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Abstract 33 

 The skin of humans and animals is colonized by commensal and pathogenic fungi and 34 

bacteria that share this ecological niche and have established microbial interactions. Malassezia 35 

are the most abundant fungal skin inhabitant of warm-blooded animals, and have been implicated 36 

in skin diseases and systemic disorders, including Crohn’s disease and pancreatic cancer. 37 

Flavohemoglobin is a key enzyme involved in microbial nitrosative stress resistance and nitric 38 

oxide degradation. Comparative genomics and phylogenetic analyses within the Malassezia genus 39 

revealed that flavohemoglobin-encoding genes were acquired through independent horizontal 40 

gene transfer events from different donor bacteria that are part of the mammalian microbiome. 41 

Through targeted gene deletion and functional complementation in M. sympodialis, we 42 

demonstrated that bacterially-derived flavohemoglobins are cytoplasmic proteins required for 43 

nitric oxide detoxification and nitrosative stress resistance under aerobic conditions. RNAseq 44 

analysis revealed that endogenous accumulation of nitric oxide resulted in upregulation of genes 45 

involved in stress response, and downregulation of the MalaS7 allergen-encoding genes. Solution 46 

of the high-resolution X-ray crystal structure of Malassezia flavohemoglobin revealed features 47 

conserved with both bacterial and fungal flavohemoglobins. In vivo pathogenesis is independent 48 

of Malassezia flavohemoglobin. Lastly, we identified additional 30 genus- and species- specific 49 

horizontal gene transfer candidates that might have contributed to the evolution of this genus as 50 

the most common inhabitants of animal skin. 51 

  52 

 53 
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Significance statement 60 

 Malassezia species are the main fungal components of the mammalian skin microbiome 61 

and are associated with a number of skin disorders. Recently, Malassezia has also been found in 62 

association with Crohn's Disease and with pancreatic cancer. The elucidation of the molecular 63 

bases of skin adaptation by Malassezia is critical to understand its role as commensal and pathogen. 64 

In this study we employed evolutionary, molecular, biochemical, and structural analyses to 65 

demonstrate that the bacterially-derived flavohemoglobins acquired by Malassezia through 66 

horizontal gene transfer resulted in a gain of function critical for nitric oxide detoxification and 67 

resistance to nitrosative stress. Our study underscores horizontal gene transfer as an important 68 

force modulating Malassezia evolution and niche adaptation.  69 
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Introduction 91 

 The skin microbiome includes numerous microorganisms that establish a variety of direct 92 

and indirect interactions characterized by the exchange of genetic material that impact microbial 93 

biology contributing to their speciation and evolution. Malassezia is the most abundant fungal 94 

genus resident on human skin, representing more than 90% of the skin mycobiome (1). This genus 95 

presently consists of 18 diverse species (2), each with an unusually compact genome that 96 

underwent extensive gene turnover events as a result of evolutionary adaptation and colonization 97 

to a nutrient-limited ecological niche such as the skin (3). Although commensals, Malassezia 98 

species are also associated with a number of clinical skin disorders, including pityriasis versicolor, 99 

dandruff, and atopic dermatitis (AD) (4). A recently-developed epicutaneous murine model 100 

revealed that the host responses to Malassezia are dominated by pro-inflammatory cytokine IL-17 101 

and related factors that prevent fungal overgrowth and exacerbate inflammation under atopy-like 102 

conditions (5). Furthermore, Malassezia species have also been implicated recently as causal 103 

agents of Crohn’s Disease/Inflammatory Bowel Disease in patients with CARD9 mutations, and 104 

in accelerating the progression of Pancreatic Adenocarcinoma in murine models and in humans, 105 

and cystic fibrosis pulmonary exacerbation (6-8). 106 

 Nitric Oxide (NO) is a reactive compound of central importance in biological systems and 107 

it functions both as a signaling and toxic molecule. While little is known about NO synthesis in 108 

fungi, in mammals NO is synthesized by NO synthases (NOS isoforms). Nos1 and Nos3 are 109 

constitutively expressed in neurons and endothelium, respectively, and produce NO to promote S-110 

nitrosylation and transcriptional regulation. S-nitrosylation is a post-translational mechanism 111 

involving oxidative modification of cysteine by NO, and this is the central NO-mediated signaling 112 

mechanism that affects myriad of cellular physiological and pathophysiological processes (9). On 113 

the other hand, the Nos2 is not constitutively expressed but is induced in inflammatory cells in 114 

response to infection and is involved in wound healing, immune regulation, and host defense (10). 115 

 In fungi, NO is synthesized through a reductive denitrification pathway from nitrite, and 116 

through an oxidative pathway from L-arginine, although the detailed biochemical mechanisms 117 

have not yet been fully elucidated (11-13). Compared to mammals, plants, and bacteria, the role 118 

of NO in fungal biology is understudied. In S. cerevisiae NO is important for activation of 119 

transcription factors that are involved in resistance to a variety of environmental stress conditions, 120 

such as oxidative stress, heat shock, and hydrostatic pressure (11). Other studies report an 121 
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involvement of NO in pathogenesis of Botrytis cinerea and Magnaporthe oryzae, in 122 

morphogenesis and reproduction in Aspergillus nidulans, and in the yeast-to-hyphae dimorphic 123 

transition in Candida albicans (12, 14, 15).  124 

 Imbalance in cellular NO levels leads to altered redox homeostasis, resulting in the 125 

production of reactive nitrogen species that are responsible for nitrosative stress (10). NO 126 

dioxygenases are enzymes that living cells use to actively consume poisonous NO by converting 127 

it to inert nitrate, a source of nitrogen (16). Red blood cell hemoglobin is the main mammalian 128 

dioxygenase that metabolizes NO in the vascular lumen, whereas a type I flavohemoglobin 129 

constitutes the main enzyme deployed by microbes to counteract NO toxicity (10, 11). Some fungi 130 

within the Aspergillus genus have two type I flavohemoglobins, one that is cytosolic and protects 131 

the cells against exogenous NO, and another that is mitochondrial and is putatively involved in 132 

detoxification of NO derived from nitrite metabolism (17, 18). A type II flavohemoglobin has also 133 

been identified in Mycobacterium tuberculosis and other actinobacteria, but it lacks NO consuming 134 

activity and it utilizes D-lactate as an electron donor to mediate electron transfer (19, 20). 135 

 Evolution of flavohemoglobins in microbes has been previously investigated, revealing a 136 

dynamic distribution across bacteria and eukaryotes characterized by frequent gene loss, gene 137 

duplication, and horizontal gene transfer (HGT) events (21-23). An interesting finding of these 138 

phylogenetic studies was the HGT-mediated acquisition of a bacterial flavohemoglobin-encoding 139 

gene, YHB1, by M. globosa and M. sympodialis (21, 22). Here, we employed evolutionary, 140 

molecular, biochemical, and structural analyses to demonstrate that the HGT of the bacterial 141 

flavohemoglobin in Malassezia resulted in a gain of function critical for resistance to nitrosative 142 

stress and detoxification of NO under aerobic conditions. Moreover, analysis of the available 143 

Malassezia genomes revealed that extant flavohemoglobin-encoding genes are present as a single 144 

copy in different species, and resulted from a complex pattern of differential retention/loss of one 145 

of two genes (YHB1 and YHB101), which were ancestrally acquired by Malassezia through HGT 146 

from different donor bacterial lineages. Through trans-species complementation we demonstrated 147 

that the second bacterially-derived flavohemoglobin identified, Yhb101, restores resistance of the 148 

yhb1Δ mutant to nitrosative stress-inducing agents and also is able to consume NO. RNAseq 149 

analysis revealed that endogenous accumulation of NO results in upregulation of genes involved 150 

in stress responses and transport, and downregulation of the allergen-encoding genes. The 151 

characterization of the X-ray crystal structure of the Malassezia flavohemoglobin revealed features 152 
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shared with bacterial and fungal flavohemoglobins. Moreover, ex vivo and in vivo experiments 153 

suggest that Malassezia flavohemoglobins are dispensable for pathogenesis under our tested 154 

experimental conditions. Because the HGT-mediated acquisition of the flavohemoglobin-155 

encoding genes conferred the ability to metabolize NO, Malassezia genomes were searched for 156 

other HGT that could represent important gain of function events. Thirty additional genus- and 157 

species-specific HGT events were identified, with the donors being predominantly Actinobacteria 158 

and Proteobacteria. Similar to Malassezia, these donor species are some of the most common 159 

members of human and mammalian microbiomes, suggesting that niche overlap may have 160 

enhanced the opportunity for inter-kingdom HGT. 161 

 162 
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Results 177 

Malassezia flavohemoglobin-encoding genes were ancestrally acquired from bacteria 178 

through independent HGT events. Flavohemoglobins are critical for nitric oxide (NO) 179 

detoxification and counteract nitrosative stress (10). Previous studies reported that the 180 

flavohemoglobin-encoding gene YHB1 was acquired by M. globosa and M. sympodialis through 181 

