA-seq data for known 
circadian genes (both core clock and liver output genes) showed good agreement with 
their reported acrophase (Figure S2B,E). Gene Ontology and KEGG pathway analysis 
identified circadian rhythm and metabolism as significantly enriched categories in our 
identified circadian gene set (Figure S2C,D) confirming efficient detection of circadian 
oscillating genes. We also confirmed circadian gene expression of mRNA and primary 
mRNA of candidate genes by RT-qPCR confirming the expected expression profiles for 
these genes (Figure S2F). Comparing RNA content in A and B compartments we found 
a significant difference in RNA abundance between the two types of compartments, with 
A compartments being RNA-rich and B compartments RNA-poor (Figure 1C, p < 0.005, 
Kluskal-Wallis test) at all time points. We then examined RNA content in OCCs and also 
found a significant difference in abundance between regions falling into A or B at 
different times of the day (Figure 1D, p< 0.0001, Mann-Whitney test). In addition to RNA 
abundance we analysed time resolved H3K4me3 and H3K4me1 histone modifications 
enrichment (Koike et al., 2012a) reflecting open chromatin in OCCs around the clock. 
Both histone marks were significantly enriched in regions at times of A compartment 
assignment compared to B compartment across all time points (Figure 1E, AABA 
[ZT0=A, ZT6=A, ZT12=B, ZT18=A] and BABB [ZT0=B, ZT6=A, ZT12=B, ZT18=B], S1F 
AABB, ABBB, BABA. p<0.001, one-way ANOVA test, Tukey post hoc test). HDAC3 
binding reflects deacetylated closed chromatin and it has been measured before in the 
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mouse liver at ZT22 and ZT10 (Sun et al., 2013). We measured HDAC3 enrichment at 
OCCs at ZT0 and 12 (our closest time points to ZT22 and 10). HDAC3 binding was 
higher when regions fell into the B compartment at ZT12 compared to the A 
compartment at ZT0 (Figure 1F, Wilcoxon p<0.001). Together these results show that 
transcription and chromatin state both fluctuate in accordance with compartment 
switching during a circadian cycle.  
 
Topologically Associated Domains spatially partition temporal gene expression 
control but remain structurally invariant during a circadian cycle 
 
To identify TADs we assigned TAD insulation scores to Hi-C data (Crane et al., 2015) 
and examined them across time points (see methods). TADs displayed little variation 
across time points as has been previously observed (Y. H. Kim et al., 2018b).  Of a total 
of 4358 TADs, 2936 were preserved throughout the day and 952 at least between two 
time points (Figure 2A and Figure S3A,B). To confirm insulation of TADs across time 
points we selected a random set of 1000 TADs detected at ZT0 and plotted their median 
Observed/Expected contacts using Hi-C data from ZT0 and ZT12 (see methods). We 
recovered higher contact frequencies within TADs compared to outside of domains at 
both time points confirming large domain structure preservation (Figure 2B left panel). 
The same result held true for TADs detected at ZT6, 12 and 18 hours (Figure S3C). 
 
CTCF functions as an architectural protein that establishes chromatin domains together 
with cohesin in mammalian chromatin (Elphege, 2017; Fudenberg et al., 2016; 
Merkenschlager & Nora, 2016). We performed ChIP-seq against CTCF at ZT0 and ZT12 
from the same samples as above. 33,262 CTCF sites (75.3%), out of a total of 44163 
sites, were shared between ZT0 and 12 and CTCF showed similar chromatin occupancy 
between the two time points (Figure S3D). As expected, CTCF-bound regions exhibited 
robust contact insulation properties, independent of the time point examined (Figure 2B 
right panel and S3E top panels). Additionally, we assessed preservation of CTCF 
insulation between mouse ES cells and liver cells by overlaying regions occupied by 
CTCF, as identified in mESCs (Shen et al., 2012), onto our liver Hi-C data sets. Robust 
insulation was observed when using either ZT0 or ZT12 Hi-C data suggesting large 
agreement of CTCF chromatin occupancy and insulation properties between mESCs 
and adult liver tissue (Figure S3E bottom panels).    
 
Next, we assigned genes to TADs. We found that on average TADs harboured 7.2 
genes. TADs containing one or more circadian genes (cTADs) were larger than non-
circadian TADs and on average contained more genes (14.2) (Figure S3F, all p-values < 
2.2e-16, Wilcoxon rank sum test). We observed that 70% of cTADs contained only one 
circadian gene (Figure 2C). The remaining cTADs contained more than one circadian 
gene and remarkably, the circadian genes sharing TADs exhibited peak transcriptional 
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expression at shared times during the day (40% for TADs with 2 circadian genes 
compared to the expected 28%, 18% of TADs with 3 circadian genes compared to the 
expected 8.8%, p < 0.0001, Chi square test) (Figure 2C,E, only data from cTADs with 2 
circadian genes shown). Examples of cTADs containing one circadian gene (cTADs with 
Mical2, MicalcI, Arntl and Copb1, respectively), or more than one circadian gene (cTAD 
with Wee1 and Swap70) are shown in Figure 2G (top and bottom respectively). We next 
analysed whether TADs encoding circadian genes displayed chromatin compartment 
switching over the circadian cycle. Indeed, the majority of cTADs (73%) overlapped with 
OCCs more than expected when compared to a random set of the same number of non-
cTADs (Wilcoxon test, p< 0.0001) (Figure 2F). Examples of cTADs overlapping OCCs 
are shown for Arntl (Figure 1G) and Npas2 (Figure 1H). These results show that cTADs 
often set phase coherence between multiple circadian genes in the same TAD. While 
most TADs maintain their structural boundaries over time, chromatin compartments 
overlapping cTADs switch between active and silent states throughout a circadian cycle.   
 
