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» Abstract

2 Inferring trait networks from a large volume of genetically correlated diverse phenotypes
s such as yield, architecture, and disease resistance can provide information on the manner in
s which complex phenotypes are interrelated. However, studies on statistical methods tailored
32 to multi-dimensional phenotypes are limited, whereas numerous methods are available for
;3 evaluating the massive number of genetic markers. Factor analysis operates at the level of la-
u  tent variables predicted to generate observed responses. The objectives of this study were to
55 illustrate the manner in which data-driven exploratory factor analysis can map observed phe-
3 notypes into a smaller number of latent variables and infer a genomic latent factor network
s using 45 agro-morphological, disease, and grain mineral phenotypes measured in synthetic
s hexaploid wheat lines ( Triticum Aestivum L.). In total, eight latent factors including grain
5 yield, architecture, flag leaf-related traits, grain minerals, yellow rust, two types of stem rust,
» and leaf rust were identified as common sources of the observed phenotypes. The genetic
s component of the factor scores for each latent variable was fed into a Bayesian network to
22 obtain a trait structure reflecting the genetic interdependency among traits. Three directed
13 paths were consistently identified by two Bayesian network algorithms. Flag leaf-related
s traits influenced leaf rust, and yellow rust and stem rust influenced grain yield. Additional
55 paths that were identified included flag leaf-related traits to minerals and minerals to archi-
s tecture. This study shows that data-driven exploratory factor analysis can reveal smaller
s dimensional common latent phenotypes that are likely to give rise to numerous observed
s field phenotypes without relying on prior biological knowledge. The inferred genomic latent
s factor structure from the Bayesian network provides insights for plant breeding to simulta-
so neously improve multiple traits, as an intervention on one trait will affect the values of focal

s1 phenotypes in an interrelated complex trait system.
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= Background

53 With the development of high-throughput phenotyping technologies, phenomics has been
s« generating plant measurements at a greater level of resolution and dimensionality (Araus
s and Cairns, 2014; Watanabe et al., 2017). Integrating these diverse and heterogeneous data
ss to improve the biological understanding of plant systems and interpret the underlying inter-
v relationships among phenotypes remains challenging (Morota et al., 2019). One approach
¢ is to model each measurement as a different trait using a multi-trait model (Henderson and
5o Quaas, 1976). However, in a high-dimensional specification, where the number of traits
s measured per genotype can reach hundreds or thousands, this approach leads to dramatic
&1 increases in the computational burden or difficulties in interpreting the results. Recently, Yu
e et al. (2019) showed that factor analysis can be used to reduce the dimension of response
&3 variables by assuming latent factors that give rise to observed phenotypes in rice. They
s« used confirmatory factor analysis (CFA), which requires knowledge of the phenotype-factor
es category before data analysis. However, reliable phenotype-factor patterns are not always
s known in advance. Alternatively, exploratory factor analysis (EFA) can be used to perform
o7 latent variable analysis by estimating patterns from data when a latent structure cannot be
¢ determined a priori. EFA identifies underlying latent factors to represent observed measure-
s ments, which is useful when the exact number and meaning of latent factors are unknown
w0 (Joreskog, 1967; Hoyle and Duvall, 2004).

n The first objective of this study was to illustrate the utility of EFA for revealing the
72 underlying genomic latent structure of agronomic or agro-morphological phenotypes for syn-
73 thetic hexaploid wheat lines (7. aestivum L). Grain yield in wheat is influenced by sev-
7 eral agro-morphological traits. However, successfully incorporating yield-promoting agro-
75 morphological traits in breeding programs to improve genetic gains requires detailed knowl-
7 edge of the interrelationships between and among traits. The second objective was to deter-
77 mine a trait network structure among the genomic latent factors using a Bayesian network.

7 'This is an essential task because breeding programs often aim to improve multiple corre-
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7o lated traits concurrently. Knowledge of directed trait networks accounting for the genetic
s interdependency among traits can improve the understanding of the manner in which the
&1 selection of one phenotype may increase or decrease the observation of another phenotype,
22 providing additional insight beyond associations (Valente et al., 2015). The current study
sz demonstrates the advantages of the joint application of factor analysis and Bayesian network
s as a data-driven approach to discover interrelationships between a set of many correlated

ss traits in wheat.
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» IMaterials and Methods

