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Abstract28

Inferring trait networks from a large volume of genetically correlated diverse phenotypes29

such as yield, architecture, and disease resistance can provide information on the manner in30

which complex phenotypes are interrelated. However, studies on statistical methods tailored31

to multi-dimensional phenotypes are limited, whereas numerous methods are available for32

evaluating the massive number of genetic markers. Factor analysis operates at the level of la-33

tent variables predicted to generate observed responses. The objectives of this study were to34

illustrate the manner in which data-driven exploratory factor analysis can map observed phe-35

notypes into a smaller number of latent variables and infer a genomic latent factor network36

using 45 agro-morphological, disease, and grain mineral phenotypes measured in synthetic37

hexaploid wheat lines (Triticum Aestivum L.). In total, eight latent factors including grain38

yield, architecture, flag leaf-related traits, grain minerals, yellow rust, two types of stem rust,39

and leaf rust were identified as common sources of the observed phenotypes. The genetic40

component of the factor scores for each latent variable was fed into a Bayesian network to41

obtain a trait structure reflecting the genetic interdependency among traits. Three directed42

paths were consistently identified by two Bayesian network algorithms. Flag leaf-related43

traits influenced leaf rust, and yellow rust and stem rust influenced grain yield. Additional44

paths that were identified included flag leaf-related traits to minerals and minerals to archi-45

tecture. This study shows that data-driven exploratory factor analysis can reveal smaller46

dimensional common latent phenotypes that are likely to give rise to numerous observed47

field phenotypes without relying on prior biological knowledge. The inferred genomic latent48

factor structure from the Bayesian network provides insights for plant breeding to simulta-49

neously improve multiple traits, as an intervention on one trait will affect the values of focal50

phenotypes in an interrelated complex trait system.51

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2020. ; https://doi.org/10.1101/2020.09.03.282335doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.03.282335
http://creativecommons.org/licenses/by/4.0/


Background52

With the development of high-throughput phenotyping technologies, phenomics has been53

generating plant measurements at a greater level of resolution and dimensionality (Araus54

and Cairns, 2014; Watanabe et al., 2017). Integrating these diverse and heterogeneous data55

to improve the biological understanding of plant systems and interpret the underlying inter-56

relationships among phenotypes remains challenging (Morota et al., 2019). One approach57

is to model each measurement as a different trait using a multi-trait model (Henderson and58

Quaas, 1976). However, in a high-dimensional specification, where the number of traits59

measured per genotype can reach hundreds or thousands, this approach leads to dramatic60

increases in the computational burden or difficulties in interpreting the results. Recently, Yu61

et al. (2019) showed that factor analysis can be used to reduce the dimension of response62

variables by assuming latent factors that give rise to observed phenotypes in rice. They63

used confirmatory factor analysis (CFA), which requires knowledge of the phenotype-factor64

category before data analysis. However, reliable phenotype-factor patterns are not always65

known in advance. Alternatively, exploratory factor analysis (EFA) can be used to perform66

latent variable analysis by estimating patterns from data when a latent structure cannot be67

determined a priori. EFA identifies underlying latent factors to represent observed measure-68

ments, which is useful when the exact number and meaning of latent factors are unknown69

(Jöreskog, 1967; Hoyle and Duvall, 2004).70

The first objective of this study was to illustrate the utility of EFA for revealing the71

underlying genomic latent structure of agronomic or agro-morphological phenotypes for syn-72

thetic hexaploid wheat lines (T. aestivum L). Grain yield in wheat is influenced by sev-73

eral agro-morphological traits. However, successfully incorporating yield-promoting agro-74

morphological traits in breeding programs to improve genetic gains requires detailed knowl-75

edge of the interrelationships between and among traits. The second objective was to deter-76

mine a trait network structure among the genomic latent factors using a Bayesian network.77

This is an essential task because breeding programs often aim to improve multiple corre-78
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lated traits concurrently. Knowledge of directed trait networks accounting for the genetic79

interdependency among traits can improve the understanding of the manner in which the80

selection of one phenotype may increase or decrease the observation of another phenotype,81

providing additional insight beyond associations (Valente et al., 2015). The current study82

demonstrates the advantages of the joint application of factor analysis and Bayesian network83

as a data-driven approach to discover interrelationships between a set of many correlated84

traits in wheat.85
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Materials and Methods86

