

1 A draft genome assembly of the eastern banjo frog *Limnodynastes dumerilii*

2 *dumerilii* (Anura: Limnodynastidae)

3 Qiye Li^{1,2}, Qunfei Guo^{1,3}, Yang Zhou¹, Huishuang Tan^{1,4}, Terry Bertozzi^{5,6}, Yuanzhen Zhu^{1,7},
4 Ji Li^{2,8}, Stephen Donnellan⁵, Guojie Zhang^{2,8,9,10*}

6 ¹ BGI-Shenzhen, Shenzhen 518083, China

⁷ ² State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology,
⁸ Chinese Academy of Sciences, Kunming 650223, China

⁹ ³ College of Life Science and Technology, Huazhong University of Science and Technology,
¹⁰ Wuhan 430074, China

¹¹ ⁴Center for Informational Biology, University of Electronic Science and Technology of China,
¹² Chengdu 611731, China

13 ⁵South Australian Museum, North Terrace, Adelaide 5000, Australia

14 ⁶ School of Biological Sciences, University of Adelaide, North Terrace, Adelaide 5005,
15 Australia

16 ⁷ School of Basic Medicine, Qingdao University, Qingdao 266071, China

17 ⁸ China National Genebank, BGI-Shenzhen, Shenzhen 518120, China

18 ⁹ Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences,
19 650223, Kunming, China

20 ¹⁰ Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-
21 2100 Copenhagen, Denmark

Correspondence: guojie.zhang@bio.ku.dk (G.Z.).

23

24 e-mail addresses for all authors:

25 Qiyue Li <liqiyue@genomics.cn>, Qunfei Guo <guoqunfei@genomics.cn>, Yang Zhou
26 <zhouyang@genomics.cn>, Huishuang Tan <tanhuishuang@genomics.cn>, Terry Bertozzi
27 <Terry.Bertozzi@samuseum.sa.gov.au>, Yuanzhen Zhu <zhuyuanzhen@genomics.cn>, Ji Li
28 <lij1@genomics.cn>, Stephen Donnellan <Steve.Donnellan@samuseum.sa.gov.au> and
29 Guojie Zhang <guojie.zhang@bio.ku.dk>

30

31 ORCIDs:

32 Qiye Li: 0000-0002-5993-0312; Yang Zhou: 0000-0003-1247-5049; Terry Bertozzi: 0000-0001-6665-3395;
33 Stephen Donnellan: 0000-0002-5448-3226; Guojie Zhang: 0000-0001-6860-1521

34 **Abstract**

35 Amphibian genomes are usually challenging to assemble due to large genome size and high
36 repeat content. The Limnodynastidae is a family of frogs native to Australia, Tasmania and
37 New Guinea. As an anuran lineage that successfully diversified on the Australian continent, it
38 represents an important lineage in the amphibian tree of life but lacks reference genomes. Here
39 we sequenced and annotated the genome of the eastern banjo frog *Limnodynastes dumerilii*
40 *dumerilii* to fill this gap. The total length of the genome assembly is 2.38 Gb with a scaffold
41 N50 of 285.9 kb. We identified 1.21 Gb of non-redundant sequences as repetitive elements and
42 annotated 24,548 protein-coding genes in the assembly. BUSCO assessment indicated that
43 more than 94% of the expected vertebrate genes were present in the genome assembly and the
44 gene set. We anticipate that this annotated genome assembly will advance the future study of
45 anuran phylogeny and amphibian genome evolution.

46 **Introduction**

47 The recent powerful advances in genome sequencing technology have allowed efficient
48 decoding of the genomes of many species [1, 2]. So far, genome sequences are available
49 publicly for more than one thousand species sampled across the animal branch of the tree of
50 life. These genomic resources have provided vastly improved perspectives on our knowledge
51 of the origin and evolutionary history of metazoans [3, 4], facilitated advances in agriculture
52 [5], enhanced approaches for conservation of endangered species [6], and uncovered the
53 genomic changes underlying the evolutionary successes of some clades such as birds [7] and
54 insects [8]. However, amphibian genomes are still challenging to assemble due to their large
55 genome sizes, high repeat content and sometimes high heterozygosity if specimens are
56 collected from wild populations [9]. This also accounts for the scarcity of reference genomes
57 for Anura (frogs and toads) — the most species-rich order of amphibians including many
58 important models for developmental biology and environmental monitoring [10]. Specifically,
59 despite the existence of more than 7,000 living species of Anura [11], only 10 species have
60 their genomes sequenced and annotated to date [12-21], which cover only 8 out of the 54 anuran
61 families. Moreover, genomes of Neobatrachia, which contains more than 95% of the anuran
62 species [11], are particularly under-represented. Only 5 of the 10 publicly available anuran
63 genomes belong to Neobatrachia [22]. This deficiency of neobatrachian genomes would
64 undoubtedly restrict the study of the genetic basis underlying the great diversification of this
65 amphibian lineage, and our understanding of the adaptive genomic changes that facilitate the
66 aquatic to terrestrial transition of vertebrates and the numerous unique reproductive modes
67 found in this clade.