HGT from Corynebacterium, a bacterial genus within the Actinobacteria that includes species that 182 

are part of the human microbiome (21, 22).  183 

 Because flavohemoglobins are widespread in both bacteria and eukaryotes, we examined 184 

whether the remaining 13 sequenced Malassezia species also contain a flavohemoglobin-encoding 185 

gene, and whether it had a fungal or bacterial origin. BLAST analyses with the M. globosa Yhb1 186 

sequence as query identified a single copy of YHB1 in all Malassezia species and strains with 187 

sequenced genomes. Intriguingly, this comparative search revealed that the best hits in M. 188 

yamatoensis and M. slooffiae had lower E-values (5e-64 and 1e-59, respectively) compared to the 189 

remaining Malassezia species (E-values ranging from 0.0 to 7e-161), possibly suggesting different 190 

origins or modifications of these flavohemoglobin-encoding genes. To elucidate the evolutionary 191 

trajectory of flavohemoglobin within the whole Malassezia genus, a Maximum Likelihood (ML) 192 

phylogenetic tree was reconstructed using >2000 Yhb1 bacterial and fungal sequences retrieved 193 

from GenBank. This phylogenetic analysis revealed two clades of flavohemoglobin within 194 

Malassezia genus: clade 1 that includes 13 species and clusters together with Brevibacterium 195 

species belonging to Actinobacteria; and clade 2 that includes M. yamatoensis and M. slooffiae 196 

and clusters together with different Actinobacteria with the closest relative being Kocuria kristinae 197 

(Fig. 1 A-C). To evaluate the statistical phylogenetic support for the two Malassezia 198 

flavohemoglobin clades whose distribution was not monophyletic, we performed approximately 199 

unbiased (AU) comparative topology tests. The constrained ML phylogeny, in which all 200 

Malassezia flavohemoglobins were forced to be monophyletic was significantly rejected (AU test, 201 

P value = 0.001, Fig. 1D), thus not supporting the null hypothesis that all flavohemoglobin genes 202 

in Malassezia have a single origin. 203 

 To validate this further, a region of ~30 kb surrounding the flavohemoglobin encoding 204 

gene in all sequenced Malassezia species was subjected to synteny comparison (Fig. 2). Overall, 205 

this region was highly syntenic across species, with the exception of some lineage-specific 206 

rearrangements located upstream of YHB1 (Fig. 2B). Remarkably, while the same regions were 207 
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also highly conserved in M. yamatoensis and M. slooffiae, they both lacked the flavohemoglobin-208 

encoding gene, which is instead located in a different, non-syntenic, regions of their genomes (Fig. 209 

2B and Fig. S1). Therefore, both phylogenic and synteny comparisons strongly support the 210 

hypothesis that Malassezia flavohemoglobin genes were acquired through independent HGT 211 

events from different bacterial donor species. We named the flavohemoglobin of clade 1 Yhb1 212 

following the S. cerevisiae nomenclature (24), and that of M. yamatoensis and M. slooffiae Yhb101 213 

(clade 2). The two different flavohemoglobins protein sequences share 38% identity (Fig. S2). 214 

 Because several studies suggest that genomic regions flanking horizontally-acquired genes 215 

are enriched in DNA transposons and retrotransposons (25, 26), a 5 kb region surrounding the 216 

flavohemoglobin-encoding genes was analyzed in two Malassezia species representative of clade1 217 

(M. sympodialis) and clade 2 (M. slooffiae). Dot plot comparisons revealed overall high co-218 

linearity with the common flanking genes encoding a hypothetical protein and Nsr1 (Fig. S3A). 219 

Interestingly, a highly repetitive sequence that shares similarity with the long terminal repeat 220 

(LTR) Gypsy was identified in the NSR1 gene flanking YHB1 (Fig. S3A-B), and we speculate that 221 

this LTR-like region might have facilitated the non-homologous end joining (NHEJ) integration 222 

of the bacterial YHB1 gene into the Malassezia common ancestor.  223 

 The flavohemoglobin-encoding gene YHB101 in M. yamatoensis and M. slooffiae seems 224 

to have been acquired in a single HGT event from the same bacterial donor lineage (Fig. 1A-C), 225 

although its genomic location is not syntenic in these two species (Fig. 2B). In M. slooffiae, 226 

YHB101 is located in a region that is otherwise highly conserved across Malassezia (Fig. S1A-B) 227 

and is devoid of transposable elements or repetitive regions that could have facilitated NHEJ of 228 

YHB101 (Fig. S1B). In contrast, in M. yamatoensis YHB101 is located at the end of a chromosome 229 

and the adjacent genes are not syntenic in other Malassezia species, with the exception of a more 230 

distant group of five genes (from JLP1 to MSS1) (Fig. S1C). In other Malassezia species (e.g. M. 231 

japonica, M. slooffiae, M. sympodialis) these five genes are subtelomeric, suggesting that 232 

chromosomal reshuffling might have contributed to generate the unique arrangement of genes 233 

surrounding M. yamatoensis YHB101 (Fig. 2; Fig. S1C).  234 

 Based on the analyses performed and on the availability of Malassezia genomes, we 235 

propose the following evolutionary model of flavohemoglobin-mediated HGT in Malassezia. 236 

First, the YHB1 and YHB101 genes were independently acquired by the Malassezia common 237 

ancestor via HGT from a Brevibacterium-related and a Kocuria-related bacterial donor, 238 
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respectively. An early loss of the YHB101 subsequently occurred in the common ancestor of the 239 

lineages that include M. sympodialis and M. globosa (Clades A and B, Fig. 2A), which retained 240 

the YHB1 gene in its ancestral location; lack of synteny in the region upstream of the YHB1 gene 241 

in M. globosa and M. restricta represents a more recent chromosomal rearrangement (Fig. 2B). In 242 

the early-branching Malassezia lineage (Clade D, Fig. 2A), the YHB1 gene was lost in M. slooffiae, 243 

which instead retained the YHB101 gene, presumably in its ancestral location; conversely, M. 244 

cuniculi lost the YHB101 gene and retained the YHB1 gene in the ancestral location. Lastly, all 245 

species within the M. furfur lineage (Clade C, Fig. 2A) have the YHB1 gene in its ancestral 246 

location, with the exception of M. yamatoensis that has lost this gene and retained instead the 247 

YHB101 gene, which was then relocated from its original position to a subtelomeric region (Fig. 248 

2B). This model implies that M. vespertilionis, M. japonica, M. obtusa, and M. furfur have 249 

independently lost the YHB101 gene during their evolution (Fig. 2A). Because none of the 250 

Malassezia species has the two flavohemoglobin genes (YHB1 and YHB101) in their genomes, we 251 

posit that loss of one or the other flavohemoglobin may be a consequence of different selection 252 

pressures across descendant lineages of the HGT recipient. 253 

 254 

Bacterially-derived flavohemoglobin-encoding genes are required for nitrosative stress 255 

resistance and NO detoxification in Malassezia. Flavohemoglobins are critical for NO 256 

detoxification and counteract nitrosative stress (10). To assess whether this HGT event in 257 

Malassezia resulted in a gain of function, we deleted the YHB1 ORF (MSYG_3741) of M. 258 

sympodialis ATCC42132 through targeted mutagenesis using our recently developed 259 

transformation protocol based on transconjugation mediated by Agrobacterium tumefaciens (27, 260 

28) (Fig. S4A).  261 

 The M. sympodialis yhb1Δ mutant exhibits hypersensitivity to the NO-donors DETA 262 

NONOate and sodium nitrite (NaNO2), but not to hydrogen peroxide (H2O2) (Fig. 3A). The two 263 

identified Malassezia flavohemoglobins Yhb1 and Yhb101 were used to generate GFP fusion 264 

proteins whose expression was driven by the respective endogenous promoter to complement the 265 

M. sympodialis yhb1Δ mutant phenotype and to assess protein localization (Fig. S4B). 266 

Reintroduction of either flavohemoglobin in the M. sympodialis yhb1Δ mutant restored resistance 267 

to nitrosative stress at the WT level (Fig. 3A). In agreement, fusion protein expression in 268 

complemented strains was confirmed by qPCR (Fig. S4C-D), FACS, and fluorescence microcopy 269 
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imaging of GFP expression, which revealed that Malassezia flavohemoglobins are cytoplasmic 270 

(Fig. 3B).  271 

 Next, we tested whether Malassezia flavohemoglobins were able to actively detoxify NO, 272 

which could potentially account for its involvement in nitrosative stress resistance. To this aim, 273 

we adapted a biochemical assay used for evaluating NO consumption by hemoglobin in red blood 274 

cells and plasma (29) to the commensal yeast Malassezia (Fig. S5). As shown in Figure 2C, while 275 

the M. sympodialis WT strain exhibited robust and dose-dependent NO degradation, the yhb1Δ 276 

mutant showed no NO consumption. Complemented strains were able to actively consume NO, 277 

although M. sympodialis yhb1Δ + YHB101-GFP displayed a lower NO consumption, 278 

corroborating the results of the phenotypic assay, GFP expression, and FACS analysis (Fig. 3A-279 

