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27  Abstract

28 Theuse of diverse datasets in phylogenetic studies aiming for understanding

29  evolutionary histories of species can yield conflicting inference. Phylogenetic conflicts
30 observed in animal and plant systems have often been explained by hybridization,

31 incomplete lineage sorting (ILS), or horizontal gene transfer. Here, we employed target
32  enrichment data, species tree and species network approaches to infer the backbone
33  phylogeny of the family Caprifoliaceae, while distinguishing among sources of

34 incongruence. We used 713 nuclear loci and 46 complete plastome sequence data from
35 43 samples representing 38 species from all major clades to reconstruct the phylogeny
36  of thefamily using concatenation and coal escence approaches. We found significant
37  nuclear gene tree conflict as well as cytonuclear discordance. Additionally, coal escent
38 simulations and phylogenetic species network analyses suggested putative ancient

39  hybridization among subfamilies of Caprifoliaceae, which seemsto be the main source
40 of phylogenetic discordance. Ancestral state reconstruction of six morphological

41  characters revealed some homoplasy for each character examined. By dating the

42  branching events, we inferred the origin of Caprifoliaceae at approximately 66.65 Ma
43 inthelate Cretaceous. By integrating evidence from molecular phylogeny, divergence
44 times, and morphology, we herein recognize Zabelioideae as a new subfamily in

45  Caprifoliaceae. This work shows the necessity of using acombination of multiple

46  approachesto identify the sources of gene tree discordance. Our study also highlights
47  theimportance of using data from both nuclear and chloroplast genomes to reconstruct

48  deep and shallow phylogenies of plants.
49
50 Keywords: Caprifoliaceae; Hybridization; Introgression, Phylogenetic networks,

51 Zabedlia; Zabelioideae.
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54  1Introduction
55

56  Gene tree discordance is a ubiquitous feature of phylogenomic data sets (Galtier and
57  Daubin, 2008; Degnan and Rosenberg, 2009; Sz6llés et al., 2015; Sun et al., 2015; Lin
58 etad., 2019). Many studies have shown that incomplete lineage sorting (ILS),

59 hybridization, and other processes such as horizontal genetransfer, gene duplication, or
60 recombination, may be contributing to discordance among gene trees (Degnan and

61 Rosenberg, 2009; Linder and Naciri, 2015). Among these potential sources of

62  discordance, hybridization has been especialy important in plant systematics research
63 (e.g., Morales-Brioneset al., 2018; Lee-Yaw et al., 2019; Stull et al., 2020;

64 Morales-Brioneset al., 2021). Hybridization may be expected to be prevalent in rapidly
65 radiating groups, which isincreasingly recognized as amaor force in evolutionary

66  biology, in many cases leading to new speciesand lineages (Mallet, 2007; Abbott et al .,
67  2010; Yakimowski and Rieseberg, 2014; Konowalik et a., 2015). ILSis one of the

68  prime sources of gene tree discordance, which has attracted increasing attention in the
69 past decades as phylogenetic reconstruction methods allowed its modeling (Edwards
70  2009; Liu et al., 2015). Despite that, distinguishing ILS from hybridization is till

71 chalenging (Linder and Naciri, 2015). More recently, methods to estimate

72 phylogenetic networks that account simultaneously for ILS and hybridization have

73 been developed (Solis-Lemus and Ané, 2016; Wen et al., 2018). At the same time,

74  empirical studies using phylogenetic networks to identify the sources gene tree

75 discordance are increasing (e.g., Moraes-Briones et al., 2018, 2021; Widhelm et al.,
76 2019; Feng et al., 2020).

77 Caprifoliaceae is amedium-sized family with about 960 plant species belonging
78  to 41 extant generathat are mainly distributed in eastern Asia and eastern North

79  America(Donoghue et al., 2001; Bell, 2004; Wang et a., 2020; Xiang et al., 2020).
80  Thefamily haslong been the focus of phylogenetic studies of character evolution,

81 especialy regarding its tremendous diversity in reproductive structures (Backlund,

82  1996; Donoghue et al., 2003). Caprifoliaceae hasfive corollalobes and five stamens as

83  ancestral states, which are retained in Diervilleae C.A.Mey., Heptacodium Rehd., and
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84  Caprifolieae (though in some Symphoricar pos Duhamel and Lonicera L. there are four
85 corollalobes and four stamens). However, for other genera, the number of stamensis
86  reduced to four or even one. Caprifoliaceae shows even greater variation in fruit types
87 (eg., achenein AbdiaR. Br., berry in Lonicera, and capsule in Weigela Thunb.;
88 Manchester & Donoghue, 1995; Donoghue et al., 2003). Some genera possess highly
89  gpecialized morphological characters (e.g., the spiny leaves of Acanthocalyx (DC.)
90 Tiegh., MorinaL. and DipsacusL.) that have likely played key rolesin lineage-specific
91 adaptiveradiation (Blackmore and Cannon, 1983; Caputo and Cozzolino, 1994,
92 Donoghueet al., 2003) (Fig. 1).
93 Circumscriptions of Caprifoliaceae have been controversial. Backlund & Pyck
94  (1998) suggested that Caprifoliaceae should be defined narrowly to include only five
95  genera, Heptacodium Rehder, Leycesteria Wall., Lonicera, Symphoricarpos, and
96  TriosteumL. This narrowly circumscribed concept of the family has been aso
97  accepted by some authors (e.g., APG, 1998; Yang & Landrein, 2011; Xiang et al.,
98  2020). By contrast, some researchers proposed to integrate M orinaceae, Dipsacaceae,
99 Vaerianaceae, and Caprifoliaceae s. dtr. into the Caprifoliaceae s.l. (e.g., Judd et
100  al.,1994; Donoghue et al., 2001; Stevens, 2001 onwards, Wang et al., 2015; Wang et
101 4., 2020). To maximize stability and ease identification based on recent phylogenetic
102  studies (e.g., Li et al., 2019; Wang et al., 2020; Xiang et al., 2020), we prefer the
103  Caprifoliaceae s.|. concept that includes seven major clades: Linnaeoideae, Zabelia,
104  Morinoideae, Valerianoideae, Dipsacoideae, Caprifolioideae and Diervilloideae
105 (Stevens, 2001 onwards; Wang et al., 2015; APG, 2016; Wang et a., 2020).
106  Phylogenetic relationships within Caprifoliaceae have been studied extensively during
107  the past two decades using plastid and nuclear DNA data (Fig. 2), but the placement of
108 Zabelia (Rehder) Makino has never been resolved confidently using either
109 morphological characters (Backlund, 1996; Donoghue et al., 2003) or molecular data
110  (Donoghueet a., 1992; Jacobs et a., 2010; Smith et a., 2010; Landrein et a., 2012;
111 Stevens, 2019; Wang et a., 2020; Xiang et al., 2020). Based on nuclear (ITS) and
112 chloroplast DNA (cpDNA) data (trnK, matK, atpB-rbcL, trnL-F) of 51 taxa, Jacobs et
113  a. (2010) found moderate support (bootstrap support [BS] = 62%) for the placement of
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114  Zabelia (formerly part of Abelia) in a clade with Morinoideae, Dipsacoideae, and

115 Valerianoideae. Based on the same data set, Jacobs et al. (2010) raised Abelia sect.
116  Zabeliato the genuslevel as Zabelia, and more recent studies have confirmed the

117  distinctiveness of Zabelia (Landrein et al., 2012; Wang et al., 2015), often finding it
118  dister to Morinoideae, although with low (BS < 50%) to moderate (50% < BS < 70%)
119  support (Donoghue et al., 1992; Jacobs et al., 2010; Tank and Donoghue, 2010; Wang
120 etal., 2015). Based on cpDNA data (rbcL, trnL-K, matK and ndhF) of 14 taxa,

121  Landrein et a. (2012) suggested that Zabelia and Diabelia Landrein (Linnaeoideae)
122 had similar “primitive” inflorescences of reduced simplethyrses. Landrein et a. (2012)
123  conducted phylogenetic analyses of the Caprifoliaceae based on the structural

124  characters of reproductive organs. In these analyses, Zabelia was sister to the clade of
125 Morinoideae, and Valerianoideae + Dipsacoideae. Recently, Xiang et a. (2020) carried
126  out analyses of complete plastomes of 32 speciesin this clade, demonstrating that

127  Heptacodiumand Triplostegia Wall. ex DC. are sister to Caprifoliaceae s.s. and

128 Dipsacaceae, respectively, and have thus been included as members of those groups.
129  Furthermore, Zabelia was found to be sister to Morinaceaein all analyses (Xiang et al.,
130  2020). Likewise, using complete plastomes from 56 accessions representing 47 species
131  of Caprifoliaceae, Wang et al. (2020) recovered the clade composed of Linnaeoideae,
132 and Morinoideae + Zabelia as sister to Dipsacoideae + V al erianoideag) with maximum
133  support (BS = 100%).

134 In this study, we assembled and analyzed a custom target enrichment dataset of
135 Caprifoliaceae to: (1) evaluate sources of gene tree discordance, in order to clarify the
136  backbone phylogeny of Caprifoliaceae with special attention to positions of recalcitrant
137 taxa(i.e., Zabelia and Morinoideae); and (2) determine the evolutionary patterns of key
138  morphological characters of Caprifoliaceae.

