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Bullet points:

1-We used a single-cell transcriptome atlas of 9 monkey tissues to study COVID-19.
2-ACE2'TMPRSS2" epithelial cells of lung, kidney and liver are targets for SARS-CoV-2.
3-ACE2 correlation analysis shows IDO2 and ANPEP as potential therapeutic opportunities.
4-We unveil a link between IL6, STAT transcription factors and boosted SARS-CoV-2 entry.
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ABSTRACT

Stopping COVID-19 is a priority worldwide. Understanding which cell types are targeted by
SARS-CoV-2 virus, whether interspecies differences exist, and how variations in cell state
influence viral entry is fundamental for accelerating therapeutic and preventative
approaches. In this endeavor, we profiled the transcriptome at single-cell resolution of nine
tissues from a Macaca fascicularis monkey. The distribution of SARS-CoV-2 facilitators, ACE2
and TMRPSS2, in different cell subtypes showed substantial heterogeneity across lung,
kidney, thyroid and liver. Co-expression analysis identified immunomodulatory proteins such
as IDO2 and ANPEP as potential SARS-CoV-2 targets responsible for immune cell exhaustion.
Furthermore, single-cell chromatin accessibility analysis of the kidney unveiled a plausible link
between IL6-mediated innate immune responses aiming to protect tissue and enhanced ACE2
expression that could promote viral entry. Our work constitutes a unique resource for
understanding SARS-CoV-2 pathophysiology in two phylogenetically close species, which

might guide in the development of effective treatments in humans.



65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

INTRODUCTION

As the distance between humans and wild animal habitats diminishes due to uncontrolled
human expansion, a series of zoonotic diseases with high mortality rates have emerged. For
instance, the recent outbreak of Ebola in Africa, which killed over 5,000 people, was most
likely spread from bats and primates to humans (Kock et al., 2019). The current outbreak of
coronavirus disease 2019 (COVID-19) caused by the coronavirus severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) (Zhu et al., 2020) is not the only example of
coronaviruses that have recently passed from animals to humans. Coronaviruses are a family
of RNA viruses that typically cause respiratory tract infections in humans, yet they are
frequently in the reservoir of wild animals with no disease (Cui et al., 2019). For example, the
common cold is often (10-15%) caused by a coronavirus (e.g. HCoV-229E and HCoV-0OC43) (Su
et al., 2016). However, coronaviruses can also lead to severe and life-threatening diseases. In
the early 2000s a coronavirus called SARS-CoV, believed to be passed from bats to humans in
South East Asia, caused more than 700 deaths from around 8,000 confirmed cases worldwide
(Lau et al., 2005). Since 2012, another zoonotic coronavirus which is believed to have passed
from camels to humans in the Middle East was designated as Middle East Respiratory
Syndrome (MERS) (Reusken et al., 2013). To date, there have been over 2,500 confirmed
cases of MERS with over 800 deaths. While SARS appears to have been eradicated, MERS
cases are sporadic and human to human spread is limited (Su et al., 2016).

As of 2™ April 2020, COVID-19 (Zhu et al., 2020) has become a global pandemic with more
than 930,000 confirmed cases and over 47,000 deaths. Due to its high infectivity rate and the
high level of intensive care that many patients need, COVID-19 has overwhelmed national
health services and destabilized the world. One important reason is that many people who
are positive for the virus show mild symptoms (Chan et al., 2020; Rothe et al., 2020), leading
to unnoticed spread of the virus. The current worldwide emergency, possibility of expansion
to less developed countries, risk of virus mutations and the perpetuation beyond this season
has made it imperative to stop the current trajectory of virus spreading. Developing drugs and
preventative vaccines are ongoing but to warrant success it is necessary to have more
knowledge about the disease mechanisms. So far, little is known except for the viral binding
via angiotensin converting enzyme 2 (ACE2) and subsequent priming by type 2

transmembrane serine protease 2 (TMPRSS2) protease, which are shared mechanisms with
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SARS and MERS (Hoffmann et al., 2020; Walls et al., 2020). To test experimental treatments,
animal models close to humans are necessary due to sequence variation of ACE2 and changes
in the proportions of cell subtypes in organs between species. For these reasons, it is essential
to have a species close to human to study COVID-19. In this regard, monkey experiments have
already shown that reinfection of SARS-CoV-2 is preventable by acquired immunity, thus,
largely debunking one of the initial myths about the disease (Bao et al., 2020).

Questions about the proportions of cell types within organs between species and their
crosstalk can be addressed effectively through single-cell profiling technologies, in particular
single-cell RNA sequencing (RNA-seq) and single-cell assay for transposase accessible
chromatin sequencing (ATAC-seq). Yet, although human data are accumulating (Han et al.,
2020), monkey data are still scarce. The comparison between human and monkey data will
be crucial for advancing our knowledge of COVID-19.