Plant materials87

A diversity panel of n = 123 synthetic hexaploid wheat lines, derived from an interspecific88

cross between wild accessions of goat grass (Aegilops tauschii L.) and diverse accessions89

of cultivated durum wheat (Triticum turgidum L.), was used in this study. These plant90

materials were shared by the International Winter Wheat Improvement Program in Turkey91

and are available at http://www.iwwip.org. Pedigree information and other details on these92

lines were reported previously (Bhatta et al., 2018a,c,d). Briefly, the lines originated from93

two breeding programs. The first group of synthetics comprises 14 lines developed by Kyoto94

University, Japan, from 1 Langdon durum parent crossed with 14 different accessions of Ae.95

tauschii. The second group consists of 109 lines developed by the International Maize and96

Wheat Improvement Center from crosses between 6 winter durum wheats and 11 different97

Ae. tauschii accessions. The synthetic lines used in this study are unique; they were recently98

developed (F8–F9 generations) and tested for multiple traits for use in a breeding program.99

Phenotypic and genotypic data100

We analyzed 16 agronomic-, 16 grain mineral-, and 13 wheat rust-related phenotypes in the101

current study. Agronomic traits including grain yield (GY), harvest index (HI), biomass102

weight (BMWT), grain volume weight (GVWT), flag leaf length (FLL), flag leaf width103

(FLW), flag leaf area (FLA), rachis break (RB), sterile spikelet (SP), spike length (SL),104

seeds per spike (SPS), spikelet number (SN), fertile spikelet (FS), spike weight (SW), grain105

weight per spike (GPS), and spike harvest index (SHI) were measured using previously106

described standard procedures (Bhatta et al., 2018a; Morgounov et al., 2018; Hussain et al.,107

2017). Grain minerals including arsenic (As), calcium (Ca), cadmium (Cd), cobalt (Co),108

copper (Cu), iron (Fe), potassium (K), lithium (Li), magnesium (Mg), manganese (Mn),109

molybdenum (Mo), nickel (Ni), phosphorous (P), sulfur (S), titanium (Ti), and zinc (Zn)110
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were measured via inductively-coupled plasma mass spectrometry (ICP-MS, Agilent 7500cx,111

Agilent Technologies, Santa Clara, CA, USA) at the University of Nebraska Redox Biology112

Center, Proteomics and Metabolomics Core (Guttieri et al., 2015; Bhatta et al., 2018a).113

The wheat rust (leaf stem and yellow rusts) disease severity, coefficient of infection, and114

infection type were tested under field conditions as previously described (Peterson et al.,115

1948; Morgounov et al., 2018; Bhatta et al., 2018d). Wheat rust traits collected from several116

locations in Turkey and one location in Kenya included the leaf rust coefficient of infection117

(LRCI), leaf rust infection type (LRIT), leaf rust severity (LRS), stem rust coefficient of118

infection at Haymana (SRCIH), stem rust infection type at Haymana (SRITH), stem rust119

severity at Haymana (SRSH), stem rust coefficient of infection at Kastamonu (SRCIK), stem120

rust infection type at Kastamonu (SRITK), stem rust severity at Kastamonu (SRSK), yellow121

rust coefficient of infection at Haymana (YRCIH), yellow rust infection type at Haymana122

(YRIH), yellow rust severity at Haymana (YRSH), and yellow rust severity at Kastamonu123

(YRSK). All lines were genotyped with the genotyping by sequencing technology (Bhatta124

et al., 2018c). After setting a minor allele frequency threshold of 0.05, 35,648 markers125

remained for analysis.126

Experimental design and analysis127

The experiments were conducted across several locations in Turkey and one location in Kenya

in 2017. The experimental design was an alpha lattice design with two replications (Barreto

et al., 1996). A linear mixed model coupled with restricted maximum likelihood implemented

in the PROC MIXED procedure in SAS 9.4 (SAS Institute, Inc., Cary, NC, USA) was used

to obtain the adjusted means for each trait from the following model (Bhatta et al., 2018b).

