

1 **A phylogenomic perspective on gene tree conflict and character evolution in**
2 **Caprifoliaceae using target enrichment data, with Zabelioideae recognized as a**
3 **new subfamily**

4

5

6 Hong-Xin Wang^{a, #}, Diego F. Morales-Briones^{b, #}, Michael J. Moore^c, Jun Wen^d,
7 Hua-Feng Wang^{a*}

8

9

10

11 ^a *Key Laboratory of Tropical Biological Resources of Ministry of Education, College of*
12 *Tropical Crops, Hainan University, Haikou 570228, China*

13 ^b *Department of Plant and Microbial Biology, College of Biological Sciences,*
14 *University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul,*
15 *MN 55108, USA*

16 ^c *Department of Biology, Oberlin College, Oberlin, OH44074, USA*

17 ^d *Department of Botany, National Museum of Natural History, MRC-166, Smithsonian*
18 *Institution, PO Box 37012, Washington, DC 20013-7012, USA*

19

20

21

22 *Authors for correspondence:

23 Hua-Feng Wang, E-mail: hfwang@hainanu.edu.cn

24 [#] Authors contributed equally to this study.

25

26

27 **Abstract**

28 The use of diverse datasets in phylogenetic studies aiming for understanding
29 evolutionary histories of species can yield conflicting inference. Phylogenetic conflicts
30 observed in animal and plant systems have often been explained by hybridization,
31 incomplete lineage sorting (ILS), or horizontal gene transfer. Here, we employed target
32 enrichment data, species tree and species network approaches to infer the backbone
33 phylogeny of the family Caprifoliaceae, while distinguishing among sources of
34 incongruence. We used 713 nuclear loci and 46 complete plastome sequence data from
35 43 samples representing 38 species from all major clades to reconstruct the phylogeny
36 of the family using concatenation and coalescence approaches. We found significant
37 nuclear gene tree conflict as well as cytonuclear discordance. Additionally, coalescent
38 simulations and phylogenetic species network analyses suggested putative ancient
39 hybridization among subfamilies of Caprifoliaceae, which seems to be the main source
40 of phylogenetic discordance. Ancestral state reconstruction of six morphological
41 characters revealed some homoplasy for each character examined. By dating the
42 branching events, we inferred the origin of Caprifoliaceae at approximately 66.65 Ma
43 in the late Cretaceous. By integrating evidence from molecular phylogeny, divergence
44 times, and morphology, we herein recognize Zabelioideae as a new subfamily in
45 Caprifoliaceae. This work shows the necessity of using a combination of multiple
46 approaches to identify the sources of gene tree discordance. Our study also highlights
47 the importance of using data from both nuclear and chloroplast genomes to reconstruct
48 deep and shallow phylogenies of plants.

49

50 **Keywords:** Caprifoliaceae; Hybridization; Introgression, Phylogenetic networks,
51 *Zabelia*; Zabelioideae.

52

53

54 **1 Introduction**

55

56 Gene tree discordance is a ubiquitous feature of phylogenomic data sets (Galtier and
57 Daubin, 2008; Degnan and Rosenberg, 2009; Szöllösi et al., 2015; Sun et al., 2015; Lin
58 et al., 2019). Many studies have shown that incomplete lineage sorting (ILS),
59 hybridization, and other processes such as horizontal gene transfer, gene duplication, or
60 recombination, may be contributing to discordance among gene trees (Degnan and
61 Rosenberg, 2009; Linder and Naciri, 2015). Among these potential sources of
62 discordance, hybridization has been especially important in plant systematics research
63 (e.g., Morales-Briones et al., 2018; Lee-Yaw et al., 2019; Stull et al., 2020;
64 Morales-Briones et al., 2021). Hybridization may be expected to be prevalent in rapidly
65 radiating groups, which is increasingly recognized as a major force in evolutionary
66 biology, in many cases leading to new species and lineages (Mallet, 2007; Abbott et al.,
67 2010; Yakimowski and Rieseberg, 2014; Konowalik et al., 2015). ILS is one of the
68 prime sources of gene tree discordance, which has attracted increasing attention in the
69 past decades as phylogenetic reconstruction methods allowed its modeling (Edwards
70 2009; Liu et al., 2015). Despite that, distinguishing ILS from hybridization is still
71 challenging (Linder and Naciri, 2015). More recently, methods to estimate
72 phylogenetic networks that account simultaneously for ILS and hybridization have
73 been developed (Solís-Lemus and Ané, 2016; Wen et al., 2018). At the same time,
74 empirical studies using phylogenetic networks to identify the sources gene tree
75 discordance are increasing (e.g., Morales-Briones et al., 2018, 2021; Widholm et al.,
76 2019; Feng et al., 2020).

77 Caprifoliaceae is a medium-sized family with about 960 plant species belonging
78 to 41 extant genera that are mainly distributed in eastern Asia and eastern North
79 America (Donoghue et al., 2001; Bell, 2004; Wang et al., 2020; Xiang et al., 2020).
80 The family has long been the focus of phylogenetic studies of character evolution,
81 especially regarding its tremendous diversity in reproductive structures (Backlund,
82 1996; Donoghue et al., 2003). Caprifoliaceae has five corolla lobes and five stamens as
83 ancestral states, which are retained in Diervilleae C.A.Mey., *Heptacodium* Rehd., and

84 Caprifolieae (though in some *Symporicarpos* Duhamel and *Lonicera* L. there are four
85 corolla lobes and four stamens). However, for other genera, the number of stamens is
86 reduced to four or even one. Caprifoliaceae shows even greater variation in fruit types
87 (e.g., achene in *Abelia* R. Br., berry in *Lonicera*, and capsule in *Weigela* Thunb.;
88 Manchester & Donoghue, 1995; Donoghue et al., 2003). Some genera possess highly
89 specialized morphological characters (e.g., the spiny leaves of *Acanthocalyx* (DC.)
90 Tiegh., *Morina* L. and *Dipsacus* L.) that have likely played key roles in lineage-specific
91 adaptive radiation (Blackmore and Cannon, 1983; Caputo and Cozzolino, 1994;
92 Donoghue et al., 2003) (Fig. 1).

93 Circumscriptions of Caprifoliaceae have been controversial. Backlund & Pyck
94 (1998) suggested that Caprifoliaceae should be defined narrowly to include only five
95 genera, *Heptacodium* Rehder, *Leycesteria* Wall., *Lonicera*, *Symporicarpos*, and
96 *Triosteum* L. This narrowly circumscribed concept of the family has been also
97 accepted by some authors (e.g., APG, 1998; Yang & Landrein, 2011; Xiang et al.,
98 2020). By contrast, some researchers proposed to integrate Morinaceae, Dipsacaceae,
99 Valerianaceae, and Caprifoliaceae s. str. into the Caprifoliaceae s.l. (e.g., Judd et
100 al., 1994; Donoghue et al., 2001; Stevens, 2001 onwards; Wang et al., 2015; Wang et
101 al., 2020). To maximize stability and ease identification based on recent phylogenetic
102 studies (e.g., Li et al., 2019; Wang et al., 2020; Xiang et al., 2020), we prefer the
103 Caprifoliaceae s.l. concept that includes seven major clades: Linnaeoideae, *Zabelia*,
104 Morinoideae, Valerianoideae, Dipsacoideae, Caprifolioideae and Diervilloideae
105 (Stevens, 2001 onwards; Wang et al., 2015; APG, 2016; Wang et al., 2020).
106 Phylogenetic relationships within Caprifoliaceae have been studied extensively during
107 the past two decades using plastid and nuclear DNA data (Fig. 2), but the placement of
108 *Zabelia* (Rehder) Makino has never been resolved confidently using either
109 morphological characters (Backlund, 1996; Donoghue et al., 2003) or molecular data
110 (Donoghue et al., 1992; Jacobs et al., 2010; Smith et al., 2010; Landrein et al., 2012;
111 Stevens, 2019; Wang et al., 2020; Xiang et al., 2020). Based on nuclear (ITS) and
112 chloroplast DNA (cpDNA) data (*trnK*, *matK*, *atpB-rbcL*, *trnL-F*) of 51 taxa, Jacobs et
113 al. (2010) found moderate support (bootstrap support [BS] = 62%) for the placement of

114 *Zabelia* (formerly part of *Abelia*) in a clade with Morinoideae, Dipsacoideae, and
115 Valerianoideae. Based on the same data set, Jacobs et al. (2010) raised *Abelia* sect.
116 *Zabelia* to the genus level as *Zabelia*, and more recent studies have confirmed the
117 distinctiveness of *Zabelia* (Landrein et al., 2012; Wang et al., 2015), often finding it
118 sister to Morinoideae, although with low (BS \leq 50%) to moderate (50% $<$ BS \leq 70%)
119 support (Donoghue et al., 1992; Jacobs et al., 2010; Tank and Donoghue, 2010; Wang
120 et al., 2015). Based on cpDNA data (*rbcL*, *trnL-K*, *matK* and *ndhF*) of 14 taxa,
121 Landrein et al. (2012) suggested that *Zabelia* and *Diabelia* Landrein (Linnaeoideae)
122 had similar “primitive” inflorescences of reduced simple thyrses. Landrein et al. (2012)
123 conducted phylogenetic analyses of the Caprifoliaceae based on the structural
124 characters of reproductive organs. In these analyses, *Zabelia* was sister to the clade of
125 Morinoideae, and Valerianoideae + Dipsacoideae. Recently, Xiang et al. (2020) carried
126 out analyses of complete plastomes of 32 species in this clade, demonstrating that
127 *Heptacodium* and *Triplostegia* Wall. ex DC. are sister to Caprifoliaceae *s.s.* and
128 Dipsacaceae, respectively, and have thus been included as members of those groups.
129 Furthermore, *Zabelia* was found to be sister to Morinaceae in all analyses (Xiang et al.,
130 2020). Likewise, using complete plastomes from 56 accessions representing 47 species
131 of Caprifoliaceae, Wang et al. (2020) recovered the clade composed of Linnaeoideae,
132 and Morinoideae + *Zabelia* as sister to Dipsacoideae + Valerianoideae) with maximum
133 support (BS = 100%).

134 In this study, we assembled and analyzed a custom target enrichment dataset of
135 Caprifoliaceae to: (1) evaluate sources of gene tree discordance, in order to clarify the
136 backbone phylogeny of Caprifoliaceae with special attention to positions of recalcitrant
137 taxa (i.e., *Zabelia* and Morinoideae); and (2) determine the evolutionary patterns of key
138 morphological characters of Caprifoliaceae.

139

140 **2 Materials and methods**

141 **2.1 Taxon sampling**

142 We sampled 43 individuals from 38 species of Caprifoliaceae, including
143 representatives of all seven major clades (including *Zabelia*) of Caprifoliaceae sensu

144 Stevens (2001 onwards) and Wang et al. (2020). Additionally, three species of
145 Adoxaceae were included as outgroups. Most samples (38) were collected in the field,
146 where leaf tissue was preserved in silica gel. The remaining samples were obtained
147 from the United States National Herbarium (US) at the Smithsonian Institution (Table
148 S1). Vouchers of newly collected samples were deposited in the herbarium of the
149 Institute of Tropical Agriculture and Forestry (HUTB), Hainan University, Haikou,
150 China. Complete voucher information is listed in Supporting Information Table S1.

151

152 **2.2 DNA extraction, target enrichment, and sequencing**

153 We extracted total genomic DNA from silica gel-dried tissue or herbarium tissue
154 using the CTAB method of Doyle and Doyle (1987). We checked the quantity of each
155 extraction with a Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA,
156 USA) and sonicated 400 µg of DNA using a Covaris S2 (Covaris, Woburn, MA) to
157 produce fragments ~150-350 bp in length for library preparations. To ensure that
158 genomic DNA was sheared at approximately the selected fragment size, we evaluated
159 all samples on a 1.2% (w/v) agarose gel.

160 We identified putative single copy nuclear (SCN) genes with MarkerMiner v.1.2
161 (Chamala et al., 2015) with default settings, using the transcriptomes of *Dipsacus*
162 *asper*, *Lonicera japonica*, *Sambucus canadensis*, *Valeriana officinalis*, and *Viburnum*
163 *odoratissimum* from 1KP (Matasci et al., 2014), and the genome of *Arabidopsis*
164 *thaliana* (L.) Heynh. (Gan et al., 2011) as a reference. SCN genes identified with
165 MarkerMiner were further filtered using GoldFinder (Vargas et al., 2019), requiring
166 loci with at least 400 bp and a coverage of at least three species. This resulted in 428
167 SCN genes for phylogenetic analyses. A custom set of 80 bp biotinylated RNA baits
168 (MYbaits) based on exon sequences were manufactured by Arbor Biosciences (Ann
169 Arbor, MI, USA), with a 2× tiling density. The bait sequences are available as a
170 supplemental file (Appendix 1).

171 Library preparation was done with the NEBNext Ultra II DNA Library Prep Kit
172 for Illumina (New England Biolabs, MA, USA) following the manufacturer's protocol.
173 Library concentrations were quantified using a Qubit 2.0, with a dsDNA HS Assay Kit

174 (Thermo Fisher Scientific). Fragment size distribution was determined with a High
175 Sensitivity D1000 ScreenTape run on the Agilent 2200 TapeStation system (Agilent
176 Technologies, Inc., Santa Clara, California, United States). Solution-based
177 hybridization and enrichment with MYbaits followed Weitemier et al. (2014). Libraries
178 pools were and sequenced by Novogene Corporation (Sacramento, California, U.S.A.)
179 on one lane using the Illumina HiSeq 4000 sequencing platform (Illumina Inc, San
180 Diego, California, U.S.A.) producing 150 bp paired-end reads.

181 Given the low recovery of plastome reads from target enrichment libraries, we
182 used a genome skimming approach to ensure recovery of full plastomes. Following
183 Wang et al. (2020) with minor modifications, we built separate libraries for total
184 genomic DNA. These libraries were sequenced using the BGISEQ-500 platform at BGI
185 Shenzhen (China) with 100 bp paired-end reads.

186

187 **2.3 Read processing and assembly**

188 Sequencing adapters and low-quality bases were removed with Trimmomatic
189 v0.36 (ILLUMINACLIP: TruSeq_ADAPTER: 2:30:10 SLIDINGWINDOW: 4:5
190 LEADING: 5 TRAILING: 5 MINLEN: 25; Bolger et al., 2014). Assembly of nuclear
191 loci was carried out with HybPiper v.1.3.1 (Johnson et al., 2016), on an exon basis to
192 avoid chimeric sequences in multi-exon genes that may be produced by potential
193 paralogy (Morales-Briones et al., 2018). Only exons with a reference length of \geq 150 bp
194 were assembled (1220 exons from 442 genes). Paralog detection was carried out for all
195 exons with the ‘paralog_investigator’ option of HybPiper. All assembled loci (with and
196 without paralogs detected) were processed following Morales-Briones et al. (2020) to
197 obtain ‘monophyletic outgroup’ (MO) orthologs (Yang & Smith, 2014).

198 Plastome assembly followed Wang et al. (2020). Briefly, raw reads were filtered
199 with SOAPfilter_v2.2 (BGI-Shenzhen, China) and dadapter sequences and low-quality
200 reads were removed. Plastome assembly was carried out using MITObim v1.8 (Hahn et
201 al. 2013) following Wang et al. (2020).

202

203 **2.4 Phylogenetic analyses**

204 We used concatenation and coalescent-based methods to reconstruct the
205 phylogeny of Caprifoliaceae. We performed phylogenetic analyses on the nuclear and
206 plastid data sets separately. Individual nuclear exons were aligned with MAFFT v7.407
207 (Katoh & Standley, 2013) and aligned columns with more than 90% missing data were
208 removed using Phyutility (Smith & Dunn, 2008). A maximum likelihood (ML) tree
209 was estimated from the concatenated matrix, partitioning by gene, using RAxML
210 v8.2.12 (Stamatakis, 2014) and the GTRGAMMA model for each partition. Clade
211 support was assessed with 200 rapid bootstrap replicates (BS). We also estimated a
212 species tree with ASTRAL-III v5.7.1 (Zhang et al., 2018) from individual ML gene
213 trees inferred using RAxML with a GTRGAMMA model. Local posterior probabilities
214 (LPP; Sayyari & Mirarab, 2016) were used to assess clade support.

215 Gene tree discordance was evaluated using two approaches. First, we mapped the
216 individual nuclear gene trees onto the species tree and calculated the internode certainty
217 all (ICA; Salichos et al., 2014) and number of conflicting and concordant bipartitions
218 on each node of the species trees using Phyparts (Smith et al., 2015). Then we used
219 Quartet Sampling (QS; Pease et al., 2018) to distinguish strong conflict from weakly
220 supported branches in the nuclear tree. We carried out QS with 1000 replicates.

221 The plastomes sequences were aligned with MAFFT. A ML tree was estimated
222 with RAxML using the GTR + I + G model and 1000 bootstrap replicates for clade
223 support. Additionally, we used QS with 1000 replicates to evaluate branch support.

224

225 **2.5 Assessment of hybridization**

226 To test whether ILS alone could explain cytonuclear discordance, we used
227 coalescent simulations similar to Folk et al. (2017) and García et al. (2017). We
228 simulated 10,000 gene trees under the coalescent with DENDROPY v.4.1.0
229 (Sukumaran & Holder, 2010) using the ASTRAL species trees as a guide tree with
230 branch lengths scaled by four to account for organellar inheritance. We summarized the
231 simulated gene trees on the cpDNA tree. Under a scenario of ILS alone, any
232 relationships in the empirical chloroplast tree should be present in the simulated trees

233 and have a high frequency; under a hybridization scenario, relationships unique to the
234 cpDNA tree should be at low (or zero) frequency (García et al., 2017).

235

236 **2.6 Species network analysis**

237 We inferred species networks using a maximum pseudo-likelihood approach (Yu
238 et al., 2012). Due to computational restrictions and given our main focus on potential
239 reticulation among major clades of Caprifoliaceae (i.e., along the backbone), except
240 Caprifolioideae and Diervilloideae, which did not show major signal of conflict with
241 respect to the rest of Caprifoliaceae [i.e., the remaining five major groups formed a
242 clade with maximum support (see section 3.4)]. First, we reduced our 46-taxon data set
243 to one outgroup and 10 ingroup taxa to include Dipsacoideae, Linnaeoideae,
244 Moroinoideae and *Zabelia* (11-taxon data set). To disentangle nested hybridization, we
245 created a reduced, 9-taxon data set by removing Dipsacoideae (because *Dipsacus* and
246 *Scabiosa* were found to be involved in several inferred hybridization events) and a
247 7-taxon data set that excluded these two taxa as well as *Morina* and *Zabelia* (which were
248 found to be involved in reticulation events in both the 11-taxon and 9-taxon networks).
249 Species network searches were carried out with PHYLONET v.3.6.1 (Than et al., 2008)
250 with the command ‘InferNetwork_MPL’ and using individual ML gene trees. Network
251 searches were performed using only nodes in the gene trees that had BS support of at
252 least 50%, allowing for up to five hybridization events and optimizing the branch
253 lengths and inheritance probabilities of the returned species networks under the full
254 likelihood. To estimate the optimal number of hybridizations and test whether the
255 species network fit our gene trees better than a strictly bifurcating species tree, we
256 computed the likelihood scores of concatenated RAxML, ASTRAL and plastid DNA
257 trees, given the individual gene trees, as implemented in Yu et al. (2012), using the
258 command ‘CalGTProb’ in PHYLONET. Finally, we performed model selection using
259 the Akaike information criterion (Akaike, 1973), the bias-corrected Akaike information
260 criterion (AICc; Sugiura, 1978), and the Bayesian information criterion (Schwarz,
261 1978). The number of parameters equals the number of branch lengths being estimated,

262 plus the number of hybridization probabilities being estimated, and number of gene
263 trees used to estimate the likelihood, to correct for finite sample size.

264

265 **2.7 Divergence time estimation**

266 Divergence times were inferred using BEAST v.2.4.0 (Bouckaert et al., 2014). There is
267 potential ancient hybridization in Caprifoliaceae, and therefore we estimated
268 diversification dates separately for the nuclear and chloroplast gene tree. The root age
269 was set to 78.9 Ma (mean 78.9 Ma, normal prior distribution 76.3–82.2 Ma) following
270 Li et al. (2019). We selected two fossils as calibration points. First, the fossil seeds of
271 *Weigela* Thunb. from the Miocene and Pliocene in Poland (Lańcucka-Rodoniowa,
272 1967), and the Miocene in Denmark (Friis, 1985) were used to constrain its stem age
273 (offset 23.0 Ma, lognormal prior distribution 23.0 – 28.4 Ma). Second, the fruit fossil
274 *Diplodipelta* S.R.Manchester & M.J.Donoghue, from the late Eocene Florissant flora
275 of Colorado (Manchester, 2000; Bell & Donoghue, 2005), was used as a constraint in
276 three different positions. In each case, the *Diplodipelta* constraint was set as an offset
277 of 36 Ma, with a lognormal prior distribution of 34.07–37.20 Ma. Wang et al. (2015)
278 considered three placements of *Diplodipelta* because it is possible that *Diplodipelta*
279 represents a common ancestor of *Diabelia* and *Dipelta*, and because the sepal of
280 *Diplodipelta* is similar to *Diabelia*, while the fruit wing of *Diplodipelta* is similar to
281 *Dipelta* (Manchester & Donoghue, 2005; Wang et al., 2015). Hence, following Wang
282 et al. (2015), we tested three placements of the *Diplodipelta* constraint: we constrained
283 the common ancestor of *Diabelia* and *Dipelta* (Analysis I), we constrained the common
284 ancestor (crown group) of *Dipelta* (Analysis II), and we constrained the common
285 ancestor (crown group) of *Diabelia* (Analysis III). For each of these constraint
286 positions, we carried out divergence time estimations for the nuclear and chloroplast
287 trees separately.

288 All dating analyses were performed with an uncorrelated lognormal relaxed clock
289 (Drummond et al., 2012), GTR + G substitution model (Posada, 2008), estimated base
290 frequencies, and a Yule process for the tree prior. The RAxML tree was used as the

291 starting tree, and two independent MCMC analyses of 300,000,000 generations with
292 10% burn-in and sampling every 3000 generations were conducted to evaluate the
293 credibility of posterior distributions of parameters. BEAST log files were analyzed
294 with Tracer v.1.7 (Drummond et al., 2012) for convergence with the first 10% of trees
295 removed as burn-in. Parameter convergence was assessed using an effective sample
296 size (ESS) of 200. Log files where combined with LogCombiner and a maximum clade
297 credibility tree with median heights was generated with TreeAnnotator v.1.8.4
298 (Drummond et al., 2012).

299

300 **2.8 Analysis of character evolution**

301 Character states were coded from the literature, particularly from Backlund (1996),
302 Donoghue et al. (2003), Jacobs et al. (2011) and Landrein (2017). The number of
303 stamens was scored as follows: (0), 1; (1), 2; (2), 3; (3), 4; (4), 5. Two-character states
304 were scored for style exertion: (0), not exceeding corolla; (1), exceeding corolla. Four
305 fruit types were scored: (0), achene; (1), capsule, (2), berry; (3), drupe. The number of
306 carpels was scored as: (0), 2; (1), 3; (2), 4. Number of seeds was scored as: (0), 1; (1),
307 2; (2), 4-5; (3), 6-20; (4), 20+. Two epicalyx types were scored: (0), no; (1), yes. All
308 the morphological characters analyzed here are presented in Supplementary Fig. S1.
309 Ancestral character state reconstruction was performed using ML as implemented in
310 Mesquite v.3.51 (Maddison and Maddison, 2018) with the ‘Trace character history’
311 option based on the topology of the chloroplast trees. To explore differences caused by
312 differing topologies, we also reconstructed ancestral character states onto the nuclear
313 tree. The Markov k-state one-parameter model of evolution for discrete unordered
314 characters (Lewis, 2001) was used.

315

316 **2.9 Data accessibility**

317 Raw Illumina data from sequence capture is available at the Sequence Read
318 Archive (SRA) under accession SUB7674585 (see Table S1 for individual sample SRA
319 accession numbers). DNA alignments, phylogenetic trees and results from all analyses
320 and datasets can be found in the Dryad data repository.

321

322 **3 Results**

323 **3.1 Assembly**

324 The number of assembled exons per species (with > 75% of the target length) ranged
325 from 130 (*Vesalea floribunda*) to 989 (*Diabelia sanguinea*) out of 1220 single-copy
326 exon references, with an average of 725 exons (Table S2; Fig. S2). The number of
327 exons with paralog warnings ranged from 1 in *Vesalea floribunda* to 619 in *Diabelia*
328 *sanguinea* (Table S2). After paralog pruning and removal of exons with poor coverage
329 across samples (at least 25 ingroup taxa), we kept 707 exons from 367 different genes.
330 The resulting concatenated matrix had an aligned length of 343,609 bp with 96,479
331 parsimony-informative sites, a minimum locus size of 150 bp, and a maximum locus
332 size of 3,503 bp, with an average of 486 bp. The plastome alignment resulted in a
333 matrix of 208,607 bp with 32,960 parsimony-informative sites (Table 1).

334

335 **3.2 Phylogenetic reconstruction**

336 In analyses of both nuclear and plastid data, Diervilloideae and Caprifolioideae
337 were successively sister to remaining Caprifoliaceae, which were resolved into five
338 main groups: Diervilloideae, Caprifolioideae, Valerianoideae, *Zabelia* and
339 *Morinoideae*. (Figs. 3–4). However, the relationships among the seven groups within
340 Caprifoliaceae differed between nuclear and plastid analyses.

341 *Nuclear dataset.* The ASTRAL analysis (Fig. 3) recovered maximum support
342 (LPP = 1) for relationships within Caprifoliaceae and its seven major clades, except for
343 the placement of *Kolkwitzia amabilis* (LPP = 0.7). Diervilloideae was resolved as sister
344 to the rest of Caprifoliaceae, followed by Caprifolioideae as successive sister. *Zabelia*
345 and *Morinoideae* formed a clade that was placed as sister to the remaining major
346 groups. Dipsacoideae was recovered as polyphyletic, where *Scabiosa* was sister of
347 Valerianoideae, and together with *Dipsacus japonicus* formed a grade sister to
348 Linnaeoideae. Within Linnaeoideae, the clade of *Vesalea* M.Martens & Galeotti +
349 *Linnaea* Gronov. ex L. was recovered as sister to a clade of all other Linnaeoideae.

350 The topology of the nuclear concatenated RAxML tree (Fig. 4) was mostly similar
351 to that of the ASTRAL trees regarding major clades and their relationships. Most major
352 clades and relationship among them had maximum support (BS = 100). The two
353 differences were that RAxML recovered a monophyletic Dipsacoideae (*Dipascus* +
354 *Scabiosa*) sister to Valerianoideae and *Kolkwitzia amabilis* sister of *Dipelta*.

355 The conflict analyses (Fig. 3, Figs. S3-S7) confirmed the monophyly of
356 Caprifoliaceae with 266 out of 289 informative gene trees being concordant (ICA =
357 0.73) and having full QS support (1/-/1; i.e., all sampled quartets supported that
358 branch). Within Caprifoliaceae, major clades and the the relationships among them
359 had low to strong support. Diervilloideae was supported by 294 gene trees (out of 325;
360 ICA = 0.79) and full QS support. Caprifolioideae was supported by 161 gene trees (out
361 of 216; ICA = 0.50) and strong QS support, with signal of an alternative topology
362 (0.87/0.077/1). The relationship of Caprifolioideae to the remaining five major clades
363 was supported by 306 gene trees (out of 398; ICA = 0.55) and strong QS support, with
364 signal of an alternative topology (0.82/0.043/1). The remaining five major groups
365 formed a clade supported by 417 gene trees (out of 598; ICA = 0.32) and full QS
366 support. Morinoideae was supported by 409 gene trees (out of 448; ICA = 0.72) and
367 full QS support, *Zabelia* was supported by 453 gene trees (out of 484; ICA = 0.81)
368 and also full QS support. The clade composed of *Zabelia* + Morinoideae was
369 supported by only 86 gene trees (out of 354) and moderate QS support, with signal of
370 a possible alternative topology (0.25/0/0.99). In the ASTRAL topology (Fig 3; Figs
371 S3–S4), *Scabiosa* (Dipsacoideae) had 233 supporting gene trees (out of 308; ICA =
372 0.37) and full QS support, Valerianoideae was supported by 314 gene trees (out of
373 358; ICA = 0.58) with full QS support. The clade composed of Valerianoideae +
374 *Scabiosa* was supported by only 63 gene trees (out of 370; ICA = 0.11) and moderate
375 QS support, with signal of a possible alternative topology (0.39/0/0.99). The sister
376 relationship of *Dipsacus japonicus* and Linnaeoideae was supported by only 48 gene
377 trees (out of 468; ICA = 0.08) and had weak QS support, with signal of a possible
378 alternative topology (0.073/0/1). The sister relationship of the clade Valerianoideae +
379 *Scabiosa* and the clade *Dipsacus japonicus* + Linnaeoideae was supported only by 86

380 gene trees (out of 461; ICA 0.09) with moderate QS support but no signal of an
381 alternative topology (0.17/0.73/0.97). In turn, for the RAxML topology (Figs S5 –6), a
382 monophyletic Dipsacoideae was supported by only 80 gene trees (out of 300; ICA =
383 0.13) but had strong QS support with signal of an alternative topology (0.74/0/1).
384 Linnaeoideae was supported by only 106 gene trees (out of 507; ICA = 0.08) but had
385 strong QS support with no signal of an alternative topology (0.83/0.95/1). Within
386 Linnaeoideae, *Linnaea* was supported by 301 gene trees (out of 312; ICA = 0.88) and
387 full QS support, *Vesalea* was supported by 101 gene trees (out of 223; ICA = 0.33)
388 and strong QS support but there was signal of a possible alternative topology
389 (0.92/0/1). The clade *Linnaea* + *Vesalea* was supported by only 128 gene trees (out of
390 343; ICA = 0.20) and had strong QS support with signal of a possible alternative
391 topology (0.92/0/1). In the case of the remaining Linnaeoideae, *Dipelta* was supported
392 by 276 gene trees (out of 326; ICA = 0.69) and full QS support, *Diabelia* was
393 supported by 149 gene trees (out of 345; ICA = 0.20) and had strong QS support with
394 signal of a possible alternative topology (0.62/0/1), and *Abelia* was supported by only
395 54 gene trees (out of 349; ICA= 0.20) but with strong QS support and signal of a
396 possible alternative topology (0.79/0/1). The clade formed by *Abelia* + *Diabelia* was
397 supported only by 45 gene trees (out of 394; ICA = 0.07) but with strong QS support
398 and signal of a possible alternative topology (0.67/0.2/1). In the ASTRAL analysis,
399 the sister relationship of *Kolkwitzia amabilis* and the clade of *Abelia* + *Diabelia* was
400 supported only by 15 gene trees (out of 411; ICA = -0.06) with QS counter support
401 and clear signal for an alternative topology (-0.22/0.19/0.94). In turn, for the RAxML
402 topology, *Kolkwitzia amabilis* was placed as sister to *Dipelta* with the support of only
403 39 gene trees (out of 288; ICA = 0.08) and moderate QS support, with signal for a
404 possible alternative topology (0.22/0.29/0.95). Finally, the clade composed of *Dipelta*,
405 *Kolkwitzia*, *Abelia*, and *Diabelia* was supported by only 20 gene trees (out of 413; ICA
406 = 0.06) and moderate QS support with signal for a possible alternative topology
407 (0.37/0.059/0.95).

408 *Plastid dataset.* Phylogenetic analysis of the cpDNA dataset also recovered the
409 same seven major clades in Caprifoliaceae, although relationships differed between

410 plastid and nuclear trees (Fig. 4). In the plastid tree all major clades and most
411 relationships among them had full support (BS = 100; QS = 1/-/1; Fig. 4 and Fig. S7).
412 The clade Valerianoideae + Dipsacoideae was recovered as sister to all remaining
413 Caprifoliaceae. The clade composed of *Zabelia* + Morinoideae was recovered as sister
414 to Linnaeoideae with strong BS support (75) and moderate QS support, with signal of
415 an alternative topology (0.36/0.4/0/94). Within Linnaeoideae, *Diabelia* and *Dipelta*
416 formed a clade with strong BS support (89) and moderate QS support, with signal of an
417 alternative topology (0.36/0.24/0/93). *Kolkwitzia amabilis* was sister to *Diabelia* +
418 *Dipelta* with full BS support and strong QS support, but with a signal of an alternative
419 topology (-/94/0.33/0.99). *Abelia* was recovered with full support as the sister of the
420 clade composed of *Diabelia*, *Dipelta* and *Kolkwitzia*. The main differences between the
421 nuclear and cpDNA trees were the placement of *Zabelia* + Morinoideae as sister of
422 Linnaeoideae, and the placement of *Kolkwitzia amabilis* as sister of the clade of
423 *Diabelia* + *Dipelta*.

