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ABSTRACT

Several knowledgebases, such as CIViC and OncoKB, have been manually curated to support
clinical interpretations of a limited number of “hotspot” somatic mutations in cancer, yet
discrepancies or even conflicting interpretations have been observed among these
knowledgebases. Additionally, while these knowledgebases have been extremely useful, they
typically cannot interpret novel mutations, which may also have functional and clinical impacts
in cancer. To address these challenges, we developed an automated interpretation tool called
CancerVar (Cancer Variants interpretation) to score more than 12.9 million somatic mutations
and classify them into four tiers: strong clinical significance, potential clinical significance,
uncertain clinical significance, and benign/likely benign, based on the AMP/ASCO/CAP 2017
guideline. Considering that the AMP/ASCO/CAP rule-based scoring system may have
inherent limitations, such as lack of a clear guidance on weighing different pieces of functional
evidence or unclear definition for certain clinical evidence, it may cause misinterpretation for
certain variants that have functional impacts but no proven clinical significance. To address
this issue, we further introduced a deep learning-based scoring system to predict oncogenicity
of mutations by semi-supervised generative adversarial network (SGAN) method using both
functional and clinical evidence. We trained and validated the SGAN model on 5,234 somatic
mutations from an in-house database of clinical reports on cancer patients, and achieved a
good performance when testing on 6,226 variants that were curated by us through literature
search. We also compared the prediction with several independent datasets and showed great
utility in classifying variants with previously unknown interpretations. CancerVar is also
incorporated into a web server that can generate automated texts with summarized descriptive
interpretations, such as diagnostic, prognostic, targeted drug responses and clinical trial
information for many hotspot mutations. In summary, CancerVar can facilitate clinical
interpretation and hypothesis generation for somatic mutations, and greatly reduce manual

workload for retrieving relevant evidence and implementing existing guidelines.
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INTRODUCTION

A large number of somatic variants have been identified by next-generation sequencing (NGS)
during the practice of clinical oncology to facilitate precision medicine (1,2). In order to better
understand the clinical impacts of somatic variants in cancer, several knowledgebases have
been curated, including OncoKB(1), My Cancer Genome(3), CIViC (4), Precision Medicine
Knowledge Base(PMKB) (5), the JAX-Clinical Knowledgebase (CKB) (6), and Cancer
Genome Interpreter (CGI) (7). Although clinically relevant, the interpretation of somatic
variants is still not a standardized practice, and different clinical groups often generate different
or even conflicting results. To standardize clinical interpretation of somatic variants in cancer
and support clinical decision making, the Association for Molecular Pathology (AMP),
American Society of Clinical Oncology (ASCO), College of American Pathologists (CAP),
jointly proposed standards and guidelines for interpretation and reporting of somatic variants,
which classify somatic variants into four Tiers: strong clinical significance (Tier ), potential
clinical significance (Tier Il), uncertain significance (Tier Ill), and benign (Tier IV) (8). The
AMP/ASCO/CAP 2017 guideline included 12 pieces of evidence, which are diagnostic,
prognostic and therapeutic clinical evidences, mutation types, variant allele fraction (mosaic
variant frequency (likely somatic), non-mosaic variant frequency (potential germline)),
population databases, germline databases, somatic databases, predictive results of different

computational algorithms, pathway involvement, and publications (8,9).

However, since the AMP/ASCO/CAP classification scheme heavily relies on published clinical
evidence for a variant, ambiguous assignments were still frequently observed among human
curators, using the same evidence for a given variant. For example, Sirohi et al., compared
human classifications for fifty-one variants by randomly selected 20 molecular pathologists
from 10 institutions (10). The original overall observed agreement was only 58%. When
providing the same evidential data of variants to the pathologists, the agreement rate of re-
classification increased to 70%. The reasons for discordance are: (i) gathering
information/evidence is quite complicated and may not be reproducible by the same interpreter
at different time points; (ii) different researchers may prefer to use different algorithms, cutoffs
and parameters, making the interpretation less reproducible; (iii) newly published evidence for
certain variants might not been incorporated into the evaluation system instantly and

systematically, which is especially relevant to the variants with unknown significance (VUS).

To standardize the interpretation of somatic variants across multiple knowledgebases, a more

recently published knowledgebase, MetaKB from The Variant Interpretation for Cancer
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Consortium (VICC), aggregated evidences based on AMP/ASCO/CAP 2017 guideline (11).
However, this meta knowledgebase also has the following limitations: 1) it only focused on
consensus interpretations on a limited number of known ‘hotspot’ mutations, so that a large
number of variants were currently classified as unknown clinical significance but may still play
oncogenic roles through “loss of function” or “activating function” in cancer; 2) it only provided
summarized classification for each variant, without demonstrating itemized evidence in details
for each individual variant when mapping to the 12 criteria of AMP/ASCO/CAP 2017
guidelines; therefore, users cannot conduct customized evaluations based on their own
protocols and experiences; and 3) it utilized a simple score system to rank driver mutations
without considering heterogeneity of functional consequence (deleteriousness) of the variants,
especially for those newly identified variants reported in publication.