yijkl = µ+ ri + b(r)ji + ck + gl(ji) + εijkl,
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where yijk is the trait of interest; µ is the overall mean; ri is the effect of ith replication;128

b(r)ji is the effect of the jth block within the ith replication; ck is the kth check; glji (new129

variable, where check is coded as 0 and entry is coded as 1, and the genotype is considered130

a new variable × entry) is the effect of the lth genotype within the jth incomplete block of131

the ith replication; and εijkl is the residual.132

Exploratory factor analysis133

Exploratory factor analysis can reveal the latent structure among phenotypes when no hy-134

potheses about the nature of the underlying factor can be assumed a priori. This section135

closely follows the work of Yu et al. (2020). The aforementioned t = 45 phenotypes were136

analyzed using EFA by fitting137

Y = ΛF + U, (1)

where Y is the t × n phenotypic matrix; Λ is the t × q matrix of factor loading indicating138

the relation between phenotypes and latent common factors; F is the q× n matrix of latent139

factor scores; and U is the t×n vector of unique effects that is not explained by q underlying140

common factors. The variance-covariance matrix of Y is141

Σ = ΛΦΛ′ + Ψ, (2)

where Σ is the t × t variance-covariance matrix of phenotypes, Φ is the variance of factor142

scores, and Ψ is a t × t diagonal matrix of unique variance. The elements of Λ, Φ, and Ψ143

are parameters of the model to be estimated from the data. We assumed Φ = I yielding144

factors each with unit variance (Jöreskog, 1967; Anderson, 2003). With the assumption145

of F ∼ N (0, I), parameters Λ and Ψ were estimated by maximizing the log-likelihood of146

L (Λ,Ψ|Y) using the R package psych (Revelle, 2018) along with a varimax rotation (Kaiser,147

1958). A threshold of λ > |0.3| was first applied to screen out factor loading values. Then148

each phenotype was assigned to only one of the factors based on its largest loading.149
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Parallel analysis was performed to estimate the optimum number of factors from data150

in EFA (Horn, 1965; Hayton et al., 2004). This is conducted by generating simulated data151

from the observed data. Next, the eigenvalues were extracted until the observed data had152

a smaller eigenvalue than the simulated data. The number of eigenvalues was used as the153

number of optimum factors.154

The factor ability of the data set was also assessed by estimating the Kaiser-Meyer-155

Olkin measure of sampling adequacy (Cerny and Kaiser, 1977). This criterion measures156

the adequacy of the dataset for factor analysis by investigating the correlation and partial157

correlation matrices of the phenotypes. The measure of sampling adequacy ranges between158

0 to 1, and values closer to 1 are preferred. When the measure of sampling adequacy is less159

than 0.5, the dataset is not recommended for factor analysis (Cerny and Kaiser, 1977).160

Confirmatory factor analysis161

Once the phenotype-factor pattern was established by EFA, Bayesian CFA was used to obtain162

factor scores. Although EFA and CFA are similar, there are also clear differences. In general,163

EFA is used to find a latent structure in data, whereas CFA requires the phenotype-latent164

variable category to be known before analysis and is often used to estimate factor scores based165

on the structure from EFA. The differences between EFA and CFA are shown in Figure 1. In a166

Bayesian setting, all unknowns in equations (1) and (2) were assigned priors. The assignment167

of priors was performed according to Yu et al. (2019, 2020) using the default priors in the168

blavaan R package (Merkle and Rosseel, 2018). A Gaussian distribution with a mean of zero169

and variance of 100 was assigned to the factor loading term. The variance-covariance matrix170

of the latent factors followed an inverse Wishart distribution with a scale matrix of an 8× 8171

identity matrix and degree of freedom of 8. Each error variance followed an inverse Gamma172

distribution with a shape parameter of 1 and scale parameter of 0.5. The factor scores173

of latent variables (F) were sampled from the conditional distribution of p(F|Λ,Φ,Ψ,Y)174

(Lee and Song, 2012) using a data augmentation technique (Tanner and Wong, 1987). The175
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posterior mean of F was considered a new phenotype in subsequent analysis. Convergence176

was diagnosed by the potential scale reduction factor (PSRF) (Gelman et al., 1992; Brown,177

2014). This criterion utilizes at least two Markov chains, which are considered to be mixed178

to a stationary status if the ratio of between the chain variance to within the chain variance179

is close to 1. In total, two chains, each consisting of 5,000 Markov chain Monte Carlo samples180

after 2,000 burn-in samples, were collected to derive the posterior means.181

Multi-trait genomic best linear unbiased prediction182

A Bayesian multi-trait genomic best linear unbiased prediction model was applied to parti-

tion inferred latent variables into genetic and environmental components.