68 As a candidate species proposed for genomic analysis by the Genome 10K (G10K) initiative
69 [9], we sequenced and annotated the genome of the Australian banjo frog *Limnodynastes*
70 *dumerilii* (also called the pobblebonk; NCBI:txid104065) to serve as a representative species
71 of the neobatrachian family Limnodynastidae. This burrowing frog is endemic to Australia and
72 named after its distinctive "bonk" call, which is likened to a banjo string being plucked. It
73 mainly occurs along the southeast coast of Australia, from the coast of New South Wales,
74 throughout Victoria and into the southwest corner of South Australia and Tasmania [23]. Five
75 subspecies of *L. dumerilii* are recognized, including *Limnodynastes dumerilii dumerilii*, *L.*
76 *dumerilii grayi*, *L. dumerilii fryi*, *L. dumerilii insularis* and *L. dumerilii variegata* [24]. The
77 subspecies chosen for sequencing is the eastern banjo frog *L. dumerilii dumerilii*
78 (NCBI:txid104066), as it is the most widespread among the five subspecies and forms hybrid

79 zones with a number of the other subspecies [23]. We believe that the release of genomic
80 resources from this neobatrachian frog will benefit the future studies of phylogenomics and
81 comparative genomics of anurans, and also facilitate other research related to the evolutionary
82 biology of *Limnodynastes*.

83

84 **Methods**

85 **Sample collection, library construction and sequencing**

86 Genomic DNA was extracted from the liver of an adult female *Limnodynastes dumerilii*
87 *dumerilii* (Fig. 1) using the Gentra Puregene Tissue Kit (QIAGEN, Hilden, Germany)
88 according to manufacturer's instructions with the following exceptions: following the DNA
89 precipitation step, DNA was spooled onto a glass rod, washed twice in 70% ethanol and dried
90 before dissolving in 100 ul of the recommended elution buffer [25]. The specimen was
91 originally caught in River Torrens, Adelaide, South Australia, Australia, and is archived in the
92 South Australian Museum (registration number: SAMAR66870).

93 A total of 211 Gb of sequences were generated from four short-insert libraries (170 bp × 1, 250
94 bp × 1, 500 bp × 1, and 800 bp × 1), and 185 Gb of sequences from ten mate-paired libraries
95 (2 kb × 3, 5 kb × 3, 10 kb × 2, and 20 kb × 2). All the 14 libraries were subjected to paired-end
96 sequencing on the HiSeq 2000 platform following the manufacturer's instructions (Illumina,
97 San Diego, CA, USA), using PE100 or PE150 chemistry for the short-insert libraries and PE49
98 for the mate-paired libraries [26] (Table 1).

99 The raw sequencing data from each library were subjected to strict quality control by
100 SOAPnuke (v1.5.3, RRID:SCR_015025) [27] prior to downstream analyses (see [28] for
101 detailed parameters for each library). Briefly, for the raw reads from each library, we trimmed
102 the unreliable bases at the head and tail of each read where the per-position GC content was
103 unbalanced or the per-position base quality was low across all reads; we removed the read pairs
104 with adapter contamination, with high proportion of low-quality or unknown (N) bases; we
105 removed duplicate read pairs potentially resulted from polymerase chain reaction (PCR)
106 amplification (i.e. PCR duplicates); and we also removed the overlapping read pairs in all but
107 the 170 bp and 250 bp libraries where the paired reads were expected to be overlapping. As
108 shown in Table 2, data reduction in the short-insert libraries were mainly caused by the
109 truncation of the head and tail of each read and the discard of read pairs with too many low-
110 quality bases. But it is noteworthy that PCR duplication rates for all the short-insert libraries
111 are extremely low (0.2% – 2.6%), indicating that sequences from these libraries are diverse. In

112 contrast, data reduction in the mate-paired libraries were mainly due to the discard of PCR
113 duplicates, which made up 22.6% – 83.0% of the raw data (Table 2). A total of 176 Gb of clean
114 sequences were retained for genome assembly after these strict quality controls, representing
115 69 times coverage of the estimated haploid genome size of *L. d. dumerilii* in terms of sequence
116 depth, and 1,093 times in terms of physical depth (Table 1).

117

118 **Genome size estimation and genome assembly**

119 To obtain a robust estimation of the genome size of *L. d. dumerilii*, we conducted *k*-mer
120 analysis with all of the clean sequences (131 Gb) from the four short-insert libraries using a
121 range of *k* values (17, 19, 21, 23, 25, 27, 29 and 31). The *k*-mer frequencies were counted by
122 Jellyfish (v2.2.6) [29] with the -C setting. The genome size of *L. d. dumerilii* was estimated to
123 be around 2.54 Gb (Table 3), which was calculated as the number of effective *k*-mers (i.e. total
124 *k*-mers – erroneous *k*-mers) divided by the homozygous peak depth following Cai *et al* [30]. It
125 is noteworthy that, the presence of a distinct heterozygous peak, which displayed half of the
126 depth of the homozygous peak in the *k*-mer frequency distribution, suggests that the diploid
127 genome of this wild-caught individual has a high level of heterozygosity (Fig. 2). The rate of
128 heterozygosity was estimated to be around 1.17% by GenomeScope (v1.0.0,
129 RRID:SCR_017014) [31] (Table 3).

130 We then employed Platanus (v1.2.1, RRID:SCR_015531) [32] to assemble the genome of *L.*
131 *d. dumerilii*. Briefly, all the clean sequences from the four short-insert libraries were first
132 assembled into contigs using *platanus assemble* with parameters -t 20 -k 29 -u 0.2 -d 0.6 -m
133 150. Then paired-end reads from the four short-insert and ten mate-paired libraries were used
134 to connect contigs into scaffolds by *platanus scaffold* with parameters -t 20 -u 0.2 -l 3 and the
135 insert size information of each library. Finally, *platanus gap_close* was employed to close
136 intra-scaffold gaps using the paired-end reads from the four short-insert libraries with default
137 settings. This Platanus assembly was further improved by Kgf (version 1.16) [9] followed by
138 GapCloser (v1.10.1, RRID:SCR_015026) [9] for gap filling with the clean reads from the four
139 short-insert libraries.