Here, we provide a high-resolution single-cell atlas of nine organs/tissues (lung, kidney,
pancreas, brain, parotid, liver, thyroid, aorta artery, and blood) in monkey, encompassing
215,334 cells. By comparing the expression of SARS related targets in monkey and human, we
have identified cell-to-cell similarities as expected. Crucially, we also discovered stark
differences in ACE2 expression between these two species, for example in the ciliated vs
alveolar type 2 cells of the lung and the hepatocytes in liver. We also observed that ACE2 is
heterogeneous among different epithelial cell subtypes across these organs/tissues,
suggesting that variations in cell state could influence viral entry. Supporting this, single-cell
ATAC-seq of monkey kidney identified regulatory elements driven by STAT transcription
factors and interferon regulatory factor (IRF) in the ACE2 locus. This suggests that cytokines,
particularly IL6, aiming to induce a tissue protective response can exacerbate the disease by
aiding viral entry into target cells. Additionally, through correlation analysis with ACE2
expression, we have identified several potential candidates involved in COVID-19
pathophysiology, such as Transmembrane protein 27 (TMEMZ27), Indoleamine 2,3-
dioxygenase 2 (IDO2), Dnal heat shock protein family (Hsp40) member C12 (DNAJC12) and
Alanyl aminopeptidase N (ANPEP). These targets may offer therapeutic opportunities.

Taken together, our data constitute a unique resource which will aid the scientific community
in the fight against SARS-CoV-2. From a wider perspective, this will also be useful for
comparative studies aimed at understanding physiological differences between monkey and

other species, in particular, human.
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RESULTS

Cellular heterogeneity of nine non-human primate tissues assessed by single-cell RNA-seq
We profiled, at the single-cell level, the transcriptome of the model organism cynomolgus
monkey (Macaca fascicularis), as it is phylogenetically close to human and this could help
advance our knowledge of human physiology and disease. As proof of principle, we decided
to use our data to understand how SARS-CoV-2 spreads and triggers the clinical features that
have been lethal in a number of patients. For this study, we used a six-year-old female monkey
in which we profiled nine different organs (indicated in Fig. 1A). These included lung, liver and
kidney as the known affected organs by the closely related SARS-CoV infection (Hamming et
al., 2004), and have been reported to have high ACE2 expression in human (Naicker et al.,
2020). Peripheral blood mononuclear cells (PBMC) were added because altered immune
responses are thought to be detrimental in the disease (Conti et al., 2020). Neocortex was
chosen because of the clinical symptoms which involve loss of smell and taste suggesting that
the central nervous system may be targeted (Bagheri et al., 2020). The parotid gland was
chosen on the basis that saliva is one of the main means of infection spread. Additionally, we
selected aorta, thyroid and pancreas.

We employed a high-throughput platform recently developed in-house, DNBelab C4, which
is a scalable and cost-effective approach for microfluidic droplet-based approach (Liu et al.,
2019). Except for PBMC sequencing, which was performed using cells in suspension, the
sequencing for all the other organs was done using single-nucleus library preparations.
Following euthanasia, the selected organs were extracted, single-nucleus/cell suspensions
were obtained and used for library preparation. A total of 40,226 liver, 45,286 kidney, 36,421
pancreas, 44,355 parotid gland, 12,822 lung, 7,877 thyroid, 6,361 neocortex, 2,260 aorta and
19,726 nuclei/PBMC passed quality control and were used for downstream analysis
(Supplemental table 1, Fig. S1A, B).

In a global view of our single-cell dataset, each organ clustered separately, with the exception
of a few cell types such as macrophages, adipocytes and endothelial cells, which were shared
between different organs (Fig. 1B). We performed Uniform Manifold Approximation and
Projection (UMAP) on the 215,334 cells and identified 44 major clusters by performing
unbiased graph-based Louvain clustering (Supplemental table 1). Some clusters were largely

composed of cells belonging to a specific tissue, such as hepatocytes in cluster 14, pancreas
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acinar cells in cluster 27 and parotid acinar cells in cluster 31 (Fig. 1C, S1C). We next
performed clustering and differential gene expression analysis to dissect the cellular
composition of each individual organ. This analysis confirmed the typical patterns of cell
heterogeneity for all the organs/tissues. When examining the lung tissue, we defined 10
major clusters with specific molecular markers, including ciliated cells, macrophages,
fibroblasts, pericytes, alveolar (pneumocytes) type 1 and type 2, endothelial and club cells
(Fig. S2A). The kidney consisted of 11 clusters, those being podocytes, thick ascending limb
cell, proximal tubule cells, intercalated cells 1 and 2, connecting tubule cells, distal convoluted
tubule cells, stomal cells, thin limb cells, principal cells and endothelial cells (Fig. $2B). Analysis
of liver tissue revealed hepatocytes to be the larger population of cells, while other clusters
consisted of cholangiocytes, macrophages (Kupffer cells), natural killer-T (NK-T) cells,
endothelial cells and hepatic stellate cells (Fig. S2C). In agreement with previous data,
inspection of PBMC clustering revealed large populations of B cells, CD4", CD8" naive and CD8"
memory T cells, together with smaller populations of natural killer (NK) cells, dendritic cells,
CD16" and CD14" monocytes (Fig. S2D). We clustered the neocortex and found excitatory
neurons, astrocytes, microglia, parvalbumin (PVALB), somatostatin-expressing neurons (SST),
synaptic vesicle glycoprotein-expressing cells (SV2C), vasoactive intestinal polypeptide-
expressing neurons (VIP), oligodendrocytes and oligodendrocyte precursor cells (Fig S2E).
Parotid gland instead was composed of a large cluster of serous acinar cells together with
small clusters of macrophages, myoepithelial cells, striated duct cells, mucous acinar cells and
intercalated duct cells (Fig. S2F). Aorta cells could be further divided into adipocytes,
endothelial cells, myofibroblasts and a large proportion of smooth muscle cells (Fig. S2G). Our
clustering also demonstrated that most of the thyroid gland is composed of follicular cells,
with smaller populations of adipocytes, endothelial cells, stromal and smooth muscle cells
(Fig. S2H). Finally, our data showed the largest population of the pancreas to be acinar cells,
while smaller clusters were comprised of macrophages, ductal, alpha and beta cells (Fig. S2lI).
In conclusion, we have successfully profiled the transcriptome of nine organs at a single-cell