C). These differences might be due to less efficient cross-species complementation of the M. 280 

yamatoensis Yhb101-GFP fusion protein in the yhb1Δ mutant of M. sympodialis, which was a 281 

strategy chosen because of the lack of protocols for gene deletion in M. slooffiae and M. 282 

yamatoensis. Taken together these genetic and biochemical analyses show that the bacterially-283 

derived flavohemoglobins protect Malassezia from nitrosative stress by decreasing toxic levels of 284 

NO.   285 

 To assess intracellular production of NO by M. sympodialis, cells were stained with the 286 

NO-specific dye 4-Amino-5-methylamino- 2ʹ,7ʹ-diaminofluorescein diacetate (DAF-FM DA), 287 

which passively diffuses across membranes and emits increased fluorescence after reacting with 288 

NO. Fluorescent microscopy revealed intracellular accumulation of NO in both the WT and yhb1Δ 289 

mutant of M. sympodialis (Fig. 3D). NO-staining was quantified by FACS analysis, revealing 290 

significantly higher NO accumulation in the flavohemoglobin mutant yhb1Δ compared to the M. 291 

sympodialis WT (Fig. 3E-F). Because DAF-FM DA and GFP have similar excitation/emission 292 

spectra, complemented strains could not be tested for NO accumulation via flow cytometry, and 293 

therefore an independent M. sympodialis yhb1Δ mutant was tested and yielded similar results. 294 

These results indicate that the lack of a functional flavohemoglobin leads to intracellular 295 

accumulation of NO.  296 

 Finally, a broader analysis was performed to assess other functions of the Malassezia 297 

flavohemoglobins in response to a variety of environmental stresses and clinical antifungals, but 298 

in all cases the M. sympodialis yhb1Δ mutant phenotype was not significantly different from the 299 

WT (Fig. S6). These phenotypic results are in agreement with those obtained for the 300 
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basidiomycetous yeast Cryptococcus neoformans (30, 31), but contrast with the studies carried out 301 

in ascomycetous fungi, in which in addition to NO and nitrosative stress sensitivity, 302 

flavohemoglobin mutants exhibited higher resistance to hydrogen peroxide in A. nidulans (32), 303 

and hyper-filamentation in C. albicans (33). Several studies also report the protective role of both 304 

bacterial and fungal flavohemoglobins against NO under anaerobic conditions (10, 24, 34). 305 

However, we could not confirm this function for the Malassezia flavohemoglobin in our anaerobic 306 

experiments because no phenotypic differences were observed between the WT, the yhb1Δ mutant, 307 

and the complemented strains (Fig. S7).  308 

 309 

A recent inactivation of YHB1 in M. nana results in compromised NO enzymatic 310 

consumption. Analysis of Yhb1 protein prediction across species revealed that M. nana YHB1 311 

underwent pseudogenization [i.e. loss of gene function by disruption of its coding sequence with 312 

generation of a pseudogene, which is usually indicated as ψ (35)] following a G-to-T transversion 313 

in the glycine codon GGA, generating a premature TGA stop codon at the 29th amino acid (Fig. 314 

S8A). Literature search revealed that the sequenced strain of M. nana CBS9557 was isolated in 315 

Japan from a cat with otitis externa (36), while the other four known M. nana strains were collected 316 

in Brazil: M. nana CBS9558 and CBS9559 from cows with otitis externa, and CBS9560 and 317 

CBS9561 from healthy cows (36). 318 

 The M. nana strains CBS9557, CBS9559, and CBS9560 were used to investigate whether 319 

the pseudogenization event occurred in a M. nana ancestor, and whether it impacts nitrosative 320 

stress resistance and NO consumption. Because no genomes are available for the M. nana strains 321 

CBS9559 and CBS9560, their YHB1 gene was amplified by PCR and Sanger sequenced using 322 

primers designed on the YHB1 of M. nana CBS9557 (Table S2). YHB1 sequence comparison 323 

confirmed a premature stop codon present in only CBS9557, with both Brazilian M. nana isolates 324 

having a full-coding YHB1 gene (Fig. S8A). Phenotypic analysis revealed no significant difference 325 

in resistance to nitrosative stress by the three M. nana strains, with only a modest increased 326 

sensitivity displayed by CBS9557 exposed to 10 mM of sodium nitrite (Fig. S8B). Strikingly, M. 327 

nana CBS9557 displayed undetectable NO consumption activity as observed for the M. 328 

sympodialis yhb1Δ mutant, while M. nana CBS9559 and CBS9560 showed regular dose-329 

dependent NO consumption (Fig. S8C). These data suggest that the inactivation of 330 

flavohemoglobin in M. nana CBS9557 impaired the ability to consume NO, but this does not 331 
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impact the resistance to nitrosative stress, which might be compensated by other stress responsive 332 

pathways. 333 

 Intriguingly, another pseudogenization event of a bacterial gene encoding an aliphatic 334 

amidase was also identified in M. nana CBS9557 (represented in Fig. 6). These nonsense 335 

mutations were identified only in the M. nana CBS9557 isolated in Japan, suggesting that the 336 

different origin of the M. nana strains might contribute to this intraspecies diversity. This 337 

hypothesis is further supported by different phenotypic traits displayed by the M. nana isolates 338 

(Fig. S9). Exposure to several stress conditions revealed different responses to the most common 339 

antifungal drugs by M. nana strains, with strain CBS9557 displaying increased sensitivity to 340 

amphotericin B and resistance to fluconazole, and the geographically-related strains CBS9559 and 341 

CBS9560 displaying an opposite phenotype (Fig. S9).  342 

 343 

NO accumulation in M. sympodialis leads to upregulation of genes involved in nitrogen 344 

metabolism, ergosterol biosynthesis, and protein folding, and downregulation of predicted 345 

pathogenicity factors. Because the M. sympodialis flavohemoglobin mutant yhb1Δ accumulates 346 

higher amounts of NO than the WT (Fig. 3 D-E), we compared their transcriptomic profile to 347 

elucidate any potential signaling role of endogenous NO. RNAseq analysis revealed 36 348 

differentially expressed genes for false discovery rate (FDR) <0.05, of which 14 were upregulated 349 

and 22 were downregulated; using an additional threshold of log2FC +/- 0.5 we found 3 350 

upregulated and 9 downregulated genes (Fig. 4A; Dataset S1-S2). Of these, the only upregulated 351 

gene with log2FC > 1 encodes an uncharacterized protein (MSYG_1280), while two others with 352 

0.5 < log2FC < 1 encode Nop56 (or Sik1), a nucleolar protein involved in pre-rRNA processing, 353 

and an uncharacterized protein (MSYG_0148) predicted to be involved in magnesium transport. 354 

Other known upregulated genes with log2FC <0.5 are involved in response to stresses and transport 355 

(Dataset S1). The majority of the downregulated genes include those encoding hypothetical 356 

proteins (5 out of 9), the regulator of phospholipase D Srf1, two MalaS7 allergens, and an 357 

uncharacterized allergen (Dataset S2). It is worth noting that a large number of differentially 358 

expressed genes (DEGs) are predicted to encode unknown proteins, suggesting novel and unknown 359 

signaling pathways regulated by endogenous NO in Malassezia (Dataset S1-S2).  360 

 Next, to elucidate the global transcriptomic response of M. sympodialis exposed to 361 

nitrosative stress, RNAseq analysis for M. sympodialis WT cells treated with sodium nitrite was 362 
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performed. Compared to the untreated control, 112 genes were upregulated and 50 were 363 

downregulated (FDR<0.05; log2FC +/-0.5) (Fig. 4B). The most expressed genes included HEM1 364 

encoding a 5-aminolevulinate synthase involved in heme biosynthesis, MSYG_3126 encoding a 365 

hypothetical secreted lipase, the allantoicase encoding gene DAL2, MSYG_3153 encoding an 366 

uncharacterized NAD(P)/FAD-dependent oxidoreductase, and DCG1 encoding a protein with 367 

unknown function predicted to be related to nitrogen metabolism (Fig. 4B; Dataset S3). The 368 

flavohemoglobin-encoding gene YHB1 was significantly upregulated for FDR <0.05, but it had 369 

low expression level (log2FC=0.33). Low expression of YHB1 was also observed in S. cerevisiae 370 

cells exposed to nitrosative stress (37), although its role in NO consumption has been well 371 

characterized (24). The most represented classes of upregulated genes are involved in stress 372 

resistance, cellular detoxification and transport, and metabolism (Fig. 4C). Functional protein 373 

association network analysis revealed enrichment of genes involved in nitrogen metabolism and 374 

regulation, ergosterol biosynthesis, and heat shock response (Fig. S10); we speculate that among 375 

the upregulated transcription factor encoding genes (HSF1, UPC2, BAS1, and HMS1), the heat 376 

shock factor Hsf1 might be the key candidate that activates nitrosative stress responsive genes, 377 

given its known role in response to stresses in other fungi (38, 39). Conversely, response to 378 

nitrosative stress is mediated by the transcription factors Yap1 and Msn2/Msn4 in S. cerevisiae 379 

and Schizosaccharomyces pombe (37, 40), and by the transcription factor Cta4 and the Hog1 380 

kinase in C. albicans (41), with the consequent activation of genes known to be required for 381 

oxidative stress response, such as those involved in glutathione turnover and other anti-382 

oxidant/detoxification systems. M. sympodialis CTA1 and CCP1 are the only oxidative stress 383 

responsive genes activated in response to nitrosative stress (Fig. S10; Dataset S3).  384 

