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35 ABSTRACT

36

37  Neurons in the prefrontal cortex (PFC) are typically activated by different cognitive

38  tasks, and also by different stimuli and abstract variables within these tasks. A single

39  neuron’s selectivity for a given stimulus dimension often changes depending on its

40  context, a phenomenon known as nonlinear mixed selectivity (NMS). It has previously
41  been hypothesized that NMS emerges as a result of training to perform tasks in different
42  contexts. We tested this hypothesis directly by examining the neuronal responses of

43  different PFC areas before and after monkeys were trained to perform different working
44 memory tasks involving visual stimulus locations and/or shapes. We found that training
45  induces a modest increase in the proportion of PFC neurons with NMS exclusively for
46  spatial working memory, but not shape working memory tasks, with area 9/46

47  undergoing the most significant increase in NMS cell proportion. We also found that

48  increased working memory task complexity, in the form of simultaneously storing

49  location and shape combinations, does not increase the degree of NMS for stimulus shape
50  with other task variables. Lastly, in contrast to the previous studies, we did not find

51  evidence that NMS is predictive of task performance. Our results thus provide critical
52 insights on the representation of stimuli and task information in neuronal populations,
53  which may pave the way to a greater understanding of neural selectivity in working

54  memory.
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SIGNIFICANCE STATEMENT

How multiple types of information are represented in working memory remains a
complex computational problem. It has been hypothesized that nonlinear mixed
selectivity allows neurons to efficiently encode multiple stimuli in different contexts,
after subjects have been trained in complex tasks. Our analysis of prefrontal recordings
obtained before and after training monkeys to perform working memory tasks only
partially agreed with this prediction, in that nonlinear mixed selectivity emerged for
spatial but not shape information, and mostly in mid-dorsal PFC. Nonlinear mixed
selectivity also displayed little modulation across either task complexity or correct
performance. These results point to other mechanisms, in addition to nonlinear mixed
selectivity, to represent complex information about stimulus and context in neuronal

activity.
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69 INTRODUCTION

70

71 Working memory (WM) is broadly defined as the ability to encode, maintain, and

72 manipulate information in the conscious mind over a period of seconds without the

73  presence of any sensory inputs. As a core component of complex cognitive abilities such
74 as planning and reasoning, the true importance of WM ultimately depends on whether it
75  can maintain and manipulate task relevant information in a task relevant manner

76  (Baddeley, 2012). Multiple variables, including external sensory inputs and internal task
77  requirements, must be encoded in order to achieve the level of adaptability in WM that is
78  necessary for complex tasks. The mechanisms that underlie this encoding process across
79  time and neuronal population is one of the most important questions in current WM

80  research.

81 When individuals are required to maintain objects in their WM, neurons from a
82  network of brain regions may exhibit selective and sustained increases or decreases in

83  their activity in order to represent the remembered objects through these unique patterns
84  of activity (Constantinidis and Procyk, 2004). The prefrontal cortex (PFC) plays a leading
85  role in this network, and by extension, in the use of WM (Riley and Constantinidis,

86  2016). For example, when the PFC is damaged or degraded, whether through trauma,

87 illness, or experimental lesions, performance in WM tasks seems to decrease dramatically
88  (Curtis and D'Esposito, 2004; Morris and Baddeley, 1988; Rossi et al., 2007).

89 Individual PFC neurons typically encode more than one variables, and the exact
90  variables encoded are task dependent (Asaad et al., 2000; Machens et al., 2010; Mansouri

91 etal., 2006; Qi et al., 2015; Warden and Miller, 2010). More interestingly, a portion of
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92 neurons exhibit nonlinear mixed selectivity (NMS) for different variables, which means
93  that their response to the combination of variables cannot be predicted by the linear
94  summation of their responses to single variables (Johnston et al., 2020; Parthasarathy et
95 al., 2017; Rigotti et al., 2013). Theoretical studies have shown that NMS is useful for
96 linear readouts of flexible, arbitrary combinations of variables (Buonomano and Maass,
97  2009; Fusi et al., 2016; Rigotti et al., 2010), and may also control the trade-off between
98  discrimination and generalization (Barak et al., 2013; Johnston et al., 2020).
99 Despite the proposed importance of NMS on theoretical grounds, some
100  experimental studies have failed to detect neurons with NMS (Cavanagh et al., 2018). It
101 s therefore possible that NMS may manifest exclusively in a limited set of PFC
102 subdivisions or alternatively, that NMS emerges exclusively after training to perform
103 specific types of cognitive tasks. Moreover, the implications of NMS on other aspects of
104  neural encoding, such as code stability, have not yet been investigated. We were therefore
105  motivated to analyze and compare neural data from rhesus macaque monkeys before and
106  after training. Here we report results of NMS as a function of task training, performance
107  of different types of working memory tasks, and correct and error trials, across different

108  prefrontal areas.
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109 METHODS

110

111  Animals: Data obtained from six male rhesus monkeys (Macaca mulatta), age 59 years
112 old, weighing 5-12 kg, as previously documented (Riley et al., 2018), were analyzed in
113 this study. None of the animals had any prior experimentation experience at the onset of
114 our study. Monkeys were either single-housed or pair-housed in communal rooms with
115  sensory interactions with other monkeys. All experimental procedures followed

116  guidelines set by the U.S. Public Health Service Policy on Humane Care and Use of

117  Laboratory Animals and the National Research Council’s Guide for the Care and Use of
118  Laboratory Animals and were reviewed and approved by the Wake Forest University
119  Institutional Animal Care and Use Committee.

120

121  Experimental setup: Monkeys sat with their head fixed in a primate chair while viewing a

122 monitor positioned 68 cm away from their eyes with dim ambient illumination. Animals
123 were required to fixate on a 0.2° white square appearing in the center of the screen.

124 During each trial, the animals maintained fixation on the square while visual stimuli were
125  presented either at a peripheral location or over the fovea in order to receive a juice

126  reward. Any break of fixation immediately terminated the trial and no reward was given.
127  Eye position was monitored throughout the trial using a non-invasive, infrared eye

128  position scanning system (model RK-716; ISCAN, Burlington, MA). The system

129  achieved a < 0.3° resolution around the center of vision. Eye position was sampled at 240
130  Hz, digitized and recorded. Visual stimuli display, monitoring of eye position, and the

131  synchronization of stimuli with neurophysiological data were performed with in-house
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132 software implemented on the MATLAB environment (Mathworks, Natick, MA), and
133 utilizing the Psychophysics Toolbox (Meyer and Constantinidis, 2005).
134

135  Pre-training task: Following a brief period of fixation training and acclimation to the

136  stimuli, monkeys were required to fixate on a center position while stimuli were

137  displayed on the screen. The monkeys were rewarded for maintaining fixation during the
138  trial with a liquid reward (fruit juice). The stimuli shown in the pre-training passive

139  spatial task were white 2° squares, presented in one of nine possible locations arranged in
140 a3 x 3 grid with 10° distance between adjacent stimuli. The stimuli shown in the pre-
141  training passive feature task were white 2° circles, diamonds, H-letters, hashtags, plus
142 signs, squares, triangles, or inverted Y-letters, also presented in one of nine possible

143 locations arranged in a 3 x 3 grid with 10° distance between adjacent stimuli.

144 Presentation began with a fixation interval of 1 s where only the fixation point
145  was displayed, followed by a 500 ms of stimulus presentation (referred to hereafter as
146  cue), followed by a 1.5 s “delay” interval (referred to hereafter as delayl) where, again,
147  only the fixation point was displayed. A second stimulus (referred to hereafter as sample)
148  was subsequently shown for 500 ms. In the spatial task, this second stimulus would be
149  either identical in location to the initial stimulus, or diametrically opposite the first

150  stimulus. In the feature task, this second stimulus would always be identical in location to
151  the initial stimulus and would either be an identical shape or the corresponding non-

152 match shape (each shape was paired with one non-match shape).