« Plant materials

ss A diversity panel of n = 123 synthetic hexaploid wheat lines, derived from an interspecific
o cross between wild accessions of goat grass (Aegilops tauschii L.) and diverse accessions
o of cultivated durum wheat (Triticum turgidum L.), was used in this study. These plant
a1 materials were shared by the International Winter Wheat Improvement Program in Turkey
» and are available at http://www.iwwip.org. Pedigree information and other details on these
o3 lines were reported previously (Bhatta et al., 2018a,c,d). Briefly, the lines originated from
u two breeding programs. The first group of synthetics comprises 14 lines developed by Kyoto
s University, Japan, from 1 Langdon durum parent crossed with 14 different accessions of Ae.
o tauschii. The second group consists of 109 lines developed by the International Maize and
o7 Wheat Improvement Center from crosses between 6 winter durum wheats and 11 different
s Ae. tauschii accessions. The synthetic lines used in this study are unique; they were recently

o developed (F8-F9 generations) and tested for multiple traits for use in a breeding program.

w Phenotypic and genotypic data

w1 We analyzed 16 agronomic-, 16 grain mineral-, and 13 wheat rust-related phenotypes in the
102 current study. Agronomic traits including grain yield (GY), harvest index (HI), biomass
03 weight (BMWT), grain volume weight (GVWT), flag leaf length (FLL), flag leaf width
e (FLW), flag leaf area (FLA), rachis break (RB), sterile spikelet (SP), spike length (SL),
s seeds per spike (SPS), spikelet number (SN), fertile spikelet (FS), spike weight (SW), grain
s weight per spike (GPS), and spike harvest index (SHI) were measured using previously
7 described standard procedures (Bhatta et al., 2018a; Morgounov et al., 2018; Hussain et al.,
s 2017). Grain minerals including arsenic (As), calcium (Ca), cadmium (Cd), cobalt (Co),
o copper (Cu), iron (Fe), potassium (K), lithium (Li), magnesium (Mg), manganese (Mn),

1o molybdenum (Mo), nickel (Ni), phosphorous (P), sulfur (S), titanium (Ti), and zinc (Zn)
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- were measured via inductively-coupled plasma mass spectrometry (ICP-MS, Agilent 7500cx,
12 Agilent Technologies, Santa Clara, CA, USA) at the University of Nebraska Redox Biology
s Center, Proteomics and Metabolomics Core (Guttieri et al., 2015; Bhatta et al., 2018a).
s The wheat rust (leaf stem and yellow rusts) disease severity, coefficient of infection, and
s infection type were tested under field conditions as previously described (Peterson et al.,
us  1948; Morgounov et al., 2018; Bhatta et al., 2018d). Wheat rust traits collected from several
u7 locations in Turkey and one location in Kenya included the leaf rust coefficient of infection
s (LRCI), leaf rust infection type (LRIT), leaf rust severity (LRS), stem rust coefficient of
ue infection at Haymana (SRCIH), stem rust infection type at Haymana (SRITH), stem rust
1o severity at Haymana (SRSH), stem rust coefficient of infection at Kastamonu (SRCIK), stem
21 rust infection type at Kastamonu (SRITK), stem rust severity at Kastamonu (SRSK), yellow
122 rust coefficient of infection at Haymana (YRCIH), yellow rust infection type at Haymana
13 (YRIH), yellow rust severity at Haymana (YRSH), and yellow rust severity at Kastamonu
e (YRSK). All lines were genotyped with the genotyping by sequencing technology (Bhatta
s et al., 2018c). After setting a minor allele frequency threshold of 0.05, 35,648 markers

s remained for analysis.

1 Experimental design and analysis

The experiments were conducted across several locations in Turkey and one location in Kenya
in 2017. The experimental design was an alpha lattice design with two replications (Barreto
et al., 1996). A linear mixed model coupled with restricted maximum likelihood implemented
in the PROC MIXED procedure in SAS 9.4 (SAS Institute, Inc., Cary, NC, USA) was used

to obtain the adjusted means for each trait from the following model (Bhatta et al., 2018b).

Yight = H 1+ 0(r)ji + ¢k + gugi) + €ijnas
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s where y,;;, is the trait of interest; p is the overall mean; r; is the effect of ith replication;
s b(r);; is the effect of the jth block within the ith replication; ¢ is the kth check; g;j; (new
1o variable, where check is coded as 0 and entry is coded as 1, and the genotype is considered
131 a new variable x entry) is the effect of the {th genotype within the jth incomplete block of

12 the ith replication; and €, is the residual.