F = Xb + Zg + e,

where F is the vector of estimated factor scores, X is the incidence matrix of covariates183

including the intercept and the top three principal components accounting for population184

structure, b is the vector of covariate effects, Z is the incidence matrix relating the factor185

scores of each latent variable to additive genetic effect, g is a vector of additive genetic186

effect, and e is the vector of residuals. Under the infinitesimal model of inheritance, g187

and e were assumed to follow a multivariate Gaussian distribution of g ∼ N(0,Σg ⊗ G)188

and e ∼ N(0,Σe ⊗ I), respectively. Here, G is a n × n genomic relationship matrix, I189

is a n × n identity matrix, Σg and Σe are variance-covariance matrices of additive genetic190

effect and residuals, respectively, and ⊗ is the Kronecker product. The G matrix was191

set as WW
′
/2

∑m
j=1 pj(1 − pj), where W is the centered marker incidence matrix taking192

the values of 0 − 2pj for zero copies of the reference allele, 1 − 2pj for one copy of the193

reference allele, 2 − 2pj for two copies of the reference allele, and pj is the allele frequency194

at marker j = 1, · · · ,m (VanRaden, 2008). The prior distribution specifications followed195

those of Momen et al. (2019). A flat prior was assigned for b. The vectors of additive196
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genetic and residual effects were assigned independent multivariate Gaussian priors with197

null mean and inverse Wishart distributions for the covariance matrices Σg and Σe. A Gibbs198

sampler was used to obtain posterior distributions. A burn-in of 10,000 samples followed199

by an additional 90,000 samples, thinned by a factor of two, resulted in 45,000 available200

samples for posterior mean inferences. The MTM R package was used to fit the model201

(https://github.com/QuantGen/MTM).202

Bayesian network structure learning203

The posterior means of genetic values of latent variables obtained from the Bayesian multi-204

trait genomic best linear unbiased prediction model were used to examine the manner in205

which the traits are interrelated using a Bayesian network. A Bayesian network is a graphical206

representation of the conditional independence among random variables based on a directed207

acyclic graph (Heckerman et al., 1995). For example, if an arrow arises from phenotype A208

to phenotype B, phenotype A is considered to impact phenotype B directly conditional on209

the remaining phenotypes, whereas the absence of an edge implies conditional independence210

given the remaining phenotypes. In this study, the Tabu search (Tabu) and Max-Min Hill-211

Climbing (MMHC) algorithms were applied to learn the underlying trait network structure212

of latent variables at the genetic level using the bnlearn R package (Scutari and Denis, 2014).213

These two algorithms were chosen because they yielded a reasonable result in a recent study214

(Yu et al., 2019). The Bayesian information criterion (BIC) score was calculated for the215

whole network and for each edge. A higher BIC score leads to greater model fit because216

the BIC score is rescaled by -2 in the bnlearn package. Additionally, the strength and217

uncertainty of the direction of each edge were estimated probabilistically by bootstrapping218

(Scutari and Denis, 2014). Before fitting the Bayesian network structure learning algorithms,219

genetic values of latent variables were transformed to be uncorrelated to meet the primary220

assumption of a Bayesian network (Töpner et al., 2017; Yu et al., 2019).221
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Data availability222

The data are available from the previously published studies. The agronomic, grain minerals,223

and rust related phenotypic data are available from Bhatta et al. (2018a,d, 2019) and the224

marker data are available from Bhatta et al. (2018d).225
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Results226

Assessing factorability and factor selection227

Figure 2 shows the Pearsons correlation coefficients among all observed variables represented228

in a heat map. Moderate to high correlations were observed within the spike-, mineral-, and229

rust- related traits. Because the objective of factor analysis is to model the interrelationships230

between observed traits with a smaller subset of latent variables, the presence of some block231

structures in the heat map suggests that our dataset is suited for factor analysis. This232

observation was supported by the overall Kaiser-Meyer-Olkin measure of sampling adequacy,233

which was estimated as 0.7, indicating that the factorability of the dataset was sufficient.234

Parallel analysis was performed to determine the appropriate number of latent variables.235

The first eight eigenvalues extracted from the original data were larger than the first eight236

eigenvalues obtained from simulated random data. Thus, eight underlying latent variables237

were examined in subsequent analysis.238

Factor loading from EFA239

Factor analysis was performed to understand the biological meaning of the eight latent240

factors by investigating the co-variation among measured observations using EFA. Figure 3241

summarizes the degree of the contributions of unobserved factors to the observed phenotypes.242

Because EFA allows the cross-loading of phenotypes, an additional step is required so that243

each phenotype loads only on one factor. A heat map of the estimated factor loading values244

for each phenotype is shown in Figure 3A. The results showed that each variable had some245

nonzero loadings on several factors. Figure 3B shows the phenotype-latent variable pattern246

after selecting the largest loading for each phenotype and imposing a threshold of > |0.30|.247

This resulted in each phenotype loading on only one factor except for GVWT, RB, SP, and248