153
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154  In both the spatial and feature task, this second stimulus display was followed by another
155  “delay” period (referred to hereafter as delay2) of 1.5 s where only the fixation point was
156  displayed. The location and identity of stimuli was of no behavioral relevance to the

157  monkeys during the “pre-training” phase, as fixation was the only necessary action for
158  obtaining reward.

159

160  Post-training task: Four of the six monkeys were trained to complete active spatial,

161  feature and conjunction WM tasks. These active spatial and feature tasks were identical
162 to the passive spatial and feature tasks that were applied during the “pre-training” phase,
163 except that these tasks now required the monkeys to remember the spatial location or the
164  shape feature of the first presented stimulus, and report whether the second stimulus

165  matched the spatial location or shape feature of the first stimulus, respectively, via

166  saccading to one of two target stimuli (green for match, blue for non-match). Each target
167  stimulus could appear at one of two locations orthogonal to the cue/sample stimuli,

168  pseudo-randomized in each trial.

169 The conjunction task combined the active spatial and feature tasks, and the stimuli
170  shown were a white 2° circle, diamond, H-letter, hashtag, plus sign, square, triangle, or
171  inverted Y-letter shapes, presented in one of nine possible locations arranged ina 3 x 3
172 grid with 10° distance between adjacent stimuli. Each trial consisted of a fixation interval
173 of 1 s where only the fixation point was displayed, followed by 500 ms of the first

174  stimulus presentation, followed by a 1.5 s delay interval where, again, only the fixation
175  point was displayed. A second stimulus was subsequently shown for 500 ms, and after a

176  second, 1.5 s delay period the monkeys would report whether the second stimulus
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177  matched both the spatial location and shape feature of the first stimulus, via saccading to
178  one of the two target stimuli. The conjunction task was therefore the most complex task,
179  as the monkeys were required to simultaneously store two different items—Iocation and
180  shape—in their WM.

181

182  Surgery and neurophysiology: A 20 mm diameter craniotomy was performed over the

183  PFC and a recording cylinder was implanted over the site. The location of the cylinder
184  was visualized through anatomical magnetic resonance imaging (MRI) and stereotaxic
185  coordinates post-surgery. For two of the four monkeys the recording cylinder was moved
186  after an initial round of recordings in the post-training phase to sample an additional

187  surface of the PFC.

188

189  Anatomical localization. Each monkey underwent an MRI scan prior to

190  neurophysiological recordings. Electrode penetrations were mapped onto the cortical
191  surface. We identified 6 lateral PFC regions: a posterior-dorsal region that included area
192  8A, a mid-dorsal region that included area 8B and area 9/ 46, an anterior-dorsal region
193 that included area 9 and area 46, a posterior-ventral region that included area 45, an

194  anterior-ventral region that included area 47/12, and a frontopolar region that included
195 area 10. However, the frontopolar region was not sampled sufficiently to be included in
196  the present analyses.

197

198  In addition to comparisons between brain areas segmented in this fashion, other analyses

199  were performed to account for the position of each neuron along the AP axis. For the
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200  purposes of our analysis, we defined the AP axis as the line connecting the genu of the
201  arcuate sulcus to the frontal pole. The recording coordinates of each neuron were
202  projected onto this line, with position expressed as a proportion of the line’s length.

203

204  Neuronal recordings: Neural recordings were carried out in areas 8, 9, 9/46, 45, 46, and

205  47/12 of the PFC both before and after training in each WM task. Subsets of the data

206  presented here were previously used to determine the collective properties of neurons in
207  the dorsal and ventral PFC, as well as the properties of neurons before and after training
208  in the posterior-dorsal, mid-dorsal, anterior-dorsal, posterior-ventral, and anterior-ventral
209  PFC subdivisions. Extracellular recordings were performed with multiple

210  microelectrodes that were either glass- or epoxylite-coated tungsten, with a 250 um

211 diameter and 1-4 MQ impedance at 1 kHz (Alpha-Omega Engineering, Nazareth, Israel).
212 A Microdrive system (EPS drive, Alpha- Omega Engineering) advanced arrays of up to
213 8-microelectrodes, spaced 0.2—1.5 mm apart, through the dura and into the PFC. The

214  signal from each electrode was amplified and band-pass filtered between 500 Hz and 8
215  kHz while being recorded with a modular data acquisition system (APM system, FHC,
216  Bowdoin, ME). Waveforms that exceeded a user-defined threshold were sampled at 25 ps
217  resolution, digitized, and stored for off-line analysis. Neurons were sampled in an

218  unbiased fashion, collecting data from all units isolated from our electrodes, with no

219  regard to the response properties of the isolated neurons. A semi-automated cluster

220  analysis relied on the KlustaKwik algorithm, which applied principal component analysis
221  of the waveforms, to sort recorded spike waveforms into separate units. To ensure a

222  stable firing rate in the analyzed recordings, we identified recordings in which a

10
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223 significant effect of trial sequence was evident at the baseline firing rate (ANOVA, p <
224 0.05), e.g., due to a neuron disappearing or appearing during a run, as we were collecting
225  data from multiple electrodes. Data from these sessions were truncated so that analysis
226  was only performed on a range of trials with stable firing rate. Less than 10% of neurons
227  were corrected in this way. Identical data collection procedures, recording equipment,
228  and spike sorting algorithms were used before and after training in order to prevent any
229  analytical confounds.

230

231  Data analysis: Data analysis was implemented with the MATLAB computational

232 environment (Mathworks, Natick, MA), with additional statistic tests implemented

233 through Originlab (OriginLab Corporation, Northampton, MA) and StatsDirect

234  (StatsDirect Ltd. England). Peristimulus time histograms (PSTHs) for illustrations were
235  calculated through the moving window average method with a Gaussian window that had
236  a 200 ms standard deviation, with the shaded area indicating two times standard error
237  cross trials. For all tasks, only cells with at least 12 correct trials for each cue-sample
238  location/shape pairs were included in the analysis. To classify neurons of the spatial task
239  into different categories of selectivity, we performed two-way ANOV As on the spike
240  count between either the stimuli location x matching status in for the trial, or between
241  stimuli location x task epoch (first or second stimulus presentation). Neurons with classic
242 selectivity (CS) exhibited a main effect of only one factor without significant interaction
243 term. Neurons with linear mixed selectivity (LMS) exhibited main effects of both factors
244  without significant interaction term. Neurons with NMS exhibited a significant

245  interactions term. Finally, non-selective (NS) neurons exhibited no significant term for

11
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246  both the main effects and the interaction term. Similarly, the two factors for feature task
247  ANOVA analysis were stimuli shape x matching status, and stimuli shape x task epoch
248  for the trial.

249 A method based on singular value decomposition (SVD) and cross validation was
250  used to calculate population dimensionality for the spatial and feature tasks (Ahlheim and
251  Love, 2018). The dimensionality of a matrix is defined as its number of non-zero singular
252 wvalues, identified by SVD. Under this condition however, the noise in the recorded neural
253  data could potentially inflate the number of non-zero singular values, even if the true

254  dimensionality were low. Reconstruction from components with cross-validation could
255  be used to estimate dimensionality with noise, under the assumption that only true

256  underlying dimensionality can contribute to the reconstruction performance in the cross-
257  validation dataset. In short, data from j trials were randomly assigned to training the

258  dataset with j-2 trials, using one of the remaining trials for validation and the other for
259  testing. SVD was then applied to the averaged training data to obtain all of the possible
260 low-dimensional reconstructions, which were then correlated through a validation run.
261  The dimensionality that produced the highest average correlation across j-1 runs was

262  selected as dimensionality estimate k for this fold, and a k-dimensional reconstruction
263  was correlated with the held-out test data, resulting in the final reconstruction correlation.
264 A similar method had also been recently used to estimate the dimensionality over time for
265  neural data (Cueva et al., 2020). The dimensionality of the sample and delay?2 period in
266  the spatial and feature task was calculated on 50 resamples of a 200-cell pseudo-

267  population in the corresponding datasets.