139

140 2 Materials and methods

141 2.1 Taxon sampling

142 We sampled 43 individuals from 38 species of Caprifoliaceae, including

143  representatives of all seven magjor clades (including Zabelia) of Caprifoliaceae sensu
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144  Stevens (2001 onwards) and Wang et a. (2020). Additionally, three species of

145  Adoxaceae were included as outgroups. Most samples (38) were collected in the field,
146  where leaf tissue was preserved in silica gel. The remaining samples were obtained
147  from the United States National Herbarium (US) at the Smithsonian Institution (Table
148  Sl1). Vouchers of newly collected samples were deposited in the herbarium of the

149 Institute of Tropical Agriculture and Forestry (HUTB), Hainan University, Haikou,
150 China. Complete voucher information is listed in Supporting Information Table S1.
151

152 2.2 DNA extraction, target enrichment, and sequencing

153 We extracted total genomic DNA from silica gel-dried tissue or herbarium tissue
154  using the CTAB method of Doyle and Doyle (1987). We checked the quantity of each
155  extraction with a Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA,
156  USA) and sonicated 4000ng of DNA using a Covaris S2 (Covaris, Woburn, MA) to
157  produce fragments ~150-3501 1bp in length for library preparations. To ensure that
158 genomic DNA was sheared at approximately the selected fragment size, we evaluated
159  all sampleson al1.2% (w/v) agarose gel.

160 We identified putative single copy nuclear (SCN) genes with MarkerMiner v.1.2
161 (Chamalaet al., 2015) with default settings, using the transcriptomes of Dipsacus

162  asper, Lonicera japonica, Sambucus canadensis, Valeriana officinalis, and Viburnum
163  odoratissimum from 1KP (Matasci et al., 2014), and the genome of Arabidopsis

164 thaliana (L.) Heynh. (Gan et al., 2011) as areference. SCN genes identified with

165 MarkerMiner were further filtered using GoldFinder (Vargas et al., 2019), requiring
166 loci with at least 400 bp and a coverage of at least three species. Thisresulted in 428
167  SCN genes for phylogenetic analyses. A custom set of 80 bp biotinylated RNA baits
168 (MY baits) based on exon sequences were manufactured by Arbor Biosciences (Ann
169  Arbor, MI, USA), with a2x tiling density. The bait sequences are available as a

170  supplemental file (Appendix 1).

171 Library preparation was done with the NEBNext Ultra |l DNA Library Prep Kit
172  for Illumina(New England Biolabs, MA, USA) following the manufacturer’ s protocol.

173  Library concentrations were quantified using a Qubit 2.0, with adsDNA HS Assay Kit
6
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174  (Thermo Fisher Scientific). Fragment size distribution was determined with a High
175  Sengtivity D1000 ScreenTape run on the Agilent 2200 TapeStation system (Agilent
176  Technologies, Inc., Santa Clara, California, United States). Solution-based

177  hybridization and enrichment with MY baits followed Weitemier et al. (2014). Libraries
178 pools were and sequenced by Novogene Corporation (Sacramento, California, U.S.A.)
179  on onelane using the lllumina HiSeq 4000 sequencing platform (Illuminalnc, San
180 Diego, Cdlifornia, U.S.A.) producing 1507 1bp paired-end reads.

181 Given the low recovery of plastome reads from target enrichment libraries, we
182  used a genome skimming approach to ensure recovery of full plastomes. Following
183 Wang et al. (2020) with minor modifications, we built separate libraries for total

184  genomic DNA. These libraries were sequenced using the BGISEQ-500 platform at BGI
185  Shenzhen (China) with 100 bp paired-end reads.

186

187 2.3 Read processing and assembly

188 Sequencing adapters and low-quality bases were removed with Trimmomatic
189  v0.36 (ILLUMINACLIP: TruSeq ADAPTER: 2:30:10 SLIDINGWINDOW: 4:5

190 LEADING: 5 TRAILING: 5 MINLEN: 25; Bolger et al., 2014). Assembly of nuclear
191 loci was carried out with HybPiper v.1.3.1 (Johnson et al., 2016), on an exon basisto
192  avoid chimeric sequences in multi-exon genes that may be produced by potential

193 paralogy (Morales-Brioneset al., 2018). Only exons with areference length of > 150 bp
194  were assembled (1220 exons from 442 genes). Paralog detection was carried out for all
195 exonswiththe‘paralog_investigator’ option of HybPiper. All assembled loci (with and
196  without paralogs detected) were processed following Morales-Briones et al. (2020) to
197  obtain ‘monophyletic outgroup’ (MO) orthologs (Yang & Smith, 2014).

198 Plastome assembly followed Wang et al. (2020). Briefly, raw reads were filtered
199  with SOAPfilter_v2.2 (BGI-Shenzhen, China) and ddapter sequences and low-quality
200  reads were removed. Plastome assembly was carryout using MITObim v1.8 (Hahn et
201  al. 2013) following Wang et al. (2020).

202

203 2.4 Phylogenetic analyses
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204 We used concatenation and coalescent-based methods to reconstruct the

205 phylogeny of Caprifoliaceae. We performed phylogenetic analyses on the nuclear and
206 plastid datasets separately. Individual nuclear exons were aligned with MAFFT v7.407
207  (Katoh & Standley, 2013) and aligned columns with more than 90% missing data were
208  removed using Phyutility (Smith & Dunn, 2008). A maximum likelihood (ML) tree
209  was estimated from the concatenated matrix, partitioning by gene, using RAXML

210 v8.2.12 (Stamatakis, 2014) and the GTRGAMMA model for each partition. Clade
211  support was assessed with 200 rapid bootstrap replicates (BS). We also estimated a
212  speciestree with ASTRAL-III v5.7.1 (Zhang et al., 2018) from individual ML gene
213 treesinferred using RAXML withaGTRGAMMA model. Local posterior probabilities
214  (LPP; Sayyari & Mirarab, 2016) were used to assess clade support.

215 Gene tree discordance was evaluated using two approaches. First, we mapped the
216 individual nuclear genetrees onto the species tree and cal culated the internode certainty
217 al (ICA; Salichos et a., 2014) and number of conflicting and concordant bipartitions
218  on each node of the species trees using Phyparts (Smith et al., 2015). Then we used
219  Quartet Sampling (QS; Pease et a., 2018) to distinguish strong conflict from weakly
220  supported branches in the nuclear tree. We carried out QS with 1000 replicates.

221 The plastomes sequences were aligned with MAFFT. A ML tree was estimated
222  with RAXML usingthe GTR + | + G model and 1000 bootstrap replicates for clade
223  support. Additionally, we used QS with 1000 replicates to evaluate branch support.
224

225 2.5 Assessment of hybridization

226 To test whether ILS aone could explain cytonuclear discordance, we used

227  coaescent simulations similar to Folk et al. (2017) and Garciaet al. (2017). We

228  simulated 10,000 gene trees under the coalescent with DENDROPY v.4.1.0

229  (Sukumaran & Holder, 2010) using the ASTRAL speciestrees as a guide tree with
230  branch lengths scaled by four to account for organellar inheritance. We summarized the
231 simulated gene trees on the cpDNA tree. Under a scenario of ILS alone, any

232  relationships in the empirical chloroplast tree should be present in the ssmulated trees
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233  and have ahigh frequency; under a hybridization scenario, relationships unigue to the
234 cpDNA tree should be at low (or zero) frequency (Garciaet a., 2017).

235

236 2.6 Species network analysis

237 We inferred species networks using a maximum pseudo-likelihood approach (Yu
238 etal., 2012). Dueto computational restrictions and given our main focus on potential
239  reticulation among major clades of Caprifoliaceae (i.e., along the backbone), except
240  Caprifolioideae and Diervilloideae, which did not show maor signal of conflict with
241  respect to the rest of Caprifoliaceae[i.e., the remaining five major groups formed a
242  clade with maximum support (see section 3.4)]. First, we reduced our 46-taxon data set
243  to one outgroup and 10 ingroup taxato include Dipsacoideae, Linnaeoeideae,

244 Moroinoideae and Zabelia (11-taxa data set). To disentangle nested hybridization, we
245  created areduced, 9-taxa data set by removing Dipsacoideae (because Dipsacus and
246  Scabiosa were found to be involved in severa inferred hybridization events) and a
247  7-taxadata set that excluded these two taxa as well as Morina and Zabelia (which were
248  found to beinvolved in reticulation events in both the 11-taxa and 9-taxa networks).
249  Speciesnetwork searches were carried out with PHYLONET v.3.6.1 (Than et al., 2008)
250  with the command ‘ InferNetwork_MPL’ and using individual ML gene trees. Network
251  searches were performed using only nodes in the gene trees that had BS support of at
252  least 50%, allowing for up to five hybridization events and optimizing the branch

253 lengths and inheritance probabilities of the returned species networks under the full
254  likelihood. To estimate the optimal number of hybridizations and test whether the

255  gpecies network fit our gene trees better than a strictly bifurcating species tree, we
256  computed the likelihood scores of concatenated RAXML, ASTRAL and plastid DNA
257  trees, given the individual genetrees, asimplemented in Yu et a. (2012), using the
258 command ‘CaGTProb’ in PHYLONET. Finally, we performed model selection using
259  the Akaikeinformation criterion (Akaike, 1973), the bias-corrected Akaike information
260 criterion (AlCc; Sugiura, 1978), and the Bayesian information criterion (Schwarz,

261  1978). The number of parameters equals the number of branch lengths being estimated,
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262  plusthe number of hybridization probabilities being estimated, and number of gene
263  treesused to estimate the likelihood, to correct for finite sample size.