In clinical practice, when a somatic mutation is considered to have strong confidence in
causing functional impact on protein changes, clinicians likely interpret it as clinically
significance or likely clinical significance (12,13). Although a number of remarkable software
tools such as SIFT(14), Polyphen2 (15) and FATHMM(16) were developed to predict
functional impacts, disagreements on certain mutations were consistently observed across
these tools. Although later some meta-analysis tools such as DANN (17) and DriverPower
(18) were developed to prioritize functionally important variants using more comprehensive
functional scoring features as the input, they face the limitation in jointly modeling clinical
impact features based on the AMP/ASCO/CAP guidelines. Because the guidelines tend to be
conservative (“negative diagnosis” is preferred over “wrong diagnosis”), resulting in more than
expected variants were misinterpreted as VUS (19-27). In addition, the AMP/ASCO/CAP
guidelines only designated 7 functional impact prediction tools such as MutationAssessor (28)
as the official recommended tools, and only the variant from majority voting (more than 4 from
7 tools) can be considered clinical significance, it over-simplified the heterogeneous functional
consequence of variant in cancer development. While it may be useful in prediction of overall
impact of driver genes, it is not optimal to prioritize novel variants found in the genes. To
address these challenges and improve automated clinical interpretations for cancer variants,
there is a strong need in the development of reliable and accurate computational methods, by

utilizing both clinical evidence and functional impact score features.

We have previously developed a standalone software VIC written in Java, which was among
the first tools to interpret clinical impacts of somatic variants using a rule-based scoring system
based on 12 criteria of the AMP/ASCO/CAP 2017 guideline (29). In the current study, we
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developed an improved somatic variant interpretation tool called CancerVar implemented in
Python (https://github.com/WGLab/CancerVar), with an accompanying web server
(https://cancervar.wglab.org/). Compared to VIC, CancerVar is an advanced tool providing
more options to users: (1) Python implementation provides more flexibility to incorporate
CancerVar into custom command line workflows, (2) a user-friendly web server with pre-
computed clinical evidence for 13 million variants coming from 1,911 cancer census genes
through literature mining and database aggregations, (3) flexible AMP/ASCO/CAP rule-based
score system and deep learning-based score system using semi-supervised generative
adversarial network (SGAN) method to allow improved interpretations, (4) RESTful API to
allow program developers to freely access complied knowledge. CancerVar allows users to
guery clinical interpretations for variants using chromosome position, cDNA change or protein
change, and interactively fine-tune weights of scoring features based on their prior knowledge
or additional user-specified criteria. Importantly, the CancerVar web server can generate
automated texts with summarized descriptive interpretations, such as diagnostic, prognostic,
targeted drug responses and clinical trial information for many hotspot mutations, which will
significantly reduce the workload of human reviewers and advance the precision medicine in

clinical oncology.

MATERIAL AND METHODS
Overview of clinical evidence mapping to the AMP/ASCO/CAP 2017 guidelines

According to the AMP/ASCO/CAP 2017 guidelines, there are a total of 12 types of clinical-
based evidence to predict the clinical significance for somatic variants, including therapies,
mutation types, variant allele fraction (mosaic variant frequency (likely somatic), non-mosaic
variant frequency (potential germline)), population databases, germline databases, somatic
databases, predictive results of different computational algorithms, pathway involvement, and
publications (8,9). As shown in Figure 1, CancerVar contains all the above 12 evidence,
among which 10 of them are automatically generated and the other two, including variant allele

fraction and potential germline, require user input for manual adjustment.

Cancer variants collection and pre-processing

The cancer census gene list or potential driver gene list were very essential to all the somatic
variants annotators. We curated a list of 1,911 cancer census or driver genes with 13 million
exonic variants from 7 existing cancer knowledgebase, including COSMIC, CIViC, OncoKB,

etc, and 2 datasets collected from literature about driver genes predictions (Supplementary
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Table 1). For each exon position in these 1,911 genes, we generated all three possible
nucleotide changes. CancerVar fully scanned all the potential variants of significance, and it
overcomes the limitations of other knowledgebase annotation datasets which only compiled
variants reported or documented previously. We pre-compiled clinical evidence based on
2017 guideline for all the possible variant changes, which makes the variant searching in
CancerVar very fast. In CancerVar, we documented all types of clinical evidence such as in-
silico prediction, drug information, and publications in detail to help users making their own
clinical decisions according to their prior knowledge.

Evidence-based scoring method to prioritize clinical significance of somatic variants

CancerVar evaluates each set of evidence and scores each piece of clinical-based prediction
(CBP). The variant evidence will get 2 points for strong clinical significance evidence or
oncogenic,1 point for supporting clinical significance or oncogenic, 0 for no support, -1 for
benign or neutral. The CancerVar score will be the sum of all the evidence. The complete
score system for each CBP can be found in Supplementary Table 2. Let the CBP[i] be the
i evidence score, weight [i] is the score for i"" evidence. The CancerVar score can be
calculated in Equation 1. The weight is 1 by default, but users can adjust it based on its
importance from prior knowledge. Based on the score range in Equation 2, we classify each
variant into one of the four Tiers: strong clinical significance, potential clinical significance,

unknown clinical significance (VUS), and benign/likely benign (neutral).