15 Exploratory factor analysis

134 Exploratory factor analysis can reveal the latent structure among phenotypes when no hy-
135 potheses about the nature of the underlying factor can be assumed a priori. This section
136 closely follows the work of Yu et al. (2020). The aforementioned ¢ = 45 phenotypes were
17 analyzed using EFA by fitting

Y=AF+U, (1)

s where Y is the t X n phenotypic matrix; A is the ¢ X ¢ matrix of factor loading indicating
139 the relation between phenotypes and latent common factors; F is the ¢ x n matrix of latent
o factor scores; and U is the ¢ X n vector of unique effects that is not explained by ¢ underlying

141 common factors. The variance-covariance matrix of Y is

Y =A®PAN + T, (2)

12 where X is the t x t variance-covariance matrix of phenotypes, ® is the variance of factor
w3 scores, and W is a t X t diagonal matrix of unique variance. The elements of A, ®, and ¥
us are parameters of the model to be estimated from the data. We assumed ® = 1 yielding
115 factors each with unit variance (Joreskog, 1967; Anderson, 2003). With the assumption
us of F ~ A47(0,1I), parameters A and ¥ were estimated by maximizing the log-likelihood of
w L (A, ¥|Y) using the R package psych (Revelle, 2018) along with a varimax rotation (Kaiser,
s 1958). A threshold of A\ > |0.3| was first applied to screen out factor loading values. Then

1o each phenotype was assigned to only one of the factors based on its largest loading.


https://doi.org/10.1101/2020.09.03.282335
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.03.282335; this version posted September 4, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

150 Parallel analysis was performed to estimate the optimum number of factors from data
51 in EFA (Horn, 1965; Hayton et al., 2004). This is conducted by generating simulated data
12 from the observed data. Next, the eigenvalues were extracted until the observed data had
153 a smaller eigenvalue than the simulated data. The number of eigenvalues was used as the
15« number of optimum factors.

155 The factor ability of the data set was also assessed by estimating the Kaiser-Meyer-
155 Olkin measure of sampling adequacy (Cerny and Kaiser, 1977). This criterion measures
157 the adequacy of the dataset for factor analysis by investigating the correlation and partial
158 correlation matrices of the phenotypes. The measure of sampling adequacy ranges between
159 0 to 1, and values closer to 1 are preferred. When the measure of sampling adequacy is less

o than 0.5, the dataset is not recommended for factor analysis (Cerny and Kaiser, 1977).

w  Confirmatory factor analysis

12 Once the phenotype-factor pattern was established by EFA, Bayesian CFA was used to obtain
163 factor scores. Although EFA and CFA are similar, there are also clear differences. In general,
s EFA is used to find a latent structure in data, whereas CFA requires the phenotype-latent
15 variable category to be known before analysis and is often used to estimate factor scores based
166 on the structure from EFA. The differences between EFA and CFA are shown in Figure 1. In a
17 Bayesian setting, all unknowns in equations (1) and (2) were assigned priors. The assignment
16 of priors was performed according to Yu et al. (2019, 2020) using the default priors in the
160 blavaan R package (Merkle and Rosseel, 2018). A Gaussian distribution with a mean of zero
o and variance of 100 was assigned to the factor loading term. The variance-covariance matrix
i of the latent factors followed an inverse Wishart distribution with a scale matrix of an 8 x 8
2 identity matrix and degree of freedom of 8. Each error variance followed an inverse Gamma
73 distribution with a shape parameter of 1 and scale parameter of 0.5. The factor scores
e of latent variables (F) were sampled from the conditional distribution of p(F|A, ®, ¥ Y)

s (Lee and Song, 2012) using a data augmentation technique (Tanner and Wong, 1987). The
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e posterior mean of F was considered a new phenotype in subsequent analysis. Convergence
177 was diagnosed by the potential scale reduction factor (PSRF) (Gelman et al., 1992; Brown,
s 2014). This criterion utilizes at least two Markov chains, which are considered to be mixed
9 to a stationary status if the ratio of between the chain variance to within the chain variance
180 is close to 1. In total, two chains, each consisting of 5,000 Markov chain Monte Carlo samples

w1 after 2,000 burn-in samples, were collected to derive the posterior means.

1w Multi-trait genomic best linear unbiased prediction

A Bayesian multi-trait genomic best linear unbiased prediction model was applied to parti-

tion inferred latent variables into genetic and environmental components.
F=Xb+Zg +e,