resolution in monkey, which could assist in the study of COVID-19.

ACE2 and TMPRSS2 single-cell expression landscape in a non-human primate
Recent studies have reported that, similarly to SARS-CoV, the capacity of SARS-CoV-2 virus to

infect host cells relies on viral spike (S) protein binding to ACE2 entry receptor (Hoffmann et
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al., 2020; Walls et al., 2020), which is involved in the control of blood pressure through the
renin-angiotensin system (Turner et al., 2004). This phenomenon is primed by the
multifunction serine protease TMPRSS2 (Kim et al., 2006). Accordingly, double positive
(ACE2"/TMPRSS2*) cells have a higher risk of infection by SARS-CoV-2. Although
immunohistological studies have demonstrated localization of these two proteins in the
respiratory tract (Jia et al., 2005), it is unclear how many cell subtypes express these genes
and how homogenous the expression among a specific cell subtype is. Also, comprehensive
information about other cell types and organs that express these two proteins and could be
targeted by the virus in human or monkey is lacking.

We inspected our data to see how widespread and homogenous ACE2 expression was in the
monkey tissues. As expected, ACE2 was detected in several lung clusters, such as ciliated cells,
club cells and pulmonary alveolar type 2 cells (Fig. 2A, 3A upper panel). In the kidney, ACE2
was primarily present in proximal tubule cells, though interestingly, the expression was
heterogenous (Fig. 2A, 3B upper panel). This is consistent with reports that a significant
number of COVID-19 patients display altered kidney function (Li et al., 2020; Naicker et al.,
2020). In the liver, ACE2 was mostly expressed in cholangiocytes, with a smaller degree of
expression also found in hepatocytes (Fig. 2A, 3C upper panel). Notably, the closely related
SARS-CoV caused liver injury due to hepatitis in some patients (Peiris et al., 2003), suggesting
that the liver may also be a direct target for SARS-CoV-2. Likewise, ACE2 was detected in
follicular cells within the thyroid tissue (Fig. S3). In contrast, little or no expression was
observed in neocortex, pancreas, parotid and PBMC (Fig. 2A, S3A).

On the other hand, TMPRSS2 displayed widespread expression across multiple tissues,
although it was highest in kidney cells. However, in contrast to ACE2, its expression was
highest in the distal convoluted tubule, thin limb, intercalated and principal cell 1 and 2 kidney
clusters (Fig. 2B, 3B lower panel, S3B). Additionally, significant TMPRSS2 was observed in
both parotid and pancreatic acinar cells, follicular cells and in several lung clusters (Fig. 2B).
We then determined which cells co-expressed both genes (ACE2*/TMPRSS2"). The largest
overlap was observed in the ciliated and club cell clusters of the lung and the proximal tubule
cells of the kidney. A smaller overlap was observed in hepatocytes and pancreatic cells (Fig.
2C, 2E, 3A lower panel, 3C lower panel).

Therefore, our data show that ACE2 and TMPRSS2 are expressed in a variety of cell types,

mainly epithelial cells, within the nine monkey organs/tissues (Supplemental table 2A). They
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also suggest that variations in cell state (e.g. differentiation state, stimulation state or
topographical distribution) cause heterogenous expression across an individual tissue. These
observations may provide important clues about COVID-19 pathogenesis and

symptomatology.