424

425 **3.3 Coalescent simulations**

426 Coalescent simulations under the organellar model did not produce gene trees that
427 resembled the observed cpDNA tree. When the simulated gene trees were summarized
428 on the observed chloroplast tree, most clade frequencies were near zero, as for instance
429 *Kolkwitzia amabilis* and the clade Valerianoideae + Dipsacoideae, *Zabelia* +
430 Morinoideae and the clade Linnaeoideae + Valerianoideae + Dipsacoideae (Fig. S8).
431 This suggested that ILS alone cannot explain the high level of cytonuclear discordance
432 observed in Caprifoliaceae.

433

434 **3.4 Species network analysis**

435 For all three data sets analyzed (11-taxa, 9-taxa, 7-taxa), any of the networks with
436 one to five reticulations events was a better model than a strictly bifurcating tree (Table
437 2; Fig. S9). In the 11-taxon data set, the best network had four reticulations events,
438 whereas three reticulation events were inferred for the best networks in the 9-taxon and
439 7-taxon trees (Fig. 5; Table 2). In the 11-taxon network (Fig. 5a), which included

440 Dipsacoideae, both species of Dipsacoideae were inferred to result from hybridization
441 events involving members of Linnaeoideae. *Dipsacus* was inferred to have
442 contributions from three lineages, including an inferred hybridization between the
443 lineages leading to *Linnaea* and *Vesalea*. In the 9-taxon tree (excluding Dipsacoideae but
444 including *Morina* and *Zabelia*; Fig. 5b), both *Morina* and *Zabelia* were inferred to have
445 genetic contributions from Linnaeoideae, while the clade of *Abelia* + *Diabelia* was
446 inferred to have received a contribution from the lineage leading to *Kolkwitzia*. In the
447 7-taxon tree (including only Linnaeoideae + *Viburnum*; Fig. 5c), the clade of *Abelia* +
448 *Diabelia* was again inferred to have resulted from a reticulation event, as were *Dipelta*
449 and *Linnea*, although in the case of *Linnea*, there was only a small contribution (1.2%)
450 from the lineage leading to *Vesalea*.

451

452 **3.5 Divergence time estimation**

453 Divergence time estimates based on the nuclear data set suggested that the deepest
454 divergences in Caprifoliaceae occurred in the early Paleocene, whereas most
455 generic-level diversification occurred in the middle Eocene to middle Oligocene (Fig.
456 6). The divergence between Dipsacoideae and Valerianoideae was dated to 41.83 Ma
457 (95% Highest Posterior Density (HPD) = 34.44–49.35 Ma) (Fig. 6). The diversification
458 of Linnaeoideae was inferred to be at 48.33 Ma (95% HPD = 42.37–51.70 Ma) (Fig. 6).
459 Within Linnaeoideae, both *Abelia* and *Kolkwitzia* originated almost
460 contemporaneously in the mid-late Eocene. The onset of *Zabelia* and Morinoideae
461 diversification occurred between 32.10 and 39.89 Ma (Fig. 6). A comparison of the
462 time estimates for selected nodes under the six different analyses is available in Figs.
463 S10 and S11. As would be expected, Analysis I (placing the *Diplodipelta* fossil
464 constraint at the ancestor of *Diabelia* and *Dipelta*) resulted in younger ages for much
465 of Linnaeoideae, but otherwise did not significantly affect divergence dates. We
466 found that our estimated ages were generally younger with nuclear vs. plastid data
467 (Figs. S10 - S11). For instance, our analyses showed that Caprifoliaceae date to 66.65
468 Ma (95% HPD = 56.31- 69.44 Ma) in analysis I based on nuclear datasets (Fig. S 10),
469 whereas in the two other analyses, the divergence time was estimated as 69.38 Ma

470 (95% HPD = 53.26- 79.45 Ma) and 69.87 Ma (95% HPD = 64.20- 76.34 Ma, Fig.
471 S10). Based on chloroplast datasets, the divergence time of Caprifoliaceae was
472 estimated at 76.43 Ma (95% HPD = 64.81- 82.10 Ma), 78.61 Ma (95% HPD = 71.33-
473 82.45 Ma) and 77.43 Ma (95% HPD = 58.33- 81.60 Ma) in the three analyses
474 respectively (Fig. S10).

475

476 **3.6 Character evolution**

477 The likelihood inference of character evolution using the cpDNA tree detected
478 some homoplasy in each of the six morphological characters examined (Figs. 8 - 10),
479 with style exertion relative to corolla showing particularly high homoplasy (Fig. 7).
480 Stamen number exhibited little homoplasy, with an inferred shift from five stamens
481 ancestrally to four in the bulk of Caprifoliaceae, and within Valerianoideae, it further
482 reduced to 3 and 1 (Fig. 7). In contrast, style exertion exhibited a high level of
483 homoplasy in the early diversification of the family (Fig. 7). Even within Linnaeoideae,
484 the state “not exceeding corolla” was inferred to have originated twice, in *Vesalea* and
485 in the *Diabelia-Dipelta-Kolwitzia-Abelia* clade. The ancestral fruit type for
486 Caprifoliaceae was uncertain due to the diversity in fruit types among the major
487 early-diverging clades, but was most likely an achene (Fig. 8). Carpel number
488 evolution was similarly complex (Fig. 8), with three carpels inferred to be ancestral in
489 the family. For seed number, one seed was inferred as the ancestral character state for
490 Caprifoliaceae, with independent shifts to two seeds in *Syphoricarpos* and *Dipelta*
491 (Fig. 9). Independent origins of the epicalyx in *Dipsacus* and the clade of *Moina* and
492 *Acanthocalyx* was also inferred (Fig. 9).

493 A summary of character state evolution using the nuclear gene tree and character
494 states that are relevant for the taxonomy of the group is shown in Figs. S12, S13 and
495 S14. We found that the patterns of character evolution from cpDNA tree and nuclear
496 gene tree were similar.

497

498 **4 Discussion**

499 **4.1 Phylogenetic incongruence and putative hybridization**

500 Although both our nuclear and plastid phylogenies supported the same seven
501 major clades of Caprifoliaceae, the relationships among these clades are incongruent
502 between data sets (Figs. 5 and 6). For instance, in the nuclear ASTRAL tree,
503 Linnaeoideae is recovered as sister to Dipsacoideae (except for *Dipsacus japonicus*) +
504 Valerianoideae (Fig. 3), while in the plastid tree Linnaeoideae is sister to *Zabelia* +
505 Morinoideae (Fig. 4). In contrast, in the nuclear RAxML concatenated tree (Fig. 3),
506 Linnaeoideae is recovered as sister to Dipsacoideae + Valerianoideae. Some of these
507 points of conflict pertain to areas of Caprifoliaceae phylogeny that have long been
508 problematic—for example, the relationships between *Zabelia* and other subfamilies.
509 The inclusion of extensive nuclear genome sampling for Caprifoliaceae in this study is
510 important because plastome-only phylogenies may not fully capture evolutionary
511 processes such as ILS or organellar capture via hybridization. Three main processes
512 will lead to gene tree heterogeneity and cytonuclear discordance: gene
513 duplication/extinction, horizontal gene transfer/hybridization, and ILS. Currently, there
514 are many methods to detect gene discordance (e.g., Smith et al., 2015; Pease et al.,
515 2018), but sources of such discordance remain hard to disentangle, especially when
516 multiple processes co-occur (e.g., Morales-Briones et al. 2021).

517 *Zabelia* was long thought to be closely related to *Abelia* (Hara, 1983; Tang & Lu,
518 2005). However, based on molecular datasets, Tank and Donoghue (2010) and Jacobs
519 et al. (2011) found that *Zabelia* was sister to Morinaceae (=Morinoideae in this study).
520 Using six molecular loci and inflorescence morphology, Landrein et al. (2012)
521 concluded that the position of *Zabelia* remained unclear. The molecular investigation
522 of Xiang et al. (2020) found that the sister relationships between *Zabelia* + Morinaceae
523 and Linnaceae + Valerianaceae + Dipsacaceae were not highly supported. Such
524 phylogenetic incongruence provides the opportunity to test causal hypotheses of
525 cytonuclear discordance, e.g., ILS or hybridization. Further, in our analyses (Fig. 4),
526 widespread cytonuclear discordance exists across Caprifoliaceae, especially at genus
527 levels, with a high level of conflict within genera. Regarding deep Caprifoliaceae
528 relationships, the results from the nuclear analyses (Figs. 4 and 5) showed multiple
529 instances (at least two) of well-supported conflict with the results from the plastome

530 (Fig. 4), and the plastid results were largely consistent with previous plastid and
531 large-scale analyses of Caprifoliaceae (Wang et al., 2020).

532 It is worth mentioning that Dipsacoideae was not recovered as monophyletic only in
533 the ASTRAL species tree (Fig. 3), in which *Dipsacus japonicus* had a sister
534 relationship with Linnaeoideae. Still, nodes with the strong LPP support also had low
535 ICA and QS support values, which suggests that ILS and/or unidentified hybrid
536 lineages continue to obscure our understanding of relationships in Dipsacoideae.

537 Previous studies reported that hybridization has shaped the evolutionary history of
538 Caprifoliaceae (e.g., *Heptacodium miconioides*) (Zhang et al., 2003; Landrein et al.,
539 2002). The conflict analyses of the nuclear dataset revealed strong signals of gene tree
540 discordance among the seven major clades of Caprifoliaceae. The coalescent
541 simulations also suggested that the observed cytonuclear discordance cannot be
542 explained by ILS alone, which along with the phylogenetic network analyses point to
543 several potential reticulation events along the backbone of Caprifoliaceae (Fig. 5).
544 *Morina* and *Zabelia* are frequently involved in inferred reticulations, and the two
545 Dipsacoideae are involved in 3 of the four events in the 11-taxon tree. The clade of
546 *Abelia* + *Diabelia* are also involved in inferred reticulation events in the 9-taxon and
547 7-taxon networks. If these inferred events correspond to actual past instances of gene
548 flow (which can only be confirmed by more detailed genomic analyses), it would help
549 to explain the high amount of phylogenetic conflict observed in our analyses. There is
550 some potential morphological support for ancient hybridization. For example, the
551 leaves of *Morina* have stiff spines, while the leaves of *Zabelia* have no spines. In part
552 because of this, Wang et al. (2015) suggested that *Zabelia* may be of allopolyploid
553 origin.

554

555 **4.2 Temporal divergence of Caprifoliaceae**

556 Our estimated ages using nuclear and chloroplast trees are generally younger than
557 those of Wang et al. (2015) and Wang et al. (2020) based on two reliable fossils (Li et
558 al., 2019). We found that the diversification and global spread of the subfamilies of
559 Caprifoliaceae occurred during the late Cretaceous, Paleocene and Eocene (Figs. 6, S10,

560 S11), similar to the results of Beaulieu et al. (2013). The divergence times of
561 Caprifoliaceae have been estimated to be around the Cretaceous–Paleogene (K-Pg)
562 boundary (Figs. 6, S10). Our results are congruent with the phenomena reported in
563 several other plant groups such as Amaranthaceae *s.l.* (Morales-Briones et al. 2021) and
564 legumes (Koenen et al., 2020), and in lichenized fungi such as Lobariaceae
565 (Ascomycota) (Widhalm et al., 2019). It is generally accepted that because of the mass
566 extinctions that occurred around the K-Pg boundary, new habitats became available
567 and diverse organisms experienced rapid diversifications (Schulte et al., 2010). As a
568 result of later tectonic movements and climate fluctuations from the Paleocene to the
569 Eocene, major Caprifoliaceae lineages subsequently underwent rapid diversifications.

570 The divergence times among the major lineages of the Caprifoliaceae were dated
571 to the Oligocene and Eocene, and within-genus diversification was dated to the
572 Miocene and Pliocene (Figs. 6, S10, S11). Our results may be explained by the
573 hypothesis that members of the Caprifoliaceae are well adapted to relatively cool
574 environments (Friis, 1985; Manchester and Donoghue, 1995; Manchester, 2000), and
575 an increase in the earth's temperature in the late Paleocene and early Eocene may have
576 forced them to move to higher elevations or latitudes. As plants moved to higher
577 elevations, their distribution was likely to be fragmented, resulting in isolation between
578 populations. We have some evidence to support this hypothesis: (1) This family is
579 mainly distributed in north temperate zones, and some genera even reach areas near the
580 Arctic Circle (such as *Linnaea*); (2) there are numerous species (such as *Valeriana*
581 *officinalis*, *Lonicera rupicola*, and *L. spinosa*) with island-like distributional patterns at
582 relatively high elevations. As global climates cooled beginning in the late Eocene and
583 especially the Oligocene and Miocene, cold-adapted survivors of warmer climates may
584 have flourished and shifted into new geographic areas, especially mountainous areas,
585 but may have struggled in northern regions during the Pliocene and Pleistocene glacial
586 cycles (Moore & Donoghue, 2007). These global climatic events (e.g., ancient orogeny
587 and monsoon-driven events) that might have driven diversification in Caprifoliaceae
588 have also been reported in other taxa (Lu et al., 2018; Ding et al., 2020). For example,
589 some genera or taxa with tiny, narrow or needle-like leaves (e.g., *Linnaea*, *Lonicera*

590 *myrtillus*) may have benefited from the global cooling and drying of the Miocene and
591 Pliocene by expanding their ranges, while other lineages more adapted to the wetter,
592 warmer parts of the world (*Abelia*, *Diabelia*, and *Dipelta*) may not have contracted
593 during the same time period.

594

595 **4.3 Evolution of morphological characters**

596 Character state reconstruction was conducted using ML (Figs. 8-10) because of the
597 potential hemiplasy and xenoplasy produced by the discordance and hybridization
598 detected in the nuclear backbone (Avies & Robinson, 2008; Robinson et al., 2008;
599 Copetti et al., 2017; Wang et al., 2020). A consequence of this discordance may be
600 elevated levels of apparent homoplasy in the species tree (Copetti et al., 2017; Hahn &
601 Nakhleh, 2017).

602 Stamen number, fruit type, style exertion, number of carpels, number of seeds and
603 epicalyx presence have been traditionally used for generic recognition within
604 Caprifoliaceae (Backlund, 1996; Donoghue et al., 2003; Yang & Landrein, 2011;
605 Landrein et al., 2020). Discordance among morphological traits might plausibly arise
606 due to either variable convergent selection pressures or other phenomena such as
607 hemiplasy. The evidence indicates that the probability of hemiplasy is high for four
608 morphological characters in Caprifoliaceae: the branch lengths leading to lineages with
609 derived character states are uniformly short with high levels of gene tree discordance. It
610 is possible that gene flow has contributed to these patterns. For example, the ancestral
611 stamen number states (i.e., 2 and 4) found in *Morina longifolia* and *Acanthocalyx alba*
612 within the Morinoideae clade could be due to introgressed alleles, as we identified
613 putative introgression between those lineages (Fig. 5). Morphological and anatomical
614 studies showed that the earliest Caprifoliaceae had monosymmetric flowers (probably
615 weakly so at first) with larger calyx lobes, tubular corollas, elongate styles, and capitate
616 stigmas (Donoghue et al., 2003). Within Caprifoliaceae, the main change in stamen
617 number is a reduction from five to four stamens. Subsequently, there was a reduction to
618 two stamens within Morinoideae and to three, two, and one within Valerianoideae
619 (Figs. 8 and S11). These variations may be related to an underlying change in floral

620 symmetry (Donoghue et al., 2013), which may relate to carpel abortion or to
621 differences in the arrangement of flowers at the level of the inflorescence.

622 Our results suggest that multiple independent evolutionary events of the carpel
623 evolution in Caprifoliaceae have occurred (Figs. 9 and S12). In Caprifoliaceae, the
624 abortion of two of the three carpels and the development of a single ovule within the
625 remaining fertile carpel was evidently correlated with fruit type (Wilkinson, 1949). For
626 some subfamilies of Caprifoliaceae, carpel abortion occurs at a relatively late stage of
627 ovary development, so many species have two empty chambers at fruit maturity (e.g.,
628 Linnaeoideae, Morinoideae, and Valerianoideae). In fact, in some species, these empty
629 compartments have been co-opted in various ways in connection with dispersal (e.g.,
630 inflated for water dispersal in some *Valeriana*).

631 Caprifoliaceae shows great variation in fruit types. Fleshy, bird-dispersed fruits are
632 limited to the Caprifolioideae (Donoghue et al., 2003). *Lonicera* has berries, though
633 generally with just a few seeds embedded in copious pulp. Based on our analyses, it is
634 important to note that the ancestral carpel number for Caprifoliaceae is most likely 3.
635 There is programmed carpel abortion and the number of seeds corresponds to the
636 number of fertile carpels (Donoghue et al., 2003). For *Symporicarpos*, two of the four
637 carpels abort, and there are two stones. The mesocarp in the cases is rather dry and
638 mealy in texture. In the Caprifoliaceae, achenes with a single seed are present in
639 *Heptacodium* and in the large Linnaeoideae clade (though in *Dipelta*, and in *Linnaea*
640 there are two seeds at maturity). From the standpoint of fruit evolution, the linkage of
641 *Heptacodium* within Caprifolioideae implies either the independent evolution of
642 achenes or a transition from achenes to fleshy fruits in the line leading to
643 Caprifolioideae. Among the achene-producing Caprifoliaceae, there are various
644 adaptations for wind dispersal. One of the most striking of these modifications is
645 enlargement of the calyx lobes into wings as the fruits mature (e.g. in *Abelia*, *Dipelta*
646 and *Diabelia*). Especially well known is the production of a feathery pappus-like
647 structure in species such as *Valeriana officianalis* and *Centranthus ruber* in
648 Valerianoideae. This modification facilitates passive external transport by animals. A
649 similar case is also found in *Kolkwitzia*.

650 The reconstruction of character evolution thus shows that some characters that
651 were once considered important for taxonomy within the family have been inferred to
652 be the results of homoplasious evolution (Gould 2000; Pyck, 2001; Bell 2001, 2004;
653 Carlson et al., 2009; Zhai et al., 2019). In analysis of character evolution, homoplasy is
654 regarded as noise that, if not properly accommodated, jeopardizes phylogenetic
655 reconstructions using morphological characters. At the same time, hemiplasy is one of
656 the causes of homoplasy (Copetti et al., 2017). The phenomenon of hemiplasy is most
657 plausible when the internodal distances in a phylogenetic tree are short (relative to
658 effective population sizes) (Robinson et al., 2008). Furthermore, the extensive
659 hybridization detected in the backbone of Caprifoliaceae might further contribute to
660 hemiplasy and xenoplasy (Wang et al. 2020). This may explain why it has been
661 difficult to reconstruct the relationships and character evolution among the major
662 lineages and genera of the family. Eventually, more extensive sampling and
663 developmental studies will be needed to elucidate the mechanisms underlying the
664 morphological evolutionary patterns outlined here.

665

666 **4.4 Recognition of Zabelioideae as a new subfamily in Caprifoliaceae**

667 Despite the strong signals of gene tree discordance, our nuclear and plastid
668 phylogenies strongly support seven major clades in Caprifoliaceae: Linnaeoideae,
669 *Zabelia*, Morinoideae, Valerianoideae, Dipsacoideae, Caprifolioideae and
670 Diervilloideae, and show *Zabelia* as the sister to the morphologically highly distinct
671 Morinoideae (Figs. 4 - 5). Our analyses support reticulate evolution concerning the
672 origins of both the *Zabelia* lineage as well as the Morinoideae. Based on the
673 phylogenomic and morphological analyses, we herein propose to recognize *Zabelia* as
674 representing a new subfamily of Caprifoliaceae.

675 **Zabelioideae B. Liu & S. Liu ex H.F. Wang, H.X. Wang, D.F. Morales-B, M.J.**

676 **Moore & J. Wen, subfam. nov.**

677 **Type: *Zabelia* (Rehder) Makino.**

678 **Description:** Shrubs, deciduous; old branches often with six deep longitudinal
679 grooves. Leaves opposite, entire or dentate at margin; estipulate; petioles of opposite

680 leaf pairs dilated and connate at base, enclosing axillary buds. Inflorescence a
681 congested thyrse of cymes; cymes 1-3-flowered. Calyx 4- or 5-lobed, persistent,
682 spreading. Corolla 4- or 5-lobed, hypocrateriform, \pm zygomorphic; corolla tube
683 cylindrical. Stamens 4, included, didynamous. Ovary 3-locular, 2 locules with 2 series
684 of sterile ovules and 1 locule with a single fertile ovule; stigmas green, capitate,
685 mucilaginous. Fruit an achene crowned with persistent and slightly enlarged sepals.
686 Basic chromosome number $x = 9$.

687 One genus and six species distributed in China, Japan, Korea, Afghanistan, NW
688 India, Kyrgyzstan, Nepal, and Russian Far East.

689 Zabelioideae is highly distinct morphologically from its sister Morinoideae. They
690 can be easily distinguished by their habit (with Zabelioideae as shrubs, and
691 Morinoideae as herbs), the six distinct, longitudinal grooves on twigs and branches of
692 Zabelioideae (the six grooves absent in Morinoideae), and the epicalyx (absent in
693 Zabelioideae and present in Morinoideae). Zabelioideae and Morinoideae share some
694 similarities in pollen micromorphology, as both have psilate pollen grains with an
695 endocingulum (Verlaque, 1983; Kim et al., 2001; Jacobs et al., 2011). The two
696 subfamilies diverged in the early-mid Eocene (Figs. 6, S7), and their long evolutionary
697 history associated with deep hybridization events, ILS and extinctions likely have made
698 it difficult to determine their phylogenetic placements.

699

700 **5 Conclusions**

701 Gene tree discordance has been commonly observed in phylogenetic studies.
702 Moreover, species tree estimation has been shown to be inconsistent in the presence of
703 gene flow (Solís-Lemus et al., 2016; Long & Kubatko, 2018), which suggests that both
704 ILS and gene flow simultaneously need to be considered in constructing phylogenetic
705 relationships. Here, our results show clear evidence of cytonuclear discordance and
706 extensive conflict between individual gene trees and species trees in Caprifoliaceae.
707 We also show that there has been widespread hybridization and/or introgression
708 among the major clades of Caprifoliaceae, which can explain most the gene tree
709 conflict and the long history of phylogenetic uncertainty in the family. Furthermore,

710 the temporal diversification of Caprifoliaceae provides a good case to support the
711 evolutionary radiation of a dominantly north temperate plant family in response to
712 climatic changes from the late Cretaceous to the present. Finally, based on evidence
713 from molecular phylogeny, divergence times, and morphological characters, we herein
714 recognize the *Zabelia* clade as representing a new subfamily, Zabelioideae, in
715 Caprifoliaceae. The phylogenetic framework presented here also sheds important
716 insights into character evolution in Caprifoliaceae.

717

718 **Acknowledgements**

719 The work was funded by National Scientific Foundation of China (31660055). We
720 thank Gabriel Johnson for his help with the target enrichment experiment, and the
721 United States National Herbarium for permission to sample some collections. We
722 acknowledge the staff in the Laboratories of Analytical Biology at the National
723 Museum of Natural History, the Smithsonian Institution for support and assistance.

724

725 **Author contributions**

726 H.F.W. and J.W. conceived the study. H.F.W. and D.F.M-B. performed the research
727 and analyzed the data. H.X.W., H.F.W., D.F.M-B., J.W. and M.J.M wrote and revised
728 the manuscript.

729

730 **ORCID**

731 **Hong-Xin Wang:** <https://orcid.org/0000-0002-2283-7368>

732 **Diego F. Morales-Briones:** <https://orcid.org/0000-0003-1535-5739>

733 **Michael J. Moore:** <https://orcid.org/0000-0003-2222-8332>

734 **Jun Wen:** <https://orcid.org/0000-0001-6353-522X>

735 **Hua-Feng Wang:** <https://orcid.org/0000-0003-3331-2898>

736

737

738 **References**

739 Abbott RJ, Hegarty MJ, Hiscock SJ, Brennan AC. 2010. Homoploid hybrid
740 speciation in action. *Taxon* 59: 1375–1386.

741 Akaike H. 1973. Information theory and an extension of the maximum likelihood
742 principle. In: Petrov BN, Csaki F, eds. *Second international symposium on*
743 *information theory*. Budapest, Hungary: Akademiai Kiado, 267–281.

744 APG, 1998. An ordinal classification for the families of flowering plants. *Annals of the*
745 *Missouri Botanical Garden* 85: 531–553.

746 APG IV. 2016. An update of the Angiosperm Phylogeny Group classification for the
747 orders and families of flowering plants: APG IV. *Botanical Journal of the Linnean*
748 *Society* 181: 1–20.

749 Avise JC, Robinson TJ. 2008. Hemiplasy: A New Term in the Lexicon of
750 Phylogenetics. *Systematic biology* 57: 503-507.

751 Backlund, A. 1996. Phylogeny of the order Dipsacales. Ph. D. Dissertation.
752 Uppsala: Uppsala University.

753 Backlund A, Pyck N. 1998. Diervillaceae and Linnaeaceae, two new families of
754 caprifolioids. *Taxon* 47: 657–661.

755 Beaulieu JM, Tank DC, Donoghue MJ. 2013. A Southern Hemisphere origin for
756 campanulid angiosperms, with traces of the break-up of Gondwana. *BMC*
757 *Evolutionary Biology*. 13: 80.

758 Bell CD. 2004. Preliminary phylogeny of Valerianaceae (Dipsacales) inferred from
759 nuclear and chloroplast DNA sequence data. *Molecular Phylogenetics and*
760 *Evolution* 31: 340–350.

761 Bell, CD, Donoghue MJ. 2005. Dating the Dipsacales: comparing models, genes, and
762 evolutionary implications. *American Journal of Botany* 92: 284–296.

763 Bell CD, Edwards EJ, Kim ST, Donoghue MJ. 2001. Dipsacales phylogeny based on
764 chloroplast DNA sequences. *Harvard Papers in Botany* 6:481–499.

765 Blackmore S, Cannon MJ. 1983. Palynology and systematics of Morinaceae. *Rev*
766 *Palaeobot Palynol* 40: 207–266.

767 Bolger AM, Lohse, M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina
768 Sequence Data. *Bioinformatics (Oxford, England)* 30: 2114–2120.

769 Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut
770 A, Drummond AJ. 2014. BEAST 2: a software platform for Bayesian evolutionary
771 analysis. *PLoS Computational Biology* 10: e1003537.

772 Caputo G, Cozzolino S. 1994. A cladistic analysis of Dipsacaceae (Dipsacales). *Plant
773 Systematics and Evolution* 189: 41–61.

774 Carlson SE, Mayer V, Donoghue MJ. 2009. Phylogenetic relationships, taxonomy, and
775 morphological evolution in Dipsacaceae (Dipsacales) inferred by DNA sequence
776 data. *Taxon* 58: 1075–1091.

777 Cavender-Bares J, Gonzalez-Rodriguez A, Eaton DAR, Hipp AAL, Beulke
778 A, Manos PS. 2015. Phylogeny and biogeography of the American live oaks
779 (*Quercus* subsection *Virentes*): A genomic and population genetics approach.
780 *Molecular Ecology* 24: 3668–3687.

781 Chamala S, García, N, Godden GT, Krishakumar V, Jordon-Thaden IE, Smet RD et al.
782 2015. MarkerMiner 1.0: A new application for phylogenetic marker development
783 using angiosperm transcriptomes. *Applications in Plant Sciences* 3: 1400115.

784 Copetti D, Bürquez A, Bustamante E, Charboneau JLM, Childs KL, Eguiarte LE, Lee
785 S, Liu TL, McMahon MM, Whiteman NK, Wing RA, Wojciechowski MF,
786 Sanderson MJ. 2017. Extensive gene tree discordance and hemiplasy shaped the
787 genomes of North American columnar cacti. *Proceedings of the National
788 Academy of Sciences* 114: 12003–12007.

789 Degnan JH, Rosenberg NA. 2009. Gene tree discordance, phylogenetic inference and
790 the multispecies coalescent. *Trends in Ecology and Evolution* 24: 332–340.

791 Ding WN, Ree RH, Spicer RA, Xing YW. 2020. Ancient orogenic and monsoon-driven
792 assembly of the world's richest temperate alpine flora. *Science* 369: 578–581.

793 Donoghue MJ, Bell CD, Winkworth RC. 2003. The evolution of reproductive
794 characters in Dipsacales. *International Journal of Plant Sciences* 164:
795 S453–S464.

796 Donoghue MJ, Eriksson T, Reeves PA, Olmstead RG. 2001. Phylogeny and
797 phylogenetic taxonomy of Dipsacales, with special reference to *Sinadoxa* and
798 *Tetradoxa* (Adoxaceae). *Harvard Papers in Botany* 6: 459–479.

799 Donoghue MJ, Olmstead RG, Smith JF, Palmer JD. 1992. Phylogenetic relationships
800 of Dipsacales based on *rbcL* sequences. *Annals of the Missouri Botanical Garden*
801 79: 333–345.

802 Doyle JJ, Doyle J. 1987. A rapid DNA isolation procedure for small quantities of fresh
803 leaf tissue. *Phytochemical Bulletin* 19: 11–15.

804 Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with
805 BEAUti and the BEAST 1.7. *Molecular Biology and Evolution* 29: 1969–1973.

806 Edwards SV. 2009. Is a new and general theory of molecular systematics emerging?
807 *Evolution* 63: 1–19.

808 Feng Y, Peter Comes H, Qiu YX. 2020. Phylogenomic insights into the
809 temporal-spatial divergence history, evolution of leaf habit and hybridization in
810 *Stachyurus* (Stachyuraceae). *Molecular Phylogenetics and Evolution* doi:
811 <https://doi.org/10.1016/j.ympev.2020.106878>.

812 Friis EM. 1985. Angiosperm fruits and seeds from the Middle Miocene of Jutland
813 (Denmark). *Biologiske Skrifter* 24:1–165.

814 Folk RA, Mandel JR, Freudenstein JV. 2017. Targeted enrichment of intronic sequence
815 markers for recent radiations: a phylogenomic example from *Heuchera*
816 (Saxifragaceae). *Applications in Plant Sciences* 3: 1500039.

817 Galtier N, Daubin V. 2008. Dealing with incongruence in phylogenomic analyses.
818 *Philosophical Transactions of the Royal Society B: Biological Sciences* 363:
819 4023–4029.

820 Gan X, Stegle O, Behr J, Steffen JG, Drewe P, Hildebrand KL, Lyngsoe R, Schultheiss
821 SJ, Osborne EJ, Sreedharan VT. et al. 2011. Multiple reference genomes and
822 transcriptomes for *Arabidopsis thaliana*. *Nature* 477: 419–423.

823 García N, Folk RA, Meerow AW, Chamala S, Gitzendanner MS, de Oliveira RS, Soltis
824 DE, Soltis PS. 2017. Deep reticulation and incomplete lineage sorting obscure the

825 diploid phylogeny of rain-lilies and allies (Amaryllidaceae tribe Hippeastreae).
826 *Molecular Phylogenetics and Evolution* 111: 231–247.

827 Gould KR, Donoghue MJ. 2000. Phylogeny and biogeography of *Triosteum*
828 (Caprifoliaceae). *Harvard Papers in Botany* 5:157–166.

829 Hahn C, Bachmann L, Chevreux B. 2013. Reconstructing mitochondrial genomes
830 directly from genomic next-generation sequencing reads-a baiting and iterative
831 mapping approach. *Nucleic Acids Research* 41, e129.

832 Hahn MW, Nakhleh L. 2017. Irrational exuberance for resolved species trees.
833 *Evolution* 70:7–17.

834 Hara H. 1983. A Revision of the Caprifoliaceae of Japan with Reference to Allied
835 Plants in Other Districts and the Adoxaceae. *Academia Scientific Books, Tokyo*.

836 Jacobs B, Geuten K, Pyck N, Huysmans S, Jansen S, Smets E. 2011. Unraveling
837 the phylogeny of *Heptacodium* and *Zabelia* (Caprifoliaceae): an interdisciplinary
838 approach. *Systematic Botany* 36: 231–252.