CancerVar score (CS) = ¥}2, Weight[i] * CBP[i] (1)
Strong clinical significance cS =211

Interpretation = Potential clinical sinigicance 8<(CS<10 @)
P - vus 3<(S<8
(Likely)Benign CS <2

Semi-supervised generative adversarial network (SGAN) to predict driver mutations

We developed semi-supervised generative adversarial network (SGAN) method to predict
driver mutations using 12 clinical evidence prediction scores and 19 pre-computed scores
predicted by other computational tools. The 19 predictive tools include: (1) nine function-
prediction method: FATHMM (30), FitCons (31), MutationAssessor (32,33), MutationTaster
(34), PolyPhen2-HDIV, PolyPhen2- HVAR (35), PROVEAN (36), SIFT (14), and VEST3 (37);
(2) five ensemble methods: CADD (raw score and Phred score) (38) , DANN (17), FATHMM-

MKL (39) , MetaLR (40) , and MetaSVM (40); and (3) five conservation methods: GERP++
6


https://doi.org/10.1101/2020.10.06.323162
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.06.323162; this version posted March 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

(41) , PhastCons (42) (on vertebrate and mammalian separately), PhyloP (43) (on vertebrate
and mammalian separately), LRT (44) , and SiPhy (45). Since the score range are very diverse
among the predictive tools, we used their categorical outputs as the prediction features. For
some variants missed certain predictive values, we excluded the variants with more than 2
missing features. After filtering, a total of 12.9 million variants were used for downstream
analysis. Supplement Table 3 shows the distribution of missing rate before and after filtering

and the maximum missing ratio is less than 10%.

Then, we applied SGAN artificial neural network to predict the probability of clinical
significance after imputation. As shown in Figure 2, the SGANs architecture was originally
developed in the context of unsupervised learning, which consists of 2 parts: generator and
discriminator. The Generator (G) is to generate synthetic samples (fake) by random noise from
the normal distribution; and the Discriminator (D) is to differentiate realistic samples and
synthetic data. The Generator contains 3 linear layers with batch normalization, LeakyRelLu
as activation layer, and 60% dropout rate in each layer. The final layer is a linear layer with
batch normalization and Tanh as activation layer. As for the discriminator (D), we implemented
3 CNN layers with Tanh as activation layers. The semi-supervised GAN is particularly useful
in prediction of a huge amount of unlabelled samples using a small number of labelled samples.
During training process, the SGAN learn the underlying distribution (clusters) of data samples
by discriminating the synthetic samples and unlabelled realistic samples in each epoch, and
meanwhile the network labels categories for clusters by classifying the labelled realistic
samples. In this process, the discriminator/ classifier will be trained to discriminate the

fake/real samples and to classify the labelled samples.

In our semi-supervised GAN model, the input data consists of labelled samples, unlabelled
samples and random noises from normal distribution. Firstly, the noises are converted to
synthetic samples by the generator. Secondly, the discriminator/classifier classifies the
sample into 3 classes: 1. neutral, 2. non-neutral (driver mutations), and 3. fake synthetic data,
in which the unlabelled real samples can be identified as 1 or 2 and the synthetic samples is
3. Therefore, our models take in X as input and output a vector (l4,1l,,13) which can be

converted to probability by Softmax function. As for supervised learning on labeled samples,

the probability is: Poger(y = Li|X,y # 3) = ;(:;;l(?) and we used P, 4., (v = 3|X) to infer the

probability that X is fake. Meanwhile, the probability that X is real but unlabelled is 1 —
Proae1(y = 3|X). Therefore, the loss function L of our discriminator/classifier can be written

as two parts:
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L= Lsuperm'..sed + L-unm.tper-vised
Lsupe*r'uiscri - _EX,ympdum(X,y) loy[p*rrmdul (y =1 |Xr y< 3)]
Luns-upemised - _{EXdiM (X) 109[1 — Pmodel (y = 3|X” + EX~;JG lo‘g[pmadd (y - 3‘X)]}

The pgqtqis the underlying distribution of real samples and p is the distribution of the output
from generator. As for the loss of Generator, we used feature matching (46) as our loss
function: || Exp,,,,D(x) — E;p . D(G(2)) Il .

SGAN training and testing process

We implemented SGAN by PyTorch. For unlabelled data, we randomly selected 60,000
variants from 12.9 million samples with non-missing features. The evidence-based scores
were converted into dummy features and added Gaussian noise (mean=0, std=0.02) to make
the features continuous. The labelled data are from cancer patients of CHOP cancer cohort;
we have 4,000 variants (1,000 are positive) as the training set and 1,234 variants (669 are
positive) as the validation set. We tested the SGAN model on 6,226 variants (1,335 are
positive) which were manually compiled from literature review. The missing feature values
were filled with the mean value of the non-missing from its 40 nearest neighbouring variants

in the whole training data by KNNImputater, a python package from scikit-learn (47).