Gene Promoter-Promoter networks in the liver and its circadian component 
 
To gain insights into chromatin contacts at the level of individual circadian genes we 
measured genome-wide promoter-promoter and promoter-regulatory element contacts 
at four time points during a circadian cycle using Promoter-CHi-C (Figure 3A) (Rubin, et 
al., 2017; Schoenfelder, et al., 2015; Schoenfelder, et al., 2015). Promoter-containing 
ligation products from Hi-C libraries were efficiently captured (~ 70%) using 39,021 RNA 
probes, which hybridise to 22,225 genomic restriction fragments covering all annotated 
gene promoters in the mouse genome. We produced  ~1,560,000,000 total valid read 
pairs from the three biological replicates for the four time points, thus obtaining 
~390,000,000 valid ligation products per time point (Table S4). Capture of gene 
promoters increased the number of valid ligation products per promoter to ~10-15 fold 
compared to Hi-C. An example of this enrichment is shown for the Arntl gene locus 
comparing a virtual 4C from Arntl gene promoter performed on the Hi-C versus the 
Promoter-CHi-C chromatin contact data sequenced at equivalent depth (Figure S4A 
close view, and S4B comparison of raw paired reads per restriction fragment in CHi-C 
vs Hi-C p<0.0001, Wilcoxon rank test). We estimated the statistical significance of 
interactions between pairs of promoters and between promoter and other, potentially 
gene regulatory genomic regions, using the CHiCAGO pipeline for each time point 
(methods) (Cairns et al., 2016). We obtained ~150,000 statistically significant 
interactions per time point resulting in ~600,000 statistically significant promoter 
interactions in total (Table S4).  
 
First, we focused on all gene promoter-promoter contacts. We built promoter-promoter 
networks at all time points and found large disconnected networks as expected for 
promoters scattered across the different chromosomes (Figure S5A, ZT0 shown). We 
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then evaluated the larger clusters of the promoter-promoter network containing 
hundreds of connected gene promoters (Figure S5C, the 4 larger clusters shown 
including inter and intra chromosomal promoter-promoter interactions) and performed 
gene enrichment analysis on these using gProfiler (Raudvere et al., 2019) (Figure S5D). 
We found the Major Histocompatibility Complex forming one cluster with genes encoded 
on chromosomes 7 and 17. MHC genes are lowly expressed in the healthy liver and 
constitute dense, highly connected chromatin (Spengler et al., 1988). Similarly, a 
transcriptionally repressed cluster is formed between olfactory receptor genes on 
chromosome 7. In addition to repressed genes clustering in spatial proximity, we 
identified actively transcribed genes involved in glutathione synthesis and amino acid 
metabolism essential for liver detoxification function arranged in a promoter network. 
Another cluster encompassed constitutive histone genes located on chromosomes 3, 
13, 11, 18, 12 and 7, among others (Figure S5C,D). Thus, prominent constitutive and 
liver specific promoter-promoter networks both transcriptionally active and inactive were 
identified in the adult liver.   
 
Next we examined the circadian component in promoter-promoter networks. Circadian 
promoters are dispersed across chromosomes and networks described above as can be 
seen in Figure S5B. Nevertheless, we observed significantly increased contacts 
between circadian promoters in comparison to non-circadian genes (Figure S5E). When 
we analysed the maxima in mRNA abundance of circadian genes whose promoters 
were contacting each other, we found that diurnal and nocturnal circadian genes 
significantly contact each other respectively and this was even more striking when 
analysing circadian genes from our data and oscillating at the intronic level as defined 
by (Koike et al., 2012) or detected through GROseq (Fang et al., 2014) reflecting 
primary transcription (Figure S5F for the intronic gene set and Figure S4E for the GRO-
seq circadian gene set, all p-values < 0.0001 Wilcoxon signed rank test). This is 
exemplified by the Tef gene promoter, which contacts the Aco2 gene promoter ~45 kb 
apart and both their shared pre-messenger expression peak at ZT12 (Figure S5G). 
Likewise, promoters of Rorc and Cgn, which form spatial contacts bypassing a genomic 
distance of ~360 kb, were both found to drive peak expression around ZT18 (Figure 
S4F). These results show that circadian promoters physically interacting in the nuclear 
space have maximal transcriptional activity at similar times during the day. 
 
Regulatory elements form dynamic and stable chromatin contacts with circadian 
gene promoters  
 
We next examined contacts between promoters and non-promoter genomic regions. 
Genomic regions significantly interacting with gene promoters including circadian gene 
promoters in mouse liver, showed enrichments for histone modifications characteristic 
for open chromatin and regulatory elements such as H3K27ac, H3K4me1, H3K4me3, 
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H3K27me3 as well as the structural protein CTCF (Yue Feng et al., 2014)  compared to 
distance matched non-interacting regions (Figure 3B all histone modifications p value < 
8e-166, t test, CTCF, p value < 8e-18; t test).  A set of enhancers from which enhancer 
RNAs (eRNAs) are produced have been described in the liver (Fang et al., 2014). We 
found a significant enrichment of these enhancers at the gene promoter contacted 
regions (Figure 3E p value < 9e-165; t test). Overall, the chromatin features at promoter-
contacting regions demonstrate the efficient recovery of elements with possible 
structural and/or regulatory functions by P-CHi-C in our experiments.  
 
Besides enhancer and open chromatin marks, we found significant enrichment of core 
clock transcription factor occupancy (Koike et al., 2012a) at promoter interacting regions 
(Figure 3C, pval<8e-100, t test). When measuring the same enrichments at only 
circadian gene promoters interacting regions and comparing them with non-circadian 
gene promoter contacts, we found a significant preference for circadian gene promoters 
to contact with enhancers both detected by eRNA transcription or histone modifications, 
as well as regions occupied by core clock TF (Figure 3C and D; all pval<8e-216, t test). 
We next assessed the rhythmicity of contacts between regulatory elements and 
circadian promoters during a circadian cycle. We identified dynamic genomic contacts 
involving circadian promoters using two distance regimes as described (see methods) 
(Figure 3D). In total we found 13,782 stable and 6,047 dynamic contacts for 1,195 
circadian promoters and found enhancers significantly enriched at dynamically 
contacted regions (Figure 3E). We next analysed the number of interactions made by 
circadian promoters at different time points. We found that circadian gene promoters 
form a maximal number of contacts during or around the phase with maximal mRNA 
level, (Chi square, p < 0.001) (Figure 3F) suggesting more contacts are made together 
with increased transcription (see different examples of circadian gene promoter virtual 
4C signal across the paper Figure 4E-G Figures S4F, S5G, S6A-F). 
 