Comparative analysis of ACE2 and TMPRSS2 expression in human and non-human primate
Given the heterogeneous nature of ACE2 and TMPRSS2 expression in monkey tissues, we
decided to investigate similarities and differences between human and monkey. For this
purpose, we retrieved publicly available data from single-cell studies in human (see methods).
TMPRSS2 distribution was similar in cell subtypes of lung, kidney and liver between human
and monkey (Fig. 3D-3F). However, strikingly, ACE2 showed distinct patterns among cell
subtypes in all three organs between the two species (Fig. 3D-3F). The biggest differences
were observed in ciliated cells of the lung, which had the highest expression of ACE2 in
monkey, and pulmonary alveolar type 2 cells, which had the highest expression of ACE2 in
human. The function of ciliated cells is to move substances (e.g. cell debris and toxic material)
across the surface of the respiratory tract and are commonly targeted by respiratory viruses,
whereas pulmonary alveolar type 2 cells have regenerative properties, are crucial for alveolar
homeostasis and produce surfactant (Hamm et al., 1992; Mason and Williams, 1977). In the
kidney of both monkey and human, the highest ACE2 expression was in proximal tubule cells
(Fig. 3E), which are responsible for electrolyte and nutrient reabsorption. However, renal
endothelial cells had higher expression in monkey compared to human. In liver,
cholangiocytes had similarly high ACE2 expression in monkey and human, but hepatocytes
showed higher expression and more positive cells in the human (Fig. 3F). After discovering
heterogenous expression of ACE2 within the proximal tubule cells, we revisited the previously
analyzed data and were able to sub cluster this population of cells into two (S1 and S3) based
on the expression of SLC5A2 and SLC7A13 (Lee et al., 2015) (Supplemental table 2B, Fig. S4).
These two genes are sodium and glucose cotransporters involved in glucose reabsorption in
the kidney (Santer and Calado, 2010; Yu et al., 2011). We did not include thyroid, pancreas or
aorta in these analyses because of lack of high-quality available human single-cell datasets.
As for the neocortex and PBMC, they have little to no expression of ACE2 in human (data not

shown).
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These differences in ACE2 expression across cell subtypes in the lung, kidney and liver in
monkey and human raise the possibility that infection with SARS-CoV-2 in the two species will

have different effects.

ACE2 correlation analysis across cell types reveals potentially therapeutic targets

To shed light on potential mechanisms that could facilitate ACE2-mediated SARS-CoV-2
infection, we performed an analysis of the Pearson’s correlation coefficient, based on gene
expression in the 44 cell subtypes, to determine what genes are co-regulated with ACE2 in
monkey tissues. Correlated genes were considered as those displaying a coefficient higher
than 0.6 with an adjusted p-value < 0.001. Using these criteria, we observed several genes
with marked correlation, including genes that belong to metabolic and developmental
pathways and genes involved in the cellular response to xenobiotic stimuli (Fig. 4A, B). The
highest correlation was observed for transmembrane protein 27 (TMEMZ27, cor = 0.84), a
protein involved in trafficking amino acid transporters to the apical brush border of kidney
proximal tubules (Chu et al., 2017). This is unsurprising considering that TMEMZ27 is an
important paralog of ACE2, and high expression was restricted to kidney cells. Dnal heat shock
protein family (Hsp40) member C12 (DNAJC12, cor = 0.78), a gene with a role in immune
response processes (Sigdel et al., 2013), had a distribution like TMEM27. Importantly, we also
observed high correlation with Indoleamine 2,3-dioxygenase 2 (IDO2, cor = 0.77), a gene with
abundant expression in kidney and liver cells that was also expressed in the lung and other
organs. IDO2 has been shown to function during the early phases of immune responses and
to mediate inflammatory autoimmunity (Ball et al., 2009; Lepiller et al., 2015). ANPEP, which
encodes for alanyl aminopeptidase N, was also co-expressed with ACE2 in kidney, liver and to
a lesser extent in lung too (cor = 0.64), like IDO2 (Fig. 4C, D). Interestingly, ANPEP has also
been shown to be participate in immune responses, virus receptor activity and in mediating
virus entry into host cells (Delmas et al., 1992; Wentworth and Holmes, 2001).

These data highlight potential therapeutic targets to help in the fight against SARS-CoV-2. Due
to their potential co-regulation with ACE2, DNAJC12 and ANPEP it is possible that they
modulate, or are directly involved in viral entry. Alternatively, depletion of cells expressing
IDO2 and ANPEP, through a cytopathic effect of the virus, could trigger an uncontrolled
immune response and contribute to the immune cell exhaustion observed in COVID-19 (Guo

et al., 2020).
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Epigenetic regulation of ACE2 in each cell subtype of the monkey kidney