183 where F is the vector of estimated factor scores, X is the incidence matrix of covariates
18« including the intercept and the top three principal components accounting for population
15 structure, b is the vector of covariate effects, Z is the incidence matrix relating the factor
185 scores of each latent variable to additive genetic effect, g is a vector of additive genetic
17 effect, and e is the vector of residuals. Under the infinitesimal model of inheritance, g
s and e were assumed to follow a multivariate Gaussian distribution of g ~ N(0,%, ® G)
1w and e ~ N(0,%X, ® I), respectively. Here, G is a n X n genomic relationship matrix, I
wo is a n X n identity matrix, X, and ¥, are variance-covariance matrices of additive genetic
1 effect and residuals, respectively, and ® is the Kronecker product. The G matrix was
w2 set as WW' /2 > i1 pi(1 = pj), where W is the centered marker incidence matrix taking
13 the values of 0 — 2p; for zero copies of the reference allele, 1 — 2p; for one copy of the
s reference allele, 2 — 2p; for two copies of the reference allele, and p; is the allele frequency
s at marker j = 1,---  m (VanRaden, 2008). The prior distribution specifications followed

s those of Momen et al. (2019). A flat prior was assigned for b. The vectors of additive

10
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17 genetic and residual effects were assigned independent multivariate Gaussian priors with
e null mean and inverse Wishart distributions for the covariance matrices ¥, and ».. A Gibbs
19 sampler was used to obtain posterior distributions. A burn-in of 10,000 samples followed
20 by an additional 90,000 samples, thinned by a factor of two, resulted in 45,000 available
20 samples for posterior mean inferences. The MTM R package was used to fit the model

200 (https://github.com/QuantGen/MTM).

s Bayesian network structure learning

20 The posterior means of genetic values of latent variables obtained from the Bayesian multi-
205 trait genomic best linear unbiased prediction model were used to examine the manner in
206 which the traits are interrelated using a Bayesian network. A Bayesian network is a graphical
207 representation of the conditional independence among random variables based on a directed
208 acyclic graph (Heckerman et al., 1995). For example, if an arrow arises from phenotype A
200 to phenotype B, phenotype A is considered to impact phenotype B directly conditional on
210 the remaining phenotypes, whereas the absence of an edge implies conditional independence
au given the remaining phenotypes. In this study, the Tabu search (Tabu) and Max-Min Hill-
22 Climbing (MMHC) algorithms were applied to learn the underlying trait network structure
23 of latent variables at the genetic level using the bnlearn R package (Scutari and Denis, 2014).
ae These two algorithms were chosen because they yielded a reasonable result in a recent study
25 (Yu et al., 2019). The Bayesian information criterion (BIC) score was calculated for the
216 whole network and for each edge. A higher BIC score leads to greater model fit because
a7 the BIC score is rescaled by -2 in the bnlearn package. Additionally, the strength and
218 uncertainty of the direction of each edge were estimated probabilistically by bootstrapping
20 (Scutari and Denis, 2014). Before fitting the Bayesian network structure learning algorithms,
20 genetic values of latent variables were transformed to be uncorrelated to meet the primary

21 assumption of a Bayesian network (Topner et al., 2017; Yu et al., 2019).

11
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Data availability

The data are available from the previously published studies. The agronomic, grain minerals,
and rust related phenotypic data are available from Bhatta et al. (2018a,d, 2019) and the

marker data are available from Bhatta et al. (2018d).
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» Results

2 Assessing factorability and factor selection

28 Figure 2 shows the Pearsons correlation coefficients among all observed variables represented
220 in a heat map. Moderate to high correlations were observed within the spike-, mineral-, and
20 rust- related traits. Because the objective of factor analysis is to model the interrelationships
21 between observed traits with a smaller subset of latent variables, the presence of some block
2 structures in the heat map suggests that our dataset is suited for factor analysis. This
233 observation was supported by the overall Kaiser-Meyer-Olkin measure of sampling adequacy,
24 which was estimated as 0.7, indicating that the factorability of the dataset was sufficient.
235 Parallel analysis was performed to determine the appropriate number of latent variables.
236 The first eight eigenvalues extracted from the original data were larger than the first eight
23 eigenvalues obtained from simulated random data. Thus, eight underlying latent variables

23 were examined in subsequent analysis.

» Factor loading from EFA

a0 Factor analysis was performed to understand the biological meaning of the eight latent
21 factors by investigating the co-variation among measured observations using EFA. Figure 3
22 summarizes the degree of the contributions of unobserved factors to the observed phenotypes.
a3 Because EFA allows the cross-loading of phenotypes, an additional step is required so that
s each phenotype loads only on one factor. A heat map of the estimated factor loading values
us  for each phenotype is shown in Figure 3A. The results showed that each variable had some
26 nonzero loadings on several factors. Figure 3B shows the phenotype-latent variable pattern
27 after selecting the largest loading for each phenotype and imposing a threshold of > [0.30].
25 This resulted in each phenotype loading on only one factor except for GVWT, RB, SP, and
29 YRSK, which did not load on to any factors. The results showed that all mineral-related
0 traits including As, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Ni, P, S, Ti, and Zn were loaded