Next we aimed to identify transcription factor binding motifs at genomic regions involved 
in constant or rhythmic interactions with circadian promoters in an unbiased manner. 
Using the MEME suite (methods) (Bailey et al., 2015), we found several binding motifs 
significantly enriched in both types of contacts as well as binding motifs specifically 
occurring in dynamic or constant contacts (Figure 3G, Table S5). Transcription factor 
binding sites associated with both constant and dynamic contacts were shared between 
promoters of circadian genes expressed at different phases. Among such ubiquitous 
sites the nuclear receptor Nr5a2/LRH-1 binding motif was highly enriched. Nr5a2 is a 
nuclear receptor that acts as a key metabolic sensor by regulating genes involved in bile 
acid synthesis and cholesterol homeostasis trough regulation of Cyp7a1 and Cyp8a1 
circadian genes, triglyceride synthesis and lipid composition and metabolism (Chen et 
al., 2003; Chong, et al., 2012; Matsukuma, et al.,, 2007; Wu et al., 2016). Interestingly, 
deficiencies in Nr5a2 are linked to non-alcoholic fatty liver disease where it seems to 
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have an anti-inflammatory role (Schwaderer et al., 2020). In addition, lack of Nr5a2 in 
the adult liver leads to disruption of hepatic lipid homeostasis and composition (Miranda 
et al., 2018). Our data implies that Nr5a2 could be important in circadian chromatin loop 
formation. Other binding sites for nuclear receptors enriched in regions contacting 
circadian promoters included VDR (Vitamin D Receptor) and ESR2 (Estrogen Receptor 
2).  
 
Tcfap2c/AP-2 gamma binding motif was found to be highly enriched at dynamic 
interacting regions of circadian gene promoters. In the liver this TF has been associated 
with repression of fatty acid synthesis pathways (Holl et al., 2011) and was identified as 
a key TF involved in lipid droplets biogenesis (Scott et al., 2018). Fos:Jun/AP1 binding 
sites were found in genomic regions forming stable contacts with circadian promoters. 
AP1 factors are a well-characterized immediate early transcription factors induced in 
response to signals in the serum and which regulate the expression of circadian genes 
in liver and cultured cells (Balsalobre et al., 1998) as well as the SCN (Y. Chen et al., 
2018; Guido et al.,1999; Schwartz et al., 2000). Recently, AP-1 has been implicated in 
stable and dynamic loop formation during macrophage development bringing together 
key macrophage genes and enhancers (Phanstiel et al., 2017).  
In summary, our results identified a distinct set of DNA binding sites for nuclear 
receptors and immediate early genes in regions contacting circadian promoters, which 
could function in the wiring of the circadian promoter 3D interactome in the liver.  
 
 
Diurnal and nocturnal circadian gene promoters contact diurnal and nocturnal 
enhancers in the nuclear space  
 
A set of enhancers has been shown to be transcribed in a circadian fashion in mouse 
liver (Fang et al., 2014). When analysing the interactions from this subset of rhythmic 
liver enhancers we found they preferentially contacted circadian gene promoters over 
other gene promoters, suggesting that rhythmically transcribed genomic regions, 
protein-coding and non-coding, contact each other in nuclear space (Figure 4A). The 
same finding resulted when we restricted our analysis to promoters of circadian genes 
whose intronic portions oscillated in a circadian manner or detected through GRO-seq 
(Fang et al., 2014) reflecting primary transcriptional oscillation (Figure S4C).  
 
We then compared the transcriptional phases between promoters of circadian genes 
and their corresponding contacted enhancer elements with rhythmic transcription. We 
found a significant contact preference between diurnal and nocturnal promoters and 
diurnal and nocturnal enhancers, respectively. The phase bias was more pronounced 
when analysing circadian genes, which oscillated at the intronic level and detected 
through GRO-seq (Figure 4B our intronic set, Figure S4D, detected through GRO-seq. 
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all p-values < 0.0001 Wilcoxon signed rank test). For example, the Rnf125 circadian 
gene promoter with peak transcription at ZT0 contacts 12 rhythmically expressed 
enhancers with acrophases between 19 and 1 hours during the circadian cycle. 
Furthermore, as it can be observed, the number of contacts with the enhancers, 
increase during the acrophase (Figure 4E).   
 
The core clock gene promoter contacts 
 
Finally, we focused on the genomic significant interactions formed by circadian core 
clock gene promoters including Npas2, Clock, Arntl, Cry1, Cry2, Per1, Per2, Rorc, 
Nr1d1, Nr1d2 as defined by (Anafi et al., 2014). Notably, all core clock genes displayed 
fewer overall contacts compared to a random set of the same number of other circadian 
genes in the liver (12 vs 19.6 mean number of contacts for core-clock vs other circadian 
genes, Figure 4C, p<0.0001, t test). The contacts formed by the core clock gene 
promoters however, were significantly more dynamic than a random set of the same 
number of contacts for other circadian genes in the liver (42.3% vs 26.8% mean 
proportion of dynamic contacts for core clock vs other circadian genes, Figure 4D, 
p<0.0001, t test). For instance the promoter regulating Arntl1 expression engages in 
contacts with two enhancer elements at ZT18, the time when Arntl expression 
increases, in three contacts at ZT0, at maximal transcriptional output, and with no 
significant contacts at both ZT6 and ZT12, when Arntl1 transcription ceases (Figure 4F). 
The Nr1d1 gene promoter exhibited higher connectivity at the gene’s expression 
acrophase around ZT6 (Figure 4G). In contrast to core clock contact profiles (additional 
examples are shown for Per2, Nr1d2 and Npas2, Figure S6A-D), promoters of circadian 
output genes form contacts with significantly more genomic regions with a larger 
contribution of constantly interacting elements as exemplified by PTG and Dhr3 gene 
promoters (Figure S6E,F). In conclusion, core-clock gene promoters engage in more 
dynamic genomic contacts with fewer genomic elements compared to other circadian 
genes in the liver.  
 
Discussion  
 
Circadian fluctuations in gene expression in the adult liver orchestrate essential 
physiological metabolic responses in the body. While molecular mechanisms underlying 
the circadian clock circuitry have been described at transcriptional and post-
transcriptional levels, less is understood of how different genome structures contribute to 
or reflect cyclic gene expression (Yeung & Naef, 2018). Here we analysed genome 
conformation in mouse adult liver throughout a circadian cycle and report the properties 
of the circadian cis-regulatory chromatin landscape at different genomic scales 
associated with circadian rhythmicity in gene expression.  
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We found 17% of the genome fluctuates between A and B compartments during a 24-
hour cycle. The genomic regions with changing compartment assignments throughout 
the day (OCCs) overlap with circadian TADs whose domain boundaries in contrast 
remain unchanged during a cycle. Switches between closed and open states of genomic 
compartments have been reported during organism development, cell differentiation and 
cell cycle (Bonev et al., 2017; Dixon et al., 2015; Nagano et al., 2017). However, our 
results reveal that dynamic changes between compartment states occur also within 
hours and without cells dividing or changing their identity (Figure 5).  
 
