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Morphological stasis masks ecologically
divergent coral species on tropical reefs
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ABSTRACT

Coral reefs are the epitome of species diversity, yet the number of described scleractinian coral
species, the framework-builders of coral reefs, remains moderate by comparison. DNA
sequencing studies are rapidly challenging this notion by exposing a wealth of undescribed
diversity, but the evolutionary and ecological significance of this diversity remains largely
unclear. Here, we present an annotated genome for one of the most ubiquitous corals in the
Indo-Pacific (Pachyseris speciosa), and uncover through a comprehensive genomic and
phenotypic assessment that it comprises morphologically indistinguishable, but ecologically
divergent cryptic lineages. Demographic modelling based on whole-genome resequencing
disproved that morphological crypsis was due to recent divergence, and instead indicated
ancient morphological stasis. Although the lineages occur sympatrically across shallow and
mesophotic habitats, extensive genotyping using a rapid diagnostic assay revealed
differentiation of their ecological distributions. Leveraging “common garden” conditions
facilitated by the overlapping distributions, we assessed physiological and quantitative skeletal
traits and demonstrated concurrent phenotypic differentiation. Lastly, spawning observations
of genotyped colonies highlighted the potential role of temporal reproductive isolation in the
limited admixture, with consistent genomic signatures in genes related to morphogenesis and
reproduction. Overall, our findings demonstrate how ecologically and phenotypically divergent
coral species can evolve despite morphological stasis, and provide new leads into the potential
mechanisms facilitating such divergence in sympatry. More broadly, they indicate that our
current taxonomic framework for reef-building corals may be scratching the surface of the
ecologically relevant diversity on coral reefs, consequently limiting our ability to protect or

restore this diversity effectively.
INTRODUCTION

Tropical coral reefs are known for their high levels of biodiversity, harboring hundreds of
thousands of macroscopic and an unknown number of microscopic species (1). Interestingly,
the contribution of reef-building corals remains surprisingly moderate with only ~750-850
valid species accepted worldwide (2—5). Under the current taxonomic framework, species are
distinguished primarily based on diagnostic skeletal characteristics, an approach that originated
from the early days of coral reef science when underwater observations were extremely

challenging (6, 7). Skeletal traits at both the corallite and colony level are often highly variable
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within species and across environments, posing a major challenge to coral taxonomy (8).
Conversely, skeletal traits are known to converge and can even obscure deep phylogenetic
divergences at the family level (9, 10), highlighting further challenges to the use of the skeletal
morphospace as a taxonomic framework. Molecular approaches have helped resolve some of
these difficulties by differentiating morphological plasticity from actual species traits (11, 12),
confirming species separation in the context of subtle morphological differences (13—15), and
clarifying deeper evolutionary relationships within the order (9, 10). However, molecular
studies have also uncovered a wealth of undescribed diversity within taxonomic species that

cannot be readily explained (11, 16-24).

The notion that scleractinian coral diversity may be far greater than acknowledged through
conventional taxonomy is not novel. A seminal review published over two decades ago
highlighted the ubiquitous presence of sibling species in the marine realm, and stressed the
importance of exploring its ecological relevance (25). Since then, molecular studies have
indeed exposed “taxonomically cryptic diversity” (i.e. genetically distinct taxa that have been
erroneously classified under a single species name) within many coral genera (21, 26).
However, much of this cryptic diversity is being exposed through population genetic studies
designed to relate genetic patterns to geography (26), and consequently, it usually remains
unclear to what extent they represent phenotypically and ecologically distinct entities [but see
(27-31)], including whether lineages are truly morphologically cryptic. In fact, well-studied
examples of coral species complexes are characterized by substantial morphological
differentiation (14,16,17,20,27), and we still know little about the potential for ecological or
phenotypic differentiation when gross morphology is constrained. The traditional use of only
a few genetic loci has also impeded an assessment of the evolutionary context of cryptic
diversification, and the respective roles of neutral versus selective processes on ecological or
reproductive traits (31, 32). Thus, the ecological relevance of cryptic diversity in corals remains
poorly understood and is therefore rarely considered in ecological studies or conservation

planning.

