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Abstract

Polyphenols, natural products present in plant-based foods, play a protective role
against several complex diseases through their antioxidant activity and by diverse
molecular mechanisms. Here we developed a network medicine framework to uncover
the mechanistic roles of polyphenols on health by considering the molecular interactions
between polyphenol protein targets and proteins associated with diseases. We find that
the protein targets of polyphenols cluster in specific neighborhoods of the human
interactome, whose network proximity to disease proteins is predictive of the molecule’s
known therapeutic effects. The methodology recovers known associations, such as the
effect of epigallocatechin 3-O-gallate on type 2 diabetes, and predicts that rosmarinic
acid (RA) has a direct impact on platelet function, representing a novel mechanism
through which it could affect cardiovascular health. We experimentally confirm that RA
inhibits platelet aggregation and alpha granule secretion through inhibition of protein
tyrosine phosphorylation, offering direct support for the predicted molecular mechanism.
Our framework represents a starting point for mechanistic interpretation of the health
effects underlying food-related compounds, allowing us to integrate into a predictive

framework knowledge on food metabolism, bioavailability, and drug interaction.
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Introduction

Diet plays a defining role in human health. Indeed, while poor diet can significantly
increase the risk for coronary heart disease (CHD) and type 2 diabetes mellitus (T2D), a
healthy diet can play a protective role, even mitigating genetic risk for CHD".
Polyphenols are a class of compounds present in plant-based foods, from fruits to
vegetables, nuts, seeds, beans (e.g. coffee, cocoa), herbs, spices, tea, and wine, with
well documented protective role as antioxidants, which affect several diseases, from
cancer to T2D, cardiovascular, and neurodegenerative diseases®>. Previous efforts
profiled over 500 polyphenols in more than 400 foods*® and have documented the high
diversity of polyphenols to which humans are exposed through their diet, ranging from
flavonoids to phenolic acids, lignans, and stilbenes.

The underlying molecular mechanisms through which specific polyphenols exert
their beneficial effects on human health remain largely unexplored. From a mechanistic
perspective, dietary polyphenols are not engaged in endogenous metabolic processes
of anabolism and catabolism, but rather affect human health through their anti- or pro-
oxidant activity®, by binding to proteins and modulating their activity”®, interacting with
digestive enzymes®, and modulating gut microbiota growth'®**. Yet, the variety of
experimental settings and the limited scope of studies that explore the molecular effects
of polyphenols have, to date, offered a range of often conflicting evidence. For example,
two clinical trials, both limited in terms of the number of subjects and the intervention
periods, resulted in conflicting conclusions about the beneficial effects of resveratrol on
glycemic control in T2D patients'**3, We, therefore, need a framework to interpret the
evidence present in the literature, and to offer in-depth mechanistic predictions on the
molecular pathways responsible for the health implications of polyphenols present in
diet. Ultimately, these insights could help us provide evidence on causal diet-health
associations, guidelines of food consumption for different individuals, and help to
develop novel diagnostic and therapeutic strategies, which may lead to the synthesis of
novel drugs.

Here, we address this challenge by developing a network medicine framework to
capture the molecular interactions between polyphenols and their cellular binding
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targets, unveiling their relationship to complex diseases. The developed framework is
based on the human interactome, a comprehensive subcellular network consisting of all

known physical interactions between human proteins, which has been validated

previously as a platform for understanding disease mechanisms***°

16,17

, rational drug target
identification, and drug repurposing

We find that the proteins to which polyphenols bind form identifiable
neighborhoods in the human interactome, allowing us to demonstrate that the proximity
between polyphenol targets and proteins associated with specific diseases is predictive
of the known therapeutic effects of polyphenols. Finally, we unveil the potential
therapeutic effects of rosmarinic acid (RA) on vascular diseases (V), predicting that its
mechanism of action is related to modulation of platelet function. We confirm this
prediction by experiments that indicate that RA modulates platelet function in vitro by
inhibiting tyrosine protein phosphorylation. Altogether, our results demonstrate that the
network-based relationship between disease proteins and polyphenol targets offers a
tool to systematically unveil the health effects of polyphenols.

Results

Polyphenol Targets Cluster in Specific Functional Neighborhoods of the Interactome

We mapped the targets of 65 polyphenols (see Methods) to the human
interactome, consisting of 17,651 proteins and 351,393 interactions (Fig 1a,b). We find
that 19 of the 65 polyphenols have only one protein target, while a few polyphenols
have an exceptional number of targets (Fig 1¢). We computed the Jaccard Index (JI) of
the protein targets of each polyphenol pair, finding only a limited similarity of targets
among different polyphenols (average JI = 0.0206) (Supplementary Figure 1a). Even
though the average Jl is small, it is still significantly higher (Z = 147, Supplementary
Figure 1b) than the JI expected if the polyphenol targets were randomly assigned from
the pool of all network proteins with degrees matching the original set. This finding
suggests that while each polyphenol targets a specific set of proteins, their targets are
confined to a common pool of proteins, likely determined by commonalities in the
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96  polyphenol binding domains of the three-dimensional structure of the protein targets®®.
97 Gene Ontology (GO) Enrichment Analysis recovers existing mechanisms® and also
98 helps identify new processes related to polyphenol protein targets, such as post-
99 translation protein modifications, regulation, and xenobiotic metabolism (Fig 1d). The
100 enriched GO categories indicate that polyphenols modulate common regulatory
101 processes, but the low similarity in their protein targets, illustrated by the low average JI,
102 indicates that they target different processes within the same process.
103 We next asked whether the polyphenol targets cluster in specific regions of the
104 human interactome. We focused on polyphenols with more than two targets (n=46, Fig
105 2), and measured the size and significance of the largest connected component (LCC)
106 formed by the targets of each polyphenol. We found that 25 of the 46 polyphenols have
107 alarger LCC than expected by chance (Z-score > 1.95) (Fig le, Fig 2). In agreement
108 with experimental evidence documenting the effect of polyphenols on multiple
109 pathways'®, we find that ten polyphenols have their targets organized in multiple
110 connected components of size > 2.
111 These results indicate that the targets of polyphenols modulate specific well
112  localized neighborhoods of the interactome (Fig 2, Supplementary Figure 1c). This
113  prompted us to explore if the interactome regions targeted by the polyphenols reside
114  within network neighborhoods associated with specific diseases, seeking a network-
115 based framework to unveil the molecular mechanism through which specific
116  polyphenols modulate health.
117
118 Proximity Between Polyphenol Targets and Disease Proteins Reveals their Therapeutic
119 Effects
120

