

1 Modeling multiple phenotypes in wheat 2 using data-driven genomic exploratory factor 3 analysis and Bayesian network learning

4 Mehdi Momen¹, Madhav Bhatta², Waseem Hussain³, Haipeng Yu¹, and
5 Gota Morota^{1*}

6 ¹Department of Animal and Poultry Sciences, Virginia Polytechnic Institute
7 and State University, Blacksburg, VA, USA 24061

8 ²Department of Agronomy, University of Wisconsin-Madison, Madison, WI
9 53706, USA

10 ³International Rice Research Institute, Los Banos, Philippines

11 * Corresponding author:

12
13 Gota Morota
14 Department of Animal and Poultry Sciences
15 Virginia Polytechnic Institute and State University
16 175 West Campus Drive
17 Blacksburg, Virginia 24061 USA.
18 E-mail: morota@vt.edu
19

20 Running title: Factor analysis for wheat

21

22 Keywords: Bayesian network, confirmatory factor analysis, exploratory factor analysis,
23 multi-trait, wheat

24

25 ORCID: 0000-0002-2562-2741 (MM), 0000-0002-4959-0481 (MB), 0000-0002-6861-0193 (WH),
26 0000-0002-8923-9733 (HY), and 0000-0002-3567-6911 (GM).

27

28 Abstract

29 Inferring trait networks from a large volume of genetically correlated diverse phenotypes
30 such as yield, architecture, and disease resistance can provide information on the manner in
31 which complex phenotypes are interrelated. However, studies on statistical methods tailored
32 to multi-dimensional phenotypes are limited, whereas numerous methods are available for
33 evaluating the massive number of genetic markers. Factor analysis operates at the level of la-
34 tent variables predicted to generate observed responses. The objectives of this study were to
35 illustrate the manner in which data-driven exploratory factor analysis can map observed phe-
36 notypes into a smaller number of latent variables and infer a genomic latent factor network
37 using 45 agro-morphological, disease, and grain mineral phenotypes measured in synthetic
38 hexaploid wheat lines (*Triticum Aestivum L.*). In total, eight latent factors including grain
39 yield, architecture, flag leaf-related traits, grain minerals, yellow rust, two types of stem rust,
40 and leaf rust were identified as common sources of the observed phenotypes. The genetic
41 component of the factor scores for each latent variable was fed into a Bayesian network to
42 obtain a trait structure reflecting the genetic interdependency among traits. Three directed
43 paths were consistently identified by two Bayesian network algorithms. Flag leaf-related
44 traits influenced leaf rust, and yellow rust and stem rust influenced grain yield. Additional
45 paths that were identified included flag leaf-related traits to minerals and minerals to archi-
46 tecture. This study shows that data-driven exploratory factor analysis can reveal smaller
47 dimensional common latent phenotypes that are likely to give rise to numerous observed
48 field phenotypes without relying on prior biological knowledge. The inferred genomic latent
49 factor structure from the Bayesian network provides insights for plant breeding to simulta-
50 neously improve multiple traits, as an intervention on one trait will affect the values of focal
51 phenotypes in an interrelated complex trait system.

52 **Background**

53 With the development of high-throughput phenotyping technologies, phenomics has been
54 generating plant measurements at a greater level of resolution and dimensionality (Araus
55 and Cairns, 2014; Watanabe et al., 2017). Integrating these diverse and heterogeneous data
56 to improve the biological understanding of plant systems and interpret the underlying inter-
57 relationships among phenotypes remains challenging (Morota et al., 2019). One approach
58 is to model each measurement as a different trait using a multi-trait model (Henderson and
59 Quaas, 1976). However, in a high-dimensional specification, where the number of traits
60 measured per genotype can reach hundreds or thousands, this approach leads to dramatic
61 increases in the computational burden or difficulties in interpreting the results. Recently, Yu
62 et al. (2019) showed that factor analysis can be used to reduce the dimension of response
63 variables by assuming latent factors that give rise to observed phenotypes in rice. They
64 used confirmatory factor analysis (CFA), which requires knowledge of the phenotype-factor
65 category before data analysis. However, reliable phenotype-factor patterns are not always
66 known in advance. Alternatively, exploratory factor analysis (EFA) can be used to perform
67 latent variable analysis by estimating patterns from data when a latent structure cannot be
68 determined a priori. EFA identifies underlying latent factors to represent observed measure-
69 ments, which is useful when the exact number and meaning of latent factors are unknown
70 (Jöreskog, 1967; Hoyle and Duvall, 2004).

71 The first objective of this study was to illustrate the utility of EFA for revealing the
72 underlying genomic latent structure of agronomic or agro-morphological phenotypes for syn-
73 thetic hexaploid wheat lines (*T. aestivum L*). Grain yield in wheat is influenced by sev-
74 eral agro-morphological traits. However, successfully incorporating yield-promoting agro-
75 morphological traits in breeding programs to improve genetic gains requires detailed knowl-
76 edge of the interrelationships between and among traits. The second objective was to deter-
77 mine a trait network structure among the genomic latent factors using a Bayesian network.
78 This is an essential task because breeding programs often aim to improve multiple corre-

79 lated traits concurrently. Knowledge of directed trait networks accounting for the genetic
80 interdependency among traits can improve the understanding of the manner in which the
81 selection of one phenotype may increase or decrease the observation of another phenotype,
82 providing additional insight beyond associations (Valente et al., 2015). The current study
83 demonstrates the advantages of the joint application of factor analysis and Bayesian network
84 as a data-driven approach to discover interrelationships between a set of many correlated
85 traits in wheat.

86 Materials and Methods

87 Plant materials

88 A diversity panel of $n = 123$ synthetic hexaploid wheat lines, derived from an interspecific
89 cross between wild accessions of goat grass (*Aegilops tauschii* L.) and diverse accessions
90 of cultivated durum wheat (*Triticum turgidum* L.), was used in this study. These plant
91 materials were shared by the International Winter Wheat Improvement Program in Turkey
92 and are available at <http://www.iwwip.org>. Pedigree information and other details on these
93 lines were reported previously (Bhatta et al., 2018a,c,d). Briefly, the lines originated from
94 two breeding programs. The first group of synthetics comprises 14 lines developed by Kyoto
95 University, Japan, from 1 Langdon durum parent crossed with 14 different accessions of *Ae.*
96 *tauschii*. The second group consists of 109 lines developed by the International Maize and
97 Wheat Improvement Center from crosses between 6 winter durum wheats and 11 different
98 *Ae. tauschii* accessions. The synthetic lines used in this study are unique; they were recently
99 developed (F8–F9 generations) and tested for multiple traits for use in a breeding program.

100 Phenotypic and genotypic data

101 We analyzed 16 agronomic-, 16 grain mineral-, and 13 wheat rust-related phenotypes in the
102 current study. Agronomic traits including grain yield (GY), harvest index (HI), biomass
103 weight (BMWT), grain volume weight (GVWT), flag leaf length (FLL), flag leaf width
104 (FLW), flag leaf area (FLA), rachis break (RB), sterile spikelet (SP), spike length (SL),
105 seeds per spike (SPS), spikelet number (SN), fertile spikelet (FS), spike weight (SW), grain
106 weight per spike (GPS), and spike harvest index (SHI) were measured using previously
107 described standard procedures (Bhatta et al., 2018a; Morgounov et al., 2018; Hussain et al.,
108 2017). Grain minerals including arsenic (As), calcium (Ca), cadmium (Cd), cobalt (Co),
109 copper (Cu), iron (Fe), potassium (K), lithium (Li), magnesium (Mg), manganese (Mn),
110 molybdenum (Mo), nickel (Ni), phosphorous (P), sulfur (S), titanium (Ti), and zinc (Zn)

111 were measured via inductively-coupled plasma mass spectrometry (ICP-MS, Agilent 7500cx,
112 Agilent Technologies, Santa Clara, CA, USA) at the University of Nebraska Redox Biology
113 Center, Proteomics and Metabolomics Core (Guttieri et al., 2015; Bhatta et al., 2018a).
114 The wheat rust (leaf stem and yellow rusts) disease severity, coefficient of infection, and
115 infection type were tested under field conditions as previously described (Peterson et al.,
116 1948; Morgounov et al., 2018; Bhatta et al., 2018d). Wheat rust traits collected from several
117 locations in Turkey and one location in Kenya included the leaf rust coefficient of infection
118 (LRCI), leaf rust infection type (LRIT), leaf rust severity (LRS), stem rust coefficient of
119 infection at Haymana (SRCIH), stem rust infection type at Haymana (SRITH), stem rust
120 severity at Haymana (SRSH), stem rust coefficient of infection at Kastamonu (SRCIK), stem
121 rust infection type at Kastamonu (SRITK), stem rust severity at Kastamonu (SRSK), yellow
122 rust coefficient of infection at Haymana (YRCIH), yellow rust infection type at Haymana
123 (YRIH), yellow rust severity at Haymana (YRSH), and yellow rust severity at Kastamonu
124 (YRSK). All lines were genotyped with the genotyping by sequencing technology (Bhatta
125 et al., 2018c). After setting a minor allele frequency threshold of 0.05, 35,648 markers
126 remained for analysis.