To address this knowledge gap, we conducted a comprehensive assessment to evaluate the
nature of cryptic diversity in Pachyseris speciosa (“Serpent Coral”; Figure 1a), one of the most
ubiquitous and abundant species across the Indo-Pacific (3). This zooxanthellate coral has one
of the widest bathymetric distributions on tropical coral reefs —from close to the surface to

lower mesophotic depths (~5-95 m) (33)— and has therefore been the focus of studies assessing
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92 its ecological opportunism (34—37). Our initial assessment of its genetic structure indicated the
93  presence of undescribed sympatric lineages, and we therefore used this as an opportunity to
94  explore the extent to which cryptic diversity can obscure genomic, ecological and phenotypic
95  divergence, and how reproductive isolation may be maintained in such closely-related lineages.
96  Specifically, our study (summarized in Figure 1) involved the generation of an annotated
97  genome for P. speciosa using long-read sequencing, which we used as a reference for reduced-
98  representation sequencing (nextRAD) of populations ranging from across the geographic and
99  bathymetric distribution of this species. Subsequent whole-genome resequencing (WGS) of
100  representative coral colonies was implemented for demographic modelling, and for the
101  development of a cleaved amplified polymorphic sequence (CAPS) assay to assess ecological,
102 phenotypic and reproductive differentiation in the uncovered lineages from Australia. Overall,
103 our findings demonstrate the potential for ecological and phenotypic divergence under
104  morphological stasis, and highlight that conventional skeleton-based taxonomy may be
105  substantially underestimating the ecologically-relevant diversity of scleractinian corals on

106  tropical coral reefs.
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108 Figure 1. Overview of the study system and sequencing/genotyping approach. (A) Pachyseris speciosa at 40
109 m depth at Holmes Reef (Western Coral Sea). (B) Predicted geographic distribution of P. speciosa (sensu lato)
110 based on the TIUCN Red List (2009), and the location of the five regions included in this study. (C) Sampled
111 habitats and their corresponding water depths (£ 3 m). (D) Genome assembly summary statistics. (E) Circular
112 phylogenetic tree summarizing the reduced-representation sequencing (nextRAD) data, and showing the
113 partitioning into four major lineages. Sample region is indicated in the inner surrounding circle, and selection for
114 whole-genome sequencing indicated in the outer surrounding circle. (F) Admixture proportion (PCAngsd) based

115 on whole-genome resequencing (WGS) of representative samples belonging to the three lineages occurring on the
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116 Great Barrier Reef. (G) Geographic and ecological distribution of the lineages across habitats and regions
117 (excluding Israel). Assignments are based on the CAPS genotyping assay merged with the nextRAD data (note

118  that assignments for Okinawa are based exclusively on nextRAD data).

119 Results and Discussion

120 Genome assembly and annotation. We generated a highly contiguous reference genome for
121 Pachyseris speciosa, assembled through PacBio single-molecule long-read sequencing (Figure
122 1d; Table S2). The assembled genome size is 984 Mb, representing one of the largest coral
123 genomes reported to date, and comprising 2,368 contigs with a N50 size of 766.6 kb (largest
124 contig 4.6 Mb; Table S3,4). In total, 39,160 protein-coding genes were predicted — a number
125  comparable to that of two other recently sequenced corals from the “robust” clade [i.e. one of
126  the two major clades of extant corals; (38)] — with the gene model being 90.5% complete and
127 5.1% partial (based on conserved single-copy metazoan orthologous genes) (Table S5,6,7). De
128  novo repeat annotation revealed that 52.2% of the assembly is occupied by repetitive elements,
129  which are generally better-resolved in long-read assemblies (39). The dominance of
130  transposable elements compared with other robust corals indicates that the larger genome size

131  may be substantially driven by expansion of those transposons (38) (Table S8).

132 Pachyseris speciosa represents a sympatric species complex. The annotated genome
133 assembly was used as a reference for reduced-representation sequencing (nextRAD), where we
134 sequenced P. speciosa colonies (n = 501) from >30 sites from Australasia [the Great Barrier
135  Reef (GBR), the Western Coral Sea (WCS), and Papua New Guinea (PNG)], Okinawa (OKI),
136  and Israel (ISR) (Figure 1E, S1; Table S1). Genetic structuring based on principal component
137  and neighbor-joining analyses revealed the presence of four highly divergent lineages (Figures
138 2, S2). One lineage represents the geographically separated Israel population (Gulf of Agaba)
139  and indicates the existence of a distinct species in the Red Sea region, corroborating a pattern
140  observed in other corals [e.g. Stylophora pistillata; (24, 40-41)]. The other three lineages
141  occurred sympatrically on all of the sampled reefs in Australasia, hereafter arbitrarily referred
142 to as “green”, “blue” and “red” lineage, with the assembled reference genome representing a
143 genotype belonging to the “green” lineage. Subsequent structure analyses using a maximum
144 likelihood framework (snapclust) indicated an optimum between four and six clusters, and the
145  additional two clusters (for k = 5 and 6) correspond to two populations from Okinawa that
146  grouped with respectively the “blue” and “green” lineages but were substantially differentiated