121  Polyphenols can be viewed as drugs in that they bind to specific proteins, affecting their

122  ability to perform their normal functions. We, therefore, hypothesized that we can apply
123 the network-based framework used to predict the efficacy of drugs in specific

124  diseases®!’

to also predict the therapeutic effects of polyphenols. The closer the
125 targets of a polyphenol are to disease proteins, the more likely that the polyphenol will

126  affect the disease phenotype. We, therefore, calculated the network proximity between

4
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127 polyphenol targets and proteins associated with 299 diseases using the closest

128 measure, d., representing the average shortest path length between each polyphenol
129 target and the nearest disease protein (see Methods). Consider for example (-)-

130 epigallocatechin 3-O-gallate (EGCG), a polyphenol abundant in green tea.

131 Epidemiological studies have found a positive relationship between green tea

132 consumption and reduced risk of T2D?*?!, and physiological and biochemical studies
133 have shown that EGCG presents glucose-lowering effects in both in vitro and in vivo
134  models?*?3, We identified 54 experimentally validated EGCG protein targets and

135 mapped them to the interactome, finding that the ECGC targets form an LCC of 17

136 proteins (Z = 7.61) (Fig 3a). We also computed the network-based distance between
137 EGCG targets and 83 proteins associated with T2D, finding that the two sets are

138 significantly proximal to each other. We ranked all 299 diseases based on the network
139  proximity to the ECGC targets in order to determine whether we can recover the 82

140 diseases in which ECGC has known therapeutic effects according to the CTD database.
141 By this analysis, we were able to recover 15 previously known therapeutic associations
142 among the top 20 ranked diseases (Table 1), confirming that network-proximity can

143  discriminate between known and unknown disease associations for polyphenols, as
144  previously confirmed among drugs®®*’.

145 We expanded these methods to all polyphenol-disease pairs, to predict diseases
146  for which specific polyphenols might have therapeutic effects. For this analysis, we

147  grouped all 19,435 polyphenol-disease associations between 65 polyphenols and 299
148 diseases into known (1,525) and unknown (17,910) associations. The known

149 polyphenol-disease set was retrieved from CTD, which is limited to manually curated
150 associations for which there is literature-based evidence. For each polyphenol, we

151 tested how well network proximity discriminates between the known and unknown sets
152 by evaluating the area under the Receiving Operating Characteristic (ROC) curve

153 (AUC). For EGCG, network proximity offers good discriminative power (AUC = 0.78, CI:
154 0.70 - 0.86) between diseases with known and unknown therapeutic associations (Table
155 1). We find that network proximity (d.) offers predictive power with an AUC > 0.7 for 31
156 polyphenols (Fig 3b). The methodology recovers many associations well documented in

157 the literature, like the beneficial effects of umbelliferone on colonrectal neoplasms®*%.
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158 In Table 2 we summarize the top 10 polyphenols for which the network medicine

159 framework offers the best predictive power of therapeutic effects, limiting the entries to
160 predictive performance of AUC > 0.6 and performance over top predictions with

161 precision > 0.6. Given the lack of data on true negative examples, we considered

162 unknown associations as negative cases, observing the same trend when we used an
163 alternative performance metric that does not require true negative labels (i.e. AUC of
164 the Precision-Recall curve) (Supplementary Figure 2).

165 Finally, we performed multiple robustness checks to exclude the role of potential
166 biases in the input data. To test if the predictions are biased by the set of known

167 associations retrieved from CTD, we randomly selected 100 papers from PubMed

168 containing MeSH terms that tag EGCG to diseases. We manually curated the evidence
169 for EGCG's therapeutic effects for the diseases discussed in the published papers,

170  excluding reviews and non-English language publications. The dataset was processed
171  to include implicit associations (see Methods), resulting in a total of 113 diseases

172  associated with EGCG, of which 58 overlap with the associations reported by CTD (Fig
173  3c). We observed that the predictive power of network proximity was unaffected by
174  whether we considered the annotations from CTD, the manually curated list, or the

175 union of both (Fig 3d). To test the role of potential biases in the interactome, we

176 repeated our analysis using only high-quality polyphenol-protein interactions retrieved
177  from ligand-protein 3D resolved structures (Supplementary Figure 1d) and a subset of
178 the interactome derived from an unbiased high-throughput screening (Supplementary
179 Figure 1f). We find that the predictive power was largely unchanged, indicating that the
180 literature bias in the interactome does not affect our findings. Finally, we re-tested the
181 predictive performance by considering not only the therapeutic polyphenol-disease

182 associations, but also the marker/mechanism ones - another type of curated association
183 available in CTD - finding that the predictive power remains largely unchanged

184  (Supplementary Notes, Supplementary Figure 3).