140

141 **Repetitive element annotation**

142 Both homology-based and *de novo* predictions were employed to identify repetitive elements
143 in the *L. d. dumerilii* genome assembly [33]. For homology-based prediction, known repetitive
144 elements were identified by aligning the *L. d. dumerilii* genome sequences against the Repbase-

145 derived RepeatMasker libraries using RepeatMasker (v4.1.0, RRID:SCR_012954; setting -
146 *nolow -norna -no_is*) [34], and against the transposable element protein database using
147 RepeatProteinMask (an application within the RepeatMasker package; setting *-noLowSimple -*
148 *pvalue 0.0001 -engine ncbi*). For *de novo* prediction, RepeatModeler (v2.0,
149 RRID:SCR_015027) [35] was first executed on the *L. d. dumerilii* assembly to build a *de novo*
150 repeat library for this species. Then RepeatMasker was employed to align the *L. d. dumerilii*
151 genome sequences against the *de novo* library for repetitive element identification. Tandem
152 repeats in the *L. d. dumerilii* genome assembly were identified by Tandem Repeats Finder
153 (v4.09) [36] with parameters *Match=2 Mismatch=7 Delta=7 PM=80 PI=10 Minscore=50*
154 *MaxPeriod=2000*.

155

156 **Protein-coding gene annotation**

157 Similar to repetitive element annotation, both homology-based and *de novo* predictions were
158 employed to build gene models for the *L. d. dumerilii* genome assembly [37]. For homology-
159 based prediction, protein sequences from diverse vertebrate species (see [37] for the sources),
160 including *Danio rerio*, *Xenopus tropicalis*, *Xenopus laevis*, *Nanorana parkeri*,
161 *Microcaecilia unicolor*, *Rhinatremma bivittatum*, *Anolis carolinensis*, *Gallus gallus* and
162 *Homo sapiens*, were first aligned to the *L. d. dumerilii* genome assembly using TBLASTN
163 (blast-2.2.26, RRID:SCR_011822) [38] with parameters *-F F -e 1e-5*. Then the genomic
164 sequences of the candidate loci together with 5 kb flanking sequences were extracted for
165 exon-intron structure determination, by aligning the homologous proteins to these extracted
166 genomic sequences using GeneWise (wise-2.2.0, RRID:SCR_015054) [39]. For *de novo*
167 prediction, we randomly picked 1,000 homology-derived gene models of *L. d. dumerilii* with
168 complete open reading frames (ORFs) and reciprocal aligning rates exceeding 90% against
169 the *X. tropicalis* proteins to train AUGUSTUS (v3.3.1, RRID:SCR_008417) [40]. The
170 obtained gene parameters were then used by AUGUSTUS to predict protein-coding genes
171 on the repeat-masked *L. d. dumerilii* genome assembly. Finally, gene models derived from
172 the above two methods were combined into a non-redundant gene set using a similar strategy
173 to Xiong *et al.* (2016) [41]. Genes showing BLASTP (blast-2.2.26, RRID:SCR_001010;
174 parameters *-F F -e 1e-5*) hits to transposon proteins in the UniProtKB/Swiss-Prot database
175 (v2019_11), or with more than 70% of their coding regions overlapping repetitive sequences,
176 were removed from the combined gene set.

177

178 **Results and Discussion**

179 **Assembly and annotation of the *L. d. dumerilii* genome**

180 We assembled the nuclear genome of a female eastern banjo frog *L. d. dumerilii* (Fig. 1) with
181 ~176 Gb (69X) clean Hiseq data from four short-insert libraries (170 bp × 1, 250 bp × 1, 500
182 bp × 1, and 800 bp × 1) and ten mate-paired libraries (2 kb × 3, 5 kb × 3, 10 kb × 2, and 20 kb
183 × 2) (Table 1-2). The final genome assembly comprised 520,896 sequences with contig and
184 scaffold N50s of 10.2 kb and 286.0 kb, respectively, and a total length of 2.38 Gb, which is
185 close to the estimated genome size of 2.54 Gb by *k*-mer analysis (Table 3-4 and Fig. 2). There
186 are 242 Mb of regions present as unclosed gaps (Ns), accounting for 10.2% of the assembly.
187 The GC content of the *L. d. dumerilii* assembly excluding gaps was estimated to be 41.0%
188 (Table 4). The combination of homology-based and *de novo* prediction methods masked 1.21
189 Gb of non-redundant sequences as repetitive elements, accounting for 56.4 % of the *L. d.*
190 *dumerilii* genome assembly excluding gaps (Table 5). We also obtained 24,548 protein-
191 coding genes in the genome assembly, of which 67% had complete ORF. Functional
192 annotation by searching the *L. d. dumerilii* proteins against public databases of
193 UniProtKB/Swiss-Prot (v2019_11, RRID:SCR_004426) [42], NCBI nr (v20191030), and
194 KEGG (v93.0, RRID:SCR_012773) [43] with BLASTP (blast-2.2.26; parameters *-F F -e*
195 *1e-5*) successfully annotated almost all of the *L. d. dumerilii* gene loci (Table 6).