147  from those in eastern Australia (Figures S2,S3). Beyond this expected geographic


https://doi.org/10.1101/2020.09.04.260208
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.04.260208; this version posted November 3, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

148  differentiation of sub-tropical Okinawa, the overall structuring demonstrates the presence of

149  genetically distinct lineages within the currently acknowledged species, P. speciosa.

150 Compared to the divergent, congeneric species Pachyseris rugosa [characterized by a more
151  irregular and bifacial morphology (2), outgroup at the bottom of the tree; Figure 2a], the three
152  P. speciosa lineages in Australasia represent a closely-related species complex. Differentiation
153  between the “red”, “green” and “blue” lineages is observed across the genome and global mean
154  Fsr values are much higher (average = 0.1256; range: 0.1032-0.1613) than between geographic
155  regions within these lineages (average = 0.0207; range: 0.0130-0.0339) (Figure 2, S4). The two
156  lineages in Okinawa are more related to the “green” and “blue” lineages, respectively, from
157  Australia than to each other (global mean Fst = 0.1324). Similarly, the “purple” lineage
158  exclusive to Israel (Red Sea) is on average the most divergent of all the lineages, with the
159  closest relatives representing the “blue” lineage from Australia. The apparent restricted
160  distribution of the “red” lineage in Australasia indicates that it may have originated in that
161  region. Indications of admixture (i.e. samples with a maximum assignment < 0.95) between
162  the three lineages were minimal with the exception of one F1 hybrid on the Great Barrier Reef
163 (Figure 2, S5). This coral had a roughly equal assignment to the “green” and “blue” cluster,
164  and a heterozygous genotype for 35 out of 39 genotyped SNPs that were alternatively fixed
165  between corals belonging to these two clusters. Admixture signatures of most other putatively
166  admixed samples were indicative of analytical artefacts (e.g. due to admixture with an
167  unsampled population/lineage; Figure S5). Overall, the limited admixture and presence of only
168  a single F1 hybrid (with its reproductive viability being unknown), indicates that the three
169  lineages have evolved reproductive isolation. This, combined with their widespread sympatric
170  distribution, confirms that these lineages represent distinct species (with their formal
171  description underway; Muir and Bongaerts in preparation), adding to the ever-growing number

172 of cryptic species within the Scleractinia (21, 26).
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174 Figure 2. Genetic structuring and genome-wide differentiation of P. speciosa lineages. (A) Neighbor-joining
175  tree based on variant nextRAD sites, with matching snapclust (k = 4 to 6) and STRUCTURE (k = 6) assignments
176 for each coral colony. Dots in the “location” column indicate sampling population (geographically arranged within
177  region) with the color indicating STRUCTURE assignment (also indicated in the branch tips of the tree; black
178 indicates potentially admixed samples with a maximum assignment of < 0.95). The bottom clade represents the
179  Pachyseris rugosa outgroup (n = 3) and is not included in the adjacent clustering analyses. (B) Manhattan plots
180 showing genome-wide distribution of Fsr values for different P. speciosa lineage comparisons. Individual single-
181 nucleotide polymorphisms (SNPs) are plotted along pseudochromosomes (mapped to Acropora millepora for
182 visualization purposes; showing only those that mapped), with the alternating colors indicating the two lineages
183 compared in each plot (“green”, “red”, “blue” and “purple”). Gray and black dots indicate SNPs that are
184 alternatively fixed, with black SNPs indicating those that are missense variants (labelled with their gene ID).
185 Missense variants relating to the inter-comparison of the three Australasian lineages are additionally labelled with
186  the corresponding UniProt gene and protein names (note that two variants, identified as located in Hecw2 and an

187 unidentified gene, are not mentioned here as they did not map to 4. millepora chromosomes).

