

1 **A mechanism to prevent transformation of the Whi3 mnemonic into a prion.**

2 **Authors:** Yasmin Lau¹, Iuliia Parfenova², Juha Saarikangas^{3, 4, 5}, Richard A. Nichols¹, Yves
3 Barral^{2*} and Fabrice Caudron^{1*}

4

5 **Affiliations:**

6 1 –School of Biological Sciences, Queen Mary University of London, London, UK.

7 2 - Institute of Biochemistry, ETH Zürich, Zürich, Switzerland.

8 3 - Helsinki Institute of Life Science HiLIFE, Helsinki, Finland.

9 4 - Faculty of Biological and Environmental Sciences, Helsinki, Finland.

10 5 - Neuroscience Center, University of Helsinki, Helsinki, Finland.

11 *Correspondence to: f.caudron@qmul.ac.uk or yves.barral@bc.biol.ethz.ch

12

13 **Abstract:**

14 In response to deceptive courtship, budding yeast cells escape pheromone induced cell cycle
15 arrest through coalescence of the G1/S inhibitor Whi3 into a dominant inactive super-
16 assembly. Strikingly, Whi3 super-assemblies remain stable over many cell cycles in the
17 mother cells and are not passed on to the daughter cells. Thereby, Whi3 coalescence encodes
18 memory, conferring to it the property of a mnemonic ($Whi3^{mnem}$), a protein which conformational
19 change maintain a trait that is permanent in the mother cell but is not inherited by daughter
20 cells. Mnemonics share structural features with prions, which are self-templating protein
21 conformations that are inherited by daughter cells. Yet, how the maintenance and asymmetric
22 inheritance of $Whi3^{mnem}$ are achieved is unknown. Here, we report that $Whi3^{mnem}$ is closely
23 associated with endoplasmic reticulum (ER) membranes and retained in the mother cell by
24 the presence of lateral membrane diffusion barriers at the bud neck. Strikingly, barrier defects
25 made $Whi3^{mnem}$ propagate in a mitotically stable manner, like a prion. Alike $Whi3^{mnem}$,
26 transformation of Whi3 into a prion required its poly-glutamine prion-like domain. Thus, we
27 propose that $Whi3^{mnem}$ is in a self-templating state, lending temporal stability to the memory
28 that it encodes, while its anchorage into the compartmentalized membranes of the ER ensures
29 its confinement in the mother cell and prevents its infectious propagation. These results
30 suggest that confined self-templating super-assembly is a powerful mechanism for the long-
31 term encoding of information.

32

33 **Introduction**

34 Prions are proteins that can adopt several conformations with at least one of them that is self-
35 templating, lending it a self-perpetuating character. Prion conversion is essential for
36 physiological processes including innate immunity (Hou et al., 2011) and the generation of
37 phenotypic diversity of single celled organisms ranging from bacteria to yeast (Coustou et al.,
38 1997; True and Lindquist, 2000; Yuan and Hochschild, 2017). Beyond physiology, prions were
39 initially discovered as agents of devastating diseases in humans (Kuru, Creutzfeldt-Jakob's
40 disease) and animals (Scrapie and Bovine spongiform encephalopathy) (Prusiner, 1982).
41 Moreover, prion-like behavior of different proteins may be linked to other diseases including
42 Alzheimer's and Parkinson's diseases (Goedert, 2015), as well as resistance to anti-fungal
43 drugs (Suzuki et al., 2012). What mechanisms control prions and particularly their self-
44 templating activity is still an open question.

45 Prions are common protein elements and several have been identified in the budding yeast
46 *S. cerevisiae* (Wickner et al., 2015) allowing a wealth of research to understand their regulation
47 and function (Harvey et al., 2018). The protein Sup35 can adopt a conformation to form the
48 [*PSI*⁺] prion, the best characterized to date (Tuite and Cox, 2006). Sup35 is a translation
49 terminator that loses its function in its [*PSI*⁺] form, resulting in stop codon readthrough and
50 phenotypic diversity (True and Lindquist, 2000). Importantly, Sup35 contains a prion-like
51 domain, defined as rich in Glutamine and Asparagine (Q/N) residues and depleted of charged
52 and hydrophobic residues (Alberti et al., 2009). This domain drives the Sup35 prion state by
53 adopting a self-templating conformation (Serio et al., 2000) and mediating the assembly of
54 Sup35 into amyloid fibrils. Once established, fibrils formed by the Sup35 protein are
55 fragmented into smaller seeds by the protein disaggregase Hsp104 (Narayanan et al., 2006).
56 The self-templating activity of prion seeds converts most of the protein pool to the prion form
57 and the seeds are free to diffuse to the daughter cells. Therefore, prions behave as infectious
58 particles, establishing [*PSI*⁺] not only in the cell in which it originated but also in all its daughter
59 cells and hence the growing colony. In silico analysis of the yeast proteome has identified
60 around 200 proteins in *S. cerevisiae* containing a potential prion-like domain (Alberti et al.,
61 2009). However, we still do not know if all prion-like domains can adopt self-templating
62 conformations and whether all these proteins function as prions.

63 Whi3 contains two prion-like domains, composed of PolyQ- and PolyN-rich stretches (Alberti
64 et al., 2009; Caudron and Barral, 2013). Whi3 is an mRNA binding protein involved in the
65 timing of the G1/S transition of the cell cycle and the control of cell size in *S. cerevisiae* (Gari
66 et al., 2001). The function of Whi3 that has been studied the most is the regulation of the G1/S
67 transition of the cell cycle through binding and inhibiting the translation of the mRNA that

68 encodes the G1 cyclin *CLN3*. This inhibition ensures that entry into S phase is delayed until
69 cells reach a critical size. The prion-like domains of Whi3 are required for Whi3 to adopt a
70 conformation that releases Whi3's inhibition on *CLN3* mRNA and allows a long-lasting
71 phenotypic switch. Upon exposure to mating pheromone, haploid yeast cells arrest in the G1
72 phase of the cell cycle and grow towards the source of pheromone. This cytoplasmic projection
73 is termed a shmoos. After prolonged exposure of pheromone without a mating partner in reach,
74 yeast cells become refractory to the pheromone signal and resume their cell cycle (Caudron
75 and Barral, 2013; Moore, 1984). They switch from a shmooring phase to a budding phase.
76 Remarkably, once established, this pheromone refractory state is stable, lending memory to
77 the cell that there is no partner available. As a consequence, these cells keep on budding for
78 the remainder of their life span even in the presence of mating pheromone. Strikingly, daughter
79 cells do not inherit this adaptation and restore their ability to shmoos in response to pheromone
80 upon separation from their mother cell (Caudron and Barral, 2013). Whi3's prion-like domains
81 trigger both escape from pheromone arrest and the memory state by mediating the
82 condensation of Whi3 into super-assemblies.

83 Whi3's domain organization and ability to switch between soluble and condensed phases are
84 features common to prions such as Sup35. The pheromone refractory state is very stable once
85 it has been established, even when pheromone is removed from the medium. The deletion of
86 either prion-like domain of Whi3 results in a late escape from pheromone arrest that is not
87 stably maintained in the mother cells. In other words, cells can switch back and forth to a
88 shmooring and a budding phase in the presence of pheromone. Moreover, when cell extracts
89 are run on a semi-denaturing gel, Whi3 appears to be mostly monomeric in untreated cells
90 and mostly found in large, homo-multimeric assemblies in cell treated with pheromone
91 (Caudron and Barral, 2013). These data point to a possible self-templating activity of Whi3 in
92 cells that are exposed to pheromone.

93 Importantly, despite many shared features with known prions, the mode of inheritance of Whi3
94 super-assemblies is different from the inheritance of prions during cell division (Caudron and
95 Barral, 2013; Tuite, 2016). Indeed, the Whi3 super-assemblies remain in the mother cells at
96 mitosis, ensuring that the memory state is stable in the mother cell and is not propagated to
97 the progeny. On the contrary, prions infect the bud of a dividing yeast cell. Given its role in
98 cellular memory and its behavior being so distinct from prions, Whi3 was termed a mnemon
99 (Whi3^{mnem}).

100 While the prion-like domains of Whi3^{mnem} are important for escape from pheromone arrest, we
101 do not know the mechanism of memory stability and if this involves a self-templating activity
102 of Whi3^{mnem}. If this is the case, what makes mnemons distinct from prions is unclear. In this

103 work, we wondered whether the confinement of Whi3^{mnem} to the mother cell requires the
104 presence of lateral membrane diffusion barriers. Diffusion barriers are membrane specialized
105 domains that limit the diffusion of membrane associated structures across cellular
106 appendages (Caudron and Barral, 2009; Saarikangas and Barral, 2011) including the primary
107 cilium (Hu et al., 2010; Kim et al., 2010), dendritic spines (Ewers et al., 2014) and the sperm
108 tail (Toure et al., 2011). In budding yeast, diffusion barriers form at the bud neck in the ER
109 membranes and the nuclear envelope during closed mitosis. Their formation depends on
110 septins, a family of cytoskeletal protein forming filaments (Mostowy and Cossart, 2012) at the
111 bud neck (Luedke et al., 2005), proteins involved in sphingolipid biosynthesis including the
112 sphinganine C4-hydroxylase Sur2 (Clay et al., 2014) and proteins involved in polarized cell
113 growth such as the actin nucleation promoting factor Bud6 (Graziano et al., 2013, 2011) and
114 the small GTPase Bud1/Rsr1 (Bender and Pringle, 1989). Diffusion barriers in yeast limit the
115 diffusion of ageing factors, such as nuclear pores, misfolded proteins, age-induced protein
116 deposits and DNA circles from the mother cell to the bud (Clay et al., 2014; Denoth-Lippuner
117 et al., 2014; Saarikangas et al., 2017; Shcheprova et al., 2008).

118 In light of these data, we first asked whether membrane diffusion barriers contribute to
119 Whi3^{mnem} asymmetric behaviour during cell division.

120

121

122

123

124

125

126

127

128

129

130

131

132 **Results**

133 *Cells lacking diffusion barriers can acquire a novel pheromone refractory state.*

134 Growth of yeast colonies was monitored on solid medium containing low concentration of
135 pheromone (10nM). Wild type cells grew slowly while cells that hardly escape pheromone
136 arrest (*whi3-ΔpQ*, (Caudron and Barral, 2013)) grew very poorly (Figure 1A). Both strains grew
137 equally well on a solid medium that does not contain pheromone. On medium containing
138 pheromone, wild type cells initially shmoo and resume cell division after several hours. Their
139 daughter cells behave similarly, first shmooing and then resuming cell division. This slows
140 down the production of daughter cells and explains why wild type cells grow slowly in the
141 presence of pheromone. In contrast, *whi3-ΔpQ* mutant cells keep on shmooing for a very long
142 time before resuming cell division and many cells will not even escape pheromone induced
143 cell cycle arrest. Therefore, *whi3-ΔpQ* mutant cells grow even slower on pheromone
144 containing plates. To test for a role of diffusion barriers in the compartmentalization of the
145 pheromone refractory state, we monitored the growth of several mutant strains with impaired
146 lateral diffusion barriers. We hypothesized that if diffusion barriers are involved in the
147 confinement of Whi3^{mnem} these mutant strains may grow differently on pheromone. Some of
148 the *bud1Δ*, *bud6Δ* and *sur2Δ* mutants grew as wild type and other much better on pheromone
149 containing plates, even at high pheromone concentration (0.6μM, Figure 1A). At such a high
150 concentration of pheromone, cells cannot escape pheromone arrest, suggesting that colonies
151 growing in such conditions had acquired a strong resistance to pheromone. Colonies growing
152 on high pheromone concentration kept their resistance to pheromone after several rounds of
153 streaking; we termed these isolates as constitutive escapers (CE). To measure how frequent
154 CE are, we plated at least 44 independent clones for each mutation obtained from
155 heterozygous diploid on rich media that do not contain pheromone or contain a high
156 pheromone concentration (0.6μM) (Figure 1A-B). Frequency of CE appearance was highly
157 variable between individual clones of wild type strains (between 1.11×10^{-7} and 5.3×10^{-2})
158 with a median of 1.36×10^{-5} cells. Phenotypic mutation rate for sterile mutants was measured
159 in a *bar1Δ* background at 3.07×10^{-6} /genome/generation (Lang and Murray, 2008). We found
160 that it was also variable in *sur2Δ* clones but the median was significantly increased 3.13 times
161 compared to wild type (4.26×10^{-5} , Figure 1B). In *bud6Δ* and *bud1Δ* mutant cells, frequencies
162 again varied extensively between clones and the median frequency was significantly
163 increased 6.07 times (8.27×10^{-5}) and 3.51 times (4.78×10^{-5}) respectively, compared to wild
164 type. We analyzed these results differently in an attempt to standardize the variances. The
165 ratios were logit transformed (see material and methods for more details). Having fitted the
166 average for each yeast strain, the residuals were clearly strongly asymmetrical (Supplemental
167 Figure 1). This pattern might be expected if in a subset of cases the constitutive escaper

168 phenotype occurred early in the culture. Since the incidence of these outcomes did not differ
169 between strains, they were excluded from subsequent analysis of the ratios. Figure 1C shows
170 the distribution of the logit transformed ratios for each genotype. A linear model describing the
171 means of each strain, showed a highly significant difference between wild type and diffusion
172 barrier mutants (ANOVA $p < 2e-16$). These data suggest that the frequency increase of
173 constitutive escapers is related to the disruption of the diffusion barrier. Moreover, the fact that
174 we measured very variable frequencies and many of them being well above mutation rate
175 suggest that CE are induced by an epigenetic mechanism. Since escape from pheromone
176 arrest involves Whi3^{mnem}, we considered the possibility of a prion being the molecular basis of
177 the CE phenotype.

178 Upon microscopic observation of CE, we noticed that some CE isolates seemed to have a
179 small cell size. Therefore, we measured the cell size of several CE. While wild type cells and
180 *sur2Δ* parental strains had comparable cell size (5.6 μ m, Figure 1D), *sur2Δ^{CE}* displayed isolates
181 which were on the large range or on the small range of cell sizes. Remarkably, the small cell
182 sized *sur2Δ^{CE}* were comparable in size to cells deleted for *WHI3* either in a wild type or in a
183 *sur2Δ* background (Figure 1D). This prompted us to ask whether Whi3 could be a prion in CE
184 isolates and if it was required for the formation of CE. Classically, prion forms of proteins lose
185 the function of the native conformation. Thus, if Whi3 was losing its function in a prion form,
186 we would expect that deleting *WHI3* would result in a CE phenotype. The frequency of CE in
187 *whi3Δ* mutant strains was increased compared to wild type (2.45 times, 3.33×10^{-5}) and further
188 increased in *whi3Δ sur2Δ* strains (4.58 times, 6.23×10^{-5}). This result indicate that Whi3
189 inactivation is not sufficient to make cells refractory to pheromone, although it may contribute
190 to it. We next wondered whether Whi3 was required to maintain the CE phenotype. We
191 supposed that if Whi3 was acting as a dominant negative form in these cells, deleting *WHI3*
192 in *sur2Δ^{CE}* would restore pheromone arrest. We specifically deleted *WHI3* in several *sur2Δ^{CE}*
193 that had a small cell size. This deletion did not restore pheromone arrest (not shown)
194 suggesting that maintenance of the CE phenotype is not dependent on Whi3 or that Whi3
195 super-assemblies are not the only dominant factor repressing pheromone response in CEs.
196 Altogether, we observe that *whi3Δ* cells are not all CE (most of the cells arrest upon exposure
197 to pheromone) yet deleting *WHI3* seems to favor CE formation. However, Whi3 is not required
198 to maintain the CE phenotype. One interpretation of these results may be that *WHI3*
199 inactivation is one step for cells to become CE and that somehow, the diffusion barrier inhibits
200 the transition to the CE state.