196

197 **Data validation and quality control**

198 Two strategies were employed to estimate the completeness of the *L. d. dumerilii* genome
199 assembly. First, all the clean reads from the short-insert libraries were aligned to the genome
200 assembly using BWA-MEM (BWA, version 0.7.16, RRID:SCR_010910) with default
201 parameters [44]. We observed that 99.6 % of reads could be mapped back to the assembled
202 genome and 85.6 % of the inputted reads were mapped in proper pairs as accessed by samtools
203 flagstat (SAMtools v1.7, RRID:SCR_002105), suggesting that most sequences of the *L. d.*
204 *dumerilii* genome were present in the current assembly. Of note, by comparing the genomic
205 distributions of the properly paired reads and the remaining mapped reads in the final assembly,
206 we observed that the reads which could not be mapped in proper pairs tended to locate on the
207 ends of scaffolds, the flanking regions of assembly gaps and the genomic regions annotated as
208 tandem repeats (Table 7), indicating that these regions likely have lower assembly accuracy
209 than other genomic regions. Secondly, we assessed the *L. d. dumerilii* assembly with
210 Benchmarking Universal Single-Copy Orthologs (BUSCO; v3.0.2, RRID:SCR_015008), a

211 software package that can quantitatively measure genome assembly completeness based on
212 evolutionarily informed expectations of gene content [45], and found that up to 94.7 % of the
213 2,586 expected vertebrate genes were present in the *L. d. dumerilii* assembly. Furthermore,
214 85.5% and 84.5 % of the expected genes were identified as complete and single-copy genes,
215 respectively (Table 4). This BUSCO assessment further highlighted the comprehensiveness of
216 the current *L. d. dumerilii* genome assembly in terms of gene space.

217 We then evaluated the completeness of the *L. d. dumerilii* protein-coding gene set with BUSCO
218 (v3.0.2) and DOGMA (v3.0, RRID:SCR_015060) [46], a program that measures the
219 completeness of a given transcriptome or proteome based on a core set of conserved domain
220 arrangements (CDAs). BUSCO analysis showed that 97.1 % of the expected vertebrate genes
221 were present in the *L. d. dumerilii* protein-coding gene set with 88.5 % and 84.5% identified
222 as complete and single-copy genes, respectively, close to that estimated for the genome
223 assembly. Meanwhile, DOGMA analysis based on PfamScan Annotations (PfamScan v1.5;
224 Pfam v32.0, RRID:SCR_015060) [47] and the eukaryotic core set identified 95.4 % of the
225 expected CDAs in the annotated gene set. These results demonstrated the high completeness
226 of the *L. d. dumerilii* protein-coding gene set.

227

228 **Re-use potential**

229 Here, we report a draft genome assembly of the eastern banjo frog *L. d. dumerilii*. It represents
230 the first genome assembly from the family Limnodynastidae (Anura: Neobatrachia). Although
231 the continuity of the assembly in terms of contig and scaffold N50s is modest, probably due to
232 the high repeat content (56%) and heterozygosity (1.17%), the completeness of this draft
233 assembly is demonstrated to be high according to read mapping and BUSCO assessment. Thus,
234 it is suitable for phylogenomics and comparative genomics analyses with other available
235 anuran genomes or phylogenomic datasets. In particular, the high-quality protein-coding gene
236 set derived from the genome assembly will be useful for deducing orthologous relationships
237 across anuran species or reconstructing the ancestral gene content of anurans. Due to
238 evolutionary importance of *Limnodynastes* frogs in Australia, the genomic resources released
239 in this study will also support further research on the biogeography of speciation, evolution of
240 male advertisement calls, hybrid zone dynamics, and conservation of *Limnodynastes* frogs.

241

242 **Availability of supporting data**

243 The raw sequencing reads are deposited in NCBI under the BioProject accession
244 PRJNA597531 and are also deposited in the CNGB Nucleotide Sequence Archive (CNSA)
245 with accession number CNP0000818. The clean reads that passed quality control, the genome
246 assembly, and the protein-coding gene and repeat annotations are deposited in the GigaScience
247 repository (GigaDB) [48]. The genome assembly is also deposited in NCBI under accession
248 number GCA_011038615.1.

249

250 **List of abbreviations**

251 BUSCO: Benchmarking Universal Single-Copy Orthologs; G10K: Genome 10K; NCBI:
252 National Center for Biotechnology Information; PCR: Polymerase Chain Reaction; ORF: Open
253 Reading Frame; KEGG: Kyoto Encyclopedia of Genes and Genomes; DOGMA: DDomain-
254 based General Measure for transcriptome and proteome quality Assessment; CDA: Conserved
255 Domain Arrangement; CNGB: China National GeneBank; CNSA: CNGB Sequence Archive.

256

257 **Funding**

258 This work was funded by the Strategic Priority Research Program of Chinese Academy of
259 Sciences (No. XDB31020000), a National Key R&D Program of China (MOST) grant (No.
260 2018YFC1406901), the International Partnership Program of Chinese Academy of Sciences
261 (No. 152453KYSB20170002), a Carlsberg Foundation grant (No. CF16-0663) and the Villum
262 Foundation (No. 25900).

263

264 **Competing interests**

265 The authors declare that they have no competing interests.

266

267 **Author contributions**

268 G.Z. and Q.L. conceived and supervised the study; T.B. and S.D. prepared the DNA samples;
269 Y.Z. and Q.G. performed *k*-mer analysis and genome assembly; Q.G. and J.L. conducted
270 assessment of assembly quality; H.T. performed protein-coding gene annotation; Y.Z.
271 performed repeat annotation; G.Z. and S.D. contributed reagents/materials/analysis tools; Q.L.
272 wrote the manuscript with the inputs from all authors. All authors read and approved the final
273 manuscript.