188  Morphologically cryptic lineages despite ancient divergence. An assessment of in situ
189  photographs of colonies from the Great Barrier Reef and Western Coral Sea unveiled extensive
190  morphological variability within lineages, but with no apparent distinguishing features between
191  lineages (n = 157; Figure S6). Examination of qualitative traits (including known diagnostic
192 traits for the genus) using skeletal specimens, again found substantial variation but this was not
193  partitioned across the three different lineages (n = 36; Table S9). Although some of the skeletal
194  features overlapped with those described for other Pachyseris species (2, 42), the lineages did
195  not align with one of the other five taxonomic species described in this genus [of which only

196  two are reported from Australasian waters; (2)]. An initial assessment of micro-skeletal features


https://doi.org/10.1101/2020.09.04.260208
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.04.260208; this version posted November 3, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

197  using scanning electron microscopy also did not reveal differentiating characteristics between

198  the three lineages (n = 15; Figure S7).

199 In contrast to the lineages being morphologically indistinguishable, they are divergent
200  genomically with 146 alternatively-fixed SNPs among the three lineages in Australia (0.5 % of
201 29,287 SNPs; Figure 2). This included 8 missense variants (i.e. a nonsynonymous substitution
202  producing a different amino acid) located in genes of which 7 had homology to UniProtDB
203  genes (IDs: Rabepl, Yapl, Pappa, HecW2, Zswim8, Fgfr2 and DlxIa). The Fibroblast growth
204  factor receptor 2 gene (Fgfr2) is thought to be involved in environmental sensing and larval
205  metamorphosis (43-46). The Dixla gene is part of the homeobox-containing superfamily
206  generally associated with morphogenesis (47). The Pappa gene encodes the pregnancy-
207  associated plasma protein-A, which is upregulated during spawning in Orbicella franksi and

208  Orbicella annularis (48).

209  Whole-genome resequencing of representative “green”, “blue” and “red” colonies from the
210  Great Barrier Reef (n = 20 at 4-29X coverage; Table S10) further confirmed the strong genetic
211  differentiation with minimal admixture (Figure 1f, S8). To assess whether the three lineages
212 have diverged recently and/or experienced differences in demographic history, we used the
213 Pairwise Sequentially Markovian Coalescent [PSMC; (49)] approach for a subset of colonies
214  that were sequenced at greater depth (14-27x coverage; n = 10). Modelled demographic
215  histories showed much greater variation between than within lineages, suggesting an ancient
216  divergence as far back as 10 mya (Figure 3), and that the cryptic nature is due to morphological
217  stasis rather than recent divergence. All lineages peaked in effective population size around 1-
218 3 mya which is consistent with PSMC analyses in recent studies on other robust (50) and
219  complex (51) corals. We also constructed circularized mitochondrial genomes from the whole-
220  genome resequencing data (~19 kbp in length), which in contrast only showed a limited
221  assortment of mitochondrial haplotypes into lineage-specific groups (Figure S9). Given the
222 limited nuclear admixture, this is likely to reflect incomplete lineage sorting and/or ancient
223 introgression, combined with very low mutation rates typical of anthozoans (52, 53). It also
224 reiterates how mitochondrial regions in corals for species-level phylogenetics should be used

225  cautiously (39).
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227 Figure 3. Demographic history as inferred through whole-genome resequencing. Changes in inferred,
228 effective population size as estimated using MSMC for 10 deeply sequenced coral colonies representing the three
229 Pachyseris lineages occurring sympatrically in Australia. The timescale is shown in units of numbers of
230 generations in the past. Additional x-axis labels show time in the past assuming a generation time of 35 years. A

231  mutation rate of 4.83¢"® was assumed for all calculations (50).