185

186 Network Proximity Predicts Gene Expression Perturbation Induced by Polyphenols

187



https://doi.org/10.1101/2020.08.27.270173
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.27.270173; this version posted February 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

188 To validate that network proximity reflects biological activity of polyphenols observed in
189 experimental data, we retrieved expression perturbation signatures from the

190  Connectivity Map database® for the treatment of the breast cancer MCF7 cell line with
191 21 polyphenols (Supplementary Table 1, Supplementary Figure 4). We investigated the
192 relationship between the extent to which polyphenols perturb the expression of disease
193 genes, the network proximity between the polyphenol targets and disease proteins, and
194  their known therapeutic effects (Fig 4a). For example, we observe different perturbation
195 profiles for gene pools associated with different diseases: for treatment with genistein (1
196 upM, 6 hours) we observe 10 skin disease genes with perturbation score > 2, while we
197 observe only one highly perturbed cerebrovascular disorder gene (Fig 4b). Indeed,

198 network proximity indicates that skin disease is closer to the genistein targets than

199 cerebrovascular disorder, suggesting a relationship between network proximity, gene
200 expression perturbation, and the therapeutic effects of the polyphenol (Fig 4a). To test
201  this hypothesis, we computed an enrichment score that measures the

202  overrepresentation of disease genes among the most perturbed genes (see Methods),
203 finding 13 diseases that have their genes significantly enriched among the most

204  deregulated genes by genistein, of which 4 have known therapeutic associations. We
205 find that these four diseases are significantly closer to the genistein targets than the

206 nine diseases with unknown therapeutic associations (Fig 4c). We observed a similar
207 trend for treatments with other polyphenols, whether we use the same (1uM, Fig 4c) or
208 different (100nM to 10uM, Supplementary Figure 5) concentrations. This result suggests
209 that changes in gene expression caused by a polyphenol are indicative of its therapeutic
210 effects, but only if the observed expression change is limited to proteins proximal to the
211 polyphenol targets (Fig 4a).

212 Consequently, network proximity should also be predictive of the overall gene
213  expression perturbation caused by a polyphenol on the genes of a given disease. To
214  test this hypothesis, in each experimental combination defined by the polyphenol type
215 and its concentration, we evaluated the maximum perturbation among genes for each
216 disease. We then compared the magnitude of the observed perturbation between

217 diseases that were proximal (d,. < 25" percentile, Z4,<-0.5) or distal (d, > 75"

218 percentile, Z,;_ > -0.5) to the polyphenol targets. Figures 5a-b and Supplementary Figure

7
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219 6 show the results for the genistein treatment (1uM, 6 hours), indicating that diseases
220 proximal to the polyphenol targets show higher maximum perturbation values than distal
221 diseases. The same trend is observed for other polyphenols when we use different d,
222  and Z,_thresholds for defining proximal and distant diseases (Figs 5b, Supplementary
223  Figures 6-9), confirming that the impact of a polyphenol on cellular signaling pathways
224 s localized in the network space, being greater in the vicinity of the polyphenol targets
225 compared to neighborhoods remote from these targets. We also considered gene

226  expression perturbations in the network vicinity of the polyphenol targets, regardless of
227  whether the proteins were disease proteins or not, observing higher perturbation scores
228  for proximal proteins in 12 out 21 polyphenols tested at 10uM (Supplementary Figure
229 10). Finally, we find that the enrichment score of perturbed genes among disease genes
230 is not as predictive of the polyphenol therapeutic effects as network proximity

231  (Supplementary Figure 11).

232 Altogether these results indicate that network proximity offers a mechanistic

233 interpretation for the gene expression perturbations induced by polyphenols on disease
234  genes. They also show that network proximity can indicate when gene expression

235 perturbations result in therapeutic effects, suggesting that future studies could integrate
236  gene expression (whenever available) with network proximity as they aim to more

237 accurately prioritize polyphenol-disease associations.

238

239 Experimental Evidence Confirms that Rosmarinic Acid Modulates Platelet Function

240

241 To demonstrate how the network-based framework can facilitate the mechanistic

242  interpretation of the therapeutic effects of selected polyphenols, we next focus on

243  vascular diseases (V). Of 65 polyphenols evaluated in this study, we found 27 to have
244  associations to V, as their targets were within the V network neighborhood

245  (Supplementary Table 3). We, therefore, inspected the targets of 15 of the 27

246  polyphenols with 10 or less targets. The network analysis identified direct links between
247  Dbiological processes related to vascular health and the targets of three polyphenols:
248 gallic acid, rosmarinic acid, and 1,4-naphthoquinone (Supplementary Figure 12,

249  Supplementary Notes). The network neighborhood containing the targets of these

8
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250 polyphenols suggests that gallic acid activity involves thrombus dissolution processes,
251 rosmarinic acid acts on platelet activation and antioxidant pathways through FYN and its
252 neighbors, and 1,4-naphthoquinone acts on signaling pathways of vascular cells

253 through MAP2K1 activity (Supplementary Figure 12, Supplementary Notes).