YRSK, which did not load on to any factors. The results showed that all mineral-related249

traits including As, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Ni, P, S, Ti, and Zn were loaded250
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on the first factor (F1) ranging from 0.34 to 0.98. Seven agronomic traits including FS, SL,251

SN, SPS, SW, GPS, and SHI were placed on the second factor (F2) and biologically all appear252

to be related to the plant structure. In this category, the lowest loading was estimated for253

the SHI (0.44) and the largest for GPS (0.91). The 12 disease-related phenotypes were254

distributed among 4 factors (F3, F4, F5, and F6) with a loading of at least 0.8 in their255

categories. FLL, FLW, and FLA traits with 0.84, 0.73, and 0.98 loadings, respectively, were256

placed on the seventh factor (F7). Finally, GY, HI, and BM loaded on the eighth factor257

(F8).258

Figure 4 shows the overall inferred latent structure of the data. The biological meanings259

attached to the eight factors according to the EFA analysis were GYL: grain yield; ARC:260

plant architecture; FL: flag and leaf, MIN: minerals; YRD: yellow rust disease; SRDK:261

stem rust disease at Kastamonu; SRDH: stem rust disease at Haymana; and LRD: leaf262

rust disease. These estimated latent factors were subsequently evaluated to determine their263

genetic interrelationships.264

Confirmatory factor analysis265

Table 1 shows the posterior means and their posterior standard deviations of the standardized266

loadings, PSRF, and R2 statistics from the Bayesian CFA. Convergence was diagnosed from267

the PSRF of each observed phenotype. The estimated PSRF values for all phenotypes were268

close to 1, suggesting that they converged to a stationary status. The result showed that the269

eight latent factors strongly contributed to the observed phenotypes. For the latent factor270

GYL, the lowest and highest loading values were obtained for HI and GY, respectively. For271

the FL latent factor, all three phenotypes presented a loading of at least 0.77. In ARC, the272

factor loading values varied from SHI to FS in ascending order. The MIN latent factor was273

associated with the 16 observed phenotypes, which was the largest factor. The lowest and274

highest loading values were obtained for Ti and Mg, respectively. The remaining four latent275

factors including LRD, SRHD, SRKD, and YRD, which are relevant to diseases, showed276
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that the data fit well with >0.8 loading. The extent of R2 values mostly agreed with the277

estimated loadings with a correlation of 0.99.278

Bayesian network among genomic latent factors279

The Bayesian network was used to investigate the interrelationships among the genetic com-280

ponents of latent factors. Because SRDH and SRDK capture the same set of phenotypes281

with a high correlation (Figure 3) but were collected at different locations, only SRDH was282

used for trait network structure analysis. As shown in Figure 5, Tabu yielded six directed283

edges from FL to LRD and MIN, from YRD to LRD and GYL, from MIN to ARC, and from284

SRDH to GYL. However, MMHC only produced three directed edges that were a subset of285

the Tabu network. Thus, the consensus network has common directed edges from FL and286

LRD, from YRD to GYL, and SRDH to GYL. These results suggest that there is stronger287

evidence that FL, YRD, and SRDH directly influence LRD, GYL, and GYL, respectively. In288

both networks, the bootstrapping results revealed that confidence was always higher regard-289

ing the presence or absence of edges compared to the directions of edges. The goodness-of-fit290

statistics measured by BIC is shown in Table 2. This table shows how well the paths mirror291

the dependence structure of the data. According to the BIC values, Tabu yielded a larger292

BIC score than the MMHC algorithms for the entire network (-423.61 vs. -437.39). For each293

specific path, removing SRDH → GYL resulted in the largest decrease in the BIC score,294

suggesting that this path plays the most important role in the network structure. This was295

followed by YRD → GYL and FL → LRD. The top three most influential paths in Tabu296

formed the network structure of MMHC.297
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Discussion298

Data-driven latent variable analysis299

With the availability of large volumes of measured observations per individual because of re-300

cent advances in phenomics, it is critical to develop a phenotype-centric statistical approach.301

Factor analysis is an effective method for handling many response variables in a quantitative302

genetic framework (Runcie and Mukherjee, 2013; Peñagaricano et al., 2015; Rocha et al.,303

2018; Yu et al., 2019, 2020). The central idea behind factor analysis is to model the observed304

phenotypes through unobserved latent factors by maximizing the common variance between305

correlated phenotypes. In the current study, latent factors were directly inferred from the306

field data of physiological and morphological phenotypes in wheat using EFA followed by307

estimating their factor scores by CFA. This allowed the analysis of the lower dimensional308

data because the number of latent factors was less than the number of observed phenotypes.309