274

275 **References**

- 276 1. Goodwin S, McPherson JD and McCombie WR. Coming of age: ten years of next-
277 generation sequencing technologies. *Nature reviews Genetics*. 2016;17 6:333-51.
278 doi:10.1038/nrg.2016.49.
- 279 2. van Dijk EL, Jaszczyszyn Y, Naquin D and Thermes C. The Third Revolution in
280 Sequencing Technology. *Trends in genetics : TIG*. 2018;34 9:666-81.
281 doi:10.1016/j.tig.2018.05.008.
- 282 3. Sebe-Pedros A, Degnan BM and Ruiz-Trillo I. The origin of Metazoa: a unicellular
283 perspective. *Nature reviews Genetics*. 2017;18 8:498-512. doi:10.1038/nrg.2017.21.
- 284 4. Laumer CE, Fernandez R, Lemer S, Combosch D, Kocot KM, Riesgo A, et al.
285 Revisiting metazoan phylogeny with genomic sampling of all phyla. *Proceedings
286 Biological sciences / The Royal Society*. 2019;286 1906:20190831.
287 doi:10.1098/rspb.2019.0831.
- 288 5. Beiki H, Eveland AL and Tuggle CK. Recent advances in plant and animal genomics
289 are taking agriculture to new heights. *Genome Biol*. 2018;19 1:48.
290 doi:10.1186/s13059-018-1427-z.
- 291 6. Supple MA and Shapiro B. Conservation of biodiversity in the genomics era. *Genome
292 Biol*. 2018;19 1:131. doi:10.1186/s13059-018-1520-3.
- 293 7. Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, et al. Comparative genomics reveals
294 insights into avian genome evolution and adaptation. *Science*. 2014;346 6215:1311-
295 20. doi:10.1126/science.1251385.
- 296 8. Thomas GWC, Dohmen E, Hughes DST, Murali SC, Poelchau M, Glastad K, et al.
297 Gene content evolution in the arthropods. *Genome Biol*. 2020;21 1:15.
298 doi:10.1186/s13059-019-1925-7.
- 299 9. Koepfli KP, Paten B, Genome KCoS and O'Brien SJ. The Genome 10K Project: a
300 way forward. *Annu Rev Anim Biosci*. 2015;3:57-111. doi:10.1146/annurev-animal-
301 090414-014900.
- 302 10. Carroll R. The rise of amphibians: 365 million years of evolution. Johns Hopkins
303 University Press. 2009.
- 304 11. AmphibiaWeb. <<https://amphibiaweb.org>> University of California, Berkeley, CA,
305 USA. (Accessed 18 Feb 2020).
- 306 12. Li J, Yu H, Wang W, Fu C, Zhang W, Han F, et al. Genomic and transcriptomic
307 insights into molecular basis of sexually dimorphic nuptial spines in *Leptobrachium
308 leishanense*. *Nat Commun*. 2019;10 1:5551. doi:10.1038/s41467-019-13531-5.
- 309 13. Li Y, Ren Y, Zhang D, Jiang H, Wang Z, Li X, et al. Chromosome-level assembly of
310 the mustache toad genome using third-generation DNA sequencing and Hi-C analysis.
311 *Gigascience*. 2019;8 9 doi:10.1093/gigascience/giz114.

312 14. Seidl F, Levis NA, Schell R, Pfennig DW, Pfennig KS and Ehrenreich IM. Genome
313 of *Spea multiplicata*, a Rapidly Developing, Phenotypically Plastic, and Desert-
314 Adapted Spadefoot Toad. *G3* (Bethesda). 2019;9 12:3909-19.
315 doi:10.1534/g3.119.400705.

316 15. Edwards RJ, Tuipulotu DE, Amos TG, O'Meally D, Richardson MF, Russell TL, et
317 al. Draft genome assembly of the invasive cane toad, *Rhinella marina*. *Gigascience*.
318 2018;7 9 doi:10.1093/gigascience/giy095.

319 16. Rogers RL, Zhou L, Chu C, Marquez R, Corl A, Linderoth T, et al. Genomic
320 Takeover by Transposable Elements in the Strawberry Poison Frog. *Mol Biol Evol*.
321 2018;35 12:2913-27. doi:10.1093/molbev/msy185.

322 17. Denton RD, Kudra RS, Malcom JW, Du Preez L and Malone JH. The African
323 Bullfrog (*Pyxicephalus adspersus*) genome unites the two ancestral ingredients for
324 making vertebrate sex chromosomes. *bioRxiv*. 2018:329847.

325 18. Hammond SA, Warren RL, Vandervalk BP, Kucuk E, Khan H, Gibb EA, et al. The
326 North American bullfrog draft genome provides insight into hormonal regulation of
327 long noncoding RNA. *Nat Commun*. 2017;8 1:1433. doi:10.1038/s41467-017-01316-
328 7.

329 19. Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, et al. Genome
330 evolution in the allotetraploid frog *Xenopus laevis*. *Nature*. 2016;538 7625:336-43.
331 doi:10.1038/nature19840.

332 20. Sun YB, Xiong ZJ, Xiang XY, Liu SP, Zhou WW, Tu XL, et al. Whole-genome
333 sequence of the Tibetan frog *Nanorana parkeri* and the comparative evolution of
334 tetrapod genomes. *Proceedings of the National Academy of Sciences of the United
335 States of America*. 2015;112 11:E1257-62. doi:10.1073/pnas.1501764112.

336 21. Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, et al. The
337 genome of the Western clawed frog *Xenopus tropicalis*. *Science*. 2010;328 5978:633-
338 6. doi:10.1126/science.1183670.