127 Experimental design and analysis

The experiments were conducted across several locations in Turkey and one location in Kenya
in 2017. The experimental design was an alpha lattice design with two replications (Barreto
et al., 1996). A linear mixed model coupled with restricted maximum likelihood implemented
in the PROC MIXED procedure in SAS 9.4 (SAS Institute, Inc., Cary, NC, USA) was used
to obtain the adjusted means for each trait from the following model (Bhatta et al., 2018b).

$$y_{ijkl} = \mu + r_i + b(r)_{ji} + c_k + g_{l(ji)} + \epsilon_{ijkl},$$

128 where y_{ijk} is the trait of interest; μ is the overall mean; r_i is the effect of i th replication;
129 $b(r)_{ji}$ is the effect of the j th block within the i th replication; c_k is the k th check; g_{lji} (new
130 variable, where check is coded as 0 and entry is coded as 1, and the genotype is considered
131 a new variable \times entry) is the effect of the l th genotype within the j th incomplete block of
132 the i th replication; and ϵ_{ijkl} is the residual.

133 Exploratory factor analysis

134 Exploratory factor analysis can reveal the latent structure among phenotypes when no hy-
135 potheses about the nature of the underlying factor can be assumed *a priori*. This section
136 closely follows the work of Yu et al. (2020). The aforementioned $t = 45$ phenotypes were
137 analyzed using EFA by fitting

$$\mathbf{Y} = \boldsymbol{\Lambda} \mathbf{F} + \mathbf{U}, \quad (1)$$

138 where \mathbf{Y} is the $t \times n$ phenotypic matrix; $\boldsymbol{\Lambda}$ is the $t \times q$ matrix of factor loading indicating
139 the relation between phenotypes and latent common factors; \mathbf{F} is the $q \times n$ matrix of latent
140 factor scores; and \mathbf{U} is the $t \times n$ vector of unique effects that is not explained by q underlying
141 common factors. The variance-covariance matrix of \mathbf{Y} is

$$\boldsymbol{\Sigma} = \boldsymbol{\Lambda} \boldsymbol{\Phi} \boldsymbol{\Lambda}' + \boldsymbol{\Psi}, \quad (2)$$

142 where $\boldsymbol{\Sigma}$ is the $t \times t$ variance-covariance matrix of phenotypes, $\boldsymbol{\Phi}$ is the variance of factor
143 scores, and $\boldsymbol{\Psi}$ is a $t \times t$ diagonal matrix of unique variance. The elements of $\boldsymbol{\Lambda}$, $\boldsymbol{\Phi}$, and $\boldsymbol{\Psi}$
144 are parameters of the model to be estimated from the data. We assumed $\boldsymbol{\Phi} = \mathbf{I}$ yielding
145 factors each with unit variance (Jöreskog, 1967; Anderson, 2003). With the assumption
146 of $\mathbf{F} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, parameters $\boldsymbol{\Lambda}$ and $\boldsymbol{\Psi}$ were estimated by maximizing the log-likelihood of
147 $\mathcal{L}(\boldsymbol{\Lambda}, \boldsymbol{\Psi} | \mathbf{Y})$ using the R package psych (Revelle, 2018) along with a varimax rotation (Kaiser,
148 1958). A threshold of $\lambda > |0.3|$ was first applied to screen out factor loading values. Then
149 each phenotype was assigned to only one of the factors based on its largest loading.

150 Parallel analysis was performed to estimate the optimum number of factors from data
151 in EFA (Horn, 1965; Hayton et al., 2004). This is conducted by generating simulated data
152 from the observed data. Next, the eigenvalues were extracted until the observed data had
153 a smaller eigenvalue than the simulated data. The number of eigenvalues was used as the
154 number of optimum factors.

155 The factor ability of the data set was also assessed by estimating the Kaiser-Meyer-
156 Olkin measure of sampling adequacy (Cerny and Kaiser, 1977). This criterion measures
157 the adequacy of the dataset for factor analysis by investigating the correlation and partial
158 correlation matrices of the phenotypes. The measure of sampling adequacy ranges between
159 0 to 1, and values closer to 1 are preferred. When the measure of sampling adequacy is less
160 than 0.5, the dataset is not recommended for factor analysis (Cerny and Kaiser, 1977).

161 **Confirmatory factor analysis**

162 Once the phenotype-factor pattern was established by EFA, Bayesian CFA was used to obtain
163 factor scores. Although EFA and CFA are similar, there are also clear differences. In general,
164 EFA is used to find a latent structure in data, whereas CFA requires the phenotype-latent
165 variable category to be known before analysis and is often used to estimate factor scores based
166 on the structure from EFA. The differences between EFA and CFA are shown in Figure 1. In a
167 Bayesian setting, all unknowns in equations (1) and (2) were assigned priors. The assignment
168 of priors was performed according to Yu et al. (2019, 2020) using the default priors in the
169 blavaan R package (Merkle and Rosseel, 2018). A Gaussian distribution with a mean of zero
170 and variance of 100 was assigned to the factor loading term. The variance-covariance matrix
171 of the latent factors followed an inverse Wishart distribution with a scale matrix of an 8×8
172 identity matrix and degree of freedom of 8. Each error variance followed an inverse Gamma
173 distribution with a shape parameter of 1 and scale parameter of 0.5. The factor scores
174 of latent variables (\mathbf{F}) were sampled from the conditional distribution of $p(\mathbf{F}|\boldsymbol{\Lambda}, \boldsymbol{\Phi}, \boldsymbol{\Psi}, \mathbf{Y})$
175 (Lee and Song, 2012) using a data augmentation technique (Tanner and Wong, 1987). The

176 posterior mean of \mathbf{F} was considered a new phenotype in subsequent analysis. Convergence
177 was diagnosed by the potential scale reduction factor (PSRF) (Gelman et al., 1992; Brown,
178 2014). This criterion utilizes at least two Markov chains, which are considered to be mixed
179 to a stationary status if the ratio of between the chain variance to within the chain variance
180 is close to 1. In total, two chains, each consisting of 5,000 Markov chain Monte Carlo samples
181 after 2,000 burn-in samples, were collected to derive the posterior means.