The combination of EFA and CFA enabled the evaluation of the genetics of latent factors310

that were predicted to give rise to the observed phenotypes. Our results demonstrate that a311

data-driven approach for estimating latent factors using EFA is useful because the observed312

traits were uniquely assigned to one of the factors with biological interpretations. This con-313

trasts with the results of a recent study by Yu et al. (2019), in which observed phenotypes314

were classified into factors based on prior biological knowledge. However, in most scenar-315

ios, the phenotype-latent variable pattern may be unknown. In contrast, EFA can be used316

to perform latent variable analysis by estimating latent factors from data when the latent317

structure cannot be determined a priori.318

The interrelationships among latent variables were investigated at the genomic level us-319

ing Tabu and MMHC. Based on the BIC values, Tabu resulted in a better fit than MMHC.320

This agrees with the findings of recent studies using Bayesian networks (Töpner et al., 2017;321

Scutari et al., 2018; Yu et al., 2019). The trait network structure inferred from MMHC was322

a subset of that of MMHC. Additionally, the three directed paths identified from MMHC323
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were the top three most important paths in Tabu according to BIC. This suggests that324

the networks structures were consistent between Tabu and MMHC. Thus, the trait network325

derived from MMHC can be considered the consensus network that is more reliable. The326

network structures from Tabu and MMHC may become aligned by increasing the sample327

size. Inferring a trait network from observational data is an emerging topic in quantitative328

genetics (Valente et al., 2010). Because breeders are often interested in the impact of ex-329

ternal intervention or the selection of one trait over other traits, distinguishing undirected330

edges from directed edges is important. The trait network learned in this study can also331

be integrated into SEM-GWAS, which is a framework to perform multi-trait genome-wide332

association analysis derived from structural equation models (Momen et al., 2018, 2019).333

The combination of data-driven EFA and Bayesian network approaches is particularly use-334

ful for analyzing image-based high-throughput phenotyping data, where relationships within335

image-based phenotypes and between classical phenotypes and image-based phenotypes may336

not always be obvious.337

Biological meaning of the inferred relationships338

Previous studies revealed the negative genetic associations of yellow and stem rust traits339

with grain yield traits. Wheat rust diseases are foliar fungal diseases whose infection on340

the flag leaf close to the grain filling period causes a decline in the photosynthetic ability341

of the plant, drastically decreasing the grain filling process and reducing the biomass yield,342

thousand kernel weight, and harvest index (He et al., 2019; Bhatta et al., 2018a; Herrera-343

Foessel et al., 2006). Thus, the reduction of these important traits results in a reduction in344

the final grain yield (SRDH → GYL and YRD → GYL). Wheat leaf rust may be affected345

by flag leaf traits such as FLL, FLW, and FLA (FL→ LRD). As the flag leaf area increases,346

the surface also becomes greater, increasing the risk of disease infection on the wider and347

longer leaves.348

Flag leaf traits play important roles in the synthesis, translocation, and remobilization349
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of photo-assimilates and minerals to the grains (Sperotto et al., 2013). A recent study on350

Triticum sps. showed that the flag leaf contains two- to three-fold higher concentrations351

of Fe and Zn than the grain mineral concentrations (Hu et al., 2017). They also found352

strong positive correlations between leaf and grain Fe and Zn concentrations. Another study353

used more than 120 hexaploid wheat lines and reported a significant positive correlation of354

flag leaf N concentrations at anthesis with grain Fe, Mn, and Cu (SHI et al., 2013). These355

results suggest that flag leaf traits play an important role in determining the grain mineral356

concentration, which agrees with our results indicating a direct link from FL to MN.357

Foliar diseases such as yellow rust, caused by Puccinia striiformis f. sp. tritici (Pst), is an358

important foliar fungal disease of wheat that causes major yield loss (Bhatta et al., 2019).359