254 To validate the developed framework, we set out to obtain direct experimental
255 evidence of the predicted mechanistic role of rosmarinic acid (RA) in V. The RA targets
256 are in close proximity to proteins related to platelet function, forming the RA-V-platelet
257 module: a connected component formed by the RA target FYN and the V proteins

258 associated with platelet function PDE4D, CD36, and APP (Fig 6a). We, therefore, asked
259 whether RA influenced platelet activation in vitro. As platelets can be stimulated through
260 different activation pathways, RA effects can, in principle, occur in any of them. To test
261 these different possibilities, we pretreated platelets with RA and then activated with: 1)
262  glycoprotein VI by collagen or collagen-related peptide (CRP/CRPXL); 2) protease-

263 activated receptors-1,4 by thrombin receptor activator peptide-6 (TRAP-6); 3)

264  prostanoid thromboxane receptor by the thromboxane A, analogue (U46619); and 4)
265 P2Y1/12 receptor by adenosine diphosphate (ADP)?’. When we compared the network
266 distance between each stimulant receptor and the RA-V-platelet module (Fig 6a), we
267 observed that the receptors for CRP/CRPXL, TRAP-6, and U46619 are closer than

268 random expectation, while the receptor for ADP is more distant (Fig 6b). We expected
269 that platelets would be most affected by RA when treated with stimulants whose

270 receptors are most proximal to the RA-V-platelet module, i.e., CRP/CRPXL, TRAP-6,
271 and U46619, and as a control, we expect no effect for the distant ADP receptor. The
272 experiments confirm this prediction: RA inhibits collagen-mediated platelet aggregation
273  (Fig 6¢) and impairs dense granule secretion induced by CRPXL, TRAP-6, and U46619
274  (Supplementary Figure 13). RA-treated platelets also displayed dampened alpha-

275 granule secretion (Fig 6d) and integrin allbB3 activation (Supplementary Figure 13) in
276 response to U46619. As expected, RA did not affect platelet function when we used an
277  agonist whose receptor is distant from the RA-V-module, i.e., ADP. These findings

278 suggest that RA impairs basic hallmarks of platelet activation via strong network effects,
279  supporting our hypothesis that the proximity between RA targets and the neighborhood

280 associated with platelet function (Fig 6a) could in part explain RA’s impact on V.
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281 We next searched to clarify the molecular mechanisms involved in the impact of
282 RA on platelets. Given that platelet activation is coordinated by several kinases, we
283  hypothesized that RA inhibits platelet function by blocking agonist-induced protein

284  tyrosine phosphorylation. We observed that RA-treated platelets demonstrated a dose-
285 dependent reduction in total tyrosine phosphorylation in response to CRPXL, TRAP-6
286 and U46619 (Fig 6e). Given that RA caused a substantial decrease in phosphorylation
287  of proteins with atomic mass between 50-60 KDa (Fig 6e), we hypothesized that RA
288 may reduce phosphorylation of FYN (59 KDa), or other similarly sized members of the
289 same protein family (i.e. src family kinases, SFKs). To test this, we measured the level
290 of phosphorylation within the activation domain (amino acid 416) of SFKs, finding that
291 RA reduced collagen induced phosphorylation of FYN as well as basal tyrosine

292  phosphorylation of SFKs (Fig 6f). This indicates that RA perturbs the phospho-signaling
293 networks that regulate platelet response to extracellular stimuli.

294 Altogether, these findings support our prediction that RA modulates platelet

295 activation and function. It also supports the observation that its mechanism of action
296 involves reduction of phosphorylation at the activation domain of the protein-tyrosine
297 kinase FYN (Fig 6a) and the inhibition of general tyrosine phosphorylation. Finally, while
298 polyphenols are usually associated to their antioxidant function, here we illustrate

299 another mechanistic pathway through which they could benefit health.

300

301 Discussion

302

303 Here, we proposed a network-based framework to predict the therapeutic effects of
304 dietary polyphenols in human diseases. We find that polyphenol protein targets cluster
305 in specific functional neighborhoods of the interactome, and we show that the network
306 proximity between polyphenol targets and disease proteins is predictive of the

307 therapeutic effects of polyphenols. We demonstrate that diseases whose proteins are
308 proximal to polyphenol targets tend to have significant changes in gene expression in
309 cell lines treated with the respective polyphenol, while such changes are absent for
310 diseases whose proteins are distal to polyphenol targets. Finally, we find that the

311 network neighborhood around the RA targets and vascular disease proteins are related

10
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312 to platelet function. We validate this mechanistic prediction by showing that RA

313 modulates platelet function through inhibition of protein tyrosine phosphorylation. These
314 observations suggest a role of RA on prevention of vascular diseases by inhibiting

315 platelet activation and aggregation.

316 The observed results also suggest multiple avenues through which our ability to
317 understand the role of polyphenols could be improved. First, some of the known health
318 Dbenefits of polyphenols might be caused not only by the native molecules, but also by
319 their metabolic byproducts %°. We, however, lack data about colonic degradation, liver
320 metabolism, bioavailability, and interaction with proteins of specific polyphenols or their
321 metabolic byproducts. Future experimental data on protein interactions with polyphenol
322  byproducts and conjugates can be incorporated in the proposed framework, further

323 improving the accuracy of our predictions. The lack of this data does not invalidate the
324  findings presented here, since previous studies report the presence of unmetabolized

325 polyphenols in blood®%;

and it has been hypothesized that, in some instances,

326  deconjugation of liver metabolites occurs in specific tissues or cells**~*°. Therefore, the
327 lack of data for specific polyphenols and the fact that other mechanisms exist through
328 which they can affect health (e.g. antioxidant activity, microbiota regulation) explain why
329 this methodology might still miss a few known relationships between polyphenols and
330 diseases. Second, considering that several experimental studies of polyphenol

331 Dbioefficacy have been observed in in vitro and in vivo models, the proposed framework
332 might help us interpret literature evidence, possibly even allowing us to exclude

333 chemical candidates when considering the health benefits provided by a given food in
334 epidemiological association studies.