839 Jacobs B, Pyck N, Smets E. 2010. Phylogeny of the *Linnaea* clade: are *Abelia* and
840 *Zabelia* closely related? *Molecular Phylogenetics and Evolution* 57: 741–752.

841 Johnson MG, Gardner EM, Liu Y, Medina R, Goffinet B, Shaw AJ, Zerega
842 NJC, Wickett NJ. 2016. HybPiper: extracting coding sequence and introns for
843 phylogenetics from high-throughput sequencing reads using target enrichment.
844 *Applications in Plant Sciences* 4: 1600016.

845 Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software Version
846 7: improvements in performance and usability. *Molecular Biology and Evolution*
847 30: 772–780.

848 Kim T. 1998. Phylogenetic studies of tribe Linnaeae (Caprifoliaceae). *Ph. D Thesis*,
849 *Chonbuk National University*.

850 Kim TJ, Sun BY, Suh Y. 2001. Palynology and cytotaxonomy of the genus *Abelia* s.l.,
851 Caprifoliaceae. *Korean Journal of Plant Taxonomy* 31: 91–106.

852 Koenen EJM, Ojeda DI, Bakker FT, Wieringa JJ, Catherine K, Hardy OJ, Pennington
853 RT, Herendeen PS, Bruneau A, Hughes CE. 2020. The origin of the legumes is a

854 complex paleopolyploid phylogenomic tangle closely associated with the
855 cretaceous-paleogene (K-Pg) mass extinction event. *Systematic Biology* syaa041.

856 Konowalik K, Wagner F, Tomasello S, Vogt R, Oberprieler C. 2015. Detecting
857 reticulate relationships among diploid *Leucanthemum* Mill. (Compositae,
858 Anthemideae) taxa using multilocus species tree reconstruction methods and
859 AFLP fingerprinting. *Molecular Phylogenetics and Evolution* 92: 308–328.

860 Landrein S. 2010. *Abelia* and its relatives. *Plantsman, NS* 9: 40–47.

861 Landrein S, Prenner G. 2013. Unequal twins? Inflorescence evolution in the twinflower
862 tribe Linnaeae (Caprifoliaceae *s.l.*). *International Journal of Plant Sciences* 174:
863 200–233.

864 Landrein S, Prenner G. 2016. Structure, ultrastructure and evolution of floral nectaries
865 in the twinflower tribe Linnaeae and related taxa (Caprifoliaceae). *Botanical
866 Journal of Linnean Society* 181: 37–69.

867 Landrein S, Prenner G, Chase MW, Clarkson JJ. 2012. *Abelia* and relatives:
868 Phylogenetics of Linnaeae (Dipsacales Caprifoliaceae *s.l.*) and a new
869 interpretation of their inflorescence morphology. *Botanical Journal of Linnean
870 Society* 169: 692–713.

871 Lańcucka-Rodoniowa M. 1967. Two new genera: *Hemiptelea* Planch. and *Weigela*
872 Thumb. in the younger Tertiary of Poland. *Acta Palaeobotanica* 8: 1–17.

873 Lee-Yaw JA, Grassa CJ, Joly S, Andrew RL, Rieseberg LH. 2019. An evaluation of
874 alternative explanations for widespread cytonuclear discordance in annual
875 sunflowers (*Helianthus*). *New Phytologist* 221: 515–526.

876 Lewis PO. 2001. A likelihood approach to estimating phylogeny from discrete
877 morphological character. *Systematic Biology* 50: 913–925.

878 Li HT, Yi TS, Gao LM, Ma PF, Zhang T, Yang JB, Gitzendanner MA, Fritsch PW, Cai
879 J, Luo Y, Wang H, Bank MV, Zhang SD, Wang QF, Wang J, Zhang ZR, Fu CN,
880 Yang J, Hollingsworth PM, Chase MW, Soltis DE, Soltis PS, Li DZ. 2019. Origin
881 of angiosperms and the puzzle of the Jurassic gap. *Nature Plants* 5: 461–470.

882 Liu L, Xi Z, Wu S, Davis CC, Edwards SV. 2015. Estimating phylogenetic trees from
883 genome-scale data. *Annals of the New York Academy of Sciences* 1360: 36–53.

884 Lin HY, Hao YJ, Li JH, Fu CX, Soltis PS, Soltis DE, Zhao YP. 2019. Phylogenomic
885 conflict resulting from ancient introgression following species
886 diversification in *Stewartia* s.l. (Theaceae). *Molecular Phylogenetics and*
887 *Evolution* 135: 1–11.

888 Linder HP, Naciri Y. 2015. Species delimitation and relationships: the dance of the
889 seven veils. *Taxon* 64: 3–16.

890 Long C, Kubatko L. 2018. The Effect of Gene Flow on Coalescent-based
891 Species-Tree Inference. *Systemmatic biology* 67: 770–785.

892 Lu LM, Mao LF, Yang T, Ye JF, Liu B, Li HL, Sun M, Miller JT, Mathews S, Hu HH,
893 Niu YT, Peng DX, Chen YH, Smith SA, Chen M, Xiang KL, Le CT, Dang VC, Lu
894 AM, Soltis PS, Soltis DE, Li JH, Chen ZD. 2018. Evolutionary history of the
895 angiosperm flora of china. *Nature* 554: 234–238.

896 Mallet J. 2007. Hybrid speciation. *Nature* 466: 279–283.

897 Maddison WP, Maddison DR. 2018. Mesquite: a modular system for evolutionary
898 analysis. Version 3.51 <http://www.mesquiteproject.org>.

899 Manchester SR. 2000. Late Eocene fossil plants of the John Day Formation, Wheeler
900 County, Oregon. *Oregon Geology* 62: 51–63.

901 Manchester SR, Donoghue MJ. 1995. Winged fruits of Linnaeae (Caprifoliaceae) in
902 the Tertiary of western North America: *Diplodipelta* gen. nov. *International*
903 *Journal of Plant Science* 156: 709–722.

904 Moore BR, Donoghue MJ. 2007. Correlates of diversification in the plant clade
905 Dipsacales: Geographic movement and evolutionary innovations. *American*
906 *Naturalist* 170: S28–S55.

907 Morales-Briones DF, Liston A, Tank DC. 2018. Phylogenomic analyses reveal a deep
908 history of hybridization and polyploidy in the Neotropical genus *Lachemilla*
909 (Rosaceae). *New Phytologist* 218: 1668–1684.

910 Morales-Briones DF, Gehrke B, Huang CH, Liston A, Ma H, Marx HE, Tank DC,
911 Yang Y. 2020. Analysis of paralogs in target enrichment data pinpoints multiple
912 ancient polyploidy events in *Alchemilla* s.l. (Rosaceae). *BioRxiv*.
913 <https://doi.org/10.1101/2020.08.21.261925>.

914 Morales-Briones DF, Kadereit G, Tefarikis DT, Moore MJ, Smith SA,
915 Brockington SF, Timoneda A, et al. 2021. Disentangling sources of gene tree
916 discordance in phylotranscriptomic datasets: a case study from Amaranthaceae *s.l.*
917 *Systematic Biology* 70: 219-235.

918 Pease JB, Brown JW, Walker JF, Hinchliff CE, Smith SA. 2018.
919 Quartet Sampling distinguishes lack of support from conflicting support
920 in the green plant tree of life. *American Journal of Botany* 105: 385–403.

921 Posada D. 2008. jModelTest: phylogenetic model averaging. *Molecular Biology and*
922 *Evolution* 25:1253–1256.

923 Pyck N. 2001. Phylogenetic relationships within Dipsacales: a combined molecular and
924 morphological approach. PhD thesis. Katholieke University, Louvain, Belgium.

925 Robinson TJ, Ruiz-Herrera A, Avise JC. 2008. Hemiplasy and homoplasy in the
926 karyotypic phylogenies of mammals. *Proceedings of the National Academy of*
927 *Sciences* 105: 14477-14481.

928 Salichos L, Stamatakis A, Rokas A. 2014. Novel information theory-based measures
929 for quantifying incongruence among phylogenetic trees. *Molecular Biology and*
930 *Evolution* 31: 1261–1271.

931 Sayyari E, Mirarab S. 2016. Fast coalescent-based computation of local branch support
932 from quartet frequencies. *Molecular Biology and Evolution* 33: 1654–1668.

933 Schwarz G. 1978. Estimating the dimension of a model. *Annals of Statistics* 6:
934 461–464.

935 Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Bralower TJ, Christeson
936 GL, Claeys P, Cockell CS, Collins GS, Deutsch A, Goldin TJ, Goto K,
937 Grajales-Nishimura M, et al. 2010. The Chicxulub asteroid impact and mass
938 extinction at the Cretaceous-Paleogene boundary. *Science* 327: 1214–1218.

939 Smith SA, Beaulieu JM, Donoghue MJ. 2010. An uncorrelated relaxed clock analysis
940 suggests an earlier origin for flowering plants. *Proceedings of the National*
941 *Academy of Sciences of the United States of America* 107: 5897–5902.

942 Smith SA, Dunn CW. 2008. Phyutility: a phyloinformatics tool for trees,
943 alignments and molecular data. *Bioinformatics* 24: 715–716.

944 Smith SA, Moore MJ, Brown JW, Yang Y. 2015. Analysis of phylogenomic datasets
945 reveals conflict, concordance, and gene duplications with examples from animals
946 and plants. *BMC Evolutionary Biology* 15: 150.

947 Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post
948 analysis of large phylogenies. *Bioinformatics* 30: 1312–1313.

949 Stevens PF. 2001 onwards. Angiosperm Phylogeny Website. Version Apr. 15, 2019
950 <http://www.mobot.org/MOBOT/research/APweb/>.

951 Solís-Lemus C, Ané C. 2016. Inferring phylogenetic networks with maximum
952 pseudolikelihood under incomplete lineage sorting. *PLOS Genetics* 12:
953 e1005896.

954 Solís-Lemus C, Yang MY, Ané C. 2016. Inconsistency of Species Tree Methods under
955 Gene Flow. *Systematic Biology* 65: 843-851.

956 Stull GW, Soltis PS, Soltis DE, Gitzendanner MA, Smith SA. 2020. Nuclear
957 phylogenomic analyses of asterids conflict with plastome trees and support novel
958 relationships among major lineages. *American Journal of Botany* 107: 1–16.

959 Sugiura N. 1978. Further analysis of the data by Akaike's information criterion and
960 the finite corrections. *Communications in Statistics - Theory and Methods A* 7:
961 13–26.

962 Sukumaran J, Holder MT. 2010. DendroPy: A Python library for phylogenetic
963 computing. *Bioinformatics* 26: 1569–1571.

964 Sun M, Soltis DE, Soltis PS, Zhu X, Burleigh JG, Chen Z. 2015. Deep phylogenetic
965 incongruence in the angiosperm clade Rosidae. *Molecular Phylogenetics and*
966 *Evolution* 83: 156–166.

967 Szöllősi GJ, Tannier E, Daubin V, Boussau B. 2015. The inference of gene trees with
968 species trees. *Systematic Biology* 64: e42–e62.

969 Tang YC, Lu AM. 2005. Paraphyletic group, PhyloCode and phylogenetic species
970 – the current debate and a preliminary commentary. *Acta Phytotaxonomica*
971 *Sinica* 43: 403–419.

972 Tank DC, Donoghue MJ. 2010. Phylogeny and phylogenetic nomenclature of the
973 Campanulidae based on an expanded sample of genes and taxa. *Systematic Botany*
974 35: 425–441.

975 Than C, Ruths D, Nakhleh L. 2008. A software package for analyzing and
976 reconstructing reticulate evolutionary histories. *BMC Bioinformatics* 9: 322

977 Traiser C, Klotz S, Uhl D, Mosbrugger V. 2005. Environmental signals from leaves a
978 physiognomic analysis of European vegetation. *New Phytologist* 166: 465–484.

979 Vargas OM, Heuertz M, Smith SA, Dick CW. 2019. Target sequence capture in the
980 Brazil nut family (Lecythidaceae): Marker selection and in silico capture from
981 genome skimming data. *Molecular Phylogenetics and Evolution* 135: 98–104.

982 Vargas OM, Ortiz EM, Simpson BB. 2017. Conflicting phylogenomic signals reveal a
983 pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae:
984 Astereae: *Diplostephium*). *New Phytologist* 214: 1736–1750.

985 Verlaque R. 1983. Contribution l'étude du genre *Morina* L. *Pollen ET Spores* 25:
986 143–162.

987 Wang HF, Landrein S, Dong WP, Nie ZL, Kondo K, Funamoto T, Wen J, Zhou SL.
988 2015. Molecular phylogeny and biogeographic diversification of Linnaeoideae
989 (Caprifoliaceae *s.l.*) disjunctively distributed in Eurasia, North American and
990 Mexico. *PLoS One* 10: e0116485.

991 Wang HX, Liu H, Moore MJ, Landrein S, Liu B, Zhu ZX, Wang HF. 2020. Plastid
992 phylogenomic insights into the evolution of the Caprifoliaceae *s.l.* (Dipsacales).
993 *Molecular Phylogenetics and Evolution* 142: 106641.

994 Wang YX, Cao Z, Ogilvie HA, Nakhleh L. 2020. Phylogenomic assessment of the
995 role of hybridization and introgression in trait evolution. BioRxiv preprint doi:
996 <https://doi.org/10.1101/2020.09.16.300343>.

997 Weitemier K, Straub SCK, Cronn RC, Fishbein M, Schmickl R, McDonnell A, Liston
998 A. 2014. Hyb-Seq: combining target enrichment and genome skimming for plant
999 phylogenomics. *Applications in Plant Sciences* 2: 9.

1000 Wen D, Yu Y, Zhu J, Nakhleh L. 2018. Inferring phylogenetic networks using
1001 PhyloNet. *Systematic Biology* 67: 735–740.

1002 Widholm TJ, Grewe F, Huang JP, Mercado-Díaz JA, Gofnet B, Lücking R, Moncada
1003 B, Mason-Gamer R, Lumbsch HT. 2019. Multiple historical processes obscure
1004 phylogenetic relationships in a taxonomically difficult group (Lobariaceae,
1005 Ascomycota). *Scientific Reports* 9: 8968.

1006 Xiang CL, Dong HJ, Landrein S, Zhao F, Yu WB, Soltis DE, Soltis PS, Backlund A,
1007 Wang HF, Li DZ, Peng H. 2020. Revisiting the phylogeny of Dipsacales: new
1008 insights from phylogenomic analyses of complete chloroplast genome sequences.
1009 *Journal of Systematics and Evolution* 58: 103–117.

1010 Xiang YZ, Huang CH, Hu YH, Wen J, Li SS, Yi TS, Chen HY, Xiang J, Ma H. 2016.
1011 Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of
1012 geological times and genome duplication. *Molecular Biology and Evolution* 34:
1013 262–281.

1014 Yakimowski SB, Rieseberg LH. 2014. The role of homoploid hybridization in
1015 evolution: a century of studies synthesizing genetics and ecology. *American
1016 Journal of Botany* 101: 1247–1258.

1017 Yang QR, Landrein S. 2011. Caprifoliaceae. In: Wu Z, Hong D, Raven PH eds. *Flora
1018 of China*. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. 19:
1019 617–618.

1020 Yang Y, Smith SA. 2014. Orthology inference in nonmodel organisms
1021 using transcriptomes and low-coverage genomes: improving accuracy and
1022 matrix occupancy for phylogenomics. *Molecular Biology and Evolution* 31:
1023 3081–3092.

1024 Yu Y, Degnan JH, Nakhleh L. 2012. The probability of a gene tree topology within a
1025 phylogenetic network with applications to hybridization detection. *PLoS Genetics*
1026 8: e1002660.

1027 Zhai W, Duan X, Zhang R, Guo C, Li L, Xu G, Shan H, Kong H, Ren Y. 2019.
1028 Chloroplast Genomic Data Provide New and Robust Insights into the Phylogeny
1029 and Evolution of the Ranunculaceae. *Molecular Phylogenetics and Evolution*
1030 135: 12–21.

1031 Zhang C, Rabiee M, Sayyari E, Mirarab S. 2018. ASTRAL-III: polynomial time
1032 species tree reconstruction from partially resolved gene trees. *BMC*
1033 *Bioinformatics*. 19: 523.

1034 Zhang WH, Chen ZD, Li JH, Chen HB, Tang YC. 2003. Phylogeny of the Dipsacales
1035 *s.l.* based on chloroplast *trnL-F* and *ndhF* sequences. *Molecular Phylogenetics*
1036 *and Evolution* 26: 176–189.

1037

1038

1039 Fig. 1. Floral diversity of Dipsacales. (A) *Kolkwitzia amabilis*; (B) *Zabelia integrifolia*;
1040 (C) *Scabiosa comosa* (D) *Valeriana flaccidissima*; (E) *Acanthocalyx nepalensis*
1041 subsp. *delavayi*; (F) *Lonicera fragrantissima* var. *lancifolia*; (G) *Weigela*
1042 *coraeensis*; (H) *Viburnum opulus* subsp. *calvescens*.

1043 Fig. 2. Alternative relationships for the Caprifoliaceae backbone based on previous
1044 analyses. (A) Donoghue et al. (2001); parsimony analyses based on chloroplast
1045 *rbcL* sequences and morphological characteristics; (B) Bell et al. (2001);
1046 maximum likelihood tree from the combined chloroplast DNA data; (C) Zhang et
1047 al. (2003); maximum likelihood tree based on chloroplast *trnL-F* and *ndhF*
1048 sequences; (D) Jacobs et al. (2010); maximum parsimony Dipsacales phylogeny
1049 based on nuclear and chloroplast sequence data; (E) Wang et al. (2020); maximum
1050 likelihood tree based on 68 complete plastomes. (F) This study; species tree based
1051 on nuclear concatenated data set.

1052 Fig. 3. Species tree of the nuclear dataset inferred with ASTRAL- \square . Local posterior
1053 probabilities and internode certainty all (ICA) scores are shown above branches
1054 for main clades. Pie charts next to the nodes present the proportion of congruent
1055 gene trees that supports that clade (blue), the proportion of discordant gene trees of
1056 the main alternative topology for that clade (green), the proportion of discordant
1057 trees for the remaining alternative topologies (red), dark gray represents the
1058 proportion of uninformative gene trees (bootstrap support < 50%), and light gray
1059 is the proportion of missing data. Numbers above branches indicate (LPP) / ICA
1060 score / number concordant gene trees / number of all discordant gene trees. Major
1061 taxonomic groups or main clades in the family as currently recognized are
1062 indicated by branch colors as a visual reference to relationships.

1063 Fig. 4. Tanglegram of the nuclear concatenated (left) and plastid (right) phylogenies.
1064 Dotted lines connect taxa between the two phylogenies. Maximum likelihood
1065 bootstrap support values are shown above branches. The asterisks indicate
1066 maximum likelihood bootstrap support of 100%. Major taxonomic groups or main
1067 clades in the family as currently recognized are indicated by branch colors as a
1068 visual reference to relationships.

1069 Fig. 5. Best supported species networks inferred with Phylonet for the (a) 11-taxon, (b)
1070 9-taxon, and (c) 7-taxon data sets. Numbers next to the inferred hybrid branches
1071 indicate inheritance probabilities. Red lines represent minor hybrid edges (edges
1072 with an inheritance contribution < 0.50)

1073 Fig. 6. BEAST analysis of divergence times based on the nuclear data set, under
1074 Analysis I. Calibration points are indicated by A, B. and C. Numbers 1–11
1075 represent major divergence events in Caprifoliaceae; mean divergence times and
1076 95% highest posterior densities are provided for each nodes of interests.

1077 Fig. 7. Maximum likelihood inference of character evolution in Caprifoliaceae based
1078 on the plastid matrix. Left, Number of stamens; Right, Style exertion.

1079 Fig. 8. Maximum likelihood inference of character evolution in Caprifoliaceae based
1080 on the plastid matrix. Left, fruit type; Right, Number of carpels.

1081 Fig. 9. Maximum likelihood inference of character evolution in Caprifoliaceae based
1082 on the plastid matrix. Left, number of seeds; Right, epicalyx presence/absence.

1083 Fig. S1. Simplified ML tree generated from the nuclear gene data showing the
1084 distribution of selected character states. The asterisks indicate maximum
1085 likelihood bootstrap support of 100%.

1086 Figure. S2. Heatmaps showing gene recovery efficiency for the nuclear gene in 46
1087 species of Caprifoliaceae. Columns represent genes, and each row is one
1088 sample. Shading indicates the percentage of the reference locus length
1089 coverage.

1090 Fig. S3. ASTRAL-III species tree. Numbers above branches indicate the number of
1091 gene trees concordant/conflicting with that node in the species tree. Numbers
1092 below the branches are the Internode Certainty All (ICA) score. Pie charts next
1093 to the nodes present the proportion of gene trees that supports that clade (blue),
1094 the proportion that supports the main alternative for that clade (green), the
1095 proportion that supports the remaining alternatives (red), light gray means
1096 missing data, and dark gray mean uninformative (BS < 50%).

1097 Fig. S4. Results of the Quartet Sampling of the ASTRAL tree. Node labels indicate
1098 QC/Quartet Differential (QD)/Quartet Informativeness (QI) scores.

1099 Fig. S5. Results of the Quartet Sampling of the nuclear concatenated RAxML tree.
1100 Node labels indicate QC/Quartet Differential (QD)/Quarte Informativeness (QI)
1101 scores.

1102 Fig. S6. Maximum likelihood cladogram of Caprifoliaceae inferred from RAxML
1103 analysis of the concatenated 713-nuclear gene supermatrix. Numbers above
1104 branches indicate the number of gene trees concordant/conflicting with that node
1105 in the species tree. Numbers below the branches are the Internode Certainty All
1106 (ICA) score. Pie charts next to the nodes present the proportion of gene trees that
1107 supports that clade (blue), the proportion that supports the main alternative for that
1108 clade (green), the proportion that supports the remaining alternatives (red), light
1109 gray means missing data, and dark gray mean uninformative (BS < 50%).

1110 Fig. S7. Results of the Quartet Sampling of the chloroplast tree. Node labels indicate
1111 QC/Quartet Differential (QD)/Quarte Informativeness (QI) scores.

1112 Fig. S8. Phylogeny of the plastid DNA dataset; numbers above branches represent
1113 clade frequencies of the simulated gene trees.

1114 Fig. S9. Best supported species networks inferred with PhyloNet for the (a) 11-taxon, (b)
1115 9-taxon, and (c) 7-taxon data sets. Blue branches connect the hybrid nodes. Numbers
1116 next to the hybrid branches indicate inheritance probabilities.

1117 Fig. S10. BEAST analysis of divergence times based on the nuclear data. Calibration
1118 points are indicated by A, B. and C. Numbers 1–11 represent major divergence
1119 events in Caprifoliaceae; mean divergence times and 95% highest posterior
1120 densities are provided for each. □, □ and □ indicate the three analyses that
1121 varied in the placement of the *Diplodipelta* fossil constraint.

1122 Fig. S11. BEAST analysis of divergence times based on the cpDNA data. Calibration
1123 points are indicated by A, B, and C. Numbers 1–10 represent major divergence
1124 events in Caprifoliaceae; mean divergence times and 95% highest posterior
1125 densities are provided for each. □, □ and □ indicate the three analyses that
1126 varied in the placement of the *Diplodipelta* fossil constraint.

1127 Fig. S12. Maximum likelihood inference of character evolution in Caprifoliaceae based
1128 on the nuclear matrix. Left, Number of stamens; Right, Style exertion.

1129 Fig. S13. Maximum likelihood inference of character evolution in Caprifoliaceae based
1130 on the nuclear matrix. Left, Style of fruit; Right, Number of carpels.

1131 Fig. S14. Maximum likelihood inference of character evolution in Caprifoliaceae based
1132 on the nuclear matrix. Left, number of seeds; Right, epicalyx presence/absence.

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156 Table 1 Dataset statistics, including the number of taxa, number of characters, number
1157 of PI characters, missing data.

Alignment	No. of	No. sites	Missing data (%)	No. of variable/ Parsimony	ML analysis
-----------	-----------	-----------	---------------------	-------------------------------	-------------

	taxa			informative sites	
Nuclear	46	343,609	34	144,517/96,479	GTR+G
cpDNA	46	208,607	25	55,059/32,960	GTR+G+I

1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176 Table 2 Model selection of different species networks and bifurcating trees.
1177

Topology	lnL	Parameters	Loci	Number of hybridizations	Information criteria		
					AIC	AICc	BIC
11 taxa							
nuclear ASTRAL	-2834.940114	19	178	N/A	5707.880227	5712.690354	5768.334115
nuclear RAxML	-2848.731017	19	178	N/A	5735.462034	5740.272161	5795.915922
cpDNA	-3004.815841	19	178	N/A	6047.631682	6052.441809	6108.08557
Network 1	-2745.311471	21	178	1	5532.622943	5538.54602	5599.440397
Network 2	-2639.120484	23	178	2	5324.240969	5331.4098	5397.421991
Network 3	-2628.091812	25	178	3	5306.183624	5314.736256	5385.728213
Network 4	-2571.727153	27	178	4	5197.454305	5207.534305	5283.362461
Network 5	-2626.829726	27	178	4	5307.659452	5317.739452	5393.567608
9 taxa							
nuclear ASTRAL	-3436.346996	15	328	N/A	6902.693992	6904.232453	6959.589196
nuclear RAxML	-3438.060346	15	328	N/A	6906.120691	6907.659153	6963.015895
cpDNA	-3489.910056	15	328	N/A	7009.820111	7011.358573	7066.715316
Network1	-3324.554786	17	328	1	6683.109571	6685.083765	6747.590803
Network2	-3321.944353	19	328	2	6681.888706	6684.356239	6753.955965
Network3	-3161.006574	21	328	3	6364.013147	6367.032755	6443.666433
Network4	-3189.59271	21	328	3	6421.185421	6424.205028	6500.838706
Network 5	-3037.728627	21	328	3	6117.457254	6120.476862	6197.11054
7 taxa							
nuclear ASTRAL	-2756.695803	11	496	N/A	5535.391606	5535.937061	5581.663942
nuclear RAxML	-2762.789144	11	496	N/A	5547.578288	5548.123743	5593.850623

cpDNA	-2801.967642	11	496	N/A	5625.935285	5626.480739	5672.20762
Network1	-2750.416642	13	496	1	5526.833285	5527.588472	5581.518772
Network2	-2750.618801	13	496	1	5527.237602	5527.992789	5581.923089
Network3	-2746.173709	17	496	3	5526.347418	5527.627753	5597.859209
Network4	-2601.483732	17	496	3	5236.967465	5238.247799	5308.479255
Network 5	-2671.907806	17	496	3	5377.815611	5379.095946	5449.327402

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197 **Table S1. List of species and vouchers used in this study.**

	Family	Subfamily	Taxon	Locality	Voucher specimen number	Serial number	SRA accession
1	Caprifoliaceae	Linnaeoideae	<i>Dipelta floribunda</i> Maximowicz Bull.	Longnan, Gansu, China.	HUTB, E57	E57	SRR13705796.
2	Caprifoliaceae	Linnaeoideae	<i>Dipelta floribunda</i> Maximowicz Bull.	Longnan, Gansu, China.	HUTB, E56	E56	SRR13705795
3	Caprifoliaceae	Linnaeoideae	<i>Dipelta floribunda</i> Maximowicz Bull.	Longnan, Gansu, China.	HUTB, E55	E55	SRR13705794
4	Caprifoliaceae	Linnaeoideae	<i>Diabelia serrata</i> (Siebold et Zucc.) Landrein	Anan, Tokushima, Japan	HUTB, E123	E123	SRR13705758
5	Caprifoliaceae	Linnaeoideae	<i>Diabelia ionostachya</i> var. <i>stenophylla</i> (Siebold & Zucc.) Landrein	Tanyama, Nagano, Japan	HUTB, E306	E306	SRR13705756
6	Caprifoliaceae	Linnaeoideae	<i>Diabelia sanguinea</i> (Siebold & Zucc.) Landrein	Sendai, Miyagi, Japan	HUTB, E301	E301	SRR13705755
7	Caprifoliaceae	Linnaeoideae	<i>Diabelia spathulata</i> var. <i>spathulata</i> (H. Hara) Landrein	Shiga, Japan	HUTB, E198	E198	SRR13705757
8	Caprifoliaceae	Linnaeoideae	<i>Diabelia ionostachya</i> var. <i>wenzhouensis</i> (Siebold & Zucc.) Landrein	Wenzhou, Zhejiang, China	HUTB, E204	E204	SRR13705754
9	Caprifoliaceae	Linnaeoideae	<i>Kolkwitzia amabilis</i> Graebn.	Weinan, Shaanxi, China	HUTB, E9	E9	SRR13705797
10	Caprifoliaceae	Linnaeoideae	<i>Abelia macrotera</i> (Graebn. et Buchw.) Rehd.	Nanchuan, Chongqing, China	HUTB, E110	E110	SRR13705799
11	Caprifoliaceae	Linnaeoideae	<i>Abelia uniflora</i> R. Brown	Wuyishan, Fujian, China	HUTB, E51	E51	SRR13705798
12	Caprifoliaceae	Linnaeoideae	<i>Abelia chinensis</i> R. Brown	Jujiang, Jiangxi, China	HUTB, E206	E206	SRR13705765
13	Caprifoliaceae	Linnaeoideae	<i>Abelia chinensis</i> var. <i>ionandra</i> (André) Rehd.	Yilan, Taiwan, China	HUTB, E30	E30	SRR13705776
14	Caprifoliaceae	Linnaeoideae	<i>Abelia forrestii</i> (Diels) W. W. Smith	Nujiang, Yunnan, China	HUTB, E37	E37	SRR13705787
15	Caprifoliaceae	Linnaeoideae	<i>Vesalea occidentalis</i> (Villarreal) Wang, H.F. & Landrein	Durango, Mexico	HUTB, E96	E96	SRR13705793

16	Caprifoliaceae	Linnaeoideae	<i>Vesalea coriacea</i> (Hemsl.) T.Kim & B.Sun ex Landrein	San Luis Potosi, Mexico	HUTB, E284	E284	SRR13705790
17	Caprifoliaceae	Linnaeoideae	<i>Vesalea coriacea</i> (Hemsl.) T.Kim & B.Sun ex Landrein	San Luis Potosi, Mexico	HUTB, E89	E89	SRR13705789
18	Caprifoliaceae	Linnaeoideae	<i>Vesalea mexicana</i> Villarreal	San Luis Potosi, Mexico	HUTB, E93	E93	SRR13705792
19	Caprifoliaceae	Linnaeoideae	<i>Vesalea floribunda</i> M.Martens & Galeotti	Oaxaca, Mexico	HUTB, E92	E92	SRR13705791
20	Caprifoliaceae	Linnaeoideae	<i>Linnaea borealis</i> Linn.	Yili, Xinjiang, China	HUTB, E59	E59	SRR13705788
21	Caprifoliaceae	Linnaeoideae	<i>Linnaea borealis</i> Linn.	Yili, Xinjiang, China	HUTB, E14	E14	SRR13705786
22	Caprifoliaceae	Zabelia	<i>Zabelia biflora</i> Turcz.	Dushanbe, Tajikistan	HUTB, E100	E100	SRR13705775
23	Caprifoliaceae	Zabelia	<i>Zabelia integrifolia</i> Koidz	Fukuoka, Kyushu, Japan	HUTB, E15	E15	SRR13705777
24	Caprifoliaceae	Zabelia	<i>Zabelia dielsii</i> (Graebn.) Makino	Ganzi, Sichuan, China	HUTB, E286	E286	SRR13705778
25	Caprifoliaceae	Zabelia	<i>Zabelia dielsii</i> (Graebn.) Makino	Ganzi, Sichuan, China	HUTB, E108	E108	SRR13705774
26	Caprifoliaceae	Zabelia	<i>Zabelia triflora</i> R.Br. ex Wall.	Bangalore, India	HUTB, E276	E276	SRR13705773
27	Caprifoliaceae	Monrinoideae	<i>Morina longifolia</i> Wall. ex DC.	Dushanbe, Tajikistan	HUTB, E20	E20	SRR13705771
28	Caprifoliaceae	Monrinoideae	<i>Acanthocalyx alba</i> (Hand.-Mazz.) M. Connon	Nujiang, Yunnan, China	HUTB, E19	E19	SRR13705772
29	Caprifoliaceae	Valerianoideae	<i>Centranthus ruber</i> DC.	San Francisco, California, United States	US 2998828	E220	SRR13705784
30	Caprifoliaceae	Valerianoideae	<i>Valerianella dentata</i> (L.) Pollich	Smyrna, Tennessee, United States	US 2998828	E217	SRR13705782
31	Caprifoliaceae	Valerianoideae	<i>Valeriana urticifolia</i> Kunth	Autopista Orizaba-Puebla, Vera Cruz, Mexico	US 3714857	E219	SRR13705785
32	Caprifoliaceae	Valerianoideae	<i>Valeriana officinalis</i> Linn.	Baoding, Hebei, China	HUTB, E27	E27	SRR13705783
33	Caprifoliaceae	Dipsacoideae	<i>Scabiosa canescens</i> Waldst. & Kit.	Athus, Espe, Belgium	US 1273936	E227	SRR13705781
34	Caprifoliaceae	Dipsacoideae	<i>Scabiosa tschiliensis</i> Grünig	Yanqing, Beijing, China	HUTB, E21	E21	SRR13705780
35	Caprifoliaceae	Dipsacoideae	<i>Dipsacus japonicus</i> Miq.	Beijing, China	HUTB, E23	E23	SRR13705779
36	Caprifoliaceae	Caprifolioideae	<i>Lonicera arizonica</i> Hemsl.	Miyun, Beijing, China	HUTB, E269	E269	SRR13705770

