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Key Points: 

  

● The sequencing of reduced quantities of DNA extracted from FFPE samples leads to 

substantial sequencing errors that require correction in order to obtain accurate detection 

of somatic mutations. 

● We developed and validated a new bioinformatic algorithm to robustly identify somatic 

single nucleotide variants using small amounts of DNA extracted from archival FFPE 

samples of breast cancers. 

● Variant calling software packages need to be optimized to reduce the impact of 

sequencing errors. Our bioinformatics pipeline represents a significant methodological 

advance compared to the currently available bioinformatic tools used for the analysis of 

small FFPE samples. 
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Abstract 

Most tissue collections of neoplasms are composed of formalin-fixed and paraffin-embedded 

(FFPE) excised tumor samples used for routine diagnostics. DNA sequencing is becoming 

increasingly important in cancer research and clinical management; however, it is difficult to 

accurately sequence DNA from FFPE samples.  We developed and validated a new 

bioinformatic algorithm to robustly identify somatic single nucleotide variants (SNVs) from 

whole exome sequencing using small amounts of DNA extracted from archival FFPE samples of 

breast cancers. We optimized this strategy using 28 pairs of technical replicates. After 

optimization, the mean similarity between replicates increased 5-fold, reaching 88% (range 0-

100%), with a mean of 21.4 SNVs (range 1-68) per sample, representing a markedly superior 

performance to existing algorithms. We found that the SNV-identification accuracy declined 

when there was less than 40ng of DNA available and that insertion-deletion variant calls are less 

reliable than single base substitutions. As the first application of the new algorithm, we 

compared samples of ductal carcinoma in situ (DCIS) of the breast to their adjacent invasive 

ductal carcinoma (IDC) samples. We observed an increased number of mutations (paired-

samples sign test, p<0.05), and a higher genetic divergence in the invasive samples (paired-

samples sign test, p<0.01). Our algorithm provides a significant improvement in detecting SNVs 

in FFPE samples over previous approaches.  
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Introduction 

Tumors are characterized by a high genetic heterogeneity both within the same tumor type and in 

different parts of the same neoplasm [1]. Genetic heterogeneity determines the capacity of the 

neoplastic cell population to adapt to new microenvironments and to develop resistance to 

therapeutic treatments [2–4]. We and others have hypothesized that the quantification of genetic 

heterogeneity will be generally useful for risk stratification of patients [5,6]. However, in order 

to do so, we need accurate methods for identifying somatic genomic alterations in neoplasms. 

 Cancers can develop from different combinations of genetic mutations and each patient typically 

has a unique mutational profile, distributed among a mosaic of subclones across the tumor [7]. 

This makes it difficult to develop universal biomarkers to predict cancer progression based on 

specific mutations and a single sample from a neoplasm. Alternatively, measures that 

characterize the underlying evolutionary process do not focus on specific progression 

mechanisms or the particular mutations that occur, making them more generalizable [6]. 

Intratumor heterogeneity is one such measure, and we have successfully used it in the past to 

predict cancer progression of pre-malignant diseases [8–10] and overall survival in cancers [3].  

Routine diagnosis in oncology relies on histopathological analysis of formalin-fixed and 

paraffin-embedded (FFPE) excised tumor samples. Using these samples for genetic analysis has 

numerous advantages: histopathological analyses are already available for them, specific areas 

can be selected with precision eliminating the need to take additional samples dedicated to 

genetic analysis and, moreover, they are archived in large numbers, readily available to carry out 

retrospective studies. On the other hand, these samples have several technical limitations when 

used for genetic analyses. Histological fixation and embedding partially degrades and binds 

amino acids to the DNA, which continues to deteriorate over time [11]. Deamination of cytosine 
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residues leading to apparent C to T transitions is also a common artefact in FFPE derived DNA 

[12]. These problems are exacerbated when the amount of available DNA is limited, because 

DNA artifacts are not compensated by the abundance of intact molecules, leading to sequencing 

errors [13,14].  This is particularly relevant when studying early or precancerous conditions 

where the lesion can be very small. In order to study genomic intratumor heterogeneity using 

FFPE samples, we must often sequence the degraded and imperfectly purified DNA extracted 

from small focal areas of the tumor or pre cancer. Furthermore, estimates of intratumor 

heterogeneity as well as other precision medicine efforts are confounded by both false positives 

and false negatives in the detection of mutations. Precision medicine requires avoiding false 

positives and negatives which would potentially expose patients to the wrong therapeutic 

interventions. Thus, there is a clear need for robust and accurate methods for sequencing and 

detecting mutations in small amounts of DNA extracted from FFPE samples. We have developed 

a new bioinformatic method that reduces these obstacles for the estimation of genetic intratumor 

heterogeneity using paired FFPE samples. We developed this somatic-variant post-processing 

pipeline by empirical optimization using 28 whole exome sequencing replicates—DNA samples 

sequenced twice independently, and validated the results using a different, high depth, 

sequencing technique. 