335 Our assumption that network proximity recovers therapeutic associations is

336 based on its predictive performance on a ground truth dataset for observed therapeutic
337 effects and also relies on previous observations about the effect of drugs on

338 diseases™®'"* While the proposed methodology offers a powerful prioritization tool to
339 guide future research, the real effect of polyphenols on diseases might still be negative,
340 given other unmet factors such as dosage, comorbidities, and drug interactions, which
341 can only be ruled out by pre-clinical and clinical studies. Gene expression perturbation
342  profiles, such as the ones provided by the Connectivity map, can also be integrated with

11
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343  network proximity to further highlight potential beneficial or harmful effects of chemical
344 compounds®’8,

345 The low bioavailability of some polyphenols in food might still present challenges
346  when considering the therapeutic utility of these molecules. However, 48 of the 65

347  polyphenols we explored here are predicted to have high gastrointestinal absorption
348 (Supplementary Table 2) and different methodologies are available to increase

349  bioavailability of natural compounds®*“°. Additionally, in the same way that the

350 polyphenol phlorizin led to the discovery of new strategies for disease treatment

351 resulting in the development of new compounds with higher efficacy**, we believe that
352 the present methodology can help us identify polyphenol-based candidates for drug
353 development.

354 The methodology introduced here offers a foundation for the mechanistic

355 interpretation of alternative pathways through which polyphenols can affect health, e.g.,

342 and their interaction with drugs®. To

356 the combined effect of different polyphenols
357 address such synergistic effects, we need ground-truth data on these aspects. The
358 developed methodology can be applied to other food-related chemicals, providing a
359 framework by which to understand their health effects. Future research may help us
360 also account for the way that food-related chemicals affect endogenous metabolic
361 reactions, impacting not only signaling pathways, but also catabolic and anabolic

362 processes. Finally, the methodology provides a framework to interpret and find causal
363 support for associations identified in observational studies. Taken together, the

364 proposed network-based framework has the potential to reveal systematically the

365 mechanism of action underlying the health benefits of polyphenols, offering a logical,
366 rational strategy for mechanism-based drug development of food-based compounds.
367

368 Methods

369

370 Building the Interactome

371

372  The human interactome was assembled from 16 databases containing different types of

373  protein-protein interactions (PPIs): 1) binary PPIs tested by high-throughput yeast-two-
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hybrid (Y2H) experiments**; 2) kinase-substrate interactions from literature-derived low-
throughput and high-throughput experiments from KinomeNetworkX**, Human Protein
Resource Database (HPRD)*, and PhosphositePlus*’; 3) carefully literature-curated
PPIs identified by affinity purification followed by mass spectrometry (AP-MS), and from
literature-derived low-throughput experiments from InWeb?®, BioGRID*°, PINA®,
HPRD>!, MINT®?, IntAct®?, and InnateDB®*; 4) high-quality PPIs from three-dimensional
(3D) protein structures reported in Instruct™, Interactome3D*°, and INSIDER®®; 5)
signaling networks from literature-derived low-throughput experiments as annotated in
SignaLink2.0°; and 6) protein complex from BioPlex2.0°®. The genes were mapped to
their Entrez ID based on the National Center for Biotechnology Information (NCBI)
database as well as their official gene symbols. The resulting interactome includes
351,444 protein-protein interactions (PPIs) connecting 17,706 unique proteins
(Supplementary Data 1). The largest connected component has 351,393 PPIs and
17,651 proteins.

Polyphenols, Polyphenol Targets, and Disease Proteins

We retrieved 759 polyphenols from the PhenolExplorer database®. The database lists
polyphenols with food composition data or profiled in biofluids after interventions with
polyphenol-rich diets. For our analysis, we only considered polyphenols that: 1) could
be mapped in PubChem IDs, 2) were listed in the Comparative Toxicogenomics (CTD)
database® as having therapeutic effects on human diseases, and 3) had protein-
binding information present in the STITCH database® with experimental evidence (Fig
la). After these steps, we considered a final list of 65 polyphenols, for which 598 protein
targets were retrieved from STITCH (Supplementary Table 1). We considered 3,173
disease proteins corresponding to 299 diseases retrieved from Menche et al (2015)*.
Gene ontology enrichment analysis of protein targets was performed using the
Bioconductor package clusterProfiler with a significance threshold of p < 0.05 and

Benjamini-Hochberg multiple testing correction with g < 0.05.

Polyphenol Disease Associations

13
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405

406  We retrieved the polyphenol-disease associations from the Comparative

407  Toxicogenomics Database (CTD). We considered only manually curated associations
408 labeled as therapeutic. By considering the hierarchical structure of diseases along the
409 MeSH tree, we expanded explicit polyphenol-disease associations to include also

410 implicit associations. This procedure was performed by propagating associations in the
411 lower branches of the MeSH tree to consider diseases in the higher levels of the same
412  tree branch. For example, a polyphenol associated with heart diseases would also be
413 associated with the more general category of cardiovascular diseases. By performing
414  this expansion, we obtained a final list of 1,525 known associations between the 65
415 polyphenols and the 299 diseases considered in this study.