37	Caprifoliaceae	Caprifolioideae	<i>Lonicera ligustrina</i> Wall.	Shennongjia, Hubei, China	HUTB, E74	E74	SRR13705769
38	Caprifoliaceae	Caprifolioideae	<i>Lonicera confusa</i> D.C.	Haikou, Hainan, China	HUTB, E193	E193	SRR13705768
39	Caprifoliaceae	Caprifolioideae	<i>Lonicera korolkowii</i> Stapf.	Baoding, Hebei, China	HUTB, E212	E212	SRR13705767
40	Caprifoliaceae	Caprifolioideae	<i>Symporicarpos orbiculatus</i> (L.) Macm.	Lynchburg, Virginia, United States	US 2099602	E237	SRR13705766
41	Caprifoliaceae	Caprifolioideae	<i>Heptacodium miconioides</i> Rehder	Hangzhou, Zhejiang, China	HUTB, E28	E28	SRR13705764
42	Caprifoliaceae	Divervilloideae	<i>Diervilla lonicera</i> Mill.	Lambton, Ontario, United States	US 3666234	E331	SRR13705763
43	Caprifoliaceae	Divervilloideae	<i>Weigela florida</i> (Bunge) A. DC.	Kangwon, Korea	HUTB, E99	E99	SRR13705762
44	Adoxaceae-Outgroup	Adoxoideae	<i>Sambucus williamsii</i> Hance.	Haidian, Beijing, China	HUTB, E208	E208	SRR13705760
45	Adoxaceae-Outgroup	Adoxoideae	<i>Sambucus nigra</i> Linn.	Yanqing, Beijing, China	HUTB, E207	E207	SRR13705761
46	Adoxaceae-Outgroup	Opuloideae	<i>Viburnum opulus</i> Linn.	Qingdao, Shandong, China	HUTB, E162	E162	SRR13705759

1198

1199

1200

1201

1202

1203

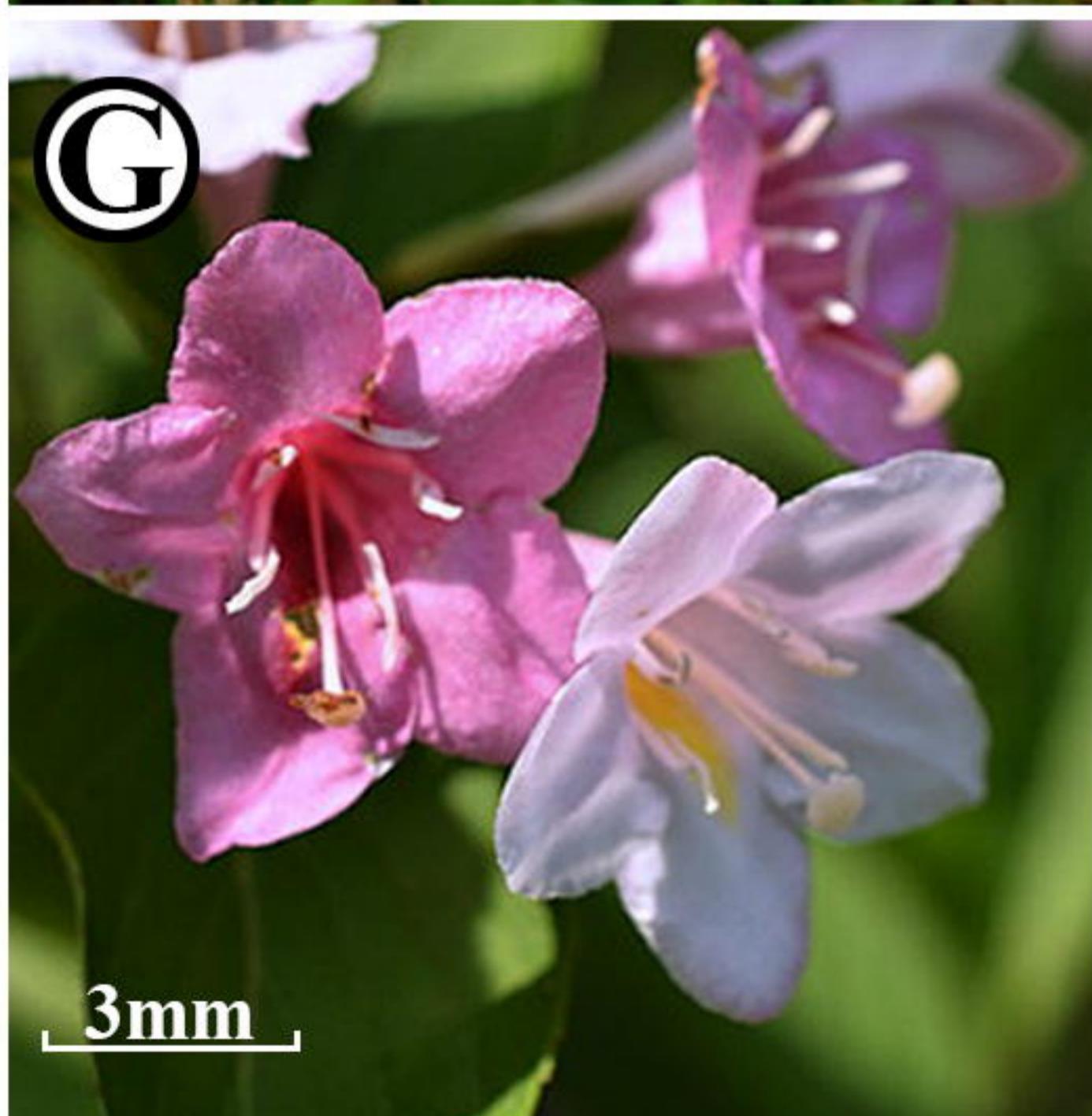
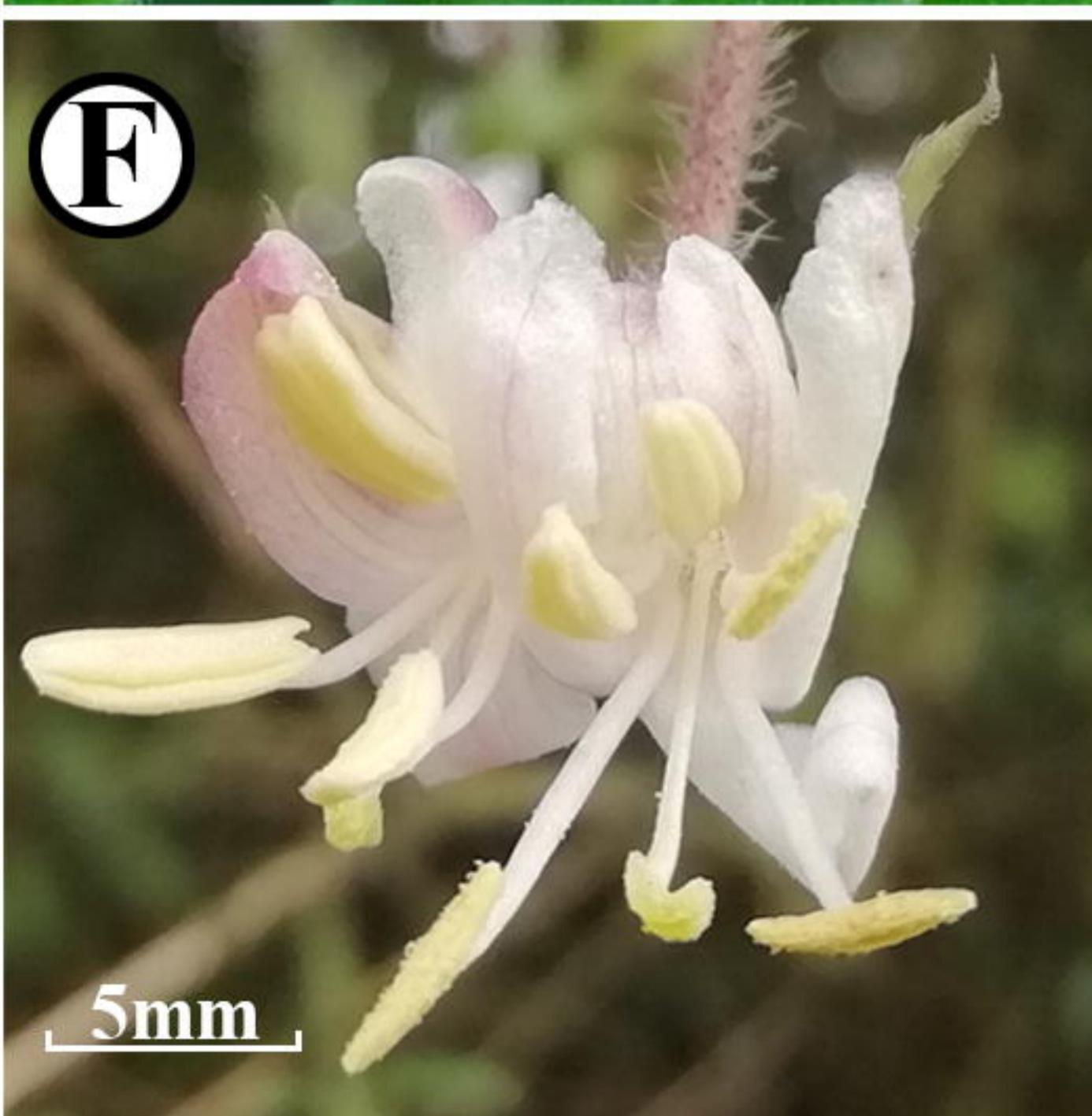
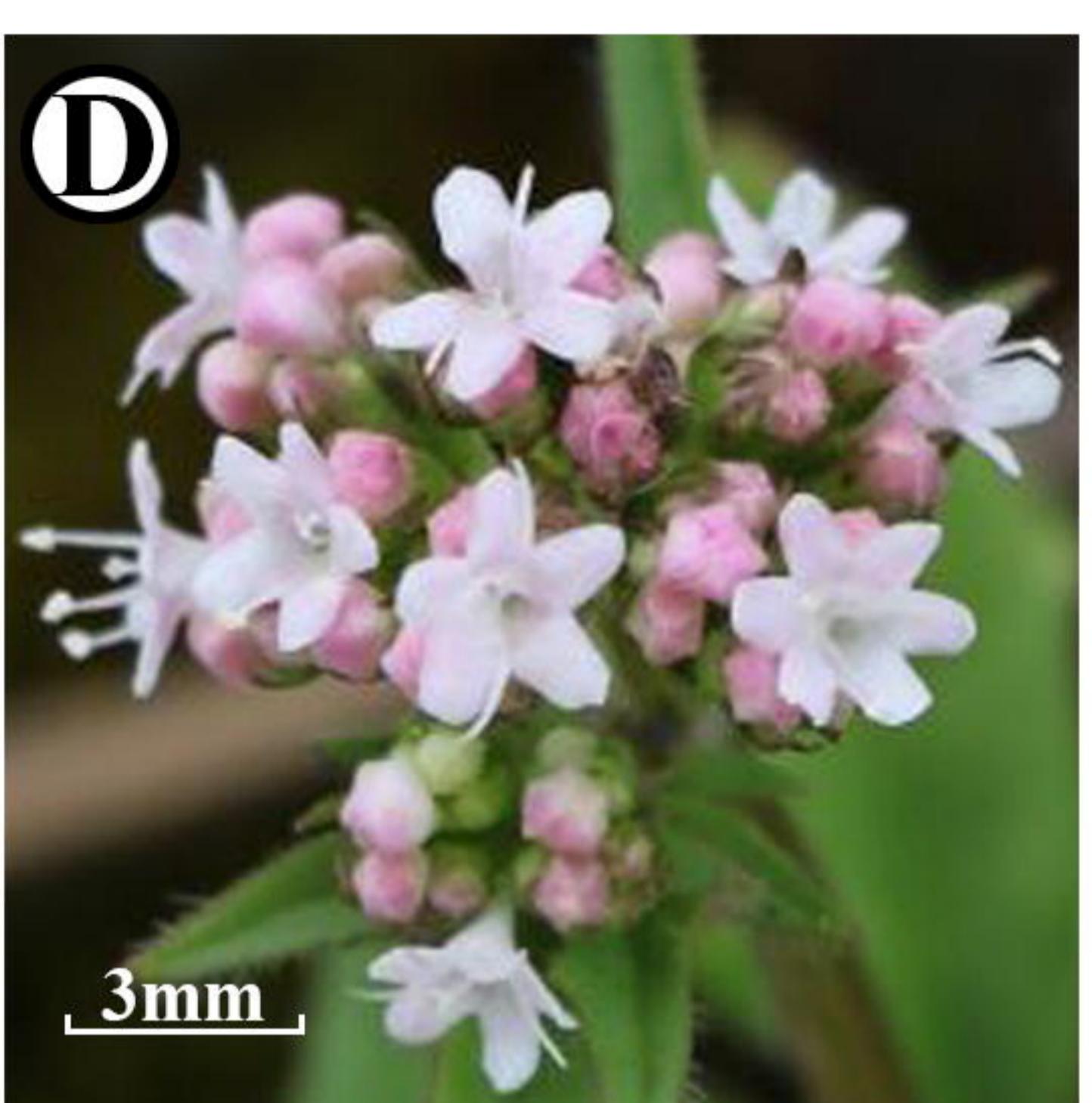
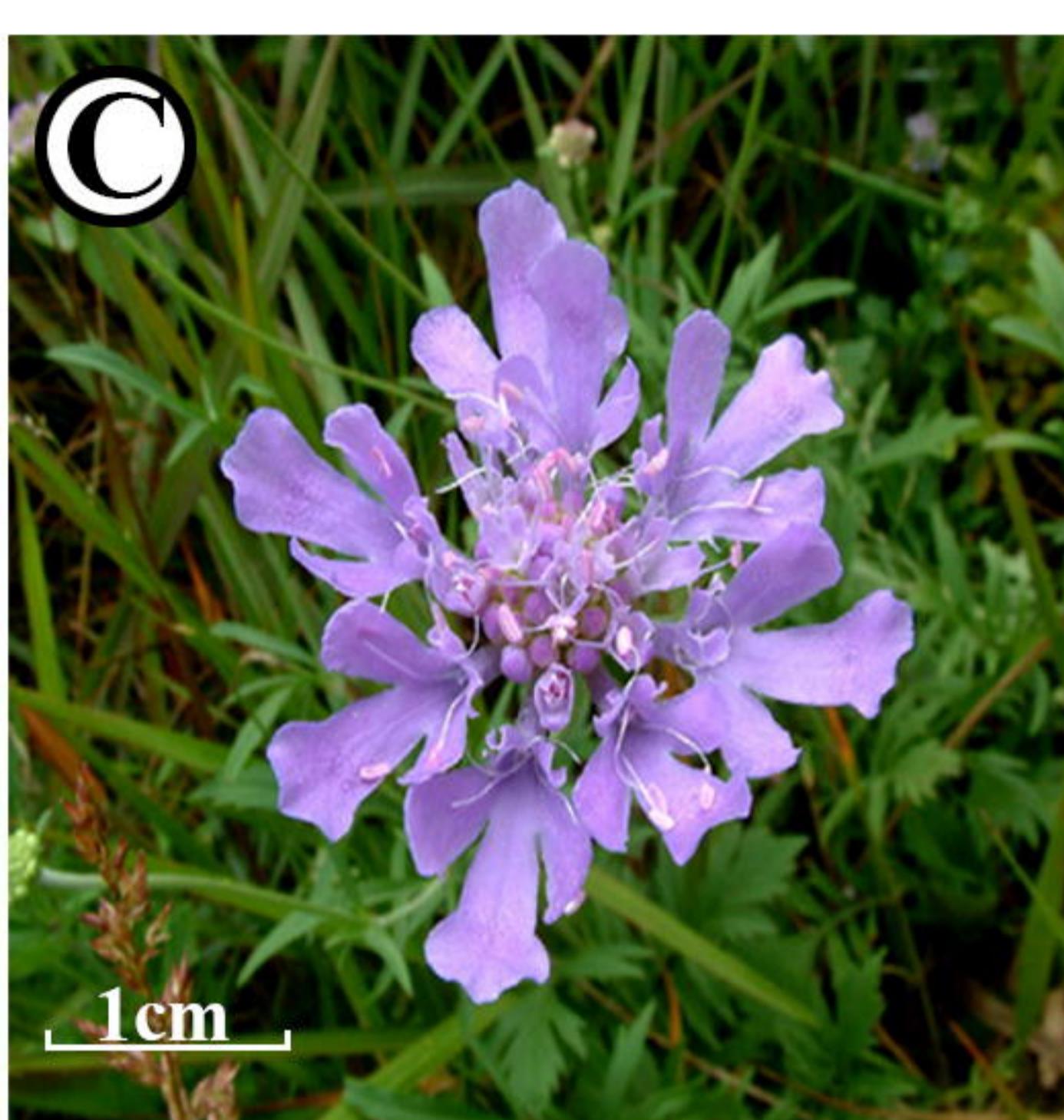
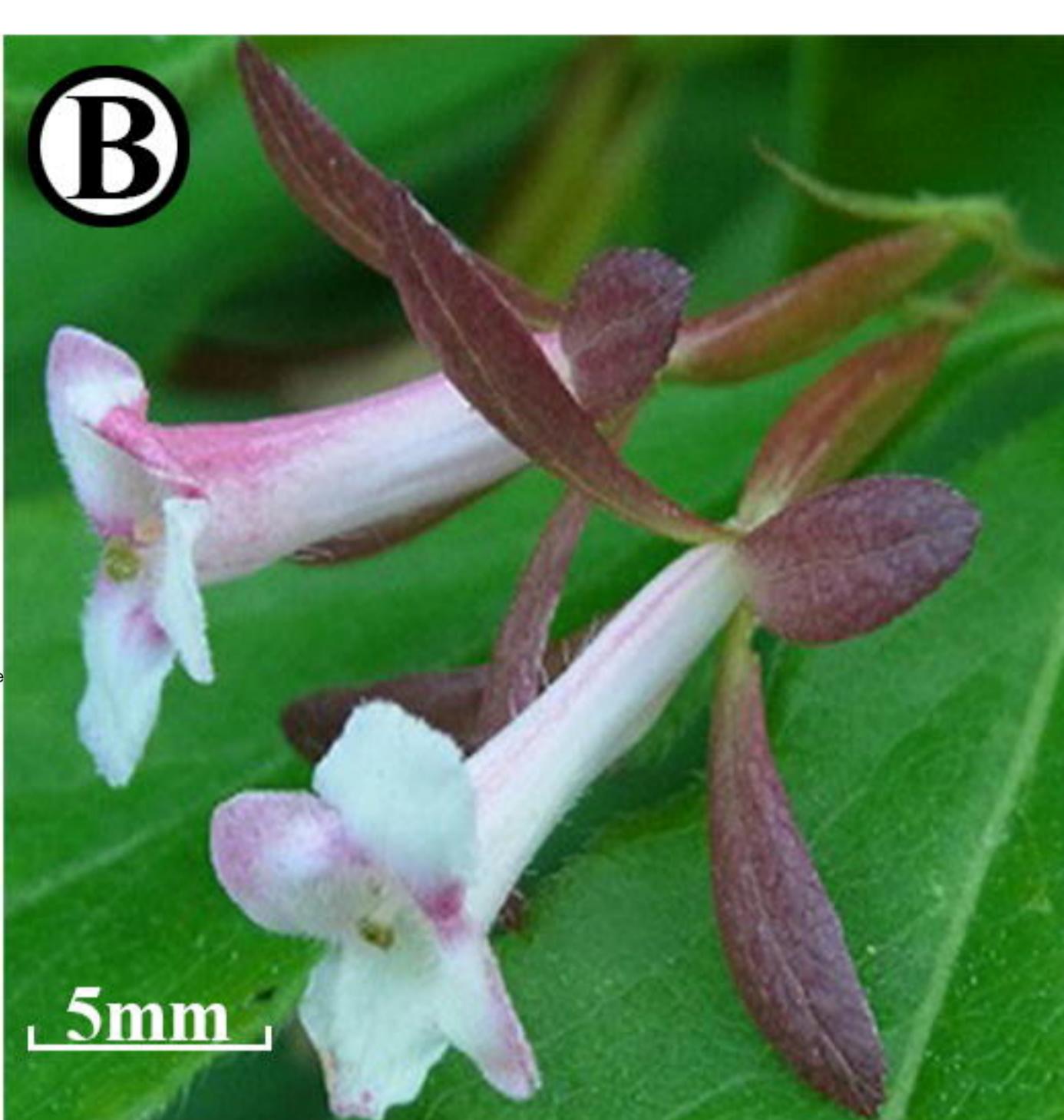
1204