201 To further test whether Whi3 may be in a prion form in CE, we isolated 20 CE from a *sur2Δ*
202 parental strain (*sur2Δ^{CE}*) expressing Whi3-GFP from its endogenous locus on plates
203 containing high pheromone concentration and we observed the localization of Whi3-GFP in

204 these cells. In parallel, we obtained cell size measurements of these isolates. In the parental
205 *sur2Δ* strain, Whi3-GFP localized rather diffusely throughout the cytoplasm and to a few
206 granules ((Caudron and Barral, 2013; Gari et al., 2001) and Figure 1E). In small cell sized
207 *sur2Δ^{CE}*, Whi3 localized diffusely throughout the cytoplasm and to brighter foci that were
208 substantially bigger and more intense than the granules shown by the parental strain. These
209 bright foci were much less frequent in large cell sized CE (Figure 1E). Remarkably, these
210 bright foci localized both to the mother and bud compartments of dividing cells. This is in
211 contrast to Whi3^{mnem} super-assemblies which are formed in the mother cell and do not typically
212 appear in the buds (Caudron and Barral, 2013). Therefore, in small cell sized *sur2Δ^{CE}*, Whi3
213 tends to adopt a localization pattern reminiscent to that of the classical yeast prion Sup35, in
214 its [PSI⁺] form (Derdowski et al., 2010). We contemplated the possibility that if Whi3 needs to
215 be in a prion form for cells to become CE, it would require its prion-like domain. To test this
216 hypothesis, we estimated the frequency of CE in *whi3-ΔpQ* mutant clones. CE frequency was
217 remarkably lower in these cells than in any other strain we tested (6.25×10^{-6} , 2.18 times
218 smaller than wild type strains, Figure 1B, and significantly lower than wild type using the logit
219 transformed data, $p < 0.0008$, Figure 1C). Deleting *BUD1* in a *whi3-ΔpQ* strain did not increase
220 the frequency of CE much (7.45×10^{-6} , 1.192 times higher than in *BUD1 whi3-ΔpQ* mutant
221 strain) and was lower than in *bud1Δ* mutant cells.

222 Altogether, we found that disruption of the diffusion barrier increases the appearance of CE,
223 that many of them are small cell sized and display a localisation of Whi3 to bright foci. The
224 formation of CE is increased when *WHI3* is deleted but decreased in strains that lack the prion-
225 like domain of Whi3. This suggest that Whi3 is indeed in a prion form and that inactivation of
226 Whi3 is a major contribution to the formation of CE. However, since the frequency of CE can
227 be still very high in CE that lack the prion-like domain of Whi3, it is very likely that other factors
228 are involved, possibly novel, yet undiscovered, prions.

229
230 To test whether the molecular events leading to the formation of CE is indeed caused by
231 prions, we tested how growth on high pheromone concentration segregated at meiosis. Prions
232 segregate in a non-Mendelian manner at meiosis and are usually passed on to all of the four
233 meiotic products. Consistent with their extensive resistance to pheromone treatment, crossing
234 the CE to wild type cells was inefficient. However, we could backcross some of them and
235 dissect the obtained tetrads. Meiosis gives rise to 4 spores, 2 of which are *MATα* and 2 *MATa*.
236 Therefore, we expected that out of 4 spores, 2 would always grow on alpha-factor because
237 they are *MATα*. In wild type cells, the 2 other spores do not grow on alpha-factor (0.6μM,
238 Supplemental Figure 2). If in the CE more than 2 spores were growing, it would mean that
239 they had inherited the CE phenotype. If the CE is due a mutation that is unlinked to the *MAT*

240 locus, 4/6 of the tetrads should have 3 spores growing on alpha-factor containing medium, 1/6
241 should contain 4 such spores and the last 1/6 of the tetrads should contain only 2 of them
242 (pattern #1). If it is due to a mutation linked to the *MAT* locus, the fraction of tetrads with 3 and
243 4 spores growing on alpha-factor containing medium should be increased (pattern #2). In case
244 of a non-mendelian factor propagating through meiosis, all tetrads should contain 4 spores
245 growing on alpha-factor containing medium (pattern #3). Finally, a non-mendelian factor that
246 does not pass meiosis should produce tetrads with always only 2 spores growing on alpha-
247 factor containing medium (pattern #4). We backcrossed 13 independent CE strains and tested
248 the growth of each spore on alpha-factor (0.6 μ M). For 4 backcrosses, we observed tetrads in
249 which 2, 3 or 4 spores out of 4 were growing on α -factor (Supplemental Figure 2). These
250 backcrosses fall in the pattern #1, suggesting the presence of a single 'sterile' mutation
251 segregating independently from the mating type locus. In 4 other backcrosses, the majority of
252 the tetrads contained 2 spores and few 3 spores growing on alpha-factor containing medium,
253 most compatible with the pattern #4. Furthermore, 5 backcrosses followed strictly pattern #4
254 (Supplemental Figure 2). Thus, the last 9 backcrosses, which are not compatible with a single
255 mutation, suggests that the CE phenotype is due to non-mendelian factor that is lost during
256 meiosis. To further test if these CE traits are based on a prion-like mechanism, we tested
257 whether they were cured upon inhibiting different prion effectors. We isolated 31 *sur2* Δ^{CE} and
258 passaged them three times on YPD, YPD supplemented with guanidine hydrochloride (3 mM)
259 to inhibit Hsp104 (Ferreira et al., 2001; Tuite et al., 1981) or YPD supplemented with radicicol
260 (10 μ M) to inhibit Hsp90 (Sharma et al., 1998). In addition, we transformed all 31 *sur2* Δ^{CE} and
261 the parental *sur2* Δ strain with a dominant negative allele of *SSA1* (*SSA1* DN , (Brown and
262 Lindquist, 2009; Jarosz et al., 2014)). In all cases, after 3 passages the 31 *sur2* Δ^{CE} were still
263 able to grow on YPD containing pheromone (0.6 μ M), while the parental *sur2* Δ strain was not
264 (Supplemental Figure 3). However, upon microscopic observation of *sur2* Δ^{CE1} , we found that
265 many cells were shmooing and other dividing. This was not the case for other *sur2* Δ^{CE} , and it
266 was also not the case for *sur2* Δ^{CE1} passaged on YPD without drugs or with GuHCl or radicicol
267 (Supplemental Figure 3). Therefore, the CE phenotype is not cured by either GuHCl, radicicol
268 or passages for many generations on YPD, but one variant was partially cured upon inhibition
269 of the Hsp70 chaperone *Ssa1*.

270

271 Altogether, our data suggest that the majority of the CE formed in cells lacking a diffusion
272 barrier at the bud neck are due to a non-mendelian factor and that for about at least half of
273 them Whi3 is contributing to their formation by behaving not anymore as a mnemonic but as a
274 prion.

275

276 *Endoplasmic reticulum compartmentalization is not required for prion induction and curing.*

277 Because diffusion barriers seem to play a role in the transformation of Whi3 into a prion, we
278 next asked whether diffusion barriers also play a role in prion induction and curing. We
279 specifically focused on the best studied prion in yeast, [*PSI*+] . We previously observed that
280 farnesylation of the Hsp40 co-chaperone Ydj1 was required to lower premature stop codon
281 read-through in the sequence coding for GFP in [*PSI*+] cells (Saarikangas et al., 2017).
282 Strength of codon read-through was linked to the potential collection of prion seeds to ER
283 membranes. We therefore analyzed stop codon readthrough in *sur2Δ* cells. Using flow
284 cytometry, the fluorescence intensity of strains that express a GFP allele containing a
285 premature stop codon was measured (as in Saarikangas et al., 2017). Deletion of *SUR2* did
286 not change the fluorescence intensity of these cells (Figure 2A). We next probed for a role of
287 lateral diffusion barriers in the de novo appearance and curing of [*PSI*+] prions. There was no
288 significant difference ($p=0.5204$, t-test) in the [*PSI*+] appearance frequencies in wild type and
289 *sur2Δ* strains (Figure 2B). We also analyzed the dynamics of [*PSI*+] curing by Guanidine
290 Hydrochloride (GuHCl, 3 mM) in wild type and *sur2Δ* cells and observed very similar dynamics
291 of curing (Figure 2C). Moreover, stop codon readthrough was comparably lower in wild type
292 and *sur2Δ* cells treated with 0.1mM GuHCl and 1mM GuHCl demonstrating that we could
293 quantitatively measure the strength of stop codon readthrough in these experiments (Figure
294 2A). Altogether, these data establish that compartmentalization of endo-membranes by a
295 diffusion barrier at the bud neck does not control the inheritance of Sup35 prion seeds during
296 cell division.

297

298 *Whi3 super-assemblies and Sup35 foci differ in their association to ER membranes.*

299 Because diffusion barriers affect Whi3 transformation into a prion and not [*PSI*+] , we wondered
300 if Sup35 and Whi3 associated to different extends with ER membranes. We first analyzed how
301 Sup35-GFP, in its [*PSI*+] prion form, localized relative to the ER visualized using the
302 translocon subunit Sec61 tagged with mCherry as a marker. Sup35-GFP formed several small
303 foci in dividing cells and we found that most of these foci were spatially excluded from the
304 Sec61 signal (Figure 3A and B, $53.1 \pm 10.7\%$ of Sup35-GFP foci were away from the Sec61-
305 mCherry signal). We also noticed that 100% of the cells contained at least one focus away
306 from ER membranes (Figure 3C). This may explain why curing and induction of [*PSI*+] is not
307 affected in *sur2Δ* mutant cells. Next, we analyzed the localization of Whi3-mNeonGreen
308 (Whi3-mNG) in its mnemon form relative to Sec61-mCherry. Contrarily to Sup35-GFP, in cells
309 that were exposed to pheromone for 3 hours Whi3-mNG super-assemblies were mostly
310 apposed to ER membranes ($72.5 \pm 4.1\%$ of super-assemblies, Figure 3D and E). Moreover,

311 the fraction apposed to the ER system increased upon longer times of pheromone exposure
312 (82.7 \pm 2.1% after 4 hours, 90.0 \pm 3.5% after 6 hours and 92.1 \pm 3.2% after 10.5 hours, Figure
313 3D and E). Remarkably, while 41.2 \pm 9.1% of the cells had at least one Whi3-3GFP super-
314 assembly away from the ER after 3 hours of pheromone treatment, this value dropped to 27.7
315 \pm 10.7%, 20.0 \pm 1.7% and 14.8 \pm 4.9% after 4 hours, 6 hours and 10.5 hours of pheromone
316 treatment respectively (Figure 3F). Finally, we analyzed the localization of Whi3-mNG relative
317 to ER membranes in small *bud6* Δ^{CE} . We found that 60.27% of the Whi3-mNG foci were close
318 to ER membranes in *bud6* Δ^{CE} cells, in stark contrast to the granules in non-CE *bud6* Δ cells
319 which were much more strongly associated to ER membranes (88.17%, Figure 3G and H).

320 Altogether, we conclude that association of Whi3^{mnem} with ER membranes is tighter with time
321 after escape from pheromone arrest and that a major difference between Whi3^{mnem} super-
322 assemblies and the prion form of Sup35 or the Whi3 foci in CE is their different link to the ER
323 membranes network.

324

325 *Endoplasmic reticulum compartmentalization is required for the retention of Whi3^{mnem} and the*
326 *pheromone refractory state in the mother cell*

327 The establishment and the maintenance of the pheromone refractory state is facilitated by
328 Whi3's conformational change and super-assembly formation. We wondered whether mother
329 cells with defective diffusion barriers were more likely to pass Whi3 super-assemblies to their
330 daughters. Therefore, we treated cells expressing *WHI3* fused to 3 superfolding Green
331 Fluorescent Proteins in tandem (Whi3-3GFP) with pheromone for 5 hours and then released
332 them in a pheromone free medium for 1.5 hours to allow mother cells to produce a bud. The
333 mother and bud pairs were imaged and the localization of Whi3-3GFP analyzed. Most wild
334 type mother cells contained a super-assembly of Whi3^{mnem}, and we observed similar results in
335 *bud6* Δ , *sur2* Δ and *bud1* Δ mutant cells. However, while only 24.00 \pm 6.22% of the wild type
336 buds had a super-assembly, 62.24 \pm 3.85% of the *bud6* Δ , 64.01 \pm 3.65% of the *sur2* Δ and 65.26
337 \pm 4.15% of the *bud1* Δ mutant buds already had at least one (Figure 4A-B). These data are
338 consistent with a role for diffusion barriers in the retention of Whi3^{mnem} super-assemblies in
339 the mother cells that escaped pheromone arrest.