339 22. The NCBI Assembly database: <https://www.ncbi.nlm.nih.gov/assembly/?term=Anura>;
340 access on February 18, 2020.

341 23. Martin A. Studies in Australian amphibia III. The limnodynastes dorslis complex
342 (Anura: Leptodactylidae). *Australian Journal of Zoology*. 1972;20 2:165-211.

343 24. Schable CS, Moritz C and Slade RW. A molecular phylogeny for the frog genus
344 Limnodynastes (Anura: myobatrachidae). *Mol Phylogenetic Evol*. 2000;16 3:379-91.
345 doi:10.1006/mpev.2000.0803.

346 25. Bertozzi T and Donnellan S. DNA extraction protocol for the eastern banjo frog using
347 the Gentra Puregene Tissue Kit. *protocols.io* 2020;
348 doi:dx.doi.org/10.17504/protocols.io.bcy6ixze.

349 26. Li Q, Guo Q, Zhou Y, Tan H, Bertozzi T, Zhu Y, et al. Construction and sequencing
350 of DNA libraries on Hiseq 2000 platform for the eastern banjo frog. *protocols.io*
351 2020; doi:dx.doi.org/10.17504/protocols.io.bc22iyge.

352 27. Chen Y, Chen Y, Shi C, Huang Z, Zhang Y, Li S, et al. SOAPnuke: a MapReduce
353 acceleration-supported software for integrated quality control and preprocessing of
354 high-throughput sequencing data. *Gigascience*. 2018;7 1:1-6.
355 doi:10.1093/gigascience/gix120.

356 28. Li Q, Guo Q, Zhou Y, Tan H, Bertozzi T, Zhu Y, et al. Quality control protocol for
357 the raw sequencing reads of the eastern banjo frog. *protocols.io* 2020;
358 doi:dx.doi.org/10.17504/protocols.io.bghvjt66.

359 29. Marcais G and Kingsford C. A fast, lock-free approach for efficient parallel counting
360 of occurrences of k-mers. *Bioinformatics*. 2011;27 6:764-70.
361 doi:10.1093/bioinformatics/btr011.

362 30. Cai H, Li Q, Fang X, Li J, Curtis NE, Altenburger A, et al. A draft genome assembly
363 of the solar-powered sea slug *Elysia chlorotica*. *Sci Data*. 2019;6:190022.
364 doi:10.1038/sdata.2019.22.

365 31. Vrture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, et al. GenomeScope: fast reference-free genome profiling from short reads. *Bioinformatics*.
366 2017;33 14:2202-4. doi:10.1093/bioinformatics/btx153.

368 32. Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, et al. Efficient
369 de novo assembly of highly heterozygous genomes from whole-genome shotgun short
370 reads. *Genome Res*. 2014;24 8:1384-95. doi:10.1101/gr.170720.113.

371 33. Li Q, Guo Q, Zhou Y, Tan H, Bertozzi T, Zhu Y, et al. Repetitive element annotation
372 for the eastern banjo frog genome assembly. *protocols.io* 2020;
373 doi:dx.doi.org/10.17504/protocols.io.bgkbjusn.

374 34. Smit AF, Hubley R and Green P. Available fom <http://www.repeatmasker.org>. 20
375 September 2019 date last accessed.

376 35. Smit A and Hubley R. Available fom <http://www.repeatmasker.org/RepeatModeler/>.
377 20 September 2019 date last accessed.

378 36. Benson G. Tandem repeats finder: a program to analyze DNA sequences. *Nucleic
379 acids research*. 1999;27 2:573-80.

380 37. Li Q, Guo Q, Zhou Y, Tan H, Bertozzi T, Zhu Y, et al. Protein-coding gene
381 annotation for the eastern banjo frog genome assembly. *protocols.io* 2020;
382 doi:dx.doi.org/10.17504/protocols.io.bgkajuse.

383 38. Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ. Basic local alignment
384 search tool. *Journal of molecular biology*. 1990;215 3:403-10. doi:10.1016/S0022-
385 2836(05)80360-2.

386 39. Birney E, Clamp M and Durbin R. GeneWise and Genomewise. *Genome Res*.
387 2004;14 5:988-95. doi:10.1101/gr.1865504.

388 40. Stanke M, Diekhans M, Baertsch R and Haussler D. Using native and syntenically
389 mapped cDNA alignments to improve de novo gene finding. *Bioinformatics*. 2008;24
390 5:637-44. doi:10.1093/bioinformatics/btn013.

391 41. Xiong Z, Li F, Li Q, Zhou L, Gamble T, Zheng J, et al. Draft genome of the leopard
392 gecko, *Eublepharis macularius*. *Gigascience*. 2016;5 1:47. doi:10.1186/s13742-016-
393 0151-4.

394 42. UniProt Consortium T. UniProt: the universal protein knowledgebase. *Nucleic acids*
395 *research*. 2018;46 5:2699. doi:10.1093/nar/gky092.