182 **Multi-trait genomic best linear unbiased prediction**

A Bayesian multi-trait genomic best linear unbiased prediction model was applied to parti-
tion inferred latent variables into genetic and environmental components.

$$\mathbf{F} = \mathbf{X}\mathbf{b} + \mathbf{Z}\mathbf{g} + \mathbf{e},$$

183 where \mathbf{F} is the vector of estimated factor scores, \mathbf{X} is the incidence matrix of covariates
184 including the intercept and the top three principal components accounting for population
185 structure, \mathbf{b} is the vector of covariate effects, \mathbf{Z} is the incidence matrix relating the factor
186 scores of each latent variable to additive genetic effect, \mathbf{g} is a vector of additive genetic
187 effect, and \mathbf{e} is the vector of residuals. Under the infinitesimal model of inheritance, \mathbf{g}
188 and \mathbf{e} were assumed to follow a multivariate Gaussian distribution of $\mathbf{g} \sim N(0, \Sigma_g \otimes \mathbf{G})$
189 and $\mathbf{e} \sim N(0, \Sigma_e \otimes \mathbf{I})$, respectively. Here, \mathbf{G} is a $n \times n$ genomic relationship matrix, \mathbf{I}
190 is a $n \times n$ identity matrix, Σ_g and Σ_e are variance-covariance matrices of additive genetic
191 effect and residuals, respectively, and \otimes is the Kronecker product. The \mathbf{G} matrix was
192 set as $\mathbf{W}\mathbf{W}'/2\sum_{j=1}^m p_j(1 - p_j)$, where \mathbf{W} is the centered marker incidence matrix taking
193 the values of $0 - 2p_j$ for zero copies of the reference allele, $1 - 2p_j$ for one copy of the
194 reference allele, $2 - 2p_j$ for two copies of the reference allele, and p_j is the allele frequency
195 at marker $j = 1, \dots, m$ (VanRaden, 2008). The prior distribution specifications followed
196 those of Momen et al. (2019). A flat prior was assigned for \mathbf{b} . The vectors of additive

197 genetic and residual effects were assigned independent multivariate Gaussian priors with
198 null mean and inverse Wishart distributions for the covariance matrices Σ_g and Σ_e . A Gibbs
199 sampler was used to obtain posterior distributions. A burn-in of 10,000 samples followed
200 by an additional 90,000 samples, thinned by a factor of two, resulted in 45,000 available
201 samples for posterior mean inferences. The MTM R package was used to fit the model
202 (<https://github.com/QuantGen/MTM>).

203 Bayesian network structure learning

204 The posterior means of genetic values of latent variables obtained from the Bayesian multi-
205 trait genomic best linear unbiased prediction model were used to examine the manner in
206 which the traits are interrelated using a Bayesian network. A Bayesian network is a graphical
207 representation of the conditional independence among random variables based on a directed
208 acyclic graph (Heckerman et al., 1995). For example, if an arrow arises from phenotype A
209 to phenotype B, phenotype A is considered to impact phenotype B directly conditional on
210 the remaining phenotypes, whereas the absence of an edge implies conditional independence
211 given the remaining phenotypes. In this study, the Tabu search (Tabu) and Max-Min Hill-
212 Climbing (MMHC) algorithms were applied to learn the underlying trait network structure
213 of latent variables at the genetic level using the bnlearn R package (Scutari and Denis, 2014).
214 These two algorithms were chosen because they yielded a reasonable result in a recent study
215 (Yu et al., 2019). The Bayesian information criterion (BIC) score was calculated for the
216 whole network and for each edge. A higher BIC score leads to greater model fit because
217 the BIC score is rescaled by -2 in the bnlearn package. Additionally, the strength and
218 uncertainty of the direction of each edge were estimated probabilistically by bootstrapping
219 (Scutari and Denis, 2014). Before fitting the Bayesian network structure learning algorithms,
220 genetic values of latent variables were transformed to be uncorrelated to meet the primary
221 assumption of a Bayesian network (Töpner et al., 2017; Yu et al., 2019).

222 Data availability

223 The data are available from the previously published studies. The agronomic, grain minerals,
224 and rust related phenotypic data are available from Bhatta et al. (2018a,d, 2019) and the
225 marker data are available from Bhatta et al. (2018d).

226 Results

227 Assessing factorability and factor selection

228 Figure 2 shows the Pearson's correlation coefficients among all observed variables represented
229 in a heat map. Moderate to high correlations were observed within the spike-, mineral-, and
230 rust-related traits. Because the objective of factor analysis is to model the interrelationships
231 between observed traits with a smaller subset of latent variables, the presence of some block
232 structures in the heat map suggests that our dataset is suited for factor analysis. This
233 observation was supported by the overall Kaiser-Meyer-Olkin measure of sampling adequacy,
234 which was estimated as 0.7, indicating that the factorability of the dataset was sufficient.
235 Parallel analysis was performed to determine the appropriate number of latent variables.
236 The first eight eigenvalues extracted from the original data were larger than the first eight
237 eigenvalues obtained from simulated random data. Thus, eight underlying latent variables
238 were examined in subsequent analysis.

239 Factor loading from EFA

240 Factor analysis was performed to understand the biological meaning of the eight latent
241 factors by investigating the co-variation among measured observations using EFA. Figure 3
242 summarizes the degree of the contributions of unobserved factors to the observed phenotypes.
243 Because EFA allows the cross-loading of phenotypes, an additional step is required so that
244 each phenotype loads only on one factor. A heat map of the estimated factor loading values
245 for each phenotype is shown in Figure 3A. The results showed that each variable had some
246 nonzero loadings on several factors. Figure 3B shows the phenotype-latent variable pattern
247 after selecting the largest loading for each phenotype and imposing a threshold of $> |0.30|$.
248 This resulted in each phenotype loading on only one factor except for GVWT, RB, SP, and
249 YRSK, which did not load on to any factors. The results showed that all mineral-related
250 traits including As, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Ni, P, S, Ti, and Zn were loaded

251 on the first factor (F1) ranging from 0.34 to 0.98. Seven agronomic traits including FS, SL,
252 SN, SPS, SW, GPS, and SHI were placed on the second factor (F2) and biologically all appear
253 to be related to the plant structure. In this category, the lowest loading was estimated for
254 the SHI (0.44) and the largest for GPS (0.91). The 12 disease-related phenotypes were
255 distributed among 4 factors (F3, F4, F5, and F6) with a loading of at least 0.8 in their
256 categories. FLL, FLW, and FLA traits with 0.84, 0.73, and 0.98 loadings, respectively, were
257 placed on the seventh factor (F7). Finally, GY, HI, and BM loaded on the eighth factor
258 (F8).

259 Figure 4 shows the overall inferred latent structure of the data. The biological meanings
260 attached to the eight factors according to the EFA analysis were GYL: grain yield; ARC:
261 plant architecture; FL: flag and leaf, MIN: minerals; YRD: yellow rust disease; SRDK:
262 stem rust disease at Kastamonu; SRDH: stem rust disease at Haymana; and LRD: leaf
263 rust disease. These estimated latent factors were subsequently evaluated to determine their
264 genetic interrelationships.

265 **Confirmatory factor analysis**

266 Table 1 shows the posterior means and their posterior standard deviations of the standardized
267 loadings, PSRF, and R^2 statistics from the Bayesian CFA. Convergence was diagnosed from
268 the PSRF of each observed phenotype. The estimated PSRF values for all phenotypes were
269 close to 1, suggesting that they converged to a stationary status. The result showed that the
270 eight latent factors strongly contributed to the observed phenotypes. For the latent factor
271 GYL, the lowest and highest loading values were obtained for HI and GY, respectively. For
272 the FL latent factor, all three phenotypes presented a loading of at least 0.77. In ARC, the
273 factor loading values varied from SHI to FS in ascending order. The MIN latent factor was
274 associated with the 16 observed phenotypes, which was the largest factor. The lowest and
275 highest loading values were obtained for Ti and Mg, respectively. The remaining four latent
276 factors including LRD, SRHD, SRKD, and YRD, which are relevant to diseases, showed

277 that the data fit well with >0.8 loading. The extent of R^2 values mostly agreed with the
278 estimated loadings with a correlation of 0.99.

279 Bayesian network among genomic latent factors

280 The Bayesian network was used to investigate the interrelationships among the genetic com-
281 ponents of latent factors. Because SRDH and SRDK capture the same set of phenotypes
282 with a high correlation (Figure 3) but were collected at different locations, only SRDH was
283 used for trait network structure analysis. As shown in Figure 5, Tabu yielded six directed
284 edges from FL to LRD and MIN, from YRD to LRD and GYL, from MIN to ARC, and from
285 SRDH to GYL. However, MMHC only produced three directed edges that were a subset of
286 the Tabu network. Thus, the consensus network has common directed edges from FL and
287 LRD, from YRD to GYL, and SRDH to GYL. These results suggest that there is stronger
288 evidence that FL, YRD, and SRDH directly influence LRD, GYL, and GYL, respectively. In
289 both networks, the bootstrapping results revealed that confidence was always higher regard-
290 ing the presence or absence of edges compared to the directions of edges. The goodness-of-fit
291 statistics measured by BIC is shown in Table 2. This table shows how well the paths mirror
292 the dependence structure of the data. According to the BIC values, Tabu yielded a larger
293 BIC score than the MMHC algorithms for the entire network (-423.61 vs. -437.39). For each
294 specific path, removing SRDH \rightarrow GYL resulted in the largest decrease in the BIC score,
295 suggesting that this path plays the most important role in the network structure. This was
296 followed by YRD \rightarrow GYL and FL \rightarrow LRD. The top three most influential paths in Tabu
297 formed the network structure of MMHC.