Most scientific disciplines rely heavily on replication to measure stochasticity and reduce 

different types of errors. However, most sequencing experiments do not use any kind of 

biological or technical replication, relying on increasing levels of sequencing depth and post-

processing strategies to improve their accuracy. This limitation has been highlighted in the past 

in a small number of studies [15,16]. These studies identified quality control metrics that 

correlate with the concordance between technical replicates and their relative importance. 
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However, only very recently has this concept been applied to the improvement of variant calling 

methods[17,18]. Karimnezhad et al. [17] advocate using the intersection SNVs identified by 

different methods and/or technical replicates, while Kim et al.[18] developed a variant calling 

method (RePlow) that leverages technical replicates to dramatically improve the specificity in 

the detection of somatic variants present at very low variant allele frequency. This approach is 

promising but requires the generation of technical replicates for all study samples, potentially 

doubling sequencing costs. Alternatively, here we present and implement a strategy to use a 

small number of technical replicates to optimize a pipeline, which then can be used to estimate 

intratumor genetic heterogeneity reliably without the need to use technical replicates for all study 

samples.  

We selected a precursor of breast cancer, ductal carcinoma in situ (DCIS), to develop and 

optimize our pipeline because most of these tumors are detected in the early phase of their 

development, and there is an important clinical need to be able to estimate the risk level of this 

commonly diagnosed precancer in order to better understand the genomic changes that are 

associated with cancer progression. Improved risk stratification in DCIS could guide 

improvements in management of the condition and therapeutic intervention. The majority of 

breast tumors develop in the terminal duct lobular unit, mainly starting among duct cells [19,20] 

(Fig. 1). The cancer cells proliferate within the ducts and deform their anatomical structure. 

Despite the ducts’ growth in volume their walls remain intact, confining the tumor cells in the 

lumen, separating them from nearby tissues and limiting their dissemination. In this phase, the 

tumor is defined as ductal carcinoma in situ (DCIS). Subsequently, the cells may evolve to 

invasive disease, crossing the duct wall’s boundaries, invading the surrounding tissue, and 

potentially metastasizing. DCIS tumors can remain non-invasive but there is substantial evidence 
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that a subset will invade and, in some cases, metastasize. The development of a new 

bioinformatic algorithm to identify somatic single nucleotide variants and measure genetic 

heterogeneity could provide a significant contribution to the estimation of DCIS patients’ risk for 

progressing to breast cancer. 

 
 

Figure 1: Breast cancer anatomy. Schematic representation of mammary gland anatomy and 

cancer development. The majority of breast tumors develop in the terminal duct lobular unit, 

80% starting among ductal cells. Initially, the duct suffers a benign hypertrophic growth of cells 

that can progress into ductal carcinoma in situ (DCIS). In this phase the neoplasm is confined 

within the duct’s lumen and it is still clinically benign. Cancer cells can cross the duct wall’s 

boundaries, invading nearby tissues (IDC) and metastasizing.  

 

 

Results 

Ideally, the same sample of tumor DNA, when sequenced twice with the same methodology, 

should give the same results (detect the same mutations). We developed our mutation detection 
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pipeline (Fig. 2), optimized it using duplicate (technical replicate) whole exome sequencing of 

the same samples, and validated our results using deep targeted sequencing.  

 

 
 

Figure 2: Flowchart of the algorithm used to estimate the genetic heterogeneity between 

two samples and details of its optimization. Inputs: aligned sequences (BAM files) of the two 

samples (A, in red; and B, in blue) and their healthy tissue control (N, in green), population allele 

frequency data from the gnomAD database (single nucleotide polymorphisms, SNPs, in purple), 

and user-specified configuration parameters (gear icon). Outputs: estimate of the genetic 

heterogeneity between samples A and B, and set of variants (level of detail user-specified). All 

parameters that control this pipeline are detailed in the Parameters box, accompanied by the 

range of values assayed during optimization between parentheses and the final set of optimized 

values in bold. The key 

 

 

Pipeline optimization 

We used an empirical method for optimizing the analysis algorithm through the comparison of 

technical replicates of whole exome sequences. Any variant detected only in one sample but not 

in the other is likely the result of a sequencing or data processing error. This approach allowed us 
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to systematically and objectively compare alternative parameterizations of the estimation 

pipeline to single out the best overall and to find the most generalizable parameter values using 

cross-validation. 

In order to optimize our pipeline, we assigned a range of values to explore for each of the 13 

parameters that control its execution (Fig. 2) and explored every possible combination of them, 

scoring each using a statistic that integrates the central tendency and dispersion of the 

heterogeneity across the 28 technical replicates. Furthermore, we used DNA quantity (from 20 

ng to >100 ng) in order to evaluate the efficiency of the method on different quantities of input 

DNA, in order to determine the limits of the method on small amounts of DNA (Suppl. table 1S). 

The resulting algorithm (Fig. 2) yielded a mean similarity across the 28 technical replicates of 

88% (range 0-100%) (Fig. 3), which constitutes a 5-fold improvement over using the same 

variant caller–Platypus without any post-processing of the results [21], (17.8%, range: 0.1-

61.8%). We identified a mean of 21.4 (range 1-68) single nucleotide variants per sample (Table 

1), which are distributed throughout the entire exome (Fig. 3S).  