 The most represented GO category of downregulated genes encodes integral components 385 

of membrane, which includes transporters and putative Malassezia allergens; other downregulated 386 

genes are involved in calcium metabolism, protein folding, and proteolysis. Two transcription 387 

factors were downregulated, and they include the pH responsive Rim101, and an uncharacterized 388 

bZIP transcription factor (Fig. 4C, Dataset S4). 389 

 Comparison of the two different RNAseq datasets revealed two common upregulated 390 

genes, encoding the glycerol dehydrogenase Gcy1 and the catalase Cta1, and 10 downregulated 391 

genes that include 4 Malassezia allergens, a putative secreted lipase, and 5 hypothetical proteins 392 
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(Fig. 4D). While it is not surprising to find upregulation of a detoxifying enzyme such as catalase, 393 

it is intriguing to find downregulation of genes encoding predicted pathogenicity factors.  394 

 In conclusion, our transcriptomic data indicate that the response of Malassezia to NO and 395 

nitrosative stress is mostly different from other studied fungi and it involves metabolic pathways 396 

and genes that were not known to be relevant to overcome nitrosative stress.  397 

 398 

Malassezia flavohemoglobin has characteristic features of both bacterial and fungal 399 

flavohemoglobins. We hypothesized that the structure of a protein acquired by HGT will likely 400 

remain similar to that of the donor organism in order to retain its original function. Attempts to 401 

resolve the crystal structures of both Malassezia flavohemoglobins were carried out, but only the 402 

M. yamatoensis flavohemoglobin Yhb101 formed crystals to be analyzed. The structure was 403 

determined de novo by SAD phasing off the heme-iron bound to the globin domain of the protein 404 

(Table S3). The flavohemoglobin structure is highly conserved with previously characterized 405 

structures of this enzyme family, and it consists of an N-terminal globin domain coordinating an 406 

iron-bound (Fe2+) heme and a C-terminal reductase domain with both FAD- and NAD-binding 407 

sub-domains, of which only FAD is bound (Fig. 5A). An overlay of a flavohemoglobin structure 408 

from E. coli and S. cerevisiae on the M. yamatoensis crystal structure highlights conserved binding 409 

sites between the proteins (Fig. 5B). Alignment of the globin domains between literature and 410 

experimental structures resulted in an RMSD value of 1.532Å for E. coli and 1.434Å for S. 411 

cerevisiae, mostly resulting from slight shifts in the D-loop and E-helix between the structures 412 

compared. Common to all structures analyzed is the histidine residue coordinating with the heme 413 

iron from the proximal side. This member of the catalytic triad is supported by tyrosine (Tyr98) 414 

and glutamate (Glu140) residues conserved in sequence and structure between bacterial, and 415 

fungal/yeast flavohemoglobins (42, 43). In M. yamatoensis, as also observed in E. coli, the heme 416 

iron is ligated by 5 atoms: 4 from the heme and His88 from the F-helix. Substrates commonly bind 417 

on the distal side of the heme and lead to a conformational change in the planarity of the heme 418 

molecule. The E-Helix on the distal side of the heme molecule contributes Leu58, a conserved 419 

residue which approaches the heme-bound iron from 3.7Å away. At this position, the 6th 420 

coordination site for the iron is occluded, again similar to the E. coli crystal structure, but unlike 421 

the yeast structure where a three-atom small molecule co-crystallized.  422 
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 In M. yamatoensis Yhb101, the D-loop acts as a bridge between the C- and E-helices and 423 

the interface between the bound FAD and heme. Comparison of the D-loops from these structures 424 

shows the M. yamatoensis D-loop adopts a nearly identical helical structure as that of S. cerevisiae, 425 

in contrast to the E. coli D-loop, which is more extended. The M. yamatoensis E-helix also adopts 426 

a ~30° bend immediately following Leu58, which may straighten out once a substrate is bound.  427 

This structural adjustment likely communicates substrate binding near the heme to the reductase 428 

domain through movements in the D-loop as the heme B pyrrole proprionate forms a hydrogen 429 

bond with the main-chain NH of Ser45, the first residue in the D-loop (Fig. S11).  430 

 Lastly, in Fig. S12 a detailed comparison of the functional residues is shown between the 431 

Malassezia flavohemoglobins with those of the closer HGT donor bacteria B. ravenspurgense, K. 432 

kristinae, R. nasimurium, and with the model yeast S. cerevisiae.  433 

 434 

Malassezia flavohemoglobins are not required for survival on the host. Previous studies in 435 

human fungal pathogens indicate that flavohemoglobins are required for pathogenesis (30, 33). In 436 

our experiments we found that M. sympodialis WT, yhb1Δ mutant, and yhb1Δ + YHB1 and yhb1Δ 437 

+ YHB101 complemented strains have similar levels of survival within activated macrophages 438 

(Fig. S13A-B). This result is in contrast with previous findings in C. neoformans (30), but it 439 

corroborates results obtained in A. fumigatus (18). Furthermore, the recently developed murine 440 

model for Malassezia skin infection (5) was utilized to test pathogenicity of the flavohemoglobin 441 

strains and the induction of host response. Corroborating ex vivo data, we found no differences 442 

both in terms of host tissue colonization and host inflammatory response for the yhb1Δ mutant 443 

compared to the complemented strains (Fig. S13C-E, Fig. S14). In agreement, there were no 444 

differences between WT and Nos2-/- mice when challenged with M. sympodialis WT (Fig. S13F-445 

H). These results suggest that flavohemoglobin is not required for pathogenesis of Malassezia in 446 

an experimental skin model.  447 

 Lastly, several attempts were also carried out to test survival of M. sympodialis WT and 448 

flavohemoglobin strains within the GI tract of WT and Nos2-/-mice. Because of the high amount 449 

of NO produced in the GI tract of mice during inflammation (44), and the recently-reported 450 

involvement of M. restricta in Crohn disease (6), we hypothesized that the flavohemoglobin would 451 

be required for M. sympodialis survival in GI tract during inflammation. We followed the protocol 452 

developed for GI tract colonization by M. restricta (6), but unfortunately we could never recover 453 
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any M. sympodialis colony. For this reason, whether Malassezia flavohemoglobin is required for 454 

survival within the GI tract could not be determined.  455 

 456 

Analysis of Malassezia genomes revealed extensive HGT events from bacteria. Given the gain 457 

of function due to acquisition of the bacterially-derived flavohemoglobins by Malassezia species, 458 

we sought to identify additional HGT candidate genes in the Malassezia genus. In a previous study, 459 

8 HGT events were identified in M. sympodialis, and then their presence was assessed in other 460 

species within the genus (3). In the present study we applied a previously described analytical 461 

pipeline (45) based on three HGT metrics - the HGT index (46), the Alien Index (AI) (47) and the 462 

Consensus Hit Support (CHS) (48) - to identify novel genus and species-specific HGT events. Our 463 

goal was not to explicitly establish the evolutionary history of individual genes, but rather to 464 

estimate bacteria-derived HGT candidates for the complete set of Malassezia genomes. Besides 465 

recovering the YHB1 and YHB101 genes as HGT candidates, in addition this analysis identified a 466 

total of 30 HGT candidate genes (Fig. 6 and Dataset S5), seven of which in common with the 467 

previous study. HGT candidates found in the majority of the Malassezia species include genes 468 

involved in broad resistance to stresses, including three that were upregulated in M. sympodialis 469 

exposed to nitrosative stress (Dataset S3), such as the NAD(P)/FAD-dependent oxidoreductase-470 

encoding gene MSYG_3153, the catalase-encoding gene MSYG_3147, and the sorbitol 471 

dehydrogenase-encoding gene MSYG_0932 (Fig. 6). Other HGT candidates include a 472 

deoxyribodipyrimidine photo-lyase predicted to be involved in repair of UV radiation-induced 473 

DNA damage, and a class I SAM-dependent methyltransferase potentially modifying a variety of 474 

biomolecules, including DNA, proteins and small‐molecule secondary metabolites. Another 475 

interesting HGT candidate is the gene encoding a septicolysin-like protein, which is known as a 476 

pore-forming bacterial toxin that might play a role as virulence factor (49, 50). This gene is absent 477 

in all Malassezia species phylogenetically related to M. sympodialis, and is present as five copies 478 

in M. globosa. Furthermore, a large number of HGT events unique to Malassezia species of clade 479 

A were found, and the acquired genes encode a variety of proteins with different functions, such 480 

as hydrolysis, protein transport and folding, detoxification of xenobiotics, and resistance to 481 

stresses. Finally, 12 of the HGT candidates identified were unique to certain Malassezia species. 482 