264

265 2.7 Divergencetime estimation

266  Divergencetimeswereinferred using BEAST v.2.4.0 (Bouckaert et al., 2014). Thereis
267  potential ancient hybridization in Caprifoliaceae, and therefore we estimated

268 diversfication dates separately for the nuclear and chloroplast gene tree. The root age
269  was set to 78.9 Ma(mean 78.9 Ma, normal prior distribution 76.3-82.2 Ma) following
270  Lieta. (2019). We selected two fossils as calibration points. First, the fossil seeds of
271  Weigda Thunb. from the Miocene and Pliocene in Poland (Lancucka-Rodoniowa,
272  1967), and the Miocene in Denmark (Friis, 1985) were used to constrain its stem age
273  (offset 23.0 Ma, lognormal prior distribution 23.0 — 28.4 Ma). Second, the fruit fossil
274  Diplodipelta S.R.Manchester & M.J.Donoghue, from the late Eocene Forissant flora
275  of Colorado (Manchester, 2000; Bell & Donoghue, 2005), was used as a constraint in

276  three different positions. In each case, the Diplodipelta constraint was set as an offset
277  of 36 Ma, with alognormal prior distribution of 34.07-37.20 Ma. Wang et a. (2015)

278  considered three placements of Diplodipelta because it is possible that Diplodipelta
279  represents a common ancestor of Diabelia and Dipelta, and because the sepal of

280 Diplodipdtaissimilar to Diabelia, while the fruit wing of Diplodipeltais similar to
281 Dipdta (Manchester & Donoghue, 2005; Wang et al., 2015). Hence, following Wang
282 et adl. (2015), we tested three placements of the Diplodipelta constraint: we constrained
283  thecommon ancestor of Diabelia and Dipelta (Analysis 1), we constrained the common
284  ancestor (crown group) of Dipelta (Analysis 1), and we constrained the common

285  ancestor (crown group) of Diabelia (Analysis 11). For each of these constraint

286  positions, we carried out divergence time estimations for the nuclear and chloroplast
287  trees separately.

288 All dating analyses were performed with an uncorrelated lognormal relaxed clock
289  (Drummond et al., 2012), GTR + G substitution model (Posada, 2008), estimated base

290 frequencies, and a Yule process for the tree prior. The RAXML tree was used as the

10
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291  sarting tree, and two independent MCMC analyses of 300,000,000 generations with
292  10% burn-in and sampling every 3000 generations were conducted to evaluate the
293  credibility of posterior distributions of parameters. BEAST log files were analyzed
294  with Tracer v.1.7 (Drummond et a., 2012) for convergence with the first 10% of trees
295  removed as burn-in. Parameter convergence was assessed using an effective sample
296 size (ESS) of 200. Log files where combined with LogCombiner and a maximum clade
297  credibility tree with median heights was generated with TreeAnnotator v.1.8.4

298  (Drummond et al., 2012).

299

300 2.8 Analysis of character evolution

301 Character states were coded from the literature, particularly from Backlund (1996),
302 Donoghue et al. (2003), Jacobs et al. (2011) and Landrein (2017). The number of

303 stamenswas scored as follows: (0), 1; (1), 2; (2), 3; (3), 4; (4), 5. Two-character states
304  were scored for style exertion: (0), not exceeding corolla; (1), exceeding corolla. Four
305  fruit types were scored: (0), achene; (1), capsule, (2), berry; (3), drupe. The number of
306 carpelswasscored as: (0), 2; (1), 3; (2), 4. Number of seeds was scored as: (0), 1; (1),
307  2;(2),4-5; (3), 6-20; (4), 20+; Two epicalyx types were scored: (0), no; (1), yes. All
308 the morphological characters analyzed here are presented in Supplementary Fig. S1.
309 Ancestral character state reconstruction was performed using ML as implemented in
310 Mesquitev.3.51 (Maddison and Maddison, 2018) with the * Trace character history’
311 option based on the topology of the chloroplast trees. To explore differences caused by
312  differing topologies, we also reconstructed ancestral character states onto the nuclear
313 tree. The Markov k-state one-parameter model of evolution for discrete unordered
314  characters (Lewis, 2001) was used.

315

316 2.9 Data accessibility

317 Raw Illuminadata from sequence captureis available at the Sequence Read

318  Archive(SRA) under accession SUB7674585 (see Table S1 for individual sample SRA
319  accession numbers). DNA aignments, phylogenetic trees and results from all analyses

320 and datasets can be found in the Dryad data repository.
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321

322 3 Results

323 3.1 Assembly

324  The number of assembled exons per species (with > 75% of the target length) ranged
325 from 130 (Vesalea floribunda) to 989 (Diabelia sanguinea) out of 1220 single-copy
326  exonreferences, with an average of 725 exons (Table S2; Fig. S2). The number of
327  exons with paralog warnings ranged from 1 in Vesalea floribunda to 619 in Diabelia
328 sanguinea (Table S2). After paralog pruning and removal of exons with poor coverage
329 acrosssamples (at least 25 ingroup taxa), we kept 707 exons from 367 different genes.
330 Theresulting concatenated matrix had an aligned length of 343,609 bp with 96,479
331 parsimony-informative sites, aminimum locus size of 150 bp, and a maximum locus
332 sizeof 3,503 bp, with an average of 486 bp. The plastome alignment resulted in a

333  matrix of 208,607 bp with 32,960 parsmony-informative sites (Table 1).

334

335 3.2 Phylogenetic reconstruction

336 In analyses of both nuclear and plastid data, Diervilloideae and Caprifolioideae
337  weresuccessively sister to remaining Caprifoliaceae, which were resolved into five
338 main groups:. Diervilloideae, Caprifolioideae, Valerianoideae, Zabelia and

339 Morinoideae. (Figs. 3-4). However, the relationships among the seven groups within
340 Caprifoliaceae differed between nuclear and plastid analyses.

341 Nuclear dataset. The ASTRAL analysis (Fig. 3) recovered maximum support
342  (LPP=1) for relationships within Caprifoliaceae and its seven major clades, except for
343  theplacement of Kolkwitzia amabilis (LPP = 0.7). Diervilloideae was resolved as sister
344  totherest of Caprifoliaceae, followed by Caprifolioideae as successive sister. Zabelia
345  and Morinoideae formed a clade that was placed as sister to the remaining major

346  groups. Dipsacoideae was recovered as polyphyletic, where Scabiosa was sister of
347  Vaerianoideae, and together with Dipsacus japonicus formed a grade sister to

348  Linnaeoideae. Within Linnaeoideae, the clade of Vesalea M.Martens & Galeotti +

349 Linnaea Gronov. ex L. was recovered as sister to a clade of all other Linnaeoideae.

12
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350 Thetopology of the nuclear concatenated RAXML tree (Fig. 4) was mostly similar
351 tothat of the ASTRAL treesregarding major cladesand their relationships. M ost major
352 clades and relationship among them had maximum support (BS = 100). The two

353 differences were that RAXML recovered a monophyletic Dipsacoideae (Dipascus +
354  Scabiosa) sister to Valerianoideae and Kolkwitzia amabilis sister of Dipelta.

355 The conflict analyses (Fig. 3, Figs. S3-S7) confirmed the monophyly of

356  Caprifoliaceae with 266 out of 289 informative gene trees being concordant (ICA =
357  0.73) and having full QS support (1/-/1; i.e., all sampled quartets supported that

358  branch). Within Caprifoliaceae, major clades and the the relationships among them
359 had low to strong support. Diervilloideae was supported by 294 gene trees (out of 325;
360 ICA =0.79) and full QS support. Caprifolioideae was supported by 161 gene trees (out
361 of 216; ICA =0.50) and strong QS support, with signal of an alternative topology

362 (0.87/0.077/1). Therelationship of Caprifolioideae to the remaining five major clades
363  was supported by 306 genetrees (out of 398; ICA = 0.55) and strong QS support, with
364 signal of an alternative topology (0.82/0.043/1). The remaining five mgor groups

365 formed aclade supported by 417 gene trees (out of 598; ICA = 0.32) and full QS

366  support. Morinoideae was supported by 409 gene trees (out of 448; ICA =0.72) and
367  full QS support, Zabeia was supported by 453 gene trees (out of 484; ICA = 0.81)
368 and also full QS support. The clade composed of Zabelia + M orinoideae was

369  supported by only 86 gene trees (out of 354) and moderate QS support, with signal of
370 apossible alternative topology (0.25/0/0.99). In the ASTRAL topology (Fig 3; Figs
371 S3-4), Scabiosa (Dipsacoideae) had 233 supporting gene trees (out of 308; ICA =
372  0.37) and full QS support, Valerianoideae was supported by 314 gene trees (out of
373 358; ICA =0.58) with full QS support. The clade composed of Valerianoideae +

374  Scabiosa was supported by only 63 gene trees (out of 370; ICA = 0.11) and moderate
375 QS support, with signal of a possible alternative topology (0.39/0/0.99). The sister
376  relationship of Dipsacus japonicus and Linnaeoideae was supported by only 48 gene
377  trees(out of 468; ICA =0.08) and had weak QS support, with signal of a possible
378 dternative topology (0.073/0/1). The sister relationship of the clade Valerianoideae +

379  Scabiosa and the clade Dipsacus japonicus + Linnaeoideae was supported only by 86
13
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380 genetrees (out of 461; ICA 0.09) with moderate QS support but no signal of an

381 dternativetopology (0.17/0.73/0.97). In turn, for the RAXML topology (Figs S5-6), a
382  monophyletic Dipsacoideae was supported by only 80 gene trees (out of 300; ICA =
383  0.13) but had strong QS support with signal of an alternative topology (0.74/0/1).

