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ABSTRACT 35 

 36 

Neurons in the prefrontal cortex (PFC) are typically activated by different cognitive 37 

tasks, and also by different stimuli and abstract variables within these tasks. A single 38 

neuron’s selectivity for a given stimulus dimension often changes depending on its 39 

context, a phenomenon known as nonlinear mixed selectivity (NMS). It has previously 40 

been hypothesized that NMS emerges as a result of training to perform tasks in different 41 

contexts. We tested this hypothesis directly by examining the neuronal responses of 42 

different PFC areas before and after monkeys were trained to perform different working 43 

memory tasks involving visual stimulus locations and/or shapes. We found that training 44 

induces a modest increase in the proportion of PFC neurons with NMS exclusively for 45 

spatial working memory, but not shape working memory tasks, with area 9/46 46 

undergoing the most significant increase in NMS cell proportion. We also found that 47 

increased working memory task complexity, in the form of simultaneously storing 48 

location and shape combinations, does not increase the degree of NMS for stimulus shape 49 

with other task variables. Lastly, in contrast to the previous studies, we did not find 50 

evidence that NMS is predictive of task performance. Our results thus provide critical 51 

insights on the representation of stimuli and task information in neuronal populations, 52 

which may pave the way to a greater understanding of neural selectivity in working 53 

memory. 54 

  55 
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SIGNIFICANCE STATEMENT 56 

 57 

How multiple types of information are represented in working memory remains a 58 

complex computational problem. It has been hypothesized that nonlinear mixed 59 

selectivity allows neurons to efficiently encode multiple stimuli in different contexts, 60 

after subjects have been trained in complex tasks. Our analysis of prefrontal recordings 61 

obtained before and after training monkeys to perform working memory tasks only 62 

partially agreed with this prediction, in that nonlinear mixed selectivity emerged for 63 

spatial but not shape information, and mostly in mid-dorsal PFC. Nonlinear mixed 64 

selectivity also displayed little modulation across either task complexity or correct 65 

performance. These results point to other mechanisms, in addition to nonlinear mixed 66 

selectivity, to represent complex information about stimulus and context in neuronal 67 

activity.   68 
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INTRODUCTION 69 

 70 

Working memory (WM) is broadly defined as the ability to encode, maintain, and 71 

manipulate information in the conscious mind over a period of seconds without the 72 

presence of any sensory inputs. As a core component of complex cognitive abilities such 73 

as planning and reasoning, the true importance of WM ultimately depends on whether it 74 

can maintain and manipulate task relevant information in a task relevant manner 75 

(Baddeley, 2012). Multiple variables, including external sensory inputs and internal task 76 

requirements, must be encoded in order to achieve the level of adaptability in WM that is 77 

necessary for complex tasks. The mechanisms that underlie this encoding process across 78 

time and neuronal population is one of the most important questions in current WM 79 

research.  80 

When individuals are required to maintain objects in their WM, neurons from a 81 

network of brain regions may exhibit selective and sustained increases or decreases in 82 

their activity in order to represent the remembered objects through these unique patterns 83 

of activity (Constantinidis and Procyk, 2004). The prefrontal cortex (PFC) plays a leading 84 

role in this network, and by extension, in the use of WM (Riley and Constantinidis, 85 

2016). For example, when the PFC is damaged or degraded, whether through trauma, 86 

illness, or experimental lesions, performance in WM tasks seems to decrease dramatically 87 

(Curtis and D'Esposito, 2004; Morris and Baddeley, 1988; Rossi et al., 2007).  88 

Individual PFC neurons typically encode more than one variables, and the exact 89 

variables encoded are task dependent (Asaad et al., 2000; Machens et al., 2010; Mansouri 90 

et al., 2006; Qi et al., 2015; Warden and Miller, 2010). More interestingly, a portion of 91 
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neurons exhibit nonlinear mixed selectivity (NMS) for different variables, which means 92 

that their response to the combination of variables cannot be predicted by the linear 93 

summation of their responses to single variables (Johnston et al., 2020; Parthasarathy et 94 

al., 2017; Rigotti et al., 2013). Theoretical studies have shown that NMS is useful for 95 

linear readouts of flexible, arbitrary combinations of variables (Buonomano and Maass, 96 

2009; Fusi et al., 2016; Rigotti et al., 2010), and may also control the trade-off between 97 

discrimination and generalization (Barak et al., 2013; Johnston et al., 2020).  98 

Despite the proposed importance of NMS on theoretical grounds, some 99 

experimental studies have failed to detect neurons with NMS (Cavanagh et al., 2018). It 100 

is therefore possible that NMS may manifest exclusively in a limited set of PFC 101 

subdivisions or alternatively, that NMS emerges exclusively after training to perform 102 

specific types of cognitive tasks. Moreover, the implications of NMS on other aspects of 103 

neural encoding, such as code stability, have not yet been investigated. We were therefore 104 

motivated to analyze and compare neural data from rhesus macaque monkeys before and 105 

after training. Here we report results of NMS as a function of task training, performance 106 

of different types of working memory tasks, and correct and error trials, across different 107 

prefrontal areas.   108 
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METHODS 109 

 110 

Animals: Data obtained from six male rhesus monkeys (Macaca mulatta), age 5–9 years 111 

old, weighing 5–12 kg, as previously documented (Riley et al., 2018), were analyzed in 112 

this study. None of the animals had any prior experimentation experience at the onset of 113 

our study. Monkeys were either single-housed or pair-housed in communal rooms with 114 

sensory interactions with other monkeys. All experimental procedures followed 115 

guidelines set by the U.S. Public Health Service Policy on Humane Care and Use of 116 

Laboratory Animals and the National Research Council’s Guide for the Care and Use of 117 

Laboratory Animals and were reviewed and approved by the Wake Forest University 118 

Institutional Animal Care and Use Committee.  119 

 120 

Experimental setup: Monkeys sat with their head fixed in a primate chair while viewing a 121 

monitor positioned 68 cm away from their eyes with dim ambient illumination. Animals 122 

were required to fixate on a 0.2° white square appearing in the center of the screen. 123 

During each trial, the animals maintained fixation on the square while visual stimuli were 124 

presented either at a peripheral location or over the fovea in order to receive a juice 125 

reward. Any break of fixation immediately terminated the trial and no reward was given. 126 

Eye position was monitored throughout the trial using a non-invasive, infrared eye 127 

position scanning system (model RK-716; ISCAN, Burlington, MA). The system 128 

achieved a < 0.3° resolution around the center of vision. Eye position was sampled at 240 129 