298 Discussion

299 Data-driven latent variable analysis

300 With the availability of large volumes of measured observations per individual because of re-
301 cent advances in phenomics, it is critical to develop a phenotype-centric statistical approach.
302 Factor analysis is an effective method for handling many response variables in a quantitative
303 genetic framework (Runcie and Mukherjee, 2013; Peñagaricano et al., 2015; Rocha et al.,
304 2018; Yu et al., 2019, 2020). The central idea behind factor analysis is to model the observed
305 phenotypes through unobserved latent factors by maximizing the common variance between
306 correlated phenotypes. In the current study, latent factors were directly inferred from the
307 field data of physiological and morphological phenotypes in wheat using EFA followed by
308 estimating their factor scores by CFA. This allowed the analysis of the lower dimensional
309 data because the number of latent factors was less than the number of observed phenotypes.
310 The combination of EFA and CFA enabled the evaluation of the genetics of latent factors
311 that were predicted to give rise to the observed phenotypes. Our results demonstrate that a
312 data-driven approach for estimating latent factors using EFA is useful because the observed
313 traits were uniquely assigned to one of the factors with biological interpretations. This con-
314 trasts with the results of a recent study by Yu et al. (2019), in which observed phenotypes
315 were classified into factors based on prior biological knowledge. However, in most scenar-
316 ios, the phenotype-latent variable pattern may be unknown. In contrast, EFA can be used
317 to perform latent variable analysis by estimating latent factors from data when the latent
318 structure cannot be determined *a priori*.

319 The interrelationships among latent variables were investigated at the genomic level us-
320 ing Tabu and MMHC. Based on the BIC values, Tabu resulted in a better fit than MMHC.
321 This agrees with the findings of recent studies using Bayesian networks (Töpner et al., 2017;
322 Scutari et al., 2018; Yu et al., 2019). The trait network structure inferred from MMHC was
323 a subset of that of MMHC. Additionally, the three directed paths identified from MMHC

324 were the top three most important paths in Tabu according to BIC. This suggests that
325 the networks structures were consistent between Tabu and MMHC. Thus, the trait network
326 derived from MMHC can be considered the consensus network that is more reliable. The
327 network structures from Tabu and MMHC may become aligned by increasing the sample
328 size. Inferring a trait network from observational data is an emerging topic in quantitative
329 genetics (Valente et al., 2010). Because breeders are often interested in the impact of ex-
330 ternal intervention or the selection of one trait over other traits, distinguishing undirected
331 edges from directed edges is important. The trait network learned in this study can also
332 be integrated into SEM-GWAS, which is a framework to perform multi-trait genome-wide
333 association analysis derived from structural equation models (Momen et al., 2018, 2019).
334 The combination of data-driven EFA and Bayesian network approaches is particularly use-
335 ful for analyzing image-based high-throughput phenotyping data, where relationships within
336 image-based phenotypes and between classical phenotypes and image-based phenotypes may
337 not always be obvious.

338 **Biological meaning of the inferred relationships**

339 Previous studies revealed the negative genetic associations of yellow and stem rust traits
340 with grain yield traits. Wheat rust diseases are foliar fungal diseases whose infection on
341 the flag leaf close to the grain filling period causes a decline in the photosynthetic ability
342 of the plant, drastically decreasing the grain filling process and reducing the biomass yield,
343 thousand kernel weight, and harvest index (He et al., 2019; Bhatta et al., 2018a; Herrera-
344 Foessel et al., 2006). Thus, the reduction of these important traits results in a reduction in
345 the final grain yield (SRDH → GYL and YRD → GYL). Wheat leaf rust may be affected
346 by flag leaf traits such as FLL, FLW, and FLA (FL → LRD). As the flag leaf area increases,
347 the surface also becomes greater, increasing the risk of disease infection on the wider and
348 longer leaves.

349 Flag leaf traits play important roles in the synthesis, translocation, and remobilization

350 of photo-assimilates and minerals to the grains (Sperotto et al., 2013). A recent study on
351 *Triticum* sps. showed that the flag leaf contains two- to three-fold higher concentrations
352 of Fe and Zn than the grain mineral concentrations (Hu et al., 2017). They also found
353 strong positive correlations between leaf and grain Fe and Zn concentrations. Another study
354 used more than 120 hexaploid wheat lines and reported a significant positive correlation of
355 flag leaf N concentrations at anthesis with grain Fe, Mn, and Cu (SHI et al., 2013). These
356 results suggest that flag leaf traits play an important role in determining the grain mineral
357 concentration, which agrees with our results indicating a direct link from FL to MN.

358 Foliar diseases such as yellow rust, caused by *Puccinia striiformis* f. sp. *tritici* (*Pst*), is an
359 important foliar fungal disease of wheat that causes major yield loss (Bhatta et al., 2019).
360 This disease produces rust pustules on leaves and reduces the process of photosynthesis
361 and translocation of photosynthate to grain yield traits, which in turn inhibit grain filling,
362 possibly resulting in a significant reduction in grain weight and ultimately reducing grain
363 yield (Ye et al., 2019; Murray and Murray, 2005). A recent study on winter wheat germplasm
364 showed that yellow rust infection seriously damaged the photosynthetic function of leaves at
365 an earlier stage of grain filling, leading to biomass loss (He et al., 2019). Additionally, the
366 presence of foliar diseases in wheat is associated with a reduction in the biomass weight and
367 harvest index by reducing the healthy leaf area and affecting healthy spike growth (Gooding
368 et al., 2000; Dimmock and Gooding, 2002), indicating that yellow rust traits affected grain
369 yield-related traits (YRD → GYL).

370 Several studies have reported negative associations between grain minerals and architecture-
371 related traits. A larger number of seeds per spike and kernel size in wheat is associated with
372 lower grain mineral accumulation in the grain, which is mainly attributed to the grain mineral
373 dilution effect (Bhatta et al., 2018a; Guttieri et al., 2015). Similarly, the nitrogen concentra-
374 tion in the grains depends on their position within the spike Calderini and Ortiz-Monasterio
375 (2003); Herzog and Stamp (1983), suggesting that spike architecture traits have important
376 impacts on grain mineral traits (MIN → ARC).

377 Conclusions

378 This study demonstrates that data-driven latent variable analysis can reveal the underlying
379 structure of phenotypes on a smaller dimensional scale. Thus, determining the genetic effects
380 of correlated traits by factor analysis is an efficient approach for learning the minimum
381 set of core factors contributing to high-dimensional observed phenotypes. Additionally, by
382 reconstructing a more general structure of genomic latent factors from observed phenotypes
383 using a Bayesian network, a clearer picture of trait interdependency can be obtained, which
384 is useful for developing breeding and management strategies for crops such as wheat.

385 Acknowledgements

386 This work was supported in part by Virginia Polytechnic Institute and State University
387 startup funds to GM.

388 Author contributions

389 MM, MB, WH, and GM conceived the study. MM and HY analyzed the data. MM drafted
390 the manuscript. WH, MB, HY, and GM revised the manuscript. GM supervised and directed
391 the study. All authors read and approved the manuscript.

392 Conflict of interests

393 The authors declare that they have no competing interests.

394 References

395 Anderson, T. (2003). An introduction to multivariate statistical analysis (wiley series in
396 probability and statistics). *July 11*.

397 Araus, J. L. and Cairns, J. E. (2014). Field high-throughput phenotyping: the new crop
398 breeding frontier. *Trends in Plant Science*, 19(1):52–61.

399 Barreto, H., Edmeades, G., Chapman, S., and Crossa, J. (1996). The alpha lattice design
400 in plant breeding and agronomy: generation and analysis. *Drought-and Low N-Tolerant*
401 *Maize*, page 544.