384  Linnaeoideae was supported by only 106 gene trees (out of 507; ICA = 0.08) but had
385  strong QS support with no signal of an alternative topology (0.83/0.95/1). Within

386 Linnaeoideae, Linnaea was supported by 301 gene trees (out of 312; ICA =0.88) and
387  full QS support, Vesalea was supported by 101 gene trees (out of 223; ICA = 0.33)
388  and strong QS support but there was signal of a possible alternative topology

389 (0.92/0/1). The clade Linnaea + Vesal ea was supported by only 128 gene trees (out of
390 343; ICA = 0.20) and had strong QS support with signal of a possible aternative

391 topology (0.92/0/1). In the case of the remaining Linnaeoideae, Dipelta was supported
392 by 276 genetrees (out of 326; ICA =0.69) and full QS support, Diabelia was

393  supported by 149 gene trees (out of 345; ICA = 0.20) and had strong QS support with
394  signal of apossible alternative topology (0.62/0/1), and Abelia was supported by only
395 54 genetrees (out of 349; ICA= 0.20) but with strong QS support and signa of a

396 possible alternative topology (0.79/0/1). The clade formed by Abelia + Diabelia was
397  supported only by 45 gene trees (out of 394; ICA = 0.07) but with strong QS support
398 andsigna of a possible alternative topology (0.67/0.2/1). In the ASTRAL analysis,
399 thesister relationship of Kolkwitzia amabilis and the clade of Abelia + Diabelia was
400 supported only by 15 gene trees (out of 411; ICA = -0.06) with QS counter support
401 and clear signal for an alternative topology (-0.22/0.19/0.94). In turn, for the RAXML
402  topology, Kolkwitzia amabilis was placed as sister to Dipelta with the support of only
403 39 genetrees (out of 288; ICA = 0.08) and moderate QS support, with signal for a
404  possible adternative topology (0.22/0.29/0.95). Finally, the clade composed of Dipelta,
405  Kolkwitzia, Abelia, and Diabelia was supported by only 20 gene trees (out of 413; ICA
406 = 0.06) and moderate QS support with signal for a possible alternative topology

407  (0.37/0.059/0.95).

408 Plastid dataset. Phylogenetic analysis of the cpDNA dataset also recovered the

409 same seven magjor cladesin Caprifoliaceae, although relationships differed between
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410 plastid and nuclear trees (Fig. 4). In the plastid tree all major clades and most

411  relationships among them had full support (BS = 100; QS = 1/-/1; Fig. 4 and Fig. S7).
412  The clade Valerianoideae + Dipsacoideae was recovered as sister to all remaining

413  Caprifolicaeae. The clade composed of Zabelia + Morinoideae was recovered as sister
414  to Linnaeoideae with strong BS support (75) and moderate QS support, with signal of
415 an dternative topology (0.36/0.4/0/94). Within Linnaeoideae, Diabelia and Dipelta
416 formed aclade with strong BS support (89) and moderate QS support, with signal of an
417  dternative topology (0.36/0.24/0/93). Kolkwitzia amabilis was sister to Diabelia +
418 Dipdtawith full BS support and strong QS support, but with asignal of an alternative
419 topology (-/94/0.33/0.99). Abelia was recovered with full support as the sister of the
420 clade composed of Diabelia, Dipelta and Kolkwitzia. The main differences between the
421  nuclear and cpDNA trees were the placement of Zabelia + Morinoideae as sister of
422  Linnaeoideae, and the placement of Kolkwitzia amabilis as sister of the clade of

423 Diabdlia + Dipdta.

424

425 3.3 Coalescent simulations

426 Coalescent simulations under the organellar model did not produce gene trees that
427  resembled the observed cpDNA tree. When the simulated gene trees were summarized
428  onthe observed chloroplast tree, most clade frequencies were near zero, as for instance
429  Kolkwitzia amabilis and the clade Valerianoideae + Dipsacoideae, Zabdia +

430 Morinoideae and the clade Linnaeoideae + Valerianoideae + Dipsacoideae (Fig. S8).
431  Thissuggested that ILS alone cannot explain the high level of cytonuclear discordance
432  observed in Caprifoliaceae.

433

434 3.4 Species network analysis

435 For all three data sets analyzed (11-taxa, 9-taxa, 7-taxa), any of the networks with
436 oneto fivereticulations events was a better model than astrictly bifurcating tree (Table
437  2; Fig. $9). In the 11-taxa data set, the best network had four reticulations events,

438  wheresas three reticulation events were inferred for the best networksin the 9-taxa and

439 7-taxatrees (Fig. 5; Table 2). In the 11-taxa network (Fig. 5a), which included
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440 Dipsacoideae, both species of Dipsacoideae were inferred to result from hybridization
441  eventsinvolving members of Linnaeoideae. Dipsacus was inferred to have

442  contributions from three lineages, including an inferred hybridization between the
443  lineagesleading to Linnaea and Vesalea. In the 9-taxatree (excluding Dipsacoi deae but
444  including Morina and Zabelia; Fig. 5b), both Morina and Zabelia were inferred to have
445  genetic contributions from Linnaeoideae, while the clade of Abelia + Diabelia was
446  inferred to have received a contribution from the lineage leading to Kolkwitzia. In the
447  7-taxatree (including only Linnaeoideae + Viburnum; Fig. 5¢), the clade of Abelia +
448 Diabelia was again inferred to have resulted from a reticulation event, as were Dipelta
449  and Linnea, although in the case of Linnea, there was only a small contribution (1.2%)
450 from thelineage leading to Vesalea.

451

452 3.5 Divergence time estimation

453  Divergence time estimates based on the nuclear data set suggested that the deepest
454  divergencesin Caprifoliaceae occurred in the early Paleocene, whereas most

455  generic-level diversification occurred in the middle Eocene to middle Oligocene (Fig.
456  6). Thedivergence between Dipsacoideae and Valerianoideae was dated to 41.83 Ma
457  (95% Highest Posterior Density (HPD) = 34.44-49.35Ma) (Fig. 6). The diversification
458  of Linnaeoideae wasinferred to be at 48.33 Ma (95% HPD = 42.37-51.70 Ma) (Fig. 6).
459  Within Linnaeoideae, both Abelia and Kolkwitzia originated almost

460  contemporaneously in the mid-late Eocene. The onset of Zabelia and Morinoideae
461  diversification occurred between 32.10 and 39.89 Ma (Fig. 6). A comparison of the
462  time estimates for selected nodes under the six different analysesis availablein Figs.
463  S10and S11. Aswould be expected, Analysis | (placing the Diplodipelta fossil

464  constraint at the ancestor of Diabelia and Dipelta) resulted in younger ages for much
465  of Linnaeaoideae, but otherwise did not significantly affect divergence dates. We

466 found that our estimated ages were generally younger with nuclear vs. plastid data
467  (Figs. S10 - S11). For instance, our analyses showed that Caprifoliaceae date to 66.65
468 Ma (95% HPD =56.31- 69.44 Ma) in analysis | based on nuclear datasets (Fig. S 10),
469  whereasin the two other analyses, the divergence time was estimated as 69.38 Ma
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(95% HPD = 53.26- 79.45 Ma) and 69.87 Ma (95% HPD = 64.20- 76.34 Ma, Fig.
S10). Based on chloroplast datasets, the divergence time of Caprifoliaceae was
estimated at 76.43 Ma (95% HPD = 64.81- 82.10 Ma), 78.61 Ma (95% HPD = 71.33-
82.45 Ma) and 77.43 Ma (95% HPD = 58.33- 81.60 Ma) in the three analyses

respectively (Fig. S10).

3.6 Character evolution
The likelihood inference of character evolution using the cpDNA tree detected

some homoplasy in each of the six morphological characters examined (Figs. 8 - 10),
with style exertion relative to corolla showing particularly high homoplasy (Fig. 7).
Stamen number exhibited little homoplasy, with an inferred shift from five stamens
ancestrally to four in the bulk of Caprifoliaceae, and within Valerianoideae, it further
reduced to 3 and 1 (Fig. 7). In contrast, style exertion exhibited a high level of
homoplasy inthe early diversification of the family (Fig. 7). Even within Linnaeoideae,
the state “not exceeding corolla” was inferred to have originated twice, in Vesalea and
in the Diabelia-Dipelta-Kolwitzia-Abelia clade. The ancestral fruit type for
Caprifoliaceae was uncertain due to the diversity in fruit types among the major
early-diverging clades, but was most likely an achene (Fig. 8). Carpel number
evolution was similarly complex (Fig. 8), with three carpelsinferred to be ancestral in
the family. For seed number, one seed was inferred as the ancestral character state for
Caprifoliaceae, with independent shifts to two seeds in Symphoricar pos and Dipelta
(Fig. 9). Independent origins of the epicalyx in Dipsacus and the clade of Moina and
Acanthocalyx was also inferred (Fig. 9).

A summary of character state evolution using the nuclear gene tree and character
states that are relevant for the taxonomy of the group is shown in Figs. S12, S13 and
S14. We found that the patterns of character evolution from cpDNA tree and nuclear

gene tree were similar.

4 Discussion

4.1 Phylogenetic incongruence and putative hybridization

17
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500 Although both our nuclear and plastid phylogenies supported the same seven

501 major clades of Caprifoliaceae, the relationships among these clades are incongruent
502  between data sets (Figs. 5 and 6). For instance, in the nuclear ASTRAL tree,

503 Linnaeoideae is recovered as sister to Dipsacoideae (except for Dipsacus japonicus) +
504 Vaerianoideae (Fig. 3), while in the plastid tree Linnaeoideae is sister to Zabelia +
505 Morinoideae (Fig. 4). In contrast, in the nuclear RAXML concatenated tree (Fig. 3),
506 Linnaeoideaeis recovered as sister to Dipsacoideae +V alerianoideae. Some of these
507 points of conflict pertain to areas of Caprifoliaceae phylogeny that have long been

508 problematic—for example, the relationships between Zabelia and other subfamilies.
509 Theinclusion of extensive nuclear genome sampling for Caprifoliaceaein thisstudy is
510 important because plastome-only phylogenies may not fully capture evolutionary

511 processes such as LS or organellar capture via hybridization. Three main processes
512  will lead to gene tree heterogeneity and cytonuclear discordance: gene

513  duplication/extinction, horizontal gene transfer/hybridization, and ILS. Currently, there
514  are many methods to detect gene discordance (e.g., Smith et al., 2015; Pease et al.,
515 2018), but sources of such discordance remain hard to disentangle, especially when
516  multiple processes co-occur (e.g., Morales-Briones et a. 2021).