As for the synthetic samples, the Generator generates random noise from standard normal
distribution in each batch step, and outputs the synthetic samples. In each minibatch, the
model calculates 2,000 labelled samples, 10,000 unlabelled samples and 10,000 synthetic
samples from generator. The discriminator/classifier is trained by calculating the loss from
supervised learning and unsupervised training separately. And then the generator is trained

by minimizing the feature matching in each batch.

Pan-Cancer Benchmarks from public dataset

Most of the somatic variant annotators or datasets have not been systematically assessed on
their performance, especially for literature or knowledge-based tools. For systematic
performance benchmarking of CancerVar, complementary and comprehensive benchmark
datasets are needed and established for clinical significance prediction somatic variant. To
robustly assess the performance of CancerVar, we employed several different benchmark
datasets:(i) Multi-Institutional evaluation study (10) with fifty-one variants from Sirohi et;
(iLiterature annotation database from OncoKB (1) and CIViC(4); (iii) TP53 mutations on their
target transcription activity from IARC database (48); (iv)Functional annotation based on in

vitro cell viability assays from study of Ng. et al (49).
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Benchmarks from CHOP internal dataset

Importantly, other than datasets from public resource, we also have our internal dataset with
7967 somatic mutations from cancer patient’s cohort at the Children’s Hospital of Philadelphia
(CHOP cancer cohort). Each variant has been manually annotated and classified by human
experts in the diagnostic labs. Using the AMP/ASCO/CAP guideline, the 4-Tier classification
assignment for each somatic mutation has to be agreed by at least two cancer experts from
the Division of Genomic Diagnostics Lab at CHOP. Furthermore, to train the deep learning
model, we used variants from strong clinical significance (Tier 1) and potential clinical
significance (Tier Il) categories as the positive samples, and used variants from benign/likely
benign (Tier 1V) as the negative samples. In total, we have 5234 variants, in which 1668 are
positive samples and 3566 are negative samples for training and validation in the SGAN
model.

RESULTS
Summary functions of CancerVar

CancerVar provides multiple query options at variants-, gene-, and CNA levels across 30
cancer types and two versions of reference genomes: hg19 (GRCh37) and hg38 (GRCh38).
Given user-supplied input, CancerVar generates an output web page, with information
organized as cards including free text interpretation summary, gene overview, mutation
information, evidence overview, pathways, clinical publications, protein domains, in silico
predictions, exchangeable information from other knowledgebases. The CancerVar web
server provides full details on the variants, including all the automatically generated criteria,
most of the supporting evidence and predictive scores for clinical significance. CancerVar web
service can be accessed at http://cancervar.wglab.org and the command-line program can be
downloaded at https://github.com/WGLab/CancerVar.

Using rule-based approach, users have the ability to manually adjust these criteria and
perform re-interpretation based on their prior knowledge or experience. If the user already
know the information of each of the scoring criteria for the variant (possibly inferred by
themselves using other software tools), they can alternatively compute the clinical significance
of the variant from the “Interpret by Criteria” service instead. Each variant will be provided with
a prediction score and clinical interpretation as strong clinical significance, potential clinical
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significance, uncertain significance, and likely benign/benign based on the 12 criteria of the
AMP/ASCO/CAP guideline. Using deep learning-based approach, CancerVar provides
probability score predicted by SGAN to determine the oncogenicity of a variant, using 12
evidence features from AMP/ASCO/CAP guidelines and computational metrics predicted by
19 tools.

Performance assessment and comparative evaluations of CancerVar with external

human manual annotator

Sirohi et. al measured the reliability of the 2017 AMP/ASCO/CAP guidelines (10) using fifty-
one variants (31 SNVs, 14 indels, 5 CNAs, one fusion) based on literature review. Among
these variants, we selected 43 variants including all 31 SNVs and 12 insertion-deletion
variants (we did not find alternative alleles information for two indels in gene CHEK1 and MET).
CancerVar interpreted these 43 variants with the specified cancer types. Since these 43
variants do not have solid/consistent clinical interpretation, we compared 20 pathologists’
opinions from 10 institutions with CancerVar’s predictions. As shown in Table 1, CancerVar
assigned 21 variants as Tire I/l (strong or potential clinical significance). Among these 21
variants, the pathologists classified 17 variants (17/21, around 81%) as Tire I/ll in agreement.
Moreover, CancerVar assigned 21 variants as VUS; among these 21 variants, 9 variants (9/21,
around 43%) also be classified as VUS by pathologist reporters. In total, 26 variants (around

61%) have a match of clinical significance between human reporters and CancerVar.