An intriguing case is M. japonica for which we found four unique HGT candidates, one of them 483 
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in 3 copies. These genes encode orthologs of the fungal Gre2 protein, which is known to be 484 

involved in responses to a variety of environmental stresses (51, 52). 485 

 486 

Discussion 487 

 In the present study we report the functional characterization of two Malassezia 488 

flavohemoglobin encoding genes that were independently acquired through HGT from different 489 

Actinobacteria donors. Our experimental analyses demonstrate that both bacterially-derived 490 

flavohemoglobins are involved in nitrosative stress resistance and NO degradation, consistent 491 

with its known functions in bacteria and fungi (10). 492 

 We propose an evolutionary HGT model in which extant flavohemoglobin-encoding genes 493 

in Malassezia result from a complex pattern of gene retention/loss after being both acquired by a 494 

Malassezia common ancestor. Nevertheless, other evolutionary scenarios could also be 495 

hypothesized, such as: 1) the acquisition of the YHB1 in a Malassezia common ancestor via HGT 496 

from a Brevibacterium-related donor; 2) followed by more recent acquisitions of YHB101 by M. 497 

yamatoensis and M. slooffiae via independent HGT events from a common, or closely related, 498 

bacterial donor(s) (Kocuria). In this scenario, the “resident” YHB1 in M. yamatoensis and M. 499 

slooffiae could have been displaced upon secondary acquisition of the YHB101 gene [a 500 

phenomenon termed as xenolog gene displacement (53)], or the acquisition of YHB101 by HGT 501 

could have been preceded by the loss of the cognate YHB1 copy. The identification of novel 502 

Malassezia species and the analysis of their genomes will be key for the elucidation of these 503 

complex models of gene evolution in Malassezia. 504 

 Although the mechanisms of HGT in fungi are not fully understood, several possible 505 

mechanisms have been reported (25, 54). One such mechanism is gene acquisition through 506 

conjugation, which requires contact between bacterial donor and fungal recipient (54). For the 507 

HGT events that mediated flavohemoglobin acquisition by Malassezia, the closest phylogenetic 508 

donors are Actinobacteria that are part of the mammalian microbiome and hence share the same 509 

ecological niche with Malassezia. A dilemma that is common to all HGT events is that if a gene 510 

is required for survival in a certain condition, its transfer under that condition might in theory 511 

be difficult if not impossible (55). Because NO is synthesized by mammals, including by the 512 

skin (56), we speculate that the presence of NO enhanced the HGT transfer of bacterial 513 
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flavohemoglobins to a fungal Malassezia ancestor that acquired the ability to actively consume 514 

NO.  515 

 Notably, a large number of eukaryotic organisms including fungi lack a 516 

flavohemoglobin-encoding gene, suggesting the existence of alternative pathways for 517 

nitrosative stress resistance and NO utilization. For example, in Histoplasma capsulatum, the 518 

etiologic agent of histoplasmosis, Yhb1 is replaced by a P450-type NO reductase (57), whereas 519 

in other cases, such as for the basidiomycetous fungi Moniliella, Ustilago, and Puccinia, NO 520 

metabolism in the absence of flavohemoglobin has yet to be elucidated. The evolution and 521 

diversification of flavohemoglobin-encoding genes has been a dynamic and complex process 522 

characterized by several prokaryote-prokaryote and prokaryote-eukaryote HGT events (22), 523 

hence suggesting its significant contribution for habitat colonization by a species but likely a 524 

dispensable role in evolutionary divergence.  525 

 Is the bacterial flavohemoglobin required for Malassezia interaction with the host? 526 

While a number of studies in bacteria and fungi reported a role for flavohemoglobin in microbial 527 

pathogenesis (10), we surprisingly found that Malassezia flavohemoglobins are dispensable for 528 

survival within macrophages and for skin infection in our experimental conditions. Conversely, 529 

we propose that Malassezia flavohemoglobins are important for the commensal lifestyle of 530 

Malassezia through regulation of NO homeostasis, a hypothesis corroborated by 531 

downregulation of genes-encoding putative virulence factors (i.e. allergens and lipases) in our 532 

transcriptomic analyses. Another hypothesis is that the HGT-mediated acquisition of 533 

flavohemoglobins might be important to mediate Malassezia response to NO that is produced 534 

by sympatric microbial communities and acts as a quorum signaling molecule, as reported in 535 

bacteria (58, 59) and in S. cerevisiae (60). 536 

 Horizontal gene transfer is thought to occur much less frequently in eukaryotes than in 537 

prokaryotes (61, 62), but there are notable cases that invoke HGT as a prominent mechanism 538 

of eukaryotic evolution, such as in the transition of green plants from aquatic to terrestrial 539 

environments (63), and in the colonization of the animal digestive tracts by rumen fungi and 540 

ciliates (55, 64, 65). Analysis of Malassezia genomes revealed a large number of HGT events, 541 

suggesting that they may also have played a substantial contribution in Malassezia evolution 542 

and niche adaptation. Donor bacteria include those that are part of the microbiota of animals, but 543 

also others that are known to inhabit a variety of terrestrial and marine habitats, raising questions 544 
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about a possible wider environmental distribution of a Malassezia ancestor. This could be 545 

correlated with the presence of Malassezia DNA in a number of unexpected areas, such as in 546 

association with corals and sea sponges in the ocean (66). Moreover, most of the HGT candidate 547 

genes identified in Malassezia operate as a self-contained metabolic unit, which has been 548 

proposed to facilitate HGT (22). Intriguingly, the high number of HGT events suggests also a 549 

predisposition of Malassezia to bacterial conjugation, in line with our previous findings that A. 550 

tumefaciens-mediated transformation is the only effective technique for molecular manipulation 551 

of Malassezia (67). There are a number of identified HGT that are predicted to be important for 552 

Malassezia pathophysiology and that can be characterized using the methodologies reported in 553 

the present study.  554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 

 572 

 573 

 574 

 575 
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Materials and Methods  576 

Strains used in the present study. The M. sympodialis strains ATCC42132 was utilized as a 577 

model species for genetic manipulations. In addition, M. yamatoensis CBS9725 (or MY9725) and 578 

M. nana strains CBS9557, CBS9559, and CBS9560 were employed for NO consumption assays. 579 

These strains were grown on modified Dixon’s media (mDixon), which is the medium routinely 580 

used for culturing Malassezia species (3).  581 

 582 

Identification of YHB1 genes in Malassezia genomes and synteny analyses. Protein-coding 583 

sequences were obtained using the ab initio gene predictor AUGUSTUS v3.2.2 (68) for each 584 

Malassezia species that lacked a genome annotation (as of September 2017). To search for YHB1 585 

homologs, local BLAST databases were set up for both the genome assemblies and the translated 586 

coding sequences, and the M. globosa Yhb1 protein sequence (GenBank XP_001730006.1) was 587 

queried against each database using BLASTP or TBLASTN. Top BLAST-identified protein 588 

sequences were retrieved, and the presence of the typical FHbs domains, consisting of an N-589 

terminal globin domain fused with a C-terminal FAD- and NAD-binding oxidoreductase modules, 590 

were inspected using InterProScan 5 (69). For the analysis of relative gene-order conservation 591 

(synteny) between Malassezia species, a region of ~ 32 kb surrounding the YHB1 gene (~7-8 genes 592 

on each side) was carefully examined and compared using top scoring BLASTP against the 593 

reference genome annotations of M. sympodialis, M. globosa and M. pachydermatis. 594 

 595 

Yhb1 phylogeny and topology tests. The Malassezia globosa Yhb1 protein was queried against 596 

the Genbank non-redundant (nr) protein database (last accessed in August 2017) with BLASTP 597 

and an e-value inclusion threshold of 1e-10. Protein sequences corresponding to the top 5000 hits 598 

were extracted and utilized for downstream analyses. In addition, all putative Malassezia Yhb1 599 

proteins identified from the genome data, as well as the functionally characterized Yhb1 gene of 600 

S. cerevisiae, were included in the dataset. Highly similar sequences were collapsed with CD-HIT 601 

v4.7 (70) using a sequence identity threshold of 0.95 (-c 0.95) and word length of 5 (-n 5) to remove 602 

redundancy and correcting the bias within the dataset. Sequences were aligned with MAFFT 603 

v7.310 using the FFT-NS-i strategy (71) and poorly aligned regions were trimmed with TrimAl 604 

v1.4. (-gappyout) (72). The Yhb1 phylogenetic tree was constructed using IQ-TREE v1.5.5 (73) 605 

and the LG+F+I+G4 amino acid model of substitution as determined by ModelFinder (74). 606 
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Because the dataset consisted of a large number of relatively short sequences, we reduced the 607 

perturbation strength (-pers 0.2) and increased the number of stop iterations (-nstop 500) during 608 

tree search. Branch support was accessed with the ultrafast bootstrap approximation (UFboot) (75) 609 

and the SH-like approximate likelihood ratio (SH-aLRT) test (76) both with 10,000 replicates (-610 

bb 10000 –alrt 10000). Tests of monophyly were performed in CONSEL version 1.2 (77) using 611 

the approximately unbiased (AU) test (78) to determine whether the maximum likelihood (ML) 612 

estimates of the best tree given a constrained topology differed significantly from the 613 

unconstrained best ML tree. To produce a constrained topology, Malassezia sequences were forced 614 

to be monophyletic, and all other branches were resolved to obtain the maximum -log likelihood 615 

using RAxML v8.2.11, with five alternative runs on distinct starting trees (-# 5) and the same 616 

amino acid model of substitution. Site-wise log-likelihood values were estimated for both trees 617 