232 Ecological and phenotypic differentiation of the lineages. Given the lack of diagnostic
233  morphological features discriminating the three Pachyseris lineages, we designed a cleaved
234 amplified polymorphic sequence (CAPS) assay based on the nextRAD data to allow for high-
235  throughput or field-based genotyping (Figure S10; Table S11). We used the rapid assay to
236  expand the number of identified genotypes in Australia (n = 1,442) to include a broad range of
237  reef habitats and locations, and assessed whether there are other ecological and/or phenotypic
238  traits that distinguish the three lineages. The genotyping confirmed the ubiquitous sympatric
239  distribution, with 39 out of 45 sampled Australasian sites containing representatives of all three
240  lineages (Figure 4A). However, there was a significant overall effect of habitat and region on
241  the relative abundances of the three lineages, with pairwise tests indicating significant
242 differences between shallow (back-reef and 10 m) and mesophotic (40 m and 60 m) habitats
243 (confined to GBR and WCS; Table S12; Figure 1G). When assessing the proportions of
244  individual lineages over depth, the “red” lineage was significantly more abundant on shallow
245  (back-reef and 10 m) as compared to intermediate (20 m) and mesophotic (40 and 60 m)
246  habitats, with the opposite pattern observed for the “green” and “blue” lineages (Figure 4b;
247  Table S13). Although the “red” lineage was not found in Okinawa, the divergent “green” and
248  “blue” lineages (as identified using nextRAD sequencing) appeared to be associated with
249  respectively shallow and mesophotic depths (Figure 1G, 4A), indicating there may also be

250  distinct ecological distributions in Okinawa.
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251 To examine potential phenotypic differentiation, we quantitatively assessed skeletal and
252  physiological differences between lineages in Australia. Principal component analyses based
253  on coral host skeletal traits (four traits; n = 54), physiological traits (protein and lipid content;
254 n=69) and Symbiodiniaceae physiological traits (cell density and five pigment traits; n = 70)
255 revealed separation between lineages despite high levels of variance (Figure 4D-F). The
256  "green" and "red" lineages differed significantly across all three trait groups, whereas the
257  “blue” and “red” lineages differed in skeletal traits and “blue” and “green” in symbiont
258  physiological traits (Table S14). In terms of skeletal traits, the mean density of septa (i.e.
259  vertical blades inside the corallite) was significantly lower in the “red” lineage, but not
260  morphologically diagnostic given the overlapping ranges (Figure S11; Table S15). Observed
261  ranges of physiological traits were similar to those reported in other studies that include P.
262  speciosa (34, 35); however separating the three lineages revealed differences in protein density,
263  Symbiodiniaceae density, and photosynthetic pigment concentrations (Figure S12; Table S15).
264  Although P. speciosa (sensu lato) prefers shaded or deeper environments, it has been
265  considered an efficient autotroph across its entire depth range (36). However, we observed a
266  tendency for different lineages to vary in how they trade symbiont densities for chlorophyll
267  concentration per symbiont cell, where lineages with thicker tissues (greater protein densities)
268  hosted greater symbiont densities (Figure S12; Table S15). Although sample sizes were small
269  relative to the observed variance, the results demonstrate the existence of phenotypic
270  differences between the morphologically cryptic lineages, pointing towards distinct

271  physiological strategies.

272  To explore whether the phenotypic differences may be attributed to differences in coral-
273  associated bacteria or algal symbionts (Symbiodiniaceae), these microbial communities were
274  compared among the three lineages. Associated bacterial communities were assessed by
275  genotyping the host lineages from samples of a previously published 16S rRNA gene
276  metabarcoding dataset [n = 43; (35)]. No significant differences were found in the bacterial
277  community structure, richness, and diversity of the three lineages (Figure S13), but regional
278  patterns were present (WCS and GBR, Figure 4G, Table S16) confirming earlier findings (37).
279  Three bacterial operational taxonomic units (OTUs) from the genera Corynebacterium and
280  Gluconacetobacter were consistently found in the three lineages, across regions. Despite the
281  lack of differences in the overall bacterial communities, there were two unique OTUs that were

282  only found in the “blue” and “red” lineage, respectively (Figure S13).

10
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283  To investigate potential differences in lineage-associated Symbiodiniaceae communities, we
284  screened the nextRAD data for contaminating chloroplast or mitochondrial Symbiodiniaceae
285  loci. We found three organellar loci that were genotyped for several hundred samples, but these
286  were largely invariant within Australian samples. This is in line with a previous study (from
287  West Australia) that observed a single Symbiodiniaceae type in P. speciosa over depth (34),
288  although some depth partitioning was observed in the Red Sea (35). More detailed
289  mitochondrial characterization was conducted by aligning whole-genome resequencing data
290  from the three lineages to the Cladocopium goreaui genome [C1; (52)]; this revealed a highly
291  reticulated haplotype network based on an 8 kb mitochondrial region with 99.7% similarity
292 across samples (n = 16). Out of the eleven haplotypes, two were shared between the “green”
293  and “blue” lineages, whereas the remaining haplotypes were found only once or multiple times
294  but in a single lineage (Figure S14). Overall, microbial associations appeared to be either
295  primarily driven by environment (in the case of the bacterial communities) or were highly
296  consistent (Symbiodiniaceae), indicating that observed phenotypic differences between