The interpretation details of these 43 variants can be found in the Supplementary Table 3
and Figure 3. Compared to human interpreters, the advantage of CancerVar is clear in that it
can automatically generate clinical interpretations with standardized, consistent and
reproducible workflow, with evidence-based support for each of the 12 criteria. Therefore,
CancerVar will greatly reduce the workload of human reviewers and facilitate the generation

of precise and reproducible clinical interpretation.
OncoKB annotation benchmark

OncoKB (1), a manually curated database of cancer mutations oncogenic effect, has been
widely used in cancer research community. OncoKB provides evidence classification system
to interpret the genomic alterations and classified variants as inconclusive, likely neutral,
Predicted oncogenic, likely oncogenic, or oncogenic. Totally, 3455 SNVs in 245 genes were
downloaded from OncoKB annotation database (downloaded Mar/01/2020). This version

contained 2582 oncogenic/likely oncogenic (O/LO) mutations, 587 likely neutral mutations,
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and 286 mutations annotated as inconclusive for this study. CancerVar evidence-based and
DL-based prediction methods were applied to classify compiled mutations and compared with
OncoKB classifications. For the O/LO group in the OncoKB, CancerVar rule-based method
classified 1839 (1839/2582, 71.2% consistent with OncoKB classification) variants as strong
or potential clinical significance; while CancerVar deep learning-based method classified 2319
variants (2319/2582, 90% consistent with OncoKB classification). The details are in Table 2
and Figure 4(a). The UpSet plot showed the prediction intersections between OncoKB,

CancerVar rule-based and deep learning-based methods.

CIViC annotation benchmark

CIViC is a crowd-sourced and expert-moderated public resource for somatic variants in cancer
(4). It adopts five evidence levels to differentiate reported mutations, namely A: validated, B:
clinical, C: case study, D: preclinical, and E: inferential. In total, 1681 unique SNVs/INDELSs
from 113 unique genes were retrieved from CIVIC website (https://civicdb.org/releases,
accessed in May/01/2020) and assessed by the CancerVar program. CancerVar rule-based
method predicted 1230 (1230/1681, 73.2% consistent with CIVIC classification) variants as
strong or potential clinical significance, while CancerVar DL model-based method predicted
1581 (94.1% consistent with CIVIC classification). Table 3 and Figure 4(b) have the details

of CancerVar prediction.

IARC TP53 Transactivation mutation benchmark

TP53 is the most frequently mutated gene in human cancers, its mutants had been functionally
assessed based on the median transactivation levels and complied as IARC TP53 database
(48). Based on the median of 8 different yeast functional assays (WAF1, MDM2, BAX, h1433s,
AIP1, GADD45, noxa, and P53R2), the TP53 mutations can be classified as lower
transactivation (a median transactivation level <=25% wild type) as oncogenic and higher
transactivation (level >=25% wild type) as neutral. We retrieved 1915 missense mutations
(532 mutations were used as oncogenic cases and 1383 mutations were used as neutral
cases) from this IARC TP53 database. For 532 oncogenic mutations in IARC TP53 database,
CancerVar rule-based method predicted 522 (TP=98%) variants and model-based method
predicted 512 (TP=96.2%) variants as strong/potential clinical significance. Compared to
OncoKB predicted 489 (489/532=91.9%) variants, CancerVar rule-based method has a higher
true positive rate. The details of CancerVar and OncoKB prediction can be viewed in Table 4

and Figure 4(c).
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Cell Viability in Vitro Assay benchmark

The oncogenic effect of somatic mutation can be directly assessed by preferential growth or
survival advantage to the cells using some cellular assays. Ng et al. recently developed a
medium-throughput in vitro system to test functional effects of mutations using two growth
factor dependent cell lines, Ba/F3(a sensitive leukaemia cell line, frequently used in drug
screening) and MCF10A(a breast epithelial cell line)(49). The cell viability data of mutations in
these two cell lines were used to generate consensus functional annotation to distinguish
mutations. The mutations were considered as oncogenic when cell viability was labelled as
activating and as neutral when cell viability was labelled as neutral from the consensus
functional annotation. Finally, we retrieved 717 missense mutations (253 as oncogenic, 464
as neutral) in 44 genes. In 253 oncogenic variants, CancerVar rule-based method predicted
217 (TP=85.7%) variants and DL model-based predicted 208 (82.2%) as strong/potential
clinical significance, while OncoKB predicted 204 (TP=80.6%) variants as oncogenic, likely or
predicted oncogenic (Table 5 and Figure 4(d)). Still, CancerVar rule-based method performs
better than OncoKB.

SGAN performance for oncogenic variant’s prediction

We used cuda to accelerate the training process, which took ~100 hours to train the model to
1000 epochs with a Nvidia Tesla M40 GPU card. SGAN model can learn the hidden
distribution of unlabeled mutations comparing with the prediction in clinical data from the
model trained only with labeled data. SGAN was compared with other six machine learning
algorithms including gradient boosting tree (GBDT), support vector machine (SVM), AdaBoost
(ADA), multi-layer perceptron (MLP), random forest (RF) and majority voting classifier (VC),
which were discussed in a recently published paper Al-driver for driver mutation prediction in
cancer (50). We further compared the performance with the other nine score schemes
including LRT (44), DANN (17), CADD (38), FATHMM (30), SIFT (14), and MetaSVM (40),
using area under the curve (AUC) score from receiver operating characteristic (ROC) plots
and true negative rate (TNR, or specificity) as measurements. According to the performance
evaluation on the independent testing set of 6226 somatic variants, Figure 5 shows that
CancerVar SGAN method (AUC=0.8595) performs the best compared to cancer-specific

driver predicting methods and any individual functional prediction tool.
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FDA approved or recognized cancer biomarkers for therapeutic, diagnosis and
prognostic