(option: -f g in RAxML) and the resulting output was analyzed in CONSEL. 618 

 619 

Species phylogeny. To reconstruct the phylogenetic relationship among the 15 Malassezia species 620 

selected, top pair-wise BLAST results of whole proteomes were clustered by a combination of the 621 

bidirectional best-hit (BDBH), COGtriangles (v2.1), and OrthoMCL (v1.4) algorithms 622 

implemented in the GET_HOMOLOGUES software package (79), to construct homologous gene 623 

families. The proteome of M. sympodialis ATCC42132 served as reference and clusters containing 624 

inparalogs (i.e. recent paralogs defined as sequences with best hits in its own genome) were 625 

excluded. A consensus set of 246 protein sequences was computed out of the intersection of the 626 

orthologous gene families obtained by the three clustering algorithms using the perl script 627 

compare_clusters.pl included in the package. These single copy orthologous gene families were 628 

individually aligned with MAFFT v7.310 using the L-INS-i strategy and trimmed with TrimAl (-629 

gappyout). The resulting alignments were concatenated with the python script ElConcatenero (80) 630 

to obtain a final supermatrix consisting of a total of 134,437 amino acid sites (47,942 parsimony-631 

informative). The phylogenetic tree was constructed with IQ-TREE v1.5.5 and the LG+F+R5 632 

amino acid model of substitution and branch support values were obtained from 10,000 replicates 633 

of both UFBoot and SH-aLRT. 634 

 635 

Horizontal gene transfer analyses. To assess the extent of horizontal transfer into Malassezia 636 

genomes, we applied a previously described pipeline (45) to the set of 15 available Malassezia 637 
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proteomes, adjusting the parameters accordingly. In brief, protein sequences were first aligned to 638 

the UniRef100 database (last accessed September 2017) using Diamond ‘blastp’ (81) with the 639 

following parameters: ‘--sensitive --index-chunks 1 --max-target-seqs 500 --Evalue 1e-5’. Three 640 

metrics were defined for each protein sequence used as query: (a) the HGT Index (46), (b) the 641 

Alien Index (AI) (47), and (c) the Consensus Hit Support (CHS) (48). Hits in Malasseziales were 642 

omitted (NCBI taxid 162474), and we specified ‘Fungi’ as the ingroup lineage (NCBI taxid 4751) 643 

and ‘non-Fungi’ as outgroup. Proteins receiving an HGT index ≥ 30, AI index > 45, CHS ≥ 90, 644 

and that have Bacteria as the donor lineage, were considered well supported HGT candidates and 645 

analyzed further. When a given HGT candidate was detected in more than one, but not all the 646 

species, TBLASTN searches were used to distinguish between bona fide gene losses or genome 647 

mis-annotation. 648 

 649 

Molecular manipulation of M. sympodialis. A detailed procedure of the cloning procedures and 650 

transformation technique used is reported in SI Appendix, SI Material and Methods. The plasmid 651 

for targeted mutagenesis of M. sympodialis YHB1 was generated by cloning regions of 1.5 kb 652 

flanking the YHB1 gene fused with the NAT marker within the T-DNA (transfer DNA) of the 653 

binary plasmid pGI3 as previously reported (67, 82). For yhb1Δ functional complementation, two 654 

different GFP-fusion plasmids were generated. The M. sympodialis YHB1 ORF, the endogenous 655 

M. sympodialis YHB1 gene including its native promoter and terminator, or the endogenous M. 656 

yamatoensis YHB101 gene including its native promoter, were amplified by PCR using chimeric 657 

primers that generated recombination sites that allowed T-DNAs assembly in the following order: 658 

plasmid pGI35 was pYHB1, YHB1, GFP, tYHB1, NEO, and it is referred as YHB1-GFP; plasmid 659 

pGI31 was pYHB101, YHB101, GFP, tYHB1, NEO, and it is referred as YHB101-GFP. Plasmids 660 

were recombined through in vivo recombination in S. cerevisiae (67). Correct plasmids were 661 

identified by PCR and introduced into the A. tumefaciens EHA105 strain by electroporation, and 662 

the transformants selected on LB + 50 µg/ml kanamycin. 663 

 M. sympodialis was transformed through A.-tumefaciens mediated transformation 664 

following our previously published method (27, 28). Transformants were selected on mDixon 665 

supplemented with nourseothricin (100 µg/ml) or neomycin G418 (100 µg/ml), and cefotaxime 666 

(350 µg/ml) to inhibit Agrobacterium growth. Transformants were purified to single colonies, and 667 

subjected to phenol-chloroform-isoamyl alcohol (25:24:1) DNA extraction (83). The correct 668 
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replacement of the YHB1 target locus, as well as integration of the reconstitute versions of the 669 

YHB1 and YHB101 genes, were assessed by PCR. Primer sequences are listed in Table S2.  670 

  671 

NO quantification and GFP expression analysis. Intracellular levels of NO was measured by 672 

flow cytometry adapted from previous method (14). In brief, M. sympodialis WT and yhb1Δ 673 

mutant were grown ON in mDixon media, washed once with PBS, and then incubated in PBS with 674 

agitation overnight. For each sample, ~ 2 x 108 cells/mL were equally divided, and were stained 675 

with DAF-FM DA at a final concentration of 10 µM, and the other half not stained and used as 676 

background control. Cells were washed once with PBS and analyzed using a BD FACSCantoTM 677 

II.  678 

 To measure intracellular GFP intensity by flow cytometry, M. sympodialis yhb1Δ mutants, 679 

and complemented strains yhb1Δ + YHB1-GFP and yhb1Δ + YHB101-GFP were grown in 680 

mDixon media ON, washed in PBS, and ~1 x 108 cells/mL used for flow cytometry analysis on 681 

the Becton-Dickinson FACScan at Duke Cancer Institute Flow Cytometry Shared Resource. The 682 

results were analyzed using FlowJo. M. sympodialis yhb1Δ mutants, and complemented strains 683 

yhb1Δ + YHB1-GFP and yhb1Δ + YHB101-GFP prepared in the same way were also used for GFP 684 

microscopy analysis carried out at the Duke Light Microscopy Core Facility using a Zeiss 710 685 

inverted confocal microscope.  686 

 687 

NO consumption assay. The NO consumption assay was performed as previously reported (84, 688 

85). A custom‐made glass reaction cell was filled with PBS (4 mL, pH 7.4, 37°C) and connected 689 

with a flow meter and a TEA NO analyzer. Under near-vacuum conditions, NO generation was 690 

achieved by injecting DETA NONOate (dissolved in 0.01 N NaOH at a concentration of 30 mM) 691 

into the reaction cell. Under a helium flow, NO was passed through an inline condenser (removing 692 

water vapor) to a NO chemiluminescence analyzer (TEA 810, Ellutia) to generate an 693 

electrochemical NO baseline signal (expressed as mV) (Fig. S5).  694 

 We established the optimum amount of DETA NONOate to be injected as 30 µL (225 µM), 695 

leading to an increase of ~60 mV in the baseline. Malassezia yeasts were grown ON in mDixon, 696 

washed twice with PBS pH = 7.4, and adjusted in PBS to OD600=1. Because Malassezia yeasts 697 

form clumps in liquid culture, cell counts using a hemocytometer was inaccurate and the number 698 

of viable cells in cultures was instead determined by plating an aliquot (100 µL) of the cellular 699 
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suspensions on mDixon agar and counting colonies. The density of the Malassezia cultures was 700 

~2.3 x 108 CFU/mL, with the exception of M. nana cultures that were 1.5 x 108 CFU/mL. For NO 701 

consumption assays, injection of a volume of PBS pH = 7.4 alone greater than 50 µL interfered 702 

with the NO signal baseline, and therefore amounts ranging from 10 µL (2.3 x 106 cells injected) 703 

to 50 µL (1.15 x 107 cells injected) of Malassezia cellular suspensions were utilized. For M. nana 704 

injections of 15 µL (2.25 x 106 cells injected), 30 µL (4.50 x 106 cells injected) and 45 µL (6.75 x 705 

106 cells injected) were performed. For technical reasons (i.e. presence of clumps, non-706 

resuspended cells, and cultures too dense for the syringe needle) we found that the indicated range 707 

of cell counts were optimal to obtain results that were clean and reproducible. 708 

 Our standardized NO consumption assay was performed as follows: once a steady baseline 709 

was obtained (approximately 1 min), 30 μL of DETA NONOate was injected, and after a stable 710 

NO signal was achieved, different volumes of Malassezia cellular suspensions were injected into 711 

the buffer solution (PBS + DETA NONOate), resulting in a decrease in NO signal that indicates 712 