340 We then tested whether diffusion barriers are required for the retention of the pheromone
341 refractory state in the mother cell. We exposed haploid *MATa* cells to pheromone as before
342 (Caudron and Barral, 2013). Wild type cells initially all shmoored upon 7 nM α -factor treatment
343 and 90.5% of the cells escaped pheromone arrest with an average timing of 7.35 \pm 3.00 hours
344 (Figure 5A-B). Mother cells kept this refractory state faithfully, 100% of the initial mother cells

345 did not produce a second shmoo after escaping pheromone arrest. We previously found that
346 roughly 90% of the daughter cells from mothers that have escaped from pheromone arrest
347 undergo shmooring in response to pheromone, upon separation from their mother in the
348 presence of pheromone (Caudron and Barral, 2013). We refined our analysis here by
349 separating data depending on whether daughters were the first or subsequent daughters after
350 escape from pheromone arrest. We observed that nearly 50% of the first daughter cells fail to
351 respond to pheromone after birth, while this number drops to 14.2%, 13.3%, 6.9% and 4.4%
352 for the subsequent 2nd, 3rd, 4th and 5th daughters of the same mother cell (Figure 5C). In order
353 to assess whether the retention of the pheromone refractory state in the mother cell is indeed
354 dependent on the presence of diffusion barriers at the bud neck, we tested *sur2Δ*, *bud6Δ* and
355 *bud1Δ* mutant cells. For reasons that remain unknown at this stage, cells with a *sur2Δ* mutation
356 escaped from pheromone arrest slightly earlier than wild type cells (5.9 ± 2.0 hours, Figure 5
357 A-B). Once these mother cells escaped, they maintained the pheromone refractory state as
358 efficiently as wild type cells and did not shmoo again. However, the fraction of *sur2Δ* daughter
359 cells that failed to shmoo after separating from their mother cell was increased 1.51, 2.83 and
360 1.66 folds for the 1st, 2nd and 3rd daughters respectively. (Figure 5C). The *bud6Δ* mutant cells
361 responded to pheromone as well as wild type cells and escaped pheromone arrest slightly
362 later than them (Figure 5A-B). As for the *sur2Δ* daughter cells, many *bud6Δ* daughter cells
363 failed to shmoo upon separation from their mother cell (Figure 5C). We obtained similar results
364 with *bud1Δ* mutant cells (Figure 5A-C). These results indicate that the ER diffusion barrier
365 reinforces the confinement of the pheromone refractory state to the mother cell.

366 Next, we wondered whether *bud6Δ*, *sur2Δ* or *bud1Δ* mutations had any effect on the timing of
367 escape in the daughter cells that do shmoo in response to pheromone. We reasoned that
368 these daughter cells may escape faster if they inherit factors promoting escape from their
369 mother cell. However, we did not detect any general effect on the timing of daughter cells
370 escape in these mutants (Figure 5D). We still observed that *sur2Δ* daughter cells escaped
371 faster than wild type, *bud6Δ* and *bud1Δ* cells, as their mothers do.

372 Altogether, we conclude that diffusion barrier in the cortical ER helps confining the pheromone
373 refractory state to the mother cell. Importantly, in cells lacking a functional barrier the
374 inheritance of the refractory state by the daughter cells does not take place at the cost of the
375 mother cell losing the pheromone refractory state. Indeed, *bud6Δ*, *sur2Δ* and *bud1Δ* mutant
376 mother cells maintained this state as efficiently as wild type cells. Together these results
377 indicate that the ER diffusion barrier confines the pheromone refractory state to the mother
378 cell by preventing the formation of super-assemblies in daughter cells. Strikingly, this role of
379 the barrier is most evident in the first few cycles after pheromone escape by the mother cell
380 and much less so later on.

381

382 *The prion-like domain of Whi3 is required for symmetric inheritance of the refractory state in*
383 *cells with an impaired diffusion barrier.*

384 We next reasoned that if inheritance of the pheromone refractory state by daughter cells
385 depends on Whi3^{mnem} super-assemblies, then preventing the conversion of Whi3 to its
386 mnemon form may lead to less daughter cells inheriting the pheromone refractory state upon
387 diffusion barrier defects. To test this idea, we exposed *whi3*-ΔpQ, *whi3*-ΔpQ *bud6*Δ and *whi3*-
388 ΔpQ *bud1*Δ mutant cells to pheromone and analyzed whether the daughters of cells escaping
389 pheromone arrest were shmooing or budding after birth. Most *whi3*-ΔpQ daughter cells
390 shmoored upon birth (Figure 6) and this was not significantly different in *whi3*-ΔpQ *bud6*Δ and
391 *whi3*-ΔpQ *bud1*Δ cells. Taken together, these data argue that the Q-rich prion-like domain of
392 Whi3 is involved in the inheritance of the pheromone refractory state by the daughters of cells
393 that lack a diffusion barrier.

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409 **Discussion**

410 In this work, we investigated the mechanisms that allow the pheromone refractory state to be
411 stable in the mother cells over many divisions while preventing it to being passed on to
412 daughter cells. Our data support a model in which Whi3 adopts a self-templating conformation
413 that depends on its prion-like domains upon prolonged pheromone exposure. The self-
414 templating Whi3^{mnem} is confined by diffusion barriers to the mother cell and when this
415 confinement is lost, Whi3^{mnem} does propagate to daughter cells. In a substantial fraction of the
416 cases, it even starts to propagate in a mitotically stable manner, similarly to prions.

417 Indeed, we found that yeast cells can acquire a mitotically stable refractory state to pheromone
418 and cells carrying this state were termed constitutive escapers. Some of these CE are small
419 cell sized, phenocopying a loss of function of Whi3. In these small cell sized CE Whi3 forms
420 foci, a hallmark of prion localization in yeast. Moreover, CE induction requires the prion-like
421 domains of Whi3. These data indicate that Whi3 is in a dominant inactive, self-templating prion
422 form in these CE variants. The fact that deleting *WHI3* increases CE frequency indicates that
423 an important step of the transition to the CE state is the inactivation of Whi3 through its
424 conversion to a prion form. Interestingly, the result that *whi3Δ* mutant cells are still able to
425 acquire the CE state indicates the existence of additional prion-like factors in CE cells.
426 Therefore, CE is a promising case for identifying novel prions in yeast.

427 During escape from pheromone arrest in diffusion barrier deficient cells, inheritance of the
428 pheromone refractory state by daughter cells requires the prion like domains of Whi3, also
429 indicating that Whi3^{mnem} is in a self-templating conformation. In diffusion barrier deficient cells,
430 the pheromone refractory state is stable in the mother cells, suggesting that small assemblies
431 are diffusing to daughter cells and seeding the pheromone refractory state there. However, in
432 diffusion barrier defective cells only the first two to three daughter cells can inherit the
433 pheromone refractory state efficiently. This is much less frequent in the next daughter cells.
434 We propose that within the time of two to three cell cycles the super-assemblies mature to a
435 more solid form that no longer generate seeds or captures them efficiently. These data provide
436 experimental support for a mechanism of memory maintenance through a self-templating
437 mechanism. This is a particularly interesting mechanism because it can establish a stable
438 memory that lasts longer than the turnover of the Whi3 protein itself and prevents newly
439 synthesized Whi3 to restore *WHI3* function.

440 All these data argue that Whi3 is able to form several types of assemblies, either being in a
441 mnemonic or in a prion form. Since, CE can have different cell sizes, it could also be that Whi3
442 can adopt several types of prion forms, which is reminiscent of the different strains prions can
443 form (Derkatch et al., 1996). It may also be that the mnemonic and the prion forms are actually

444 the same and that what is lost are the mechanisms of confinement to the mother cell. CE were
445 frequent in cells with defective diffusion barriers. Because *bud1Δ* cells display this feature, our
446 results point to the ER diffusion barrier playing an important role in the prevention of CE
447 induction. Indeed, only the ER diffusion barrier is affected by *BUD1* deletion, while the nuclear
448 diffusion barrier remains intact (Clay et al., 2014). Yet, these observations beg the question of
449 how diffusion barriers could prevent the induction of CE?

450 We found that [PSI⁺] prion induction and curing is not affected by whether the diffusion barriers
451 are present or not. On the contrary, we observed that Whi3^{mnem} super-assemblies and the
452 pheromone refractory state they encode are not confined as efficiently to the mother cell in
453 diffusion barrier defective cells than in wild-type cells. Thus, we propose that one function of
454 the diffusion barriers is to retain Whi3^{mnem} super-assemblies in the compartment where they
455 are formed. Even though Whi3 is not known to be lipidated or having transmembrane domains,
456 Whi3 associates with ER membranes (Vergés et al., 2007). Regardless of how it does so,
457 such an association would allow the diffusion barrier to limit the diffusion of Whi3 seeds along
458 ER membranes through the bud neck. More importantly, we found that Whi3^{mnem} super-
459 assemblies are closely colocalizing with ER membranes during prolonged pheromone
460 response. It will be therefore important in the future to understand how Whi3 is anchored at
461 ER membranes to be able to test our model of retention by the ER diffusion barrier more
462 thoroughly. Altogether a feature of mnemons may be their tight association with ER
463 membranes allowing confinement to one cellular compartment. This is strikingly different to
464 the Sup35 prion, most of which is detected in foci that are away from ER membranes. In this
465 case, the presence of diffusion barriers in the ER membrane has no impact on exchange of
466 seeds across the bud neck. Once Sup35 acquires its prion form in a cell, it can freely invade
467 the bud and maintain the phenotypes associated with it in the progeny, and hence, the whole
468 colony formed. We observed a similar localization pattern respective with ER membranes for
469 Whi3 foci in CE cells. This suggests to us that the Whi3 prion form may differ from the mnemonic
470 form at least in part through their membrane association status. Whether the detachment of
471 Whi3 in CE from ER membranes stems from a conformational change inhibiting Whi3
472 interaction with its ER anchor or from a change in the regulation of this interaction will need to
473 be clarified.

474 Altogether, we propose that the absence of the barrier allows for the selection of stable prion
475 strains of Whi3 and possibly other prions. The emergence of these prions would not be able
476 to emerge if they are confined.

477 Many proteins can adopt prion-like behavior across all kingdom of life. Recent effort to
478 characterize these proteins have suggested that this is probably more widespread than

479 anticipated. We presented here that yeast cells have evolved mechanisms to confine and thus
480 control some of them. We propose that this is not restricted to budding yeast. A case could be
481 made for the protein CPEB, which adopt a prion-like conformation at activated dendritic spines
482 (Khan et al., 2015; Si et al., 2010). Interestingly, dendritic spines are highly compartmentalized
483 cellular appendages, and similarly to dividing yeast cells, their compartmentalization and
484 morphology is controlled by septin proteins at the spine neck (Ewers et al., 2014). It may
485 therefore be that CPEB prion conversion is confined to an activated dendritic spine through
486 its compartmentalization by diffusion barriers, which could prevent the spreading of the prion
487 form to the neighbouring non-activated spines. Another consideration may also be that
488 confinement of prion-like elements such as mnemons may prevent their transformation into
489 infectious prion particles. In this case, we could envision that pathologies involving prion-like
490 behaviors may arise when confinement of these elements is lost.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507 **Material and Methods**

508 **Strains**

509 Strains used for escape from pheromone arrest were derivatives of the s288c BY4743 wild
510 type (yYB4508: *MATa, his3Δ1 leu2Δ0, ura3Δ0 met15Δ0 lys2Δ0 ADE2 TRP1 bar1::kanMX*)
511 with deletions obtained according to (Janke et al., 2004) (yYB4507: *sur2::NAT*; yYB4510:
512 *bud6::NAT*; yYB4511: *bud1::NAT*). Strains used for Whi3 localization were derivatives of the
513 wild type (yYB6520: *MATa ura3Δ0, hisΔ13, leu2Δ0, TRP1, LYS2, ADE2, met15Δ0, WHI3-3GFP:kanMX, bar1::HIS3*) backcrossed in yYB4510 for *bud6Δ* (yYB10190), in yYB4507 for
514 *sur2Δ* (yYB10192) or in yYB4511 for *bud1Δ* (yYB10187) strains. Strains for the co-localization
515 of Whi3-3GFP and Sec61-mCherry were obtained by PCR tagging of Sec61 in yYB6520
516 (yFC203: *MATa ura3Δ0, hisΔ13, leu2Δ0, TRP1, LYS2, ADE2, met15Δ0, WHI3-3GFP:kanMX, bar1::HIS3, Sec61-mCherry:kanMX*). W303 strains used to test for [PSI+] induction and curing
517 were obtained from Jonathan Weissman, yYB8040 (*MATa, leu2-3,-112; his3-11,-15; trp1-1; ura3-1; ade1-14; can1-100, [RNQ+], [PSI+]*). The *sur2Δ* strain was obtained by deleting *SUR2*
518 according to Janke et al. (Janke et al., 2004) (yYB8435 *MATa, leu2-3,-112; his3-11,-15; trp1-1; ura3-1; ade1-14; can1-100, sur2::HIS3, [RNQ+], [PSI+]*). Localisation of Whi3 in *sur2Δ^{CE}*
519 was analysed in strain yYB5147 (*his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, LYS2, bar1::kanMX, sur2::NatMX, Whi3-GFP:HIS3MX6*). To analyse co-localisation of Sup35-GFP and Sec61-
520 mCherry we used strain yFC202 (*MAT α /alpha SUP35/SUP35-GFP:HIS3; leu2-3,-112/leu2Δ0; his3-11,-15/his3Δ1; trp1-1/TRP1; ura3-1/ura3Δ0; ade1-4/ADE1; can1-100/CAN1, MET15/met15Δ0, SEC61/Sec61:mCherry:URA3 [RNQ+], [PSI+]*). For stop codon
521 readthrough, we used wild type (*MAT α , leu2-3-112, his3-11,-15, trp1-1, ura3-1, ade1-4, can1-100, [RNQ+], [PSI+], pRS304 pGPD GST-UGA-GFP-pest:URA3*) or *sur2Δ* strain
522 (*MAT α , leu2-3-112, his3-11,-15, trp1-1, ura3-1, ade1-4, can1-100, [RNQ+], [PSI+], pRS304 pGPD GST-UGA-GFP-pest:URA3 sur2::KanMX*).
523
524

525

526 **Microscopy**

527 All images were acquired either on a Personal Deltavision (Applied Precision) equipped with
528 a CCD HQ2 camera (Roper) and 250W Xenon lamps controlled by Softworx or a Deltavision
529 Elite (GE Healthcare) equipped with a sCMOS camera and solid-state light-emitting diodes
530 controlled by Softworx. Fluorescein isothiocyanate and tetramethylrhodamine isothiocyanate
531 filters were used for imaging GFP and mCherry fluorescence. Deconvolution was performed
532 using Softworx.

540 **Microfluidics**

541 Experiments were carried out with the ONIX microfluidic perfusion platform with Y04C
542 microfluidic plates (CellAsic). Medium was yeast extract peptone dextrose (YPD)
543 supplemented with 20 mg/ml casein and containing 7 nM α -factor (Figure 2 and 3E) or 6 nM
544 α -factor (Figure 3C-D).

545 **Quantification of Shmooing**

546 Shmooing or budding states were inspected visually. During microfluidic experiments, images
547 were taken every 15 min. Unbudded cells that showed a polarized growth were counted as
548 shmooing. Unbudded cells undergoing isotropic growth were counted as G1 cells. Usually
549 these cells soon started forming a bud. Samples consisted of three independent clones.

550 **Quantification of Whi3-3GFP Super-Assemblies**

551 Cells were grown in YPD supplemented with 20 mg/ml casein and containing 7 nM α -factor
552 and were briefly centrifuged at 600 g, resuspended in SD-TRP medium, placed between slide
553 and coverslip, and imaged immediately. Images were analyzed after deconvolution with
554 Softworx software as before [27]. Three clones with total n > 122 cells were observed for each
555 strain.