517 Zabelia was long thought to be closely related to Abelia (Hara, 1983; Tang & Lu,
518  2005). However, based on molecular datasets, Tank and Donoghue (2010) and Jacobs
519 etad. (2011) found that Zabelia was sister to Morinaceae (=M orinoideae in this study).
520 Using six molecular loci and inflorescence morphology, Landrein et al. (2012)

521  concluded that the position of Zabelia remained unclear. The molecular investigation
522  of Xiang et al. (2020) found that the sister relationships between Zabelia + Morinaceae
523  and Linnaceae + Valerianaceae + Dipsacaceae were not highly supported. Such

524  phylogenetic incongruence provides the opportunity to test causal hypotheses of

525  cytonuclear discordance, e.g., ILS or hybridization. Further, in our analyses (Fig. 4),
526  widespread cytonuclear discordance exists across Caprifoliaceae, especially at genus
527 levels, with ahigh level of conflict within genera. Regarding deep Caprifoliaceae

528  relationships, the results from the nuclear analyses (Figs. 4 and 5) showed multiple

529 instances (at least two) of well-supported conflict with the results from the plastome
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530 (Fig. 4), and the plastid results were largely consistent with previous plastid and

531 large-scale analyses of Caprifoliaceae (Wang et a., 2020).

532 It is worth mentioning that Dipsacoideae was not recovered as monophyletic only in
533 the ASTRAL speciestree (Fig. 3), in which Dipsacus japonicus had asister

534  relationship with Linnaeoideae. Still, nodes with the strong L PP support also had low
535 ICA and QS support values, which suggests that ILS and/or unidentified hybrid

536 lineages continue to obscure our understanding of relationships in Dipsacoideae.

537 Previous studies reported that hybridization has shaped the evolutionary history of
538 Caprifoliaceae (e.g., Heptacodium miconioides) (Zhang et al., 2003; Landrein et al.,
539  2002). The conflict analyses of the nuclear dataset revealed strong signals of gene tree
540 discordance among the seven major clades of Caprifoliaceae. The coal escent

541  simulations also suggested that the observed cytonuclear discordance cannot be

542  explained by ILS alone, which along with the phylogenetic network analyses point to
543  several potentia reticulation events along the backbone of Caprifoliaceae (Fig. 5).
544  Morina and Zabelia are frequently involved in inferred reticulations, and the two

545  Dipsacoideae are involved in 3 of the four eventsin the 11-taxatree. The clade of

546  Abelia + Diabelia are also involved in inferred reticulation events in the 9-taxa and
547  7-taxanetworks. If these inferred events correspond to actual past instances of gene
548  flow (which can only be confirmed by more detailed genomic analyses), it would help
549  to explain the high amount of phylogenetic conflict observed in our analyses. Thereis
550 some potential morphological support for ancient hybridization. For example, the

551 leavesof Morina have stiff spines, while the leaves of Zabelia have no spines. In part
552  because of this, Wang et a. (2015) suggested that Zabelia may be of allopolyploid
553  origin.

554

555 4.2 Temporal divergence of Caprifoliaceae

556 Our estimated ages using nuclear and chloroplast trees are generally younger than
557  those of Wang et al. (2015) and Wang et al. (2020) based on two reliable fossils (Li et
558 dl., 2019). We found that the diversification and global spread of the subfamilies of
559  Caprifoliaceae occurred during the late Cretaceous, Paleocene and Eocene (Figs. 6, S10,
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560 S11), similar to the results of Beaulieu et al. (2013). The divergence times of

561  Caprifoliaceae have been estimated to be around the Cretaceous—Pal eogene (K-Pg)
562  boundary (Figs. 6, S10). Our results are congruent with the phenomena reported in
563  several other plant groupssuch as Amaranthaceaes.|. (Morales-Briones et al. 2021) and
564  legumes (Koenen et al., 2020), and in lichenized fungi such as Lobariaceae

565  (Ascomycota) (Widhelm et al., 2019). It is generally accepted that because of the mass
566  extinctionsthat occurred around the K-Pg boundary, new habitats became available
567  and diverse organisms experienced rapid diversifications (Schulte et al., 2010). Asa
568  result of later tectonic movements and climate fluctuations from the Paleocene to the
569  Eocene, mgor Caprifoliaceae lineages subsequently underwent rapid diversifications.
570 The divergence times among the major lineages of the Caprifoliaceae were dated
571 to the Oligocene and Eocene, and within-genus diversification was dated to the

572  Miocene and Pliocene (Figs. 6, S10, S11). Our results may be explained by the

573  hypothesis that members of the Caprifoliaceae are well adapted to relatively cool

574 environments (Friis, 1985; Manchester and Donoghue, 1995; Manchester, 2000), and
575 anincressein the earth's temperature in the late Paleocene and early Eocene may have
576  forced them to move to higher elevations or latitudes. As plants moved to higher

577  elevations, their distribution waslikely to be fragmented, resulting in isolation between
578  populations. We have some evidence to support this hypothesis: (1) This family is
579  mainly distributed in north temperate zones, and some genera even reach areas near the
580 Arctic Circle (such as Linnaea); (2) there are numerous species (such as Valeriana
581 officinalis, Lonicerarupicola, and L. spinosa) with island-like distributional patterns at
582 relatively high elevations. As global climates cooled beginning in the late Eocene and
583  especialy the Oligocene and Miocene, cold-adapted survivors of warmer climates may
584  haveflourished and shifted into new geographic areas, especially mountainous areas,
585  but may have struggled in northern regions during the Pliocene and Pleistocene glacial
586 cycles(Moore & Donoghue, 2007). These global climatic events (e.g., ancient orogeny
587  and monsoon-driven events) that might have driven diversification in Caprifoliaceae
588  have also been reported in other taxa (Lu et al., 2018; Ding et a., 2020). For example,

589  some genera or taxa with tiny, narrow or needle-like leaves (e.g., Linnaea, Lonicera
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590 myrtillus) may have benefited from the global cooling and drying of the Miocene and
591  Pliocene by expanding their ranges, while other lineages more adapted to the wetter,
592  warmer parts of the world (Abelia, Diabelia, and Dipelta) may not have contracted
593  during the same time period.

594

595 4.3 Evolution of morphological characters

596 Character state reconstruction was conducted using ML (Figs. 8-10) because of the
597  potential hemiplasy and xenoplasy produced by the discordance and hybridization

598  detected in the nuclear backbone (Avies & Robinson, 2008; Robinson et al., 2008;
599  Copetti et al., 2017; Wang et a., 2020). A consequence of this discordance may be
600 elevated levels of apparent homoplasy in the species tree (Copetti et al., 2017; Hahn &
601  Nakhleh, 2017).

602 Stamen number, fruit type, style exertion, number of carpels, number of seeds and
603  epicalyx presence have been traditionally used for generic recognition within

604  Caprifoliaceae (Backlund, 1996; Donoghue et al., 2003; Yang & Landrein, 2011,

605 Landreinet al., 2020). Discordance among morphological traits might plausibly arise
606 dueto either variable convergent selection pressures or other phenomena such as

607  hemiplasy. The evidence indicates that the probability of hemiplasy is high for four
608 morphological charactersin Caprifoliaceae: the branch lengths leading to lineages with
609 derived character states are uniformly short with high levels of gene tree discordance. It
610 ispossiblethat gene flow has contributed to these patterns. For example, the ancestral
611 stamen number states (i.e., 2 and 4) found in Morina longifolia and Acanthocalyx alba
612  within the Morinoideae clade could be due to introgressed alleles, as we identified

613  putative introgression between those lineages (Fig. 5). Morphological and anatomical
614  studies showed that the earliest Caprifoliaceae had monosymmetric flowers (probably
615 weakly so at first) with larger calyx lobes, tubular corollas, elongate styles, and capitate
616  stigmas (Donoghue et al., 2003). Within Caprifoliaceae, the main change in stamen
617  number isareduction from five to four stamens. Subsequently, there was areduction to
618 two stamens within Morinoideae and to three, two, and one within Valerianoideae

619 (Figs. 8 and S11). These variations may be related to an underlying changein floral
21
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620 symmetry (Donoghue et al., 2013), which may relate to carpel abortion or to

621 differencesin the arrangement of flowers at the level of the inflorescence.

622 Our results suggest that multiple independent evolutionary events of the carpel

623  evolution in Caprifoliaceae have occurred (Figs. 9 and S12). In Caprifoliaceae, the
624  abortion of two of the three carpels and the development of a single ovule within the
625 remaining fertile carpel was evidently correlated with fruit type (Wilkinson, 1949). For
626  some subfamilies of Caprifoliaceae, carpel abortion occurs at arelatively late stage of
627  ovary development, SO many species have two empty chambers at fruit maturity (e.g.,
628 Linnaeoideae, Morinoideae, and Valerianoideae). In fact, in some species, these empty
629 compartments have been co-opted in various ways in connection with dispersal (e.g.,
630 inflated for water dispersal in some Valeriana).