To understand whether epigenetic mechanisms underlie the heterogeneity of cellular
composition and cell state variation in the kidney, we employed DNBelab C4 technology to
perform high-throughput single-cell ATAC-seq (Fig. 5A). After filtering, 6,353 nuclei were used
for downstream analysis (Supplemental table 4, Fig. S5A, B). We integrated these data with
the kidney transcriptomic data described in Fig. 1 and proceeded to perform Louvain
clustering to map all the different cell types within the dataset (Fig. 5B). Consistent with the
transcriptomic data, our epigenomic mapping identified thick ascending limb cells and
proximal tubule cells as the largest kidney clusters (Fig. S2B). Similarly, smaller clusters of
podocytes, principal, intercalated, connected tubule, distal convoluted tubule, thin limb,
endothelial and stromal cells were detected (Fig. 5C, S5C). Analysis of open chromatin regions
revealed discrete peaks in the ACE2 locus, with the highest signal detected in proximal tubule
cells S1 and S3, which are also the highest ACE2-expressing cells (Fig. 5D). Our approach failed
to detect significant signal enrichment in the ACE2 locus in endothelial cells, possibly related
to the low level of expression (Fig. 5D). Within the cells of the kidney we observed the highest
percentage of ACE2" cells in the proximal tubule S3, with a lower percentage in the proximal
tubule S1 and endothelial cells (Fig. 5E). Motif analysis within the open chromatin regions in
ACE2" cells demonstrated that these regions were preferentially enriched in signal transducer
and activator of transcription 1 and 3 (STAT1 and 3) and interferon regulatory factor 1 (IRF1)
binding sites (Fig. 5F). These findings suggested that tissue protective cytokines including IL5,
IL6, EGF and interferons are acting on these proximal tubule cells S3 to induce ACE2. We
focused on IL6 because a recent clinical trial has been started that uses anti-IL6 receptor (IL6R)
antibodies in the treatment of COVID-19
(http://www.chictr.org.cn/showprojen.aspx?proj=49409). IL6 is a potent regulator of
immune responses and can be produced by a variety of interstitial cells including fibroblasts,
endothelial cells and more importantly tissue macrophages (Heinrich et al., 1990).
Interestingly, we also noticed that distribution of IL6R correlated well with ACE2 in proximal
tubule cells (Fig. 5G, Supplemental Fig. S5D). In human kidney a similar co-expression pattern
was detected (Fig. 5H).

Our observations suggest a potential positive feedback loop between IL6 and ACE2 expression
that can exacerbate COVID-19 disease progression due to increased viral entry and

dissemination.
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DISCUSSION

Mammalian tissues and organs are composed of many different cell types that can vary in
abundance and cell state. Tissue heterogeneity is only beginning to be unraveled thanks to
the advent of single-cell profiling technologies that allow us to precisely map transcriptomic
and epigenomic programs. These technologies are revolutionizing our view of human
physiology and disease. Great efforts are being made to generate the first version of both
human and murine atlases (Han et al., 2018; Han et al., 2020); the mouse is among the most
commonly used model organisms in biomedical research, but many developmental or
pathological aspects are not paralleled in human. Understanding tissue and organ complexity
in species that are phylogenetically close to humans is an unmet requirement.

In this study, we have generated a single-cell transcriptomic atlas of nine organs (liver, kidney,
lung, pancreas, neocortex, aorta, parotic gland, thyroid and peripheral blood) from
cynomolgus monkey. We used this dataset not only to provide fundamental information
about the cellular composition of the different tissues tested but also as a platform to dissect
the overall expression distribution of the SARS-CoV-2 entry receptor, ACE2, and its serine
protease coactivator TMPRSS2 (Hoffmann et al., 2020; Walls et al., 2020). Interestingly, ACE2
was expressed in multiple epithelial tissues besides the lung, specifically the kidney, liver and
thyroid. Other organs of epithelial origin such as the gut have also been implicated in the
pathogenesis of the disease (Ong et al., 2020). A consequence of this is that the SARS2-CoV-
2 virus could infect these organs too, which would explain some of the reported clinical
manifestations of COVID-19 (Zhu et al.,, 2020). By comparing our dataset with publicly
available human single-cell RNA-seq data, we have also uncovered significant differences
between human and monkey. We showed different expression patterns for ACE2 in the lung,
where the highest levels were detected in ciliated cells in monkey and pulmonary alveolar
type 2 cells in human. Similarly, we observed marked differences in liver, in which monkey
hepatocytes displayed higher ACE2 and a larger number of positive cells compared to the
human. We do not know whether these differences will affect the pathogenesis of COVID-19
between these two species. Nevertheless, this is a relevant finding considering that monkeys
are a preferred model for studying the effectiveness of drug treatments and of vaccines

against the impending COVID-19 pandemic.
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Through correlation analysis, we identified new potential mechanisms that could facilitate
ACE2-mediated viral infection, including genes previously unreported in the context of SARS-
CoV-2 that are involved in stimulating different types of immune responses. We observed
high expression of IDO2 and ANPEP in kidney, liver and lung. Expression of these can be
further induced by viral infection and have been reported to be immune modulators and/or
mediate viral entry (Ball et al., 2009; Delmas et al., 1992). These observations are relevant as
they highlight new potential therapeutic vulnerabilities in the current emergency. In this
respect, a number of inhibitors of ANPEP are currently being developed and could serve to
prevent the immune cell exhaustion often observed in many severe COVID-19 cases (Zheng
et al., 2020). Similarly, mesenchymal stem/stroma cells (MSC) have immunomodulatory
functions that are partly related to IDO2 production (Ball et al., 2009). It is tempting to
speculate that cell therapies based on MSC could ameliorate COVID-19 by normalizing
immune function and preventing cytokine storms (Wilson et al., 2015).