297  lineages were unlikely driven by distinct microbial associations.
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Figure 4. Ecological, phenotypic and reproductive characterization. (A) Proportional composition of
Pachyseris lineages across geographic locations and depth/habitat. Assignments are based on the CAPS
genotyping assay merged with the nextRAD data. Locations within regions are ordered from north to south (top
to bottom). (B) Boxplots summarizing relative abundances of Pachyseris lineages for each habitat and region
(Great Barrier Reef and Western Coral Sea). Dots represent the proportions for each individual population (n =
41; corresponding to those in panel A). (C) Binary heatmap indicating the spawning status of 54 Pachyseris
colonies (rows) over time (columns) and grouped by lineage. Colonies were collected from shallow depths at
Orpheus Island (Great Barrier Reef) and monitored ex situ between 3 and 9 days after the full moon in
November 2017. Opaque cells indicate the release of eggs (asterisk) or sperm (no symbol). Empty cells indicate
that the colony was isolated and monitored, but that no gametes were observed (e.g. no gamete release was
observed for the “green” lineage). (D) Principal component analysis for four host skeletal traits. (E) Principal
component analysis for two coral host physiological traits: protein and lipid content; PCA). (F) Principal
component analysis for six Symbiodiniaceae photophysiological traits. (G) Principal coordinate analysis for
bacterial community structure (based on 16S amplicon sequencing). Coral colonies are compared within their

own depth groups: shallow (top plots; 10-20 m) and mesophotic (bottom plots; 40-60 m), with most colonies
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314 originating from either 10 or 40 m. Skeletal and physiological traits were measured for samples the WCS,

315 whereas the bacterial included samples from both the GBR (square shapes) and WCS (circle shapes) regions.

316  Temporal reproductive isolation. Given the limited admixture between the sympatrically-
317  occurring P. speciosa lineages, we monitored the reproductive behavior of shallow colonies
318  from Orpheus Island on the Great Barrier Reef. Previous reports from that location indicated
319  spawning of Pachyseris speciosa between 5 and 6 days after the full moon (55). Colonies were
320  collected from the field just after the full moon in November 2017, genotyped using the CAPS
321  assay (which identified 20 “red”, 7 “blue”, and 27 “green” colonies), and monitored ex situ for
322 spawning from 3 to 9 days after the full moon. On day 5, half of the colonies of the “red”
323  lineage released gametes (with one colony releasing also on day 4), with no colonies from the
324  other two lineages releasing gametes (Figure 4C). On day 7, nearly half of the colonies from
325  the “blue” lineage released gametes (with one also releasing on day 6; Figure 4c), with again
326  no colonies from the other two lineages releasing gametes. No gamete release was observed
327  for the “green” lineage within the monitoring period, although the “green” colony from which
328  the draft genome was constructed spawned 8 days after the full moon in December 2014 (see
329  Methods). Overall, the average spawning time of male colonies was 19 min after sunset (n =
330  13), versus an average of 43 min for female colonies (n = 4; Table S18), in line with general
331  observations of males spawning earlier in broadcast spawning coral (56). Attempts to preserve
332 unfertilized eggs in filtered seawater (at ambient temperature) for experimental inter-lineages

333 crosses were not successful (complete degradation within 24 hours).

334  The temporal segregation in the timing of gamete release observed during the November 2017
335 spawning provides a potential mechanism to explain the minimal admixture in these
336  sympatrically-occurring lineages. Temporal reproductive isolation is a common strategy for
337 minimizing interspecific gamete encounters in scleractinian corals, with the timing difference
338 ranging from hours (57, 58) to months (59, 60). The two-day difference in gamete release
339  between “red” and “blue” P. speciosa points towards differences in processes entrained by the
340  lunar cycles, rather than environmental seasonal or diurnal cycles (61-63). The identification
341  of fixed high-impact gene variants related to environmental sensing, development, and
342 gametogenesis provide initial leads to the genomic basis of this potential prezygotic