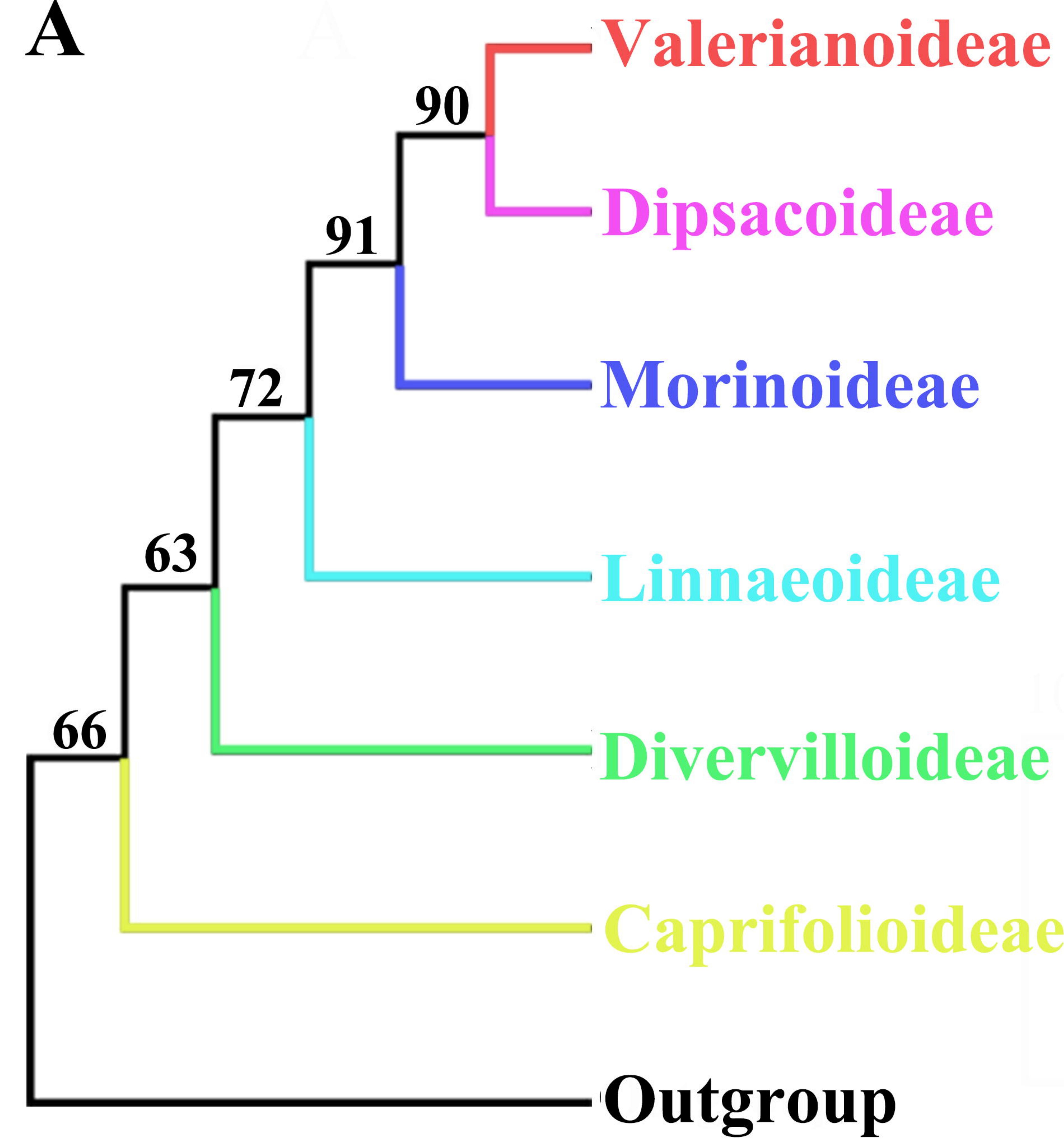
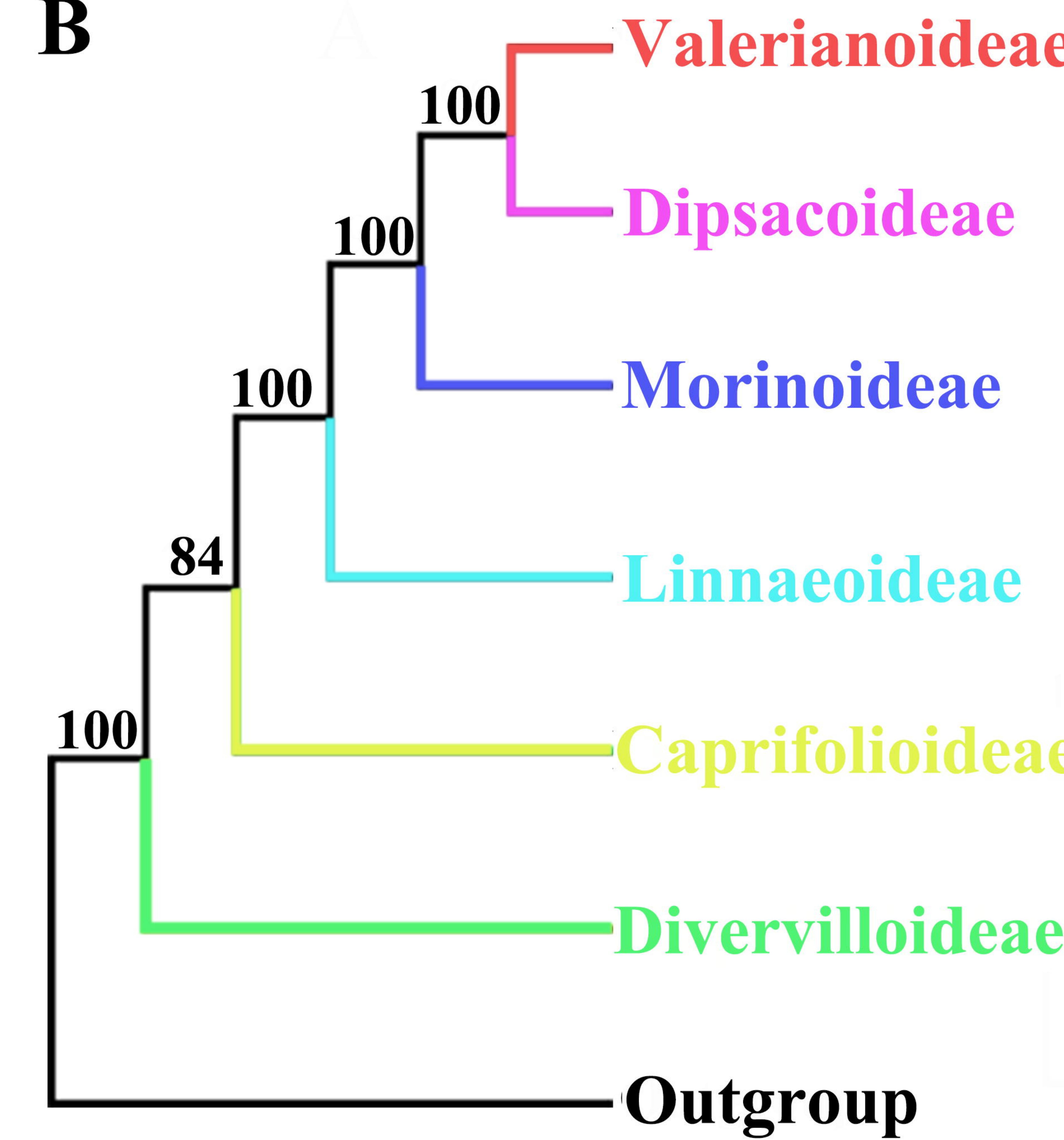
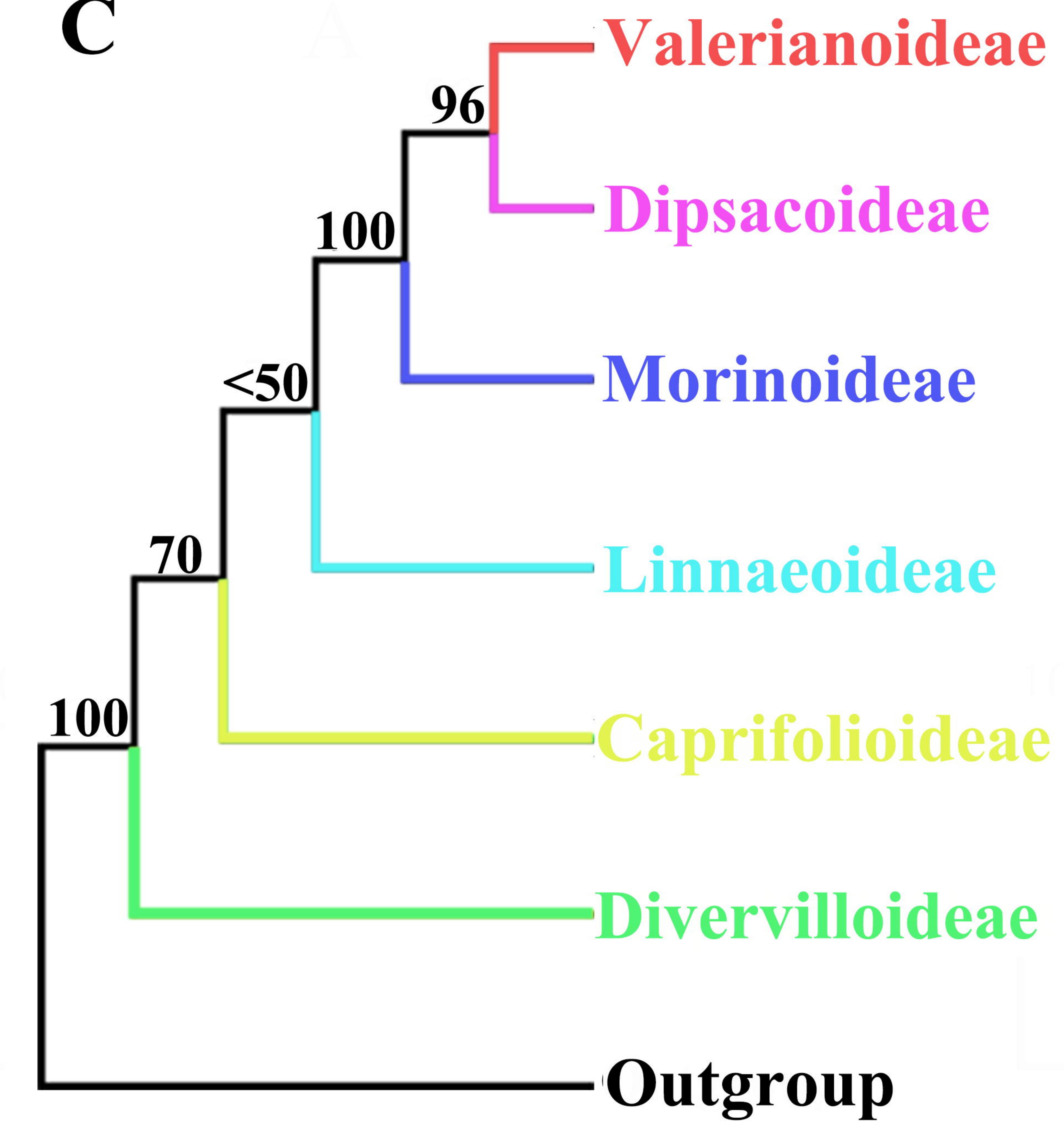
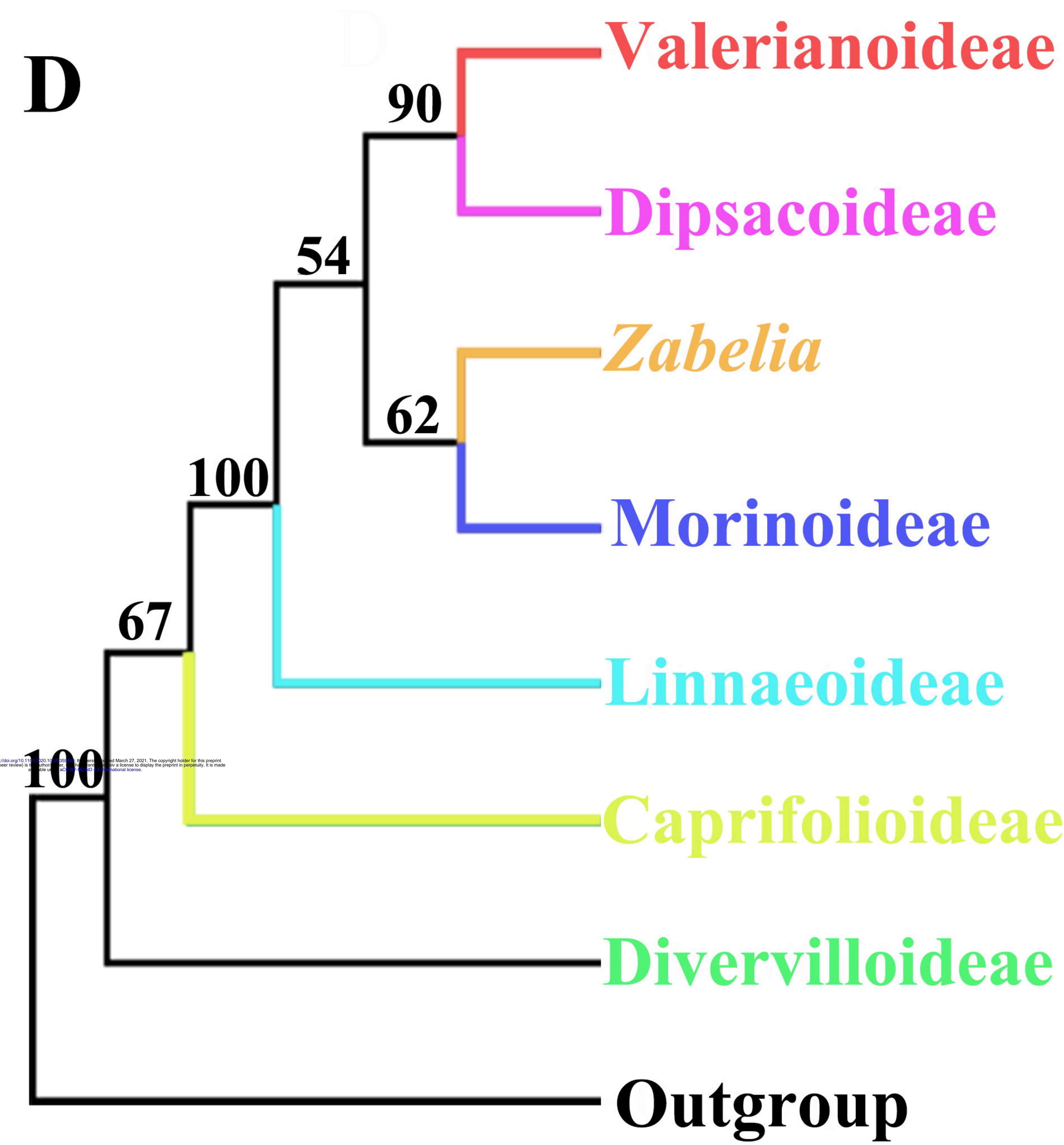
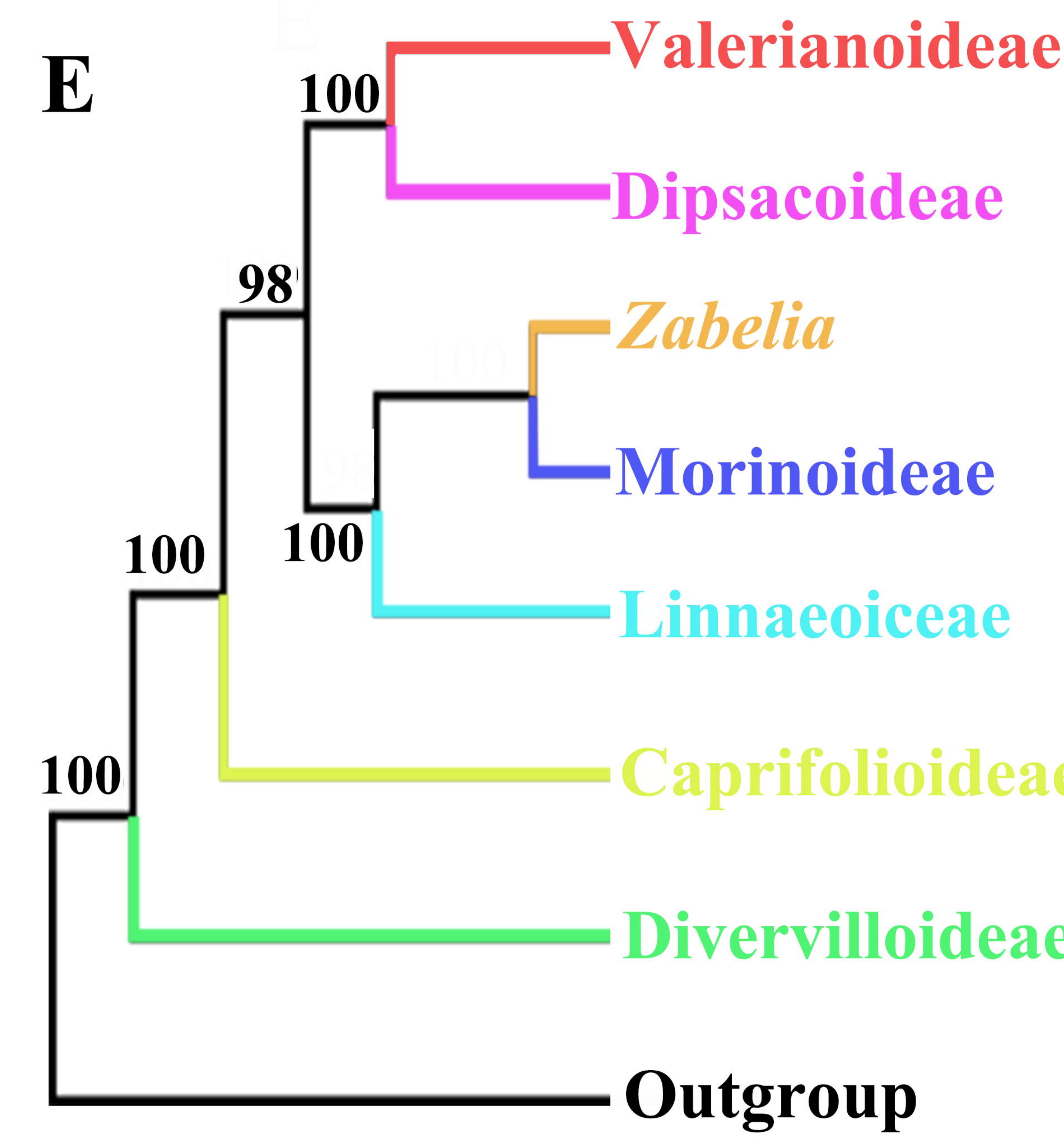
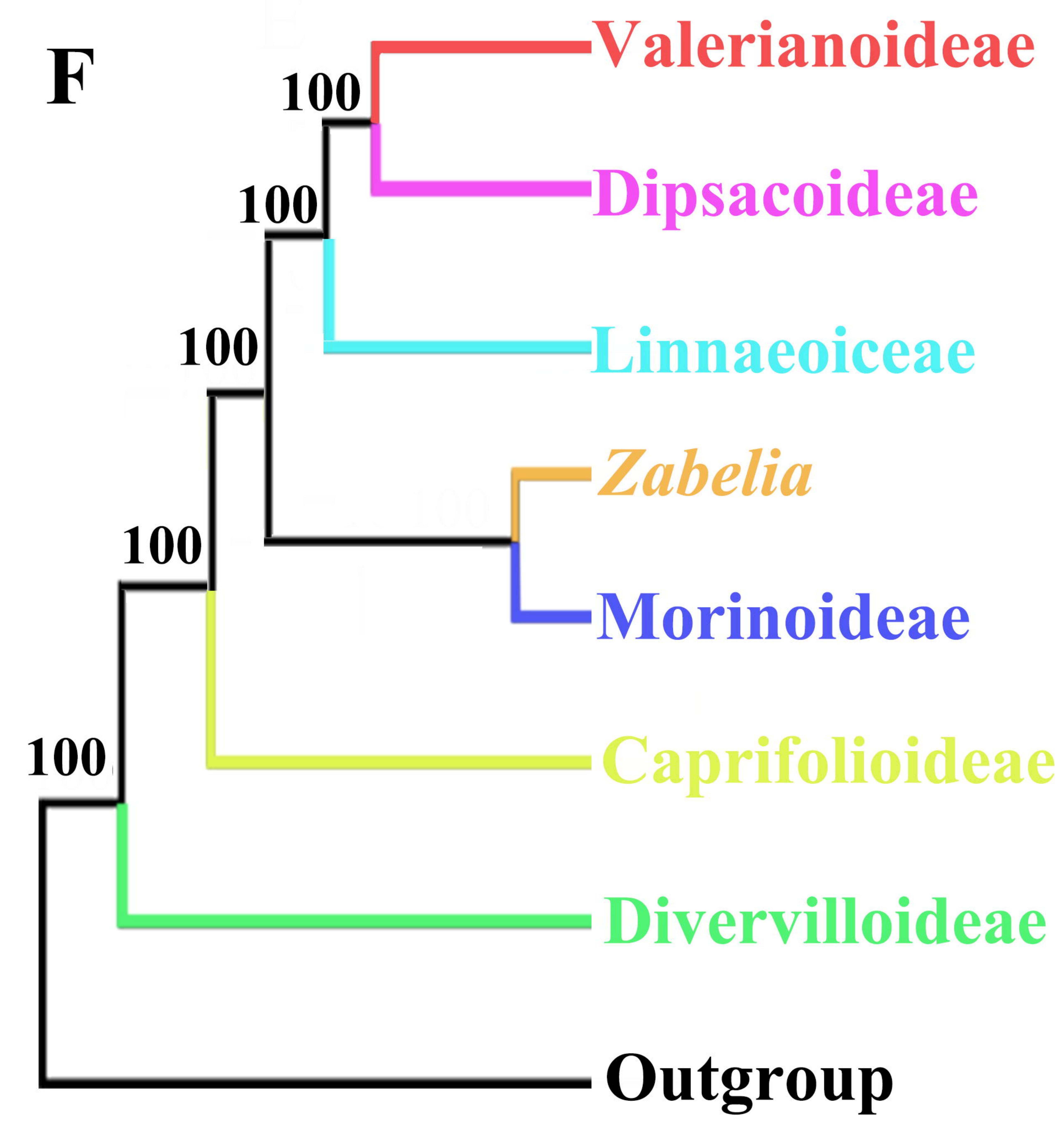
1205

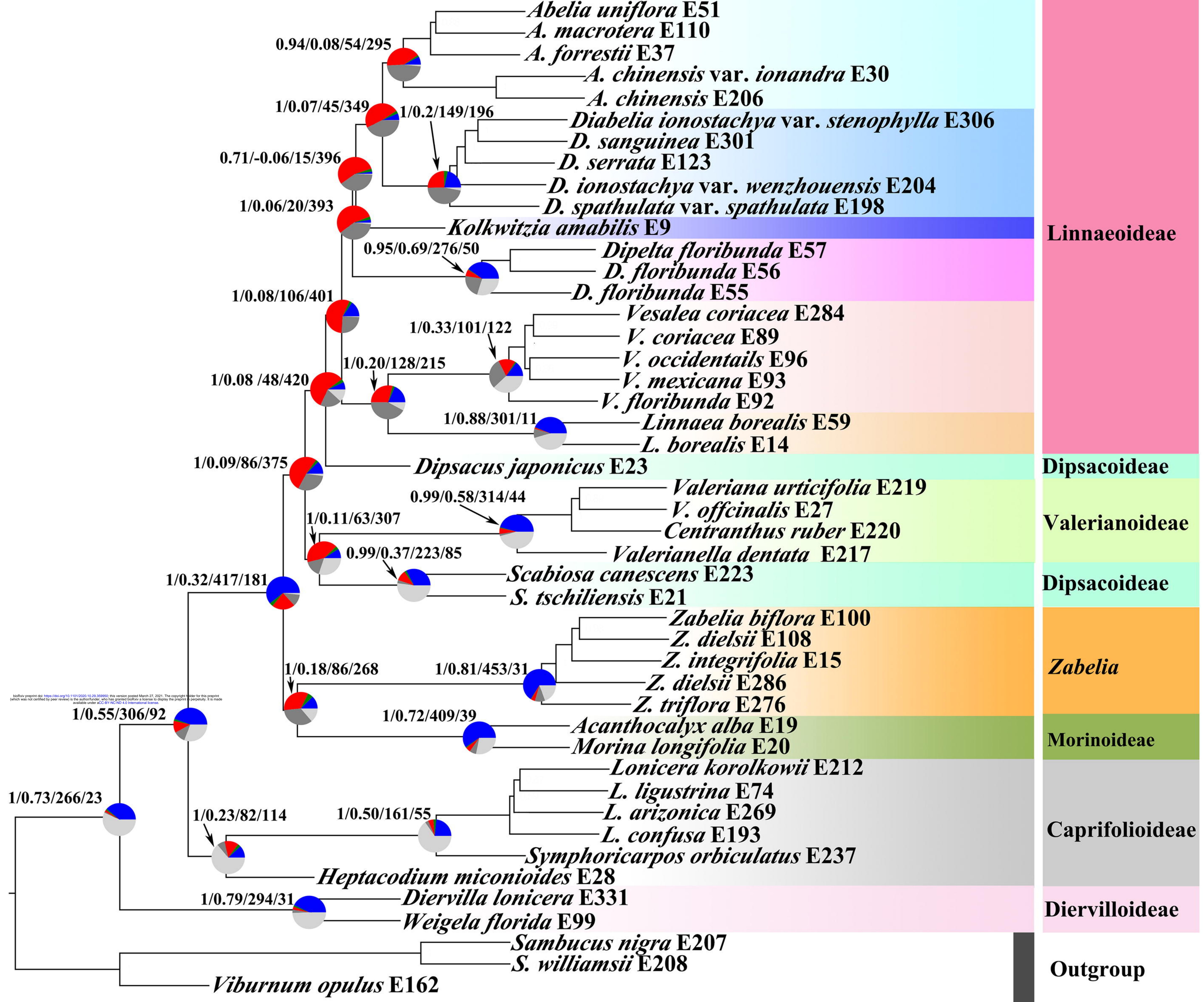
1206

1207

1208

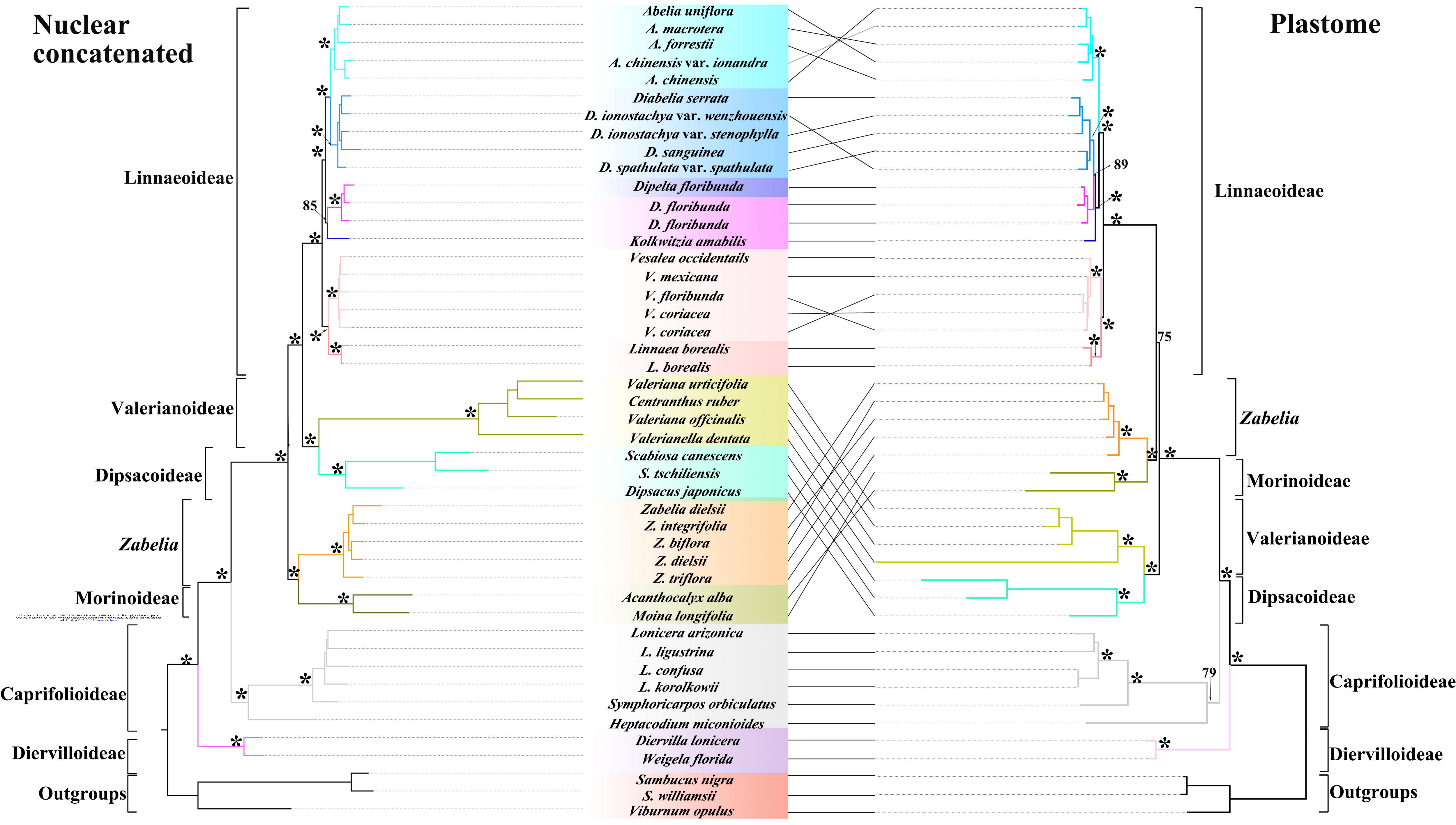





Table S2. HybPiper assembly statistics

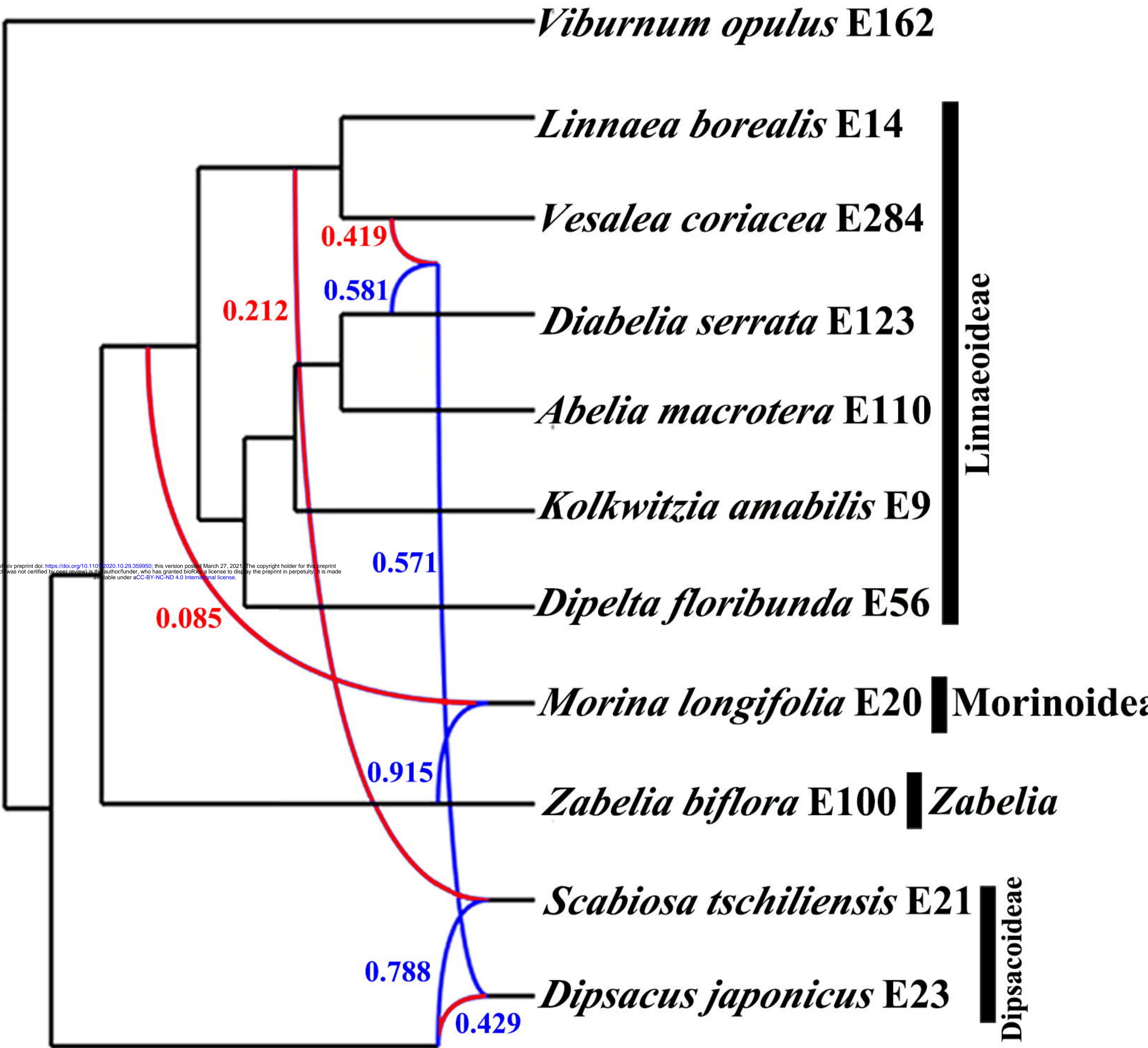
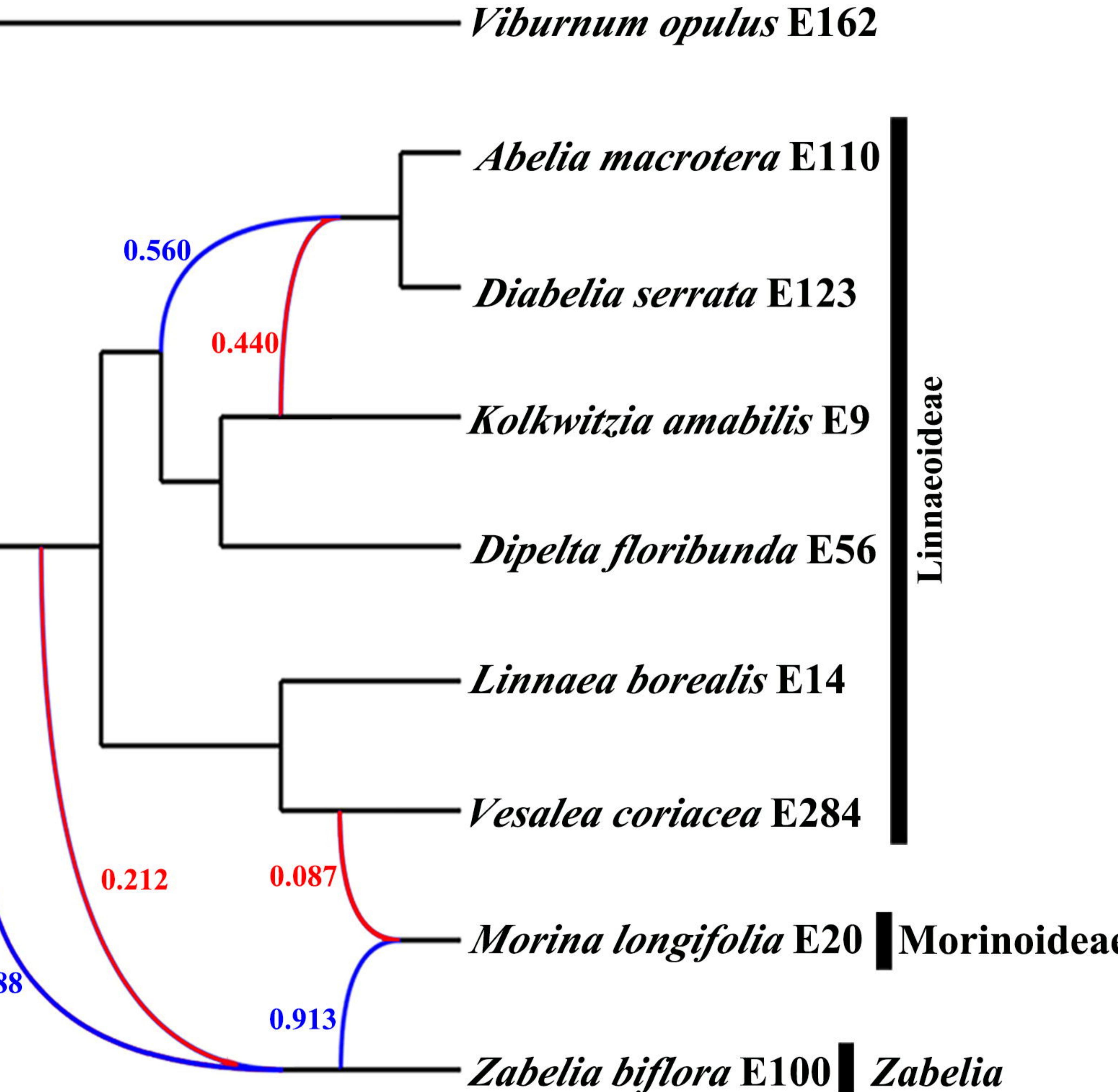
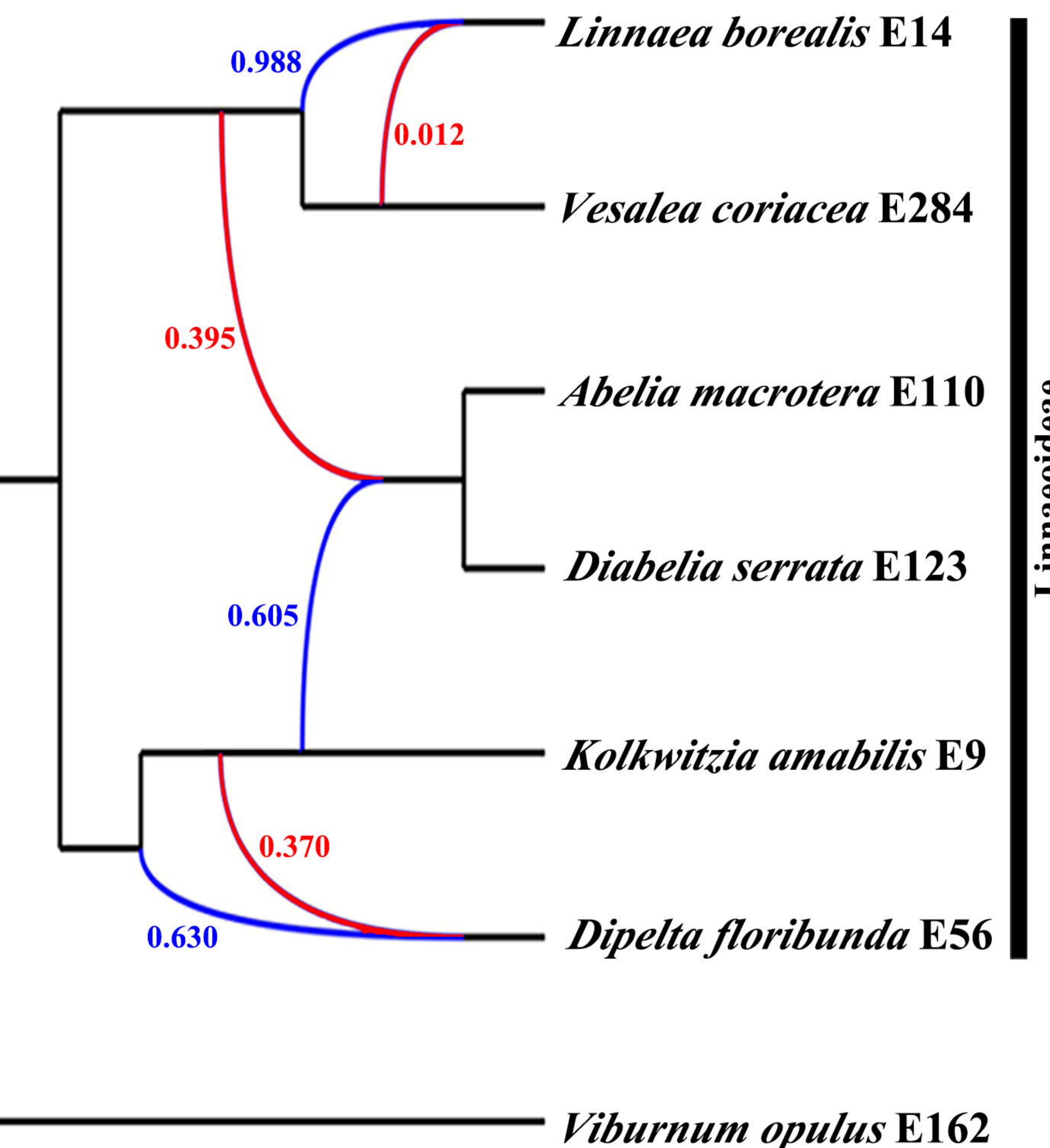






Species	Number of reads	Number of reads on target	Percent reads on target	Number of reads with target	Number of exons with reads	Number of contigs	Number of sequences	Number of exons with 25% of the target length	Number of exons with 50% of the target length	Number of exons with 75% of the target length	Number of sequences > 150% of the target length	Number of exons with paralog	Number of sequences with warning
<i>Abelia_chinensis_E206</i>	9076240	3538761	0.39	1118	1021	994	993	979	930	1	1	0	0
<i>Abelia_chinensis</i> var. <i>ionandra_E30</i>	8512137	2058453	0.242	1054	969	945	942	917	835	1	1	0	0
<i>Abelia_forrestii_E37</i>	9666409	2890168	0.299	1114	1005	977	975	961	921	0	0	0	0
<i>Abelia_macrotera_E110</i>	9134947	2888390	0.316	1072	988	960	959	940	901	1	1	0	0
<i>Abelia_uniflora_E51</i>	18769946	3613529	0.193	1086	991	967	966	946	892	2	1	0	0
<i>Acanthocalyx_alba_E19</i>	6118686	1489979	0.244	1060	948	927	922	891	821	1	3	0	0
<i>Centranthus_ruber_E220</i>	6873833	2738073	0.398	1021	822	779	769	715	632	0	3	0	0
<i>Diabelia_ionostachya</i> var. <i>stenophylla_E306</i>	9313351	1888267	0.203	1119	1007	977	974	960	889	0	0	0	0
<i>Diabelia_ionostachya</i> var. <i>wenzhouensis_E204</i>	6642696	2077347	0.313	1103	1006	983	982	962	908	1	1	0	0
<i>Diabelia_sanguinea_E301</i>	12028399	2724711	0.227	1151	1062	1032	1032	1021	989	3	6	0	0
<i>Diabelia_serrata_E123</i>	21639680	7331755	0.339	1120	1033	998	996	980	933	1	1	0	0
<i>Diabelia_spathulata</i> var. <i>spathulata_E198</i>	9267804	3459777	0.373	1130	1022	993	992	981	928	1	1	0	0
<i>Diervilla_lonicera_E331</i>	5850914	1589800	0.272	1077	965	939	938	915	857	0	0	0	105
<i>Dipelta_floribunda_E55</i>	4636783	105360	0.023	924	660	642	639	601	507	0	0	0	27
<i>Dipelta_floribunda_E56</i>	6580640	248258	0.038	992	853	833	830	793	680	0	0	0	43
<i>Dipelta_floribunda_E57</i>	3074426	54170	0.018	866	547	530	518	461	367	0	0	0	14