Within TADs encompassing multiple transcribed loci, circadian genes tend to be alone 
or sharing the TAD with other circadian genes and transcribed regulatory elements, with 
similar transcriptional acrophase suggesting spatial isolation of temporal transcription 
control. However, the contacts formed by circadian gene promoters can be constantly 
maintained or dynamically changed over time (Figure 5). 
 
We performed an unbiased identification of TF binding motifs to discover candidate 
protein factors enriched at the anchor sites of chromatin loops involving circadian genes 
engaged in both dynamic and stable contacts. We found metabolic liver nuclear 
receptors (Nr5a2/LRH-1) and immediate early genes AP2 gamma and Fos:Jun enriched 
in chromatin regions contacting circadian gene promoters  in both, dynamic and stable 
fashions. This suggests that specific nuclear receptors together with immediate early 
factors participate in shaping the circadian 3D cistrome.   
 
Finally, by comparing the interaction profiles between core clock and output circadian 
genes we discovered that core clock genes tend to contact fewer different genomic 
elements and that core clock interactomes are far more dynamic compared to output 
circadian genes in the liver. This suggests a robust regulation of core clock gene 
transcription by a few specific regulatory elements, which dynamically contact the core 
clock promoters. Alternatively, the control of core clock gene expression might rely 
primarily on their respective promoters and fewer distal genomic elements than for 
output genes. On the contrary, output circadian genes have more complex and 
constantly maintained contact profiles, which suggests the participation of an increased 
number of regulatory elements required to control their expression in a pre-formed 
genome architecture.  Our genome-wide observation is in line with and extends previous 
candidate-scale 4C chromosome capture experiments for a set of core clock and output 
genes (Mermet, Yeung, & Naef, 2020). 
 
In conclusion, our results provide evidence that chromatin architecture dynamics during 
a circadian cycle take place in parallel with circadian oscillations in transcription and 
provide a genome-wide atlas of the liver genome conformation resolved in time.  
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Figure legends 
 
Figure 1. Chromatin compartments change during the 24 hours. A. Heatmap of PC1 
values for OCCs (independent replicates, significant variance p-value < 2e-16, one-way 
ANOVA). B. Heatmap of PC1 values for OCCs (merged replicates, significant variance 
p-value < 2e-16, one-way ANOVA). C. RNA-seq reads coverage (log2_RPM) in all A vs 
all B compartments across time points during the circadian cycle (p < 0.005, Kluskal-
Wallis test) D. RNA-seq reads coverage (log2_RPM) in OCCs A vs B compartments (p< 
0.0001, Mann-Whitney test). E. H3K4me3 and H3K4me1 RPM ChIP-seq signal in OCCs 
across time points. BABB (ZT0=B, ZT6=A, ZT12=B, ZT18=B) and AABA (ZT0=A, 
ZT6=A, ZT12=B, ZT18=A) (all p-values < 0.001, one way ANOVA test, Tukey post hoc 
test). F. HDAC3 ChIPseq log2_RPM signal in OCCs at ZT0 and ZT12 (p-value < 0.0001, 
Wilcoxon rank test) G. Observed Hi-C contacts from ZT0 and ZT12 liver samples at the 
Antl1 cTAD. PC1 values plotted underneath. Arntl cTAD switches chromatin 
compartment at ZT12. H. ZT0/ZT12 differential Hi-C contact matrix of a region including 
the Npas2 cTAD switching chromatin compartment at ZT12. PC1 values plotted 
underneath.  
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Figure 2. Circadian TADs isolate circadian genes with shared time of 
transcription. A. Observed Hi-C contact matrices showing the TADs landscape of the 
genomic region including the Arntl1 gene locus at four time points during the circadian 
cycle. B. Left, 50kb resolution Median Observed/Expected ZT0 and ZT12 Hi-C signal 
around 1000 randomly selected TADs from ZT0 plotted on ZT0 and ZT12 Hi-Cs. TADs 
were scaled to fit the five central bins. Right, the same metaplots but for 1000 randomly 
CTCF peaks found at ZT0. CTCF peaks are at the central bin of the metaplot. C. 
Proportion of cTADs harbouring 1, 2, 3 or 4 circadian genes. D. Phase distribution of 
circadian genes sharing TADs. E. Observed and expected proportion of TADs with 2 
circadian genes sharing transcriptional peak phase (p-value <0.05, Chi square test). F. 
Proportion of circadian TADs overlapping and non-overlapping OCCs (p-value<0.0001, t 
test) G. Examples of cTAD Hi-C contact matrices from ZT0. Left, cTADs allocating 
Mical2, Micalcl, Arntl1 and Copb1 circadian genes. Right, cTADs allocating Tmem41b, 
Wee1, Swap70 and Sbf2 circadian genes. Close up to each circadian gene with 
genomic tracks showing RNA-seq signal at all time points and CTCF ChIP-seq peaks at 
ZT0 and ZT12.  
 
Figure 3. Promoter Capture-Hi-C and chromatin contact dynamics during a 
circadian cycle. A. Summary of the experimental workflow of Promoter-CHi-C 
technology. Cells are fixed, digested, filled and biotin labelled in nucleus. Pull down with 
streptavidin beads is then performed and Hi-C libraries prepared for sequencing. Using 
the Hi-C material as a template hybiridization is performed using the designed RNA 
biotinilated probes to capture promoters. A second pull down is performed to recover the 
hybrid molecules, DNA recovered and sequenced. B. Left, Obs/Exp signal ratio at 
promoter interacting regions of liver chromatin features including enhancers producing 
eRNAs, H3K27ac, H3K4me1, H3K4me3, CTCF, superenhancers and H3K27me3 (left) 
(all p-values < 8.632642e-123, t test). Obs/Exp signal ratio of the same chromatin 
features but for interacting regions for all oscillating gene promoters and intronically 
oscillating gene promoters compared to a random set of non-oscillating gene promoters 
(all p-values < 2.525639e-42 except H3K27me3). C. Right, the same as in D but for 
circadian TFs enrichment including Bmal1, Clock, Cry1, Cry2, Npas2, Per1 and Per2 for 
all gene promoters and left, oscillatory gene promoters (all p-values < pval<3.870992e-
205, t test). D. Heat maps for read counts at detected dynamic contacts below and 
above 150 kbs (differential interactions supported by at least 15 reads, FDR< 0.1 and 
logFC > 1 or  logFC < -1). E. Obs/Exp enrichment of enhancers producing eRNAs at 
dynamic contacts over stable contacts (p-value < 2e-16, t.test). F. Number of circadian 
gene promoters making the maximum number of contacts at ZT0, 6, 12 and 18 (p-value 
< 0.001, Chi square test). G. Transcription Factor DNA binding motifs significantly 
enriched at dynamic, stable or both circadian gene promoter chromatin contacts (E-
value < 1.00e-002).   
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Figure 4. Transcriptional phase coherence between circadian genes and 
transcribed enhancers and the core-clock circadian genes display highly dynamic 
chromatin contacts. A. Circadian gene promoter observed and expected contacts with 
enhancers producing eRNA (p-value < 0.001, t test). B. Phase distribution of eRNAs 
produced from enhancers contacting all diurnal and nocturnal circadian promoters and 
circadian genes oscillating at the intronic level (all p-values < 0.001, Wilcoxon ranked 
sum test). C. Number of total significant interactions for core clock circadian gene 
promoters and a random control set of circadian gene promoters (p-value < 0.0001, 
Mann Whitney test). D. Proportion of dynamic contacts for core clock genes and a 
random control set of circadian gene promoters (p-value < 0.0001, Mann Whitney test). 
E. Partial virtual 4C landscape of the Rnf125 gene promoter at the four time points 
during the day. Significant contacts with enhancers producing oscillatory eRNA are 
shown. The majority of the eRNAs present a peak in transcription at ZT0 as Rnf125 
does. Acrophase is written next to the gene name. Genomic tracks show significant 
contacts as arcs and chromatin features including liver H3K4me3, H3K4me1, H3K27ac, 
DNaseI, eRNAs and TADs. F. Virtual 4C for Arntl and Nr1d1 (G) core clock gene 
promoters at all time points during the day. Features displayed are the same described 
in E.  
 