402 Bhatta, M., Baenziger, P., Waters, B., Poudel, R., Belamkar, V., Poland, J., and Morgounov,
403 A. (2018a). Genome-wide association study reveals novel genomic regions associated with
404 10 grain minerals in synthetic hexaploid wheat. *International Journal of Molecular Sci-
405 ences*, 19(10):3237.

406 Bhatta, M., Morgounov, A., Belamkar, V., and Baenziger, P. S. (2018b). Genome-wide
407 association study reveals novel genomic regions for grain yield and yield-related traits in
408 drought-stressed synthetic hexaploid wheat. *International journal of molecular sciences*,
409 19(10):3011.

410 Bhatta, M., Morgounov, A., Belamkar, V., Poland, J., and Baenziger, P. S. (2018c). Un-
411 locking the novel genetic diversity and population structure of synthetic hexaploid wheat.
412 *BMC Genomics*, 19(1):591.

413 Bhatta, M., Morgounov, A., Belamkar, V., Wegulo, S. N., Dababat, A. A., Erginbas-Orakci,
414 G., Bouhssini, M. E., Gautam, P., Poland, J., Akci, N., et al. (2019). Genome-wide associ-
415 ation study for multiple biotic stress resistance in synthetic hexaploid wheat. *International*
416 *Journal of Molecular Sciences*, 20(15):3667.

417 Bhatta, M., Morgounov, A., Belamkar, V., Yorgancilar, A., and Baenziger, P. S. (2018d).
418 Genome-wide association study reveals favorable alleles associated with common bunt
419 resistance in synthetic hexaploid wheat. *Euphytica*, 214(11):200.

420 Brown, T. A. (2014). *Confirmatory factor analysis for applied research*. Guilford Publica-
421 tions.

422 Calderini, D. F. and Ortiz-Monasterio, I. (2003). Grain position affects grain macronutrient
423 and micronutrient concentrations in wheat. *Crop Science*, 43(1):141–151.

424 Cerny, B. A. and Kaiser, H. F. (1977). A study of a measure of sampling adequacy for
425 factor-analytic correlation matrices. *Multivariate Behavioral Research*, 12(1):43–47.

426 Dimmock, J. and Gooding, M. (2002). The effects of fungicides on rate and duration of grain
427 filling in winter wheat in relation to maintenance of flag leaf green area. *The Journal of*
428 *Agricultural Science*, 138(1):1–16.

429 Gelman, A., Rubin, D. B., et al. (1992). Inference from iterative simulation using multiple
430 sequences. *Statistical Science*, 7(4):457–472.

431 Gooding, M., Dimmock, J., France, J., and Jones, S. (2000). Green leaf area decline of wheat
432 flag leaves: the influence of fungicides and relationships with mean grain weight and grain
433 yield. *Annals of applied Biology*, 136(1):77–84.

434 Guttieri, M. J., Baenziger, P. S., Frels, K., Carver, B., Arnall, B., and Waters, B. M. (2015).
435 Variation for grain mineral concentration in a diversity panel of current and historical
436 great plains hard winter wheat germplasm. *Crop Science*, 55(3):1035–1052.

437 Hayton, J. C., Allen, D. G., and Scarpello, V. (2004). Factor retention decisions in ex-
438 ploratory factor analysis: A tutorial on parallel analysis. *Organizational Research Methods*,
439 7(2):191–205.

440 He, C., Zhang, Y., Zhou, W., Guo, Q., Bai, B., Shen, S., and Huang, G. (2019). Study on
441 stripe rust (*puccinia striiformis*) effect on grain filling and seed morphology building of
442 special winter wheat germplasm huixianhong. *PLOS ONE*, 14(5):e0215066.

443 Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning bayesian networks: The
444 combination of knowledge and statistical data. *Machine Learning*, 20(3):197–243.

445 Henderson, C. and Quaas, R. (1976). Multiple trait evaluation using relatives' records.
446 *Journal of Animal Science*, 43(6):1188–1197.

447 Herrera-Foessel, S., Singh, R., Huerta-Espino, J., Crossa, J., Yuen, J., and Djurle, A. (2006).
448 Effect of leaf rust on grain yield and yield traits of durum wheats with race-specific and
449 slow-rusting resistance to leaf rust. *Plant Disease*, 90(8):1065–1072.

450 Herzog, H. and Stamp, P. (1983). Dry matter and nitrogen accumulation in grains at different
451 ear positions in gigas, semidwarf and normal spring wheats. *Euphytica*, 32(2):511–520.

452 Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. *Psy-
453 chometrika*, 30(2):179–185.

454 Hoyle, R. H. and Duvall, J. L. (2004). Determining the number of factors in exploratory and
455 confirmatory factor analysis. *Handbook of quantitative methodology for the social sciences*,
456 pages 301–315.

457 Hu, X., Liu, J., Zhang, L., Wu, B., Hu, J., Liu, D., and Zheng, Y. (2017). Zn and fe
458 concentration variations of grain and flag leaf and the relationship with nam-g1 gene in
459 *triticum timopheevii* (zhuk.) zhuk. ssp. *timopheevii*. *Cereal Research Communications*,
460 45(3):421–431.

461 Hussain, W., Baenziger, P. S., Belamkar, V., Guttieri, M. J., Venegas, J. P., Easterly, A.,
462 Sallam, A., and Poland, J. (2017). Genotyping-by-sequencing derived high-density linkage

463 map and its application to qtl mapping of flag leaf traits in bread wheat. *Scientific Reports*,
464 7(1):16394.

465 Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis. *Psy-
466 chometrika*, 32(4):443–482.

467 Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. *Psy-
468 chometrika*, 23(3):187–200.

469 Lee, S.-Y. and Song, X.-Y. (2012). *Basic and advanced Bayesian structural equation mod-
470 eling: With applications in the medical and behavioral sciences*. John Wiley & Sons,
471 Hoboken, New Jersey.

472 Merkle, E. C. and Rosseel, Y. (2018). blavaan: Bayesian structural equation models via
473 parameter expansion. *Journal of Statistical Software*, 85(4):1–30.

474 Momen, M., Ayatollahi Mehrgardi, A., Amiri Roudbar, M., Kranis, A., Mercuri Pinto, R.,
475 Valente, B. D., Morota, G., Rosa, G. J., and Gianola, D. (2018). Including phenotypic
476 causal networks in genome-wide association studies using mixed effects structural equation
477 models. *Frontiers in genetics*, 9:455.

478 Momen, M., Campbell, M. T., Walia, H., and Morota, G. (2019). Utilizing trait networks
479 and structural equation models as tools to interpret multi-trait genome-wide association
480 studies. *Plant methods*, 15(1):107.

481 Morgounov, A., Abugalieva, A., Akan, K., Akin, B., Baenziger, S., Bhatta, M., Dababat,
482 A. A., Demir, L., Dutbayev, Y., El Bouhssini, M., et al. (2018). High-yielding winter syn-
483 thetic hexaploid wheats resistant to multiple diseases and pests. *Plant Genetic Resources*,
484 16(3):273–278.

485 Morota, G., Jarquin, D., Campbell, M. T., and Iwata, H. (2019). Statistical methods for

486 the quantitative genetic analysis of high-throughput phenotyping data. *arXiv preprint*
487 *arXiv:1904.12341*.

488 Murray, D. G. and Murray, G. M. (2005). *Stripe rust: Understanding the disease in wheat*.
489 NSW Department of Primary Industries.

490 Peñagaricano, F., Valente, B., Steibel, J., Bates, R., Ernst, C., Khatib, H., and Rosa,
491 G. (2015). Searching for causal networks involving latent variables in complex traits:
492 Application to growth, carcass, and meat quality traits in pigs. *Journal of Animal Science*,
493 93(10):4617–4623.

494 Peterson, R. F., Campbell, A., and Hannah, A. (1948). A diagrammatic scale for estimating
495 rust intensity on leaves and stems of cereals. *Canadian Journal of Research*, 26(5):496–500.

496 Revelle, W. (2018). *psych: Procedures for Psychological, Psychometric, and Personality*
497 *Research*. Northwestern University, Evanston, Illinois. R package version 1.8.12.