We also assayed an alternative implementation of our algorithm that uses Mutect2 to call 

variants, but it achieved a much lower accuracy, with a mean similarity (including indels) across 

the 28 technical replicates of only 2.4%, range 0.4-6.9%. Overall, we found that only 14.9% of 

the single nucleotide variants overlap between our main pipeline and this alternative 

implementation using Mutect2.  
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Figure 3: Empirical optimization of the variant post-processing algorithm. Each violin plot 

summarizes the distribution of optimization scores of 5,308,416 combinations of values of the 13 

parameters that control the pipeline for one of the 28 technical replicates (same DNA sample 

processed twice independently). The optimization score indicates the two-dimensional euclidean 

distance to the theoretical optimum value of similarity between technical replicates (1) and 

proportion of final common variants that have a population allele frequency below 0.05 (1) 

relative to the maximum possible distance. After parameter optimization the similarity between 

the technical replicates was on average 88 %, range 0-100% (x= score before optimization; —: 

score after optimization; colors indicate the amount (ng) of DNA used as template). 

 

 

 

Sample Common A + B Total Similarity (%) 

DCIS-017 0 1 1 0 

DCIS-020-B3 19 8 27 70.4 

DCIS-020-B6 57 11 68 83.8 

DCIS-028-K12 4 0 4 100 

DCIS-029-D5 20 6 26 76.9 

DCIS-029-D8 11 2 13 84.6 

DCIS-050 8 1 9 88.9 

DCIS-064 28 2 30 93.3 

DCIS-080 7 0 7 100 

DCIS-094-B11 45 4 49 91.8 
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DCIS-094-B7 35 1 36 97.2 

DCIS-122 3 0 3 100 

DCIS-135 9 2 11 81.8 

DCIS-163 1 0 1 100 

DCIS-164 44 2 46 95.7 

DCIS-168-C4 55 2 57 96.5 

DCIS-168-C8 41 0 41 100 

DCIS-171 NA NA NA NA 

DCIS-178 8.0 0 8 100 

DCIS-211 12 0 12 100 

DCIS-213 NA NA NA NA 

DCIS-222-B10 6 0 6 100 

DCIS-222-B6 1.0 0 1 100 

DCIS-225-A16 9 5 14 64.3 

DCIS-225-A6 NA NA NA NA 

DCIS-227 6 0 6 100 

DCIS-250 NA NA NA NA 

DCIS-267 33 5 38 86.8 

Average 19.3 2.2 21.4 88.0 

S.D. 18.2 2.9 19.8 21.4 
 

Table 1: Similarity between technical replicates and number of variants. 

The similarity between technical replicates on average is 88%, range 0-100%. Number of total, 

common and private SNVs (A+B). Common SNVs: SNVs detected in both replicas of the same 

DNA samples; Private SNVs: SNVs detected only in one of the two DNA sequences of the same 

DNA. 

 

 

 

Intratumor genetic heterogeneity estimation pipeline 

In order to estimate the genetic heterogeneity between two samples (A, B), we applied the 

concept that the presence of a high confidence variant in one sample should increase the 

confidence of that variant in the other sample. This concept could also be applied to multi-region 

sequencing projects. We implemented this in a crossed unequal comparison scheme (Fig. 2), by 

which the set of filtered variants detected in a sample is compared against all variants estimated 

in the other sample. This comparison is then reversed, to finally integrate the result of the two 

comparisons by considering any variant found common in either comparison as common, or 
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private otherwise. Thus, if a variant has been detected with high confidence in one sample and 

has also been detected in the other sample–even if with low confidence–the variant is considered 

present in both samples. However, if a variant is detected with low confidence in both samples 

the variant is discarded, preventing an artificial increase in the confidence of shared variants. 

Finally, variants that are detected with high confidence in only one sample and not detected even 

at low confidence in the other sample, are considered private. Before the integration step, the 

algorithm refines the variants removing detected germline variants, known germline variants in 

human populations, and variants with insufficient coverage in either the normal sample (all 

variants) or the other sample (private variants) (see Methods for additional details). 

 

Validation of filtering parameters 

We performed a 5-fold cross-validation study to assess the sensitivity of the optimization 

strategy to input data, and how well the algorithm generalizes to independent datasets. The 

optimization strategy was relatively robust to the input data, returning a mean evaluation score 

(empirical cumulative distribution of test score) of 0.79, range 0.4 - 1 (Suppl. fig. 1S). 

Importantly, this experiment shows the robustness of the overall optimal model across different 

cross-validation folds, being the model with the highest mean training score and within the top 

0.00006% of the mean test scores in this cross-validation analysis. The test score of the overall 

optimal model is always as good or better than the model selected based on the training score for 

each fold.  

 

Sensitivity analysis of the number of technical replicates 
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We saw a fast increase in the relative score, reaching a plateau with just 6 technical replicates 

and exhibiting diminishing returns when going over 10 technical replicates (Suppl. fig. 2S). With 

6 technical replicates the results are very close to the ones obtained using the whole dataset, 

resulting in conditions that show a mean empirical cumulative probability of the optimization 

score that is 0.98 times the score obtained using all samples. 