Figure 5. Chromatin conformation dynamics during a circadian cycle. Circadian 
TADs containing one or more circadian genes remain stable but switch chromatin 
compartments in correlation with transcriptional activation and gain of open histone 
modifications marks during the 24 hours (left). Inside cTADs, circadian genes and 
regulatory elements with similar acrophases contact each other in the nuclear space 
with interactions increasing at the time of peak transcription (middle). Core clock genes 
display highly dynamic contacts during the 24 hours. In contrast circadian output genes 
have more saturated contact profiles that remain stable during the day (right).  
 
Methods 
 
Key resources table 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Reagents   
Paraformaldehyde 16% 
solution 

Agar Scientific  R1026 

HindIII NEB R0104M 
biotin-14-dATP Life Technologies 19524-016 
Klenow large fragment NEB  M0210L 
T4 DNA ligase Life Technologies 15224-025 
Ligation buffer 10x NEB B0202S 
T4 DNA polymerase NEB M0203L 
T4 PNK NEB M0201L 
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Klenow exo- NEB M0212L 
AMPure XP beads Beckman Coulter A63881 
Dynabeads C1 Life Technologies 650.01 
T4 DNA ligase NEB M0202S 
Phusion Polymerase NEB M0530L 
SureSelectXT target 
enrichment system 

Agilent Technologies Costum made 

Antibodies   
Anti-CTCF Millipore Cat# 07-729 
Deposited Data   
Raw and processed data of 
Hi-C libraries 

This study To be assigned  

Raw and processed data of 
CHi-C libraries 

This study To be assigned 

Raw and processed data of 
ChIP-seq 

This study To be assigned 

Raw and processed data of 
RNA-seq 

This study To be assigned 

H3K4me3 (Yue et al., 2014) GSM769014 
H3K4me1 (Yue et al., 2014) GSM769015 
H3K27ac (Yue et al., 2014) GSM1000140 
H3K27me3 GSM1000150 GSM1000150 
CTCF (Yue et al., 2014) GSM918715 
HADC3 (Feng et al., 2011) GSE25937 
Bmal1 (Koike et al., 2012)  GSE39860 
Clock (Koike et al., 2012)  GSE39860 
Cry1 (Koike et al., 2012b)  GSE39860 
Cry2 (Koike et al., 2012b)  GSE39860 
Npas2 (Koike et al., 2012b)  GSE39860 
Per1 (Koike et al., 2012b)  GSE39860 
Per2 (Koike et al., 2012b)  GSE39860 
eRNAs  (Fang et al., 2014)  GSE59486 
Superenhancers (Khan & Zhang, 2016) https://asntech.org/dbsuper/ 
Software and Algorithms   
HiCUP (Wingett et al., 2015) https://www.bioinformatics.babraham.a

c.uk/projects/hicup/ 
Juicer (Durand et al., 2016a) https://github.com/aidenlab/juicer 
Juicebox (Durand et al., 2016b) https://www.aidenlab.org/juicebox/ 
TADtool (Kruse et al., 2016) https://github.com/vaquerizaslab/tadtoo

l 
CHiCAGO (Cairns et al., 2016) https://bitbucket.org/chicagoTeam/chic

ago/src 
MACS2 (Y. Zhang et al., 2008) https://github.com/macs3-

project/MACS 
Bowtie2 (Langmead & Salzberg, 2012) http://bowtie-

bio.sourceforge.net/bowtie2/index.shtm
l 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2020. ; https://doi.org/10.1101/2020.07.23.217992doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.217992
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 16	

FastQC N/A https://www.bioinformatics.babraham.a
c.uk/projects/fastqc/ 

SeqMonk N/A https://www.bioinformatics.babraham.a
c.uk/projects/seqmonk/ 

TopHat2 (D. Kim et al., 2013) https://ccb.jhu.edu/software/tophat/inde
x.shtml 

Deeptools (Ramírez et al., 2016) https://deeptools.readthedocs.io/en/de
velop/ 

Samtools (Li et al., 2009) https://github.com/samtools/ 
Ballgown (Frazee et al., 2015) https://www.bioconductor.org/package

s/release/bioc/vignettes/ballgown/inst/d
oc/ballgown.html 

StringTie (Pertea et al., 2015) https://ccb.jhu.edu/software/stringtie/ 
edgeR (McCarthy et al., 2012) https://bioconductor.org/packages/rele

ase/bioc/html/edgeR.html 
DAVID (Huang et al., 2009) https://david.ncifcrf.gov/ 
MEME-ChIP (Ma et al., 2014) http://meme-

suite.org/doc/download.html 
IGV (Thorvaldsdóttir et al., 2013) http://software.broadinstitute.org/softw

are/igv/ 
NetworkX Python module (Hagberg et al., 2008) https://networkx.github.io/documentatio

n/stable/citing.html 
SciPy (Virtanen et al., 2020) https://www.scipy.org/citing.html 
StatsModels (Seabold & Perktold, 2010) https://github.com/statsmodels/statsmo

dels 
g:Profiler (Raudvere et al., 2019) https://biit.cs.ut.ee/gprofiler 
Intervene (Khan & Mathelier, 2017) https://intervene.readthedocs.io/en/late

st/modules.html 
 
Contact for reagent and resource sharing 
Further information and requests for resources and reagents should be directed and will 
be fulfilled by the Lead Contact Mayra Furlan-Magaril, email: mfurlan@ifc.unam.mx, 
Phone: +52 55 56225739 
 