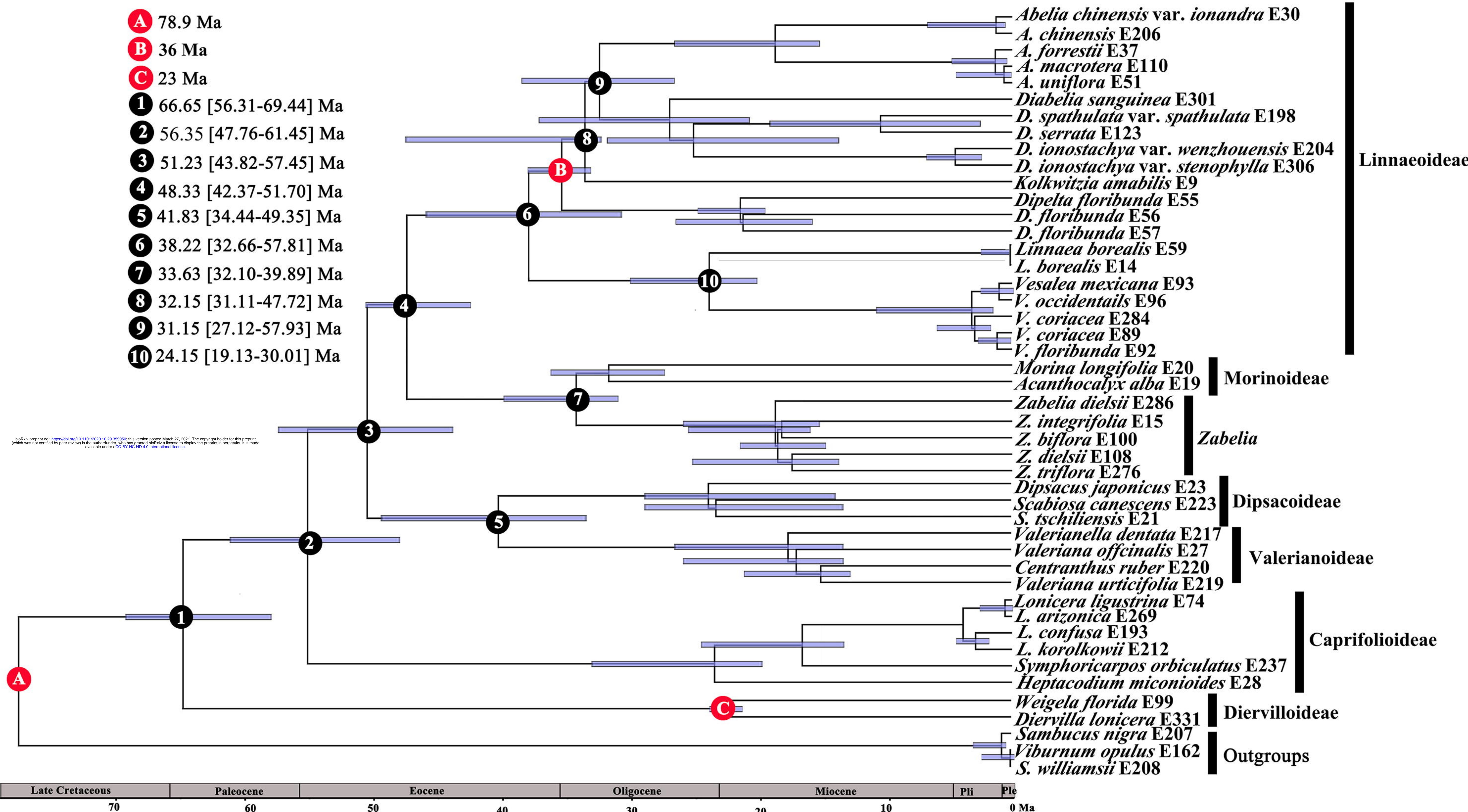

<i>Dipsacus_japonicus_E23</i>	2017716	174475	0.086	910	552	525	501	417	284	1	27
<i>Heptacodium_miconioides_E28</i>	36252001	9788612	0.27	1125	1005	978	975	953	922	0	221
<i>Kolkwitzia_amabilis_E9</i>	9779050	2641147	0.27	1097	1005	984	983	967	916	0	75
<i>Linnaea_borealis_E14</i>	9523146	1355451	0.142	1069	981	962	961	946	902	1	73
<i>Linnaea_borealis_E59</i>	3831881	51899	0.014	867	536	516	507	443	333	0	11
<i>Lonicera_arizonica_E269</i>	7277244	1732355	0.238	1049	927	901	894	852	772	0	83
<i>Lonicera_confusa_E193</i>	9914689	3445473	0.348	1090	950	920	918	896	850	0	1
<i>Lonicera_korolkowii_E212</i>	10617680	3453855	0.325	1075	962	929	926	911	872	0	1
<i>Lonicera_ligustrina</i> var. <i>pileata_E74</i>	4988272	157960	0.032	958	740	724	724	702	653	1	1
<i>Morina_longifolia_E20</i>	23680514	8543790	0.361	1104	1004	980	978	951	895	1	5
<i>Sambucus_nigra_E207</i>	5805790	460514	0.079	964	701	678	665	631	575	0	1
<i>Sambucus_williamsii_E208</i>	5071638	402725	0.079	931	705	674	667	635	573	0	103
<i>Scabiosa_canescens_E223</i>	2521156	272582	0.108	948	624	589	555	450	302	0	1
<i>Scabiosa_tschiliensis_E21</i>	21530335	3744566	0.174	1060	918	890	887	859	799	2	30
<i>Syphoricarpos_orbiculatus_E237</i>	13570556	6350425	0.468	1114	996	961	958	937	879	0	1
<i>Valeriana_officinalis_E27</i>	2004483	203244	0.101	880	673	651	636	572	489	1	1
<i>Valeriana_urticifolia</i> var. <i>scorpioides_E219</i>	7471262	2066511	0.277	1004	784	751	744	706	637	1	30
<i>Valerianella_dentata_E217</i>	6930308	2552865	0.368	1024	785	741	732	688	605	0	1
<i>Vesalea_coriacea_E284</i>	7770516	2129447	0.274	1099	1013	977	974	952	883	0	1
<i>Vesalea_coriacea_E89</i>	6728245	436748	0.065	1107	951	926	925	910	856	0	27
<i>Vesalea_floribunda_E92</i>	3249704	22487	0.007	718	311	287	267	205	130	0	1
<i>Vesalea_mexicana_E93</i>	4712564	111119	0.024	938	692	670	667	625	530	1	12
<i>Vesalea_occidentalis_E96</i>	6434742	142056	0.022	974	730	712	703	650	559	0	23
<i>Viburnum_opulus</i> var. <i>americanum_E162</i>	4690628	682398	0.145	961	811	785	781	751	691	0	105
<i>Weigela_florida_E99</i>	13576145	1103870	0.081	1062	942	916	914	888	850	0	116

<i>Zabelia_biflora_E100</i>	15232347	4165064	0.273	1108	1031	1009	1006	983	943	3	567
<i>Zabelia_dielsii_E108</i>	3134211	287330	0.092	1029	907	885	881	856	785	3	340
<i>Zabelia_dielsii_E286</i>	4085869	86244	0.021	923	625	611	587	493	348	0	45
<i>Zabelia_integrifolia_E15</i>	2031719	222622	0.11	1012	872	855	848	815	733	2	270
<i>Zabelia_triflora_E276</i>	6552409	721374	0.11	1090	988	960	954	912	798	1	321

1209

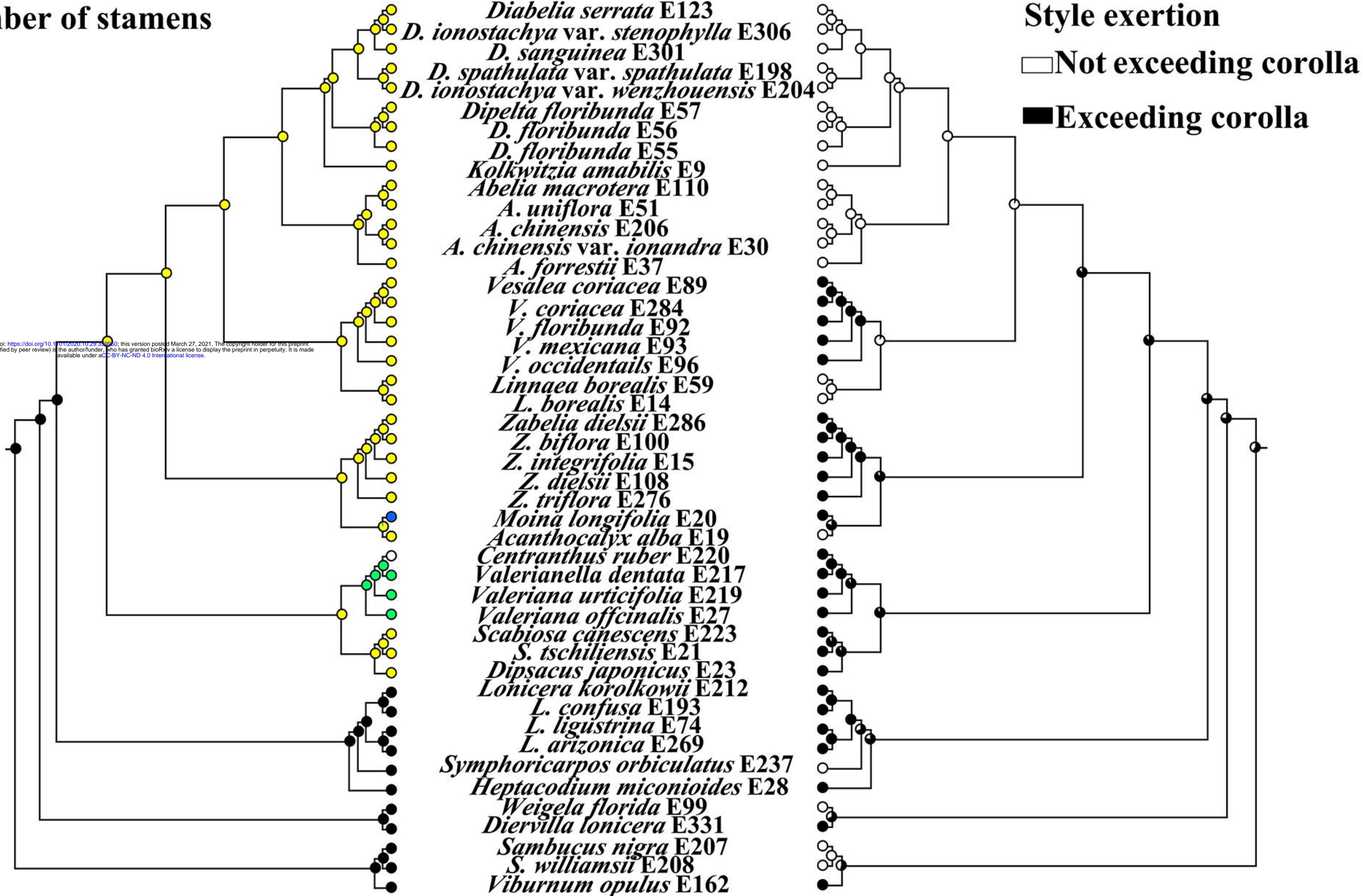





A**B****C****D****E****F**

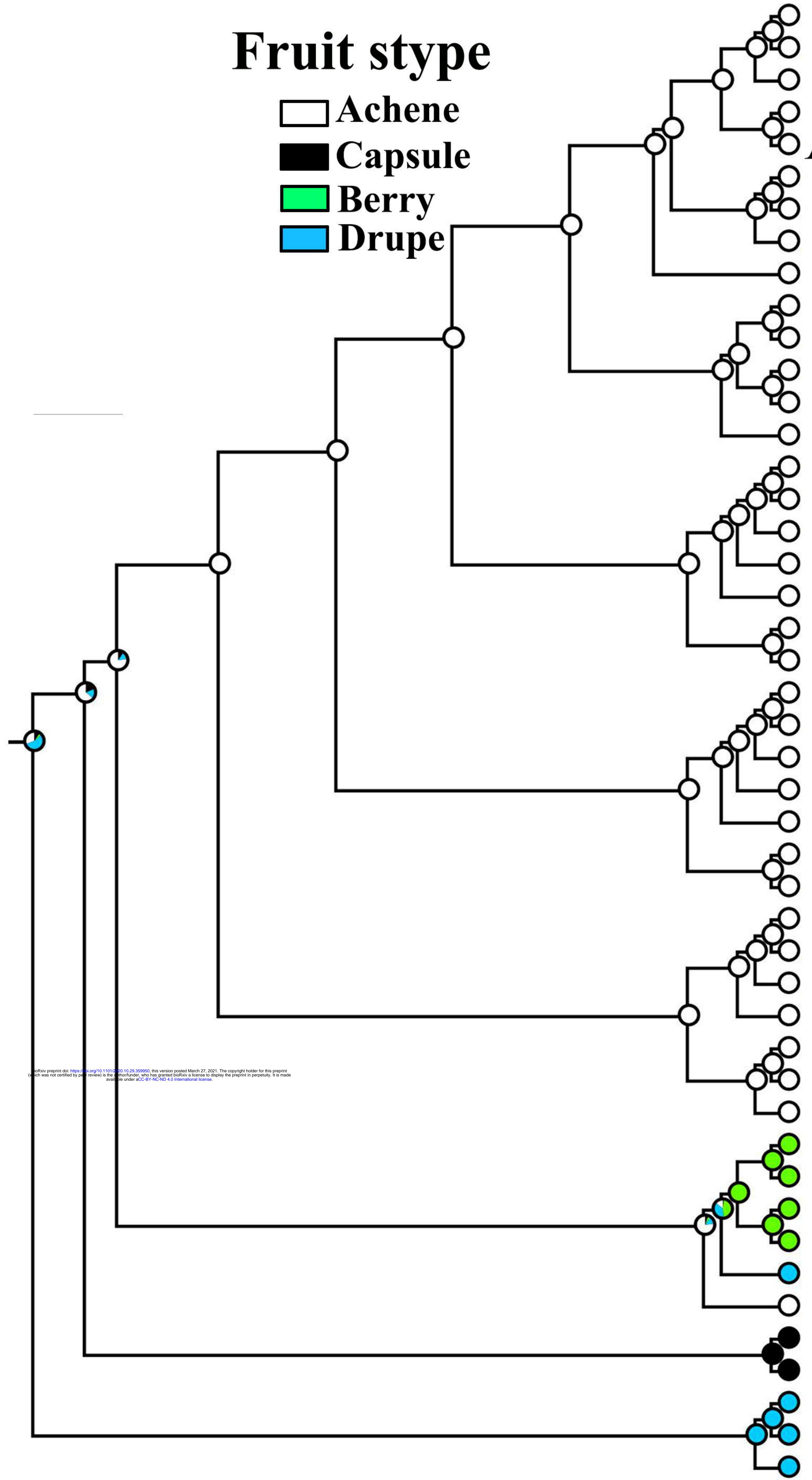


Nuclear concatenated

Plastome

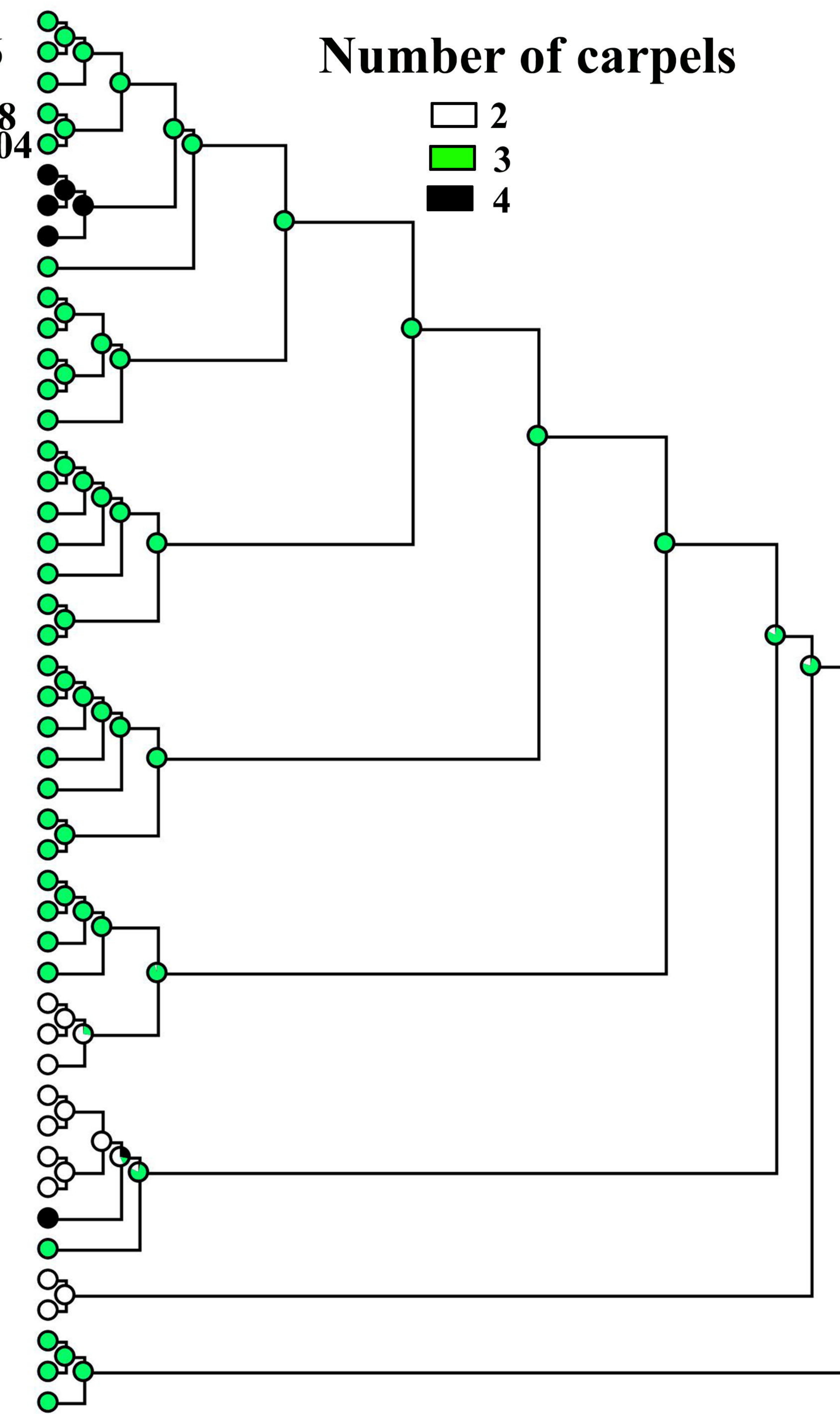

a**b****c**

Number of stamens

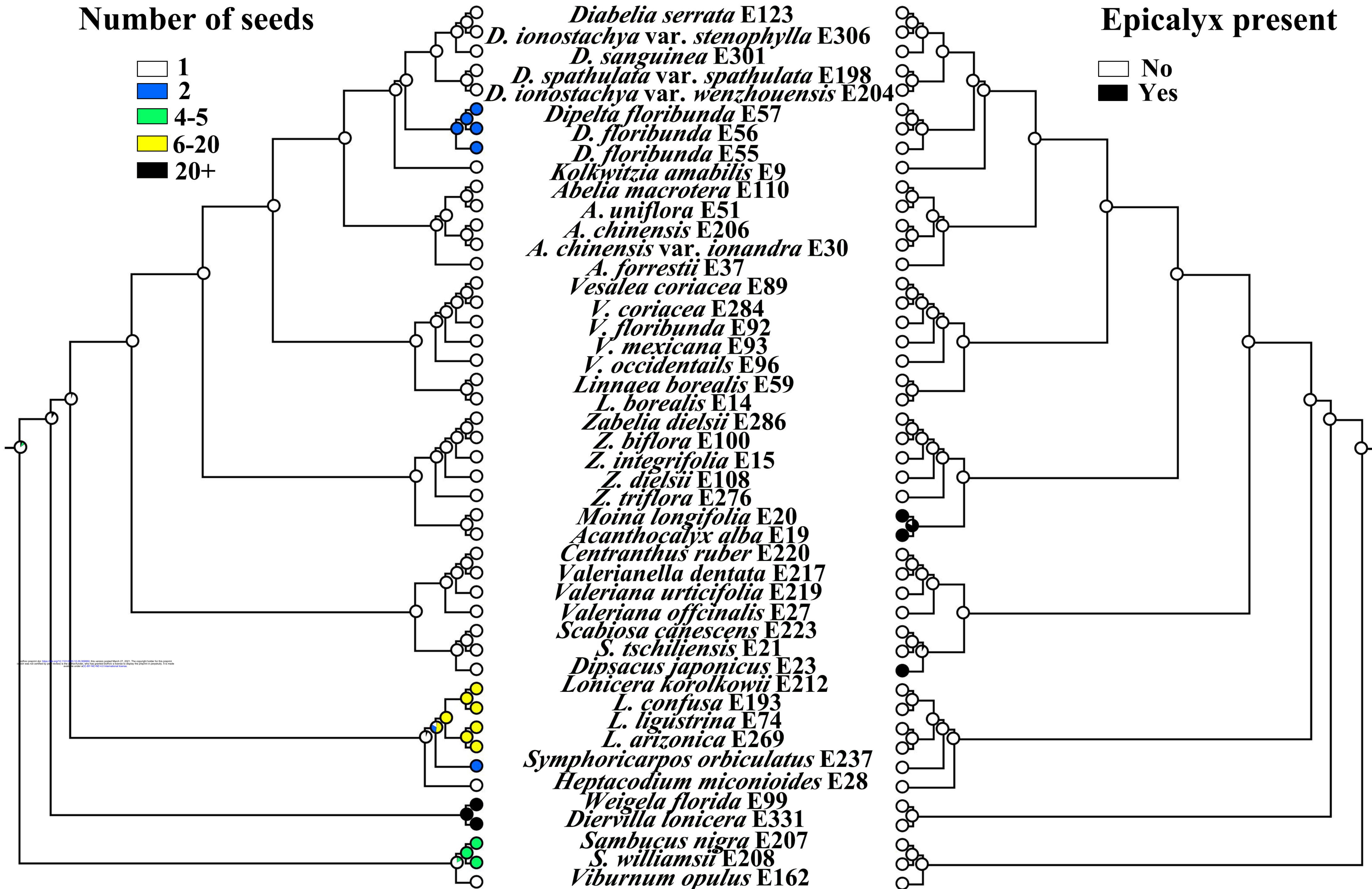

- 1
- 2
- 3
- 4
- 5

bioRxiv preprint doi: <https://doi.org/10.1101/2020.10.29.336950>; this version posted March 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Fruit stype


- Achene
- Capsule
- Berry
- Drupe

Diabelia serrata E123
D. ionostachya var. *stenophylla* E306
D. sanguinea E301
D. spathulata var. *spathulata* E198
D. ionostachya var. *wenzhouensis* E204
Dipelta floribunda E57
D. floribunda E56
D. floribunda E55
Kolkwitzia amabilis E9
Abelia macrotera E110
A. uniflora E51
A. chinensis E206
A. chinensis var. *ionandra* E30
A. forrestii E37
Vesalea coriacea E89
V. coriacea E284
V. floribunda E92
V. mexicana E93
V. occidentalis E96
Linnaea borealis E59
L. borealis E14
Zabelia dielsii E286
Z. biflora E100
Z. integrifolia E15
Z. dielsii E108
Z. triflora E276
Moina longifolia E20
Acanthocalyx alba E19
Centranthus ruber E220
Valerianella dentata E217
Valeriana urticifolia E219
Valeriana officinalis E27
Scabiosa canescens E223
S. tschiliensis E21
Dipsacus japonicus E23
Lonicera korolkowii E212
L. confusa E193
L. ligustrina E74
L. arizonica E269
Symporicarpus orbiculatus E237
Heptacodium miconioides E28
Weigela florida E99
Diervilla lonicera E331
Sambucus nigra E207
S. williamsii E208
Viburnum opulus E162