556 **Quantification of [PSI⁺] *de novo* appearance**

557 [PSI⁺] [PIN⁺] wild type and *sur2 Δ* cells were first cured with 3 passages on YPD agar medium
558 containing 3 mM GuHCl. Red single colonies [psi-] [pin-] were assessed for their ability to
559 become white again. Cells were plated on SC-Ade and YPD and the frequencies of
560 appearance of white colonies were measured. White colonies were tested for their ability to
561 become red again after passages on YPD containing 3 mM GuHCl.

562 **Quantification of [PSI⁺] curing during treatment with GuHCl**

563 Cells were grown overnight in liquid YPD and diluted in the morning to OD_{600nm} = 0.2 in YPD
564 with 3 mM GuHCl. Samples were taken every 30 minutes and plated on synthetic medium
565 with low adenine concentration. Liquid cultures were kept in exponential phase during the
566 experiment. Colonies were allowed to grow at 30°C for several days and the proportion of
567 white and red colonies was assessed after 2 days of incubation at 4°C to allow for the red
568 colour to develop well. We initially determined that curing started to happen after 12 hours of
569 GuHCl treatment for both wild type and *sur2 Δ* strains.

570

571 **Quantification of Stop-codon read-through by flow cytometry**

572 For the stop codon read through experiments, wild-type [*PSI*+] and *sur2Δ* [*PSI*+] cells
573 expressing chromosomally integrated pGPD GST-UGA-GFP-pest were grown for 5 hours
574 without GuHCl or with 0.1mM or 1mM GuHCl. The GFP fluorescence intensity was measured
575 with a BD Accuri C6 Flow Cytometer using 488 nm laser and 533/30 BD filter for 100 000
576 cells/ clone (3 clones each). The data was analyzed using FlowJo software (FlowJo LLC).

577 **Quantification of CE frequencies**

578 Diploid strains heterozygous for the different mutations were sporulated (for example
579 *SUR2/sur2Δ* or *WHI3/whi3Δ*). *MATa* spores were selected and their genotypes determined by
580 growth on selection media. Strains were grown in YPD until mid-log phase and spotted on
581 solid YPD and solid YPD containing 0.6μM α-factor. Colonies were counted after 2-3 days of
582 growth at 30°C.

583 The analysis was conducted on the estimates of the of relative yeast density obtained from
584 the colony count (C) at an appropriate dilution (D). The relative density for each clone was
585 obtained in the presence of the pheromone (p) and the corresponding control (c), so the
586 relative performance is given by the ratio:

587
$$R = \frac{C_p D_p}{C_c D_c}$$

588 The ratio was logit transformed in an attempt to standardize the variance. Having fitted the
589 average for each yeast strain, the residuals were clearly strongly asymmetrical (Supplemental
590 Figure 1 shows the deviation from a cumulative normal distribution). This pattern might be
591 expected if in a subset of cases the constitutive escaper phenotype occurred early in the
592 culture. The departure from a cumulative normal distribution of residuals is abrupt for
593 standardized residuals greater than one (shown by the vertical line). Since the incidence of
594 these outcomes did not differ between strains ($\chi^2 = 3.02$, $P = 0.88$) they were excluded from
595 subsequent analysis of the ratios.

596 Figure 1C shows the distribution of the logit transformed ratios (R) for each genotype. A linear
597 model describing the means of each strain, showed a highly significant difference between
598 the three strains for which there were a priori expectations of a stronger effect of the
599 pheromone (*whi3-ΔpQ*, *bud1Δ whi3-ΔpQ* and the wildtype) and the remainder (ANOVA $P <$
600 $2e-16$). The fitted values for these two categories is shown by the red line. There were no
601 significant differences between the means for this remaining group ($P = 0.41$) whereas there
602 were significant differences among the three ($P < 0.0007$) - in particular *whi3-ΔpQ* was

603 markedly lower than the wild type ($P<0.0008$). The R package for this analysis is available in
604 the supplementary material.

605 **Cell sizes measurements**

606 Cell sizes were determined using a CASY cell counter model TTC (Schärfe system). Strains
607 were grown to early log phase, diluted in CASYton (Electrolyte buffer from Schärfe system)
608 and processed according to the manufacturer instructions.

609 **Quantification of Sup35 foci and Whi3 super-assemblies/foci/granules co-localisation
610 with ER membranes**

611 For Whi3-3GFP localisation, cells were grown in YPD supplemented with 20 mg/ml casein
612 and containing 7nM α -factor and were briefly centrifuged at 600 g, resuspended in SD-TRP
613 medium, placed on a SC-TRP agar pad covered by a coverslip, and imaged immediately.
614 Images were analysed after deconvolution with Softworx software. Three clones with total $n =$
615 194 cells, 250 cells, 170 cells and 153 cells for 3 hours, 4 hours, 6 hours and 10.5 hours
616 condition were observed for each strain. A total of 333, 402, 393 and 317 super-assemblies
617 were analysed at 3 hours, 4 hours, 6 hours and 10.5 hours' time points. Note that we only
618 analysed super-assemblies that were in the 5 best focal planes as co-localisation was difficult
619 to assess on the top and bottom focal planes and we only counted Sup35-GFP foci and Whi3-
620 3GFP super-assemblies in the mother cells.

621 **Acknowledgements**

622 We would like to thank Robin Hannay for his help in creating some of the strains. This work
623 was supported by a Biotechnology and Biological Sciences Research Council Project grant
624 (BB/S001204/1) to FC, QMUL to FC and YL, the Academy of Finland (317038) and Sigrid
625 Jusélius Foundation to JS and the European Research Council (BarrAge 250278) and ETH
626 Zurich (to J.S., F.C. and Y.B.).

627

628

629

630

631

632

633 **References**

634 Alberti S, Halfmann R, King O, Kapila A, Lindquist S. 2009. A systematic survey identifies
635 prions and illuminates sequence features of prionogenic proteins. *Cell* **137**:146–158.
636 doi:10.1016/j.cell.2009.02.044

637 Bender A, Pringle JR. 1989. Multicopy suppression of the cdc24 budding defect in yeast by
638 CDC42 and three newly identified genes including the ras-related gene RSR1. *Proc
639 Natl Acad Sci U S A* **86**:9976–9980.

640 Brown JCS, Lindquist S. 2009. A heritable switch in carbon source utilization driven by an
641 unusual yeast prion. *Genes Dev* **23**:2320–2332. doi:10.1101/gad.1839109

642 Caudron F, Barral Y. 2013. A super-assembly of Whi3 encodes memory of deceptive
643 encounters by single cells during yeast courtship. *Cell* **155**:1244–1257.
644 doi:10.1016/j.cell.2013.10.046

645 Caudron F, Barral Y. 2009. Septins and the lateral compartmentalization of eukaryotic
646 membranes. *Dev Cell* **16**:493–506. doi:10.1016/j.devcel.2009.04.003

647 Clay L, Caudron F, Denoth-Lippuner A, Boettcher B, Buvelot Frei S, Snapp EL, Barral Y. 2014.
648 A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother
649 cell. *eLife* **3**:e01883. doi:10.7554/eLife.01883

650 Coustou V, Deleu C, Saupe S, Begueret J. 1997. The protein product of the het-s
651 heterokaryon incompatibility gene of the fungus *Podospora anserina* behaves as a
652 prion analog. *Proc Natl Acad Sci* **94**:9773–9778. doi:10.1073/pnas.94.18.9773

653 Denoth-Lippuner A, Krzyzanowski MK, Stober C, Barral Y. 2014. Role of SAGA in the
654 asymmetric segregation of DNA circles during yeast ageing. *eLife* **3**.
655 doi:10.7554/eLife.03790

656 Derdowski A, Sindi SS, Klaips CL, DiSalvo S, Serio TR. 2010. A size threshold limits prion
657 transmission and establishes phenotypic diversity. *Science* **330**:680–683.
658 doi:10.1126/science.1197785

659 Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW. 1996. Genesis
660 and variability of [PSI] prion factors in *Saccharomyces cerevisiae*. *Genetics* **144**:1375–
661 1386.

662 Ewers H, Tada T, Petersen JD, Racz B, Sheng M, Choquet D. 2014. A Septin-Dependent
663 Diffusion Barrier at Dendritic Spine Necks. *PLoS One* **9**:e113916.
664 doi:10.1371/journal.pone.0113916

665 Ferreira PC, Ness F, Edwards SR, Cox BS, Tuite MF. 2001. The elimination of the yeast [PSI⁺]
666 prion by guanidine hydrochloride is the result of Hsp104 inactivation. *Mol Microbiol*
667 **40**:1357–1369.

668 Garì E, Volpe T, Wang H, Gallego C, Futcher B, Aldea M. 2001. Whi3 binds the mRNA of the
669 G1 cyclin CLN3 to modulate cell fate in budding yeast. *Genes Dev* **15**:2803–2808.
670 doi:10.1101/gad.203501

671 Goedert M. 2015. Alzheimer's and Parkinson's diseases: The prion concept in relation to
672 assembled A β , tau, and α -synuclein. *Science* **349**:1255555.
673 doi:10.1126/science.1255555

674 Graziano BR, DuPage AG, Michelot A, Breitsprecher D, Moseley JB, Sagot I, Blanchoin L,
675 Goode BL. 2011. Mechanism and cellular function of Bud6 as an actin nucleation-
676 promoting factor. *Mol Biol Cell* **22**:4016–4028. doi:10.1091/mbc.E11-05-0404

677 Graziano BR, Jonasson EM, Pullen JG, Gould CJ, Goode BL. 2013. Ligand-induced activation
678 of a formin-NPF pair leads to collaborative actin nucleation. *J Cell Biol* **201**:595–611.
679 doi:10.1083/jcb.201212059

680 Harvey ZH, Chen Y, Jarosz DF. 2018. Protein-Based Inheritance: Epigenetics beyond the
681 Chromosome. *Mol Cell* **69**:195–202. doi:10.1016/j.molcel.2017.10.030

682 Hou F, Sun L, Zheng H, Skaug B, Jiang Q-X, Chen ZJ. 2011. MAVS forms functional prion-like
683 aggregates to activate and propagate antiviral innate immune response. *Cell*
684 **146**:448–461. doi:10.1016/j.cell.2011.06.041

685 Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV, Spiliotis ET, Nelson WJ. 2010. A septin
686 diffusion barrier at the base of the primary cilium maintains ciliary membrane
687 protein distribution. *Sci N Y NY* **329**:436–439. doi:10.1126/science.1191054

688 Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A,
689 Doenges G, Schwob E, Schiebel E, Knop M. 2004. A versatile toolbox for PCR-based
690 tagging of yeast genes: new fluorescent proteins, more markers and promoter
691 substitution cassettes. *Yeast Chichester Engl* **21**:947–962. doi:10.1002/yea.1142

692 Jarosz DF, Brown JCS, Walker GA, Datta MS, Ung WL, Lancaster AK, Rotem A, Chang A,
693 Newby GA, Weitz DA, Bisson LF, Lindquist S. 2014. Cross-kingdom chemical
694 communication drives a heritable, mutually beneficial prion-based transformation of
695 metabolism. *Cell* **158**:1083–1093. doi:10.1016/j.cell.2014.07.025

696 Khan MR, Li L, Pérez-Sánchez C, Saraf A, Florens L, Slaughter BD, Unruh JR, Si K. 2015.
697 Amyloidogenic Oligomerization Transforms Drosophila Orb2 from a Translation
698 Repressor to an Activator. *Cell* **163**:1468–1483. doi:10.1016/j.cell.2015.11.020

699 Kim SK, Shindo A, Park TJ, Oh EC, Ghosh S, Gray RS, Lewis RA, Johnson CA, Attie-Bittach T,
700 Katsanis N, Wallingford JB. 2010. Planar cell polarity acts through septins to control
701 collective cell movement and ciliogenesis. *Sci N Y NY* **329**:1337–1340.
702 doi:10.1126/science.1191184

703 Lang GI, Murray AW. 2008. Estimating the per-base-pair mutation rate in the yeast
704 *Saccharomyces cerevisiae*. *Genetics* **178**:67–82. doi:10.1534/genetics.107.071506

705 Luedke C, Frei SB, Sbalzarini I, Schwarz H, Spang A, Barral Y. 2005. Septin-dependent
706 compartmentalization of the endoplasmic reticulum during yeast polarized growth. *J
707 Cell Biol* **169**:897–908. doi:10.1083/jcb.200412143

708 Moore SA. 1984. Yeast cells recover from mating pheromone alpha factor-induced division
709 arrest by desensitization in the absence of alpha factor destruction. *J Biol Chem*
710 **259**:1004–1010.

711 Mostowy S, Cossart P. 2012. Septins: the fourth component of the cytoskeleton. *Nat Rev
712 Mol Cell Biol* **13**:183–194. doi:10.1038/nrm3284

713 Narayanan S, Walter S, Reif B. 2006. Yeast prion-protein, sup35, fibril formation proceeds by
714 addition and subtraction of oligomers. *Chembiochem Eur J Chem Biol* **7**:757–765.
715 doi:10.1002/cbic.200500382

716 Prusiner SB. 1982. Novel proteinaceous infectious particles cause scrapie. *Sci N Y NY*
717 **216**:136–144.

718 Saarikangas J, Barral Y. 2011. The emerging functions of septins in metazoans. *EMBO Rep*
719 **12**:1118–1126. doi:10.1038/embor.2011.193

720 Saarikangas J, Caudron F, Prasad R, Moreno DF, Bolognesi A, Aldea M, Barral Y. 2017.
721 Compartmentalization of ER-Bound Chaperone Confines Protein Deposit Formation
722 to the Aging Yeast Cell. *Curr Biol CB* **27**:773–783. doi:10.1016/j.cub.2017.01.069

723 Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL.
724 2000. Nucleated Conformational Conversion and the Replication of Conformational
725 Information by a Prion Determinant. *Science* **289**:1317–1321.
726 doi:10.1126/science.289.5483.1317

727 Sharma SV, Agatsuma T, Nakano H. 1998. Targeting of the protein chaperone, HSP90, by the
728 transformation suppressing agent, radicicol. *Oncogene* **16**:2639–2645.
729 doi:10.1038/sj.onc.1201790

730 Shcheprova Z, Baldi S, Frei SB, Gonnet G, Barral Y. 2008. A mechanism for asymmetric
731 segregation of age during yeast budding. *Nature* **454**:728–734.
732 doi:10.1038/nature07212

733 Si K, Choi Y-B, White-Grindley E, Majumdar A, Kandel ER. 2010. Aplysia CPEB can form prion-
734 like multimers in sensory neurons that contribute to long-term facilitation. *Cell*
735 **140**:421–435. doi:10.1016/j.cell.2010.01.008

736 Suzuki G, Shimazu N, Tanaka M. 2012. A Yeast Prion, Mod5, Promotes Acquired Drug
737 Resistance and Cell Survival Under Environmental Stress. *Science* **336**:355–359.
738 doi:10.1126/science.1219491

739 Toure A, Rode B, Hunnicutt GR, Escalier D, Gacon G. 2011. Septins at the annulus of
740 mammalian sperm. *Biol Chem* **392**:799–803. doi:10.1515/BC.2011.074

741 True HL, Lindquist SL. 2000. A yeast prion provides a mechanism for genetic variation and
742 phenotypic diversity. *Nature* **407**:477–483. doi:10.1038/35035005

743 Tuite MF. 2016. Remembering the Past: A New Form of Protein-Based Inheritance. *Cell*
744 **167**:302–303. doi:10.1016/j.cell.2016.09.036

745 Tuite MF, Cox BS. 2006. The [PSI⁺] prion of yeast: a problem of inheritance. *Methods San
746 Diego Calif* **39**:9–22. doi:10.1016/j.ymeth.2006.04.001

747 Tuite MF, Mundy CR, Cox BS. 1981. Agents that cause a high frequency of genetic change
748 from [psi⁺] to [psi⁻] in *Saccharomyces cerevisiae*. *Genetics* **98**:691–711.