416

417  Network Proximity Between Polyphenol Targets and Disease Proteins

418

419 The proximity between a disease and a polyphenol was evaluated using a distance

420 metric that takes into account the shortest path lengths between polyphenol targets and
421 disease proteins®™®. Given S, the set of disease proteins, T, the set of polyphenol targets,
422 and d(s,t), the shortest path length between nodes s and t in the network, we define:
423

1

424 de(S,T) = oo

Yter Minges d(s, 1) 1)

425 We also calculated a relative distance metric (Z,;.) that compares the absolute distance
426 d.(S,T) between a disease and a polyphenol with a reference distribution describing the
427 random expectation. The reference distribution corresponds to the expected distances
428  between two randomly selected groups of proteins matching the size and degrees of the
429 original disease proteins and polyphenol targets in the network. It was generated by

430 calculating the proximity between these two randomly selected groups across 1,000

431  iterations. The mean p s and standard deviation gy s 7y Of the reference distribution
432  were used to convert the absolute distance d, into the relative distance Z ., defined as:
433

¢ Tdc(ST)
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435

436 We performed a degree-preserving random selection, but due to the scale-free nature
437  of the human interactome, we avoid repeatedly choosing the same (high degree) nodes
438 by using a binning approach in which nodes within a certain degree interval were

439 grouped together such that there were at least 100 nodes in the bin. The

440  Supplementary Data 2 reports the proximity scores d.and Z,,_ for all pairs of diseases
441  and polyphenols.

442

443  Area Under ROC Curve Analysis

445  For each polyphenol, we used AUC to evaluate how well the network proximity

446  distinguishes diseases with known therapeutic associations from all of the others of the
447  set of 299 diseases. The set of known associations (therapeutic) retrieved from CTD
448  were used as positive instances, all unknown associations were defined as negative
449 instances, and the area under the ROC curve was computed using the implementation
450 in the Scikit-learn Python package. Furthermore, we calculated 95% confidence

451 intervals using the bootstrap technique with 2,000 resamplings with sample sizes of 150
452  each. Considering that AUC provides an overall performance, we also searched for a
453  metric to evaluate the top ranking predictions. For this analysis, we calculated the

454  precision of the top 10 predictions, considering only the polyphenol-disease

455  associations with relative distance Z;. < —0.5.

456

457  Analysis of Network Proximity and Gene Expression Dereqgulation

458

459  We retrieved perturbation signatures from the Connectivity Map database

460 (https://clue.iol) for the MCF7 cell line after treatment with 21 polyphenols. These

461  signatures reflect the perturbation of the gene expression profile caused by the

462  treatment with that particular polyphenol relative to a reference population, which

463  comprises all other treatments in the same experimental plate®. For polyphenols having
464  more than one experimental instance (time of exposure, cell line, dose), we selected the

465  one with highest distil_cc_qg75 value (75th quantile of pairwise spearman correlations in

15


https://doi.org/10.1101/2020.08.27.270173
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.27.270173; this version posted February 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

466 landmark genes, https://clue.io/connectopedia/perturbagen\ types\ and\ controls). We
467 performed Gene Set Enrichment Analysis® to evaluate the enrichment of disease

468 genes among the top deregulated genes in the perturbation profiles. This analysis offers
469 Enrichment Scores (ES) that have small values when genes are randomly distributed
470 among the ordered list of expression values and high values when they are

471 concentrated at the top or bottom of the list. The ES significance is calculated by

472  creating 1,000 random selection of gene sets with the same size as the original set and
473  calculating an empirical p-value by considering the proportion of random sets resulting
474  in ES smaller than the original case. The p-values were adjusted for multiple testing
475  using the Benjamini-Hochberg method. The network proximity d,. of disease proteins
476  and polyphenol targets for diseases with significant ES were compared according to
477  their therapeutic and unknown-therapeutic associations using the Student's t-test. The
478 relevant code for calculating the network proximity, AUCs, and enrichment scores can
479  be found on https://github.com/italodovalle/polyphenols.

480

481 Platelet Isolation

482

483 Human blood collection was performed as previously described in accordance with the

484  Declaration of Helsinki and ethics regulations with Institutional Review Board approval
485 from Brigham and Women'’s Hospital (P001526). Healthy volunteers did not ingest

486  known platelet inhibitors for at least 10 days prior. Citrated whole blood underwent

487  centrifugation with a slow brake (177 x g, 20 minutes), and the PRP fraction was

488 acquired for subsequent experiments. For washed platelets, PRP was incubated with 1
489 uM prostaglandin E; (Sigma, P5515) and immediately underwent centrifugation with a
490 slow brake (1000 x g, 5 minutes). Platelet-poor plasma was aspirated, and pellets

491 resuspended in platelet resuspension buffer (PRB; 10 mM Hepes, 140 mM NaCl, 3 mM
492  KCI, 0.5 mM MgCl,, 5 mM NaHCOg3, 10 mM glucose, pH 7.4).

493

494  Platelet Aggregometry

495
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496 Platelet aggregation was measured by turbidimetric aggregometry as previously

497  described®. Briefly, PRP was pretreated with RA for 1 hour before adding 250 L to
498  siliconized glass cuvettes containing magnetic stir bars. Samples were placed in

499  Chrono-Log® Model 700 Aggregometers before the addition of various platelet agonists.
500 Platelet aggregation was monitored for 6 minutes at 37°C with a stir speed of 1000 rpm
501 and the maximum extend of aggregation recorded using AGGRO/LINK®8 software. In
502 some cases, dense granule release was simultaneously recorded by supplementing
503 samples with Chrono-Lume® (Chrono-Log®, 395) according to the manufacturer's

504 instructions.