Intriguingly, in our data, we see heterogenous expression of ACE2 within the individual cell
subtypes in six out of the nine monkey organs that we analyzed, which is also observed in the
three human organs analyzed. Interestingly, we noticed two different cell populations in the
kidney proximal tubule, one with higher ACE2 expression than the other. We performed
single-cell ATAC-seq of this organ to understand whether this phenomenon has an epigenetic
basis. Analysis of open chromatin regions within the ACE2 locus revealed the enrichment of
STAT1, STAT3 and IRF1 binding sites. These transcription factors have important immune
functions and are direct targets of tissue protective and innate immune responses such as
interleukin-6 signaling pathway and interferons. Analysis of IL6R distribution showed broad
expression within different the ACE2" organs in monkey and human. This suggests a link
between paracrine IL6 (e.g. secreted by stromal cells including tissue resident macrophages)
and enhanced ACE2 expression across different organs. Higher and more widespread ACE2
expression could promote increased viral entry. This observation could be of the utmost
importance given recent reports describing clinical trials with Tocilizumab, a monoclonal
antibody used for IL6R blockade in patients with rheumatoid arthritis (Villiger et al., 2016), for
the treatment of COVID-19 (http://www.chictr.org.cn/showprojen.aspx?proj=49409). IL6 has
been related to aging and tissue damage (Mosteiro et al., 2018), and this may explain why
elderly individuals and those with underlying inflammatory conditions have more severe

reactions to SARS-CoV-2 infection (Fig. 6). Importantly, high IL6 levels have been detected in
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plasma from COVID-19 patients (Wan et al., 2020). The proposed enhanced affinity of SARS-
CoV-2 for ACE2 compared to SARS-CoV may underlie the differences in the clinical course
between the two diseases (Shang et al., 2020).

All these observations revealed new potential mechanisms for COVID-19, opening new
therapeutic avenues for disease management. However, caution should be exercised when

making decisions before additional experimental validation becomes available.
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METHODS

Ethics statement
This study was approved by the Institutional Review Board on Ethics Committee of BGI

(permit no. BGI-IRB19125).

Collection of monkey tissues

A 6-year old female cynomolgus monkey was purchased from Huazhen Laboratory Animal
Breeding Centre (Guangzhou, China). The monkey was anesthetized with ketamine
hydrochloride (10 mg/kg) and barbiturate (40 mg/kg) administration before being euthanized
by exsanguination. Tissues were isolated and placed on the ice-cold board for dissection.
Whole organs including lung, kidney, pancreas, liver, brain, thyroid, parotid gland, and aorta
were cut into 5-10 pieces, respectively (50-200 mg/piece). Samples were then quickly frozen
in liquid nitrogen and stored until nuclear extraction was performed. PBMC were isolated
from heparinized venous blood using a LymphoprepT'VI medium (STEMCELL Technologies,
#07851) according to standard density gradient centrifugation methods. PBMC were
resuspended in 90% FBS, 10% DMSO (Sigma Aldrich, #D2650) freezing media and frozen using
a Nalgene® Mr. Frosty® Cryo 1°C Freezing Container (Thermo Fisher Scientific, #5100-0001)
in a -80°C freezer for 24 hours before being transferred to liquid nitrogen for long-term

storage.

Single-nucleus/cell suspension preparation

We isolated nuclei as previously described (Bakken et al., 2018). Briefly, tissues were thawed,
minced and added to lysis buffer. Lysates were filtered and resuspended in cell resuspension
buffer. Frozen PBMC vials were rapidly thawed in a 37°C water bath for ~2 minutes, then
guenched with 10 ml 37°C pre-warmed 1X phosphate-buffered saline (PBS, Thermo
Fisher Scientific, #10010031) supplemented with 10% FBS. PBMCs were centrifuged at 500
R.C.F. for 5 minutes at room temperature. The supernatant was removed, and the cell
pellet was resuspended in 3 ml 37°C pre-warmed 1X PBS containing 0.04% bovine serum
albumin (BSA, Sangon Biotech, A600903), passed through a 40 um cell strainer (Falcon,

#352340) and then centrifuged at 500 R.C.F. for 5 minutes at room temperature. Nuclei or
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cells were resuspended with cell resuspension buffer at a concentration of 1,000 cells/ul for

single-cell library preparation.

Single-nucleus/cell sequencing

The DNBelab C Series Single-Cell Library Prep Set (MGI, #1000021082) was utilized as
previously described (Liu et al. 2019). In brief, single-nucleus/cell suspensions were used for
droplet generation, emulsion breakage, beads collection, reverse transcription, and cDNA
amplification to generate barcoded libraries. Indexed single-cell RNA-seq libraries were
constructed according to the manufacturer’s protocol. The sequencing libraries were
guantified by Qubit™ ssDNA Assay Kit (Thermo Fisher Scientific, #Q10212). Single-cell ATAC-
seq libraries were prepared using DNBelab C4 Single-Cell ATAC-seq Library Prep Set (MGlI).
DNA nanoballs (DNBs) were loaded into the patterned Nano arrays and sequenced on the
ultra-high-throughput DIPSEQ T1 sequencer using the following read length: 30 bp for read 1,
inclusive of 10 bp cell barcode 1, 10 bp cell barcode 2 and 10 bp unique molecular identifier

(UMI), 100 bp of transcript sequence for read 2, and 10 bp for sample index.