 

Validation of somatic variants 

In order to validate the identified mutations with our new method, we analyzed the same DNA 

used for the exome sequences using targeted primers and the AmpliSeqTM technology. We 

achieved an average of 18,821 (tumor) and 12,904 (control) read coverage for each single 

nucleotide variant in the validation set. The comparison of the data confirmed 89.6% (with 

optimal parameters, O) and 86.3% (with permissive parameters, P) single nucleotide variants 

identified by applying our pipeline to the exome sequence (Table 2). We found 2 (O) or 2 (P) of 

the unconfirmed variants belong to the same gene MUC6 characterized by highly repetitive 

sequences, thus subject to read alignment errors and known to have an unreliable reference 

sequence [22]. Excluding all MUC6 (3 (O) or 3 (P) variants), we validated 90.7% (O) or 86.7% 

(P) of the remaining variants. We found that 21.4% (O) and 18.7 % (P) of the confirmed variants 

are also present in the control samples with a frequency >10%; thus, these could be SNPs and not 

somatic mutations (Table 2). However, the expected frequency (50%) of the two alternative 

alleles of a germline SNP only occurs in 7 (O and P) cases, if we include alleles with frequency 

>40% (Suppl. table 2S, Fig. 4S). Importantly, we found a strong negative correlation between the 

amount of input DNA used (20, 40, 60 and 80 ng, validation set) for the NGS libraries and the 

inability to identify correctly the SNPs in the germ line DNA (Spearman correlation r = -0.31, 
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p<0.0001(O), r=-0.28, p<0.001(P); Suppl. table 2S). Excluding MUC6 variants and DNA 

samples with less than 40 ng, we validated 94.7% (O) or 93.2% (P) of the variants, however, 3 

(2.7%) (O) or 3 (2.3%) (P) variants were detected only in one of the two technical replicates. 

We found that insertion-deletion variants are an unreliable sub-set of mutations (22 (O) 

and 16 (P) indels tested: 31.8% (O) and 31.3 (P) indels fully validated, 31.8% (O) and 25 (P) 

indels partially validated, in which not all nucleotides have been confirmed). 

 

Optimal filter (O) Variants Common (A and B) Private (A or B) Variants in controls (>10%) 

Total number of SNVs 154 146 (94.8%) 8 (5.2%) 33 (21.4%) 

Validated variants 138 (89.6%) 133 (91.1%) 5 (62.5%) 32 (97%) 

Non-validated variants 16 (10.4%) 13 (8.9%) 3 (37.5%) 1 (3%) 

MUC6-excluded, DNA ≧ 40ng SNVs 113 110 (97.3%) 3 (2.7%) 16 (14.2%) 

Validated variants 107 (94.7%) 105 (95.5%) 2 (66.7%) 15 (93.8%) 

Non-validated variants 6 (5.3%) 5 (4.5%) 1 (33.3%) 1 (6.3%) 

Permissive filter (P) Variants Common (A and B) Private (A or B) Variants in controls (>10%) 

Total number of SNVs 182 170 (93.4%) 12 (6.6%) 34 (18.7%) 

Validated variants 157 (86.3%) 152 (89.4%) 5 (41.7%) 33 (97.1%) 

Non-validated variants 25 (13.7%) 18 (10.6%) 7 (10.6%) 1 (2.9%) 

MUC6-excluded, DNA ≧ 40ng SNVs 133 130 (97.7%) 3 (2.3%) 16 (12%) 

Validated variants 124 (93.2%) 122 (93.8%) 2 (66.7%) 15 (93.8%) 

Non-validated variants 9 (6.8%) 8 (6.2%) 1 (33.3%) 1 (6.3%) 

 

Table 2: Validation. 

Targeted sequencing confirmed that 89.6% (Optimal filtering pipeline) and 86.3% (Permissive 

filtering pipeline) of single nucleotide variants identified using our algorithm. Excluding MUC6 

and low input amounts of DNA we validated 94.7% (O) or 93.2% (P) of variants. We found that 

the 14.2% (O) or 12% (P) of the confirmed variants are also present in the control samples with a 

frequency >10%. These variants may be SNPs. 

 

 

Breast cancer genetic divergence 

In order to showcase the application of our algorithm, we compared synchronous samples from 

two regions of DCIS and one sample of invasive ductal carcinoma (IDC) in each of 53 patients. 

We found a statistically significant difference in the number of mutations between these two 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2021. ; https://doi.org/10.1101/2020.10.22.350983doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.22.350983
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

diseases, (mean 10.40 in DCIS and 18.05 in IDC, paired-samples sign test, p<0.05). Importantly, 

our method allowed us to measure a statistically significant genetic divergence (heterogeneity) 

between the two synchronous DCIS samples and between DCIS vs. IDC samples (Fig. 4) 

(paired-samples sign test, p<0.01; Mann-Whitney U test, p<0.01). Genetic divergence is defined 

as the percentage of mutations detected in the union of the mutations from the two samples that 

are not shared by both samples. It is a common metric in evolutionary biology to estimate the 

amount of evolutionary change that has occurred since two populations shared a common 

ancestor. Previous work has shown that genetic divergence can predict progression to 

malignancy [8–10]. 

 
 

Figure 4. Mutational burden and genetic divergence. The average of the number of mutations 

of synchronous DCIS samples (10.40±15.31 S.D.) is lower than the IDC samples (18.05±31.48 

S.D.) and there is a statistically significant difference between the two groups, paired-samples 

sign test, p<0.05. We found a statistically significant difference in genetic divergence comparing 

two regions of synchronous DCIS (21.48%±17.54 S.D.) versus the divergence between 
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synchronous DCIS IDC samples (44.51%±29.04 S.D.) within the same patient, paired-sample 

sign test and Mann-Whitney U test, p<0.01. White circle=median, box limits indicate the 25th 

and 75th percentiles; whiskers extend 1.5 times the interquartile range from the 25th and 75th 

percentiles; curves represent density and extend to extreme values. Data points are plotted as 

dots. 