12
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268 Only PFC areas with more than 50 cells in both pre- and post-training time points
269  were included in the subdivision mixed selectivity comparison analysis. Thus, for the
270  feature task, only data from the mid-dorsal, posterior-dorsal and posterior-ventral PFC
271  were analyzed, while the spatial task analyzed data from the mid-dorsal, posterior-dorsal,
272  posterior-ventral, anterior-dorsal and anterior-ventral PFC.

273 Neural data from tasks that applied the exact same visual stimuli were used to
274  compare mixed selectivity between feature/spatial and conjunction tasks. For example, to
275  compare the feature and the conjunction tasks, we started by selecting a subset of

276  conjunction trials, in which both visual stimuli appeared at the same location as the

277  corresponding feature task trials. Then, since all eight shapes were used in a single

278  recording session for the feature task, a subset of trials, in which same shape pairs were
279  used as the corresponding conjunction task, could be chosen as the feature dataset. Our
280  prior methods of ANOVA analyses could thus be applied for comparison across these
281  datasets.

282 For comparing mixed selectivity in success and error trials from the spatial task,
283  we first examined two task variables—the stimuli location and matching status. In this
284  analysis, we utilized neurons that had at least 3 match and non-match trials for both the
285  correct and error dataset, in at least 3 stimuli locations. The number of minimum trials
286  and stimuli locations were chosen to maximize the average trial number for each cell

287  included into the analysis, while still retaining a sufficiently large sample (i.e. >150

288  cells). The same number of trials from each stimuli location were randomly chosen in the
289  correct and error dataset. This randomized trial selection process was repeated 50 times in

290  order to make the best use of the uneven number of available trials in two datasets. We

13
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291  also analyzed factors of stimuli location and task epoch. For this analysis, we used neural
292  data from match trials only, and from neurons that had at least 4 correct and error trials,
293  inat least 4 stimuli locations.

294 For decoding analysis, spiking responses from 1 second before cue onset to 5

295  seconds after cue onset were first binned using a 400 ms wide window and 100 ms steps
296  to create a spike count vector with a length of 57 elements. A pseudo-population was then
297  constructed using the spike count vectors from all the available neurons of all the

298  available animals, thus resulting in a dataset with 96 trials, as if they were recorded

299  simultaneously. The population response matrix was z-score normalized before being
300  used to train the decoder. A linear Support Vector Machine (SVM) decoding algorithm
301  was implemented using the MATLAB fitcecoc function to decode stimuli location,

302  stimuli shape, or the match/non-match status of trials. A 10-fold cross validation method
303  was used to estimate the decoder performance and 20 random samplings were

304  implemented to calculate a 95% confidence interval. For the location and feature task, the
305  decoding baseline for sensory information was 12.5%, since there were 8 different

306  options, and 50% for the matching status, since there were only 2 different options. In the
307  pre-training vs post-training decoding analysis (Fig. 8), linear (CS and LMS) and

308  nonlinear (NMS) neurons are first defined by their pre and post training responses in the
309  sample or delay?2 period. Each classified population was then applied to decode sensory
310  information (location and shape) and matching status. A randomization test was used to
311  determine the time points at which decoding performance was significantly different

312 between different selectivity categories. In short, we constructed the null distribution by

313  randomly reassigning the cell selectivity labels under comparison, and re-computing the

14
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314  maximum absolute difference across all time points of the data in each iteration. This
315  procedure was repeated for 5000 times. A difference was deemed to be significant if the
316  true response difference occurred at the extremes of this null distribution (p <0.05, two-
317 tailed). Since every point in the null distribution is the maximum of all time points, this
318  method already corrected for the multiple comparisons.

319 Only informative neurons (CS, LMS, and NMS neurons) in the delay?2 period
320  were used for the cross temporal decoding analysis (Fig. 7), since we wanted to explore
321  the decoding dynamics during the delay period. The linear SVM decoder was trained on
322  individual time points and thus had 57 linear decision boundaries. The same dataset was
323  then classified by every decision boundary in the vector to produce a 57x57 matrix—a
324 process that was repeated 20 times in order to eliminate the noise. The decoding

325  performance matrix for each condition was normalized individually to highlight the

326  coding dynamics rather than absolute performance.

327 Data availability: All relevant data and code will be available from the

328  corresponding author on reasonable request. Matlab decoder code for figure 8 and 9 is

329  available at https://github.com/dwhzlh87/mixed-selectivity

15
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330 RESULTS

331

332 Extracellular neurophysiological recordings were collected from the lateral PFC of six
333  monkeys before and after they were trained to perform the match/nonmatch WM tasks
334 (Meyer et al., 2011; Riley et al., 2018). The task required them to view two stimuli

335  appearing in sequence, with delay periods intervening between them, and to report

336  whether or not the second stimulus was identical to the first. The two stimuli could differ
337 interms of their location (spatial task, Fig. 1A), shape (feature task, Fig. 1B), or both
338  (conjunction task, Fig. 1C). If the second stimulus matched with the first, monkeys would
339  saccade towards a green target during a subsequent interval, otherwise to a blue target at
340  adiametrical location. A total of 1617 cells from six monkeys and 1495 cells from five
341  monkeys were recorded while the animals were performing the passive spatial and

342  feature tasks, respectively, which were mutually dubbed “pre-training.” A total of 1104
343  cells from three monkeys and 1116 cells from two monkeys were collected while the
344  animals were performing the active spatial and feature tasks, respectively, which were
345  mutually dubbed “post-training”. We also collected neural data from 247 neurons for the
346  passive spatial task from two monkeys after they were trained in the active spatial task.
347  An additional 975 cells from two monkeys were collected while they were performing
348  the active “post-training” conjunction task.

349

350  Types of selectivity in individual neuronal responses

351  In our tasks, the context of a given stimulus depends upon the task interval and sequence

352 in which it is presented. We first considered how selectivity for stimulus location and
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353  shape in the spatial, feature and conjunction WM tasks may vary when the same sample
354  stimulus appears as a match (it is preceded by a cue at the same location/shape) or a

355 nonmatch (i.e. is preceded by a cue stimulus of a different location/shape). The neuronal
356  firing rate is therefore a function of the stimulus location/shape (eight shapes, eight

357  locations arranged on a 3x3 grid with 10 degrees distance between stimuli, excluding the
358  center location) and whether this sample stimulus matched the cue stimulus. We used a 2-
359  way ANOVA with the factors of stimulus location/shape and match/nonmatch status to
360 classify neurons into four categories of selectivity. CS neurons exhibited a significant
361  main effect to only one of the factors (stimulus identity or matching status) and had no
362  significant interaction term. In Fig. 2, the first exemplar displays a cell selective

363  exclusively for the location of the stimuli, which does not respond differently regardless
364  of whether the stimulus appeared as a match or nonmatch. The second exemplar of Fig. 2
365  displays a cell not selective for the location of the stimuli but demonstrates higher mean
366  response when the stimulus appeared as a non-match. LMS neurons exhibited a

367  significant main effect for both factors but had no significant interaction term. The third
368  exemplar of Fig. 2 displays a neuron demonstrating a higher mean response when stimuli
369  appear as non-match, while simultaneously displaying the same rank order preference for
370  location. NMS neurons exhibited a significant interaction effect, as shown in the last

371  exemplar in Fig. 2, a neuron demonstrating different selectivity pattern for locations

372 under match vs. non-match conditions. Finally, NS indicated the neurons with no

373 selectivity to any factors or their interaction under consideration. These analyses were
374  performed using the firing rate recorded during the stimulus presentation period, and

375  again, using the firing rate recorded during the delay period that followed it.
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376 A second type of NMS was identified in terms of selectivity for stimulus

377  sequence, that is, whether the same stimulus appeared first (cue) or second (sample). To
378  avoid the confound of the match or nonmatch status of the second stimulus, we relied
379  exclusively on match stimuli. This form of NMS was also evaluated through a 2-way
380  ANOVA model, identifying CS, LMS, NMS, and NS neurons in terms of how the

381  neurons represented the exact same stimulus when it appeared as a cue and as a match
382 stimulus.