498 Rocha, J. R. d. A. S. d. C., Machado, J. C., and Carneiro, P. C. S. (2018). Multitrait index
499 based on factor analysis and ideotype-design: proposal and application on elephant grass
500 breeding for bioenergy. *GCB Bioenergy*, 10(1):52–60.

501 Runcie, D. E. and Mukherjee, S. (2013). Dissecting high-dimensional phenotypes with
502 bayesian sparse factor analysis of genetic covariance matrices. *Genetics*, 194(3):753–767.

503 Scutari, M. and Denis, J.-B. (2014). *Bayesian networks: with examples in R*. Chapman and
504 Hall/CRC.

505 Scutari, M., Graafland, C. E., and Gutiérrez, J. M. (2018). Who learns better bayesian
506 network structures: Constraint-based, score-based or hybrid algorithms? *arXiv preprint*
507 *arXiv:1805.11908*.

508 SHI, R.-l., TONG, Y.-p., JING, R.-l., ZHANG, F.-s., and ZOU, C.-q. (2013). Characteriza-
509 tion of quantitative trait loci for grain minerals in hexaploid wheat (*triticum aestivum* l.).
510 *Journal of Integrative Agriculture*, 12(9):1512–1521.

511 Sperotto, R., Ricachenevsky, F., de A Waldow, V., Müller, A., Dressler, V., and Fett, J.
512 (2013). Rice grain fe, mn and zn accumulation: How important are flag leaves and seed
513 number? *Plant, Soil and Environment*, 59(6):262–266.

514 Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by data
515 augmentation. *Journal of the American Statistical Association*, 82(398):528–540.

516 Töpner, K., Rosa, G. J., Gianola, D., and Schön, C.-C. (2017). Bayesian networks illustrate
517 genomic and residual trait connections in maize (*zea mays* l.). *G3: Genes, Genomes,*
518 *Genetics*, 7(8):2779–2789.

519 Valente, B. D., Morota, G., Peñagaricano, F., Gianola, D., Weigel, K., and Rosa, G. J.
520 (2015). The causal meaning of genomic predictors and how it affects construction and
521 comparison of genome-enabled selection models. *Genetics*, 200(2):483–494.

522 Valente, B. D., Rosa, G. J., Gustavo, A., Gianola, D., and Silva, M. A. (2010). Searching for
523 recursive causal structures in multivariate quantitative genetics mixed models. *Genetics*.

524 VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. *Journal of*
525 *Dairy Science*, 91(11):4414–4423.

526 Watanabe, K., Guo, W., Arai, K., Takanashi, H., Kajiya-Kanegae, H., Kobayashi, M., Yano,
527 K., Tokunaga, T., Fujiwara, T., Tsutsumi, N., et al. (2017). High-throughput phenotyping
528 of sorghum plant height using an unmanned aerial vehicle and its application to genomic
529 prediction modeling. *Frontiers in plant science*, 8:421.

530 Ye, X., Li, J., Cheng, Y., Yao, F., Long, L., Wang, Y., Wu, Y., Li, J., Wang, J., Jiang, Q.,

531 et al. (2019). Genome-wide association study reveals new loci for yield-related traits in
532 sichuan wheat germplasm under stripe rust stress. *BMC Genomics*, 20(1):1–17.

533 Yu, H., Campbell, M. T., Zhang, Q., Walia, H., and Morota, G. (2019). Genomic Bayesian
534 confirmatory factor analysis and bayesian network to characterize a wide spectrum of rice
535 phenotypes. *G3: Genes, Genomes, Genetics*, 9(6):1975–1986.

536 Yu, H., Morota, G., Celestino, E. F., Dahlen, C. R., Wagner, S. A., Riley, D. G., and Hanna,
537 L. L. H. (2020). Deciphering cattle temperament measures derived from a four-platform
538 standing scale using genetic factor analytic modeling. *Frontiers in Genetics*, 11:599.

539 **Tables**

Table 1: Factor loading values from the Bayesian confirmatory factor analysis. PSD: posterior standard deviation, PSRF: potential scale reduction factor, GYL: grain yield, ARC: plant architecture, FL: flag and leaf, MIN: mineral-related traits, YRD: yellow rust, SRDK: stem rust at Kastamonu, SRDH: stem rust at Haymana, LRD: leaf rust, and R²: coefficient of determination.

Latent factor	Phenotype	Loading	PSD	PSRF	R ²
GYL:					
	grain yield	0.998	0.071	1.000	0.996
	harvest index	0.571	0.090	1.000	0.327
	biomass weight	0.823	0.081	1.000	0.677
FL:					
	flag leaf length	0.849	0.080	1.002	0.720
	flag leaf width	0.771	0.082	1.002	0.594
	flag leaf area	0.999	0.071	1.005	0.998
ARC:					
	fertile spikelet	0.867	0.098	1.006	0.752
	spike length	0.543	0.097	1.001	0.295
	spikelet number	0.776	0.099	1.005	0.602
	seeds per spike	0.796	0.088	1.001	0.633
	spike weight	0.740	0.110	1.003	0.548
	grain weight per spike	0.854	0.108	1.005	0.730
	spike harvest index	0.462	0.107	1.001	0.214
MIN:					
	arsenic	0.483	0.098	1.001	0.234
	calcium	0.884	0.086	1.005	0.782
	cadmium	0.767	0.091	1.003	0.588
	colbalt	0.468	0.101	1.001	0.219
	copper	0.940	0.083	1.005	0.883
	iron	0.927	0.084	1.005	0.858
	potassium	0.773	0.091	1.003	0.598
	lithium	0.379	0.102	1.000	0.144
	magnesium	0.984	0.078	1.007	0.968
	manganese	0.928	0.084	1.006	0.861
	molybdenum	0.757	0.091	1.002	0.573
	nickel	0.531	0.098	1.001	0.282
	phosphorous	0.974	0.080	1.007	0.949
	sulphur	0.750	0.091	1.002	0.563
	titanium	0.365	0.100	1.000	0.133
	zinc	0.817	0.089	1.003	0.667
LRD:					
	leaf rust severity	0.996	0.071	1.016	0.992
	leaf rust infection type	0.813	0.081	1.006	0.662
	leaf rust coefficient of infection	0.998	0.071	1.015	0.997
SRDH:					
	stem rust severity at Haymana	0.955	0.074	1.002	0.912
	stem rust infection type at Haymana	0.872	0.078	1.001	0.760
	stem rust coefficient of infection at Haymana	0.998	0.071	1.003	0.997
SRDK:					
	stem rust severity at Kastamanu	0.968	0.073	1.012	0.937
	stem rust infection type at Kastamanu	0.912	0.076	1.009	0.832
	stem rust coefficient of infection at Kastamanu	0.991	0.071	1.012	0.982
YRD:					
	yellow rust coefficient of infection at Haymana	0.999	0.071	1.002	0.999
	yellow rust infection type at Haymana	0.824	0.080	1.001	0.680
	yellow rust severity at Haymana	0.973	0.073	1.002	0.946

Table 2: Bayesian information criterion (BIC) scores for pairs of nodes reporting the change in the score caused by an arc removal relative to the entire network score. Tabu: Tabu Search, MMHC: Max-Min Hill-Climbing, GYL: grain yield traits, FL: flag and leaf traits, MIN: mineral traits, ARC: architecture traits, LRD: leaf rust disease, SRDH: steam rust disease at Haymana, and YRD: yellow rust disease.