505
506 Platelet Alpha Granule Secretion and Integrin oyin33 Activation

507

508 Changes in platelet surface expression of P-selectin (CD62P) or binding of Alexa

509  Fluor™ 488-conjugated fibrinogen were used to assess alpha granule secretion and

510 integrin ouipP3 activation, respectively. First, PRP was pre-incubated with RA for 1 hour,
511 followed by stimulation with various platelet agonists under static conditions at 37°C for
512 20 minutes. Samples were then incubated with APC-conjugated anti-human CD62P

513 antibodies (BioLegend®, 304910) and 100 pg/mL Alexa Fluor™ 488-Fibrinogen (Thermo
514  Scientific™, F13191) for 20 minutes before fixation in 2% [v/v] paraformaldehyde

515 (Thermo Scientific™, AAJ19945K2). Fifty thousand platelets were processed per

516 sample using a Cytek™

Aurora spectral flow cytometer. Percent-positive cells were
517 determined by gating on fluorescence intensity compared to unstimulated samples.
518

519 Platelet Cytotoxicity

520

521 Cytotoxicity were tested by measuring lactate dehydrogenase (LDH) release by

522  permeabilized platelets into the supernatant®. Briefly, washed platelets were treated
523  with various concentrations of RA for 1 hour, before isolating supernatants via

524  centrifugation (15,000 x g, 5 min). A Pierce LDH Activity Kit (Thermo Scientific™,
525 88953) was then used to assess supernatant levels of LDH.

526
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527 Immunoprecipitation and Western blot
528
529 Washed platelets were pre-treated with RA for 1 hour, followed by a 15 minute

530 treatment with Eptifibatide (50 uM). Platelets were then stimulated with various agonists
531 for 5 minutes under stirring conditions (1000 rpm, 37°C). Platelets were lysed on ice
532  with RIPA Lysis Buffer System® (Santa Cruz®, sc-24948) and supernatants clarified via
533 centrifugation (15,000 x g, 10 min, 4°C). For immunoprecipitation of FYN, lysates were
534 first precleared of IgG by incubating with Protein A agarose beads (Cell Signaling

535 Technologies, 9863S) for 30 minutes at 4°C, before isolation of the supernatant via

536 centrifugation (15,000 x g, 10 min, 4°C). Supernatants were incubated with anti-FYN
537 antibodies (Abcam, 2A10) overnight at 4°C before incubation with Protein A beads for 1
538 hour. Beads were then washed 5 times with NP-40 lysis buffer (144 mM Tris, 518 mM
539 NaCl, 6 mM EDTA, 12 mM Na,VOs, 33.3% [v/v] NP-40, Halt™ protease inhibitor

540 cocktail (Thermo, 78429)).

541 For Western Blot analysis, total cell lysates or immunoprecipitated FYN were
542  reduced with Laemmli Sample Buffer (Bio-Rad, 1610737) and proteins separated by
543  molecular weight in PROTEAN TGX™ precast gels (Bio-Rad, 4561084). Proteins were
544  transferred to PVDF membranes (Bio-Rad, 1620174) and probed with either 4G10

545  (Milipore, 05-321), a primary antibody clone that recognizes phosphorylated tyrosine
546 residues, or primary antibodies that probe for the site-specific phosphorylation of src
547  family kinases (SFKs, p-Tyr416) within their activation loop. Membranes were incubated
548  with horseradish peroxidase-conjugated secondary antibodies (Cell Signaling

549 Technologies, 7074S) to catalyze an electrochemiluminescent reaction (Thermo

550  Scientific™, PI32109). Membranes were visualized using a Bio-Rad ChemiDoc Imaging
551 System and densitometric analysis of protein lanes conducted using ImageJ (NIH,

552  Version 1.52a).

553
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588 Table 1 — Top 20 Predicted Therapeutic Associations Between EGCG and Human
589 Diseases. Diseases were ordered according to the network distance (d.) of their

590 proteins to EGCG targets and diseases with relative distance Z,;. > —0.5 were removed.
591 References reported in CTD for curated ‘therapeutic associations’ are shown.

592

Known Therapeutic Effect

Disease Distance d, Significance Z,,
(References)
nervous system diseases 1.13 -1.72 6465
nutritional and metabolic diseases 1.25 -1.45 =
metabolic diseases 1.25 -1.41 =
cardiovascular diseases 1.27 -2.67 oe-71
immune system diseases 1.29 -1.31 &
vascular diseases 1.33 -3.47 6667.70
digestive system diseases 1.33 -1.57 sl
neurodegenerative diseases 1.37 -1.71 &
central nervous system diseases 1.41 -0.54 &
autoimmune diseases 1.41 -1.30 &
gastrointestinal diseases 1.43 -1.02 o
brain diseases 1.43 -0.89 NA
intestinal diseases 1.49 -1.08 7
inflammatory bowel diseases 1.54 -2.10 NA
bone diseases 1.54 -1.18 NA
gastroenteritis 1.54 -1.92 NA
demyelinating diseases 1.54 -1.78 NA
glucose metabolism disorders 1.54 -1.58 =
heart diseases 1.56 -1.20 686971
diabetes mellitus 1.56 -1.66 =

593
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504 Table 2 — Top Ranked Polyphenols. Polyphenols for which network proximity to

595 diseases best predicts their therapeutic effects. Table showing polyphenols with AUC >
596 0.6 and Precision > 0.6. (*) Confidence intervals calculated with 2,000 bootstraps with
597 replacement and sample size of 50% of the diseases (150/299). (**) Precision was

598 calculated based on the top 10 polyphenols after their ranking based on the distance
599 (dc) of their targets to the disease proteins and considering only predictions with Z-score
600 < -0.5.(***) Concentrations of polyphenols in blood were retrieved from the Human