383

384  Effects of training on NMS

385  When we used the factors of stimulus location/shape and match/nonmatch status for our
386  two-way ANOVA, we found that training in the spatial WM task increased the proportion
387  of NMS cells in both the sample period and the delay period that followed the sample
388  (sample period: pre-training proportion=6.2%, post-training proportion=12.3%, two-

389  sample proportion test, z=5.31, p=1.13x107; delay?2 period: pre-training proportion=

390  2.8%, post-training proportion=6.2%, two-sample proportion test, z=4.62, p=4.86x107).
391  However, this increase in selectivity was not exclusive to NMS cells. The proportion of
392 CS cells also increased in the delay period following the sample (pre-training proportion=
393 10.6%, post-training proportion=14.8%, two-sample proportion test, z=3.19, p=0.0014).
394 The increase in NMS cells was not evident for all types of training. When we

395  looked at the proportion of change across the pre-training and post-training feature task,
396  we only found an increase of proportion for CS cells (sample period: pre-training

397  proportion= 12.0%, post-training proportion=15.7%, two-sample proportion test, z=2.65,

398  p=0.0081; delay?2 period: pre-training proportion= 9.0%, post-training proportion=22.6%,
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399  two-sample proportion test, z=9.37, p=0). No significant increase in the proportion of
400  NMS cells was observed (sample period: pre-training proportion=5.8%, post-training
401  proportion=6.7%, two-sample proportion test, z=1.01, p=0.314; delay?2 period: pre-

402  training proportion= 4.2%, post-training proportion=4.6%, two-sample proportion test,
403  z=0.522, p=0.602) (Fig. 3 A,B).

404 Similar results were observed when we used the factors of stimulus location/shape
405  and task epoch (cue vs. match) for the two-way ANOVA instead (Fig. 3 C,D). For the
406  spatial task, training increased the proportion of NMS cells, at least in the delay period
407  (stimulus period: pre-training proportion= 5.7%, post-training proportion=7.4%, two-
408  sample proportion test, z=1.78, p=0.075; delay period: pre-training proportion=2.1%,
409  post-training proportion=6.2%, two-sample proportion test, z=5.03, p=4.94x107). A

410  similar increase was observed for the CS cells (stimulus period: pre-training proportion=
411  21.3%, post-training proportion=25.3%, two-sample proportion test, z=2.37, p=0.018;
412 delay period: pre-training proportion= 24.2%, post-training proportion=31.1%, two-

413  sample proportion test, z=3.93, p=8.53x107). In the feature task, once again, only the
414  proportion of CS cells changed (stimulus period: pre-training proportion= 21.9%, post-
415  training proportion=32.6%, two-sample proportion test, z=6.05, p=1.45x107; delay

416  period: pre-training proportion= 27.6%, post-training proportion=41%, two-sample

417  proportion test, z=7.16, p=8.32x1071%). The proportion of NMS cells with an effect in the
418  stimulus period remained relatively unchanged for the cue/match period (pre-training
419  proportion= 3.4%, post-training proportion=4.7%, two-sample proportion test, z=1.59,
420  p=0.112), as well as the delay period (pre-training proportion= 2.4%, post-training

421  proportion=3.8%, two-sample proportion test, z=1.95, p=0.051).
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422 To further validate our proportional measure for NMS and compare our results to
423  previous research on NMS in the PFC, we plotted the F scores for the interaction term
424  (i.e. stimulus identity x matching status) in both the spatial and the feature task (Fig. 4
425  A). We found that this measure of NMS for individual cells increased specifically for the
426  spatial task, indicated by much higher F score values after training for the spatial task.
427  We also measured the dimensionality of population responses in the sample and delay?2
428  period for the spatial and feature task. Again, this analysis confirmed the results of our
429  cell proportion measure (Fig. 4 B). For the spatial task, there was a significant increase of
430  dimensionality after training (sample period: pre-training dimensionality= 5.72, post-
431  training dimensionality=10.33, two-sample t test, t(98)=12.21, p=2.18x102!; sample

432  period: pre-training dimensionality= 3.25, post-training dimensionality=6.29, two-sample
433 ttest, t(98)=9.39, p=2.51x10"'%). For the feature task however, no significance increase
434  was observed in mean F score (Fig. 4A) or dimensionality (Fig 4B; sample period: pre-
435  training dimensionality= 2.72, post-training dimensionality=2.73, two-sample t test,

436  1(98)=0.027, p=0.978; sample period: pre-training dimensionality= 2.43, post-training
437  dimensionality=2.11, two-sample t test, t(98)=3.49, p=7.29x10%).

438

439  Regional localization of NMS

440  To assess whether specific sub-regions of the PFC may be specialized for NMS, we

441  divided the lateral PFC into six regions (Fig. 5 A) and analyzed the respective

442  neurophysiological data from five of these regions in order to determine the different
443  areas’ proportional contributions to the observed changes in NMS. We examined NMS

444  defined by location/shape and match/nonmatch status in the sample period and ultimately
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445  found that the mid-dorsal subdivision underwent the greatest proportional change in

446  NMS cells for the spatial task after training (Fig. 5 C), without a comparable increase in
447  the proportion of CS neurons (Mid-dorsal: CS 21.7% pre-training to 19.0% post- training,
448  NMS 8.2% pre-training to 21.8% post-training). For the feature task however, the

449  proportional change in NMS cells was relatively small, with moderate increases in CS
450  and LMS observed in all three analyzed areas (Fig. 5 B).

451

452  NMS in task context

453  Previous theoretical studies linked NMS with more flexible readouts of multiple task

454  variables, thus leading to the hypothesis that task complexity may modulate NMS. To test
455  this hypothesis, we compared the neural responses to different shapes at the same

456  location when the stimuli appeared as match or nonmatch in the conjunction task, to the
457  same neurons’ responses to the same stimuli when they appeared in the feature task. In
458  the conjunction task, animals needed to simultaneously remember both location and

459  shape of visual stimuli, while in the feature task, they were only required to remember
460  shape. Although the hypothesis predicted that the conjunction task would result in greater
461  NMS than the feature task when the sensory stimuli was the same, this was not what we
462  observed. No significant differences were observed for either CS cells (feature task

463  sample proportion= 11.9%, conjunction task sample proportion=9.9%, exact matched
464  pair sample proportion test ,F=1.229, p=0.197, feature task delay2 proportion= 10.8%,
465  conjunction task delay2 proportion=11.6%, exact matched pair delay2 proportion test
466  ,F=1.069, p=0.681) or NMS cells (feature task sample proportion= 4.1%, conjunction

467  task sample proportion=4.4%, exact matched pair sample proportion test, F=1.031,
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468  p=0.901, feature task delay2 proportion= 4.6%, conjunction task delay?2

469  proportion=5.9%, exact matched pair delay2 proportion test, F=1.278, p=0.266) (Fig. 6
470  A) in the sample period or the delay2 period that followed. We also examined changes in
471  individual cells’ selectivity across the feature and conjunction tasks. Although this

472  analysis was limited by the relatively low proportion of NMS cells in both tasks, we

473  found an unstable mapping between tasks in the selectivity categories for both CS and
474  NMS cells (Fig. 6 B), evidenced by the observation that most cells in CS and NMS

475  category in the feature task changed their selectivity category in the conjunction task.
476  There is a possibility, however, that the majority of the informative cells were simply due
477  to chance (p=0.05 was used as threshold for detecting significant terms), which is

478  enforced by the observation that NMS cells with larger degree of interaction in one task
479  tend to also fall into the NMS category in the other task (Fig. 6 C). No significant

480  difference was observed in the proportion of NMS cells when we performed a similar
481  comparison between the spatial and conjunction task with a relatively small sample size
482  (Fig. S1).