Experimental model and subject details 
 
Method details 
 
Mice and Tissue isolation 
C57BL/6 male mice were maintained in the Babraham Institute Animal Facility and all 
applied procedures were approved considering the animal welfare practices according 
to the Home Office in the UK. 8 week-old male mice were maintained under a 12 hours 
light:12 hours dark cycle for two weeks and fed ad libitum. Livers were dissected from 
three biological replicate pools (Pool A, B and C) composed of 2 livers each at four time 
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points ZT0, 6,12 and 18, with ZT0=lights on and ZT12=lights off. The liver tissue was 
chopped into 5-6 mm3 pieces and directly fixed in 2% formaldehyde for 10 minutes. 
 
In nucleus Hi-C 
In nucleus Hi-C library generation was performed as previously described (Rubin et al., 
2017a). Briefly, fixed adult liver tissue from three biological replicates at ZT0 0, 6, 12 and 
18 was sieved through a 70µM cell strainer and dounce homogenized in 10 ml of ice-
cold lysis buffer with a tight pestle for a total of 30 strokes on ice. Nuclei were washed 
and permeabilized with 0.3% SDS for 45 minutes at 37 °C and then incubated overnight 
with HindIII at 37 °C, DNA ends were labeled with biotin-14-dATP (Life Technologies) in 
a Klenow end-filling reaction and ligated in nuclei overnight. DNA was purified by 
phenol-chloroform the concentration was measured using Quant-iT PicoGreen (Life 
Technologies). A total of 10 µg of DNA was sheared to an average size of 400 bp using 
a Covaris machine and following the manufacturer's instructions. The sheared DNA was 
end-repaired, adenine tailed, and subject to a double size selection using AMPure XP 
beads to isolate DNA ranging from 250 to 550 bp in size. Ligated fragments marked by 
biotin-14-dATP were pulled-down using MyOne Streptavidin C1 DynaBeads (Invitrogen) 
and ligated to paired-end adaptors (Illumina). The in nucleus Hi-C libraries were 
amplified using the PE PCR 1.0 and PE PCR 2.0 primers (Illumina) using 6–9 PCR 
amplification cycles as required. 
 
Promoter Capture in nucleus Hi-C (Chi-C) 
Promoter Capture was performed as previously described (Rubin, et al., 2017; 
Schoenfelder et al., 2015; Schoenfelder et al., 2015). Briefly, Biotinylated 120-mer RNA 
baits were designed to target both ends of HindIII restriction fragments overlapping the 
Ensembl promoters of protein-coding and noncoding transcripts and UCEs as described 
in detail in Schoenfelder et al., 2015a. Promoter Capture was carried out using in 
nucleus Hi-C libraries derived from three biological replicates at ZT0 0, 6, 12, and 18 
with the SureSelect target enrichment system and the biotinylated RNA bait library 
according to the manufacturer's instructions (Agilent Technologies). After library 
enrichment, a post-capture PCR amplification step was carried out using the PE PCR 
1.0 and PE PCR 2.0 primers (Illumina) with 4–6 PCR amplification cycles as required. In 
nucleus Hi-C and CHi-C libraries were sequenced on the Illumina HiSeq 2000 platform. 
 
ChIP-seq 
For ChIP–seq, liver tissue for two biological replicates at ZT0 and ZT12 was dissected 
as processed as for Hi-C and then fixed in 1% formaldehyde for 5 minutes. Chromatin 
immunoprecipitation was performed as described (Rubin et al., 2017) using 10 µg of α-
CTCF (Millipore, 07-729). DNA was purified using Zymo Research DNA purification 
columns.  Sequencing libraries were prepared with the NEBNext ChIP–seq library prep 
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kit (NEB) according to manufacturer’s instructions. DNA was purified using AMPure 
beads (Agencourt). 
 
RNA-seq 
For RNA-seq libraries, total RNA was purified from the same livers processed for in 
nucleus Hi-C from four biological replicates at ZT0, 6, 12, and 18. Sequencing libraries 
were prepared with TruSeq Stranded Total RNA Gold Library Prep Kit v2 (Illumina).  
 
Data Processing  
 
Hi-C analysis 
Hi-C sequenced reads were mapped to the mouse genome (mm9) using HiCUP 
(Wingett et al., 2015) with default parameters. Downstream processing was done using 
Juicer (Durand, et al., 2016) and data was visualized using Juicebox (Durand, Robinson, 
et al., 2016) . Hi-C heatmaps at different bin resolutions were created and normalized 
using Knight-Ruiz (KR) matrix balancing algorithm from Juicer. Statistics for each library 
can be found in Table S1.  
Metaplots. The metaplots were created using python custom scripts. Briefly, the script 
takes a feature of interest and calculates the frequency of interactions around it using as 
input the KR normalized Obs/Exp Hi-C matrices at different resolutions (10, 25, or 50 
Kb) from different time points (ZT0,6,12,18). The final metaplot is the median value of all 
the plots for the list of anchors. For the TAD-anchored metaplots, Hi-C normalized 
matrices at 50kb resolution were used. Each TAD (see TAD calling) was scaled to fit 
into 5 bins, and only 1,000 TADs from all datasets and using all chromosomes were 
randomly chosen to reduce computing time. For the CTCF- anchored metaplots, Hi-C 
normalized matrices at 10kb resolution were used. Each CTCF peak (see ChIP-Seq 
analysis) was scaled to fit into a single bin, and only 1000 CTCF peaks identified at ZT0 
and ZT12 were randomly chosen to reduce computing time. The matrices generated 
were plotted using heatmap.2 from the package plots.  
 