631 Caprifoliaceae shows great variation in fruit types. Fleshy, bird-dispersed fruits are
632 limited to the Caprifolioideae (Donoghue et al., 2003). Lonicera has berries, though
633 generally with just a few seeds embedded in copious pulp. Based on our analyses, it is
634  important to note that the ancestral carpel humber for Caprifoliaceaeis most likely 3.
635 Thereisprogrammed carpel abortion and the number of seeds corresponds to the

636  number of fertile carpels (Donoghue et a., 2003). For Symphoricar pos, two of the four
637 carpels abort, and there are two stones. The mesocarp in the cases is rather dry and
638 mealy in texture. In the Caprifoliaceae, achenes with asingle seed are present in

639  Heptacodium and in the large Linnaeoi deae clade (though in Dipelta, and in Linnaea
640 there are two seeds at maturity). From the standpoint of fruit evolution, the linkage of
641  Heptacodium within Caprifolioideae implies either the independent evolution of

642 achenesor atransition from achenes to fleshy fruitsin the line leading to

643  Caprifolioideae. Among the achene-producing Caprifoliaceae, there are various

644  adaptations for wind dispersal. One of the most striking of these modificationsis

645 enlargement of the calyx lobesinto wings as the fruits mature (e.g. in Abelia, Dipelta
646 and Diabelia). Especialy well known is the production of a feathery pappus-like

647  structure in species such as Valeriana officianalis and Centranthus ruber in

648 Vaerianoideae. This modification facilitates passive external transport by animals. A

649 similar caseisalso found in Kolkwitzia.
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650 The reconstruction of character evolution thus shows that some characters that
651  were once considered important for taxonomy within the family have been inferred to
652 bethe results of homoplasious evolution (Gould 2000; Pyck, 2001; Bell 2001, 2004,
653 Carlson et al., 2009; Zhai et al., 2019). In analysis of character evolution, homoplasy is
654 regarded as noisethat, if not properly accommodated, jeopardizes phylogenetic

655  reconstructions using morphological characters. At the same time, hemiplasy is one of
656  the causes of homoplasy (Copetti et al., 2017). The phenomenon of hemiplasy is most
657  plausible when the internodal distances in a phylogenetic tree are short (relative to
658  effective population sizes) (Robinson et al., 2008). Furthermore, the extensive

659 hybridization detected in the backbone of Caprifoliaceae might further contribute to
660 hemiplasy and xenoplasy (Wang et al. 2020). This may explain why it has been

661 difficult to reconstruct the relationships and character evolution among the major

662 lineages and generaof the family. Eventually, more extensive sampling and

663 developmental studies will be needed to elucidate the mechanisms underlying the

664  morphological evolutionary patterns outlined here.

665

666 4.4 Recognition of Zabelioideae asa new subfamily in Caprifoliaceae

667 Despite the strong signals of gene tree discordance, our nuclear and plastid

668  phylogenies strongly support seven major clades in Caprifoliaceae: Linnaeoideae,

669 Zabelia, Morinoideae, Valerianoideae, Dipsacoideae, Caprifolioideae and

670 Diervilloideae, and show Zabelia as the sister to the morphologically highly distinct
671 Morinoideae (Figs. 4 - 5). Our analyses support reticulate evolution concerning the
672  origins of both the Zabelia lineage as well as the M orinoideae. Based on the

673  phylogenomic and morphological analyses, we herein propose to recognize Zabelia as
674  representing anew subfamily of Caprifoliaceae.

675 ZabelioideaeB.Liu & S.LiuexH.F. Wang, H.X. Wang, D.F. Morales-B, M .J.

676 Moore & J. Wen, subfam. nov.
677 Type: Zabelia (Rehder) Makino.
678 Description: Shrubs, deciduous; old branches often with six deep longitudinal

679 grooves. Leaves opposite, entire or dentate at margin; estipulate; petioles of opposite
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680 leaf pairsdilated and connate at base, enclosing axillary buds. Inflorescence a

681  congested thyrse of cymes; cymes 1-3-flowered. Calyx 4- or 5-lobed, persistent,

682  spreading. Corolla 4- or 5-lobed, hypocrateriform, + zygomorphic; corolla tube

683 cylindrical. Stamens 4, included, didynamous. Ovary 3-locular, 2 locules with 2 series
684  of sterile ovulesand 1 locule with asingle fertile ovule; stigmas green, capitate,

685 mucilaginous. Fruit an achene crowned with persistent and slightly enlarged sepals.
686  Basic chromosome number x = 9.

687 One genus and six species distributed in China, Japan, Korea, Afghanistan, NW
688 India, Kyrgyzstan, Nepal, and Russian Far East.

689 Zabelioideae is highly distinct morphologically from its sister Morinoideae. They
690 can be easily distinguished by their habit (with Zabelioideae as shrubs, and

691 Morinoideae as herbs), the six distinct, longitudinal grooves on twigs and branches of
692 Zabelioideae (the six grooves absent in Morinoideae), and the epicalyx (absent in

693 Zabelioideae and present in Morinoideae). Zabelioideae and M orinoideae share some
694  similaritiesin pollen micromorphology, as both have psilate pollen grains with an

695 endocingulum (Verlague, 1983; Kim et a., 2001; Jacobs et al., 2011). The two

696  subfamilies diverged in the early-mid Eocene (Figs. 6, S7), and their long evolutionary
697 history associated with deep hybridization events, ILS and extinctions likely have made
698 it difficult to determine their phylogenetic placements.

699

700 5Conclusions

701 Gene tree discordance has been commonly observed in phylogenetic studies.

702  Moreover, species tree estimation has been shown to be inconsistent in the presence of
703  geneflow (Solis-Lemuset al., 2016; Long & Kubatko, 2018), which suggests that both
704  ILSand gene flow simultaneously need to be considered in constructing phylogenetic
705  relationships. Here, our results show clear evidence of cytonuclear discordance and
706  extensive conflict between individual gene trees and species treesin Caprifoliaceae.
707  Wealso show that there has been widespread hybridization and/or introgression

708 among the mgjor clades of Caprifoliaceae, which can explain most the gene tree

709  conflict and the long history of phylogenetic uncertainty in the family. Furthermore,
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710 thetemporal diversification of Caprifoliaceae provides a good case to support the
711  evolutionary radiation of a dominantly north temperate plant family in response to
712  climatic changes from the late Cretaceous to the present. Finally, based on evidence
713  from molecular phylogeny, divergence times, and morphological characters, we herein
714  recognize the Zabelia clade as representing a new subfamily, Zabelioideae, in

715  Caprifoliaceae. The phylogenetic framework presented here also sheds important
716  insightsinto character evolution in Caprifoliaceae.
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1039 Fig. 1. Floral diversity of Dipsacales. (A) Kolkwitzia amabilis; (B) Zabelia integrifolia;

1040 (C) Scabiosa comosa (D) Valeriana flaccidissma; (E) Acanthocalyx nepalensis
1041 subsp. delavayi; (F) Lonicera fragrantissima var. lancifolia; (G) Weigela
1042 coraeensis; (H) Viburnum opulus subsp. calvescens.

1043  Fig. 2. Alternative relationships for the Caprifoliaceae backbone based on previous

1044 analyses. (A) Donoghue et al. (2001); parsimony analyses based on chloroplast
1045 rbcL sequences and morphological characteristics; (B) Bell et al. (2001);

1046 maximum likelihood tree from the combined chloroplast DNA data; (C) Zhang et
1047 a. (2003); maximum likelihood tree based on chloroplast trnL-F and ndhF

1048 sequences; (D) Jacobs et al. (2010); maximum parsimony Dipsacal es phylogeny
1049 based on nuclear and chloroplast sequence data; (E) Wang et al.(2020); maximum
1050 likelihood tree based on 68 complete plastomes. (F) This study; species tree based
1051 on nuclear concatenated data set.

1052  Fig. 3. Speciestree of the nuclear dataset inferred with ASTRAL-T". Local posterior

1053 probabilities and internode certainty al (ICA) scores are shown above branches
1054 for main clades. Pie charts next to the nodes present the proportion of congruent
1055 genetreesthat supportsthat clade (blue), the proportion of discordant genetrees of
1056 the main alternative topology for that clade (green), the proportion of discordant
1057 trees for the remaining alternative topologies (red), dark gray represents the
1058 proportion of uninformative gene trees (bootstrap support < 50%), and light gray
1059 is the proportion of missing data. Numbers above branches indicate (LPP) / ICA
1060 score/ number concordant gene trees/ number of all discordant gene trees. Mgor
1061 taxonomic groups or main clades in the family as currently recognized are

1062 indicated by branch colors as a visual reference to relationships.

1063  Fig. 4. Tanglegram of the nuclear concatenated (left) and plastid (right) phylogenies.

1064 Dotted lines connect taxa between the two phylogenies. Maximum likelihood
1065 bootstrap support values are shown above branches. The asterisks indicate

1066 maximum likelihood bootstrap support of 100%. Major taxonomic groups or main
1067 cladesin the family as currently recognized are indicated by branch colors as a
1068 visual reference to relationships.
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1069 Fig. 5. Best supported species networks inferred with Phylonet for the (a) 11-taxa, (b)

1070 O-taxa, and (c) 7-taxa data sets. Numbers next to the inferred hybrid branches
1071 indicate inheritance probabilities. Red lines represent minor hybrid edges (edges
1072 with an inheritance contribution < 0.50)

1073  Fig. 6. BEAST analysis of divergence times based on the nuclear data set, under

1074 Analysis |. Calibration points are indicated by A, B. and C. Numbers 1-11
1075 represent major divergence events in Caprifoliaceae; mean divergence times and
1076 95% highest posterior densities are provided for each nodes of interests.

1077  Fig. 7. Maximum likelihood inference of character evolution in Caprifoliaceae based
1078 on the plastid matrix. Left, Number of stamens; Right, Style exertion.