483 The comparison of the naive and trained conditions allowed us to test the overall
484  incidence of NMS in different populations of PFC neurons, sampled randomly before and
485  after training, which was carried out over the course of several months. If NMS were
486  critical for the representation of task-relevant information, we would expect a difference
487  in the observed proportion of neurons with NMS, when animals are passively viewing
488  stimuli vs. when they are actively performing the task and storing representations of the
489  stimuli in their WM. We therefore applied a two-way ANOVA to compare the neural

490  responses of neurons between the active and passive spatial tasks after the monkeys had
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491  been trained to perform the active spatial task. We ultimately observed an increase in the
492  proportion of cells that coded matching status during the sample period, as well as an
493  increase in the proportion of cells coding sensory information in the delayl period when
494  the animal was prompted to report the matching decision. However, the observed

495  increase in the proportion of NMS cells was not significant (passive proportion= 9.3%,
496  active proportion=11.7%, exact matched pair proportion test, F=1.385, p=0.362) (Fig. 7
497  A). Interestingly, a large proportion of cells changed their selectivity category across

498  tasks, especially for CS cells (Fig. 7 B), and the degree of NMS does not seem to be

499  predictive of whether a given neuron would fall in the same selectivity category in both
500 tasks (Fig. 7 C).

501

502  Information encoding by NMS neurons

503 It is known that training leads to increased incorporation of task relevant information in
504  neural populations, with relatively little change to stimulus information (confirmed in our
505  dataset, Fig. S2). However, the relative contribution by NMS is not clear. To quantify the
506  amount of task relevant information contained in linear (CS and LMS) and NMS cells,
507  weused a linear SVM decoder to decode sensory information (location and shape) and
508  match/or nonmatch status information. Since the cell selectivity category could be

509  defined by their response in either sample or delay?2 period, we randomly selected equal
510  numbers of linear and nonlinear cells in both task epochs for each comparison. The

511  random selecting process was repeated multiple times to obtain a confidence interval. We
512 ultimately found that linear and nonlinear cells contain comparable amounts of linearly

513  decodable information in regard to both sensory information and task relevant
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514  information. The only observed difference between the decodable information in the

515  linear and nonlinear cells occurred in the post training feature task, where linear cells
516  were observed to contain more stimulus information in the sample period.

517 We also applied cross temporal decoding to compare classic and linear mixed
518  cells in regard to population coding dynamics during the delay period. If information

519  were represented by a stable pattern of activity, the classifier trained at one timepoint
520  would be expected to work equally effectively at other time points where the information
521 s present. Conversely, if information were represented by dynamic patterns of activity,
522 then the decision boundary at one time point would not contribute to decoding

523  information at other time points. The most prominent result from this analysis is that

524 NMS cells produced significantly more stable code for matching spatial task information,
525  compared to CS and LMS cells, as indicated by higher performance off the diagonal

526  during the delay?2 period (Fig. 9).

527

528 NMS in correct and error trials

529  The presence of decodable information in the PFC does not necessarily imply the

530  presence of information in the conscious mind, and the representation of task relevant
531 information is ultimately revealed by the ability to conduct the task successfully. In order
532 to decipher the role of NMS, we examined the F score of the main effects and their

533  interaction in the ANOVA test in correct vs. error trials for the spatial task (Fig. 10),

534  which displayed higher NMS levels than the feature or conjunction tasks. Similar to the
535  pre- vs. post training comparisons, we examined two types of mixed selectivity: stimulus

536  location vs. matching status and stimulus identity vs. task epoch. The number of trials
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537  and task variables were matched for each cell to avoid confounds in the comparison. The
538  mean F score in correct trials for the location variable in the stimulus epochs for the

539  location x epoch comparison was equal to 1.86, while for the error trials the mean was
540  2.59 (paired t test, t(147)=3.38, p=9.42 x 10*). The effect extended into the delay

541  epochs, where the average F score for location in correct trials was 1.43, and that of error
542  trials was 1.79 (paired t test, t(150)=2.61, p=0.010 ). However, we did not find any

543  differences in the F score for the interaction terms in any comparison. The results indicate

544  that NMS may not be necessary in representing task relevant information in WM.
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DISCUSSION

Selectivity for different types of information is critical in representing the plethora of
stimuli and task contexts that can be maintained in WM. NMS is thought to be critical in
that respect, as it allows efficient representation of flexible, arbitrary combinations of
variables (Barak et al., 2013; Buonomano and Maass, 2009; Fusi et al., 2016; Johnston et
al., 2020; Rigotti et al., 2010). Consistent with this idea, increased dimensionality in
NMS has been highlighted as a potential means of increasing the efficiency of WM task
performance (Johnston et al., 2020; Rigotti et al., 2013) and dimensional collapse
characterizes task errors (Rigotti et al., 2013). Moreover, all task relevant information
could be decoded from NMS neurons alone, despite their relative scarcity, with decoder
accuracy actually increasing as the task became more complex (Rigotti et al., 2013).
NMS is assumed to emerge with training in complex tasks that combine multiple types of
information, or in multiple tasks, even without an explicit requirement to combine such
information (Johnston et al., 2020; Lindsay et al., 2017). However, this idea has not been
tested experimentally until now. Our study, by virtue of analyzing neural recordings
before and after training in a series of cognitive tasks, directly tested these postulates. We
found that NMS resulted in a modest increase with training, but only for some tasks, and
furthermore, task complexity was not a predictor of NMS emergence. A causal
relationship between success and dimensionality—and by extension, NMS—was also not
supported by our results, as we did not observe any significant changes in NMS between
error and success trials. These insights refine and qualify the role NMS plays in WM, and

identify a number of open questions.
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Effects of training on neural responses

WM is considerably plastic and at least some aspects of it, such as mental processing
speed and the ability to multitask, can be improved with training (Bherer et al., 2008;
Dux et al., 2009; Jaeggi et al., 2008; Klingberg et al., 2005; Klingberg et al., 2002). WM
training has been proven particularly beneficial for clinical populations, e.g. in the case of
traumatic brain injury, attention deficit hyperactivity disorder (ADHD), and
schizophrenia (Klingberg et al., 2002; Subramaniam et al., 2012; Westerberg et al.,
2007). However, the verdict of whether WM training confers tangible benefits on normal
adults and whether these benefits transfer to untrained domains, remains a matter of
heated debate. (Constantinidis and Klingberg, 2016; Cortese et al., 2015; Fukuda et al.,
2010; Owen et al., 2010; Peijnenborgh et al., 2015; Schwaighofer et al., 2015).

This malleability of cognitive performance is thought to be mediated by the
underlying plasticity in neural responses, most importantly within the PFC
(Constantinidis and Klingberg, 2016). In a series of prior studies, we have investigated
changes in PFC responsiveness and selectivity (Meyer et al., 2011; Meyers et al., 2012;
Qietal., 2011; Riley et al., 2018), as well as other aspects of neuronal discharges such as
trial-to-trial variability and correlation between neurons (Qi and Constantinidis, 2012a,
2012b). This led to our present analysis where—guided by experimental and theoretical
predictions (Rigotti et al., 2013)—we examined NMS as another potential source of

enhanced ability to represent WM information after training.
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590 In agreement with our hypothesis, we found that training increased the proportion
591  of neurons that exhibit NMS. However, training does not seem to be a prerequisite, as
592  NMS was also observed in animals that were naive to any cognitive training. Prior

593  research has established that the human and primate PFC represent stimuli in memory
594  even when not prompted to do so (Foster et al., 2017), or without training in WM tasks
595  (Meyer et al., 2007). Our finding of NMS neurons in naive monkeys provides another
596  exemplar of that principle. However, NMS only increased for certain types of task

597  information and not for others, thus suggesting that its role in the simultaneous

598  representation of multiple types of information is not universal across tasks. These results
599  stand in agreement with some prior studies, which have failed to uncover substantial
600  NMS in the tasks they employed (Cavanagh et al., 2018). Examining where NMS failed
601  to appear—and where WM representations fail to spontaneously appear— will be an
602  important area of future investigation for NMS.