This disease produces rust pustules on leaves and reduces the process of photosynthesis360

and translocation of photosynthate to grain yield traits, which in turn inhibit grain filling,361

possibly resulting in a significant reduction in grain weight and ultimately reducing grain362

yield (Ye et al., 2019; Murray and Murray, 2005). A recent study on winter wheat germplasm363

showed that yellow rust infection seriously damaged the photosynthetic function of leaves at364

an earlier stage of grain filling, leading to biomass loss (He et al., 2019). Additionally, the365

presence of foliar diseases in wheat is associated with a reduction in the biomass weight and366

harvest index by reducing the healthy leaf area and affecting healthy spike growth (Gooding367

et al., 2000; Dimmock and Gooding, 2002), indicating that yellow rust traits affected grain368

yield-related traits (YRD → GYL).369

Several studies have reported negative associations between grain minerals and architecture-370

related traits. A larger number of seeds per spike and kernel size in wheat is associated with371

lower grain mineral accumulation in the grain, which is mainly attributed to the grain mineral372

dilution effect (Bhatta et al., 2018a; Guttieri et al., 2015). Similarly, the nitrogen concentra-373

tion in the grains depends on their position within the spike Calderini and Ortiz-Monasterio374

(2003); Herzog and Stamp (1983), suggesting that spike architecture traits have important375

impacts on grain mineral traits (MIN → ARC).376
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Conclusions377

This study demonstrates that data-driven latent variable analysis can reveal the underlying378

structure of phenotypes on a smaller dimensional scale. Thus, determining the genetic effects379

of correlated traits by factor analysis is an efficient approach for learning the minimum380

set of core factors contributing to high-dimensional observed phenotypes. Additionally, by381

reconstructing a more general structure of genomic latent factors from observed phenotypes382

using a Bayesian network, a clearer picture of trait interdependency can be obtained, which383

is useful for developing breeding and management strategies for crops such as wheat.384
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Table 1: Factor loading values from the Bayesian confirmatory factor analysis. PSD: pos-
terior standard deviation, PSRF: potential scale reduction factor, GYL: grain yield, ARC:
plant architecture, FL: flag and leaf, MIN: mineral-related traits, YRD: yellow rust, SRDK:
stem rust at Kastamonu, SRDH: stem rust at Haymana, LRD: leaf rust, and R2: coefficient
of determination.

Latent factor Phenotype Loading PSD PSRF R2

GYL:
grain yield 0.998 0.071 1.000 0.996

harvest index 0.571 0.090 1.000 0.327
biomass weight 0.823 0.081 1.000 0.677

FL:
flag leaf length 0.849 0.080 1.002 0.720
flag leaf width 0.771 0.082 1.002 0.594

flag leaf area 0.999 0.071 1.005 0.998

ARC:
fertile spikelet 0.867 0.098 1.006 0.752

spike length 0.543 0.097 1.001 0.295
spikelet number 0.776 0.099 1.005 0.602
seeds per spike 0.796 0.088 1.001 0.633

spike weight 0.740 0.110 1.003 0.548
grain weight per spike 0.854 0.108 1.005 0.730

spike harvest index 0.462 0.107 1.001 0.214

MIN:
arsenic 0.483 0.098 1.001 0.234

calcium 0.884 0.086 1.005 0.782
cadmium 0.767 0.091 1.003 0.588

colbalt 0.468 0.101 1.001 0.219
copper 0.940 0.083 1.005 0.883

iron 0.927 0.084 1.005 0.858
potassium 0.773 0.091 1.003 0.598

lithium 0.379 0.102 1.000 0.144
magnesium 0.984 0.078 1.007 0.968
manganese 0.928 0.084 1.006 0.861

molybdenum 0.757 0.091 1.002 0.573
nickel 0.531 0.098 1.001 0.282

phosphorous 0.974 0.080 1.007 0.949
sulphur 0.750 0.091 1.002 0.563

titanium 0.365 0.100 1.000 0.133
zinc 0.817 0.089 1.003 0.667

LRD:
leaf rust severity 0.996 0.071 1.016 0.992

leaf rust infection type 0.813 0.081 1.006 0.662
leaf rust coefficient of infection 0.998 0.071 1.015 0.997

SRDH:
stem rust severity at Haymana 0.955 0.074 1.002 0.912

stem rust infection type at Haymana 0.872 0.078 1.001 0.760
stem rust coefficient of infection at Haymana 0.998 0.071 1.003 0.997

SRDK:
stem rust severity at Kastamanu 0.968 0.073 1.012 0.937

stem rust infection type at Kastamonu 0.912 0.076 1.009 0.832
stem rust coefficient of infection at Kastamonu 0.991 0.071 1.012 0.982

YRD:
yellow rust coefficient of infection at Haymana 0.999 0.071 1.002 0.999

yellow rust infection type at Haymana 0.824 0.080 1.001 0.680
yellow rust severity at Haymana 0.973 0.073 1.002 0.946
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Table 2: Bayesian information criterion (BIC) scores for pairs of nodes reporting the change
in the score caused by an arc removal relative to the entire network score. Tabu: Tabu
Search, MMHC: Max-Min Hill-Climbing, GYL: grain yield traits, FL: flag and leaf traits,
MIN: mineral traits, ARC: architecture traits, LRD: leaf rust disease, SRDH: steam rust
disease at Haymana, and YRD: yellow rust disease.