Hz, digitized and recorded. Visual stimuli display, monitoring of eye position, and the 130 

synchronization of stimuli with neurophysiological data were performed with in-house 131 
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software implemented on the MATLAB environment (Mathworks, Natick, MA), and 132 

utilizing the Psychophysics Toolbox (Meyer and Constantinidis, 2005).  133 

 134 

Pre-training task: Following a brief period of fixation training and acclimation to the 135 

stimuli, monkeys were required to fixate on a center position while stimuli were 136 

displayed on the screen. The monkeys were rewarded for maintaining fixation during the 137 

trial with a liquid reward (fruit juice). The stimuli shown in the pre-training passive 138 

spatial task were white 2° squares, presented in one of nine possible locations arranged in 139 

a 3 × 3 grid with 10° distance between adjacent stimuli. The stimuli shown in the pre-140 

training passive feature task were white 2° circles, diamonds, H-letters, hashtags, plus 141 

signs, squares, triangles, or inverted Y-letters, also presented in one of nine possible 142 

locations arranged in a 3 × 3 grid with 10° distance between adjacent stimuli. 143 

Presentation began with a fixation interval of 1 s where only the fixation point 144 

was displayed, followed by a 500 ms of stimulus presentation (referred to hereafter as 145 

cue), followed by a 1.5 s “delay” interval (referred to hereafter as delay1) where, again, 146 

only the fixation point was displayed. A second stimulus (referred to hereafter as sample) 147 

was subsequently shown for 500 ms. In the spatial task, this second stimulus would be 148 

either identical in location to the initial stimulus, or diametrically opposite the first 149 

stimulus. In the feature task, this second stimulus would always be identical in location to 150 

the initial stimulus and would either be an identical shape or the corresponding non-151 

match shape (each shape was paired with one non-match shape).  152 

 153 
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In both the spatial and feature task, this second stimulus display was followed by another 154 

“delay” period (referred to hereafter as delay2) of 1.5 s where only the fixation point was 155 

displayed. The location and identity of stimuli was of no behavioral relevance to the 156 

monkeys during the “pre-training” phase, as fixation was the only necessary action for 157 

obtaining reward.  158 

 159 

Post-training task: Four of the six monkeys were trained to complete active spatial, 160 

feature and conjunction WM tasks. These active spatial and feature tasks were identical 161 

to the passive spatial and feature tasks that were applied during the “pre-training” phase, 162 

except that these tasks now required the monkeys to remember the spatial location or the 163 

shape feature of the first presented stimulus, and report whether the second stimulus 164 

matched the spatial location or shape feature of the first stimulus, respectively, via 165 

saccading to one of two target stimuli (green for match, blue for non-match). Each target 166 

stimulus could appear at one of two locations orthogonal to the cue/sample stimuli, 167 

pseudo-randomized in each trial. 168 

The conjunction task combined the active spatial and feature tasks, and the stimuli 169 

shown were a white 2° circle, diamond, H-letter, hashtag, plus sign, square, triangle, or 170 

inverted Y-letter shapes, presented in one of nine possible locations arranged in a 3 × 3 171 

grid with 10° distance between adjacent stimuli. Each trial consisted of a fixation interval 172 

of 1 s where only the fixation point was displayed, followed by 500 ms of the first 173 

stimulus presentation, followed by a 1.5 s delay interval where, again, only the fixation 174 

point was displayed. A second stimulus was subsequently shown for 500 ms, and after a 175 

second, 1.5 s delay period the monkeys would report whether the second stimulus 176 
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matched both the spatial location and shape feature of the first stimulus, via saccading to 177 

one of the two target stimuli. The conjunction task was therefore the most complex task, 178 

as the monkeys were required to simultaneously store two different items—location and 179 

shape—in their WM.  180 

 181 

Surgery and neurophysiology: A 20 mm diameter craniotomy was performed over the 182 

PFC and a recording cylinder was implanted over the site. The location of the cylinder 183 

was visualized through anatomical magnetic resonance imaging (MRI) and stereotaxic 184 

coordinates post-surgery. For two of the four monkeys the recording cylinder was moved 185 

after an initial round of recordings in the post-training phase to sample an additional 186 

surface of the PFC.  187 

 188 

Anatomical localization. Each monkey underwent an MRI scan prior to 189 

neurophysiological recordings. Electrode penetrations were mapped onto the cortical 190 

surface. We identified 6 lateral PFC regions: a posterior-dorsal region that included area 191 

8A, a mid-dorsal region that included area 8B and area 9/ 46, an anterior-dorsal region 192 

that included area 9 and area 46, a posterior-ventral region that included area 45, an 193 

anterior-ventral region that included area 47/12, and a frontopolar region that included 194 

area 10. However, the frontopolar region was not sampled sufficiently to be included in 195 

the present analyses. 196 

 197 

In addition to comparisons between brain areas segmented in this fashion, other analyses 198 

were performed to account for the position of each neuron along the AP axis. For the 199 
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purposes of our analysis, we defined the AP axis as the line connecting the genu of the 200 

arcuate sulcus to the frontal pole. The recording coordinates of each neuron were 201 

projected onto this line, with position expressed as a proportion of the line’s length.  202 

 203 

Neuronal recordings: Neural recordings were carried out in areas 8, 9, 9/46, 45, 46, and 204 

47/12 of the PFC both before and after training in each WM task. Subsets of the data 205 

presented here were previously used to determine the collective properties of neurons in 206 

the dorsal and ventral PFC, as well as the properties of neurons before and after training 207 

in the posterior-dorsal, mid-dorsal, anterior-dorsal, posterior-ventral, and anterior-ventral 208 

PFC subdivisions. Extracellular recordings were performed with multiple 209 

microelectrodes that were either glass- or epoxylite-coated tungsten, with a 250 μm 210 

diameter and 1–4 MΩ impedance at 1 kHz (Alpha-Omega Engineering, Nazareth, Israel). 211 

A Microdrive system (EPS drive, Alpha- Omega Engineering) advanced arrays of up to 212 

8-microelectrodes, spaced 0.2–1.5 mm apart, through the dura and into the PFC. The 213 

signal from each electrode was amplified and band-pass filtered between 500 Hz and 8 214 

kHz while being recorded with a modular data acquisition system (APM system, FHC, 215 

Bowdoin, ME). Waveforms that exceeded a user-defined threshold were sampled at 25 μs 216 

resolution, digitized, and stored for off-line analysis. Neurons were sampled in an 217 

unbiased fashion, collecting data from all units isolated from our electrodes, with no 218 

regard to the response properties of the isolated neurons. A semi-automated cluster 219 

analysis relied on the KlustaKwik algorithm, which applied principal component analysis 220 

of the waveforms, to sort recorded spike waveforms into separate units. To ensure a 221 

stable firing rate in the analyzed recordings, we identified recordings in which a 222 
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significant effect of trial sequence was evident at the baseline firing rate (ANOVA, p < 223 