603 The greatest increase in the proportion of neurons that exhibited NMS for the
604  spatial working memory task was observed at the mid-dorsal region during the sample
605  presentation period (Fig. 5). This disproportionate increase in NMS neurons was

606  associated with a modest decrease in neurons that exhibit CS, as predicted by theoretical
607  studies (Lindsay et al., 2017). However, this finding, too did not generalize across

608  conditions. During the delay periods of the spatial task, we saw an across-the-board

609 increase in neurons with CS, which were much more abundant in the trained than the
610 naive PFC (Fig. 3). In fact, the increase in feature selectivity after training was driven
611  almost exclusively by CS cells, suggesting a potential division of labor between NMS

612 and CS in the PFC for different types of information.
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613

614  Task Complexity and Difficulty

615  Another potential factor that determines the emergence of NMS is task complexity. NMS
616  may arise exclusively in highly complex tasks that require subjects to maintain and

617  combine multiple types of information in their WM, simplifying the involved neural

618 circuits to achieve greater efficiency (Rigotti et al., 2013). We thus tested this concept by
619  applying a dataset that relied on three tasks which differed in complexity (and overall
620  difficulty). The spatial and feature tasks each required maintenance of a single stimulus
621  property in memory (location or shape). The conjunction task required both. Surprisingly
622  however, we did not observe a higher incidence of NMS in the conjunction task when
623  compared to the feature task. Moreover, we observed a much lower incidence of NMS in
624  the feature task compared to the spatial task despite the fact that the latter was no more
625  complex or difficult for the monkeys to perform (Meyer et al., 2011; Riley et al., 2018).
626  This implies that NMS in the PFC may not be necessary for certain types of information,
627  like object shape, even when the task complexity is high. Alternatively, we may also

628  consider the possibility that the increased NMS that results from training may be

629  sufficient for the majority of behavioral requirements, without any additional increases
630  required. Future research is therefore necessary to assess and examine all of these

631  possibilities, and more.

632

633  Regional Specialization

634  Different types of information are represented across the dorso-ventral and anterior-

635  posterior axes of the PFC (Constantinidis and Q1i, 2018), and examining the regional
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636  distribution of NMS neurons within the PFC therefore bears a clear importance. We
637  found that NMS was most strongly demonstrated in the mid-dorsal area for the spatial
638  task and the posterior dorsal area for the feature task. This pattern was generally

639  consistent with the known distribution of neuronal selectivity for stimuli in the PFC

640  (Riley et al., 2018).

641

642  Information Content and Task Performance

643 A critical issue regarding the role of Mixed Selectivity is whether nonlinear match

644  selectivity, by virtue of representing information more efficiently, is also more necessary
645  for effective task performance (Rigotti et al., 2013). We relied on a linear SVM decoder
646  to decipher the specific information that may be represented by NMS cells, compared to
647  CS cells. In the current study, we found similar quantities of information could be

648  decoded from (equal-sized) populations of CS and NMS neurons, though the coding
649  dynamics for some types of information were significantly different between CS and
650  NMS cells. Similarly, when we compared the NMS levels of successful and failed task
651 trials, we were surprised to find that there was no appreciable difference. This suggests
652  that loss of information encoded in a nonlinear manner is not the primary factor of

653  successfully maintaining information in the conscious mind. An important caveat for this
654  conclusion is that the combination of small and unbalanced number of error trials in
655  match vs. nonmatch conditions make the detection power for the interaction fairly small
656  in our analysis. Moreover, with very little NMS presented even in success trials after
657  matching the trial number for the error condition, a floor effect may have prevented a

658  further decline from becoming apparent. Nonetheless, our result reinforces the idea that
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659  NMS is not necessary in all tasks, without which performance fails. An interesting

660  observation in this analysis was that the proportion of cells tuned to spatial location was
661  elevated in error trials. The result may imply that task success also depends on the task
662  relevance of the represented information, with error trials incorporating greater quantities
663  of task irrelevant spatial information and therefore unnecessarily drawing away WM

664  resources without benefit. Ultimately, by comparing and evaluating the conditions in

665  which NMS emerges, we may decipher its true role in WM and other cognitive functions.

31


https://doi.org/10.1101/2020.08.02.233247
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.02.233247; this version posted November 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

666 REFERENCES

667  Ahlheim, C., Love, B.C. (2018). Estimating the functional dimensionality of neural
668  representations. Neuroimage.179, 51-62.
669  Asaad WF, Rainer G, Miller EK. 2000. Task-specific neural activity in the primate

670 prefrontal cortex. J Neurophysiol. 84: 451-459.

671  Baddeley A. 2012. Working memory: theories, models, and controversies. Annu Rev
672 Psychol. 63: 1-29.

673  Barak O, Rigotti M, Fusi S. 2013. The sparseness of mixed selectivity neurons controls
674 the generalization-discrimination trade-off. J Neurosci. 33: 3844-3856.

675  Bherer L, Kramer AF, Peterson MS, Colcombe S, Erickson K, Becic E. 2008. Transfer
676 effects in task-set cost and dual-task cost after dual-task training in older and
677 younger adults: further evidence for cognitive plasticity in attentional control in
678 late adulthood. Exp Aging Res. 34: 188-219.

679  Buonomano DV, Maass W. 2009. State-dependent computations: spatiotemporal

680 processing in cortical networks. Nat Rev Neurosci. 10: 113-125.

681  Cavanagh SE, Towers JP, Wallis JD, Hunt LT, Kennerley SW. 2018. Reconciling

682 persistent and dynamic hypotheses of working memory coding in prefrontal
683 cortex. Nature communications. 9: 3498.

684  Constantinidis C, Klingberg T. 2016. The neuroscience of working memory capacity and
685 training. Nat Rev Neurosci. 17: 438-449.

686  Constantinidis C, Procyk E. 2004. The primate working memory networks. Cogn Affect
687 Behav Neurosci. 4: 444-465.
688  Constantinidis C, Q1 XL. 2018. Representation of Spatial and Feature Information in the

689 Monkey Dorsal and Ventral Prefrontal Cortex. Front Integr Neurosci. 12: 31.
690  Cortese S, Ferrin M, Brandeis D, Buitelaar J, Daley D, Dittmann RW, Holtmann M,

691 Santosh P, Stevenson J, Stringaris A, Zuddas A, Sonuga-Barke EJ, European
692 AGG. 2015. Cognitive training for attention-deficit/hyperactivity disorder: meta-
693 analysis of clinical and neuropsychological outcomes from randomized controlled
694 trials. J Am Acad Child Adolesc Psychiatry. 54: 164-174.

695  Cueva CJ, Saez A, Marcos E, Genovesio A, Jazayeri M, Romo R, Salzman CD, Shadlen
696 MN, Fusi S. 2020. Low-dimensional dynamics for working memory and time
697 encoding. Proc Natl Acad Sci U S A. 117: 23021-23032.

698  Curtis CE, D'Esposito M. 2004. The effects of prefrontal lesions on working memory
699 performance and theory. Cogn Affect Behav Neurosci. 4: 528-539.