343 reproductive barrier.
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344 Given the predicted split-spawning (i.e. mass spawning occurring across at least two
345  consecutive months) in 2017, we maintained a subset of the colonies (n = 36) for additional
346  spawning monitoring after the full moon of December in that year. Observations undertaken
347  for those colonies saw gamete release for only one colony of the “blue” lineage and one of the
348  “green” lineages (both on day 4 after the full moon). In total, two-thirds of the colonies from
349  the “red” lineage released gametes, with release observed in the period between day 3 and day
350 8, with most of the release occurring on day 4 (8 colonies versus 1-3 colonies on the other days)
351 (Table S17). While these observations confirmed the occurrence of a split spawning, they may
352 not reflect natural release patterns, given the extended time these colonies were removed from
353  natural cues (e.g. exposure to lunar cycle, lack of exposure to tides). In addition, their prolonged
354  close proximity to one another in the single tank (“raceway”) in which they were kept, may
355 have affected the timing of release [e.g. due to chemical signaling; (62)]. The observations
356  confirm the potential for experimental inter-lineage crossings under artificial conditions, to

357  assess whether temporal reproductive isolation is accompanied by gametic incompatibility.

358  Geographic and habitat structuring within lineages. Within each of the three Australasian
359 lineages, principal component analyses identified considerable substructuring, which was
360 driven to a large extent by sampling region (Great Barrier Reef, Western Coral Sea and Papua
361 New Guinea; Figure 5A,C). However, additional substructure was identified (2-3 apparent
362  clusters) in the GBR samples that could not be linked to subregions, locations or habitat (Figure
363  5C). Discriminant analysis of principal components (DAPC) further confirmed the genetic
364  differentiation among the three sampling regions (Figure 5B), indicating restricted gene flow
365  Dbetween these regions with a some exceptions indicating recent admixture. Although genetic
366  differentiation between the GBR and WCS has been observed previously in other coral species
367  (64-65), here we identify further differentiation between individual WCS atolls confirming
368 their rather isolated nature as they are surrounded by deep oceanic water. In contrast, only very
369  subtle substructuring was identified between the “Northern” and “Far Northern” regions of the
370  GBR (Figure 5C). The inability to detect distinct location- or region-associated clusters on the
371  GBR could indicate the potential for gene flow over large distances, a pattern observed for
372  other coral species and facilitated by the high density of reefs along the outer shelf (64—68).
373  Nonetheless, given the presence of substructuring within each of the locations [a pattern
374  frequently observed in scleractinian corals; (22)], such “panmixia” should be interpreted with

375  caution.
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376  Where other studies found a clear partitioning of cryptic lineages across habitats (28, 29), we
377  observed substantial overlap between the depth distributions of the three Pachyseris lineages
378  (e.g. the “red” lineage is present at shallow and mesophotic depths, but at lower relative
379  abundances in the latter). Surveys during the 2016 mass bleaching found that most Pachyseris
380  colonies down to 25 m were bleached, while fewer than half of the colonies at 40 m depth were
381  bleached (69). Opportunistic genotyping of 14 healthy and 3 bleached colonies collected from
382 40 m during this event found healthy representatives of all three lineages (8 “green”, 5 “red”,
383  and 1 “blue” healthy colony; versus 2 “green” and 1 “blue” bleached colony). The broad depth
384  range of these lineages combined with the strong depth-attenuation of bleaching in Pachyseris
385  (69), raises the question whether deep populations may benefit those at shallow depth by acting
386  as a refuge and source of reproduction (70). Unfortunately, genetic differentiation between
387  habitats (within each lineage) could not be adequately assessed at individual locations given
388  the small sample sizes after splitting into cryptic lineages. When merging individual locations
389  on the GBR, DAPC showed some discrimination between habitat clusters (Figure 5D, S15).
390  This separation was driven by many low-contributing and several high-contributing alleles

391  indicating there may be potential limitations to such vertical connectivity (Figure S15).
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393 Figure 5. Genetic structuring within lineages by region and habitat. (A) Map showing the Australasian
394 sampling locations/regions included in the DAPC plots. (B) DAPC assignment plots for each of the three lineages
395 (from top to bottom: “green”, “red”” and “blue”) using location as prior (but ignoring habitat and grouping ‘“North”
396  and “Far North” locations on the Great Barrier Reef). (C) Principal component analyses for each of the three
397 lineages (from top to bottom: “green”, “red” and “blue”), showing structuring by region as well as unexplained

398  substructuring within the Great Barrier Reef populations. (D) DAPC scatter plot for the Great Barrier Reef using
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399  habitat as prior. PCA and DAPC scatter plots show individual colonies connected to respectively region and

400 habitat centroids, and analyses are based on nextRAD data after the removal of outliers.