 

 

Discussion 

Cancer is a disease of clonal evolution, and intra-tumor heterogeneity is its fuel. There is 

increasing recognition that this heterogeneity poses a challenge for traditional sampling and 

prognosis, as different biopsies may sample different clones with variable relevance to the future 

behavior of the tumor. However, because heterogeneity itself drives clonal evolution, the 

magnitude of heterogeneity may itself be prognostic. Our previous studies of metrics of 

intratumor heterogeneity, showed that one robust measure is the degree to which two samples 

from the same tumor have genetically diverged (i.e. genetic diversity) [9]. This measure has the 

useful property that the more of the genome that is sequenced, the more accurate it becomes. We 

hypothesized that those ductal carcinoma in situ (DCIS) lesions with greater clonal heterogeneity 

would be more likely to progress to invasive and metastatic disease. However, in order to test 

that hypothesis, we required a reliable method to measure clonal heterogeneity in this 

experimental system.  Here we have developed, characterized, and validated a method to 

measure genetic divergence from two FFPE derived DNA samples from the same tumor, solving 

this limitation. Our bioinformatics pipeline represents a significant methodological advance 

compared to the currently available bioinformatic tools used for the analysis of small FFPE 

samples. 

The sequencing of small quantities (less than 200ng) of DNA extracted from FFPE samples leads 

to low coverage, high duplication rates, and substantial sequencing errors that require correction 
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in order to obtain accurate detection of somatic mutations. Variant calling software packages 

need to be optimized to reduce the impact of sequencing errors. This is particularly important in 

the study of heterogeneity, as well as precision medicine, as both false positive and false 

negative detection of mutations can impact clinical decision making and diminish the predictive 

power of heterogeneity as a potential biomarker.  

Any study of tumor heterogeneity using comparable DNA samples must account for and 

minimize technical variation. We found 88% of the variants were detected in both duplicated 

sequences and 94.7% excluding the MUC6 gene and those samples with ≤40ng input DNA. Both 

levels of filtering stringency tested (Optimal and Permissive) have proven successful. As 

expected, the relaxed version of the algorithm allows the detection of a higher number of variants 

in exchange for a small reduction of accuracy. It is surprising that, when not using a post-

processing pipeline such as the one presented here, variant callers like Platypus and Mutect2 

generated very inaccurate results on our WES data, with similarities between the technical 

replicates of only 17.8% and 2.4%, respectively. Our systematic study reveals the magnitude of 

uncertainty related to making mutation calls from small amounts of FFPE derived DNA.   

We validated the bioinformatic algorithm by re-sequencing the regions containing the variants 

using a different sequencing technique: AmpliSeqTM. This technology allows for a deep re-

sequencing of the regions of interest, improving our ability to identify mutations correctly. The 

comparison between the data obtained with these two techniques allowed us to validate the new 

algorithm. Among these, some are presumably SNPs and not somatic variants. However, the 

frequency of the two alternative alleles is often far from the expected frequency of 50%. This 

could be because of difficulties encountered when sequencing with AmpliSeq™ to analyze DNA 

extracted from FFPE, or biological signals of neoplastic DNA present in the control samples. 
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The fact that there is a strong statistically significant negative correlation between the amount of 

DNA used for the preparation of the libraries and the presence of SNPs detected as SNVs 

suggests that at least 40 ng of input DNA be used for standard library preparation. In particular, 

this result indicates that the quality and quantity of control DNA is a key factor in the ability to 

correctly identify somatic mutations in tumors. In many instances, control DNA is not a limiting 

factor and higher amounts can be used for the preparation of the NGS libraries. Moreover, 

control samples could be collected during surgery or from blood cells, obtaining DNA from 

specimens that have not undergone the effect of fixation and DNA deterioration. Our algorithm 

allows us to modulate the stringency of SNP filtering parameters and to obtain the frequency of 

each potential SNP in the population.  

The variants detected using our algorithm were distributed over the entire exome and we have 

cataloged numerous mutations in well-known breast cancer genes. As a first application of the 

new algorithm, we compared synchronous DCIS and invasive (IDC) samples. We identified a 

statistically significant increase in the number of mutations and genetic divergence in the 

invasive samples compared to DCIS samples. This result has been described in other types of 

tumors [9]. Given these findings, we can test if genetic divergence between regions of DCIS 

predicts future recurrence of DCIS or progression to IDC in a larger cohort. 

The current version of our algorithm has been developed and implemented to fit our needs, 

analyzing two samples per patient to measure their genetic divergence. However, this strategy is 

easy to generalize to any number of samples to apply it to larger multi-region datasets. We have 

not done it here since there are some nuances that may need to be adjusted depending on the final 

purpose of the called SNVs. The removal of variants with insufficient coverage in other samples 

is the main focus of these decisions. For example, for a downstream analysis that does not 
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integrate uncertainty easily, the algorithm could require enough coverage in most (or all) 

samples, discarding variants with a lot of missing data, while for other applications those SNVs 

could be kept if they are at least present in another sample, assigning missing values or a 

measure of uncertainty to samples with insufficient coverage. The core step of the algorithm—

comparison of filtered and unfiltered sets of variants—could be kept as it is. However, we also 

envision more stringent alternatives in which a variant must be present in more than one non-

filtered sample to be kept in the final set. The removal of germline variants and SNPs would 

remain, since it does not depend on the number of samples.  