700  Dux PE, Tombu MN, Harrison S, Rogers BP, Tong F, Marois R. 2009. Training

701 improves multitasking performance by increasing the speed of information

702 processing in human prefrontal cortex. Neuron. 63: 127-138.

703  Foster JJ, Bsales EM, Jaffe RJ, Awh E. 2017. Alpha-Band Activity Reveals Spontaneous
704 Representations of Spatial Position in Visual Working Memory. Curr Biol. 27:
705 3216-3223 e3216.

706  Fukuda K, Awh E, Vogel EK. 2010. Discrete capacity limits in visual working memory.
707 Curr Opin Neurobiol. 20: 177-182.

708  Fusi S, Miller EK, Rigotti M. 2016. Why neurons mix: high dimensionality for higher
709 cognition. Curr Opin Neurobiol. 37: 66-74.

32


https://doi.org/10.1101/2020.08.02.233247
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.02.233247; this version posted November 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

710  Jaeggi SM, Buschkuehl M, Jonides J, Perrig WJ. 2008. Improving fluid intelligence with

711 training on working memory. ProcNatlAcadSciUSA. 105: 6829-6833.

712 Johnston WJ, Palmer SE, Freedman DJ. 2020. Nonlinear mixed selectivity supports

713 reliable neural computation. PLoS Comput Biol. 16: e1007544.

714 Klingberg T, Fernell E, Olesen P, Johnson M, Gustafsson P, Dahlstrim K, Gillberg CG,
715 Forssberg H, Westerberg H. 2005. Computerized Training of Working Memory in
716 Children with ADHD - a Randomized, Controlled Trial. ] Am Acad Child

717 Adolesc Psychiatry. 44: 177-186.

718  Klingberg T, Forssberg H, Westerberg H. 2002. Training of working memory in children
719 with ADHD. J Clin Exp Neuropsychol. 24: 781-791.

720  Lindsay GW, Rigotti M, Warden MR, Miller EK, Fusi S. 2017. Hebbian Learning in a
721 Random Network Captures Selectivity Properties of the Prefrontal Cortex. J

722 Neurosci. 37: 11021-11036.

723 Machens CK, Romo R, Brody CD. 2010. Functional, but not anatomical, separation of
724 "what" and "when" in prefrontal cortex. J Neurosci. 30: 350-360.

725  Mansouri FA, Matsumoto K, Tanaka K. 2006. Prefrontal cell activities related to

726 monkeys' success and failure in adapting to rule changes in a Wisconsin Card
727 Sorting Test analog. J Neurosci. 26: 2745-2756.

728  Meyer T, Constantinidis C. 2005. A software solution for the control of visual behavioral
729 experimentation. J Neurosci Methods. 142: 27-34.

730  Meyer T, Qi XL, Constantinidis C. 2007. Persistent discharges in the prefrontal cortex of
731 monkeys naive to working memory tasks. Cereb Cortex. 17 Suppl 1: 170-76.

732 Meyer T, Qi XL, Stanford TR, Constantinidis C. 2011. Stimulus selectivity in dorsal and
733 ventral prefrontal cortex after training in working memory tasks. J Neurosci. 31:
734 6266-6276.

735  Meyers EM, Qi XL, Constantinidis C. 2012. Incorporation of new information into

736 prefrontal cortical activity after learning working memory tasks. Proc Natl Acad
737 Sci U S A. 109: 4651-4656.

738  Morris RG, Baddeley AD. 1988. Primary and working memory functioning in

739 Alzheimer-type dementia. J Clin Exp Neuropsychol. 10: 279-296.

740  Owen AM, Hampshire A, Grahn JA, Stenton R, Dajani S, Burns AS, Howard RJ, Ballard
741 CG. 2010. Putting brain training to the test. Nature. 465: 775-778.

742  Parthasarathy A, Herikstad R, Bong JH, Medina FS, Libedinsky C, Yen SC. 2017. Mixed
743 selectivity morphs population codes in prefrontal cortex. Nat Neurosci. 20: 1770-
744 1779.

745  Peijnenborgh JC, Hurks PM, Aldenkamp AP, Vles JS, Hendriksen JG. 2015. Efficacy of
746 working memory training in children and adolescents with learning disabilities: A
747 review study and meta-analysis. Neuropsychol Rehabil. 1-28.

748 Qi XL, Constantinidis C. 2012a. Correlated discharges in the primate prefrontal cortex
749 before and after working memory training Eur J Neurosci. 36: 3538-3548.

750 Qi XL, Constantinidis C. 2012b. Variability of prefrontal neuronal discharges before and
751 after training in a working memory task. PLoS ONE. 7: e41053.

752 Qi XL, Elworthy AC, Lambert BC, Constantinidis C. 2015. Representation of

753 remembered stimuli and task information in the monkey dorsolateral prefrontal
754 and posterior parietal cortex. J Neurophysiol. 113: 44-57.

33


https://doi.org/10.1101/2020.08.02.233247
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.02.233247; this version posted November 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

755 Qi XL, Meyer T, Stanford TR, Constantinidis C. 2011. Changes in Prefrontal Neuronal

756 Activity after Learning to Perform a Spatial Working Memory Task. Cereb

757 Cortex. 21: 2722-2732.

758  Rigotti M, Barak O, Warden MR, Wang XJ, Daw ND, Miller EK, Fusi S. 2013. The

759 importance of mixed selectivity in complex cognitive tasks. Nature. 497: 585-590.
760  Rigotti M, Ben Dayan Rubin D, Wang XJ, Fusi S. 2010. Internal representation of task
761 rules by recurrent dynamics: the importance of the diversity of neural responses.
762 Front Comput Neurosci. 4: 24.

763  Riley MR, Constantinidis C. 2016. Role of prefrontal persistent activity in working

764 memory. Front Syst Neurosci. 9: 181.

765  Riley MR, Qi XL, Zhou X, Constantinidis C. 2018. Anterior-posterior gradient of

766 plasticity in primate prefrontal cortex. Nature communications. 9: 3790.

767  Rossi AF, Bichot NP, Desimone R, Ungerleider LG. 2007. Top down attentional deficits
768 in macaques with lesions of lateral prefrontal cortex. J Neurosci. 27: 11306-

769 11314.

770  Schwaighofer M, Fischer F, Buhner M. 2015. Does Working Memory Training Transfer?
771 A Meta-Analysis Including Training Conditions as Moderators. Educ Psychol. 50:
772 138-166.

773  Subramaniam K, Luks TL, Fisher M, Simpson GV, Nagarajan S, Vinogradov S. 2012.
774 Computerized cognitive training restores neural activity within the reality

775 monitoring network in schizophrenia. Neuron. 73: 842-853.

776 ~ Warden MR, Miller EK. 2010. Task-dependent changes in short-term memory in the

777 prefrontal cortex. J Neurosci. 30: 15801-15810.