0.05), e.g., due to a neuron disappearing or appearing during a run, as we were collecting 224 

data from multiple electrodes. Data from these sessions were truncated so that analysis 225 

was only performed on a range of trials with stable firing rate. Less than 10% of neurons 226 

were corrected in this way. Identical data collection procedures, recording equipment, 227 

and spike sorting algorithms were used before and after training in order to prevent any 228 

analytical confounds.  229 

 230 

Data analysis: Data analysis was implemented with the MATLAB computational 231 

environment (Mathworks, Natick, MA), with additional statistic tests implemented 232 

through Originlab (OriginLab Corporation, Northampton, MA) and StatsDirect 233 

(StatsDirect Ltd. England). Peristimulus time histograms (PSTHs) for illustrations were 234 

calculated through the moving window average method with a Gaussian window that had 235 

a 200 ms standard deviation, with the shaded area indicating two times standard error 236 

cross trials. For all tasks, only cells with at least 12 correct trials for each cue-sample 237 

location/shape pairs were included in the analysis. To classify neurons of the spatial task 238 

into different categories of selectivity, we performed two-way ANOVAs on the spike 239 

count between either the stimuli location x matching status in for the trial, or between 240 

stimuli location x task epoch (first or second stimulus presentation). Neurons with classic 241 

selectivity (CS) exhibited a main effect of only one factor without significant interaction 242 

term. Neurons with linear mixed selectivity (LMS) exhibited main effects of both factors 243 

without significant interaction term. Neurons with NMS exhibited a significant 244 

interactions term. Finally, non-selective (NS) neurons exhibited no significant term for 245 
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both the main effects and the interaction term. Similarly, the two factors for feature task 246 

ANOVA analysis were stimuli shape x matching status, and stimuli shape x task epoch 247 

for the trial.  248 

A method based on singular value decomposition (SVD) and cross validation was 249 

used to calculate population dimensionality for the spatial and feature tasks (Ahlheim and 250 

Love, 2018). The dimensionality of a matrix is defined as its number of non-zero singular 251 

values, identified by SVD. Under this condition however, the noise in the recorded neural 252 

data could potentially inflate the number of non-zero singular values, even if the true 253 

dimensionality were low. Reconstruction from components with cross-validation could 254 

be used to estimate dimensionality with noise, under the assumption that only true 255 

underlying dimensionality can contribute to the reconstruction performance in the cross-256 

validation dataset. In short, data from j trials were randomly assigned to training the 257 

dataset with j-2 trials, using one of the remaining trials for validation and the other for 258 

testing. SVD was then applied to the averaged training data to obtain all of the possible 259 

low-dimensional reconstructions, which were then correlated through a validation run. 260 

The dimensionality that produced the highest average correlation across j-1 runs was 261 

selected as dimensionality estimate k for this fold, and a k-dimensional reconstruction 262 

was correlated with the held-out test data, resulting in the final reconstruction correlation. 263 

A similar method had also been recently used to estimate the dimensionality over time for 264 

neural data (Cueva et al., 2020). The dimensionality of the sample and delay2 period in 265 

the spatial and feature task was calculated on 50 resamples of a 200-cell pseudo-266 

population in the corresponding datasets. 267 
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Only PFC areas with more than 50 cells in both pre- and post-training time points 268 

were included in the subdivision mixed selectivity comparison analysis. Thus, for the 269 

feature task, only data from the mid-dorsal, posterior-dorsal and posterior-ventral PFC 270 

were analyzed, while the spatial task analyzed data from the mid-dorsal, posterior-dorsal, 271 

posterior-ventral, anterior-dorsal and anterior-ventral PFC.  272 

Neural data from tasks that applied the exact same visual stimuli were used to 273 

compare mixed selectivity between feature/spatial and conjunction tasks. For example, to 274 

compare the feature and the conjunction tasks, we started by selecting a subset of 275 

conjunction trials, in which both visual stimuli appeared at the same location as the 276 

corresponding feature task trials. Then, since all eight shapes were used in a single 277 

recording session for the feature task, a subset of trials, in which same shape pairs were 278 

used as the corresponding conjunction task, could be chosen as the feature dataset. Our 279 

prior methods of ANOVA analyses could thus be applied for comparison across these 280 

datasets. 281 

 For comparing mixed selectivity in success and error trials from the spatial task, 282 

we first examined two task variables—the stimuli location and matching status. In this 283 

analysis, we utilized neurons that had at least 3 match and non-match trials for both the 284 

correct and error dataset, in at least 3 stimuli locations. The number of minimum trials 285 

and stimuli locations were chosen to maximize the average trial number for each cell 286 

included into the analysis, while still retaining a sufficiently large sample (i.e. >150 287 

cells). The same number of trials from each stimuli location were randomly chosen in the 288 

correct and error dataset. This randomized trial selection process was repeated 50 times in 289 

order to make the best use of the uneven number of available trials in two datasets. We 290 
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also analyzed factors of stimuli location and task epoch. For this analysis, we used neural 291 

data from match trials only, and from neurons that had at least 4 correct and error trials, 292 

in at least 4 stimuli locations. 293 

For decoding analysis, spiking responses from 1 second before cue onset to 5 294 

seconds after cue onset were first binned using a 400 ms wide window and 100 ms steps 295 

to create a spike count vector with a length of 57 elements. A pseudo-population was then 296 

constructed using the spike count vectors from all the available neurons of all the 297 

available animals, thus resulting in a dataset with 96 trials, as if they were recorded 298 

simultaneously. The population response matrix was z-score normalized before being 299 

used to train the decoder. A linear Support Vector Machine (SVM) decoding algorithm 300 

was implemented using the MATLAB fitcecoc function to decode stimuli location, 301 

stimuli shape, or the match/non-match status of trials. A 10-fold cross validation method 302 

was used to estimate the decoder performance and 20 random samplings were 303 

implemented to calculate a 95% confidence interval. For the location and feature task, the 304 

decoding baseline for sensory information was 12.5%, since there were 8 different 305 

options, and 50% for the matching status, since there were only 2 different options. In the 306 

pre-training vs post-training decoding analysis (Fig. 8), linear (CS and LMS) and 307 

nonlinear (NMS) neurons are first defined by their pre and post training responses in the 308 

sample or delay2 period. Each classified population was then applied to decode sensory 309 

information (location and shape) and matching status. A randomization test was used to 310 

determine the time points at which decoding performance was significantly different 311 

between different selectivity categories. In short, we constructed the null distribution by 312 

randomly reassigning the cell selectivity labels under comparison, and re-computing the 313 
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maximum absolute difference across all time points of the data in each iteration. This 314 

procedure was repeated for 5000 times. A difference was deemed to be significant if the 315 

true response difference occurred at the extremes of this null distribution (p <0.05, two-316 

tailed). Since every point in the null distribution is the maximum of all time points, this 317 

method already corrected for the multiple comparisons. 318 

Only informative neurons (CS, LMS, and NMS neurons) in the delay2 period 319 

were used for the cross temporal decoding analysis (Fig. 7), since we wanted to explore 320 

the decoding dynamics during the delay period. The linear SVM decoder was trained on 321 

individual time points and thus had 57 linear decision boundaries. The same dataset was 322 

then classified by every decision boundary in the vector to produce a 57x57 matrix—a 323 

process that was repeated 20 times in order to eliminate the noise. The decoding 324 

performance matrix for each condition was normalized individually to highlight the 325 

coding dynamics rather than absolute performance. 326 

Data availability: All relevant data and code will be available from the 327 

corresponding author on reasonable request. Matlab decoder code for figure 8 and 9 is 328 

available at https://github.com/dwhzlh87/mixed-selectivity  329 
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RESULTS 330 