Algorithm	from	to	BIC
Tabu	FL	MIN	-2.074
	FL	LRD	-9.648
	MIN	ARC	-5.884
	SRDH	GYL	-32.297
	YRD	GYL	-16.399
	YRD	ARC	-5.916
MMHC	FL	LRD	-5.989
	SRDH	GYL	-32.297
	YRD	GYL	-16.3997

540 **Figures**

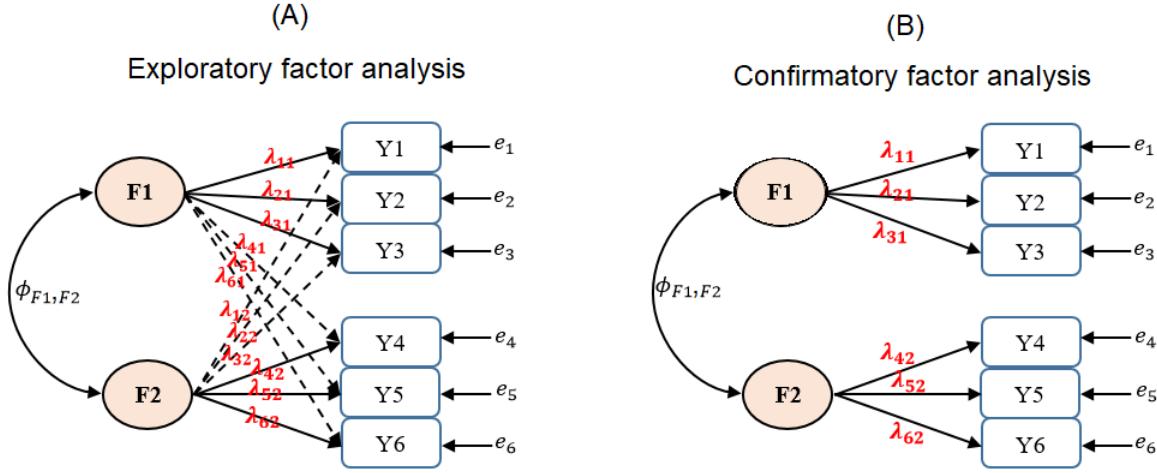


Figure 1: A graphical representation of exploratory factor analysis (panel A) and confirmatory factor analysis (panel B) assuming that there are hypothetical six observed phenotypes (Y_1, Y_2, \dots, Y_6) and two unobserved latent factors (F_1 and F_2). The double headed arrow is the covariance between the two latent factors (Φ_{F_1, F_2}). e_1, e_2, \dots, e_6 represent the residuals. Exploratory factor analysis estimates the phenotype-factor relationship from the data by allowing cross-loading. By choosing the largest factor loading value for each phenotype, phenotypes can be uniquely assigned to one of the two factors. In this example, Y_1, Y_2 , and Y_3 loaded on the F_1 (with loadings of $\lambda_{11}, \lambda_{21}$, and λ_{31}) and Y_4, Y_5 , and Y_6 loaded on F_2 (with loadings of $\lambda_{42}, \lambda_{52}$, and λ_{62}). Confirmatory factor analysis assumes that this relationship is known *a priori*.

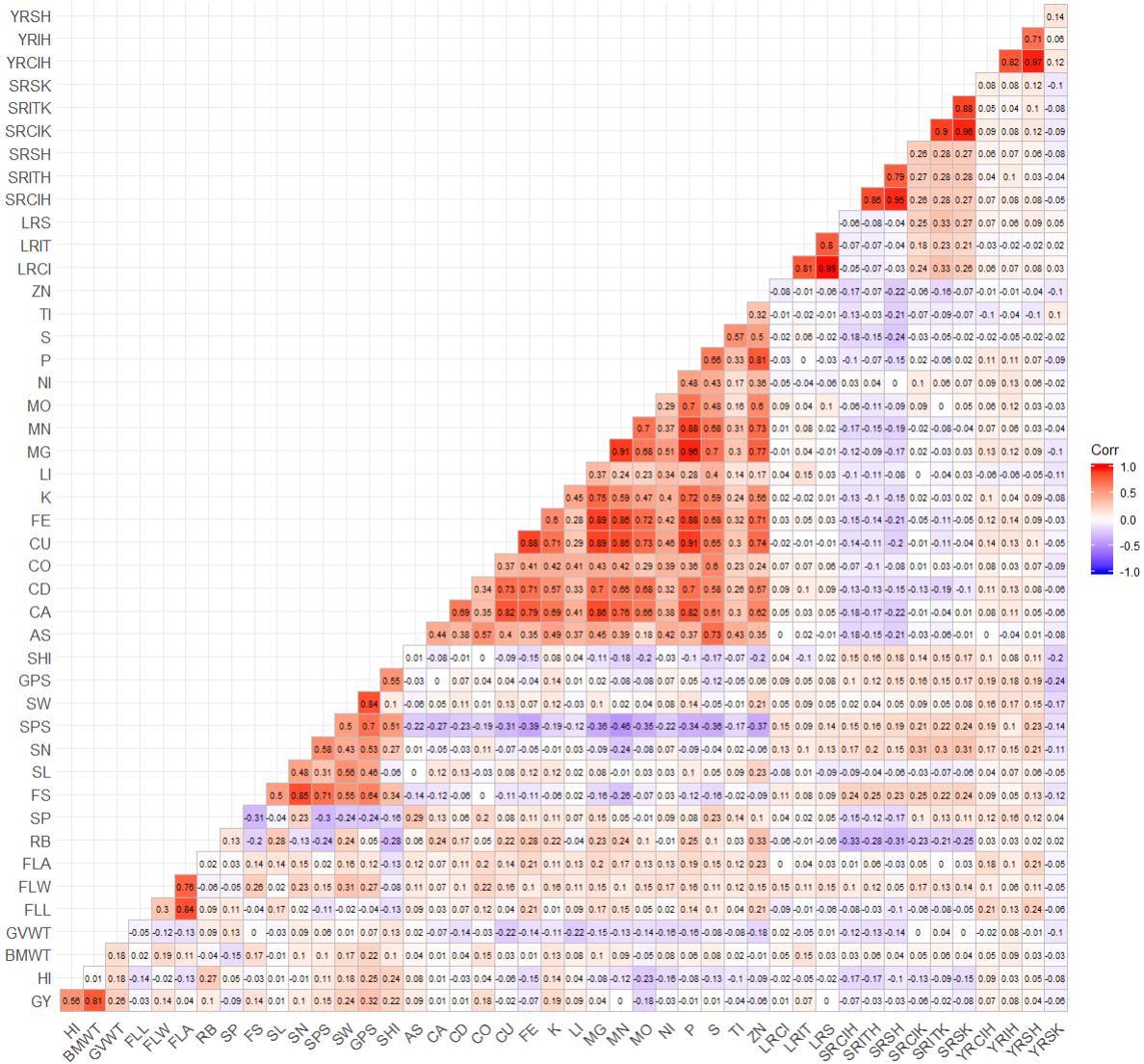


Figure 2: Pairwise Pearson's correlations between 45 phenotypes. GY: grain yield, HI: harvest index, BWT: biomass weight, GVWT: grain volume weight, FLL: flag leaf length, FLW: flag leaf width, FLA: flag leaf area, SL: spike length, SN: spikelet number, SP: sterile spikelet, FS: fertile spikelet, RB: rachis break, SPS: seeds per spike, SW: spike weight, GPS: grain weight per spike, SHI: spike harvest index, AS: arsenic, CA: calcium, CD: cadmium, CO: cobalt, CU: copper, FE: iron, K: potassium, LI: lithium, MG: magnesium, MN: manganese, MO: molybdenum, NI: nickel, P: phosphorous, S: sulphur, TI: titanium, ZN: zinc, LRCI: leaf rust coefficient of infection, LRIT: leaf rust infection type, LRS: leaf rust severity, SRCIH: steam rust coefficient of infection at Haymana, SRITH: stem rust infection type at Haymana, SRSH: stem rust severity at Haymana, SRCIK: stem rust coefficient of infection at Kastamonu, SRITK: stem rust infection type at Kastamonu, SRSK: stem rust severity at Kastamanu, YRCIH: yellow rust coefficient of infection at Haymana, YRIH: yellow rust infection type at Haymana, YRSH: yellow rust severity at Haymana, YRSK: yellow rust severity at Kastamonu.