Single-cell RNA-seq data processing
Raw sequencing reads from DIPSEQ-T1 were filtered and demultiplexed using PISA (version

0.2) (https://github.com/shiquan/PISA). Reads were aligned to Macaca_fascicularis_5.0

genome using STAR (version 2.7.4a) (Dobin et al., 2013) and sorted by sambamba (version

0.7.0) (Tarasov et al., 2015). Cell versus gene UMI count matrix was generated with PISA.

Cell clustering and identification of cell types

Clustering analysis of the complete cynomolgus monkey tissue dataset was performed using
Scanpy (version 1.4) (Wolf et al., 2018) in a Python environment. Parameters used in each
function were manually curated to portray the optimal clustering of cells. In preprocessing,
cells or nuclei were filtered based on the criteria of expressing a minimum of 200 genes and
a gene which is expressed by a minimum of 3 cells or nuclei. Filtered data were In (counts per
million (CPM)/100 + 1) transformed. 3000 highly variable genes were selected according to
their average expression and dispersion. The number of UMI and the percentage of
mitochondrial gene content were regressed out and each gene was scaled by default options.

Dimension reduction starts with principal component analysis (PCA), and the number of
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principal components used for UMAP depends on the importance of embeddings. The
Louvain method is then used to detect subgroups of cells. Distinguishing differential genes
among clusters were ranked (Benjamini-Hochberg, Wilcoxon rank-sum test). Cell types were
manually and iteratively assigned based on overlap of literature, curated and statistically
ranked genes.

Each tissue dataset was portrayed using the Seurat package (version 3.1.1) (Stuart et al., 2019)
in R environment by default parameters for filtering, data normalization, dimensionality
reduction, clustering, and gene differential expression analysis. Finally, we annotated each
cell type by extensive literature reading and searching for the specific gene expression

pattern.

Gene correlation and Gene Ontology (GO) term enrichment analysis

The correlation between ACE2 and other genes was drawn using Pearson correlation
coefficient (PCC) with gene expression value merged from cells of the same cell types with
the R package psych (version 1.9.12.31). To infer the biological function of highly correlated
genes (cor > 0.6 and adjusted P value < 0.001), we performed gene set enrichment analysis

using Metascape (https://metascape.org/gp/index.html).

Differential gene expression analysis
Differential expression analysis between proximal tubule S1 and proximal tubule S3 was

performed using the FindMarkers function of the Seurat package (version 3.1.1).

Single-cell ATAC-seq data processing
Raw sequencing reads from DIPSEQ-T1 were filtered and demultiplexed using PISA (version

0.2) (https://github.com/shiquan/PISA). Peak calling was performed using MACS2 (version

2.1.2) (Feng et al., 2012) with options -f BAM -B -q 0.01 —-nomodel. The cell versus peak reads
count matrix was generated by custom script. To create a gene activity matrix, we extracted
gene coordinates for cynomolgus monkey from NCBI, and extended them to +2 kb region

around TSS. The gene activity score matrix was calculated by custom script.

Single-cell ATAC-seq cell clustering and cell type identification
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Cells with low fragments (<1000) and TSS proportion (<0.1) were removed. Then, filtered data
were imported into R and the dimensionality was reduced by latent semantic indexing.
Anchors between single-cell ATAC-seq and single-cell RNA-seq datasets were identified and
used to transfer cell type labels identified from the single-cell RNA-seq data. We embedded
the single-cell ATAC-seq and single-cell RNA-seq cells by the TransferData function of Seurat

(version 3.1.1).

Transcription factor motif enrichment analysis

To predict the motif footprint in peaks within the ACE2 promoter, we extracted genome
sequences in the peak region with Segkit (version 0.7.0) (Shen et al., 2016). The sequences
were imported into R and were matched with all Homo sapiens motifs form JASPAR2018 using

matchMotifs function in motifmatchr packages version 1.8.0 with default parameter.

Human single-cell RNA-seq datasets
All human single-cell RNA-seq data matrix were obtained from publicly available dataset as
described: (1) Kidney data from Stewart et al. was download from

https://www.kidneycellatlas.org/ (Stewart et al., 2019); (2) Lung data from Madissoon et al.

was download from https://www.tissuestabilitycellatlas.org/ (Madissoon et al., 2019); (3)

Liver data from Aizarani et al. was download from GEO at accession GSE124395 (Aizarani et

al., 2019).

Code availability
Computer code used for processing the single-cell RNA-seq and single-cell ATAC-seq will be

available upon request.

Data availability
All raw data have been deposited to CNGB Nucleotide Sequence Archive and the accession

number will be available upon request.
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FIGURE LEGENDS

Figure 1. Construction of single-cell atlas across nine tissues of a Macaca fascicularis
monkey

(A) Schematic representation of selected monkey tissues used in this study and description
of experimental pipeline for the single-cell sequencing.

(B) UMAP visualization of all single cells from the dataset colored by tissue/organ (left) and
number of cells from each tissue passing quality control (right).

(C) UMAP visualization of each cell type colored according to 44 clusters in the first round of
clustering. Cell type annotation is provided in the figure and is associated with a number

indicative of every cluster. n = 215,334 individual nuclei/cells.