749 Vergés E, Garí E, Gallego C, Aldea M. 2007. Cyclin Cln3 is retained at the ER and released by
750 the J chaperone Ydj1 in late G1 to trigger cell cycle entry. *26*:649–662.
751 doi:10.1016/j.molcel.2007.04.023

752 Wickner RB, Shewmaker FP, Bateman DA, Edskes HK, Gorkovskiy A, Dayani Y, Bezsonov EE.
753 2015. Yeast prions: structure, biology, and prion-handling systems. *Microbiol Mol
754 Biol Rev MMBR* **79**:1–17. doi:10.1128/MMBR.00041-14

755 Yuan AH, Hochschild A. 2017. A bacterial global regulator forms a prion. *Sci N Y NY* **355**:198–
756 201. doi:10.1126/science.aai7776

757

758

759

760

761

762

763

764

765

766 **Figure Legends**

767 **Figure 1. A novel epigenetic phenotype, constitutive escapers.** (A) Serial 1/10 dilutions
768 of exponentially growing cultures of indicated strains spotted on a YPD solid medium (left) or
769 YPD containing α -factor (10nM middle and 600nM right). The bottom panel shows three
770 *bud6* Δ independent clones with high frequency of CE. (B) Frequency of appearance of CEs in
771 the indicated genotypes (median with 95% confidence interval, n>37 clones for each, Dunn's
772 multiple comparisons test was used to determine significance). (C) Distribution of the logit
773 transformed ratios (R) for each genotype. (D) Cell size distributions of individual clones or CE
774 isolates of indicated strains (n>39 clones for each). (E) Maximal projection images of *sur2* Δ
775 cells expressing Whi3-GFP from 20 CE isolates and the parental strain. Isolates are in order
776 of mean cell size from the smallest (orange frame are smaller than the blue framed parental
777 strain) to the largest (purple are larger than the parental strain). Scale bar = 5 μ m.

778 **Figure 2. Endoplasmic reticulum compartmentalization by a lateral membrane diffusion**
779 **barrier is not required for prion induction and curing.** (A) Fluorescence intensity measured
780 by flow cytometer of [PSI $+$] WT and [PSI $+$] *sur2* Δ cells treated or not with 0.1mM and 1mM
781 GuHCl. (B) Frequency of *de novo* [PSI $+$] appearance and (C) percentage of cells cured of
782 [PSI $+$] over time. Graphs A and B display mean \pm SD.

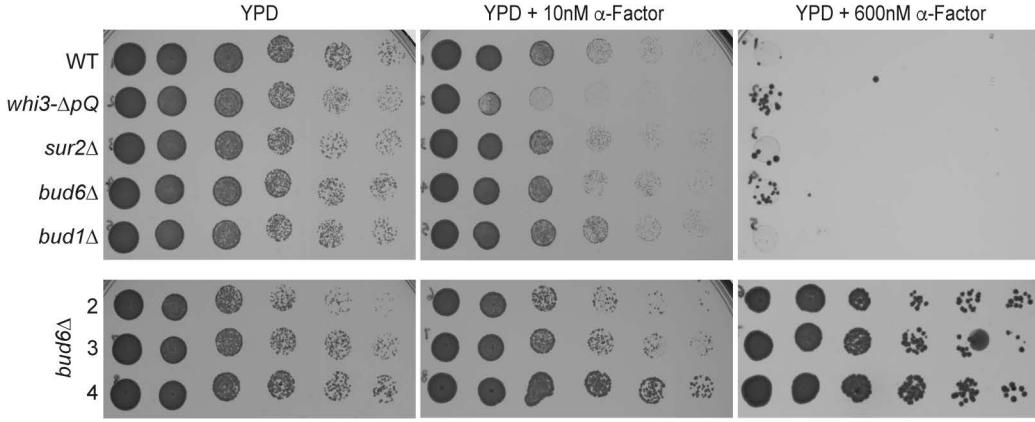
783 **Figure 3. Sup35 and Whi3 prion foci are not closely linked to ER membranes while Whi3**
784 **super-assemblies and granules are.** (A) Single focal plane images of [PSI $+$] cells expressing
785 Sup35-GFP and Sec61-mCherry. (B) Percentage of Sup35 foci close to ER membranes (1180
786 foci analysed from 90 cells of three independent clones, mean \pm SD is presented). (C)
787 Percentage of cells with at least one Sup35-GFP focus away from ER membranes (3 clones
788 with more than 90 cells each). (D) Single focal plane images of cells expressing Whi3-mNG
789 and Sec61-mCherry exposed to pheromone for 3 hours (top left and middle left) and 4 hours
790 (bottom left), and cells exposed for 5 hours to pheromone and released in a pheromone free
791 medium then imaged at 6 hours (top right) and 10.5 hours (bottom right) after initial exposure
792 to pheromone. (E) Percentage of Whi3-mNG super-assemblies close to ER membranes (3
793 independent clones, >300 super-assemblies from >153 cells were analysed, mean \pm SD are
794 presented). (F) Percentage of cells with at least one Whi3-mNG super-assembly away from
795 ER membranes (3 independent clones, >300 super-assemblies from >153 cells were
796 analysed, mean \pm SD are presented). (G) Single focal plane images of *bud6* Δ cells (top) and
797 *bud6* Δ CE cells (bottom) expressing Whi3-mNG and Sec61-mCherry. (H) Percentage of Whi3-
798 mNG granules (*bud6* Δ) and foci (*bud6* Δ CE) localizing close to ER membranes (4 clones or
799 isolates, 527 granules and 359 foci in 200 cells were analysed, mean \pm SD are presented). For

800 all panel, arrows point at foci away from the ER and arrowheads point at foci close to the ER.
801 Scale bars = 5 μ m.

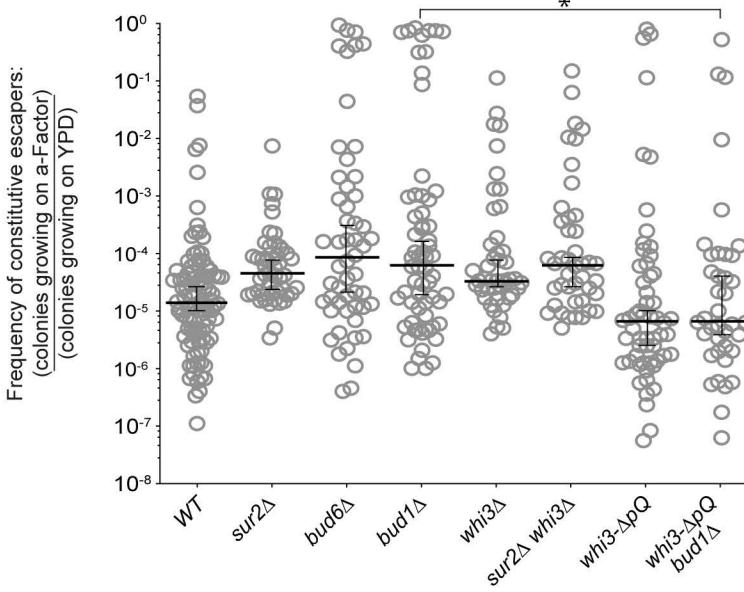
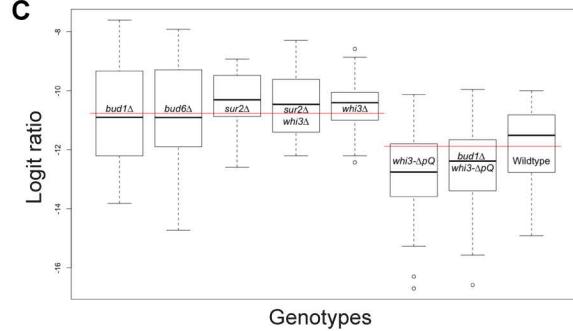
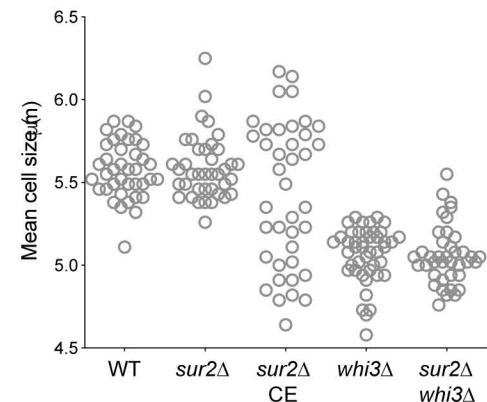
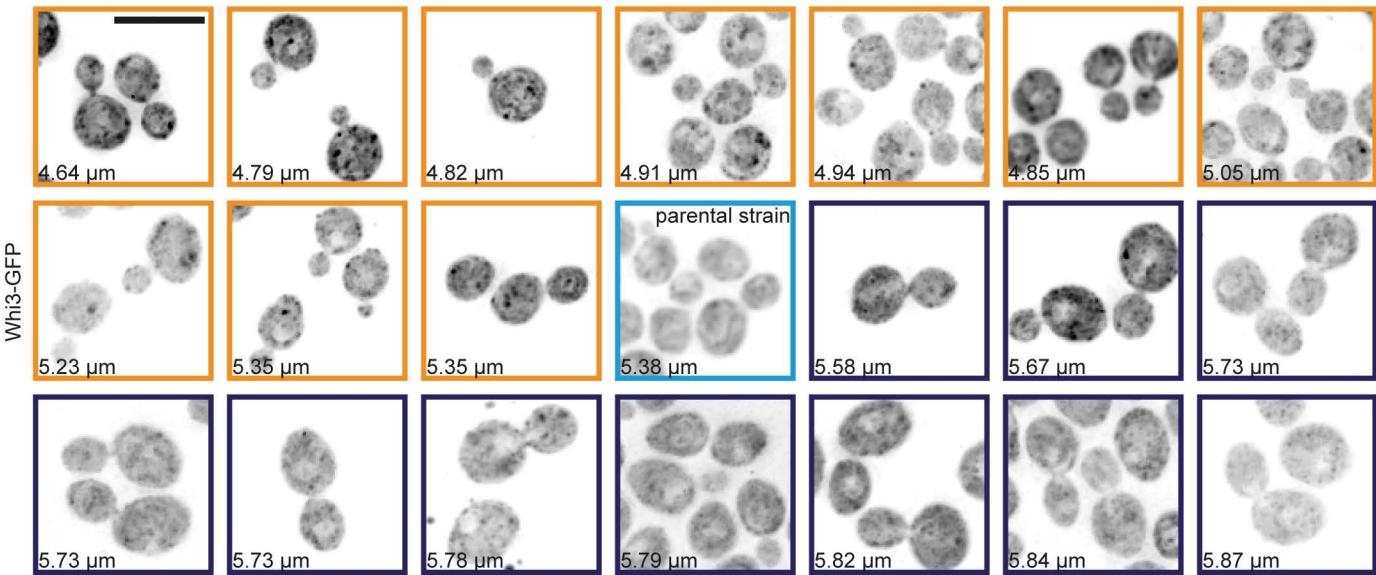
802 **Figure 4. Whi3-3GFP super-assemblies form in the buds of mutants with a weak**
803 **diffusion barrier.** (A) Single focal plane images of Whi3-3GFP expressing cells. Scale bar =
804 5 μ m. (B) Quantification of buds with a detectable Whi3-3GFP super-assembly (n=122 cells,
805 148 cells, 180 cells and 165 cells for wild-type, *bud6* Δ , *sur2* Δ and *bud1* Δ cells respectively)
806 Results from *bud6* Δ , *sur2* Δ and *bud1* Δ are significantly different from wild type (p<0.0001, one-
807 way ANOVA).