13
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251 on the first factor (F1) ranging from 0.34 to 0.98. Seven agronomic traits including F'S, SL,
» SN, SPS, SW, GPS, and SHI were placed on the second factor (F2) and biologically all appear
53 to be related to the plant structure. In this category, the lowest loading was estimated for
25 the SHI (0.44) and the largest for GPS (0.91). The 12 disease-related phenotypes were
25 distributed among 4 factors (F3, F4, F5, and F6) with a loading of at least 0.8 in their
6 categories. FLL, FLW, and FLA traits with 0.84, 0.73, and 0.98 loadings, respectively, were
»7 placed on the seventh factor (F7). Finally, GY, HI, and BM loaded on the eighth factor
xs (F8).

250 Figure 4 shows the overall inferred latent structure of the data. The biological meanings
w0 attached to the eight factors according to the EFA analysis were GYL: grain yield; ARC:
1 plant architecture; FL: flag and leaf, MIN: minerals; YRD: yellow rust disease; SRDK:
x2  stem rust disease at Kastamonu; SRDH: stem rust disease at Haymana; and LRD: leaf
»3 rust disease. These estimated latent factors were subsequently evaluated to determine their

x4 genetic interrelationships.

»x Confirmatory factor analysis

x6 Table 1 shows the posterior means and their posterior standard deviations of the standardized
27 loadings, PSRF, and R? statistics from the Bayesian CFA. Convergence was diagnosed from
s the PSRF of each observed phenotype. The estimated PSRF values for all phenotypes were
x0 close to 1, suggesting that they converged to a stationary status. The result showed that the
a0 eight latent factors strongly contributed to the observed phenotypes. For the latent factor
o1 GYL, the lowest and highest loading values were obtained for HI and GY, respectively. For
o2 the FL latent factor, all three phenotypes presented a loading of at least 0.77. In ARC, the
i3 factor loading values varied from SHI to F'S in ascending order. The MIN latent factor was
s associated with the 16 observed phenotypes, which was the largest factor. The lowest and
s highest loading values were obtained for Ti and Mg, respectively. The remaining four latent

s factors including LRD, SRHD, SRKD, and YRD, which are relevant to diseases, showed

14
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o that the data fit well with >0.8 loading. The extent of R? values mostly agreed with the

a3 estimated loadings with a correlation of 0.99.

o Bayesian network among genomic latent factors

20 'The Bayesian network was used to investigate the interrelationships among the genetic com-
21 ponents of latent factors. Because SRDH and SRDK capture the same set of phenotypes
22 with a high correlation (Figure 3) but were collected at different locations, only SRDH was
23 used for trait network structure analysis. As shown in Figure 5, Tabu yielded six directed
2sa  edges from FL to LRD and MIN, from YRD to LRD and GYL, from MIN to ARC, and from
s ORDH to GYL. However, MMHC only produced three directed edges that were a subset of
26 the Tabu network. Thus, the consensus network has common directed edges from FL and
27 LRD, from YRD to GYL, and SRDH to GYL. These results suggest that there is stronger
s evidence that FL, YRD, and SRDH directly influence LRD, GYL, and GYL, respectively. In
250 both networks, the bootstrapping results revealed that confidence was always higher regard-
200 ing the presence or absence of edges compared to the directions of edges. The goodness-of-fit
201 statistics measured by BIC is shown in Table 2. This table shows how well the paths mirror
22 the dependence structure of the data. According to the BIC values, Tabu yielded a larger
203 BIC score than the MMHC algorithms for the entire network (-423.61 vs. -437.39). For each
20 specific path, removing SRDH — GYL resulted in the largest decrease in the BIC score,
205 suggesting that this path plays the most important role in the network structure. This was
206 followed by YRD — GYL and FL. — LRD. The top three most influential paths in Tabu

207 formed the network structure of MMHC.

15
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» 1D1scussion

» Data-driven latent variable analysis

50 With the availability of large volumes of measured observations per individual because of re-
s0  cent advances in phenomics, it is critical to develop a phenotype-centric statistical approach.
sz Factor analysis is an effective method for handling many response variables in a quantitative
23 genetic framework (Runcie and Mukherjee, 2013; Penagaricano et al., 2015; Rocha et al.,
3¢ 2018; Yu et al., 2019, 2020). The central idea behind factor analysis is to model the observed
35 phenotypes through unobserved latent factors by maximizing the common variance between
s correlated phenotypes. In the current study, latent factors were directly inferred from the
507 field data of physiological and morphological phenotypes in wheat using EFA followed by
w08 estimating their factor scores by CFA. This allowed the analysis of the lower dimensional
500 data because the number of latent factors was less than the number of observed phenotypes.
s The combination of EFA and CFA enabled the evaluation of the genetics of latent factors
su  that were predicted to give rise to the observed phenotypes. Our results demonstrate that a
sz data-driven approach for estimating latent factors using EFA is useful because the observed
a3 traits were uniquely assigned to one of the factors with biological interpretations. This con-
s trasts with the results of a recent study by Yu et al. (2019), in which observed phenotypes
a5 were classified into factors based on prior biological knowledge. However, in most scenar-
a6 108, the phenotype-latent variable pattern may be unknown. In contrast, EFA can be used
sz to perform latent variable analysis by estimating latent factors from data when the latent
a8 structure cannot be determined a priori.