 331 

Extracellular neurophysiological recordings were collected from the lateral PFC of six 332 

monkeys before and after they were trained to perform the match/nonmatch WM tasks 333 

(Meyer et al., 2011; Riley et al., 2018). The task required them to view two stimuli 334 

appearing in sequence, with delay periods intervening between them, and to report 335 

whether or not the second stimulus was identical to the first. The two stimuli could differ 336 

in terms of their location (spatial task, Fig. 1A), shape (feature task, Fig. 1B), or both 337 

(conjunction task, Fig. 1C). If the second stimulus matched with the first, monkeys would 338 

saccade towards a green target during a subsequent interval, otherwise to a blue target at 339 

a diametrical location. A total of 1617 cells from six monkeys and 1495 cells from five 340 

monkeys were recorded while the animals were performing the passive spatial and 341 

feature tasks, respectively, which were mutually dubbed “pre-training.” A total of 1104 342 

cells from three monkeys and 1116 cells from two monkeys were collected while the 343 

animals were performing the active spatial and feature tasks, respectively, which were 344 

mutually dubbed “post-training”. We also collected neural data from 247 neurons for the 345 

passive spatial task from two monkeys after they were trained in the active spatial task. 346 

An additional 975 cells from two monkeys were collected while they were performing 347 

the active “post-training” conjunction task. 348 

 349 

Types of selectivity in individual neuronal responses 350 

In our tasks, the context of a given stimulus depends upon the task interval and sequence 351 

in which it is presented. We first considered how selectivity for stimulus location and 352 
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shape in the spatial, feature and conjunction WM tasks may vary when the same sample 353 

stimulus appears as a match (it is preceded by a cue at the same location/shape) or a 354 

nonmatch (i.e. is preceded by a cue stimulus of a different location/shape). The neuronal 355 

firing rate is therefore a function of the stimulus location/shape (eight shapes, eight 356 

locations arranged on a 3x3 grid with 10 degrees distance between stimuli, excluding the 357 

center location) and whether this sample stimulus matched the cue stimulus. We used a 2-358 

way ANOVA with the factors of stimulus location/shape and match/nonmatch status to 359 

classify neurons into four categories of selectivity. CS neurons exhibited a significant 360 

main effect to only one of the factors (stimulus identity or matching status) and had no 361 

significant interaction term. In Fig. 2, the first exemplar displays a cell selective 362 

exclusively for the location of the stimuli, which does not respond differently regardless 363 

of whether the stimulus appeared as a match or nonmatch. The second exemplar of Fig. 2 364 

displays a cell not selective for the location of the stimuli but demonstrates higher mean 365 

response when the stimulus appeared as a non-match. LMS neurons exhibited a 366 

significant main effect for both factors but had no significant interaction term. The third 367 

exemplar of Fig. 2 displays a neuron demonstrating a higher mean response when stimuli 368 

appear as non-match, while simultaneously displaying the same rank order preference for 369 

location. NMS neurons exhibited a significant interaction effect, as shown in the last 370 

exemplar in Fig. 2, a neuron demonstrating different selectivity pattern for locations 371 

under match vs. non-match conditions. Finally, NS indicated the neurons with no 372 

selectivity to any factors or their interaction under consideration. These analyses were 373 

performed using the firing rate recorded during the stimulus presentation period, and 374 

again, using the firing rate recorded during the delay period that followed it.  375 
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A second type of NMS was identified in terms of selectivity for stimulus 376 

sequence, that is, whether the same stimulus appeared first (cue) or second (sample). To 377 

avoid the confound of the match or nonmatch status of the second stimulus, we relied 378 

exclusively on match stimuli. This form of NMS was also evaluated through a 2-way 379 

ANOVA model, identifying CS, LMS, NMS, and NS neurons in terms of how the 380 

neurons represented the exact same stimulus when it appeared as a cue and as a match 381 

stimulus.  382 

 383 

Effects of training on NMS 384 

When we used the factors of stimulus location/shape and match/nonmatch status for our 385 

two-way ANOVA, we found that training in the spatial WM task increased the proportion 386 

of NMS cells in both the sample period and the delay period that followed the sample 387 

(sample period: pre-training proportion=6.2%, post-training proportion=12.3%, two-388 

sample proportion test, z=5.31, p=1.13×10-7; delay2 period: pre-training proportion= 389 

2.8%, post-training proportion=6.2%, two-sample proportion test, z=4.62, p=4.86×10-5). 390 

However, this increase in selectivity was not exclusive to NMS cells. The proportion of 391 

CS cells also increased in the delay period following the sample (pre-training proportion= 392 

10.6%, post-training proportion=14.8%, two-sample proportion test, z=3.19, p=0.0014).  393 

The increase in NMS cells was not evident for all types of training. When we 394 

looked at the proportion of change across the pre-training and post-training feature task, 395 

we only found an increase of proportion for CS cells (sample period: pre-training 396 

proportion= 12.0%, post-training proportion=15.7%, two-sample proportion test, z=2.65, 397 

p=0.0081; delay2 period: pre-training proportion= 9.0%, post-training proportion=22.6%, 398 
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two-sample proportion test, z=9.37, p=0). No significant increase in the proportion of 399 

NMS cells was observed (sample period: pre-training proportion=5.8%, post-training 400 

proportion=6.7%, two-sample proportion test, z=1.01, p=0.314; delay2 period: pre-401 

training proportion= 4.2%, post-training proportion=4.6%, two-sample proportion test, 402 

z=0.522, p=0.602) (Fig. 3 A,B).  403 

Similar results were observed when we used the factors of stimulus location/shape 404 

and task epoch (cue vs. match) for the two-way ANOVA instead (Fig. 3 C,D). For the 405 

spatial task, training increased the proportion of NMS cells, at least in the delay period 406 

(stimulus period: pre-training proportion= 5.7%, post-training proportion=7.4%, two-407 

sample proportion test, z=1.78, p=0.075; delay period: pre-training proportion= 2.1%, 408 

post-training proportion=6.2%, two-sample proportion test, z=5.03, p=4.94×10-7). A 409 

similar increase was observed for the CS cells (stimulus period: pre-training proportion= 410 