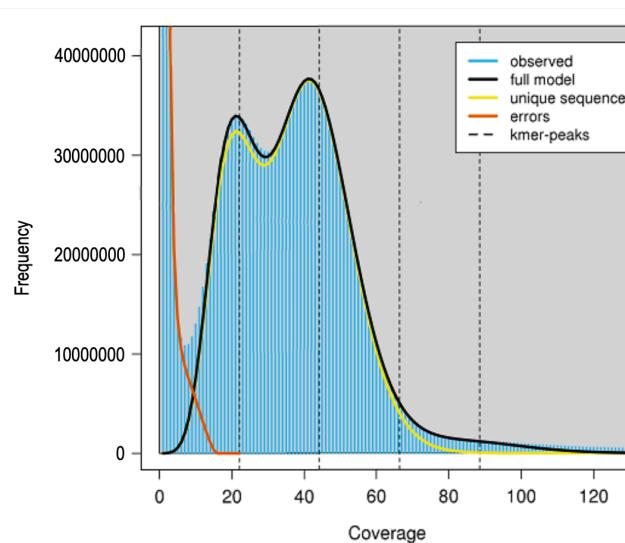
396 43. Kanehisa M and Goto S. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic*
397 *acids research*. 2000;28 1:27-30. doi:10.1093/nar/28.1.27.

398 44. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-
399 MEM. *arXiv preprint arXiv:13033997*. 2013.

400 45. Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV and Zdobnov EM. BUSCO:
401 assessing genome assembly and annotation completeness with single-copy orthologs.
402 *Bioinformatics*. 2015;31 19:3210-2. doi:10.1093/bioinformatics/btv351.

403 46. Dohmen E, Kremer LP, Bornberg-Bauer E and Kemen C. DOGMA: domain-based
404 transcriptome and proteome quality assessment. *Bioinformatics*. 2016;32 17:2577-81.
405 doi:10.1093/bioinformatics/btw231.

406 47. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the
407 protein families database. *Nucleic acids research*. 2014;42 Database issue:D222-30.
408 doi:10.1093/nar/gkt1223.


409 48. Li Q, Guo Q, Zhou Y, Tan H, Bertozzi T, Zhu Y, et al. Genomic data from the
410 Eastern banjo frog *Limnodynastes dumerilii dumerilii* (Anura: Limnodynastidae).
411 *GigaScience Database*. 2020; doi:<http://dx.doi.org/10.5524/100717>.

412

Figures

Figure 1. Photograph of an adult *Limnodynastes dumerilii dumerilii* from the Adelaide region (image from Stephen Mahony).

Figure 2. A 21-mer frequency distribution of the *L. d. dumerilii* genome data. The first peak at coverage 21X corresponds to the heterozygous peak. The second peak at coverage 42X corresponds to the homozygous peak.

Tables

Table 1. Statistics of DNA reads produced for the *L. d. dumerilii* genome.

NCBI accession	CNSA accession	Library insert size (bp)	Read length (bp)	Raw data			Clean data		
				Total bases (Gb)	Sequence depth (X)	Physical depth (X)	Total bases (Gb)	Sequence depth (X)	Physical depth (X)
SRR10802019	CNR0165422	170	100	43.45	17.11	14.54	36.52	14.38	12.11
SRR10802018	CNR0165423	250	150	67.56	26.60	22.17	45.71	18.00	16.00
SRR10802013	CNR0165424	500	150	61.47	24.20	40.33	29.79	11.73	26.12
SRR10802012	CNR0165425	800	150	38.34	15.10	40.26	18.56	7.31	21.38
SRR10802011	CNR0165426	2,000	49	18.79	7.40	151.00	9.84	3.87	99.33
SRR10802009	CNR0165427	2,000	49	19.86	7.82	159.53	8.70	3.43	87.84
SRR10802008	CNR0165428	2,000	49	21.25	8.36	170.71	10.38	4.09	104.75
SRR10802007	CNR0165429	5,000	49	18.60	7.32	373.70	3.92	1.54	98.94
SRR10802010	CNR0165430	5,000	49	18.03	7.10	362.19	3.46	1.36	87.39
SRR10802006	CNR0165431	5,000	49	15.47	6.09	310.78	1.87	0.74	47.25
SRR10802017	CNR0165432	10,000	49	16.07	6.33	645.68	1.45	0.57	73.13
SRR10802016	CNR0165433	10,000	49	20.74	8.17	833.24	3.45	1.36	174.07
SRR10802015	CNR0165434	20,000	49	16.93	6.66	1360.12	0.98	0.38	98.44
SRR10802014	CNR0165435	20,000	49	19.09	7.52	1533.74	1.44	0.57	145.78
Total				395.66	155.77	6018.00	176.07	69.32	1092.54

Note: Depth calculation was based on the estimated haploid genome size of 2.54 Gb according to *k*-mer analysis.

Sequence depth is the average number of times a base is read, while physical depth is the average number of times a base is spanned by sequenced DNA fragments.

Table 2. The summary of data filtering for each library.

NCBI accession	CNSA accession	Library insert size (bp)	% Discarded bases	% of bases discarded due to different factors					
				Adapter contamination (-f & -r)	Low quality bases (-l & -q)	N bases (-n)	Small insert size (-S)	PCR duplicates (-d)	Triming (-t)
SRR10802019	CNR0165422	170	15.95	0.18	8.36	0.38	0.00	2.62	4.42
SRR10802018	CNR0165423	250	32.34	0.22	23.66	0.13	0.00	0.81	7.52
SRR10802013	CNR0165424	500	51.54	0.18	26.42	0.14	6.65	0.52	17.62
SRR10802012	CNR0165425	800	51.59	0.05	39.25	0.62	6.15	0.15	5.38
SRR10802011	CNR0165426	2,000	47.64	0.28	4.51	0.32	6.48	22.63	13.43
SRR10802009	CNR0165427	2,000	56.18	0.16	4.58	0.18	5.75	34.27	11.24
SRR10802008	CNR0165428	2,000	51.16	0.13	5.36	0.20	5.59	27.36	12.52
SRR10802007	CNR0165429	5,000	78.93	0.08	4.47	0.17	3.11	65.69	5.40
SRR10802010	CNR0165430	5,000	80.80	0.78	2.84	0.83	3.03	68.38	4.92
SRR10802006	CNR0165431	5,000	87.90	8.45	2.44	0.73	2.27	70.89	3.10
SRR10802017	CNR0165432	10,000	90.99	0.23	4.23	0.12	2.89	81.20	2.31
SRR10802016	CNR0165433	10,000	83.37	3.95	6.35	0.18	2.29	66.35	4.26
SRR10802015	CNR0165434	20,000	94.24	0.62	3.71	0.10	5.29	83.04	1.48
SRR10802014	CNR0165435	20,000	92.44	1.11	5.44	0.68	3.90	79.37	1.94