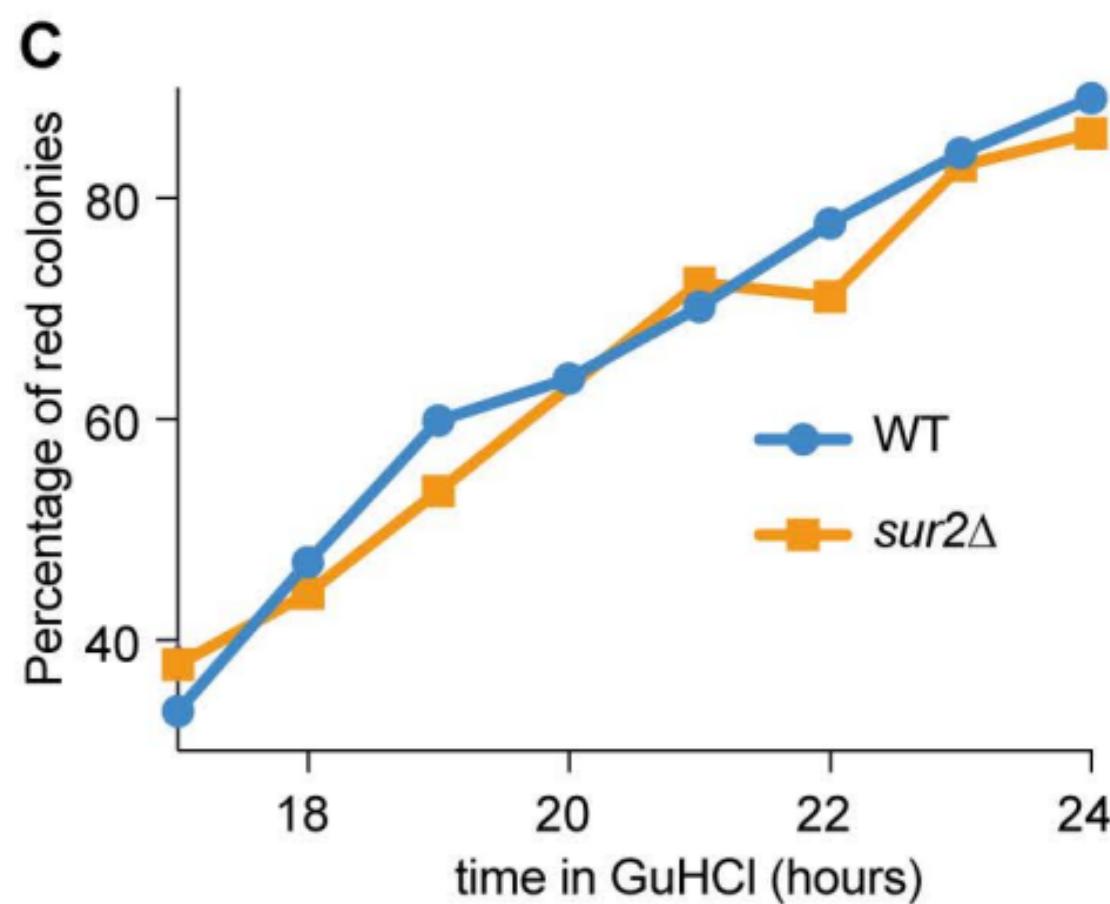
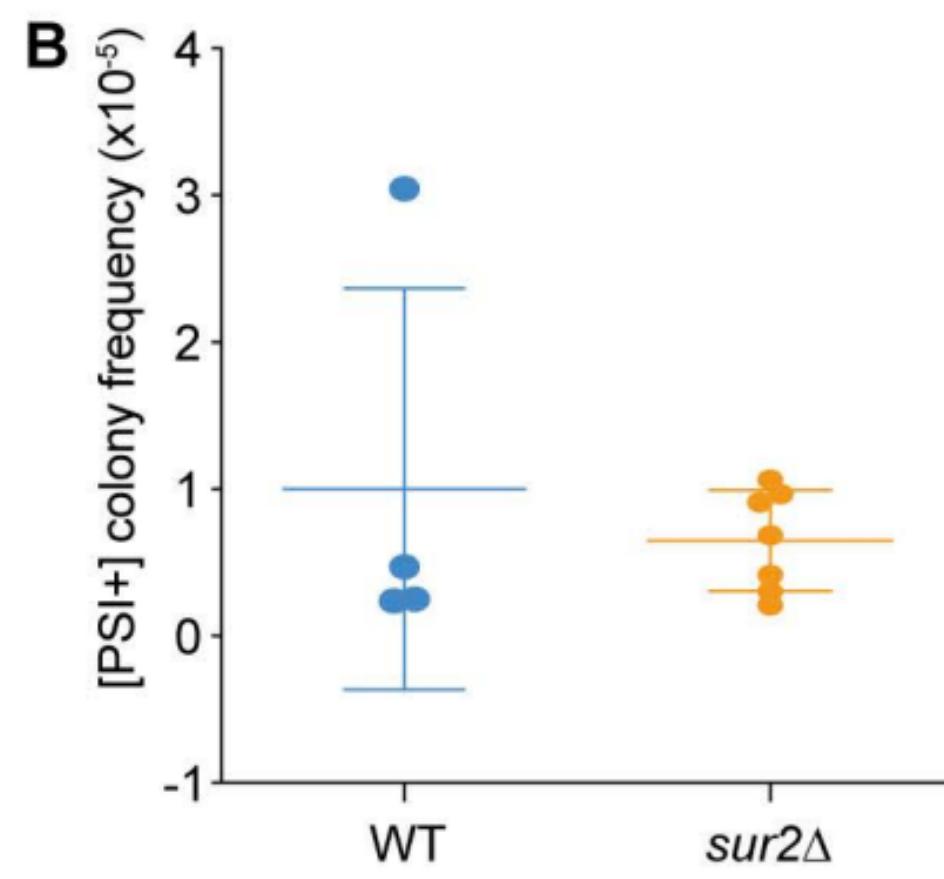
808 **Figure 5. The ER diffusion barrier prevents daughter cells from inheriting the**
809 **pheromone refractory state.** (A) Escape of a wild-type, a *bud6* Δ , a *sur2* Δ and a *bud1* Δ cell
810 exposed to 7 nM pheromone. (B) Percentage of initial cells still shmooing after the indicated
811 time (n>154 cells). (C) Percentage of daughter cells budding immediately after separation
812 from the mother cell (n>128 cells, n>121 cells, n>111 cells, n>88 cells and n>59 cells for the
813 1st, 2nd, 3rd, 4th and 5th daughter respectively). (D) Timing of escape of daughter cells that
814 shmooed (*sur2* Δ is significantly different from wild type, p<0.0001, one-way ANOVA, all other
815 comparisons are not significantly different, n=366 cells, 81 cells, 416 cells and 193 cells for
816 wild-type, *bud6* Δ , *sur2* Δ and *bud1* Δ cells respectively).

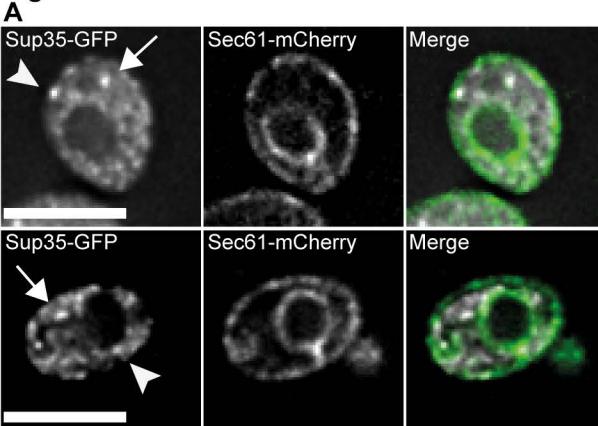
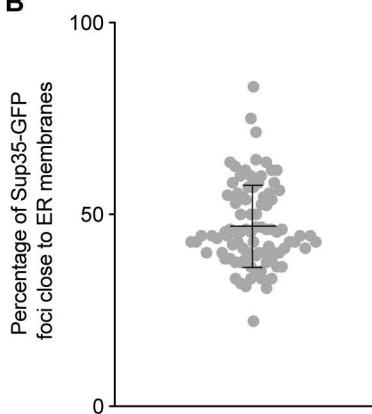
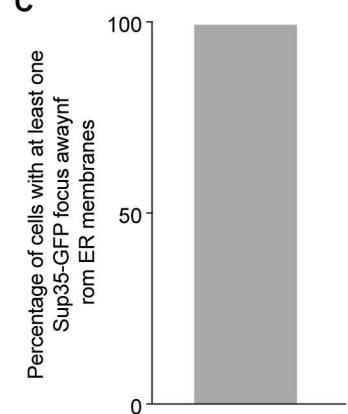
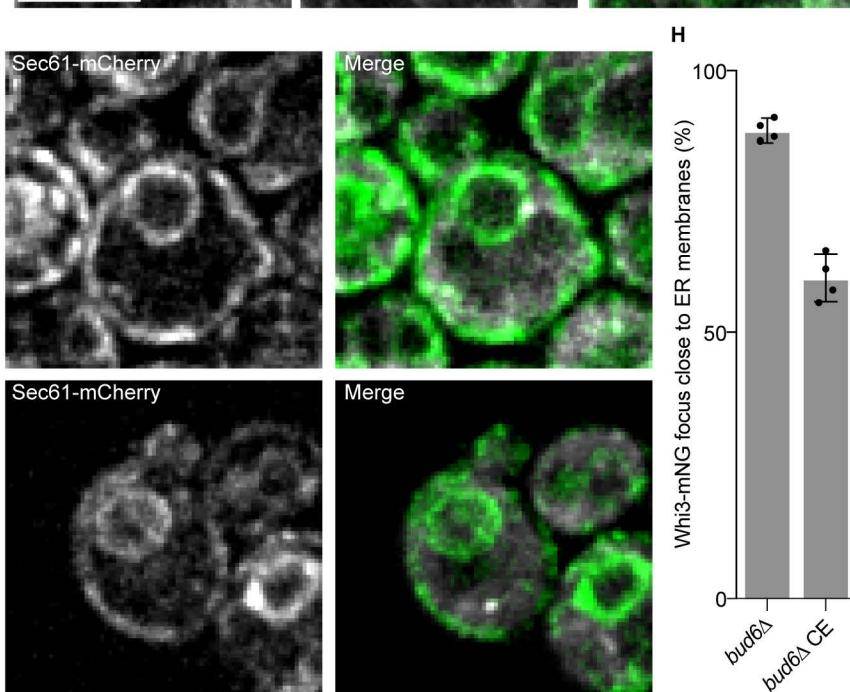
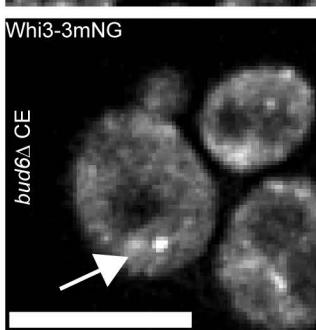
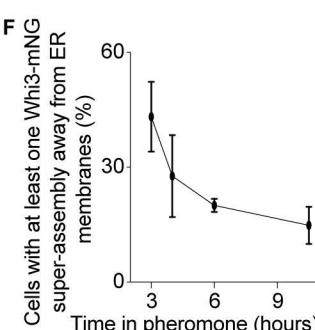
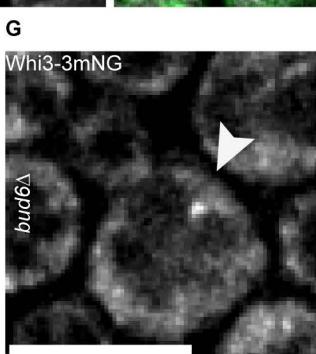
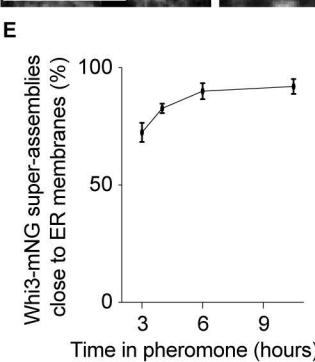
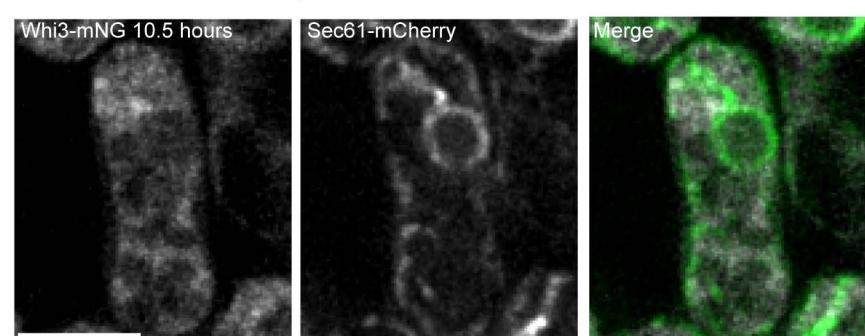
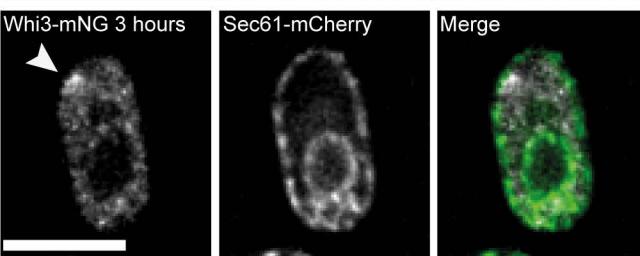
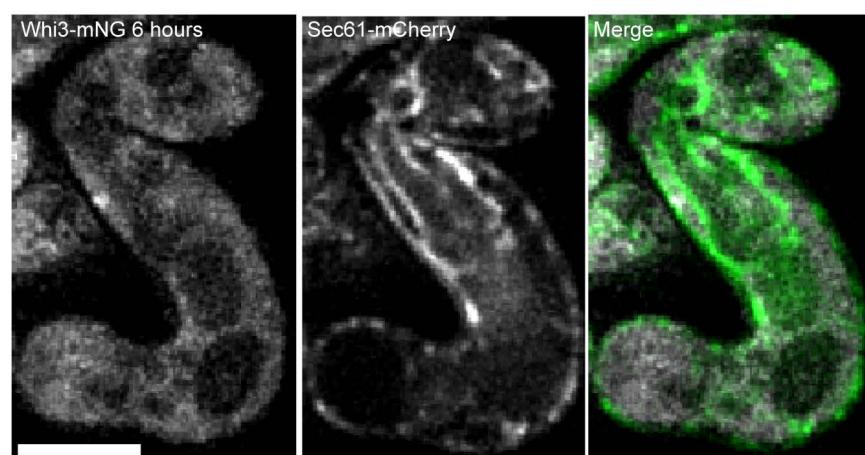
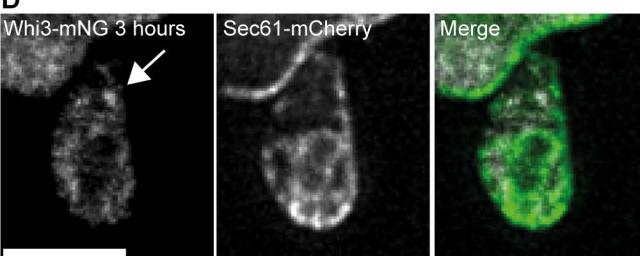
817 **Figure 6. The polyQ domain of Whi3 is required for inheritance of the pheromone**
818 **refractory state by diffusion barrier impaired daughter cells.** Percentage of daughter cells
819 of indicated genotypes budding immediately after separation from the mother cell. Mean \pm SD
820 are presented.