Number of carpels

- 2
- 3
- 4

Number of seeds

- 1
- 2
- 4-5
- 6-20
- 20+

Number of stamens

1 2 3 4 5

style exertion

Yes

Fruit type

Achene

Capsule

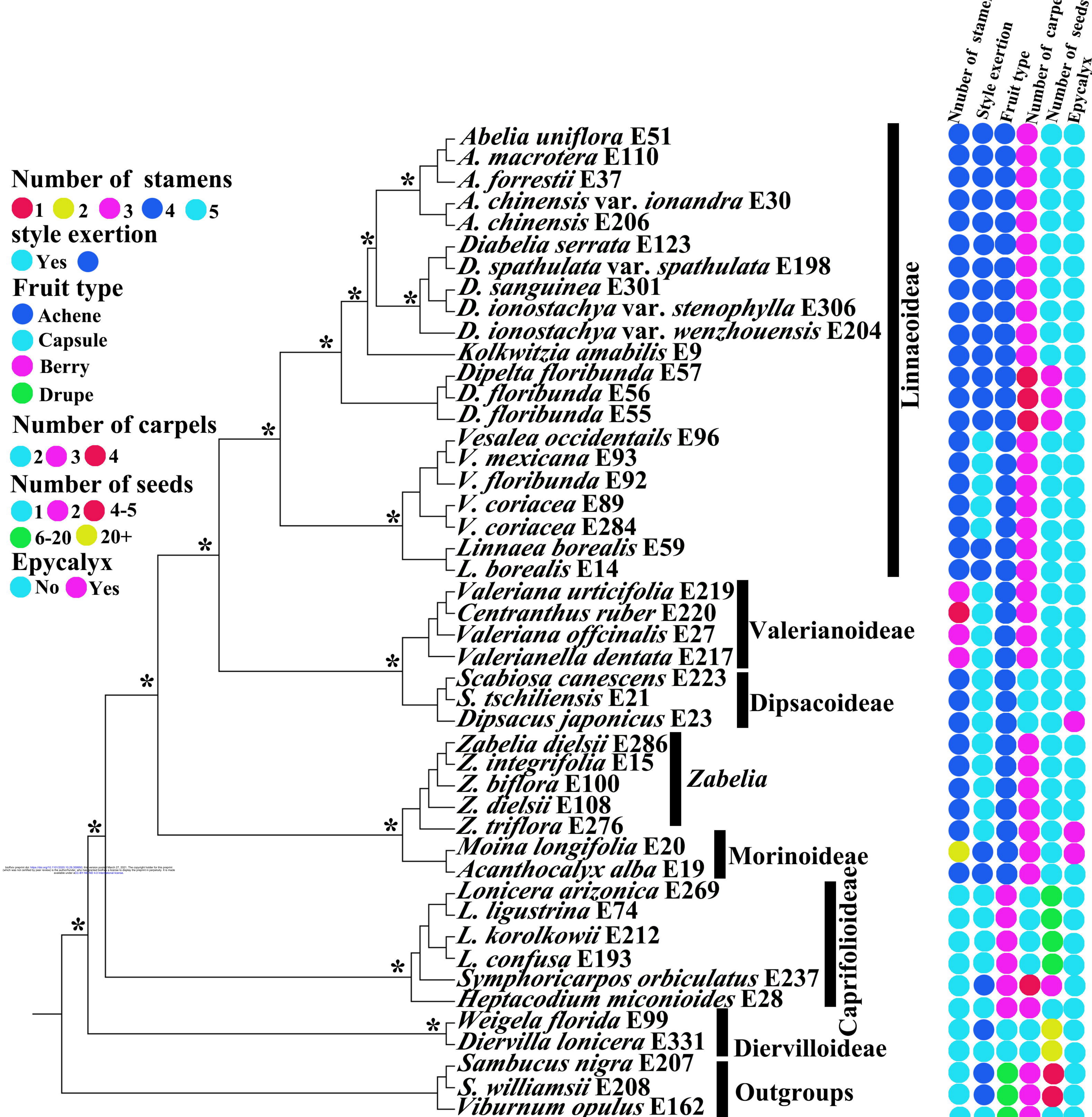
Berry

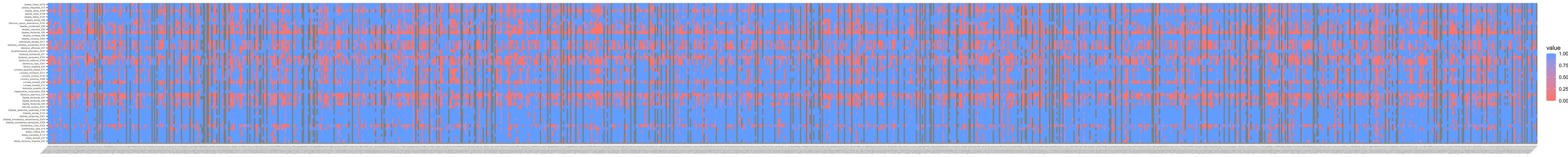
Drupe

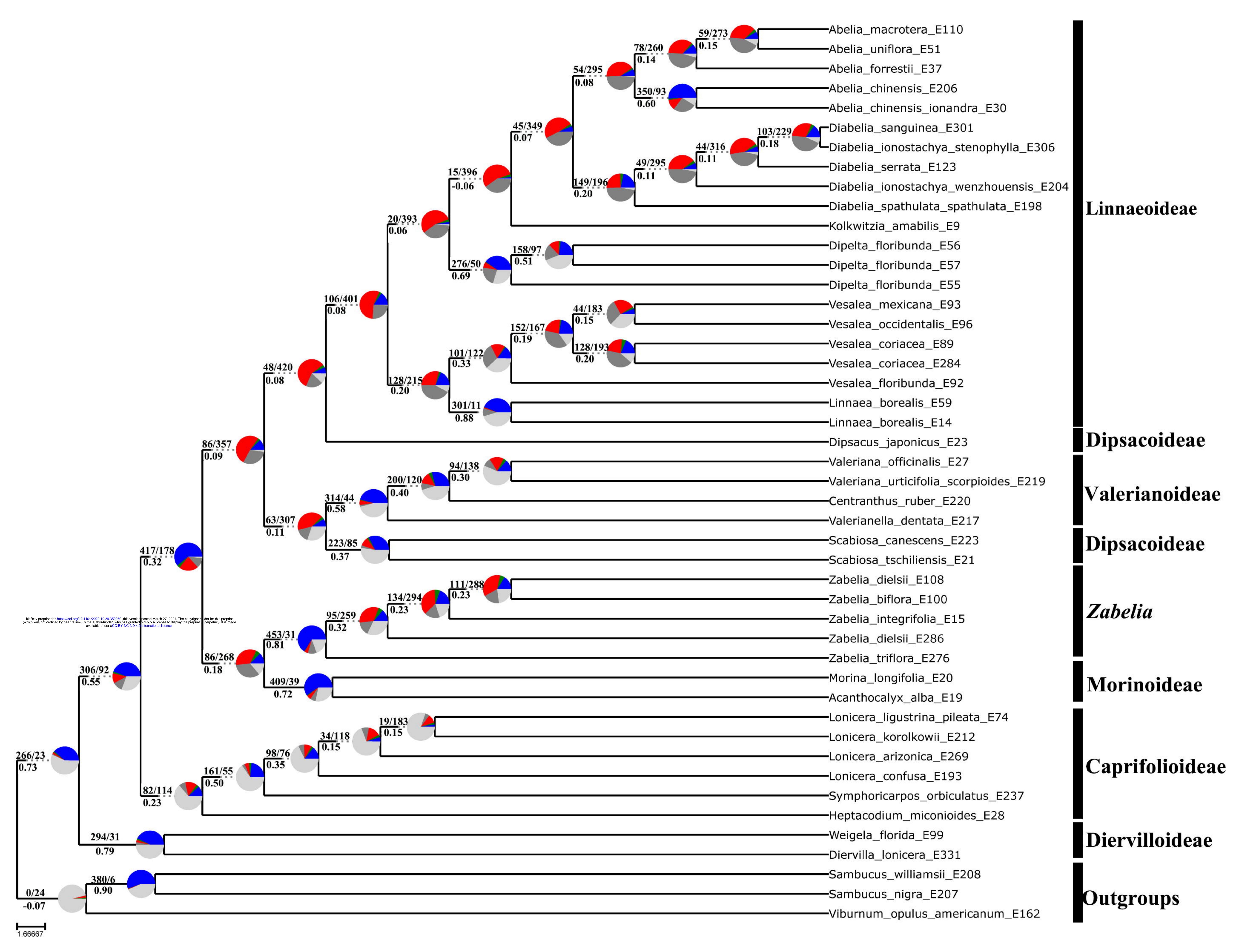
Number of carpels

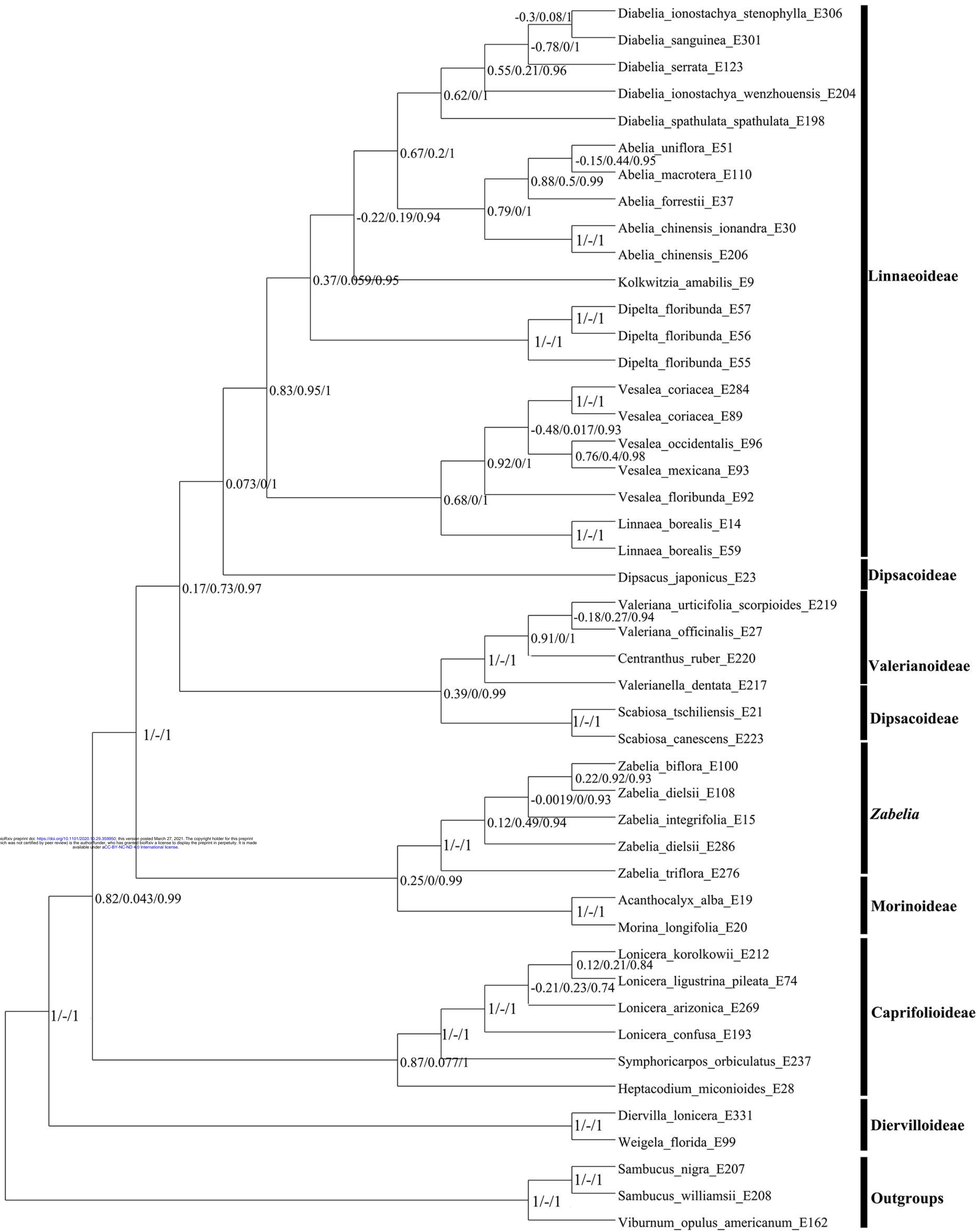
2 3 4

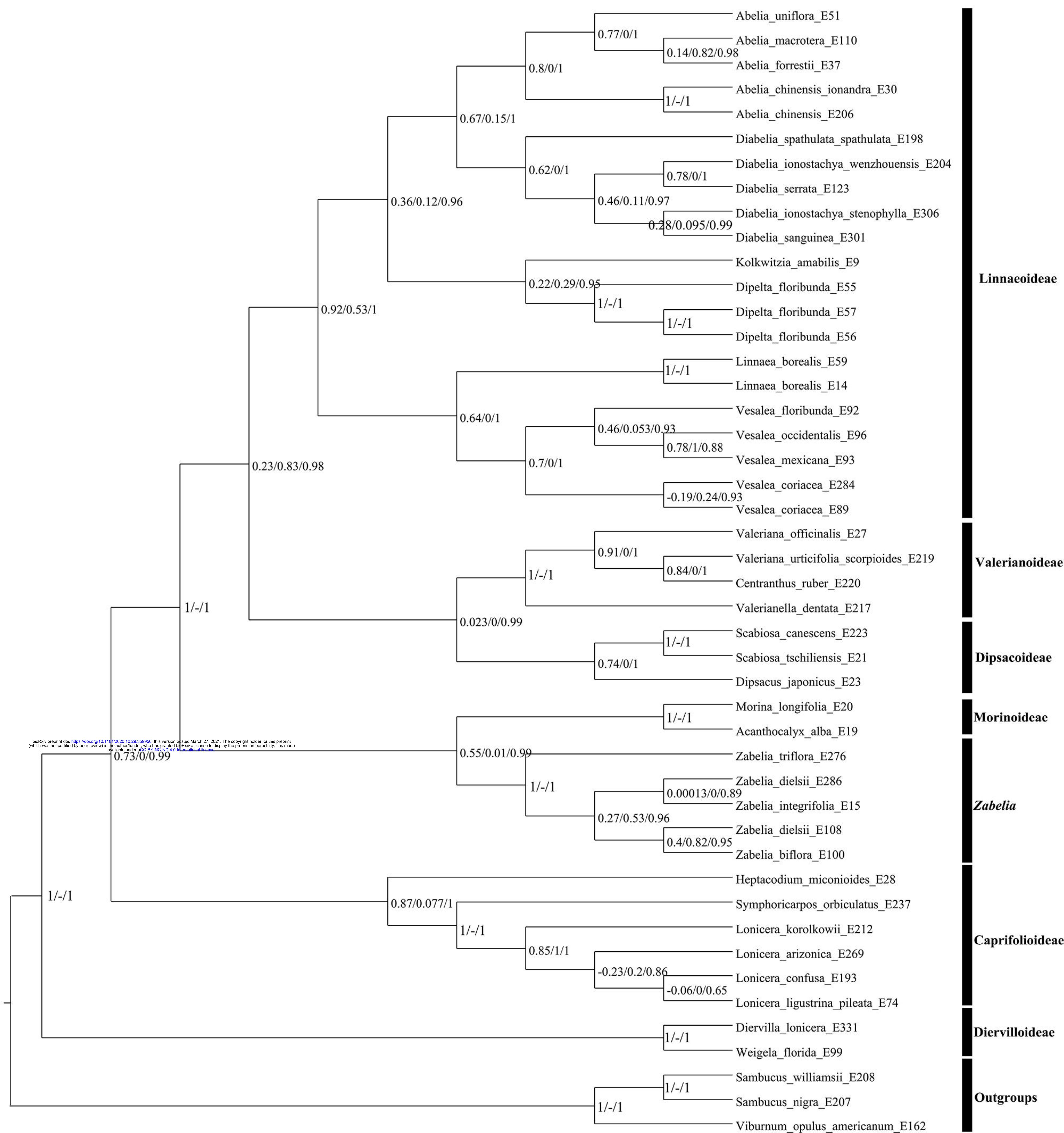
Number of seeds

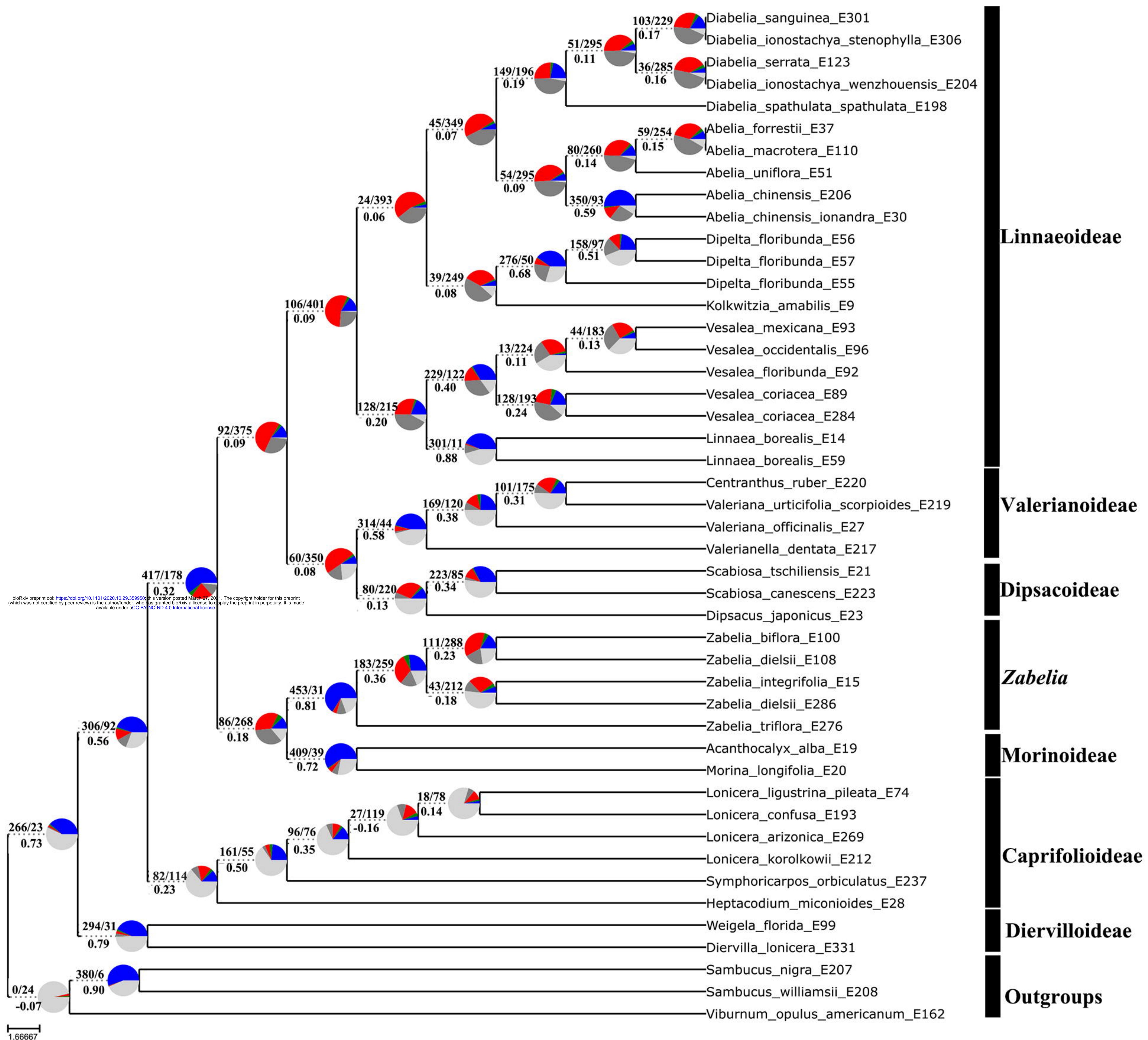

1 2 4-5

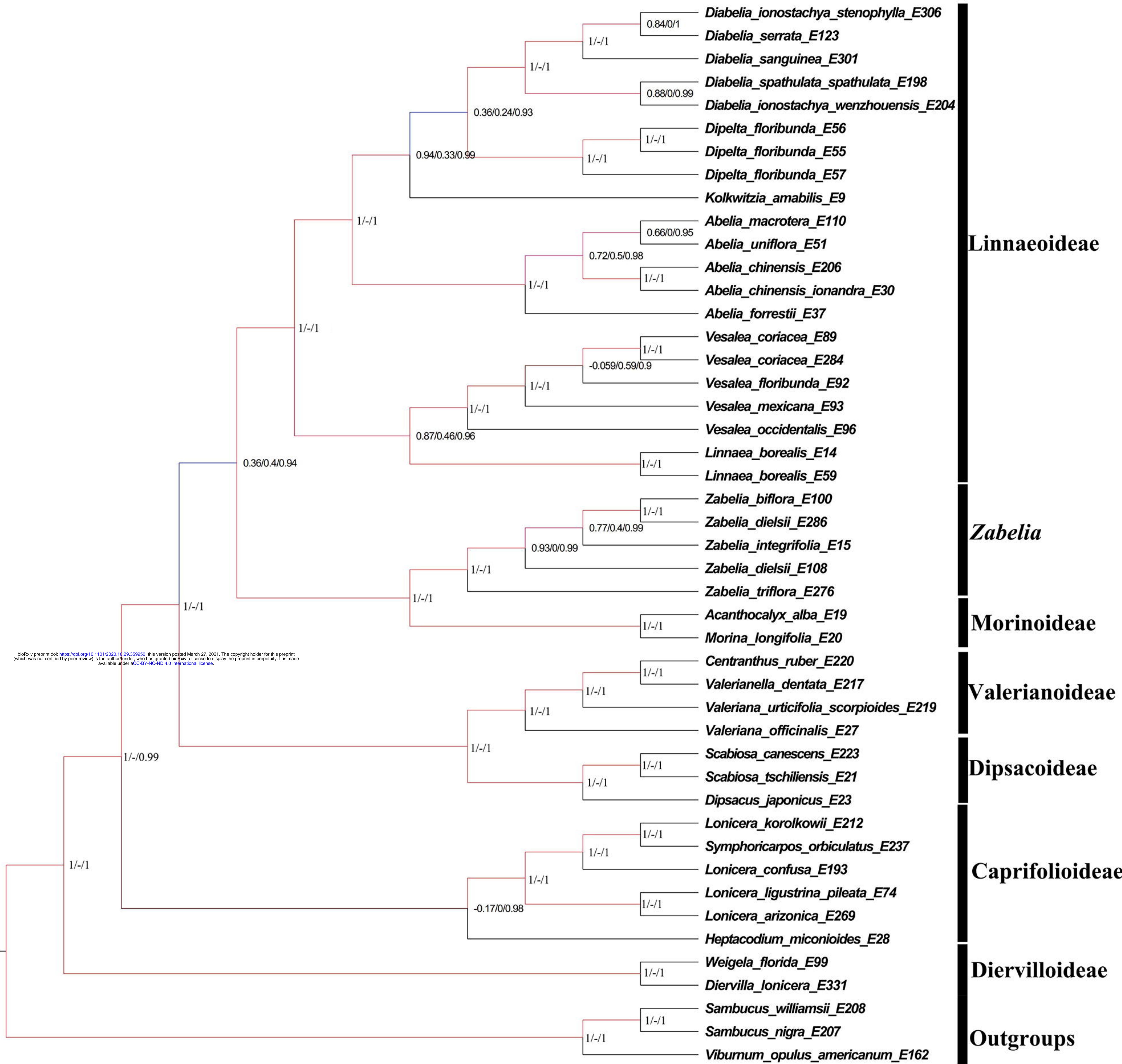

6-20 20+

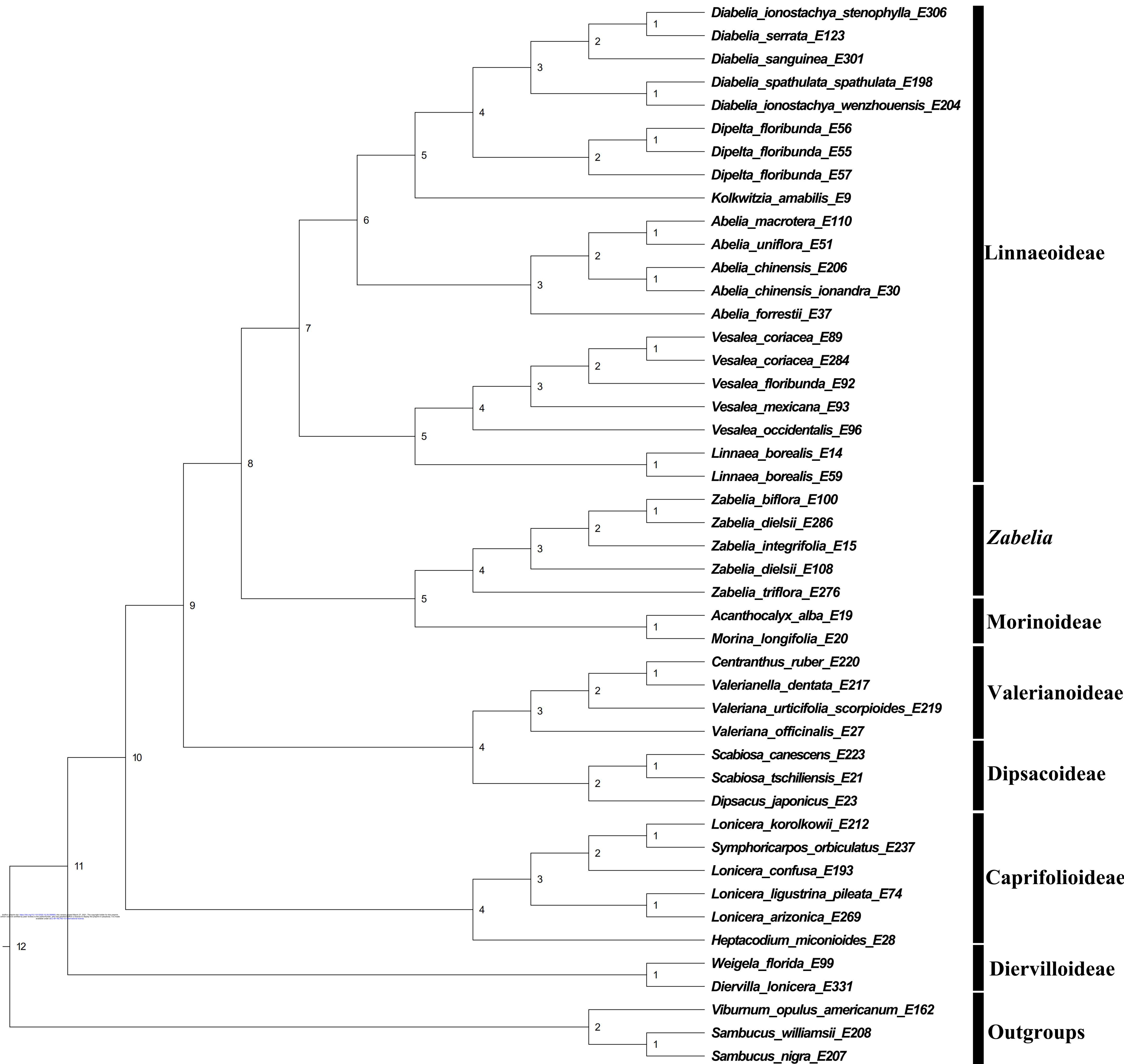

Epycalyx

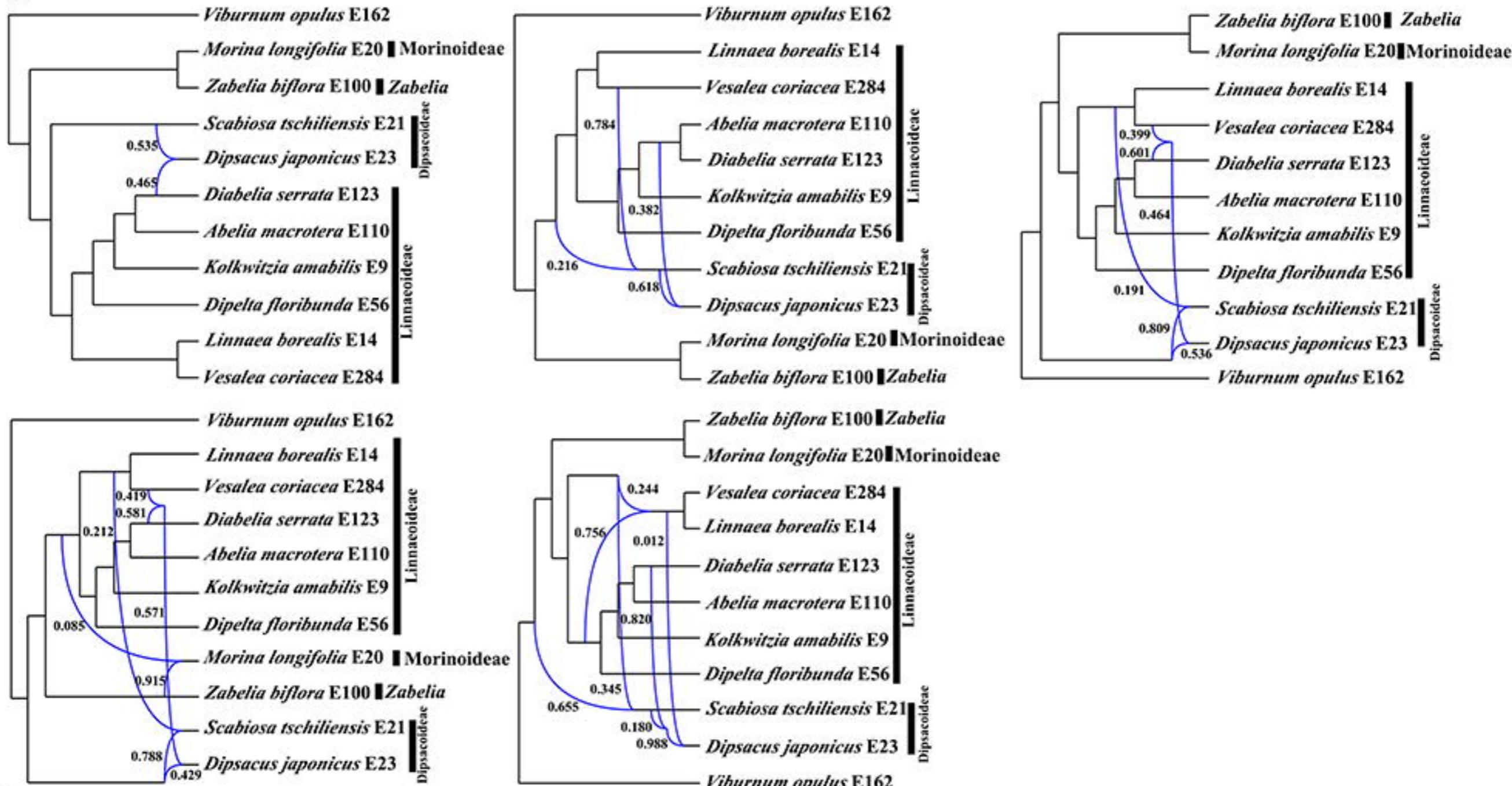
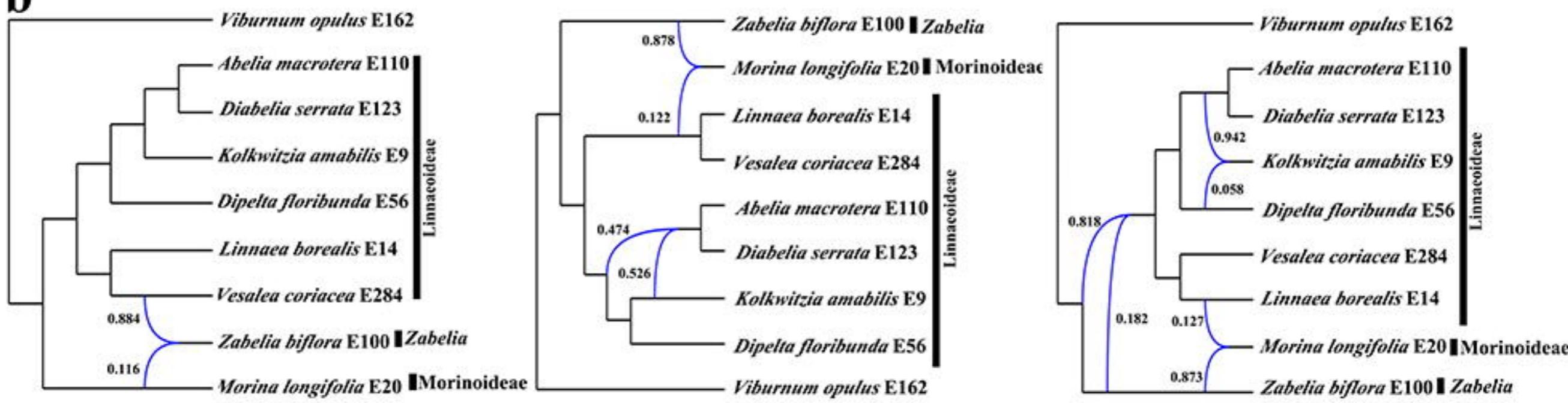
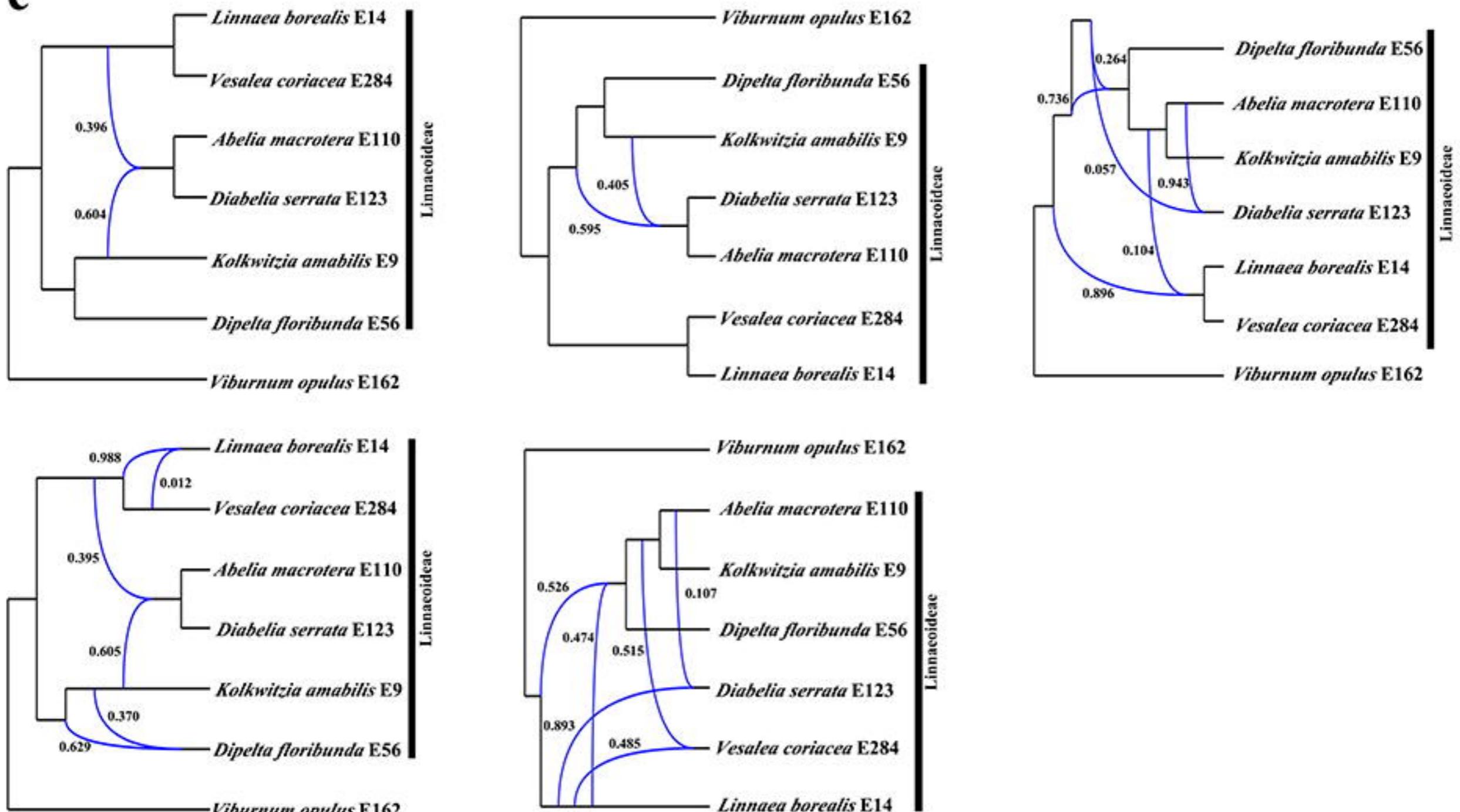

No Yes

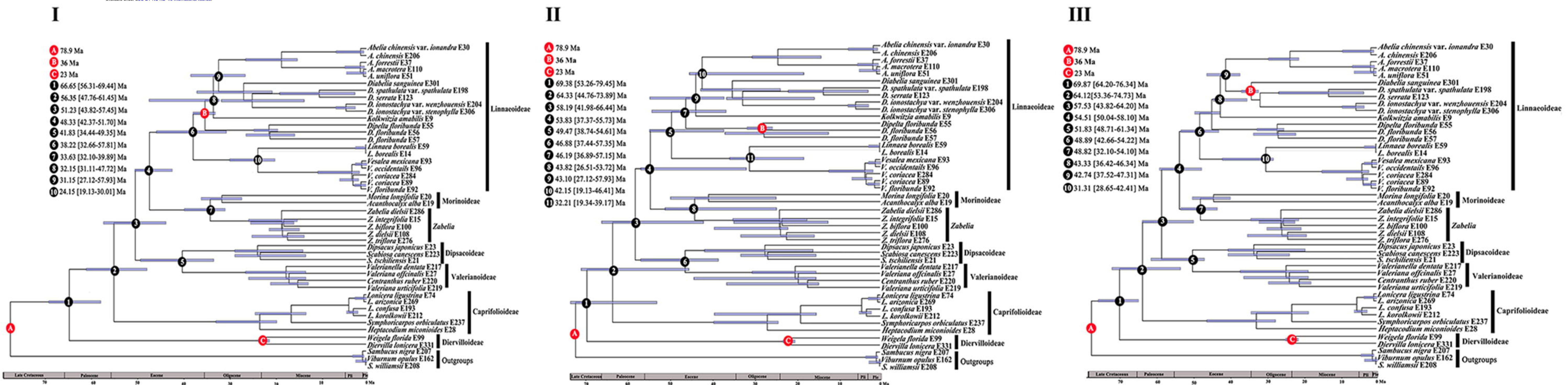

bioRxiv preprint doi: <https://doi.org/10.1101/2020.11.23.269620>; this version posted March 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