NO consumption. Following the injection of each Malassezia species, the reaction chamber was 713 

flushed, and refilled with PBS and DETA NONOate. A maximum of 5 injections was performed 714 

using the same buffer solution, after which it became cloudy, generating an unstable signal. 715 

 716 

In vitro phenotypic characterization of Malassezia strains. Phenotypic analysis of the 717 

Malassezia strains was performed on mDixon agar by spotting 1.5 µL of 1:10 dilutions of each 718 

cellular suspension in the following conditions: DETA NONOate (0.5 mM and 1 mM), NaNO2 (5 719 

mM and 10 mM), hydrogen peroxide (1 mM), UV (200 µJ x 100), 37°C, benomyl (20 µM), 5-720 

flucytosine (5FC, 50 and 100 µg/mL), amphotericin B (AmB, 50 µg/mL), caspofungin (2.5 µg/mL 721 

and 5 µg/mL), fluconazole (FLC, 0.5 µg/mL and 1 µg/mL), NaCl (1M), LiCl (100 mM), Congo 722 

red (0.4  µg/mL), pH = 7.5, or pH = 4.When hypoxic conditions were required, the GasPak EZ 723 

Container System was used (BD Diagnostics). Plates of mDixon supplemented with DETA 724 

NONOate (0.1 nM, 1nM, 10 nM and 0.1 mM) and NaNO2 (10 nM, 50 nM, 0.1 mM and 1 mM) 725 

were spotted as reported above and placed in the GasPak Large Incubation Chamber with three 726 

anaerobe sachets added prior to sealing the chamber. Maintenance of hypoxic conditions (less than 727 

1% O2 and greater than 13% CO2) was monitored using Dry Anaerobic Indicator Strips (BD). 728 

 729 
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RNAseq analysis. 10 mL liquid mDixon cultures of ~ 1x107 cells/mL of M. sympodialis WT 730 

ATCC42132 with and without 10 mM NaNO2, and M. sympodialis yhb1Δ mutant were grown for 731 

ON on shaking culture at 30°C. Cells were pelleted at 3,000 rpm in a table top centrifuge for 3 732 

minutes, washed with 10 mL dH2O, and the cell pellet was lyophilized and stored at -80°C until 733 

RNA extraction. Cells pellets was broken with sterile beads and RNA extracted with TRIzol 734 

(ThermoFisher) according to the manufacturer’s instructions. Final RNA pellets were treated with 735 

TURBO DNase (ThermoFisher, catalog # AM2238) according to manufacturer’s instructions, and 736 

RNA was resuspended in 50 μl of nuclease free water. Illumina 50 bp single end libraries were 737 

prepared using the TruSeq Stranded Total RNA-seq Kit and subjected to Illumina sequencing. 738 

Library preparation and RNA sequencing was performed at the Duke University Center for 739 

Genomic and Computation Biology. Three biological replicates were performed for each sample.  740 

 After sequencing, Illumina raw reads were trimmed with Trimmomatic to remove Illumina 741 

adaptors (86) and mapped to the most recent M. sympodialis reference genome (87) using HiSat. 742 

Generated .bam files were used to run StringTie with the M. sympodialis annotation as guide, and 743 

the –e option to provide the correct output for the statistical analysis (88). Read count information 744 

for statistical analysis were extracted using a provided python script (prepDE.py). DESeq2 was 745 

used to determine the differentially expressed genes (DEGs) as having FDR < 0.05 and log2FC ± 746 

0.5, which are common parameters used to define relevant genes in RNAseq experiments (89). 747 

StringTie and DEseq2 were run on Galaxy (90). Functional annotation of the DEGs was performed 748 

using the Blast2GO pipeline, which includes the BLASTx against the NCBI non-redundant protein 749 

database, gene ontology (GO) annotation and InterProScan (91). Venn diagram to identify DEGs 750 

in common between the two comparisons were generated using the following web server 751 

(http://bioinformatics.psb.ugent.be/webtools/Venn/). Gene network interactions were determined 752 

using STRING (https://string-db.org/cgi/input.pl) with the S. cerevisiae protein set as reference.  753 

 754 

Flavohemoglobin purification and crystal structure. A detailed procedure for the 755 

flavohemoglobin purification and crystal structure is reported in SI Appendix, SI Material and 756 

Methods. Briefly, a construct expressing His-Tev-YHB101 was cloned into E. coli BL21(DE3) 757 

cells for expression studies. Protein expression was induced with 1 mM Isopropyl β-D-1-758 

thiogalactopyranoside (IPTG), and 5-aminoluevulinic acid 0.3 mM was also added to facilitate 759 

heme biosynthesis. The cellular pellet was collected and lysed via microfluidization with two 760 
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passes at 15,000 PSI on ice and clarified via centrifugation at 200 rcf for 45 minutes at 4°C, and 761 

filtered with a 0.2 µm filter. The supernatant was applied to a Ni2+ charged HiTrap Chelating HP 762 

(GE Healthcare) columns and the protein eluted with a 500 mM imidazole gradient. The fractions 763 

of interest (which were visibly red-brown) were pooled, the His-TEV tag removed while dialyzing 764 

overnight at 4°C, and fractions of the cleaved protein eluted from the column were concentrated 765 

for size exclusion chromatography via centrifugal concentration.  766 

 Apo M. yamatoensis flavohemoglobin protein was set up for crystallization. Crystals were 767 

obtained with Morpheus B12: 12.5% (w/v) PEG1000, 12.5% (w/v) PEG3350, 12.5% (v/v) MPD, 768 

0.03 M each sodium fluoride, sodium bromide, and sodium iodide, and 0.1 M bicine/Trizma base 769 

pH 8.5. After 35 days, red-brown crystals were harvested and analyzed on a Rigaku FR-E+ 007 770 

SuperBright rotating anode equipped with Rigaku Varimax optics and a Saturn 944+ detector using 771 

several packages described in detail in SI Appendix, SI Material and Methods. The 772 

flavohemoglobin structures of E. coli (PDB ID 1GVH) and Saccharomyces cerevisiae (PDB ID 773 

4G1V) were used for comparison with that of M. yamatoensis. 774 

 775 

Interaction of M. sympodialis strains with the host. The ability of M. sympodialis WT, yhb1Δ 776 

mutant, and complemented strains yhb1Δ + YHB1-GFP and yhb1Δ + YHB101-GFP to survive 777 

within macrophage was carried out according to previous protocol (30, 92). J774 A.1 cells 778 

(1 × 105/well) were added to 96-well plates and activated by addition of either 1) 10 nM phorbol 779 

myristate acetate (PMA) and incubated for 1 h at 37 °C with 5% CO2, 2) 100 U/mL interferon-γ 780 

and LPS (0.6 µg/mL) and incubated overnight at 37˚C 5% CO2. Two days old cultures of M. 781 

sympodialis were washed twice with sterile water, and resuspended in RPMI + human serum 20 782 

% for opsonization for 2 h at 37˚C. M. sympodialis cells were washed three times with water, 783 

resuspended in DMEM and added to the macrophages at a 1:1 yeast: macrophage ratio. Plates were 784 

incubated for 2 h at 37 °C in 5% CO2, then the co-cultures were washed three times with PBS to 785 

remove yeasts that were not internalized, and the plate was incubated at 37 °C in 5% CO2 for 18 h. 786 

Yeast cells were collected by lysing macrophages, and from each condition a 1:20 dilution was 787 

plated on mDixon agar and incubated at 30 °C for 3-5 days to determine yeast survival.  788 

 For in vivo infection experiments, WT C57BL/6j mice were purchased from Janvier 789 

Elevage. Nos2-/- mice (93) were obtained from Nicolas Fasel (Lausanne). Mice were maintained 790 

at the Laboratory Animal Science Center of University of Zurich, Zurich, Switzerland and used at 791 
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6-12 weeks in sex- and age-matched groups. Epicutaneous infection of the mouse ear skin was 792 

performed as described previously (5, 94). Briefly, Malassezia strains were grown for 3-4 days at 793 

30°C, 180 rpm in liquid mDixon medium. Cells were washed in PBS and suspended in native olive 794 

oil at a density of 20 ODA600/mL. 100 µl suspension (corresponding to 2 ODA600) of yeast cells 795 

was applied topically onto the dorsal ear skin that was previously barrier-disrupted by mild tape 796 

stripping while mice were anaesthetized. For determining the fungal loads in the skin, tissue was 797 

transferred in water supplemented with 0.05% Nonidet P40 (AxonLab), homogenized and plated 798 

on mDixon agar and incubated at 30°C for 3-4 days. For quantification of cellular infiltrates, single 799 

cell suspensions of ear skin were stained with antibodies directed against CD45 (clone 104), 800 

CD11b (clone M1/70), Ly6G (clone 1A8), Ly6C (clone HK1.4) in PBS supplemented with 1% 801 