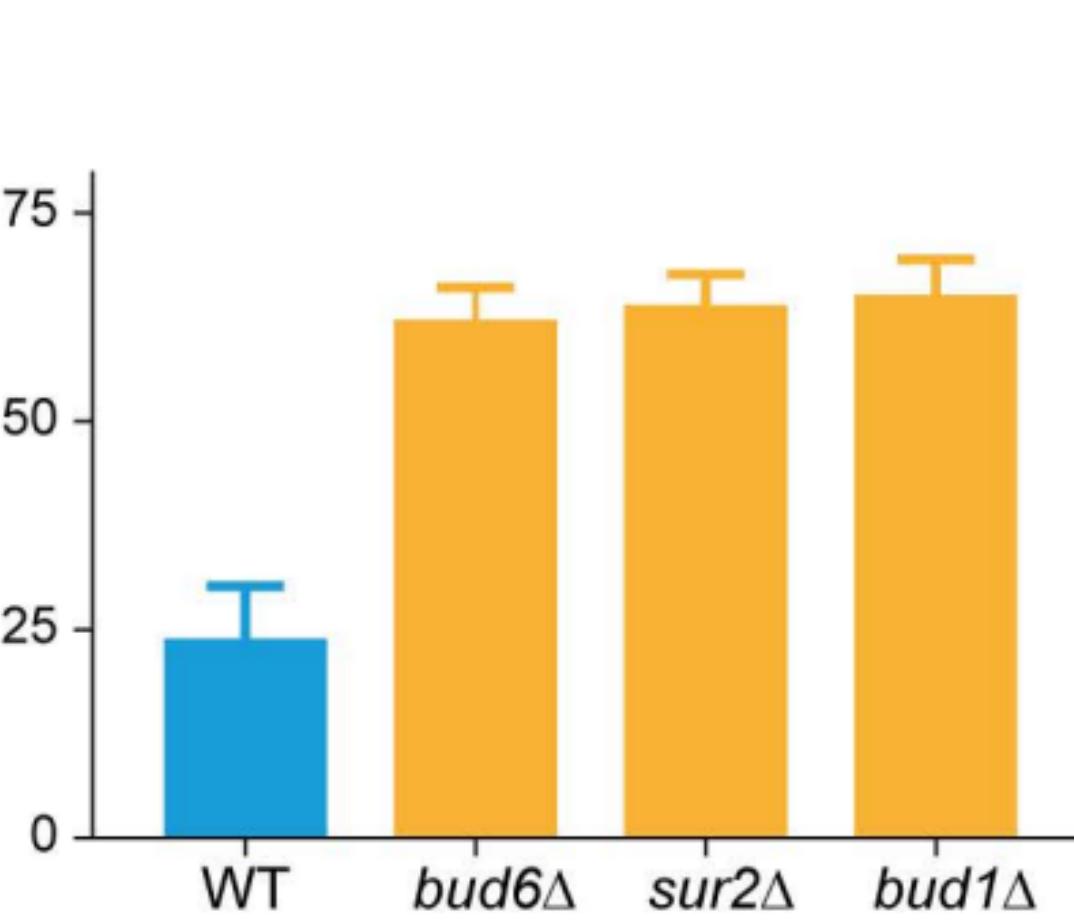
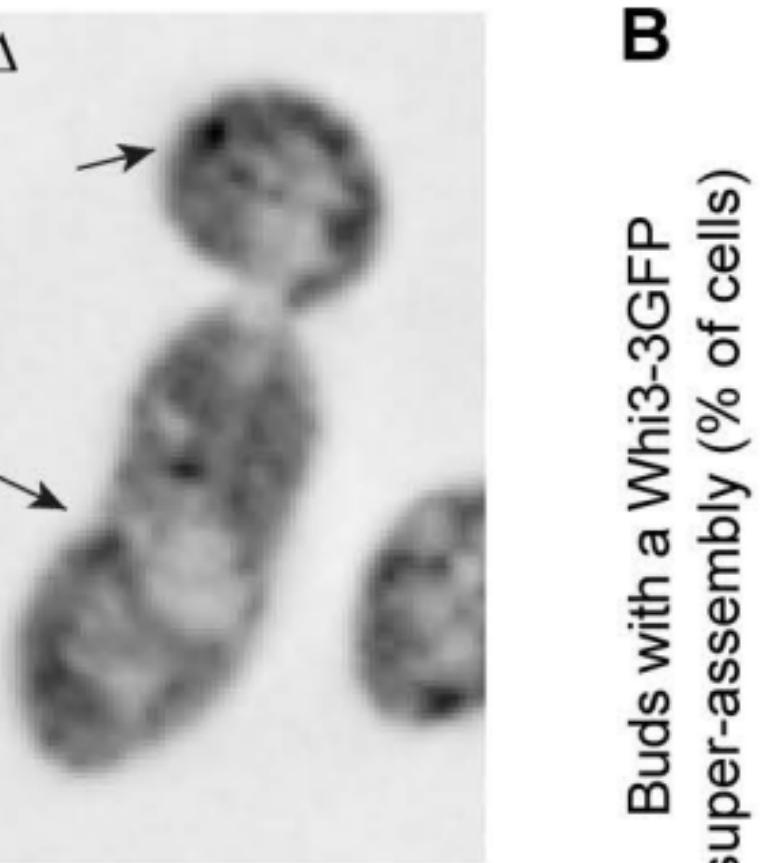
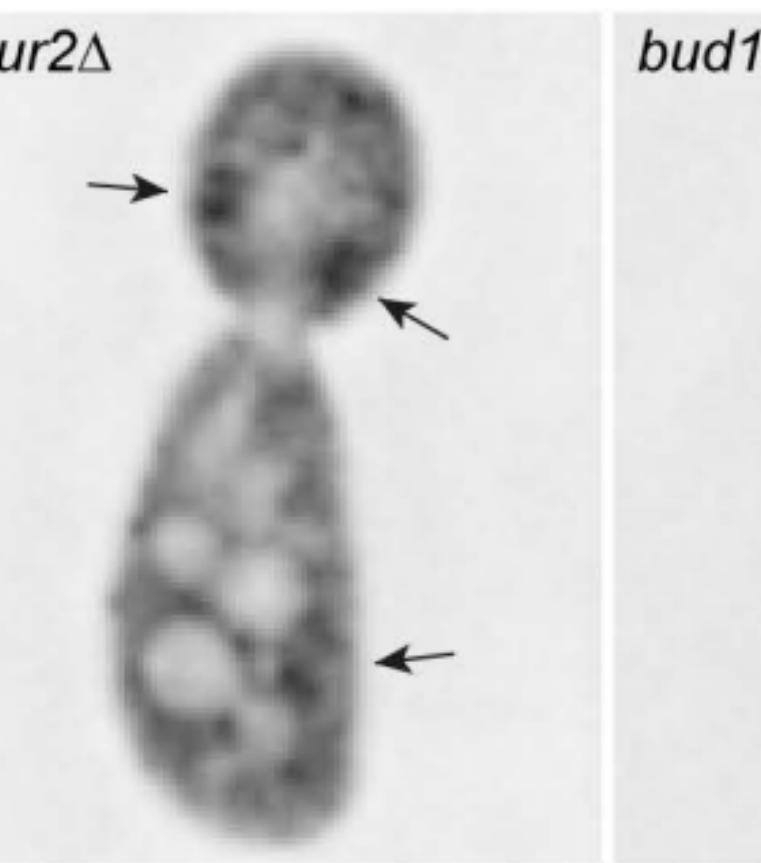
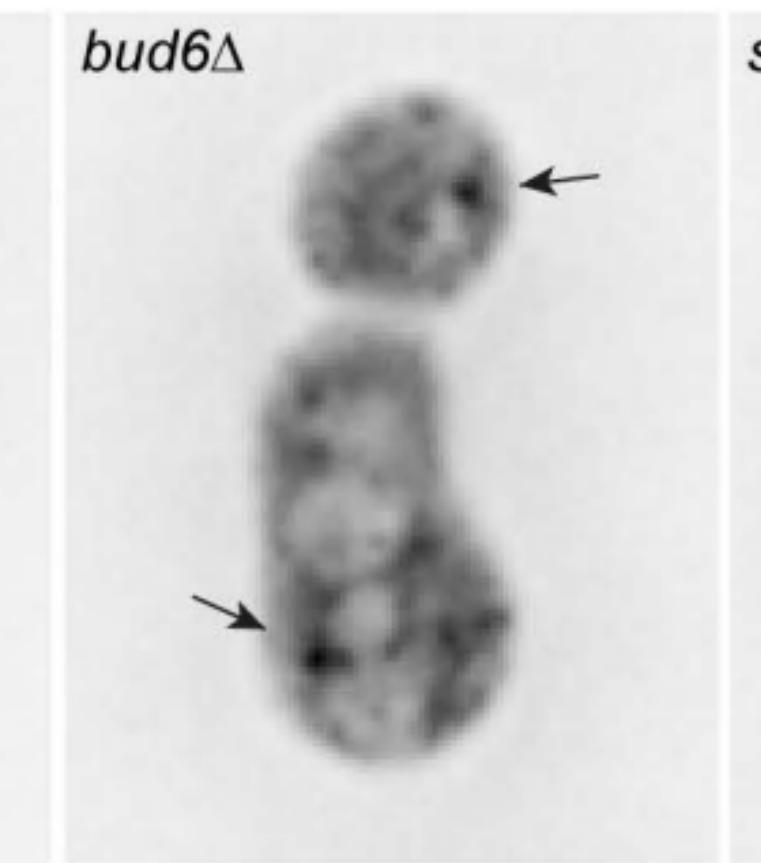

821

822 **Supplemental Figure 1. Deviation of the residuals from a cumulative normal**
823 **distribution.**





824 **Supplemental Figure 2. Non-mendelian inheritance of the CE phenotype during**
825 **meiosis.** Schematic of the experimental test (left) and results (right) of 2 backcrosses of *sur2* Δ
826 parental strain (pooled in one line) and 13 CE backcrossed.



827 **Supplemental Figure 3. The CE phenotype can be partially cured by Ssa1 inhibition.**
828 Schematic of the experimental test. CE were isolated, restreaked 3 times on YPD, YPD +
829 radicicol (10 μ M) or YPD + GuHCl (3mM) or transformed with a plasmid expressing *SSA1*^{DN}
830 and restreaked 3 times on selective medium. CE were then tested again on YPD + alpha
831 factor (0.6 μ M). The right panels display microscopic images of the parental *sur2* Δ strain and













832 CE1 and CE2 on YPD + alpha factor (0.6 μ M) after the corresponding treatments. Arrows point
833 at shmooing cells in CE1 transformed with a plasmid expressing $SSA1^{DN}$. Scale bar = 10 μ m.