To show the performance and reliability, we also collected 22 cancer biomarkers approved by
the US Food and Drug Administration (FDA, then interpreted these biomarkers and predicted
their oncogenicity using our SGAN model. In these 22 biomarkers, 9 of them were classified
as Tier-l strong clinical significance and rest of 13 were classified as Tier-ll potential clinical
significance when using only evidence. For the SGAN model based on deep learning, most of
the biomarkers (19 out of 22) were predicted with score >=0.95 means higher probability as

oncogenic. The interpretation of these biomarkers are showed in the Table 6.

Use case: example of comprehensive interpretation of FOXA1l somatic mutation in
Prostate Cancer

In this use case, we showed the clinical interpretation of two mutations in prostate cancer
(Figure 6) from rule-based and deep learning model. Prostate cancer is the most commonly
diagnosed cancer in men in the world (51). The FOXAL protein (Forkhead box Al, previously
known as HNF3a) is essential for the normal development of the prostate (52). The FOXAl
somatic mutations have been observed frequently in prostate cancer(53) and are associated
with poor outcome. However, the mechanism of driving prostate cancer by mutations in
FOXA1 was still not clear. In 2019, two papers published in Nature demonstrated that FOXA1
acts as an oncogene in prostate cancer (54,55). They found that the hotspot mutation at R219
(R219S and R219C) drove a pro-luminal phenotype in prostate cancer and exclusive with
other fusions or mutations (54,55). We interpreted these two mutations, but here we only
illustrated the clinical interpretation for R219C since the interpretation result of R219S was
very similar to R219C. We searched this missense mutation R219S using protein change and
gene name as “FOXA1” in the CancerVar web server. CancerVar did not find any therapeutic,
diagnostic and prognostic evidence for this mutation. Since this mutation has been recently
incorporated in somatic databases including COSMIC (ID: COSM3738526) and ICGC (ID:
MU67448716), CBP_9 as moderate evidence applied. Recently two publications reported its
biological functions in prostate cancer, CBP_12 applied. In addition, from CBP_7, this mutation
is absent or has extremely low minor allele frequency in the public allele frequency database.
All seven in silico methods predicted this mutation as (likely) pathogenic, CBP_10 applied.
According the AMP/ASCO/CAP/CGC guidelines, this variant falls into the class of “Tier Il
uncertain significance” with a score of 7, but very closed the class of “Tire Il potential’. While
from deep learning of SGAN, the score is 0.99 as Oncogenic. This semi-automated
interpretation approach can greatly improve the prediction accuracy for each variant, given

existing knowledge and domain expertise, while, a model-based approach involving machine
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intelligence such as SGAN model still can be as another optimized option and could be

explored in our future work.

DISCUSSION

Clinical interpretation of cancer somatic variants remains an urgent need for clinicians and
researchers working in the field of precision oncology, especially given the transition from
panel sequencing to whole exome/genome sequencing in cancer genomics. To build a
standardized, rapid and user-friendly interpretation tool, we developed a web server (together
with command-line software tools) to assess the clinical impacts of somatic variants using the
AMP/ASCO/CAP guidelines. CancerVar is an enhanced version of cancer variants
knowledgebase incorporated from our previously developed tools for variant annotations and
prioritizations including InterVar (56), VIC (9), iICAGES (57), as well as assembling existing
variants annotation databases such as CIViC(4), CKB(6) and OncoKB(1). We stress here that
CancerVar will not replace human acumen in clinical interpretation, but rather to generate
evidence to facilitate/enhance human reviewers by providing a standardized, reproducible,

and precise output for interpreting somatic variants.

In CancerVar, we did not reconcile the well-known “conflicting interpretation” issues across
knowledgebases; instead, we documented and harmonized all types of clinical evidence (i.e.
drug information, publications, etc) for both hotspot and non-hotspot mutations in detail to
allow users make their own clinical decisions based on their own domain knowledge and
expertise. Compared to existing knowledgebases such as OncoKB, CIVIC and metaKB,
CancerVar provides an improved platform in four areas: (i) comprehensive, evidence-based
annotations with rigorous quality control for ~13 million somatic variants, which is not limited
to the small number of known hotspot mutations; (ii) well-designed, flexible scoring system
allowing users to fine-tune the importance of clinical evidence criteria according to their own
prior knowledge; (iii) improved prioritization for cancer driver mutations using novel semi-
supervised DL learning method; (iv) automatically summarized interpretation text so that users
do no need to query evidence from multiple knowledgebase manually. We expect CancerVar
to become a useful web service for the interpretation of somatic variants in clinical cancer

research.