 

Conclusion 

We developed a bioinformatics pipeline to analyze pairs of DCIS samples taken from the same 

neoplasm. We identified the mutations present in each sample and we showed that this method 

has high fidelity in technical replicates and is capable of identifying different levels of genetic 

heterogeneity between regions of the same tumor. This algorithm is easily modifiable and can be 

integrated with additional parameters, allowing investigators to choose different levels of 

filtering stringency. These parameter values can be re-optimized for a different experimental 

system with as few as six sets of technical replicates, and the optimized set of parameter values 

provided here is robust to changes in the input data and thus is expected to translate well to other 

systems. These characteristics make our algorithm readily applicable to large tissue banks of 

FFPE samples of any neoplasm and is particularly useful for studies to quantify genomic 

heterogeneity. 
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Methods  

Patients clinical data and biological samples. 

This study was approved by the Institutional Review Board (IRB) of Duke University Medical 

Center, and a waiver of consent was obtained according to the approved protocol. Formalin-fixed 

paraffin embedded (FFPE) breast tissue blocks were retrieved from Duke Pathology archives. 

All cases underwent pathology review (AH) for tissue diagnosis and case eligibility. 

Breast tumors were classified using the World Health Organization (WHO) criteria [23]. 

Following pathology review, a total of 66 separate patients are included in this study. All DNA 

was extracted from archival formalin fixed paraffin embedded thin sections stained with 

hematoxylin. For tumors, the study pathologist identified areas of DCIS or invasive cancer that 

were macrodissected to enrich for tumor epithelial cells. Control DNA was extracted from either 

distant benign areas of the breast or a benign lymph node using the same procedure employed for 

the tumor containing areas. These benign areas were confirmed to be devoid of tumor by the 

study pathologist.  

A total of 28 breast tumor DNA samples were included in the development of the method 

procedure divides as follows: pure DCIS (DCIS not associated with invasion; n=15 tumors, from 

11 patients), synchronous DCIS (DCIS identified concurrently with invasive cancer; n=6 tumors, 

from 6 patients) and invasive ductal carcinoma (IDC; n=7 tumors, from 5 patients) (Table 3). 53 

synchronous DCIS patients were used for the experimental validation of the new algorithm. For 

each patient we selected two DCIS samples located at least 8mm apart (total 106 samples) and 

37 IDC samples derived from the same synchronous DCIS patients. Each specimen was 

macrodissected and DNA extracted separately. IDCs and DCIS were graded according to the 
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Nottingham grading system [24] or recommendations from the Consensus conference on DCIS 

classification [25], respectively.  

 

Patient ID Age Race Date Tumor type Histopathological classification ER PR HER2 DCIS Size (mm) DCIS nuclear grade Invasive present 

DCIS-017 66 B 2013 Pure DCIS cribriform, solid - + NA 21 3 No 

DCIS-020-B3 67 W 2014 Pure DCIS cribriform, solid, micrpapillary, comedo + + NA 40 2 No 

DCIS-020-B6 67 W 2014 Pure DCIS cribriform, solid, micrpapillary, comedo + + NA 40 2 No 

DCIS-029-D5 34 W 2012 Pure DCIS comedo + + NA 83 3 No 

DCIS-029-D8 34 W 2012 Pure DCIS comedo + + NA 83 3 No 

DCIS-050 52 W 2010 Synchronous DCIS cribriform, solid + + - 10 2 Yes 

DCIS-064 50 OTHER 2015 Synchronous DCIS comedo + + + 75 3 No 

DCIS-080 49 W 2013 Synchronous DCIS solid, comedo + + - 21 3 Yes 

DCIS-094-B11 68 W 2013 IDC cribriform, solid, miropapillary - - - NA 3 Yes 

DCIS-094-B7 68 W 2013 IDC cribriform - - - NA 3 Yes 

DCIS-122 47 W 2002 Pure DCIS cribriform, solid, comedo NA NA NA 95 3 No 

DCIS-135 48 B 2013 Pure DCIS cribiform, solid + + NA 13 2 No 

DCIS-163 53 W 2013 Synchronous DCIS cribriform, solid, comedo + + - 54 3 Yes 

DCIS-164 65 B 2015 IDC micropapilly, comedo + + - NA 3 Yes 

DCIS-168-C4 63 W 2016 IDC cribiform, solid + + - NA 2 Yes 

DCIS-168-C8 63 W 2016 IDC cribiform, solid + + - NA 2 Yes 

DCIS-171 66 B 2000 Synchronous DCIS solid - + - 15 3 Yes 

DCIS-178 56 W 2011 Synchronous DCIS comedo, solid, micropapillary, papillary - - - NA 3 Yes 

DCIS-211 43 H 2011 Pure DCIS cribriform, solid, comedo + + NA 24 3 No 

DCIS-213 68 W 2009 Pure DCIS cribriform, micrpapillary, comedo + + NA 16 3 No 

DCIS-222-B10 41 A 2013 Pure DCIS cribiform, papillary + + NA 40 2 No 

DCIS-222-B6 41 A 2013 Pure DCIS cribiform, papillary + + NA 40 2 No 

DCIS-225-A16 62 B 2011 Pure DCIS cribiform, solid + + NA 30 2 No 

DCIS-225-A6 62 B 2011 Pure DCIS cribiform, solid + + NA 30 3 No 

DCIS-227 75 B 2012 Pure DCIS cribiform, solid, comedo + + NA 63 3 No 

DCIS-250 56 W 1999 IDC cribiform, comedo + - NA NA 3 Yes 

DCIS-267 66 W 2017 IDC solid + + - 13 3 Yes 

DCIS-28-K12 42 A 2014 Pure DCIS comedo, micropapillary - - NA 124 3 No 
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Table 3: Patients clinical data. 