TAD calling  
For all time points, we retrieved Knight-Ruiz normalized contact matrices from Juicer for 
all chromosomes at 25kb and 50kb resolution. TADs were identified using TADtool 
(Kruse et al., 2016) with the insulation score algorithm. To find appropriate parameters 
for TAD identification we called TADs for chromosome 1 across all time points using 
contact matrices at 25kb and 50kb resolution and a window size of 100, 150, 155, 175, 
195 and 200kb over threshold values from 70 to 200. For all data sets at 50kb 
resolution, we called TADs with a window size value of 200kb and a threshold value of 
140 while for all data sets at 25 kb resolution, we called TADs with a window size value 
of 100kb and a threshold value of 76. We found that these parameters show good 
agreement between identified TADs and visual inspection of Hi-C datasets in Juicer. Of 
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note, visual inspection of Hi-C datasets with TADs identified at 25kb resolution reveals 
that these represent sub-TADs contained within TADs identified at 50kb resolution. 
 
TAD analysis  
Size distribution. The number of TADs per time point and the size distribution of TADs 
across a circadian cycle was calculated using a custom R script using a Wilcoxon rank 
sum test. 
Circadian TADs.  Circadian TADs were defined as previously described (Y. H. Kim et al., 
2018). TADs containing at least one circadian gene as identified by our RNA-seq 
analysis were classified as Circadian TADs. Each Circadian TAD was further 
categorized depending on the number of circadian genes contained within the TAD. 
Then we considered the transcriptional phases of the circadian genes within Circadian 
TADs and classified them as same or different. The probability to have the same or 
different transcriptional phases within cTADs was calculated considering the total 
number of circadian genes per phase. The observed over expected significance was 
estimated performing a Chi square test.   
Overlap. To determine the number of unique and shared TADs between the time points 
we calculated the overlap in different pair-wise comparisons using the Venn module of 
Intervene (Khan & Mathelier, 2017). A TAD was considered to be shared between time 
points if more than 80% of the genomic domain region overlapped with a domain from a 
different Hi-C data set. 
 
Compartment analysis 
Compartments were identified applying PCA to the normalized interaction matrices at a 
100 Kb resolution using Juicer (Durand, et al., 2016). PCA1 was used to assign A and B 
compartments. To verify the reproducibility of the compartment call, the PCA analysis 
was applied on the separate replicates and just the merged data was used for 
downstream analysis. A custom script and publicly available ChIP-seq BAM files for 
H3K4me3 (Koike et al., 2012) were used to set the sign to the compartments identified 
by Juicer. A total of ~20,000 compartments were identified at each time point. We 
identified significantly changing compartments as those genomic regions with a change 
in PCA1 across different time points consistently in the three biological replicates 
through a one-way ANOVA test.  
Transcription in A and B compartments. To relate Compartment A and B with 
transcription we calculated the log2 RPM (Reads Per Million) values for all regions 
assigned to Compartment A and B per time point (ZT0,6,12,18) using SeqMonk and 
RNA-seq BAM files (see RNA-seq analysis) per time point as input and to applied a 
Kluskal Wallis test for all compartments and a Mann-Whitney test for OCCs. The 
distribution of log2 RPM values per compartment type at each time point is presented as 
Violin Plots.  
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Correlation with histone marks. To relate changes in compartment status with the 
enrichment of histone post-translational modifications we calculated the RPM (Reads 
Per Million) values for all regions assigned to Compartment A and B per time point 
(ZT0,6,12,18) using SeqMonk and publicly available ChIP-seq datasets for the histone 
post-translational modifications H3K4me3 and H3K4me1 (Yue et al., 2014) per time 
point as input and applied a one way ANOVA test and a Tukey post hoc test. 
Correlation with HDAC3. To relate changes in compartment status with the enrichment 
of HDAC3 we calculated the log2 RPM (Reads Per Million) values for all regions 
assigned to Compartment A at ZT0 and that change to Compartment B at Z12 using 
SeqMonk and publicly available ChIP-seq datasets for the histone deacetylase HDAC3 
at ZT0 and ZT12 (Feng et al., 2011) and applied a Wilcoxon test. 
 
Promoter CHi-C 
The sequenced reads were processed using HiCUP (Wingett et al., 2015). The filtering 
and identification of significant interactions were performed with CHiCAGO (Cairns et 
al., 2016). To identify differential interactions the script implemented by (Rubin et al., 
2017) was used. This script can identify the differential interactions from a Promoter 
Capture Hi-C dataset, using the edgeR (McCarthy et al., 2012) package to statistically 
quantify changes in reads for the interactions. To increase the confidence in dynamic 
interactions, we filtered the dataset  only including baits overlapping circadian genes. To 
account for the distance bias in the read count, we also divided the CHi-C interactions 
into greater or less than 150 Kb groups. These preliminary results were filtered by FDR 
and fold change; both distance regimes were combined. To plot long-range interactions 
we used the Washington Epigenome Browser 
(http://epigenomegateway.wustl.edu/browser/) using the mouse genome version mm9 
and as input properly formatted CHiCAGO output files.  
Characterization of interacting regions. To characterize the type of genomic element that 
promoters contact derived from our Promoter CHi-C we calculated the 
observed/expected number of overlaps between the otherends (the genomic segment 
interacting with a promoter) and a set of genomic regions occupied by Transcription 
Factors or enriched for histone post-translational modifications using a custom python 
script. The expected number of overlaps is calculated by generating a random 
distribution of otherends CHi-C fragments considering two conditions: 1) the length of 
the otherend-fragment observed in the original dataset; 2) the distance between the 
baits (promoter) and otherends. With this random set, we repeat the overlap with the 
features of interest and keep the number of “expected” overlaps by chance and repeat 
the process at least 100 times. To plot the results the mean was calculated for all the 
iterations of the expected values. The significant differences were calculated using a t-
test between the distribution of the expected values and the observed number of 
overlaps. 
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Interactions per promoter. To calculate the number of interactions per promoter at each 
time point python custom scripts were used. Circadian promoters were defined as genes 
with circadian transcription as identified by our RNA-seq analysis. For core clock 
promoter interaction analysis, we used the classic core clock list described in (Anafi et 
al., 2014). A list of enhancers with circadian transcription (eRNAs) was used derived 
from (Fang et al., 2014). The comparison with non-core-clock-circadian genes includes 
all the other circadian genes determined from our RNA-seq analysis. To calculate the 
distribution of the expected number of interactions made by non-core-clock-circadian 
genes we randomly selected 11 genes from the entire set, this procedure was repeated 
100 times. The comparison between the observed number of interactions made by the 
core clock genes and the distribution of expected interactions of non-core-clock-
circadian genes was made using a Mann Whitney test. 
Analysis of interactions between circadian promoters and enhancers producing eRNAs. 
The enhancer regions with transcribed eRNAs from (Fang et al., 2014) were assigned to 
the otherends (interacting region) and then the bait (promoter) from our Promoter CHi-C 
datasets. To calculate the observed/expected number of interactions between promoters 
and enhancers with oscillatory eRNAs (osceRNAs) and non-oscillatory eRNAs 
(nonosceRNAs) that map to the CHi-C dataset, the expected number was calculated by 
taking the same number of osceRNAs from the nonosceRNAs set and count the number 
of interactions between the restriction fragment containing an enhancer transcribed into 
eRNAs and the fragment containing circadian promoters derived from the CHi-C  
dataset. This process is repeated at least 100 times. Each enhancer region with 
transcribed eRNAs was assigned with a phase (maximal transcription during a circadian 
cycle) (Fang et al., 2014) as well as the promoter of the CHi-C datasets using our RNA-
seq analysis. To make eRNAs phases (Fang et al., 2014) more comparable to the 
circadian promoters identified by our RNA-seq analysis, we grouped them into eight 
groups each containing three-time points. First, we mapped the osceRNAs to the 
otherends of the CHi-C, then, retrieved the bait fragment associated with that eRNA and 
filtered the fragments overlapping with the set of circadian promoters identified by our 
RNA-seq analysis. Then, we divided the elements in diurnal and nocturnal to have a 
better understanding of the interaction profiles and perform a Wilcoxon rank sum test 
per pair of elements for each category.  
 