21.3%, post-training proportion=25.3%, two-sample proportion test, z=2.37, p=0.018; 411 

delay period: pre-training proportion= 24.2%, post-training proportion=31.1%, two-412 

sample proportion test, z=3.93, p=8.53×10-5). In the feature task, once again, only the 413 

proportion of CS cells changed (stimulus period: pre-training proportion= 21.9%, post-414 

training proportion=32.6%, two-sample proportion test, z=6.05, p=1.45×10-9; delay 415 

period: pre-training proportion= 27.6%, post-training proportion=41%, two-sample 416 

proportion test, z=7.16, p=8.32×10-13). The proportion of NMS cells with an effect in the 417 

stimulus period remained relatively unchanged for the cue/match period (pre-training 418 

proportion= 3.4%, post-training proportion=4.7%, two-sample proportion test, z=1.59, 419 

p=0.112), as well as the delay period (pre-training proportion= 2.4%, post-training 420 

proportion=3.8%, two-sample proportion test, z=1.95, p=0.051). 421 
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 To further validate our proportional measure for NMS and compare our results to 422 

previous research on NMS in the PFC, we plotted the F scores for the interaction term 423 

(i.e. stimulus identity × matching status) in both the spatial and the feature task (Fig. 4 424 

A). We found that this measure of NMS for individual cells increased specifically for the 425 

spatial task, indicated by much higher F score values after training for the spatial task. 426 

We also measured the dimensionality of population responses in the sample and delay2 427 

period for the spatial and feature task. Again, this analysis confirmed the results of our 428 

cell proportion measure (Fig. 4 B). For the spatial task, there was a significant increase of 429 

dimensionality after training (sample period: pre-training dimensionality= 5.72, post-430 

training dimensionality=10.33, two-sample t test, t(98)=12.21, p=2.18×10-21; sample 431 

period: pre-training dimensionality= 3.25, post-training dimensionality=6.29, two-sample 432 

t test, t(98)=9.39, p=2.51×10-15). For the feature task however, no significance increase 433 

was observed in mean F score (Fig. 4A) or dimensionality (Fig 4B; sample period: pre-434 

training dimensionality= 2.72, post-training dimensionality=2.73, two-sample t test, 435 

t(98)=0.027, p=0.978; sample period: pre-training dimensionality= 2.43, post-training 436 

dimensionality=2.11, two-sample t test, t(98)=3.49, p=7.29×10-4). 437 

 438 

Regional localization of NMS 439 

To assess whether specific sub-regions of the PFC may be specialized for NMS, we 440 

divided the lateral PFC into six regions (Fig. 5 A) and analyzed the respective 441 

neurophysiological data from five of these regions in order to determine the different 442 

areas’ proportional contributions to the observed changes in NMS. We examined NMS 443 

defined by location/shape and match/nonmatch status in the sample period and ultimately 444 
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found that the mid-dorsal subdivision underwent the greatest proportional change in 445 

NMS cells for the spatial task after training (Fig. 5 C), without a comparable increase in 446 

the proportion of CS neurons (Mid-dorsal: CS 21.7% pre-training to 19.0% post- training, 447 

NMS 8.2% pre-training to 21.8% post-training). For the feature task however, the 448 

proportional change in NMS cells was relatively small, with moderate increases in CS 449 

and LMS observed in all three analyzed areas (Fig. 5 B).  450 

 451 

NMS in task context 452 

Previous theoretical studies linked NMS with more flexible readouts of multiple task 453 

variables, thus leading to the hypothesis that task complexity may modulate NMS. To test 454 

this hypothesis, we compared the neural responses to different shapes at the same 455 

location when the stimuli appeared as match or nonmatch in the conjunction task, to the 456 

same neurons’ responses to the same stimuli when they appeared in the feature task. In 457 

the conjunction task, animals needed to simultaneously remember both location and 458 

shape of visual stimuli, while in the feature task, they were only required to remember 459 

shape. Although the hypothesis predicted that the conjunction task would result in greater 460 

NMS than the feature task when the sensory stimuli was the same, this was not what we 461 

observed. No significant differences were observed for either CS cells (feature task 462 

sample proportion= 11.9%, conjunction task sample proportion=9.9%, exact matched 463 

pair sample proportion test ,F=1.229, p=0.197, feature task delay2 proportion= 10.8%, 464 

conjunction task delay2 proportion=11.6%, exact matched pair delay2 proportion test 465 

,F=1.069, p=0.681) or NMS cells (feature task sample proportion= 4.1%, conjunction 466 

task sample proportion=4.4%, exact matched pair sample proportion test, F=1.031, 467 
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p=0.901, feature task delay2 proportion= 4.6%, conjunction task delay2 468 

proportion=5.9%, exact matched pair delay2 proportion test, F=1.278, p=0.266) (Fig. 6 469 

A) in the sample period or the delay2 period that followed. We also examined changes in 470 

individual cells’ selectivity across the feature and conjunction tasks. Although this 471 

analysis was limited by the relatively low proportion of NMS cells in both tasks, we 472 

found an unstable mapping between tasks in the selectivity categories for both CS and 473 

NMS cells (Fig. 6 B), evidenced by the observation that most cells in CS and NMS 474 

category in the feature task changed their selectivity category in the conjunction task. 475 

There is a possibility, however, that the majority of the informative cells were simply due 476 

to chance (p=0.05 was used as threshold for detecting significant terms), which is 477 

enforced by the observation that NMS cells with larger degree of interaction in one task 478 

tend to also fall into the NMS category in the other task (Fig. 6 C). No significant 479 

difference was observed in the proportion of NMS cells when we performed a similar 480 

comparison between the spatial and conjunction task with a relatively small sample size 481 

(Fig. S1).  482 

The comparison of the naïve and trained conditions allowed us to test the overall 483 

incidence of NMS in different populations of PFC neurons, sampled randomly before and 484 

after training, which was carried out over the course of several months. If NMS were 485 

critical for the representation of task-relevant information, we would expect a difference 486 

in the observed proportion of neurons with NMS, when animals are passively viewing 487 

stimuli vs. when they are actively performing the task and storing representations of the 488 

stimuli in their WM. We therefore applied a two-way ANOVA to compare the neural 489 

responses of neurons between the active and passive spatial tasks after the monkeys had 490 
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been trained to perform the active spatial task. We ultimately observed an increase in the 491 

proportion of cells that coded matching status during the sample period, as well as an 492 

increase in the proportion of cells coding sensory information in the delay1 period when 493 

the animal was prompted to report the matching decision. However, the observed 494 

increase in the proportion of NMS cells was not significant (passive proportion= 9.3%, 495 

active proportion=11.7%, exact matched pair proportion test, F=1.385, p=0.362) (Fig. 7 496 