401  Conclusions. Tens of thousands of multicellular species have been described in association
402  with tropical coral reefs, yet this is estimated to represent <10% of their actual species richness
403  (1). Reef-building corals (Scleractinia) have been considered to contribute relatively little to
404  this estimated discrepancy, with the taxonomy considered to be relatively complete compared
405  to other less-studied coral reef taxa (1). Molecular approaches have indeed corroborated many
406  of the current taxonomic species (71), but have also unveiled extensive undescribed diversity
407  within the traditional morphological boundaries (21, 26). This pattern is likely to be accelerated
408  given the transition to genome-wide sequencing approaches, solving the resolution issues
409  associated with traditional sequence markers (30, 72, 73). The inability to discriminate this
410  diversity as readily identifiable taxonomic units in the field (or even through close skeletal
411  examination) has raised concerns about the practicality and necessity of incorporating it into
412 our systematic framework, particularly as the lack of morphological differentiation can lead to
413 the assumption of negligible physiological differentiation. While we found no diagnostic
414  morphological characters distinguishing the three Pachyseris lineages in this study, the
415  genome-wide differentiation was accompanied by differences in ecological, physiological, and
416  reproductive traits, demonstrating how morphological stasis can mask substantial ecological
417  divergence. Failure to recognize such cryptic diversity will result in erroneous interpretations
418  of species distributions, extinction risk, and spatial genetic differentiation (21, 26), all with
419  critical ramifications for conservation management. In light of the rapid degradation of the
420  world’s coral reefs, it is critical to acknowledge and start capturing this hidden diversity to

421  improve our understanding and ability to protect these fragile ecosystems.

422 Methods overview

423  We assembled and annotated a de novo reference genome using PacBio sequencing (~100x
424  coverage) of a sperm sample from a Pachyseris speciosa colony from Orpheus Island on the
425  Great Barrier Reef. This was used as a reference for reduced-representation sequencing
426  (nextRAD) of P. speciosa colonies (n = 501) from shallow and mesophotic habitats in five
427  different regions (Great Barrier Reef, Western Coral Sea, Papua New Guinea, Okinawa and
428  Israel), sequenced across 4 Illumina NextSeq 500 lanes. Whole-genome re-sequencing of

429  representative P. speciosa samples (n = 20) was then undertaken for historic demographic
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430  modelling, using the Illumina Nextera protocol at ~5X or ~20X coverage across 8 Illumina
431  HiSeq 2500 lanes. Given the lack of diagnostic morphological characteristics distinguishing
432  the lineages, we designed a cleaved amplified polymorphic sequence (CAPS) assay to increase
433 the number of genotyped samples (n = 1,442), and assess ecological, phenotypic and
434  reproductive differences. Morphological differences between lineages were assessed through
435  in situ photographs (n = 157), examination of qualitative traits in bleach-dried skeletons (n =
436  36), and micro-skeletal features using scanning electron microscopy (n = 15). Quantitative
437  measurements were undertaken for five skeletal characters (n = 54). Physiological
438  characterization was undertaken through protein and lipid quantification, Symbiodiniaceae cell
439  counts, and photopigment quantification using high-performance liquid chromatography
440  (HPLC) (n=73). Spawning behavior was assessed through reproductive monitoring of colony
441  fragments (n = 54) during November/December 2017 at the Orpheus Island Research Station.
442  Microbiome characterization was undertaken by genotyping host lineages (n = 43) of a
443  previous study based on 16S rRNA amplicon sequencing (37). See SI Appendix, Supplementary
444  Methods for a detailed explanation of all the methods.

445  Data Availability. Raw sequence data for the genome and transcriptome assembly are
446  available through ENA accession number PRJEB23386, the reduced-representation data
447  through XXXX, and the whole-genome resequencing through XXXX. Genome assembly,
448  variant call datasets, -electronic notebooks, and scripts are accessible through

449  https://github.com/pimbongaerts/pachyseris.
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