310 The interrelationships among latent variables were investigated at the genomic level us-
20 ing Tabu and MMHC. Based on the BIC values, Tabu resulted in a better fit than MMHC.
a1 This agrees with the findings of recent studies using Bayesian networks (T6pner et al., 2017;
22 Scutari et al., 2018; Yu et al., 2019). The trait network structure inferred from MMHC was

23 a subset of that of MMHC. Additionally, the three directed paths identified from MMHC
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s were the top three most important paths in Tabu according to BIC. This suggests that
»s  the networks structures were consistent between Tabu and MMHC. Thus, the trait network
26 derived from MMHC can be considered the consensus network that is more reliable. The
s27 network structures from Tabu and MMHC may become aligned by increasing the sample
»s size. Inferring a trait network from observational data is an emerging topic in quantitative
20 genetics (Valente et al., 2010). Because breeders are often interested in the impact of ex-
10 ternal intervention or the selection of one trait over other traits, distinguishing undirected
s edges from directed edges is important. The trait network learned in this study can also
s be integrated into SEM-GWAS, which is a framework to perform multi-trait genome-wide
1 association analysis derived from structural equation models (Momen et al., 2018, 2019).
13« The combination of data~-driven EFA and Bayesian network approaches is particularly use-
135 ful for analyzing image-based high-throughput phenotyping data, where relationships within
136 image-based phenotypes and between classical phenotypes and image-based phenotypes may

;7 not always be obvious.

s Biological meaning of the inferred relationships

;9 Previous studies revealed the negative genetic associations of yellow and stem rust traits
s with grain yield traits. Wheat rust diseases are foliar fungal diseases whose infection on
s the flag leaf close to the grain filling period causes a decline in the photosynthetic ability
a2 of the plant, drastically decreasing the grain filling process and reducing the biomass yield,
13 thousand kernel weight, and harvest index (He et al., 2019; Bhatta et al., 2018a; Herrera-
ua  Foessel et al., 2006). Thus, the reduction of these important traits results in a reduction in
us the final grain yield (SRDH — GYL and YRD — GYL). Wheat leaf rust may be affected
us by flag leaf traits such as FLL, FLW, and FLA (FL — LRD). As the flag leaf area increases,
s the surface also becomes greater, increasing the risk of disease infection on the wider and
us longer leaves.

349 Flag leaf traits play important roles in the synthesis, translocation, and remobilization

17
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30 of photo-assimilates and minerals to the grains (Sperotto et al., 2013). A recent study on
ssi Triticum sps. showed that the flag leaf contains two- to three-fold higher concentrations
32 of Fe and Zn than the grain mineral concentrations (Hu et al., 2017). They also found
33 strong positive correlations between leaf and grain Fe and Zn concentrations. Another study
s« used more than 120 hexaploid wheat lines and reported a significant positive correlation of
35 flag leaf N concentrations at anthesis with grain Fe, Mn, and Cu (SHI et al., 2013). These
36 results suggest that flag leaf traits play an important role in determining the grain mineral
7 concentration, which agrees with our results indicating a direct link from FL to MN.

358 Foliar diseases such as yellow rust, caused by Puccinia striiformis f. sp. tritici (Pst), is an
30 important foliar fungal disease of wheat that causes major yield loss (Bhatta et al., 2019).
s0  This disease produces rust pustules on leaves and reduces the process of photosynthesis
;1 and translocation of photosynthate to grain yield traits, which in turn inhibit grain filling,
2 possibly resulting in a significant reduction in grain weight and ultimately reducing grain
33 yield (Ye et al., 2019; Murray and Murray, 2005). A recent study on winter wheat germplasm
sa  showed that yellow rust infection seriously damaged the photosynthetic function of leaves at
35 an earlier stage of grain filling, leading to biomass loss (He et al., 2019). Additionally, the
w6 presence of foliar diseases in wheat is associated with a reduction in the biomass weight and
37 harvest index by reducing the healthy leaf area and affecting healthy spike growth (Gooding
s et al., 2000; Dimmock and Gooding, 2002), indicating that yellow rust traits affected grain
30 yield-related traits (YRD — GYL).