A). Interestingly, a large proportion of cells changed their selectivity category across 497 

tasks, especially for CS cells (Fig. 7 B), and the degree of NMS does not seem to be 498 

predictive of whether a given neuron would fall in the same selectivity category in both 499 

tasks (Fig. 7 C).  500 

 501 

Information encoding by NMS neurons 502 

It is known that training leads to increased incorporation of task relevant information in 503 

neural populations, with relatively little change to stimulus information (confirmed in our 504 

dataset, Fig. S2). However, the relative contribution by NMS is not clear. To quantify the 505 

amount of task relevant information contained in linear (CS and LMS) and NMS cells, 506 

we used a linear SVM decoder to decode sensory information (location and shape) and 507 

match/or nonmatch status information. Since the cell selectivity category could be 508 

defined by their response in either sample or delay2 period, we randomly selected equal 509 

numbers of linear and nonlinear cells in both task epochs for each comparison. The 510 

random selecting process was repeated multiple times to obtain a confidence interval. We 511 

ultimately found that linear and nonlinear cells contain comparable amounts of linearly 512 

decodable information in regard to both sensory information and task relevant 513 
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information. The only observed difference between the decodable information in the 514 

linear and nonlinear cells occurred in the post training feature task, where linear cells 515 

were observed to contain more stimulus information in the sample period.  516 

We also applied cross temporal decoding to compare classic and linear mixed 517 

cells in regard to population coding dynamics during the delay period. If information 518 

were represented by a stable pattern of activity, the classifier trained at one timepoint 519 

would be expected to work equally effectively at other time points where the information 520 

is present. Conversely, if information were represented by dynamic patterns of activity, 521 

then the decision boundary at one time point would not contribute to decoding 522 

information at other time points. The most prominent result from this analysis is that 523 

NMS cells produced significantly more stable code for matching spatial task information, 524 

compared to CS and LMS cells, as indicated by higher performance off the diagonal 525 

during the delay2 period (Fig. 9). 526 

 527 

NMS in correct and error trials 528 

The presence of decodable information in the PFC does not necessarily imply the 529 

presence of information in the conscious mind, and the representation of task relevant 530 

information is ultimately revealed by the ability to conduct the task successfully. In order 531 

to decipher the role of NMS, we examined the F score of the main effects and their 532 

interaction in the ANOVA test in correct vs. error trials for the spatial task (Fig. 10), 533 

which displayed higher NMS levels than the feature or conjunction tasks. Similar to the 534 

pre- vs. post training comparisons, we examined two types of mixed selectivity: stimulus 535 

location vs. matching status and stimulus identity vs. task epoch. The number of trials 536 
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and task variables were matched for each cell to avoid confounds in the comparison. The 537 

mean F score in correct trials for the location variable in the stimulus epochs for the 538 

location × epoch comparison was equal to 1.86, while for the error trials the mean was 539 

2.59 (paired t test, t(147)=3.38, p=9.42 × 10-4 ). The effect extended into the delay 540 

epochs, where the average F score for location in correct trials was 1.43, and that of error 541 

trials was 1.79 (paired t test, t(150)=2.61, p=0.010 ). However, we did not find any 542 

differences in the F score for the interaction terms in any comparison. The results indicate 543 

that NMS may not be necessary in representing task relevant information in WM.  544 
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DISCUSSION 545 

 546 

Selectivity for different types of information is critical in representing the plethora of 547 

stimuli and task contexts that can be maintained in WM. NMS is thought to be critical in 548 

that respect, as it allows efficient representation of flexible, arbitrary combinations of 549 

variables (Barak et al., 2013; Buonomano and Maass, 2009; Fusi et al., 2016; Johnston et 550 

al., 2020; Rigotti et al., 2010). Consistent with this idea, increased dimensionality in 551 

NMS has been highlighted as a potential means of increasing the efficiency of WM task 552 

performance (Johnston et al., 2020; Rigotti et al., 2013) and dimensional collapse 553 

characterizes task errors (Rigotti et al., 2013). Moreover, all task relevant information 554 

could be decoded from NMS neurons alone, despite their relative scarcity, with decoder 555 

accuracy actually increasing as the task became more complex (Rigotti et al., 2013). 556 

NMS is assumed to emerge with training in complex tasks that combine multiple types of 557 

information, or in multiple tasks, even without an explicit requirement to combine such 558 

information (Johnston et al., 2020; Lindsay et al., 2017). However, this idea has not been 559 

tested experimentally until now. Our study, by virtue of analyzing neural recordings 560 

before and after training in a series of cognitive tasks, directly tested these postulates. We 561 

found that NMS resulted in a modest increase with training, but only for some tasks, and 562 

furthermore, task complexity was not a predictor of NMS emergence. A causal 563 

relationship between success and dimensionality—and by extension, NMS—was also not 564 

supported by our results, as we did not observe any significant changes in NMS between 565 

error and success trials. These insights refine and qualify the role NMS plays in WM, and 566 

identify a number of open questions.  567 
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 568 

Effects of training on neural responses 569 

WM is considerably plastic and at least some aspects of it, such as mental processing 570 

speed and the ability to multitask, can be improved with training (Bherer et al., 2008; 571 

Dux et al., 2009; Jaeggi et al., 2008; Klingberg et al., 2005; Klingberg et al., 2002). WM 572 

training has been proven particularly beneficial for clinical populations, e.g. in the case of 573 

traumatic brain injury, attention deficit hyperactivity disorder (ADHD), and 574 

schizophrenia (Klingberg et al., 2002; Subramaniam et al., 2012; Westerberg et al., 575 

2007). However, the verdict of whether WM training confers tangible benefits on normal 576 

adults and whether these benefits transfer to untrained domains, remains a matter of 577 

heated debate. (Constantinidis and Klingberg, 2016; Cortese et al., 2015; Fukuda et al., 578 

2010; Owen et al., 2010; Peijnenborgh et al., 2015; Schwaighofer et al., 2015).  579 

This malleability of cognitive performance is thought to be mediated by the 580 

underlying plasticity in neural responses, most importantly within the PFC 581 

(Constantinidis and Klingberg, 2016). In a series of prior studies, we have investigated 582 

changes in PFC responsiveness and selectivity (Meyer et al., 2011; Meyers et al., 2012; 583 

Qi et al., 2011; Riley et al., 2018), as well as other aspects of neuronal discharges such as 584 

trial-to-trial variability and correlation between neurons (Qi and Constantinidis, 2012a, 585 

2012b). This led to our present analysis where—guided by experimental and theoretical 586 

predictions (Rigotti et al., 2013)—we examined NMS as another potential source of 587 

enhanced ability to represent WM information after training.  588 

 589 
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In agreement with our hypothesis, we found that training increased the proportion 590 

of neurons that exhibit NMS. However, training does not seem to be a prerequisite, as 591 