1079  Fig. 8. Maximum likelihood inference of character evolution in Caprifoliaceae based
1080 on the plastid matrix. Left, fruit type; Right, Number of carpels.

1081  Fig. 9. Maximum likelihood inference of character evolution in Caprifoliaceae based
1082 on the plastid matrix. Left, number of seeds; Right, epicalyx presence/absence.
1083 Fig. S1. Smplified ML tree generated from the nuclear gene data showing the

1084 distribution of selected character states. The asterisks indicate maximum
1085 likelihood bootstrap support of 100%.

1086 Figure. S2. Heatmaps showing gene recovery efficiency for the nuclear gene in 46

1087 species of Caprifoliaceae. Columns represent genes, and each row is one
1088 sample. Shading indicates the percentage of the reference locus length
1089 coverage.

1090 Fig. S3. ASTRAL-III species tree. Numbers above branches indicate the number of

1091 gene trees concordant/conflicting with that node in the species tree. Numbers
1092 below the branches are the Internode Certainty All (ICA) score. Pie charts next
1093 to the nodes present the proportion of gene trees that supports that clade (blue),
1094 the proportion that supports the main alternative for that clade (green), the
1095 proportion that supports the remaining alternatives (red), light gray means
1096 missing data, and dark gray mean uninformative (BS < 50%).

1097 Fig. $4. Results of the Quartet Sampling of the ASTRAL tree. Node labels indicate
1098 QC/Quartet Differential (QD)/Quarte Informativeness (QI) scores.
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1099 Fig. S5. Results of the Quartet Sampling of the nuclear concatenated RAXML tree.
1100 Node labels indicate QC/Quartet Differential (QD)/Quarte Informativeness (QI)
1101 SCOres.

1102  Fig. S6. Maximum likelihood cladogram of Caprifoliaceae inferred from RAXML

1103 analysis of the concatenated 713-nuclear gene supermatrix. Numbers above

1104 branches indicate the number of gene trees concordant/conflicting with that node
1105 in the species tree. Numbers below the branches are the Internode Certainty All
1106 (ICA) score. Pie charts next to the nodes present the proportion of gene trees that
1107 supports that clade (blue), the proportion that supports the main aternative for that
1108 clade (green), the proportion that supports the remaining alternatives (red), light
1109 gray means missing data, and dark gray mean uninformative (BS < 50%).

1110 Fig. S7. Results of the Quartet Sampling of the chloroplast tree. Node labels indicate
1111 QC/Quartet Differential (QD)/Quarte Informativeness (QI) scores.

1112  Fig. S8. Phylogeny of the plastid DNA dataset; numbers above branches represent
1113 clade frequencies of the simulated gene trees.

1114  Fig. $9. Best supported species networks inferred with Phylonet for the (a) 11-taxa, (b)
1115 9-taxa, and (c) 7-taxadata sets. Blue branches connect the hybrid nodes. Numbers
1116 next to the hybrid branches indicate inheritance probabilities.

1117  Fig. S10. BEAST analysis of divergence times based on the nuclear data. Calibration

1118 points are indicated by A, B. and C. Numbers 1-11 represent major divergence
1119 events in Caprifoliaceae; mean divergence times and 95% highest posterior
1120 densities are provided for each. (1, [J and [ indicate the three analyses that
1121 varied in the placement of the Diplodipelta fossil constraint.

1122  Fig. S11. BEAST analysis of divergence times based on the cpDNA data. Calibration

1123 points are indicated by A, B, and C. Numbers 1-10 represent major divergence
1124 events in Caprifoliaceae; mean divergence times and 95% highest posterior
1125 densities are provided for each. (7, [1 and [” indicate the three analyses that
1126 varied in the placement of the Diplodipelta fossil constraint.

1127  Fig. S12. Maximum likelihood inference of character evolution in Caprifoliaceae based

1128 on the nuclear matrix. Left, Number of stamens; Right, Style exertion.
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1129  Fig. S13. Maximum likelihood inference of character evolution in Caprifoliaceae based
1130 on the nuclear matrix. Left, Style of fruit; Right, Number of carpels.

1131  Fig. S14. Maximum likelihood inference of character evolution in Caprifoliaceae based
1132 on the nuclear matrix. Left, number of seeds; Right, epicalyx presence/absence.
1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156 Table 1 Dataset statistics, including the number of taxa, number of characters, number
1157  of PI characters, missing data.
Alignment No. No.sites Missing No. of variable/ ML analysis
of data (%) Parsimony
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taxa informative sites
Nuclear 46 343,609 34 144,517/96,479 GTR+G
cpDNA 46 208,607 25 55,059/32,960 GTR+G+l
1158
1159
1160
1161

1162
1163
1164
1165

1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176 Table 2 Model selection of different species networks and bifurcating trees.
1177
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Information criteria

. Number of
Topology InL Parameters Loci hybridizations AlIC AlCc BIC

11 taxa
nuclear ASTRAL  -2834.940114 19 178 N/A 5707.880227 5712.690354 5768.334115
nuclear RAXML -2848.731017 19 178 N/A 5735.462034 5740.272161 5795.915922
cpDNA -3004.815841 19 178 N/A 6047.631682 6052.441809 6108.08557
Network 1 -2745.311471 21 178 1 5532.622943  5538.54602 5599.440397
Network 2 -2639.120484 23 178 2 5324.240969 53314098  5397.421991
Network 3 -2628.091812 25 178 3 5306.183624 5314.736256 5385.728213
Network 4 -2571.727153 27 178 4 5197.454305 5207.534305 5283.362461
Network 5 -2626.829726 27 178 4 5307.659452 5317.739452 5393.567608

9 taxa
nuclear ASTRAL  -3436.346996 15 328 N/A 6902.693992 6904.232453 6959.589196
nuclear RAXML -3438.060346 15 328 N/A 6906.120691 6907.659153 6963.015895
cpDNA -3489.910056 15 328 N/A 7009.820111 7011.358573 7066.715316
Networkl -3324.554786 17 328 1 6683.109571 6685.083765 6747.590803
Network2 -3321.944353 19 328 2 6681.888706 6684.356239 6753.955965
Network3 -3161.006574 21 328 3 6364.013147 6367.032755 6443.666433
Network4 -3189.59271 21 328 3 6421.185421 6424.205028 6500.838706
Network 5 -3037.728627 21 328 3 6117.457254 6120.476862  6197.11054

7 taxa
nuclear ASTRAL  -2756.695803 11 496 N/A 5535.391606 5535.937061 5581.663942
nuclear RAXML -2762.789144 11 496 N/A 5547.578288 5548.123743 5593.850623
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1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

1197

cpDNA

Networkl
Network?2
Network3
Networ k4
Network 5

-2801.967642
-2750.416642
-2750.618801
-2746.173709
-2601.483732
-2671.907806

11
13
13
17
17
17

496
496
496
496
496
496

N/A

W W weErPEk

5625.935285

5526.833285
5527.237602
5526.347418
5236.967465
5377.815611

5626.480739
5527.588472
5527.992789
5527.627753
5238.247799
5379.095946

5672.20762
5581.518772
5581.923089
5597.859209
5308.479255
5449.327402

Table S1. List of species and vouchers used in this study.
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Voucher
Family Subfamily Taxon Locality specimen Serial number SRA accession
number
1 Caprifoliaceae Linnaeoideae Dipelta floribunda Maximowicz Bull. '(':ﬁlnr?;‘a” Gansu, HUTB, E57 E57 SRR13705796.
2 Caprifoliacese Linnaeoidese Dipelta floribunda Maximowicz Bull. éﬁ?ﬁ;‘a" Gansu, HUTB, ES6 ES6 SRR13705795
3 Caprifoliaceae Linnaeoideae Dipelta floribunda Maximowicz Bull. I(_:cr)]?r?;an, Gansu, HUTB, E55 E55 SRR13705794 g
. 5
4 Caprifoliaceae Linnaeoidese Diabelia serrata (Siebold et Zucc.) Landrein ?art‘)"’;rr‘] Tokushima, HUTB, E123 E123 SRR13705758 o
>
Q.
- . : Diabelia ionostachya var. stenophylla Tanyama, Nagano, Q
5 Caprifoliaceae Linnaeoideae (Sicbold & Zuce) Landrdin oo HUTB, E306 E306 SRR13705756 2
(@]
. . . o
6 Caprifoliacese Linnaeoidese Diabelia sanguinea (Siebold & Zuicc,) Sendai, Miyagi, Japan HUTB, E301 E301 SRRI3705755 <
=z
. o
7 Caprifoliacese Linnaeoidese E;ﬁgf'e'ii spathulata var. spathulata (H. Hara) Shiga, Japan HUTB, E198 E198 SRRI3705757 2
~
- . ; Diabelia ionostachya var. wenzhouensis Wenzhou, Zhejiang, 2
8 Caprifoliaceae Linnaeoidese (Sebold & Zuow) Landrein Chira HUTB, E204 E204 SRR13705754 2
0 Caprifoliacese Linnaeoideae Kolkwitzia amabilis Graebn, danan, Shaan HUTB, E9 E9 SRR13705797  ©
2
10 Caprifoliacese Linnaeoidese Abelia macrotera (Graebn. et Buchw.) Rehd. gﬁfrf;“a” Chongging, HUTB, E110 E110 SRR13705799 8
7]
. , 3
1 Caprifoliaceae Linnaeoideae Abelia uniflora R. Brown \é‘ﬁ%f’a"' Fujian, HUTB, E51 E51 SRR13705798
12 Caprifoliaceae Linnaeoideae Abelia chinensis R. Brown Jujiang, Jiangxi, China HUTB, E206 E206 SRR13705765
13 Caprifoliaceae Linnaeoidese Abelia chinensis var. ionandra (André) Rehd. Yilan, Taiwan, China HUTB, E30 E30 SRR13705776
14 Caprifoliaceae Linnaeoidese Abelia forrestii (Diels) W. W. Smith gﬁf:z"g Yunnan, HUTB, E37 E37 SRR13705787
15 Caprifoliacese Linnaeoidese \esalea occidentalis (Villarrea) Wang, HE & (o Mevico HUTB, E96 E96 SRR13705793