370 Several studies have reported negative associations between grain minerals and architecture-
sn related traits. A larger number of seeds per spike and kernel size in wheat is associated with
sz lower grain mineral accumulation in the grain, which is mainly attributed to the grain mineral
w3 dilution effect (Bhatta et al., 2018a; Guttieri et al., 2015). Similarly, the nitrogen concentra-
sa tion in the grains depends on their position within the spike Calderini and Ortiz-Monasterio
w5 (2003); Herzog and Stamp (1983), suggesting that spike architecture traits have important

ws impacts on grain mineral traits (MIN — ARC).

18
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- Conclusions

srs 'This study demonstrates that data-driven latent variable analysis can reveal the underlying
;9 structure of phenotypes on a smaller dimensional scale. Thus, determining the genetic effects
;0 of correlated traits by factor analysis is an efficient approach for learning the minimum
;1 set of core factors contributing to high-dimensional observed phenotypes. Additionally, by
;2 reconstructing a more general structure of genomic latent factors from observed phenotypes
;3 using a Bayesian network, a clearer picture of trait interdependency can be obtained, which

s 1s useful for developing breeding and management strategies for crops such as wheat.
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Table 1: Factor loading values from the Bayesian confirmatory factor analysis. PSD: pos-
terior standard deviation, PSRF: potential scale reduction factor, GYL: grain yield, ARC:
plant architecture, FL: flag and leaf, MIN: mineral-related traits, YRD: yellow rust, SRDK:
stem rust at Kastamonu, SRDH: stem rust at Haymana, LRD: leaf rust, and R?: coefficient
of determination.

Latent factor Phenotype Loading PSD PSRF R?
GYL:

grain yield 0.998 0.071 1.000 0.996
harvest index 0.571 0.090 1.000 0.327
biomass weight 0.823 0.081 1.000 0.677

FL:
flag leaf length 0.849 0.080 1.002 0.720
flag leaf width 0.771 0.082 1.002 0.594
flag leaf area 0.999 0.071 1.005 0.998
ARC:
fertile spikelet 0.867 0.098 1.006 0.752
spike length 0.543 0.097 1.001 0.295
spikelet number 0.776 0.099 1.005 0.602
seeds per spike 0.796 0.088 1.001 0.633
spike weight 0.740 0.110 1.003 0.548
grain weight per spike 0.854 0.108 1.005 0.730
spike harvest index 0.462 0.107 1.001 0.214
MIN:
arsenic 0.483 0.098 1.001 0.234
calcium 0.884 0.086 1.005 0.782
cadmium 0.767 0.091 1.003 0.588
colbalt 0.468 0.101 1.001 0.219
copper 0.940 0.083 1.005 0.883
iron 0.927 0.084 1.005 0.858
potassium 0.773 0.091 1.003 0.598
lithium 0.379 0.102 1.000 0.144
magnesium 0.984 0.078 1.007 0.968
manganese 0.928 0.084 1.006 0.861
molybdenum 0.757 0.091 1.002 0.573
nickel 0.531 0.098 1.001 0.282
phosphorous 0.974 0.080 1.007 0.949
sulphur 0.750 0.091 1.002 0.563
titanium 0.365 0.100 1.000 0.133
zinc 0.817 0.089 1.003 0.667
LRD:
leaf rust severity 0.996 0.071 1.016 0.992
leaf rust infection type 0.813 0.081 1.006 0.662
leaf rust coefficient of infection 0.998 0.071 1.015 0.997
SRDH:
stem rust severity at Haymana 0.955 0.074 1.002 0.912
stem rust infection type at Haymana 0.872 0.078 1.001 0.760
stem rust coefficient of infection at Haymana 0.998 0.071 1.003 0.997
SRDK:
stem rust severity at Kastamanu 0.968 0.073 1.012 0.937
stem rust infection type at Kastamonu 0.912 0.076 1.009 0.832
stem rust coefficient of infection at Kastamonu 0.991 0.071 1.012 0.982
YRD:

yellow rust coefficient of infectipg at Haymana 0.999 0.071 1.002 0.999
yellow rust infection type at Haymana 0.824 0.080 1.001 0.680
yellow rust severity at Haymana 0.973 0.073 1.002 0.946



https://doi.org/10.1101/2020.09.03.282335
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.03.282335; this version posted September 4, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Table 2: Bayesian information criterion (BIC) scores for pairs of nodes reporting the change
in the score caused by an arc removal relative to the entire network score. Tabu: Tabu
Search, MMHC: Max-Min Hill-Climbing, GYL: grain yield traits, FL: flag and leaf traits,
MIN: mineral traits, ARC: architecture traits, LRD: leaf rust disease, SRDH: steam rust
disease at Haymana, and YRD: yellow rust disease.