Figure 1**A****B**

N clones:	96	49	45	44	54	57	64	39
p-value compared to WT	**	**	**	*	**	ns	ns	

C**D****E**

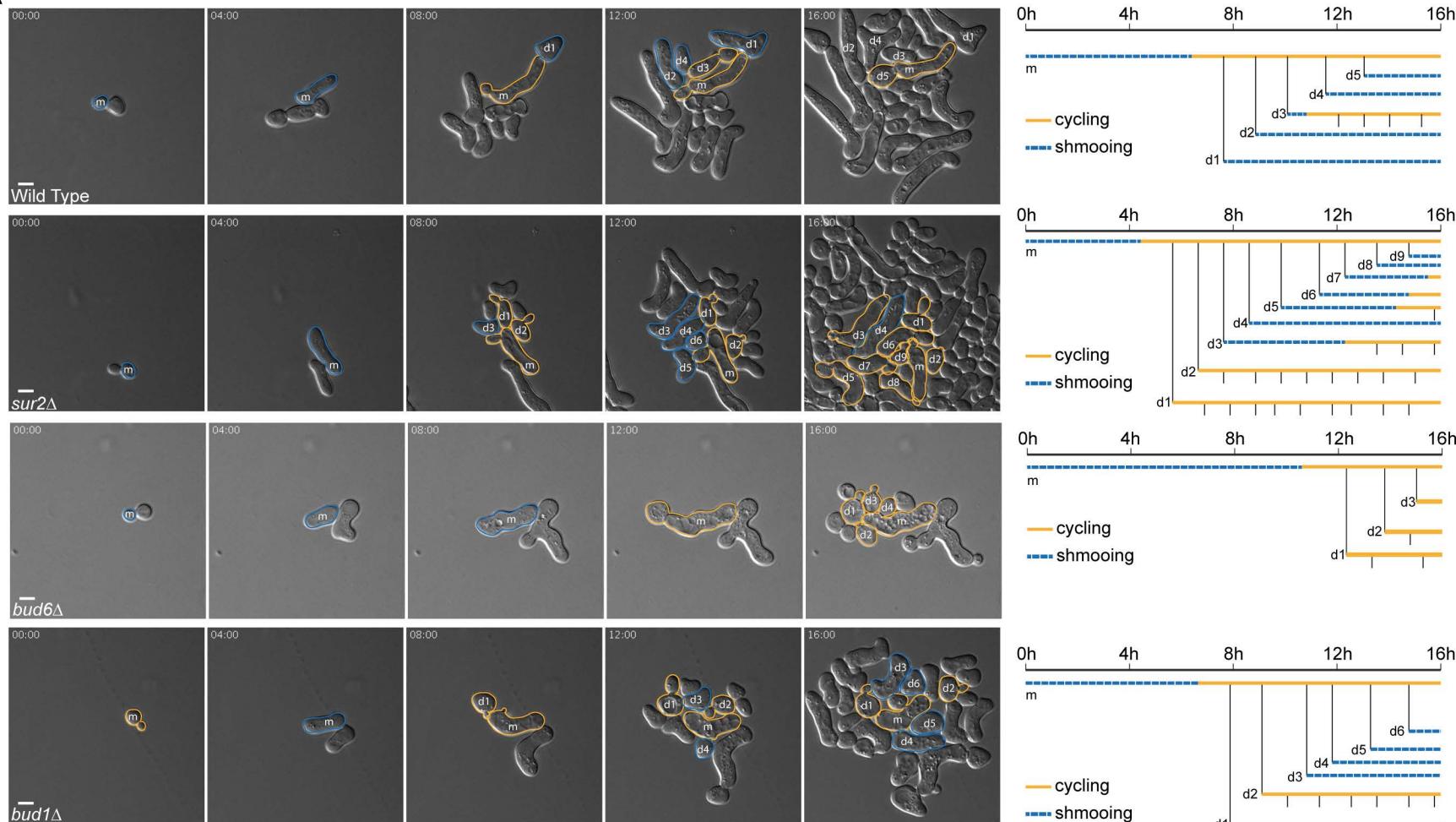

Figure 2

Figure 3**B****C****D**

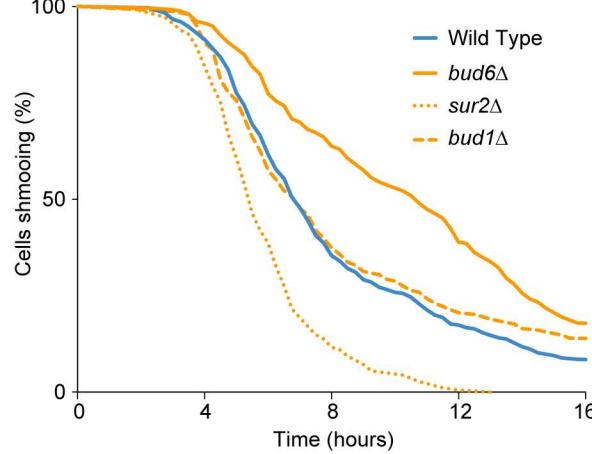
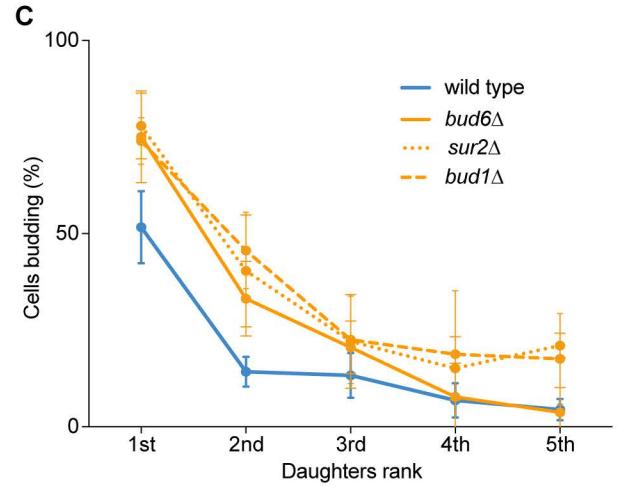
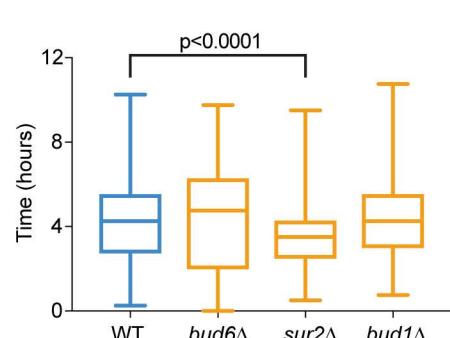
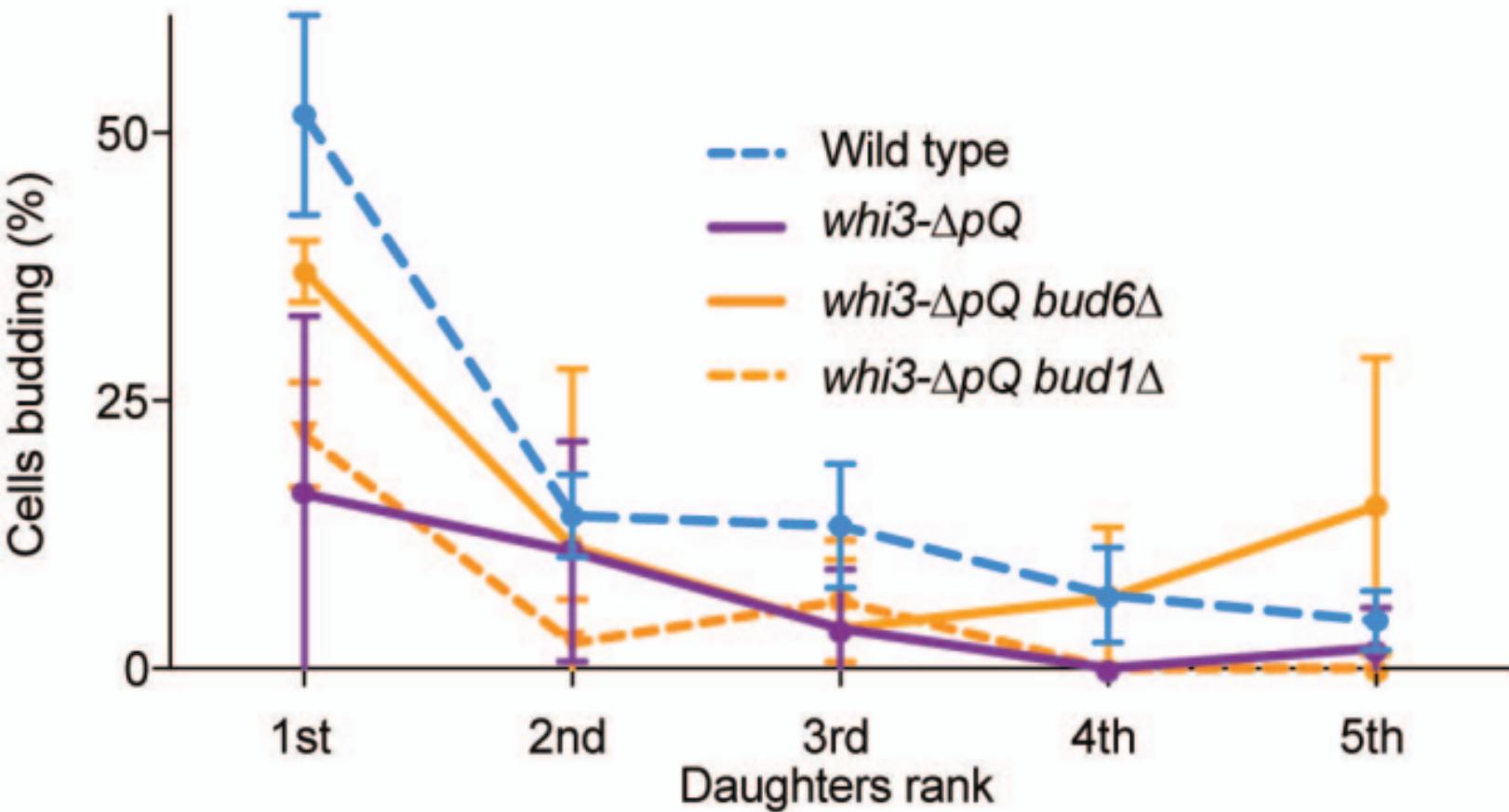
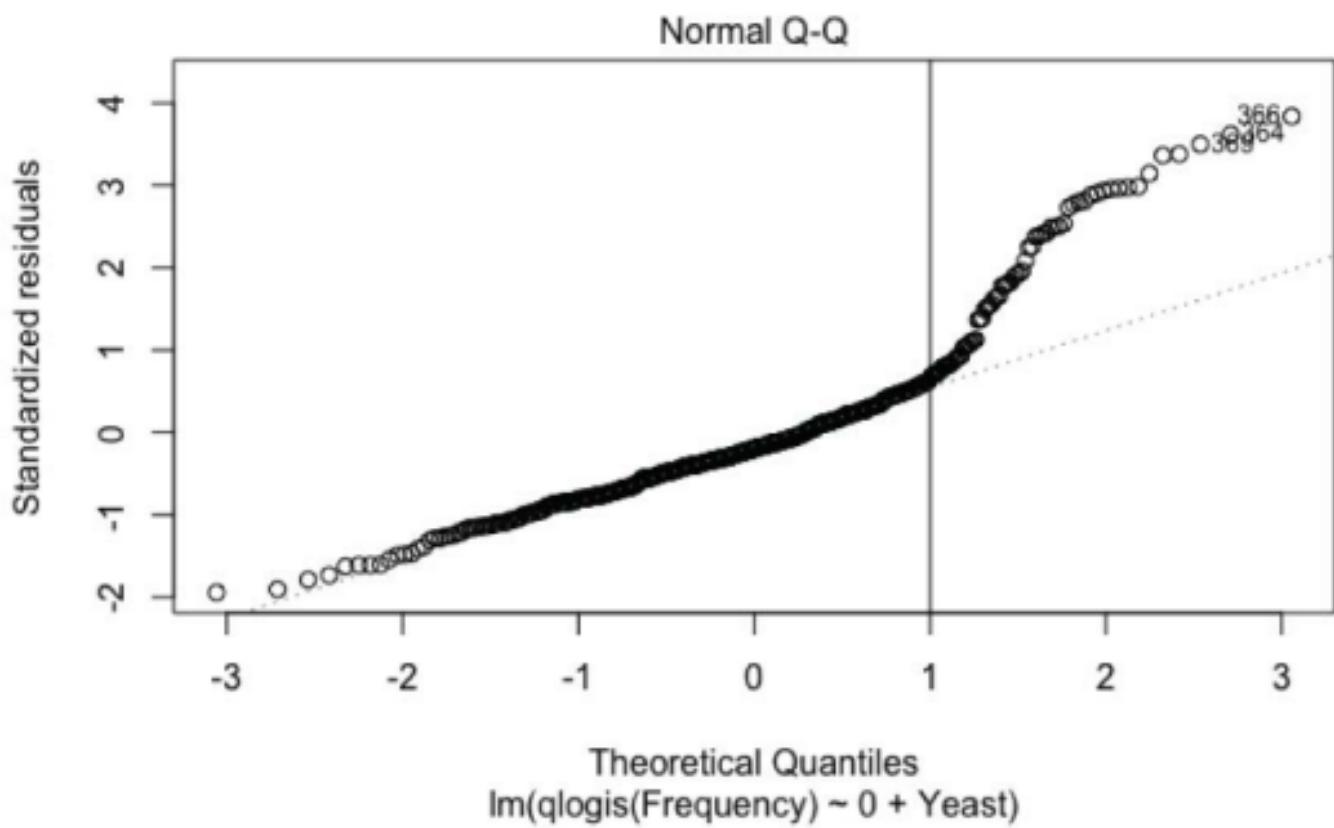

Figure 4

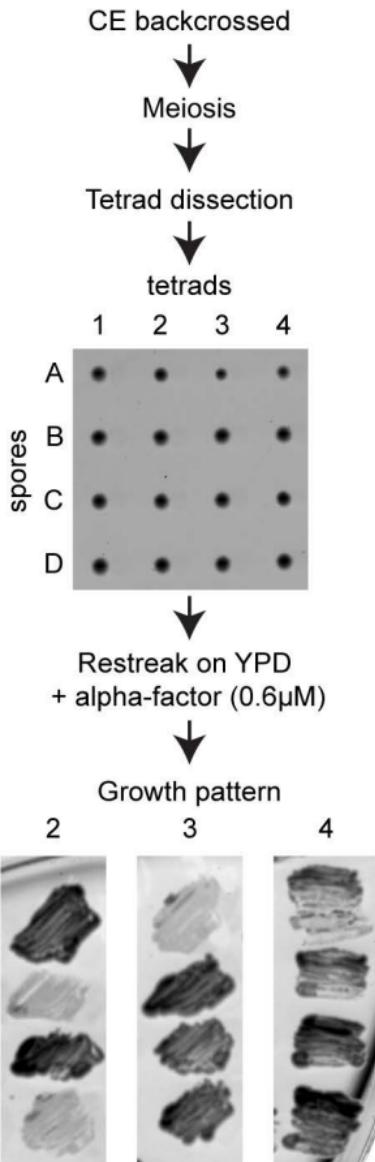
Figure 5


A

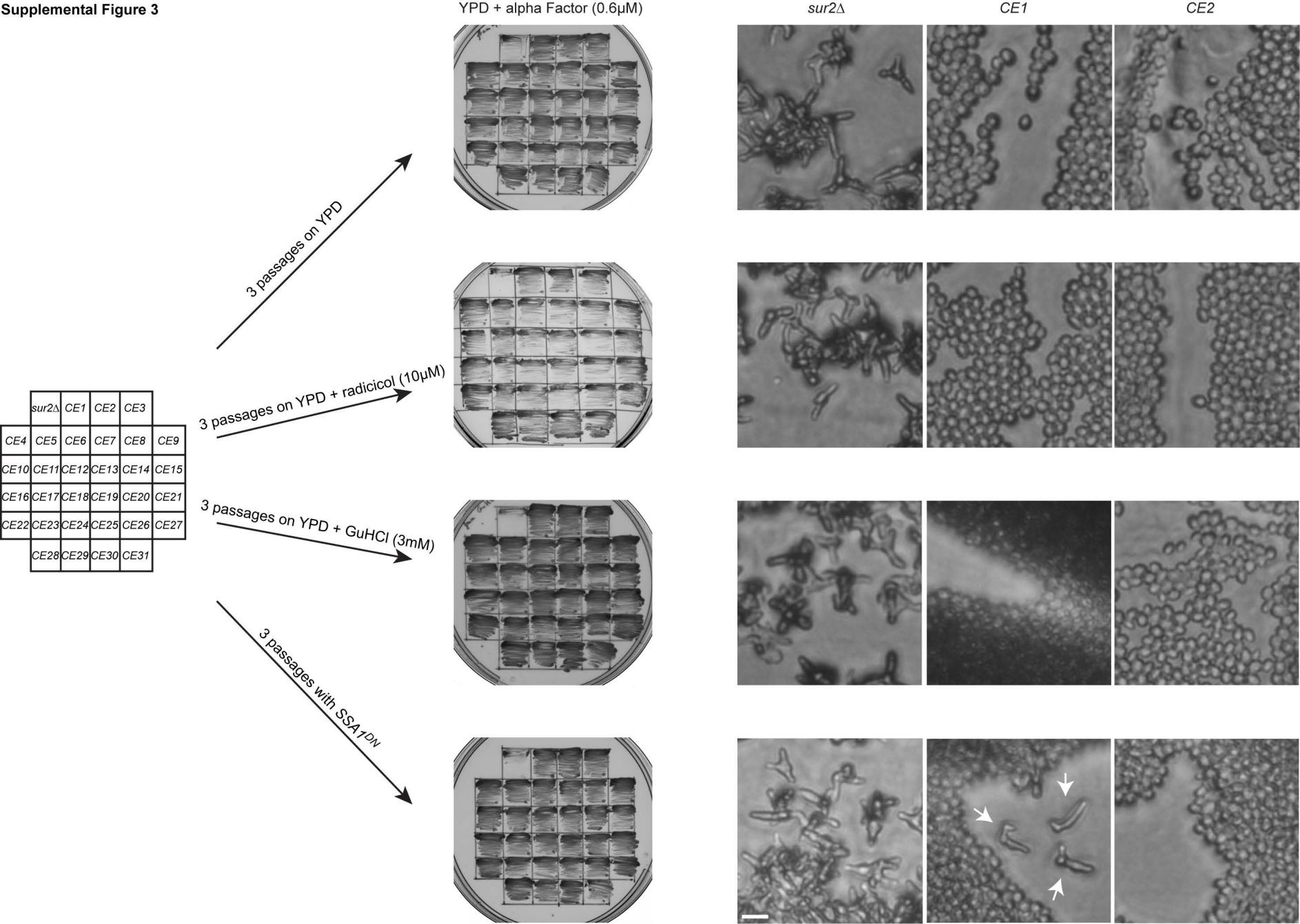

B


C


D


Figure 6

Supplemental Figure 1



Supplemental Figure 2

	Number of tetrads with growth pattern on YPD + alpha-factor (0.6µM)		
	2	3	4
<i>sur2</i> Δ	10	0	0
<i>CE1</i>	4	0	0
<i>CE2</i>	3	1	0
<i>CE3</i>	3	1	0
<i>CE4</i>	4	0	0
<i>CE5</i>	19	3	2
<i>CE6</i>	17	8	0
<i>CE7</i>	9	3	1
<i>CE8</i>	2	8	2
<i>CE9</i>	4	0	0
<i>CE10</i>	7	4	1
<i>CE11</i>	11	1	0
<i>CE12</i>	11	0	0
<i>CE13</i>	33	0	0

Supplemental Figure 3