Virtual 4C 
The output BAM files from HiCUP for the different promoter CHi-C libraries per time 
point were used as input for SeqMonk to create Virtual-4C plots using promoters of 
interest as viewpoints to display raw promoter Chi-C counts as for the Arntl1 virtual 4C 
(Figure S4A). Alternatively the view point of interest and its significant interaction 
partners were filtered from the CHiCAGO output file and visualized in the Washington 
Epigenome Browser (http://epigenomegateway.wustl.edu/browser/) using the mouse 
genome version mm9.  
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Construction of promoter-promoter interaction networks 
The graphs were constructed using the output generated by CHiCAGO. The raw 
interaction files for each time point were processed to adjust gene names using ad hoc 
Python scripts due to many transcripts variants presented in those files. Also, a 
nomenclature was established to represent Ultraconserved Elements (UCEs). Each 
UCE was represented according to its locus using the following format: 
uce_[Chromosome number_[Position of first nucleotide]. Each undirected graph was 
constructed, analyzed and visualized using the NetworkX Python module (Hagberg et 
al., 2008) . The graphs generated were disconnected and contained a large number of 
small components. For this reason, the components containing 3 or fewer nodes were 
filtered out for presentation purposes. The statistical analysis used to identify differences 
in node properties between timepoints was carried out using SciPy (Virtanen et al., 
2020) and StatsModels (Seabold & Perktold, 2010) modules. Finally, the ontology 
enrichment analysis was conducted with the g:Profiler web tool (Raudvere et al., 2019)  
using the POST request API against the Mus musculus genome (mmusculus) with other 
parameters kept as default. To evaluate the phase coherence between circadian gene 
promoters contacting each other we assigned the phases of circadian genes with our 
RNAseq and plotted the phase distribution of circadian promoters contacted by either 
diurnal or nocturnal circadian promoters. We applied a Wilcoxon rank sum test to 
calculate the difference between pairs of the two categories.   
 
ChIP-seq data analysis 
Raw sequencing data files for all samples were first processed with FastQC for general 
quality controls. Sequencing reads were mapped against the mouse genome 
(NCBIM37/mm9) using Bowtie2 (Langmead & Salzberg, 2012) with default parameters 
for single and paired reads. Mapped reads were filtered by map quality (-q 30) using 
samtools (samtools view). Bam files were sorted (samtools sort) and indexed (samtools 
index). Duplicates were removed with Pickard. Bam files were imported to deeTools 
v3.3.1 (Ramírez et al., 2016) to create signal tracks with bamCoverage. Signal tracks for 
all data were visualized using IGV (Thorvaldsdóttir et al., 2013).  Peak calling was 
performed using MACS2 callpeak function with default parameters (Y. Zhang et al., 
2008). Peak overlap analysis was performed using the Venn module of Intervene (Khan 
& Mathelier, 2017).The MEME-ChIP tool (Ma et al., 2014) was used for motif analysis 
using the fasta sequences from peaks detected by MACS2 with default parameters. 
 
RNA-seq data processing 
Raw sequencing data files for all samples were first processed with FastQC for general 
quality controls. Sequencing reads were mapped against the mouse genome 
(NCBIM37/mm9) using TopHat (D. Kim et al., 2013) with default parameters. Deeptools 
(Ramírez et al., 2016) and BAM files for all samples were used to calculate Spearman’s 
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correlation between all biological replicates for each time point. All samples were highly 
correlated (Spearman’s correlation >0.85). Heatmaps of correlations were created using 
the Deeptools plotCorrelation. To create bigWig signal tracks for all time points we 
merged all biological replicates per time point using samtools (Li et al., 2009). Merged 
bam files per time point were processed with Deeptools bamCoverage to create strand-
specific and RPKM normalized signal tracks suited for comparison. Visualization of 
signal tracks was done using IGV genome browser (Thorvaldsdóttir et al., 2013). 
Mapped reads for all samples were then used to assemble and quantify expressed 
genes and transcripts using StringTie (Pertea et al., 2015) with default parameters. 
Differential expression was performed by Ballgown  (Frazee et al., 2015) in R using 
StringTie table counts for all samples. Genes with differential expression between at 
least one pair of time points were identified after correction for multiple hypothesis 
testing with a q-value <0.01. We classified a gene as circadian if it was differentially 
expressed between at least a pair of time points. We assigned a phase for each 
differentially expressed gene to the time point with the highest average FPKM value. 
Heatmap of circadian genes was created using pheatmap function in R using as input a 
list of 1256 differentially expressed genes at a q-value <0.01 and ordered by phase. 
Expression values for all genes were Z-score corrected. Plots of FPKM expression over 
time for selected examples were generated using library ggplot2 in R. 
 
Gene Ontology analysis  
Gene ontology enrichment analysis and pathway enrichment were done using DAVID 
(Huang et al., 2009). All significant biological processes and pathways had a p-value 
<0.01. Barplots were generated with ggplot2 in R.  
 
Motif analysis 
The fasta sequence from the HindIII fragments of the otherend of stable, dynamic and 
both types of chromatin contacts was downloaded using the mouse genome version 
mm9. The MEME-ChIP tool (Ma et al., 2014) was used for motif analysis with default 
parameters.  
 
Data availability 
Data sets are available upon request. Custom scripts are available without restrictions 
upon request. 
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