Clinical data of the 22 patients included in the study. The histopathological analysis showed that 

11 patients are DCIS while 6 are DCIS adjacent to invasive disease (DCIS Adj. to IDC) and 5 

have invasive features (IDC). We selected FFPE samples of different ages (1999-2017). ER: 

estrogen receptors, PR: progesterone receptors, HER2: human epidermal growth factor receptor 

2 expression is qualitatively estimated (non-present (NP), 0-8) using histochemistry stains. 

 

DNA extraction 

The DCIS component of all cases as well as IDC from synchronous DCIS cases were 

macrodissected separately, following hematoxylin staining, of between 10 and 25 five-micron-

thick histological sections. The first and last slides were stained with hematoxylin-eosin (H&E) 

staining and reviewed by a pathologist to confirm the presence of >=70% of neoplastic cells. 

DNA was extracted using the FFPE GeneRead DNA Kit which incorporates enzymatic 

cleavage of DNA at uracil residues via uracil DNA glycosylase reducing the problem of cytosine 

deamination (Qiagen, cat n. 180134) according to manufacturers’ instructions. DNA 

quantification was performed using a Qubit™ 1X dsDNA HS Assay Kits (ThermoFisher, cat. n. 

Q33230), and DNA quality assessed with an Agilent 2100 Bioanalyzer. 

 

DNA sequencing 

We sequenced different quantities of genomic DNA (20, 40, 60, 80, 100, >100 ng) to estimate 

the effects of DNA quantity on the estimation of intratumor genomic heterogeneity. All technical 

replicates were separated into two aliquots from the same tube of DNA sample before all 

subsequent steps. For experimental validation of the new algorithm, we used ≥40 ng of genomic 

DNA. Each aliquot was sheared to a mean fragment length of 250 bp using the Covaris LE200 

instrument, and Illumina sequencing libraries were generated as dual-indexed, with unique bar-

code identifiers, using the Accel-NGS 2S PCR-Free library kit (Swift Biosciences, cat. n. 
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20096). We pooled groups of 96 equimolar libraries (100 ng/library) for hybrid capture using 

two target panels, the human exome and a panel containing all exons of the 83 genes in the 

breast cancer gene panel (BRC83, suppl. table 4S). To capture BRC83 we used biotinylated 

“ultramer” oligonucleotides synthesized by Integrated DNA Technologies (Coralville, Iowa), 

and to capture the human exome we used IDT’s xGen Exome Research Panel v1.0. After 

hybridization, capture pools were quantitated via qPCR (KAPA Biosystems kit). We sequenced 

the final product using an Illumina HiSeq 2500 1T instrument multiplexing nine tumor samples 

per lane. 

After binning the sample data according to its index identifier, we aligned it to the 

Genome Reference Consortium Human Build 37 using the BWA-MEM (Li, 2013) algorithm, 

and marked sequencing duplicates with Picard’s MarkDuplicates. The resulting BAM files are 

the input data for our pipeline for intratumor genetic heterogeneity calculation. We discarded 

samples with less than 40% of the target covered at 40X (Suppl. table 1S). This sequencing 

protocol was performed at the McDonnell Genome Institute at Washington University School of 

Medicine in St. Louis. 

 

Intratumor genetic heterogeneity estimation pipeline 

We implemented our heterogeneity estimation pipeline (Fig. 2) in a series of Perl scripts, tailored 

to be run at Arizona State University’s research computing high performance computing clusters. 

Variants are first called using Platypus 0.8.1 [21] against the Genome Reference Consortium 

Human Build 37 reference genome using the default settings except for the parameters regulated 

during pipeline optimization (Fig. 2): The inclusion of reads with small inserts (--

filterReadPairsWithSmallInserts), and the minimum number of reads supporting a variant to 
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consider it for calling (--minReads). Before downstream analyses, our pipeline splits multiallelic 

sites into biallelic sites, and clusters of variants into individual SNVs. The variant filtering step 

uses SnpSift 4.2 [26] (Phred Quality: QUAL, Coverage: GEN[*].NR[*], Forward and Reverse 

variant reads: NF & NR, Variant reads: GEN[*].NV[*]). The depth estimation step, which 

estimates the coverage of the position of a variant in the other samples (and the proportion of 

reads supporting that specific allele) is carried out by first generating a bed file integrating 

deletions, insertions, and SNVs using BEDOPS [27], and then using it as intervals input for 

GATK 3.5.0’s UnifiedGenotyper, executed to output data for all sites (--output_mode 

EMIT_ALL_SITES, -glm BOTH). The position filtering step is carried out in the inhouse 

pipeline with these results. This step differs slightly in the comparison between tumor samples 

and the comparison against the normal. In the first case, a variant is discarded if any of the 

conditions is not met, while in the second both the allele frequency and the number of variants 

need not be met for them to trigger the discard of a variant while the coverage filter acts 

independently. Importantly, while the steps of variant removal are generally applied to all sets of 

variants (e.g., removal of germline variants, candidate SNPs, and positions with lack of support 

in the normal), the removal of variants based on insufficient coverage in the other tumor samples 

only applies to private variants. 