We also need to acknowledge several limitations in CancerVar. First, the scoring weight

system is not very robust. We note that the existing clinical guidelines did not provide the
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recommendations for weighting different evidence types, and therefore treated all weights as
equal by default; however, with the increasing amounts of clinical knowledge on somatic
mutations, we expect that we may build a weighted model in the future to enhance the
prediction accuracy. Second, a small number of CNAs (similar to hotspot mutations) has
emerged as important biomarkers for disease characterization and therapeutic decision
making, however there is a lack of specific database for clinically actionable somatic CNAs.
Although AMP/ASCO/CAP published a CNAs guideline recently, CNAs are very
heterogeneous in size, so their significance is much harder to score in practice. Therefore, in
the future, we will design and implement the scoring system for CNAs with AMP/ASCO/CAP
team, based on the platform used to discover CNAs, the reliability of the CNA calls, the genes
covered by the CNAs and additional cancer type specific information from existing databases
(given that different cancer types have different CNA profiles). Third, CancerVar currently
cannot interpret inversions and gene fusions, and cannot interpret gene expression alterations,
even though these genomic alterations may also play important roles in cancer
development/progression. Before a specific guideline for these types of mutations becomes
available, we suggest that users treat them as CNAs (gene inversions/fusions as deletions,

and gene expression down-regulation or up-regulation as deletions or duplications).

Accurate clinical significance interpretation depends greatly on the harmonization of evidence,
which should be precisely derived and standardized from multiple databases and annotations.
Compared to existing knowledgebases that document limited number of hotspot mutations,
CancerVar provides polished, comprehensive, and semi-automated clinical interpretations for
large scale somatic variants with completed clinical evidences, and it greatly facilitates human
reviewers draft clinical reports for panel sequencing, exome sequencing or whole genome
sequencing on cancer. Although some commercial software tools also used AMP/ASCO/CAP
rule to standardize variants interpretation, they requires a high license fee that pushes many
academic researchers away. Importantly, besides the interpretation based on
AMP/ASCO/CAP human experts’ consensus rules, the CancerVar deep-learning based
SGAN approach jointly modeled both rule-based clinical features and functional prediction
features to support oncogenic predictions for mutations. We believe that CancerVar allows
comprehensive clinical interpretations and prioritizations for both hotspot and non-hotspot

variants, achieving a significant impact to facilitate the implementation of precision oncology.
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In summary, CancerVar is both a web server and a command-line software that provide
polished and semi-automated clinical interpretations for somatic variants in cancer. In
addition, it facilitates drafting clinical reports semi-automatically for panel sequencing, exome
sequencing or genome sequencing on cancer. We expect to continuously improve
CancerVar and incorporate new functionalities in the future, similar to what we have done on

the winterVar server and wANNOVAR server.

CancerVar software accessibility

Users can access CancerVar through three ways, including a web server that is free and open

to all users without login requirements (http://cancervar.wglab.org), a command-line software

written in Python that is freely available from GitHub (https://github.com/wglab/CancerVar) for

non-commercial users, and a RESTful API service to facilitate other web developers to access

our pre-computed evidence for 13 million variants.
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TABLE AND FIGURES LEGENDS

Table 1. Comparison of classification on 43 variants between 20 pathologists and
CancerVar.

Annotators 20 pathologists
Classifications 1/n* 1 v Total
CancerVar 1/ 17 4 0 21
i 12 9 0 21
v 0 1 0 1
Total 29 14 0 43

* Tire |: strong clinical significance; Tire II: potential clinical significance; Tire Ill: unknown
clinical significance (VUS); Tire IV: benign/likely benign
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Table 2. Summary of CancerVar prediction on OncoKB mutations.

Model-based CancerVar Rule-based CancerVar

OncoKB Oncogenic Neutral VT (STP) (VILIJIS) (Belr\llign)

Oncogenic/Likely
Oncogenic 2319 263 1839 690 53
Neutral/

Likely Neutral 348 239 281 279 27
Inconclusive 152 134 132 150 4
Total 2819 636 2252 1119 84

Table 3. Summary of CancerVar prediction on CIViC mutations.

Model-based
CancerVar Rule-based CancerVar

ClviC Oncogenic | Neutral | | (Strong) | Il (Potential) | 1l (VUS) | IV (Benign)
A: validated 17 2 2 7 0 10
B: clinical 259 40 111 109 61 18
C: case study 792 30 178 439 198 7
D: preclinical 466 22 91 277 119 1
E: inferential a7 6 5 11 33 4
Total 1581 100 387 843 411 40
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Table 4. CancerVar and OncoKB predictions of mutations in the IARC TP53
transactivation dataset

Model-based
CancerVar Rule-based CancerVar OncoKB
IARC TP53 _ .
Transactivation Oncogenic Neutral | S/P VUS | benign | O/LO | VUS | Neutral
Oncogenic 512 20 522 10 0 489 | 43 0
Neutral 749 634 1069 314 0 455 | 928 0
Total 1261 654 1591 324 0 944 | 971 0

Table 5. CancerVar and OncoKB predictions of mutations in the in vitro Cell Viability
dataset by Ng. et al, 2018

Model-based Rule-based OncoKB
CancerVar CancerVar
Cell Viability _ _
(in vitro) Oncogenic Neutral | S/P VUS | benign | O/LO | VUS | Neutral
Oncogenic 208 45 217 34 2 204 39 10
Neutral 242 222 230 222 12 71 335 58
Total 450 267 447 256 14 275 374 68
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Table-6. FDA approved or recognized biomarkers (therapeutic, diagnosis and prognostic)

clinical significance or oncogenic prediction from CancerVar and SGAN.