Algorithm from to BIC

Tabu

FL MIN -2.074
FL LRD -9.648

MIN ARC -5.884
SRDH GYL -32.297
YRD GYL -16.399
YRD ARC -5.916

MMHC
FL LRD -5.989

SRDH GYL -32.297
YRD GYL -16.3997
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Figures540

Figure 1: A graphical representation of exploratory factor analysis (panel A) and confirma-
tory factor analysis (panel B) assuming that there are hypothetical six observed phenotypes
(Y1,Y2, · · · ,Y6) and two unobserved latent factors (F1 and F2). The double headed arrow
is the covariance between the two latent factors (ΦF1,F2). e1, e2, . . . , e6 represent the resid-
uals. Exploratory factor analysis estimates the phenotype-factor relationship from the data
by allowing cross-loading. By choosing the largest factor loading value for each phenotype,
phenotypes can be uniquely assigned to one of the two factors. In this example, Y1, Y2,
and Y3 loaded on the F1 (with loadings of λ11, λ21, and λ31) and Y4, Y5, and Y6 loaded
on F2 (with loadings of λ42, λ52, and λ62). Confirmatory factor analysis assumes that this
relationship is known a priori.
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Figure 2: Pairwise Pearson’s correlations between 45 phenotypes. GY: grain yield, HI: har-
vest index, BWT: biomass weight, GVWT: grain volume weight, FLL: flag leaf length, FLW:
flag leaf width, FLA: flag leaf area, SL: spike length, SN: spikelet number,SP: sterile spikelet,
FS: fertile spikelet, RB: rachis break, SPS: seeds per spike, SW: spike weight, GPS: grain
weight per spike, SHI: spike harvest index, AS: arsenic, CA: calcium, CD: cadmium, CO:
colbalt, CU: copper, FE: iron, K: potassium, LI: lithium, MG: magnesium, MN: manganese,
MO: molybdenum, NI: nickel, P: phosphorous, S: sulphur, TI: titanium, ZN: zinc, LRCI:
leaf rust coefficient of infection, LRIT: leaf rust infection type, LRS: leaf rust severity, SR-
CIH: steam rust coefficient of infection at Haymana, SRITH: stem rust infection type at
Haymana, SRSH: stem rust severity at Haymana, SRCIK: stem rust coefficient of infection
at Kastamonu, SRITK: stem rust infection type at Kastamonu, SRSK: stem rust severity
at Kastamanu, YRCIH: yellow rust coefficient of infection at Haymana, YRIH: yellow rust
infection type at Haymana, YRSH: yellow rust severity at Haymana, YRSK: yellow rust
severity at Kastamonu.
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Figure 3: Panel A: heat map of factor loading values. Panel B: heat map of factor loading
values after removing cross-loading by setting a cut-off value of |λ| > 0.30. The rows of
each panel correspond to the observed phenotypes and the columns correspond to the eight
factors (F1 to F8). Abbreviations of observed phenotypes are shown in Figure 2.
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Figure 4: Relationship between eight latent variables and observed phenotypes based on
exploratory factor analysis. GYL: grain yield related traits, ARC: architecture related trait,
FL: flag and leaf related traits, MIN: mineral-related traits, YRD: yellow rust related traits,
SRDK: stem rust related traits at Kastamonu, SRDH: stem rust related traits at Haymana,
LRD: leaf rust related traits. The eight latent factors were assumed to be correlated. Ab-
breviations of observed phenotypes are shown in Figure 2.
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Figure 5: Bayesian networks learned from Tabu search (Tabu) and Max-Min Hill-Climbing
(MMHC). Structure learning test was performed with 5,000 bootstrap samples. Labels of
the edges refer to the strength and direction (parenthesis) which measure the confidence
of the directed edge. The strength indicates the frequency of the edge is present and the
direction measures the frequency of the direction conditioned on the presence of edge. GYL:
grain yield related traits, ARC: architecture related trait, FL: flag and leaf related traits,
MIN: mineral-related traits, YRD: yellow rust related traits, SRDK: stem rust related traits
at Kastamonu, SRDH: stem rust related traits at Haymana, LRD: leaf rust related traits.
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