NMS was also observed in animals that were naïve to any cognitive training. Prior 592 

research has established that the human and primate PFC represent stimuli in memory 593 

even when not prompted to do so (Foster et al., 2017), or without training in WM tasks 594 

(Meyer et al., 2007). Our finding of NMS neurons in naïve monkeys provides another 595 

exemplar of that principle. However, NMS only increased for certain types of task 596 

information and not for others, thus suggesting that its role in the simultaneous 597 

representation of multiple types of information is not universal across tasks. These results 598 

stand in agreement with some prior studies, which have failed to uncover substantial 599 

NMS in the tasks they employed (Cavanagh et al., 2018). Examining where NMS failed 600 

to appear—and where WM representations fail to spontaneously appear— will be an 601 

important area of future investigation for NMS.  602 

The greatest increase in the proportion of neurons that exhibited NMS for the 603 

spatial working memory task was observed at the mid-dorsal region during the sample 604 

presentation period (Fig. 5). This disproportionate increase in NMS neurons was 605 

associated with a modest decrease in neurons that exhibit CS, as predicted by theoretical 606 

studies (Lindsay et al., 2017). However, this finding, too did not generalize across 607 

conditions. During the delay periods of the spatial task, we saw an across-the-board 608 

increase in neurons with CS, which were much more abundant in the trained than the 609 

naïve PFC (Fig. 3). In fact, the increase in feature selectivity after training was driven 610 

almost exclusively by CS cells, suggesting a potential division of labor between NMS 611 

and CS in the PFC for different types of information.  612 
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 613 

Task Complexity and Difficulty  614 

Another potential factor that determines the emergence of NMS is task complexity. NMS 615 

may arise exclusively in highly complex tasks that require subjects to maintain and 616 

combine multiple types of information in their WM, simplifying the involved neural 617 

circuits to achieve greater efficiency (Rigotti et al., 2013). We thus tested this concept by 618 

applying a dataset that relied on three tasks which differed in complexity (and overall 619 

difficulty). The spatial and feature tasks each required maintenance of a single stimulus 620 

property in memory (location or shape). The conjunction task required both. Surprisingly 621 

however, we did not observe a higher incidence of NMS in the conjunction task when 622 

compared to the feature task. Moreover, we observed a much lower incidence of NMS in 623 

the feature task compared to the spatial task despite the fact that the latter was no more 624 

complex or difficult for the monkeys to perform (Meyer et al., 2011; Riley et al., 2018). 625 

This implies that NMS in the PFC may not be necessary for certain types of information, 626 

like object shape, even when the task complexity is high. Alternatively, we may also 627 

consider the possibility that the increased NMS that results from training may be 628 

sufficient for the majority of behavioral requirements, without any additional increases 629 

required. Future research is therefore necessary to assess and examine all of these 630 

possibilities, and more.  631 

 632 

Regional Specialization  633 

Different types of information are represented across the dorso-ventral and anterior-634 

posterior axes of the PFC (Constantinidis and Qi, 2018), and examining the regional 635 
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distribution of NMS neurons within the PFC therefore bears a clear importance. We 636 

found that NMS was most strongly demonstrated in the mid-dorsal area for the spatial 637 

task and the posterior dorsal area for the feature task. This pattern was generally 638 

consistent with the known distribution of neuronal selectivity for stimuli in the PFC 639 

(Riley et al., 2018).  640 

 641 

Information Content and Task Performance 642 

A critical issue regarding the role of Mixed Selectivity is whether nonlinear match 643 

selectivity, by virtue of representing information more efficiently, is also more necessary 644 

for effective task performance (Rigotti et al., 2013). We relied on a linear SVM decoder 645 

to decipher the specific information that may be represented by NMS cells, compared to 646 

CS cells. In the current study, we found similar quantities of information could be 647 

decoded from (equal-sized) populations of CS and NMS neurons, though the coding 648 

dynamics for some types of information were significantly different between CS and 649 

NMS cells. Similarly, when we compared the NMS levels of successful and failed task 650 

trials, we were surprised to find that there was no appreciable difference. This suggests 651 

that loss of information encoded in a nonlinear manner is not the primary factor of 652 

successfully maintaining information in the conscious mind. An important caveat for this 653 

conclusion is that the combination of small and unbalanced number of error trials in 654 

match vs. nonmatch conditions make the detection power for the interaction fairly small 655 

in our analysis. Moreover, with very little NMS presented even in success trials after 656 

matching the trial number for the error condition, a floor effect may have prevented a 657 

further decline from becoming apparent. Nonetheless, our result reinforces the idea that 658 
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NMS is not necessary in all tasks, without which performance fails. An interesting 659 

observation in this analysis was that the proportion of cells tuned to spatial location was 660 

elevated in error trials. The result may imply that task success also depends on the task 661 

relevance of the represented information, with error trials incorporating greater quantities 662 

of task irrelevant spatial information and therefore unnecessarily drawing away WM 663 

resources without benefit. Ultimately, by comparing and evaluating the conditions in 664 

which NMS emerges, we may decipher its true role in WM and other cognitive functions. 665 
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 783 
Figure 1. Task structure and stimuli used. The animals were required to maintain 784 
center fixation throughout both active and passive task trials. At the end of active 785 
tasks trials however, monkeys were required to make a saccade to a green 786 
target if the stimuli matched or to a blue target if the stimuli did not match. (A) 787 
Spatial location match-to-sample task, nine possible cue locations in a session 788 
shown in the inset. (B) Shape feature match-to-sample task, 8 possible shapes in 789 
a session shown in the inset. (C) Spatial-shape conjunction task, up to two 790 
locations and two stimuli shapes were used for any single particular session. 791 
Stimuli in all tasks extended 2 degree of visual angle. 792 
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 793 
Figure 2. Exemplar neural responses from the spatial task for CS (classical 794 
selective), LMS (linear mixed selective) and NMS (nonlinear mixed selective) 795 
cells, defined by the task variables of stimulus location and match status. 796 
Selectivity classification were based on the spike responses of the 500 ms 797 
sample period. The locations the stimuli were color coded, with a solid line/bar 798 
representing when the stimulus was a match with the cue, and a dash line/bar 799 
representing when the stimulus was a nonmatch with the cue. Shaded regions 800 
and error bar indicate 2 times SE of firing rate.  801 
 802 
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 803 
Figure 3. Training increased mixed selectivity preferentially in the spatial task. (A) 804 
Bar graphs show the proportions of cells tuned to stimuli identities 805 
(Location/Shape), matching status and their interaction (i.e. NMS) in different 806 
stages of the task trials, both before and after the animals were trained for the 807 
active tasks. Pie charts show the proportion of different selectivity categories 808 
(NS, CS, LMS and NMS) in the sample and delay2 periods of both tasks, both 809 
before and after the animals were trained for the active tasks. (B) Plots of 810 
corresponding proportion changes. (C) Same as (A) but examining the 811 
interaction between stimuli identities (Location/Shape), and task epoch 812 
(cue/delay1 vs sample/delay2 period), instead of trials matching status. (D) Plots 813 
of corresponding proportion changes.  814 
  815 
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 816 