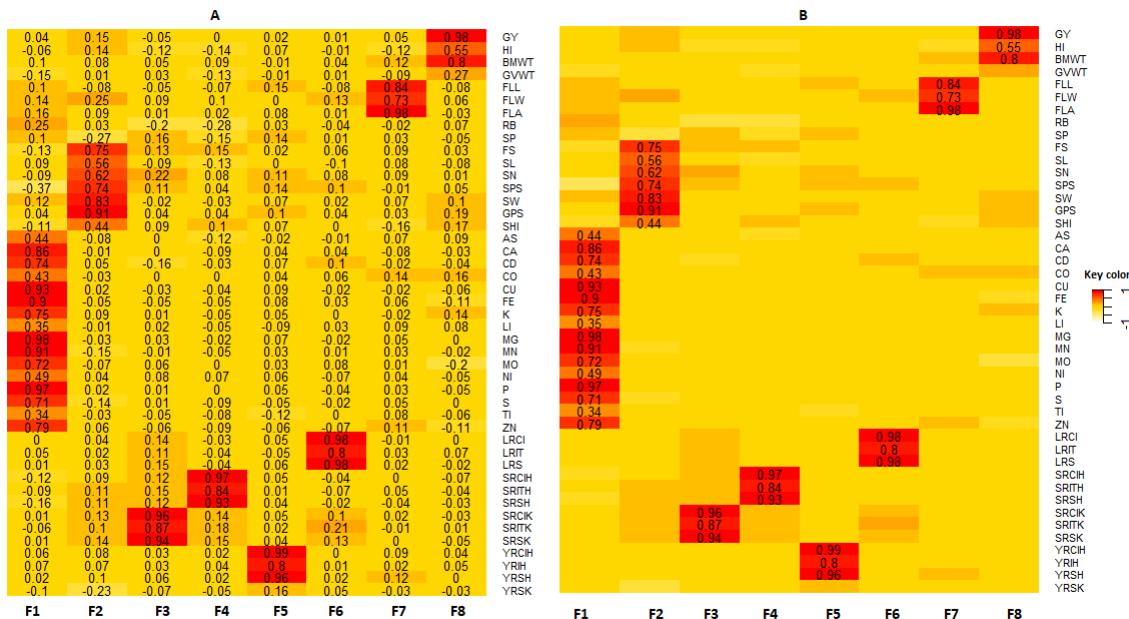


Figure 3: Panel A: heat map of factor loading values. Panel B: heat map of factor loading values after removing cross-loading by setting a cut-off value of $|\lambda| > 0.30$. The rows of each panel correspond to the observed phenotypes and the columns correspond to the eight factors (F1 to F8). Abbreviations of observed phenotypes are shown in Figure 2.

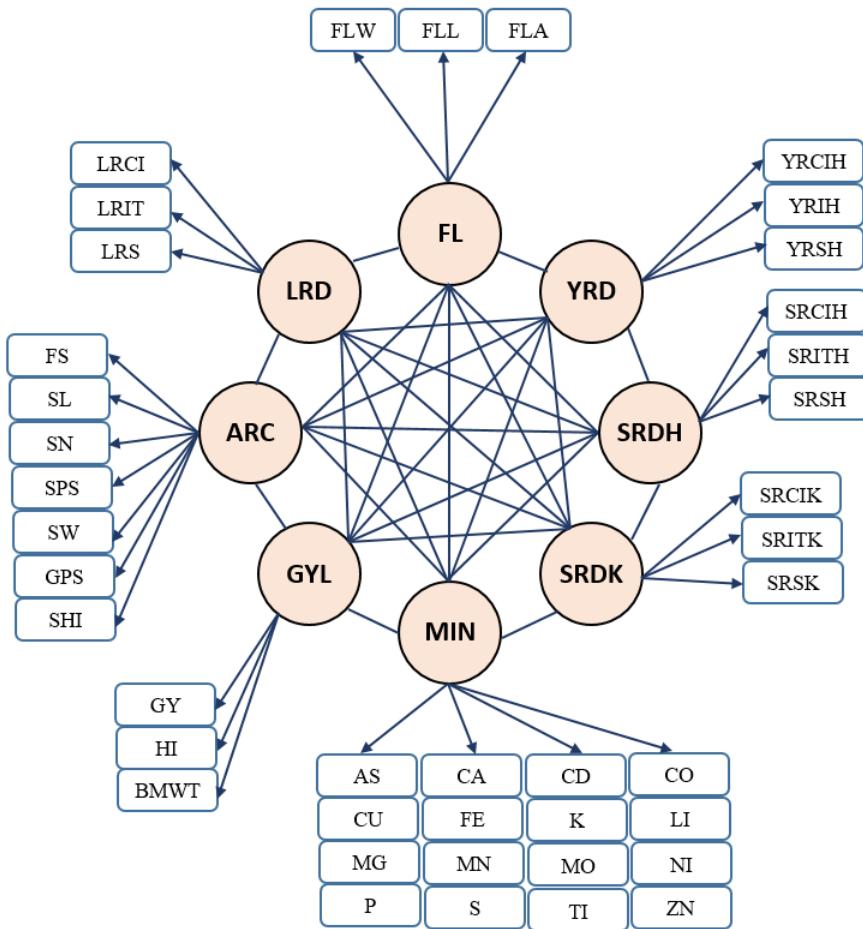


Figure 4: Relationship between eight latent variables and observed phenotypes based on exploratory factor analysis. GYL: grain yield related traits, ARC: architecture related trait, FL: flag and leaf related traits, MIN: mineral-related traits, YRD: yellow rust related traits, SRDK: stem rust related traits at Kastamonu, SRDH: stem rust related traits at Haymana, LRD: leaf rust related traits. The eight latent factors were assumed to be correlated. Abbreviations of observed phenotypes are shown in Figure 2.

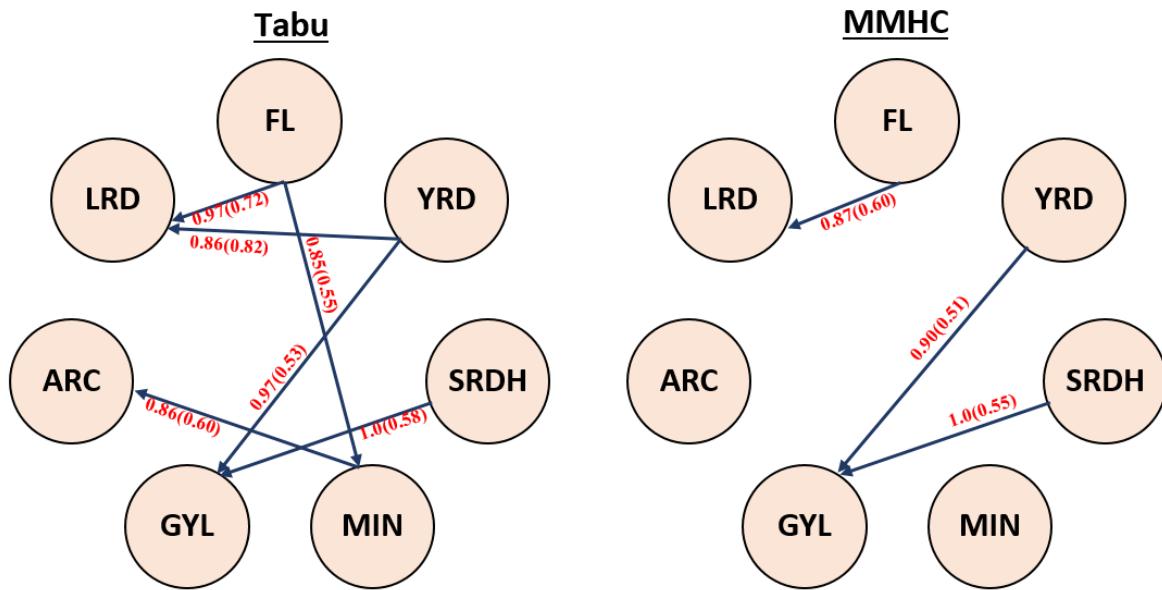


Figure 5: Bayesian networks learned from Tabu search (Tabu) and Max-Min Hill-Climbing (MMHC). Structure learning test was performed with 5,000 bootstrap samples. Labels of the edges refer to the strength and direction (parenthesis) which measure the confidence of the directed edge. The strength indicates the frequency of the edge is present and the direction measures the frequency of the direction conditioned on the presence of edge. GYL: grain yield related traits, ARC: architecture related trait, FL: flag and leaf related traits, MIN: mineral-related traits, YRD: yellow rust related traits, SRDH: stem rust related traits at Kastamonu, SRD: stem rust related traits at Haymana, LRD: leaf rust related traits.