Landrein
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Caprifoliaceae

Caprifoliaceae

Caprifoliaceae
Caprifoliaceae
Caprifoliaceae
Caprifoliaceae

Caprifoliaceae

Caprifoliaceae
Caprifoliaceae
Caprifoliaceae
Caprifoliaceae
Caprifoliaceae

Caprifoliaceae

Caprifoliaceae

Caprifoliaceae

Caprifoliaceae
Caprifoliaceae
Caprifoliaceae
Caprifoliaceae

Caprifoliaceae

Linnaeoideae

Linnaeoideae

Linnaeoideae

Linnaeoidese
Linnaeoidese
Linnaeoideae
Zabelia

Zabelia

Zabelia
Zabelia
Zabelia
Monrinoideae

Monrinoideae

Valerianoideae

Valerianoideae

Valerianoideae

Valerianoideae
Dipsacoidese
Dipsacoideae
Dipsacoideae

Caprifolioideae

\esalea coriacea (Hemsl.) T.Kim & B.Sun ex
Landrein

\esalea coriacea (Hemsl.) T.Kim & B.Sun ex
Landrein

\ksalea mexicana Villarrea

\esalea floribunda M.Martens & Galeotti
Linnaea borealis Linn.

Linnaea borealis Linn.

Zabelia biflora Turcz.

Zabelia integrifolia Koidz

Zabelia didsii (Graebn.) Makino
Zabelia dielsii (Graebn.) Makino
Zabelia triflora R.Br. ex Wall.
Morina longifolia Wall. ex DC.

Acanthocalyx alba (Hand.-Mazz.) M. Connon
Centranthus ruber DC.

Valerianella dentata (L.) Pollich

Valeriana urticifolia Kunth

\aleriana officinalis Linn.
Scabiosa canescens Waldst. & Kit.

Scabiosa tschiliensis Griining
Dipsacus japonicus Mig.

Lonicera arizonnica Hemsl.
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San Luis Potos,
Mexico

San Luis Potos,
Mexico

San Luis Potos,
Mexico

Oaxaca, Mexico

Yili, Xinjiang, China
Yili, Xinjiang, China
Dushanbe, Tgjikistan
Fukuoka, Kyushu,
Japan

Ganzi, Sichuan, China
Ganzi, Sichuan, China
Bangalore, India
Dushanbe, Tgjikistan
Nujiang, Y unnan, China

San Francisco, Cdifornia,
United States

Smyrna, Tennessee,
United States

Autopista
Orizaba-Puebla, Vera
Cruz, Mexico

Baoding, Hebei, China
Athus, Espe, Belgium
Yanqing, Beijing, China
Beijing, China

Miyun, Beijing, China

HUTB, E284

HUTB, E89

HUTB, E93

HUTB, E92
HUTB, E59
HUTB, E14
HUTB, E100

HUTB, E15

HUTB, E286
HUTB, E108
HUTB, E276
HUTB, E20
HUTB, E19

US 2998828

US 2998828

US 3714857

HUTB, E27
US 1273936
HUTB, E21
HUTB, E23
HUTB, E269

E284

E89
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E92
E59
El4
E100

E15

E286
E108
E276
E20
E19

E220

E217

E219

E27
E227
E21
E23
E269

SRR13705790

SRR13705789

SRR13705792

SRR13705791
SRR13705788
SRR13705786
SRR13705775

SRR13705777

SRR13705778
SRR13705774
SRR13705773
SRR13705771
SRR13705772

SRR13705784

SRR13705782

SRR13705785

SRR13705783
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SRR13705779
SRR13705770
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Shennongjia, Hubei,

37 Caprifoliaceae Caprifolioideae Lonicera ligustrina Wall. China HUTB, E74 E74 SRR13705769
38 Caprifoliaceae Caprifolioideae Lonicera confusa D.C. Haikou, Hainan, China HUTB, E193 E193 SRR13705768
39 Caprifoliaceae Caprifolioideae Lonicera korolkowii Stapf. Baoding, Hebei, China HUTB, E212 E212 SRR13705767
4 Caprifoliacese Caprifolioidese ~ Symphoricarpos orbiculatus (L.) Macm. Lynchburg, Virginia US 2099602 E237 SRR13705766
M Caprifoliaceae Caprifolioideae Heptacodium miconioides Rehder gﬁ{‘r?:hou* Zhejiang, HUTB, E28 E28 SRR13705764 2
S
. o . . . Lambton, Ontario, )
42 Caprifoliaceae Divervilloideae Diervilla lonicera Mill. United States US 3666234 E331 SRR13705763 f
43 Caprifoliaceae Divervilloideae Weigela florida (Bunge) A. DC. Kangwon, Korea HUTB, E99 E99 SRR13705762 §
44 Adoxaceae-Outgroup Adoxoideae Sambucus williamsii Hance. Haidian, Beijing, China  HuTB, E208 E208 SRR13705760 ;6
. o)
45 Adoxacese-Outgroup ~ Adoxoideae Sambucusnigra Linn. éﬁ?g;“g' Beijing, HUTB, E207 E207 SRR13705761 %
. z
46 Adoxaceae-Outgroup Opuloidese Viburnum opulus Linn. 8;1?2230’ Shandong, HUTB, E162 E162 SRR13705759 0
N
1198 °
3
1199 g
1200 %
1201 B
1202 3
1203 ®
1204
1205
1206
1207
1208
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s X
8 <
=
33
82
=%
=13
Table S2. HybPiper assembly statistics %é
Number of 52
Number of  Number of ~ Number of . IS
. . . exonswith Number of & &
Number of Percent Number Number of Number of exonswith exonswith exonswith .. Bo
, Number of ) , sequences > exons with =.g
Species read readson readson of exons exonswith exonswith sequences> sequences> sequences> 150% of the bardlo 2 S
s =4
target target withreads contigs sequences 25% of the 50% of the 75% of the ta(r)get vx[/)arnin3§ Z{E
>
target length target length target length 205
g g g g g g length 5p §
T o
Abelia_chinensis_ E206 9076240 3538761 0.39 1118 1021 994 993 979 930 1 1@2%2
Abelia_chinensis var. ionandra_E30 8512137 2058453 0.242 1054 969 945 942 917 835 1 'I?Q(CE’DLE
m -
Abelia_forredtii_E37 9666409 2890168 0.299 1114 1005 977 975 961 921 0 B §
Abelia_macrotera_E110 9134947 2888390 0.316 1072 988 960 959 940 901 1 %‘E 3
Abelia_uniflora_E51 18769946 3613529 0.193 1086 991 967 966 946 892 2 1(%& &
=<
Acanthocalyx_alba_E19 6118686 1489979 0.244 1060 948 927 922 891 821 1 3:%5 z
o=}
Centranthus_ruber_E220 6873833 2738073 0.398 1021 822 779 769 715 632 0 323;5
5 g
Diabelia_ionostachya var. stenophylla_E306 9313351 1888267 0.203 1119 1007 977 974 960 889 0 7;.9% %.
Diabelia_ionostachya var. 25 =
wenzhouensis_E204 6642696 2077347 0.313 1103 1006 983 982 962 908 1 ﬁggé’
Diabelia_sanguinea_E301 12028399 2724711 0.227 1151 1062 1032 1032 1021 989 3 6@%_’3
[%]
Diabelia_serrata_E123 21639680 7331755 0.339 1120 1033 998 996 980 933 1 136§§
N
Diabelia_spathulata var. spathulata_E198 9267804 3459777 0.373 1130 1022 993 992 981 928 1 92:% ;
Diervilla_lonicera_E331 5850914 1589800 0.272 1077 965 939 938 915 857 0 105§§
Dipelta_floribunda_E55 4636783 105360 0.023 924 660 642 639 601 507 0 27§ 2
[=)@)
Dipelta_floribunda_E56 6580640 248258 0.038 992 853 833 830 793 680 0 433 E
Dipelta_floribunda_E57 3074426 54170 0.018 866 547 530 518 461 367 0 14-;D %
g3
)
=2
a7
23
(0]
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Dipsacus_japonicus E23
Heptacodium_miconioides E28
Kolkwitza_amabilis E9
Linnaea_borealis E14
Linnaea_borealis E59
Lonicera_arizonica_E269
Lonicera_confusa E193
Lonicera_korolkowii_E212
Lonicera_ligustrina var. pileata E74
Morina_longifolia_E20
Sambucus_nigra_E207
Sambucus_williamsii_E208
Scabiosa_canescens E223
Scabiosa_tschiliensis E21
Symphoricarpos_orbiculatus_E237
Valeriana_officinalis_E27

Valeriana_urticifolia var. scorpioides E219

Valerianella_dentata E217
Vesalea_coriacea_E284
Vesalea_coriacea E89
Vesalea_floribunda_E92
Vesalea_mexicana_E93
Vesalea_occidentalis E96

Viburnum_opulus var. americanum_E162

Weigela_florida_E99

2017716
36252001
9779050
9523146
3831881
7277244
9914689
10617680
4988272
23680514
5805790
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2521156
21530335
13570556
2004483
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6728245
3249704
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2641147
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1732355
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2129447
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