601 Metabolome Database (HMDB)

Polyphenol AUC AUC CI* Precision** Con‘é‘fggj‘fifn in NT'\g%p;id Ié,czg
Coumarin 0.93 [0.86 - 0.98] 0.6 7 1
Piceatannol 0.86 [0.77 - 0.94] 0.6 39 23
Genistein 0.82 [0.75-0.89] 0.7 [0.006 - 0.525 uM] 18 6
Ellagic acid 0.79 [0.63-0.92] 0.6 42 19
(-)-epigallocatechin 3-O-gallate  0.78 [0.70 - 0.86] 0.8 51 17
Isoliquiritigenin 0.75 [0.77 - 0.94] 0.6 10 8
Resveratrol 0.75 [0.66 - 0.82] 1 63 25
Pterostilbene 0.73 [0.61 - 0.84] 0.6 5 2
Quercetin 0.73 [0.64 - 0.81] 1 [0.022 - 0.080 uM] 216 140
(-)-epicatechin 0.65 [0.49 - 0.80] 0.8 0.625 uM 11 3
602
603
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605 Figure 1 - Properties of Polyphenol Protein Targets. (A) Schematic representation of the human
606 interactome, highlighting regions where polyphenol targets and disease proteins are localized. (B)
607  Diagram showing the selection criteria of the polyphenols evaluated in this study. (C) Distribution of the
608  number of polyphenol protein targets mapped to the human interactome. (D) Top (n=15) enriched GO
609 terms (Biological Process) among all polyphenol protein targets. The X-axis shows the proportion of
610 targets mapped to each pathway. (E) Size of the Largest Connected Component (LCC) formed by the
gl% targets of each polyphenol in the interactome and the corresponding significance (z-score).
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614  Figure 2 — Protein-Protein Interactions of Polyphenol Targets. The 23 polyphenols whose targets
615 form connected components in the interactome and their respective subgraphs. For example, piceatannol
616 targets form a unique connected component of 23 proteins, while quercetin targets form multiple

617 connected components, the largest with 140 proteins. Polyphenol targets that are not connected to any
618  other target are not shown in the figure. Colors distinguish connected component of different polyphenols.
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620

621 Figure 3 — Proximity Between Polyphenol Targets and Disease Proteins is Predictive of

622  Therapeutic Effects of the Polyphenol. (a) Interactome neighborhood showing the EGCG protein

623 targets and their interactions with type 2 diabetes (T2D)-associated proteins. (b) Distribution of AUC

624  values considering the predictions of therapeutic effects for 65 polyphenols. (c) Comparison of the ECGC-
625 disease associations considering the CTD database and the in-house database derived from the manual
626  curation of the literature. (d) Comparison of the prediction performance when considering known EGCG-
62; disease associations from the CTD, in-house manually curated database, or combined datasets.
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629
630 Figure 4 — Relationships among Gene Expression Perturbation, Network Proximity, and

631 Therapeutic Effects of Polyphenols on Diseases. (a) Schematic representation of the relationship
632  between the extent to which a polyphenol perturbs disease genes expression, its proximity to the disease
633  genes, and its therapeutic effects. (b) Interactome neighborhood showing the modules of skin diseases
634  (SD), genistein, and cerebrovascular disorders (CD). The SD module has 10 proteins with high

635  perturbation scores (>2) in the treatment of the MCF7 cell line with 1 pM of genistein. Genes associated
636  to SD are significantly enriched among the most differentially expressed genes, and the maximum

637  perturbation score among disease genes is higher in SD than CD. (c) Among the diseases in which

638  genes are enriched with highly perturbed genes, those with therapeutic associations show smaller

639  network distances to the polyphenol targets than those without. The same trend is observed in treatments
640  of the polyphenols quercetin, resveratrol, and myricetin.
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Figure 5 — Diseases Proximal to Polyphenol Targets Have Higher Gene Expression Perturbation
Profiles. (a) Proximal and distal diseases in relation to genistein targets. Each node represents a disease
and the node size is proportional to the perturbation score after treatment with genistein (1 uM, 6 hours).
Distance from the origin represents the network proximity (d.) to genistein targets. Purple nodes represent
diseases in which the therapeutic association was previously known. (c) Cumulative distribution of the
maximum perturbation scores of genes from diseases that are distal or proximal to polyphenol targets
considering different polyphenols (1 pM, 6 hours): genistein, quercetin, resveratrol, and myricetin.
Statistical significance was evaluated with the Kolmogorov-Smirnov test.
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Figure 6 — Rosmarinic Acid Modulates Platelet Function. (a) Interactome neighborhood showing
rosmarinic acid (RA) targets and the RA-V-platelet module - the connected component formed by the RA
target FYN and the V proteins associated with platelet function PDE4D, CD36, and APP — and the
receptor for platelet agonists used in our experiments (collagen/CRPXL, TRAP6, U46619, and ADP). (b)
Average shortest path length from each platelet agonist receptor and the RA-V-platelet module formed by
the proteins FYN, PDE4D, CD36, APP. Bars represent standard deviation of that same measure over
1000 iterations of random selection of nodes in a degree preserving fashion. c-e) Platelet-rich plasma
(PRP) or washed platelets were pre-treated with RA for 1 hour before stimulation with either collagen (1
ug/mL), collagen-related peptide (CRP-XL, 1ug/mL), thrombin receptor activator peptide-6 (TRAP-6, 20
uM), U46619 (1 uM), or ADP (10 uM). Platelets were assessed for either (c) aggregation, (d) alpha
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663  granule secretion. Platelet lysates were also probed for either (e) non-specific tyrosine phosphorylation
664  (p-Tyr) of the whole cell lysate, or (d) site-specific phosphorylation of src family kinases (SFKs) and FYN
665  atresidue 416. n = 3-6 separate blood donations, mean +/- SEM. p-values in (c) and (d) were determined
666 by Kruskal-Wallis test and by unpaired t.tests in (f).

667
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