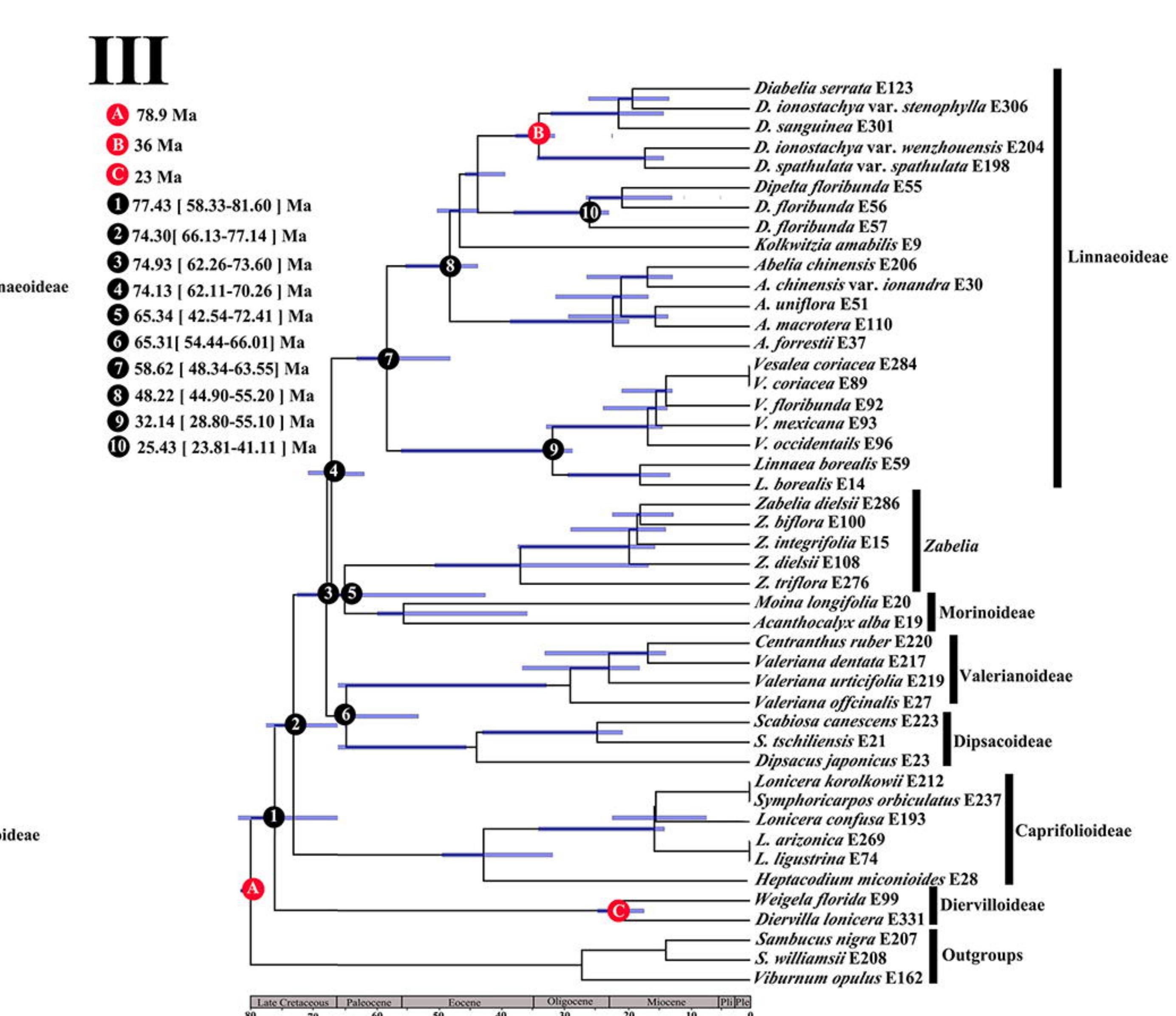
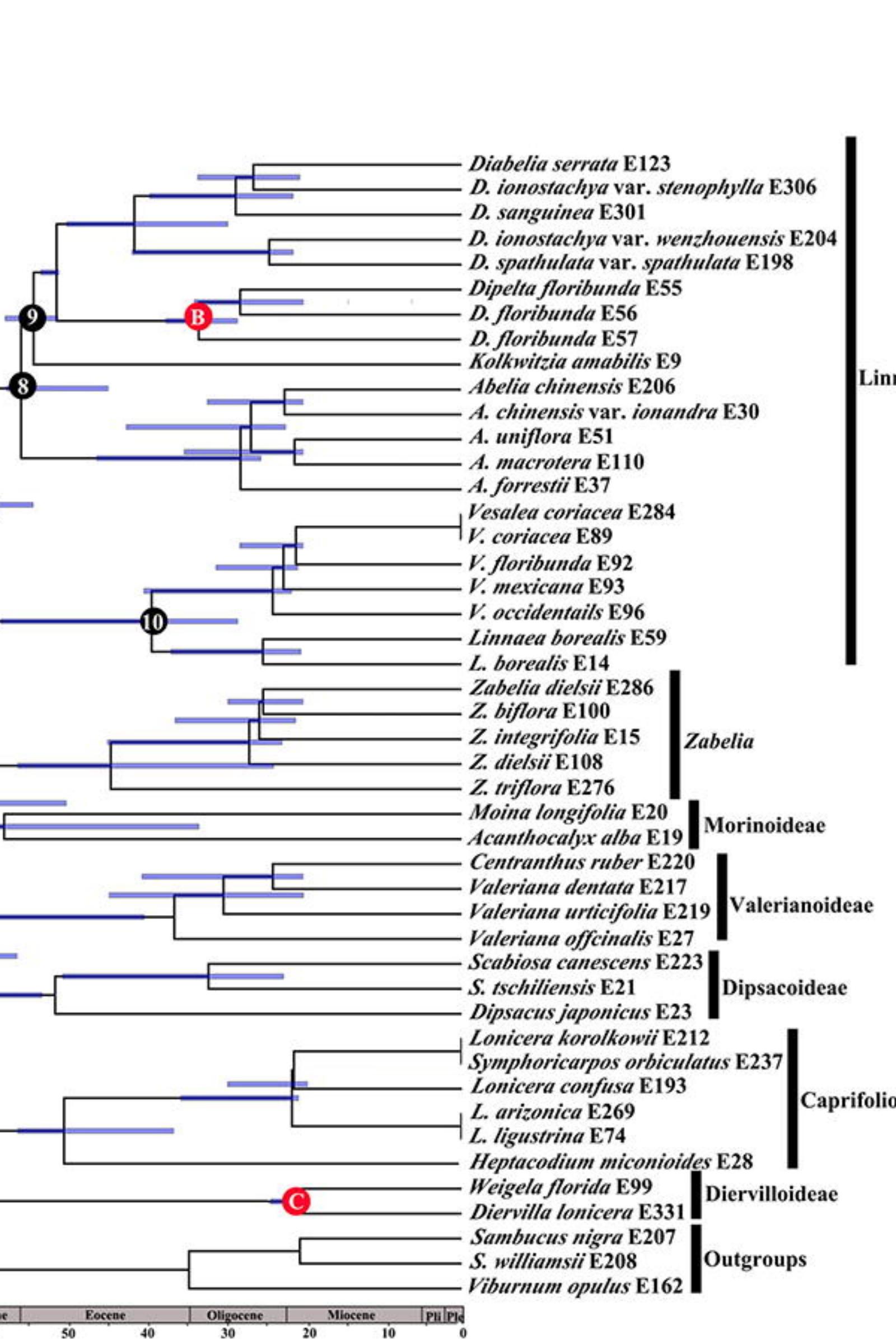
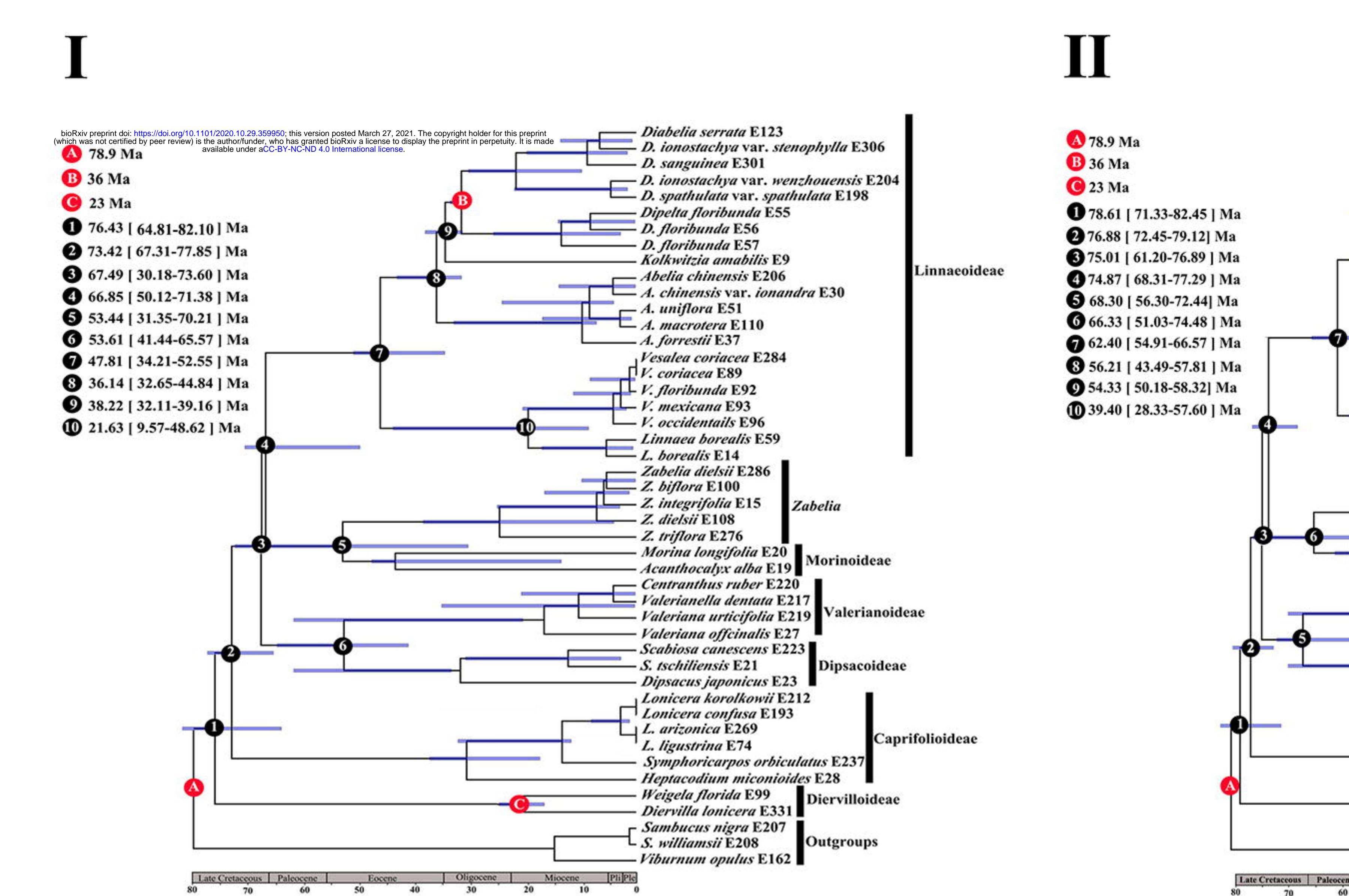


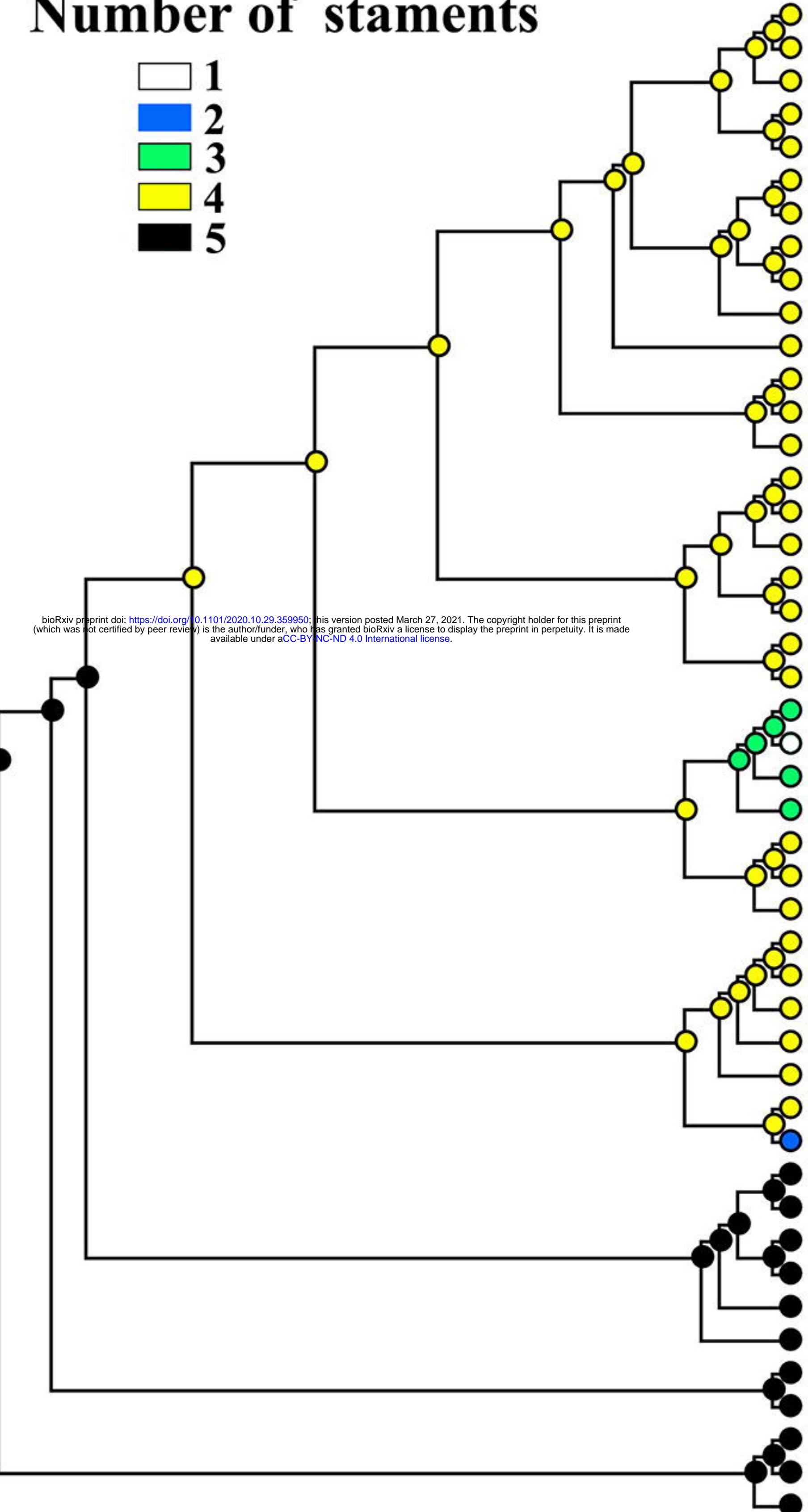




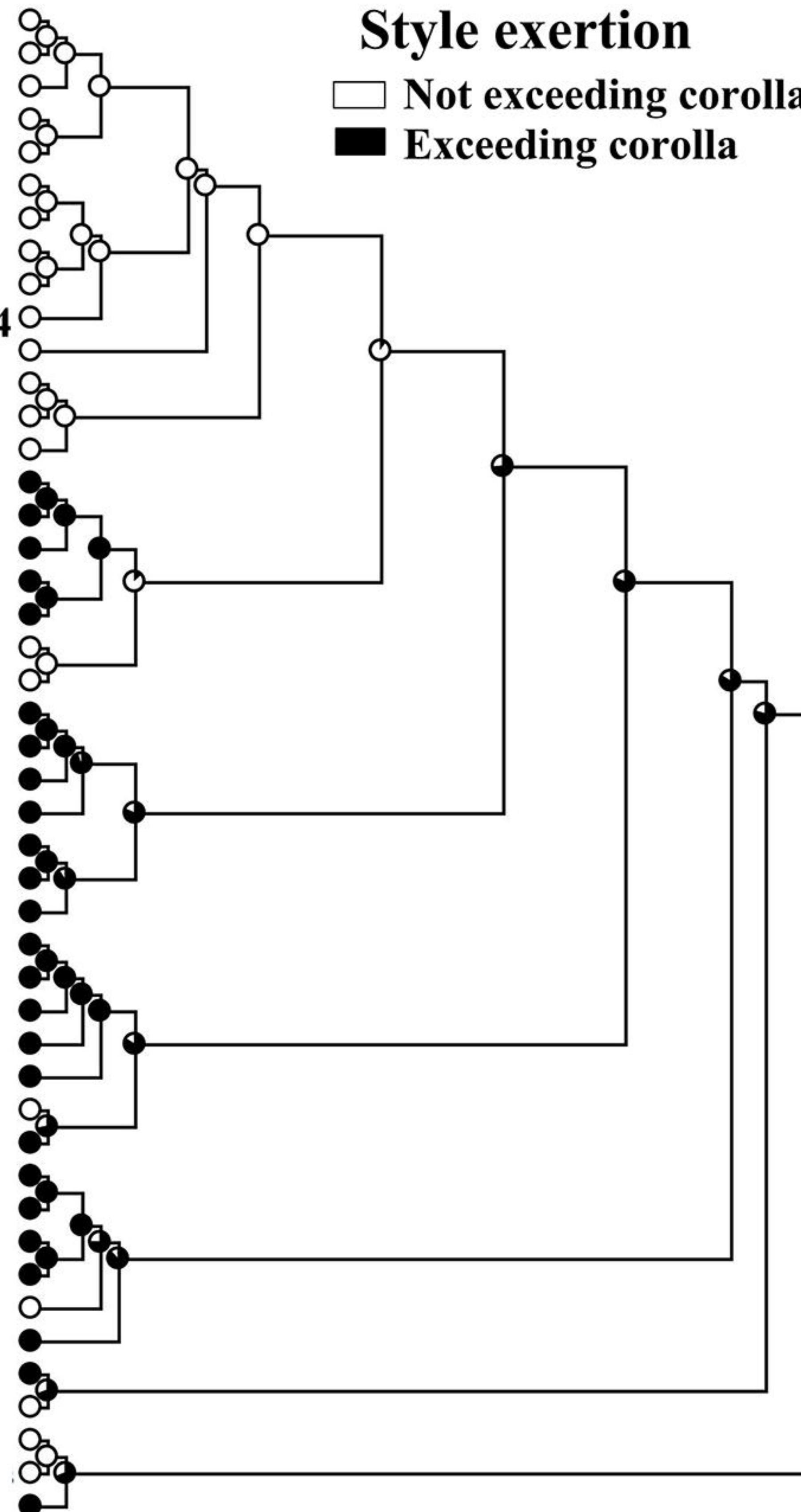






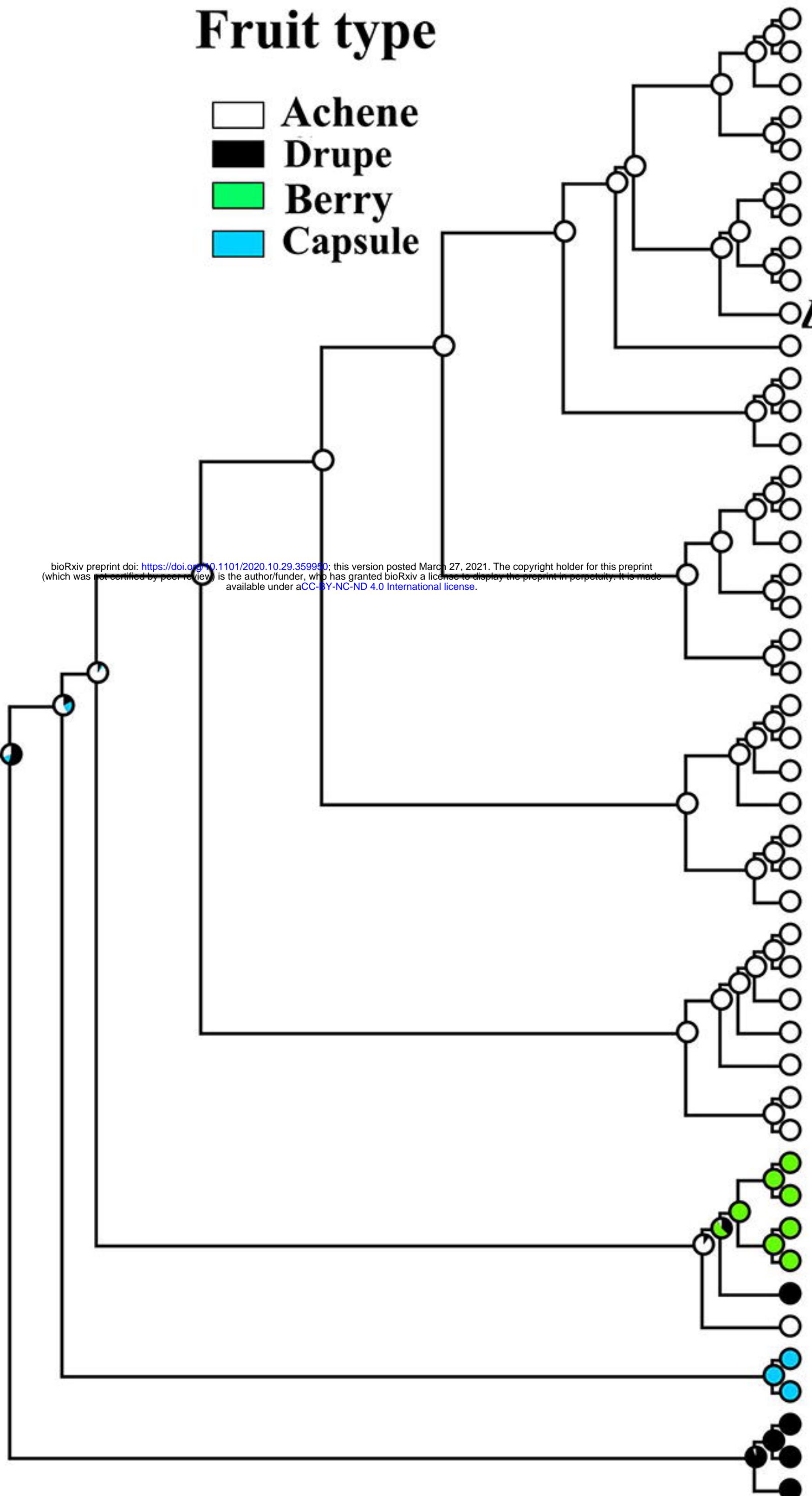





a**b****c**

Number of stamens

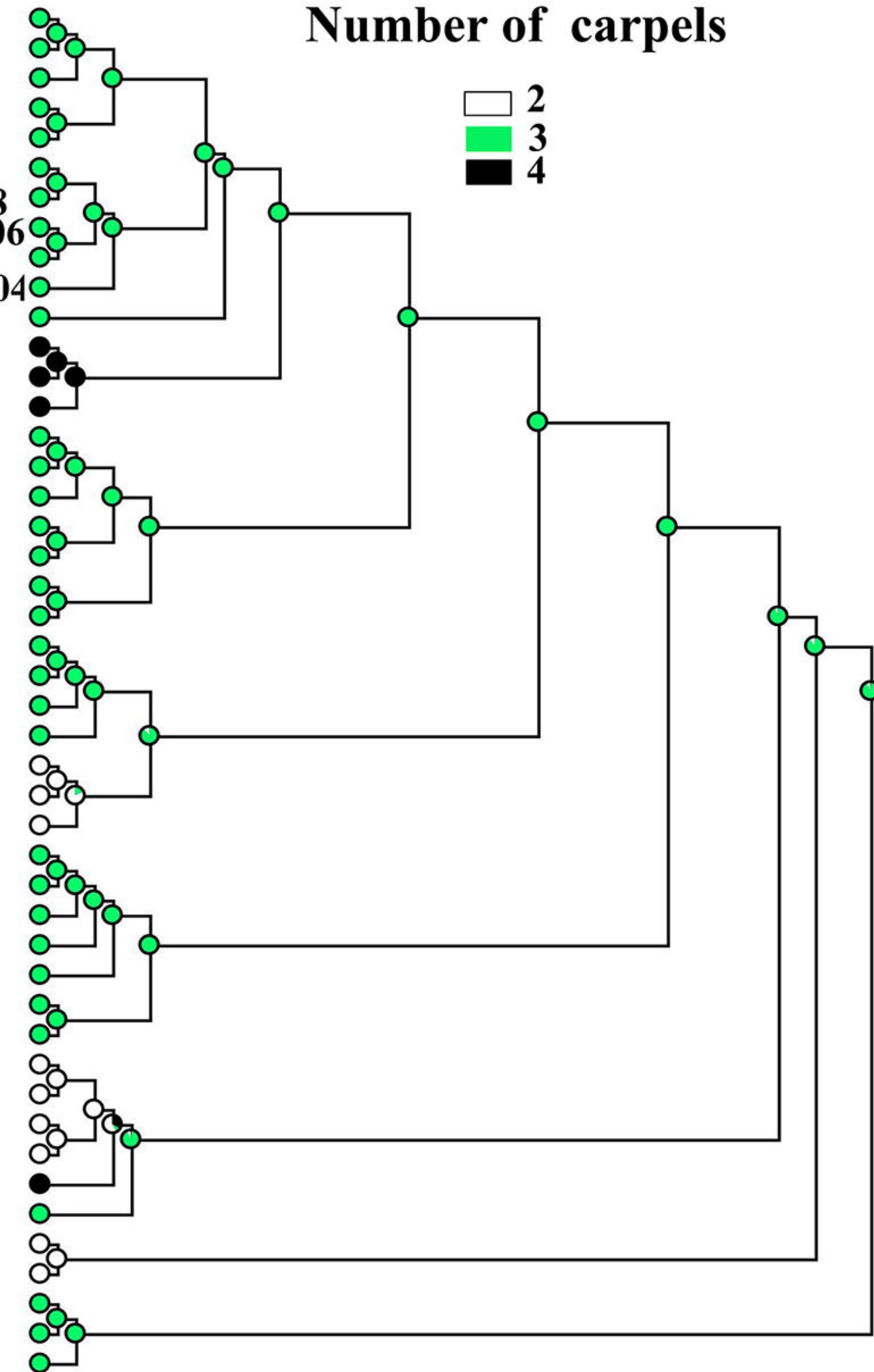

- 1
- 2
- 3
- 4
- 5

Abelia uniflora E51
A. macrotera E110
A. forrestii E37
A. chinensis var. *ionandra* E30
A. chinensis E206
Diabelia serrata E123
D. spathulata var. *spathulata* E198
D. ionostachya var. *stenophylla* E306
D. sanguinea E301
D. ionostachya var. *wenzhouensis* E204
Kolkwitzia amabilis E9
Dipelta floribunda E57
D. floribunda E56
D. floribunda E55
Vesalea occidentalis E96
V. mexicana E93
V. floribunda E92
V. coriacea E284
V. coriacea E89
Linnaea borealis E59
L. borealis E14
Valeriana urticifolia E219
Centranthus ruber E220
Valeriana officinalis E27
Valerianella dentata E217
Scabiosa canescens E223
S. tschiliensis E21
Dipsacus japonicus E23
Zabelia dielsii E286
Z. integrifolia E15
Z. biflora E100
Z. dielsii E108
Z. triflora E276
Acanthocalyx alba E19
Moina longifolia E20
Lonicera arizonica E269
L. ligustrina E74
L. confusa E193
L. korolkowii E212
Symporicarpos orbiculatus E237
Heptacodium miconioides E28
Diervilla lonicera E331
Weigela florida E99
Sambucus nigra E207
S. williamsii E208
Viburnum opulus E162


Style exertion

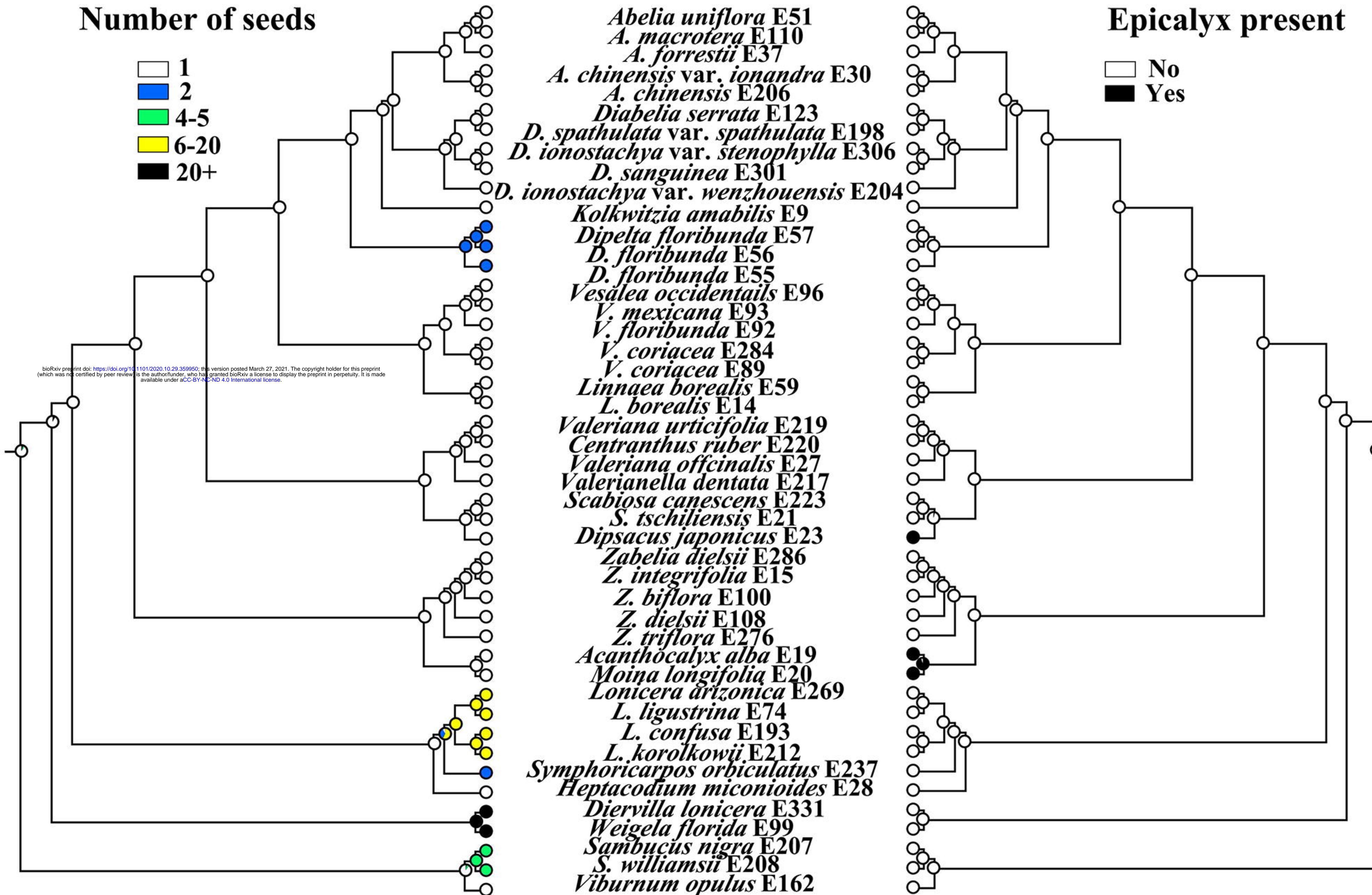
- Not exceeding corolla
- Exceeding corolla

Fruit type


- Achene
- Drupe
- Berry
- Capsule

Abelia uniflora E51
A. macrotera E110
A. forrestii E37
A. chinensis var. *ionandra* E30
A. chinensis E206
Diabelia serrata E123
D. spathulata var. *spathulata* E198
D. ionostachya var. *stenophylla* E306
D. ionostachya var. *wenzhouensis* E204
Kolkwitzia amabilis E9
Dipelta floribunda E57
D. floribunda E56
D. floribunda E55
Vesalea occidentalis E96
V. mexicana E93
V. floribunda E92
V. coriacea E284
V. coriacea E89
Linnaea borealis E59
L. borealis E14
Valeriana urticifolia E219
Centranthus ruber E220
Valeriana officinalis E27
Valerianella dentata E217
Scabiosa canescens E223
S. tschiliensis E21
Dipsacus japonicus E23
Zabelia dielsii E286
Z. integrifolia E15
Z. biflora E100
Z. dielsii E108
Z. triflora E276
Acanthocalyx alba E19
Moina longifolia E20
Lonicera arizonica E269
L. ligustrina E74
L. confusa E193
L. korolkowii E212
Symporicarpos orbiculatus E237
Heptacodium miconioides E28
Diervilla lonicera E331
Weigela florida E99
Sambucus nigra E207
S. williamsii E208
Viburnum opulus E162

Number of carpels


- 2
- 3
- 4

Number of seeds

- 1
- 2
- 4-5
- 6-20
- 20+

bioRxiv preprint doi: <https://doi.org/10.1101/2020.10.29.359950>; this version posted March 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