Figure 2. ACE2 and TMPRSS2 expression across 44 cell clusters in monkey

(A-B) UMAP projection of ACE2 (A) and TMPRSS2 (B) expression in all single cells within our
dataset.

(C) UMAP projection of ACE2*/TMPRSS2" cells.

(D) Barplot indicating the percentage of ACE2 and TMPRSS2 expressing cells within each cell
cluster.

(E) Bubble plots showing the level of expression of TMPRSS2 and ACE2 genes and the ratio of
expressing cells in the indicated cell types. The color of each bubble represents the level of

expression and the size indicates the proportion of expressing cells.

Figure 3. Comparative analysis of ACE2 and TMPRSS2 expression between monkey and
human

(A-C) UMAP projection of ACE2 (top) and TMPRSS2 (bottom) expression in single cells of
monkey lung (A), kidney (B) and liver tissues (C). The red arrow in this panel indicates
cholangiocytes. The color of the cells reflects the expression level as indicated in the scale
bar. (D-F) Bubble plots showing the ratio and expression of ACE2 and TMPRSS2 in the
indicated cell types of lung (D), kidney (E) and liver (F) in monkey and human. The color of
each bubble represents the level of expression and the size indicates the proportion of

expressing cells.
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Figure 4. Co-expression analysis of ACE2

(A) Volcano plot of correlation coefficients (Pearson r®) from association tests between ACE2
and other individual genes. The correlation coefficient for every gene (x-axis) versus the
adjusted P-value (using Benjamini-Hochberg correction; y-axis). The genes indicated in the
plot are those with a correlation score > 0.6 and an adjusted P-value < 0.001.

(B) Gene ontology analysis of genes that show high expression correlation with ACE2.

(C) Scatter plots showing the association between ACE2 and the indicated genes. The
correlation coefficients (Pearson r?) and adjusted P-values are shown in the plots.

(D) UMAP projection of expression of the indicated genes in all single cells.

Figure 5. Chromatin accessibility analysis reveals epigenetic regulation of ACE2 in kidney
(A) Schematic of experimental design for single-cell ATAC-seq of monkey.

(B) Joint UMAP visualization of kidney single-cell ATAC-seq data with single-cell RNA-seq data.
(C) UMAP visualization of single-cell ATAC-seq data.

(D) IGV visualization of aggregate single-cell ATAC-seq signal in each cell type.

(E) Ratio of ACE" cells in each cell type of kidney.

(F) The transcription factor motifs predicted based on DNA sequence within those regions of
the ACE2 locus.

(G-H) UMAP projection of IL6R expression and cells with IL6R*/ACE2" cells in all kidney single

cell in monkey (G) and human (H).

Figure 6. Proposed molecular mechanism for SARS-Cov-2 pathogenesis through reinforced
IL6-mediated immune response in monkey and humans.

Schematic representation of potential mechanism of SARS-CoV-2 spreading through lung,
kidney and liver. Kidney proximal tubule cells within the nephron have the highest expression
of ACE2 receptor which facilitates virus entry. After virus contact, IL6R stimulates an immune
response that, through the activation of STATs factors, potentiates the paracrine positive
feedback loop that facilitates virus spreading. IL6 expression, which is higher in elderly
patients and those with inflammatory conditions, is effectively targeted by anti-IL6R

monoclonal antibodies leading to a more favourable disease course.
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SUPPLEMENTAL FIGURE LEGENDS

Supplemental Figure 1. Quality control of the single-cell RNA-seq libraries

(A) Violin plot showing the number of unique molecular identifiers (UMlIs) identified in each
tissue.

(B) Violin plot showing the number of genes identified in each organ. (C) Heatmap showing

the expression of marker genes of the indicated cell type

Supplemental Figure 2. Various cell types identified in each tissue
(A-1) UMAP visualization of cell clusters in lung (A), kidney (B), liver (C), PBMC (D), neocortex
(E), parotid (F), aorta (G), thyroid (H) and pancreas (l). The name of the population

corresponding to each cell cluster is indicated in every plot.

Supplemental Figure 3. ACE2 and TMPRSS2 expression in each tissue
(A-B) UMAP Projection of ACE2 (A) and TMPRSS2 (B) expression in each tissue.

Supplemental Figure 4. Specific accessible chromatin in each cluster of kidney

(A) UMAP visualization of single cells from the kidney tissue, colored by cell types.

(B) Volcano plot showing the differentially expressed genes between proximal tubule S1 and
proximal tubule S3 cells. Examples of highly variable genes are indicated.

(C) UMAP projection of expression for the indicated genes in all single cells.

(D) The structure and specific gene expression in kidney tubules. The specific genes and ACE2

expression level for proximal tubule S1 and proximal tubule S3 cells are indicated.

Supplemental Figure 5. Accessible chromatin analysis in each cluster of kidney

(A) Number of fragments captured in all cells of the two single-cell ATAC-seq libraries.
(B) Proportion of TSS fragments in all cells of the two single-cell ATAC-seq libraries.
(C) IGV visualization of specific accessible chromatin in each cell type.

(D) UMAP projection of ACE2 expression in human kidney.
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