FCS, 5 mM EDTA and 0.02% NaN3. LIVE/DEAD Near IR stain (Life Technologies) was used 802 

for exclusion of dead cells. Cells were acquired on a FACS Cytoflex (Beckman Coulter) and the 803 

data were analyzed with FlowJo software (FlowJo LLC). The gating of the flow cytometric data 804 

was performed according to the guidelines for the use of flow cytometry and cell sorting in 805 

immunological studies (95), including pre-gating on viable and single cells for analysis. For 806 

transcript expression analysis, total RNA was isolated from ear skin according to standard 807 

protocols using TRI Reagent (Sigma Aldrich). cDNA was generated by RevertAid reverse 808 

transcriptase (Thermo Fisher). Quantitative PCR was performed using SYBR Green (Roche) and 809 

a QuantStudio 7 Flex (Life Technologies) instrument for Il17a (96), Defb 3 (97), and Nos2. All 810 

RT-qPCR assays were performed in duplicates and the relative expression (rel. expr.) of each gene 811 

was determined after normalization to Actb transcript levels. The primers used for qPCR are listed 812 

in Table S2.  813 

 814 

Data Availability. The sequence data generated in this study were submitted to National Center 815 

for Biotechnology Information under BioProject accession number PRJNA626605. Individual 816 

accession numbers are SRR11574550 for RNA-seq reads of Malassezia WT untreated control 817 

samples, SRR11574549 for RNA-seq reads of Malassezia WT NO-treated samples and 818 

SRR11574548 for RNA-seq Malassezia yhb1Δ mutant. The final structure factors and coordinates 819 

of the flavohemolgobin Yhb101 of M. yamatoensis were deposited in the PDB with code 6O0A. 820 

 821 

 822 
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Figures legend  854 

Figure 1. Evidence for independent HGT events of the flavohemoglobin-encoding genes in 855 

Malassezia from the Actinobacteria. (A) Maximum likelihood phylogeny of consisting of 2,155 856 

flavohemoglobin protein sequences. Two groups (clade 1 and 2) of horizontally transferred 857 

flavohemoglobin genes (YHB1 and YHB101) in Malassezia are colored in orange. Other tree 858 

branches are colored according to the key on the top left, representing other major groups of 859 

organisms. The phylogeny was visualized using iTOL v3.6.1 (98) and was rooted at the midpoint. 860 

(B and C) Zoomed views of the ML phylogeny showing in more detail the position of Malassezia 861 

flavohemoglobins from clades 1 and 2, and their putative bacterial donor lineages. (D) Results of 862 

topological constraints tests that significantly rejected the monophyletic origin for both Malassezia 863 

flavohemoglobins clades, providing additional support for independent HGT events. 864 

 865 

Figure 2. Evolutionary trajectory of flavohemoglobin-encoding genes in Malassezia after 866 

their acquisition via HGT from different donor bacteria lineages. (A) Phylogenetic 867 

relationship of Malassezia species with available genome sequence inferred from the 868 

concatenation of 246 single-copy proteins. Color codes assigned to the different phylogenetic 869 

clades (named A to D) are kept consistent in all figures. The tree was rooted at the midpoint and 870 

white circles in the tree nodes indicate full UFboot and SH-aLRT branch support. The proposed 871 

evolutionary events that led to the final arrangement of the flavohemoglobin-encoding genes 872 

shown in panel B are shown in the phylogenetic tree, as given in the key; double arrows indicate 873 

relocation of the YHB101 gene in subtelomeric position. (B) Chromosomal regions encompassing 874 

the YHB1 gene in Malassezia. Genes are shown as arrows denoting the direction of transcription 875 

and orthologs are represented in the same color. Non-syntenic genes are shown in white, and small 876 

arrows in black represent tRNAs. The YHB1 gene is shown as red arrows outlined in bold in the 877 

center. The end of a scaffold is represented by a forward slash. For M. yamatoensis and M. 878 

slooffiae, yellow bars indicate the absence of the YHB1 gene in otherwise syntenic regions, and 879 

those in green indicate instances where another flavohemoglobin-encoding gene, named YHB101 880 

and represented as orange arrows outlined in bold, was acquired by an independent HGT event. A 881 

defective YHB1 gene in M. nana CBS9557 is denoted by the Greek symbol ψ. Gene codes in red 882 

or blue are as they appear in M. globosa (prefix “MGL_”) or M. sympodialis (prefix “MSYG_”) 883 

genome annotations, respectively, those in black were named based on top BLASTp hits in S. 884 
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cerevisiae, and “hyp” represent hypothetical proteins. Black circle represents the end of a 885 

chromosome. Scaffold/chromosomal locations and accession numbers are given for each region 886 

in Table S1. 887 

 888 

Figure 3. M. sympodialis flavohemoglobins are involved in nitrosative stress resistance and 889 

NO degradation. (A) Stress sensitivity assay of M. sympodialis WT, yhb1Δ mutant, and 890 

complementing strains yhb1Δ + YHB1 and yhb1Δ + YHB101 on mDixon agar supplemented with 891 

the NO-donor agent DETA NONOate and NaNO2, and with hydrogen peroxide. (B) GFP 892 

expression in the M. sympodialis yhb1Δ mutant, and complementing strains yhb1Δ + YHB1 and 893 

yhb1Δ + YHB101, and respective GFP signal analyzed trough FACS. (C) NO consumption assay 894 

by M. sympodialis WT, yhb1Δ mutant, and complementing strains yhb1Δ + YHB1 and yhb1Δ + 895 

YHB101; the blue trace indicates the NO level over a period of 15 min. NO and Malassezia (Y = 896 

yeast) injections are indicated by purple arrows. In this experiment, 10 µL (Y), 20 µL (x 2) and 30 897 

µL (x 3), 40 µL (x 4) and 50 µL (x 5) of Malassezia cellular suspensions were injected. (D) 898 

Representative fluorescent staining of intracellular NO with DAF-FM DA in M. sympodialis WT 899 

and two independent yhb1Δ mutants, and (E-F) quantification of the NO signal by flow cytometry; 900 

spontaneous fluorescence of M. sympodialis was used as background to detect specifically DAF-901 

FM DA signal. Asterisks indicates statistically significant differences (* = p<0.05, ** = p<0.01) 902 

according to the unpaired student’s t-test with Welch’s correction. 903 

 904 

Figure 4. Transcriptomic profile of M. sympodialis strains under NO-accumulation 905 

conditions. (A) MA-plot displaying the transcriptomic changes of the M. sympodialis yhb1Δ 906 

mutant compared to the WT M. sympodialis strain. Red dots indicate differentially expressed genes 907 

for FDR < 0.05. The most upregulated and downregulated genes (MSYG_1280 and MSYG_0901, 908 

respectively) are indicated, along with the YHB1 gene, which represents an internal control as its 909 

downregulation is expected because the gene is deleted. (B) MA-plot displaying the transcriptomic 910 

changes of M. sympodialis WT grown in the presence of NaNO2 compared to the untreated control.  911 

Red dots indicate differentially expressed genes for FDR < 0.05; the most upregulated and 912 

downregulated genes are indicated. (C) Gene ontology classification relative to the RNAseq 913 

condition reported in B. Upregulated genes are indicated in red, and downregulated genes are 914 

indicated in green. (D) Venn diagrams comparison of the upregulated and downregulated genes 915 
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relative to RNAseq conditions reported in A and B; the panel on the right shows a heatmap of the 916 

log2FC of the shared upregulated (red) and downregulated (green) genes. Predicted allergens are 917 

indicated with one asterisk, and two asterisks indicate a predicted secreted lipase.   918 

 919 

Figure 5. 3-dimensional X-ray crystal structure of the M. yamatoensis flavohemoglobin 920 

Yhb101. (A) The globin domain (cyan) binds a heme molecule. The reductase domain consists of 921 

a FAD-binding domain (gray) and a NAD-binding domain (tan) that bind a FAD molecule. (B) 922 

An overlay of flavohemoglobin globin domains from fungus, bacteria, and yeast: globin domains 923 

of M. yamatoensis (PDB ID 6O0A; blue), S. cerevisiae (PDB ID 4G1V; yellow), and E. coli (PDB 924 

ID 1GVH; green) show structural similarity. 925 

 926 

Figure 6. Malassezia genes acquired through HGT from bacteria. HGT candidates identified 927 

in the genomes of the 15 Malassezia species (represented on the top according to their phylogenetic 928 

classification) are shown as different lines in the presence-absence matrix, with the closest 929 

ortholog in S. cerevisiae indicated in parenthesis, where available. For each HGT candidate, the 930 

presence of the gene in a genome is indicated by orange square, and the intensity of the color is 931 

correlated with the gene copy number (numbers in white). HGT candidates occurring in multiple 932 

Malassezia species are shown in the top half of the matrix, whereas those that are species-specific 933 

HGT candidates are shown in the bottom half of the matrix, and color-coded as shown in the key. 934 

Asterisks indicate HGT candidate genes identified in the previous study (3). The bacterially-935 

derived gene encoding an aliphatic amidase identified in M. nana CBS9557 seems to be another 936 

instance of a pseudogene in this strain (indicated as ψ). 937 

 938 

 939 
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Figure 5 1279 
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Figure 6 1297 
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