Population allele frequency estimates are obtained from the gnomAD 2.1.1 genomic 

database [28], which spans 15,708 whole-genome sequences, and filtering using this information 

is carried out within our pipeline. All variant comparisons within our pipeline are genotype 

specific. 

We also implemented an alternative version of this pipeline identifying somatic 

mutations using Mutect2 [29] version 4.0.5.0 for comparison purposes against a developing 
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version of our pipeline, both lacking the population allele frequency step (Fig. 2), and using 

slightly different parameter values, which were optimal at that stage of development (Suppl. 

table 5S). To use this variant caller, first we generated a panel of normals using all control tissue 

samples and the CreateSomaticPanelOfNormals GATK command. Then, we called variants on 

all paired tumor files using the panel of normals, IDT’s xGen Exome Research Panel v1.0, and 

the AllowAllReadsReadFilter. We filtered the resulting variants with an equivalent re-

implementation of our post-processing pipeline that uses Bcftools isec to perform comparisons 

between sets of variants and ran FilterMutectCalls to obtain the final calls.  

  

Optimization of the intratumor genetic heterogeneity pipeline 

We assigned a range of values to explore for each of the 13 parameters that control the genetic 

heterogeneity estimation pipeline (Fig. 2) and explored every possible combination of them with 

the data from all 28 technical replicates, assessing a total of 5,308,416 parameter combinations. 

We calculated the score of a condition (set of parameter values) as the minimum value of the 

90% confidence interval of the mean (p=0.9) of the scores of that condition across the 28 

technical replicates. We used this statistic to integrate central tendency and dispersion in the 

same measure. The score of each technical replicate was calculated as the two-dimensional 

euclidean distance to the theoretical optimum value of similarity between technical replicates (1) 

and proportion of final common variants that have a population allele frequency below 0.05 (1) 

relative to the maximum possible distance. This score ranging from 0 to 1, allowed us to co-

optimize the similarity between technical replicates and the sets of variants with the least chance 

of being dominated by germline variants not detected in the normal and detected as somatic 

common variants. We performed a 5-fold cross-validation study stratified by amount of DNA, in 
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which patients were partitioned randomly into 5 subsets, with at least 1 patient from each DNA 

category 20, 40, 60, 80, ≥100 ng. In each of the 5 interactions, one of the subsets (testing set) 

was held out of the parameter optimization and then evaluated based on the optimal parameter 

values obtained from the training set. We implemented the optimization and cross-validation 

steps in R [30], using the LSR (Navarro 2015), and cowplot [31] packages. 

 

Sensitivity analysis on the number of technical replicates 

We subsampled our dataset to create smaller technical replicate datasets of k={2,...,28} sizes. For 

each k, we generated all combinations of size k with our 28 technical replicates and took a 

random sample of 104 of them (or all if ≤104) without replacement. We optimized the pipeline 

using each of these resampled subsets and reported the empirical cumulative probability of its 

optimization score using all samples. This statistic indicates how this resulting pipeline compares 

with the overall optimal pipeline in the complete dataset. 

 

Validation of somatic variants  

In order to validate the robustness of the method we used both the optimized stringent (O) 

parameter values and a permissive (P) version of the algorithm (minimum number of forward 

and reverse reads supporting the variant=7 instead of 10). The permissive version allowed us to 

increase the number of the variants selected. We randomly selected for validation a subset of 

single nucleotide variants (O=154 out of 514, P=182 out of 758) and insertion-deletion mutations 

(O= 22 out of 227, P=16 out of 381) sequencing DNA amplicons containing the variants 

detected with our bioinformatic algorithm by targeted re-sequencing using AmpliSeqTM 

technology (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s 
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specification. The AmpliSeqTM technology allows for a deep re-sequencing of the regions of 

interest, improving our ability to identify mutations correctly. We re-sequenced both tumor and 

control samples. Alternative alleles were validated if their frequency was ≥1%. 

 

Calculation of genetic divergence 

We calculate genetic divergence between two samples as the number of mutations that are not 

shared between the two samples, divided by the total number of mutations in the union of the 

mutations detected in the two samples (expressed as a percentage). Divergence can only be 

reliably calculated if there are enough mutations to distinguish shared ancestry (mutations in 

common, sometimes called “public mutations”) from the evolution that has occurred after two 

populations last shared a common ancestor (private mutations). In order to reduce error in the 

divergence percentage calculation, we remove the samples with less than 5 total variants in the 

union of the SNVs called for both samples.  

 

Software availability 

All software developed to carry out this study is distributed under the GPLv3 license. The 

implementation of the intratumor heterogeneity estimation pipeline—ITHE, can be found at 

https://github.com/adamallo/ITHE, scripts to carry out the cross-validation study and data 

analysis can be found at https://github.com/adamallo/ITHE_analyses, and the alternative 

implementation of our intratumor genetic heterogeneity pipeline using Mutect2 to call variants 

can be found at https://github.com/icwells/mutect2Parallel. 
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