 817 
 818 
Figure 4. (A) Analysis of F score for the interaction term (stimuli identity × 819 
match/nonmatch) shows that the degree of mixed selectivity increased after 820 
training for the spatial task only. Black dots in the box represent mean, box 821 
boundaries indicate 25%-75% range, and whiskers represents 1.5 IQR. (B) 822 
Dimensionality measure of neural responses in the spatial (left) and feature 823 
(right) task, before and after training in the active tasks. 824 
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 825 
 826 
Figure 5. Cell selectivity changes by brain regions. (A) PFC subdivisions that 827 
were utilized for recording in the current study. (B) The effects of training in for 828 
the active feature task on the proportion of different selectivity categories (NS, 829 
CS, LMS and NMS) in the sample period. There were significant increases in the 830 
proportion of LMS cells in all three PFC regions included for analysis, but 831 
relatively low increases in the proportion of NMS cells. (C) The effects of training 832 
in the active spatial task on the proportion of different selectivity categories (NS, 833 
CS, LMS and NMS) in the sample period. The greatest increase in NMS 834 
occurred at the mid-dorsal region.  835 
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 836 
Figure 6. Cell selectivity in tasks with different task complexity. Analyses were 837 
performed on neural data from the same population of cells, with matching 838 
numbers of trials in the feature and the conjunction tasks. Only trials with the 839 
same stimuli were included in this analysis. (A) Examining interaction (NMS) 840 
across stimulus preference and matching status. Bar graphs show the 841 
proportions of cells tuned to stimuli shape, trials matching status and their 842 
interaction in different stages of both the feature and conjunction tasks. Pie 843 
charts display the proportion of different selectivity categories (NS, CS, LMS and 844 
NMS) in corresponding sample and delay2 periods. (B) Cell selectivity category 845 
mapping cross tasks. (C) F scores of the interaction term in the ANOVA were 846 
compared between cells that were classified as NMS cell in both tasks 847 
(overlapping cells), and those only classified as NMS in one of the tasks (non-848 
overlapping cells). 849 
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 850 
Figure 7. Cell selectivity in tasks with the same sensory input but different 851 
behavioral requirements. Analyses were performed on neural data from the same 852 
population of cells, with matching number of trials in the passive and active 853 
spatial tasks. Only trials that had the exact same stimuli pairs in both tasks were 854 
included in this analysis. (A) Examining interaction (NMS) between stimulus 855 
preference and matching status. Bar graphs show the proportions of cells tuned 856 
to stimuli location, trials matching status and their interaction in different stages of 857 
the tasks. Pie charts display the proportion of different selectivity categories (NS, 858 
CS, LMS and NMS) in the sample period. (B) Cell selectivity category mapping 859 
across tasks in the sample period. (C) F scores of the interaction term in the 860 
ANOVA were compared between cells that were classified as NMS cell in both 861 
tasks (overlapping cells), and those only classified as NMS in one of the tasks 862 
(non-overlapping cells). 863 
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 864 
Figure 8. Comparing linear SVM decoder information between pure and linear 865 
selective cells (CS and LMS) vs. NMS cells. An equal number of linear (CS and 866 
LMS) and NMS cells were randomly selected from the sample or delay2 period. 867 
The selectivity categories were defined by spiking count in corresponding periods 868 
with reference to stimuli identity (stimuli location or shape) and matching status. 869 
The decoders were trained to classify either stimuli identity or match/nonmatch 870 
status with z-score normalized pseudo-population response. (A) Decoding 871 
performance in the spatial task before and after training. (B) Decoding 872 
performance in the feature task before and after training. Red and blue bars 873 
indicate time points when the performance for NMS and linear cells differs 874 
significantly within the shaded regions. 875 
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 876 
Figure 9. Coding dynamics of pure and linearly selective cells (CS and LMS) vs. 877 
NMS cells. Linear kernel SVM decoders were trained to perform cross-temporal 878 
decoding with different selectivity populations in the delay2 period, for both 879 
spatial and feature tasks, as indicated by the Y-axis. The decoder was then 880 
required to predict whether a match or non-match occurred at each time point 881 
based on a different test set of data, as indicated by the X-axis. Normalized 882 
decoding accuracy is indicated in the color bar, demonstrating how spatial and 883 
feature WM representations can be decoded from specific patterns of neural 884 
activity. Coding of matching information for NMS cells is more stable across time 885 
for the spatial task.   886 
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 887 

 888 
Figure 10. Comparison of cell selectivity in correct and error trials in the same 889 
population for the spatial task, after controlling for trial number and location pairs 890 
used. Two forms of mixed selectivity were examined (location x matching, 891 
location x task epoch). No change (location x matching delay2 period) or 892 
increase (location x task stim and delay epochs, location x matching sample 893 
period) in the F score of the interaction term of ANOVA results were observed in 894 
cells with significant interaction (NMS) terms. Higher F score for the variable of  895 
stimuli location was observed in error trials in the location x Epoch comparison. 896 
Box boundaries represent 25%-75% data range, whiskers indicate 1.5 IQR and 897 
squares indicates means across cells. 898 
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 899 
Fig. S1. Plotting conventions same as Fig. 6. Comparing cell selectivity between 900 
the spatial and the conjunction tasks. The analysis was performed on neural data 901 
from the same population of cells, with matching numbers of trials in the spatial 902 
and the conjunction tasks. Only trials with the same stimuli were included in this 903 
analysis. (A) Examining interaction (NMS) between stimulus preference and 904 
matching status. Bar graphs display the proportions of cells tuned to stimuli 905 
shape, trials matching status and their interaction in different stages of the tasks, 906 
in both the feature and conjunction task. Pie charts display the proportion of 907 
different selectivity categories (NS, CS, LMS and NMS) in corresponding sample 908 
and delay2 periods. (B) Cell selectivity category mapping across tasks. (C) F 909 
scores of the interaction term in the ANOVA were compared between cells that 910 
were classified as NMS cells in both tasks (overlapping cells), and those only 911 
classified as NMS in one of the tasks (non-overlapping cells). Similar to the 912 
comparison between the feature and the conjunction tasks, no change in the 913 
proportion of NMS was observed. 914 
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 915 
Fig. S2. Incorporation of new information after training for the spatial and the 916 
feature tasks. Linear SVM decoders were trained to classify either stimuli identity 917 
or match/nonmatch status with z-score normalized pseudo-population response.  918 
Color bars indicate time points when the performance for NMS and linear cells 919 
differs significantly. Red bar for decoding matching status, blue bar for decoding 920 
stimuli identity. 921 
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