Note: The options of SOAPnuke (v1.5.3) that control the corresponding factors are indicated in parentheses. The detailed settings of these options for each library are deposited at protocols.io [28].

Table 3. Estimation of genome size and heterozygosity of *L. d. dumerilii* by *k*-mer analysis.

<i>k</i>	Total number of <i>k</i> -mers	Minimum coverage (X)	Number of erroneous <i>k</i> -mers	Homozygous peak	Estimated genome size (Gb)	Estimated heterozygosity (%)
17	112,401,363,509	9	1,418,748,938	45	2.47	1.10
19	110,136,516,133	8	2,588,664,358	43	2.50	1.23
21	107,871,808,889	7	3,023,604,282	42	2.50	1.24
23	105,607,392,491	7	3,286,834,146	40	2.56	1.22
25	103,343,108,760	7	3,501,481,190	39	2.56	1.19
27	101,078,882,097	7	3,689,197,189	38	2.56	1.16
29	98,815,880,190	6	3,839,002,752	37	2.57	1.14
31	96,552,885,503	6	3,986,778,359	36	2.57	1.11

Note: *k*-mer frequency distributions were generated by Jellyfish (v2.2.6) using 131 Gb clean sequences as input. Minimum coverage was the coverage depth value of the first trough in *k*-mer frequency distribution. *k*-mers with coverage depth less than the minimum coverage were regarded as erroneous *k*-mers. Estimated genome size was calculated as (Total number of *k*-mers – Number of erroneous *k*-mers) / Homozygous peak.

Table 4. Metrics for the *L. d. dumerilii* genome assembly.

Assembly metrics	Scaffold	Contig
Total length (bp)	2,378,679,715	2,136,981,229
Number of sequences	520,896	739,331
Longest (bp)	3,755,936	92,906
N50 (bp)	286,041	10,550
L50	2,127	58,116
GC content	41.0 %	
BUSCO	C:85.5% [S:84.5%, D:1.0%], F:9.2%, M:5.3%	

Note: N50 is the length of the shortest scaffold (or contig) for which longer and equal length scaffolds (or contigs) cover at least 50 % of the assembly. L50 is the smallest number of scaffolds (or contigs) whose summed length makes up 50% of the assembly size. For BUSCO assessment, C represents complete BUSCOs, S represents complete and single-copy BUSCOs, D represents complete and duplicated BUSCOs, F represents fragmented BUSCOs and M represents missing BUSCOs.

Table 5. Statistics of repetitive sequences identified in the *L. d. dumerilii* genome.

Category	Total repeat length (bp)	% of assembly
DNA	155,988,597	7.30%
LINE	242,754,702	11.36%
SINE	11,761,904	0.55%
LTR	97,615,246	4.57%
Tandem repeats	178,355,571	8.35%
Unknown	704,263,255	32.96%
Combined	1,205,873,056	56.43%

Note: DNA: DNA transposon; LINE: long interspersed nuclear element; SINE: short interspersed nuclear elements; LTR: long terminal repeat.

Table 6. Summary of protein-coding genes annotated in the *L. d. dumerilii* genome.

Characteristics of protein-coding genes	
Total number of protein-coding genes	24,548
Gene space (exon + intron; Mb)	634.6 (26.7 % of assembly)
Mean gene size (bp)	25,851
Mean CDS length (bp)	1,552
Exon space (Mb)	38.1 (1.6 % of assembly)
Mean exon number per gene	8.6
Mean exon length (bp)	181
Mean intron length (bp)	3,217
Functional annotation by searching public databases	
% of proteins with hits in UniProtKB/Swiss-Prot	95.8
% of proteins with hits in NCBI nr database	99.6
% of proteins with KO assigned by KEGG	71.3
% of proteins with functional annotation (combined)	99.9

Table 7. The percentages of properly paired reads and other mapped reads locating on different genomic regions.

Genomic regions	Properly paired reads	% Properly paired reads	Other mapped reads	% Other mapped reads
Scaffold ends	256,786	6.42%	653,026	16.33%
Near assembly gaps	450,707	11.27%	1,619,089	40.48%
Exon	112,389	2.81%	43,808	1.10%
Intron	1,011,320	25.28%	570,089	14.25%
Tandem repeats	436,761	10.92%	954,934	23.87%
Other repeats	2,565,614	64.14%	2,955,171	73.88%

Note: The percentages were estimated based on 4 million reads randomly selected from each of the two read groups. Scaffold ends: 500 bp regions next to the head or tail of each scaffold; Near assembly gaps: 500 bp flanking region of an assembly gap which contains no less than 50 Ns; Tandem repeats: repeats derived from Tandem Repeats Finder; Other repeats: repeats derived from RepeatMasker, RepeatProteinMask and RepeatModeler.