Algorithm  from to BIC

FLL.  MIN -2.074

FLL.  LRD -9.648

Tabu MIN ARC -5.884
SRDH GYL -32.297

YRD GYL -16.399

YRD ARC -5.916

FLL.  LRD -5.989

MMHC  SRDH GYL -32.297
YRD GYL -16.3997
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« Figures

(A) (B)

Exploratory factor analysis Confirmatory factor analysis

Pr1,F2

Figure 1: A graphical representation of exploratory factor analysis (panel A) and confirma-
tory factor analysis (panel B) assuming that there are hypothetical six observed phenotypes
(Y1,Y2,--- ,Y6) and two unobserved latent factors (F1 and F2). The double headed arrow
is the covariance between the two latent factors (®py p2). €1,€9,. .., € represent the resid-
uals. Exploratory factor analysis estimates the phenotype-factor relationship from the data
by allowing cross-loading. By choosing the largest factor loading value for each phenotype,
phenotypes can be uniquely assigned to one of the two factors. In this example, Y1, Y2,
and Y3 loaded on the F1 (with loadings of Aj1, Ag1, and A3;) and Y4, Y5, and Y6 loaded
on F2 (with loadings of A\jo, As2, and Ag2). Confirmatory factor analysis assumes that this
relationship is known a priori.
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Figure 2: Pairwise Pearson’s correlations between 45 phenotypes. GY: grain yield, HI: har-
vest index, BWT: biomass weight, GVWT: grain volume weight, FLL: flag leaf length, FLW:
flag leaf width, FLA: flag leaf area, SL: spike length, SN: spikelet number,SP: sterile spikelet,
FS: fertile spikelet, RB: rachis break, SPS: seeds per spike, SW: spike weight, GPS: grain
weight per spike, SHI: spike harvest index, AS: arsenic, CA: calcium, CD: cadmium, CO:
colbalt, CU: copper, FE: iron, K: potassium, LI: lithium, MG: magnesium, MN: manganese,
MO: molybdenum, NI: nickel, P: phosphorous, S: sulphur, TI: titanium, ZN: zinc, LRCI:
leaf rust coefficient of infection, LRIT: leaf rust infection type, LRS: leaf rust severity, SR-
CIH: steam rust coefficient of infection at Haymana, SRITH: stem rust infection type at
Haymana, SRSH: stem rust severity at Haymana, SRCIK: stem rust coefficient of infection
at Kastamonu, SRITK: stem rust infection type at Kastamonu, SRSK: stem rust severity
at Kastamanu, YRCIH: yellow rust coefficient of infection at Haymana, YRIH: yellow rust
infection type at Haymana, YRSH: yellow rust severity at Haymana, YRSK: yellow rust
severity at Kastamonu.
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Figure 3: Panel A: heat map of factor loading values. Panel B: heat map of factor loading
values after removing cross-loading by setting a cut-off value of |A| > 0.30. The rows of
each panel correspond to the observed phenotypes and the columns correspond to the eight
factors (F1 to F8). Abbreviations of observed phenotypes are shown in Figure 2.
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Figure 4: Relationship between eight latent variables and observed phenotypes based on
exploratory factor analysis. GYL: grain yield related traits, ARC: architecture related trait,
FL: flag and leaf related traits, MIN: mineral-related traits, YRD: yellow rust related traits,
SRDK: stem rust related traits at Kastamonu, SRDH: stem rust related traits at Haymana,

LRD: leaf rust related traits. The eight latent factors were assumed to be correlated. Ab-
breviations of observed phenotypes are shown in Figure 2.
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Figure 5: Bayesian networks learned from Tabu search (Tabu) and Max-Min Hill-Climbing
(MMHC). Structure learning test was performed with 5,000 bootstrap samples. Labels of
the edges refer to the strength and direction (parenthesis) which measure the confidence
of the directed edge. The strength indicates the frequency of the edge is present and the
direction measures the frequency of the direction conditioned on the presence of edge. GYL:
grain yield related traits, ARC: architecture related trait, FL: flag and leaf related traits,
MIN: mineral-related traits, YRD: yellow rust related traits, SRDK: stem rust related traits
at Kastamonu, SRDH: stem rust related traits at Haymana, LRD: leaf rust related traits.
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