Gene Alt((a)rr?atl Cancers Levels CancerVar SGAN
B-Lymphoblastic
Leukemia/Lymphoma/ Therapeutic .
ABL1 T315I Chronic Myelogenous (Ponatinib) Tier-ll(score 8) 0.87
Leukemia
Breast
Cancer/Ovarian Therapeutic .
AKT1 E17K Cancer/Endometrial (AZD5363) Tier-ll(score 10) | 0.97
Cancer
Therapeutic
Melanoma/Non-Small (Dabrafenib + .
BRAF V6O0E Cell Lung Cancer Trametinib;Vem Tier-I(score 11) | 0.98
urafenib)
EGER T790M Non-Small Cell Lung Thgrape_ut_lc Tier-li(score 9) 0.96
Cancer (Osimertinib)
Non-Small Cell Lung Therapeutic .
EGFR L861Q Cancer (Afatinib) Tier-ll(score 10) | 0.98
Non-Small Cell Lung Therapeutic .
EGFR S768l| Cancer (Afatinib) Tier-I(score 11) | 0.99
Y646F Tier-I(score 11) | 0.99
Y646H ; Tier-I(score 11) | 0.99
EZH2 Follicular Lymphoma TTherap(teut;ct
Y646N (Tazemetostat) | Tier (score 11) | 0.99
Y646S Tier-I(score 11) | 0.99
R248C i Tier-ll(score 9) 0.99
Bladder Cancer E@gﬁﬁ#&c
FGFR3 S249C Tier-ll(score 9) 0.99
Y373C Tier-ll(score 10) | 0.99
JAK2 V617F Primary Myelofibrosis Prognostic Tier-I(score 11) | 0.83
A829P Therapeutic Tier-ll(score 9) 0.86
. , (Imatinib; .
T670I Gastrointestinal Regorafenib: Tier-ll(score 9) | 0.97
Stromal Tumor Ripretinib:
KIT V654A Ipretinib; Tier-I(score 11) | 0.99
Sunitinib)
Y823D Tier-ll(score 10) | 0.99
D816V MSystemlc' Diagnostic Tier-ll(score 9) 0.98
astocytosis
Non-Small Cell Lung Therapeutic :
KRAS Glz2C Cancer (AMG-510) Tier-I(score 11) | 0.99
PDGFR D842y Gastrointestinal Therapeutic Tier-ll(score 9) 0.95
A D842Y Stromal Tumor (Avapritinib) Tier-li(score 10) | 0.99
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Figure 1. The functions of CancerVar and the descriptions of 12 types of evidence.
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Figure 2. (A) Workflow of the SGAN method and (B) Architecture of generator and
discriminator/classifier used in SGAN. Here we used a 3 transposed CNN layer to
generate synthetic samples from a vector consisting of 100 random noises. The
discriminator/classifier is a typical resNet-18.
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Figure 3 Comparison of interpretation on 43 variants between 20 pathologists and
CancerVar. The heatmap shows the ratio of 20 pathologists voting for the four Tiers: Tier |
strong clinical significance (SCS), Tier Il potential clinical significance (PCS), Tier Il variant
uncertain clinical significance (VUS), and Tier IV benign/likely benign (B/LB). The last two
columns are cancerVar predicted score and classification. Results show CancerVar has 81%
(17/21) agreement rate with pathologists’ majority voting for Tier I/1l, and 60.5% (26/43)
agreement rate for all Tiers. This agreement rate is comparable to the 58% agreement rate
within the 20 pathologists, but CancerVar can automate interpretation.
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Figure 4. UpSetR (Conway et al., 2017) plot highlights the intersection of multiple methods
with oncogenic prediction from different datasets. (A) Mutations were taken from OncoKB
dataset. (B) Mutations were taken from CIViC. (C) Mutations were taken from IARC TP53
Transactivation dataset. (D) Mutations were taken from Cell Viability in Vitro by Ng. et al, 2018
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Figure 5. Receiver operating characteristic (ROC) curves for performance comparison on
6,226 somatic mutations as the testing set. (A) SGAN outperforms six other machine learning
algorithms including gradient boosting tree (GBDT), support vector machine (SVM), AdaBoost
(ADA), multi-layer perceptron (MLP) random forest classification (RFC), and voting classifier
(VC). (B) SGAN also outperforms any individual functional impact prediction tool in prediction

of cancer somatic driver mutations.
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Figure 6. CancerVar use case of FOXAL. We queried FOXA1 mutation R219C in prostate

cancer. The rule-based prediction of this variant was Tier-lll uncertain-significance with

score 7, very close Tier-Il. However, after applied deep learning, the SGAN model predicted

this variant as oncogenic with score 0.99. Finally, we suggested this variant with clinical

significance.
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