778  Westerberg H, Jacobaeus H, Hirvikoski T, Clevberger P, Ostensson ML, Bartfai A,

779 Klingberg T. 2007. Computerized working memory training after stroke--a pilot
780 study. Brain Inj. 21: 21-29.

781

782

34


https://doi.org/10.1101/2020.08.02.233247
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.02.233247; this version posted November 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

A. Passive Spatial Task

Active Spatial Task

Fixation Fixation
10s| | Cue Stimulus 1.0 s| Cue Stimulus 10°
05s Delay1 05s Delay1
15s
155 ‘ | Sample | | Sample
Stimulus Stimulus
05s J 05s
Delay2
15s Delay2 15s |
Choice Targets
—
1 Saccade
- || &
B. Passive Feature Task Active Feature Task
Fixation Fixation
1.0 5‘ Cue Stimulus 1.0s Cue Stimulus
035 Delay1 055 155 Delay
15s Sample || Sample
Stimulus Stimulus
0.55_ 0.5s J
Delay
1.5 5 Delay2 15s] |
ChoiceTargets
=
C. Conjunction Task : ‘ Saccade
Fixation
1.0s
Cue Stimulus
05s
15s Delay1
= Sample
05s Stimulus
Delay2
15s L
Choice Targets
.
) . Saccade
783 = yrani? . . .
784  Figure 1. Task structure and stimuli used. The animals were required to maintain
785  center fixation throughout both active and passive task trials. At the end of active
786  tasks trials however, monkeys were required to make a saccade to a green
787  target if the stimuli matched or to a blue target if the stimuli did not match. (A)
788  Spatial location match-to-sample task, nine possible cue locations in a session
789  shown in the inset. (B) Shape feature match-to-sample task, 8 possible shapes in
790  a session shown in the inset. (C) Spatial-shape conjunction task, up to two
791  locations and two stimuli shapes were used for any single particular session.
792  Stimuli in all tasks extended 2 degree of visual angle.
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794  Figure 2. Exemplar neural responses from the spatial task for CS (classical
795  selective), LMS (linear mixed selective) and NMS (nonlinear mixed selective)
796  cells, defined by the task variables of stimulus location and match status.
797  Selectivity classification were based on the spike responses of the 500 ms
798  sample period. The locations the stimuli were color coded, with a solid line/bar
799  representing when the stimulus was a match with the cue, and a dash line/bar
800 representing when the stimulus was a nonmatch with the cue. Shaded regions
801  and error bar indicate 2 times SE of firing rate.
802
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804  Figure 3. Training increased mixed selectivity preferentially in the spatial task. (A)

805  Bar graphs show the proportions of cells tuned to stimuli identities

806  (Location/Shape), matching status and their interaction (i.e. NMS) in different
807  stages of the task trials, both before and after the animals were trained for the
808 active tasks. Pie charts show the proportion of different selectivity categories
809 (NS, CS, LMS and NMS) in the sample and delay2 periods of both tasks, both
810 before and after the animals were trained for the active tasks. (B) Plots of

811  corresponding proportion changes. (C) Same as (A) but examining the

812 interaction between stimuli identities (Location/Shape), and task epoch

813  (cue/delay1 vs sample/delay?2 period), instead of trials matching status. (D) Plots
814  of corresponding proportion changes.

815
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819  Figure 4. (A) Analysis of F score for the interaction term (stimuli identity x
820  match/nonmatch) shows that the degree of mixed selectivity increased after
821 training for the spatial task only. Black dots in the box represent mean, box
822  boundaries indicate 25%-75% range, and whiskers represents 1.5 IQR. (B)
823  Dimensionality measure of neural responses in the spatial (left) and feature
824  (right) task, before and after training in the active tasks.

38


https://doi.org/10.1101/2020.08.02.233247
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.02.233247; this version posted November 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

B Feature x Match/Nonmatch
nstarior id itarior
By Bt Bires P— n=558 h=475 n=179 n=206 n=546 np=431
polar
By — 50 NS | 5p 50
: 5 NMS
= 30 Cc5
E » " "
a 20 20
2 10 ’— 10 10 —‘
o
o= . - . o= .
Pre Post Pre Post Pre Post
Posteriar Anterior
Veniral Ventral Mid Dorsal Fosterior Dorsal  Posterior Ventral

Location x Match/Nonmatch

C n=279 n=66 n=87 n=80 n=621 n=385 n=160 n=184 n=471 n=389
= 50 NS 50 50 50 50
=33 NMS
c 40 LMS 40 40 40 40
(=] S
'E a0 Cs |30 30 30 30
§_ 20 20 20 20 20 .
= o 10 —
& 10 :‘ 10 | |‘ 10 10 l_ |_
o= . o= | ol - [y - : o |
Pre Post Pre Post Pre Post Pre Post Pre Post
825 Anterior Dorsal Anterior Ventral Mid Dorsal Posterior Dorsal  Posterior Ventral

826

827  Figure 5. Cell selectivity changes by brain regions. (A) PFC subdivisions that

828  were utilized for recording in the current study. (B) The effects of training in for
829  the active feature task on the proportion of different selectivity categories (NS,
830 CS, LMS and NMS) in the sample period. There were significant increases in the
831  proportion of LMS cells in all three PFC regions included for analysis, but

832  relatively low increases in the proportion of NMS cells. (C) The effects of training
833 in the active spatial task on the proportion of different selectivity categories (NS,
834 CS, LMS and NMS) in the sample period. The greatest increase in NMS

835  occurred at the mid-dorsal region.
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837  Figure 6. Cell selectivity in tasks with different task complexity. Analyses were
838  performed on neural data from the same population of cells, with matching
839  numbers of trials in the feature and the conjunction tasks. Only trials with the
840  same stimuli were included in this analysis. (A) Examining interaction (NMS)
841 across stimulus preference and matching status. Bar graphs show the
842  proportions of cells tuned to stimuli shape, trials matching status and their
843 interaction in different stages of both the feature and conjunction tasks. Pie
844  charts display the proportion of different selectivity categories (NS, CS, LMS and
845 NMS) in corresponding sample and delay2 periods. (B) Cell selectivity category
846  mapping cross tasks. (C) F scores of the interaction term in the ANOVA were
847 compared between cells that were classified as NMS cell in both tasks
848  (overlapping cells), and those only classified as NMS in one of the tasks (non-
849  overlapping cells).
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851  Figure 7. Cell selectivity in tasks with the same sensory input but different

852  behavioral requirements. Analyses were performed on neural data from the same
853  population of cells, with matching number of trials in the passive and active

854  spatial tasks. Only trials that had the exact same stimuli pairs in both tasks were
855 included in this analysis. (A) Examining interaction (NMS) between stimulus

856  preference and matching status. Bar graphs show the proportions of cells tuned
857  to stimuli location, trials matching status and their interaction in different stages of
858 the tasks. Pie charts display the proportion of different selectivity categories (NS,
859 CS, LMS and NMS) in the sample period. (B) Cell selectivity category mapping
860  across tasks in the sample period. (C) F scores of the interaction term in the

861 ANOVA were compared between cells that were classified as NMS cell in both
862  tasks (overlapping cells), and those only classified as NMS in one of the tasks
863  (non-overlapping cells).
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Figure 8. Comparing linear SVM decoder information between pure and linear
selective cells (CS and LMS) vs. NMS cells. An equal number of linear (CS and
LMS) and NMS cells were randomly selected from the sample or delay2 period.
The selectivity categories were defined by spiking count in corresponding periods
with reference to stimuli identity (stimuli location or shape) and matching status.
The decoders were trained to classify either stimuli identity or match/nonmatch
status with z-score normalized pseudo-population response. (A) Decoding
performance in the spatial task before and after training. (B) Decoding
performance in the feature task before and after training. Red and blue bars
indicate time points when the performance for NMS and linear cells differs
significantly within the shaded regions.
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Figure 9. Coding dynamics of pure and linearly selective cells (CS and LMS) vs.
NMS cells. Linear kernel SVM decoders were trained to perform cross-temporal
decoding with different selectivity populations in the delay2 period, for both
spatial and feature tasks, as indicated by the Y-axis. The decoder was then
required to predict whether a match or non-match occurred at each time point
based on a different test set of data, as indicated by the X-axis. Normalized
decoding accuracy is indicated in the color bar, demonstrating how spatial and
feature WM representations can be decoded from specific patterns of neural
activity. Coding of matching information for NMS cells is more stable across time
for the spatial task.
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Figure 10. Comparison of cell selectivity in correct and error trials in the same
population for the spatial task, after controlling for trial number and location pairs
used. Two forms of mixed selectivity were examined (location x matching,
location x task epoch). No change (location x matching delay2 period) or
increase (location x task stim and delay epochs, location x matching sample
period) in the F score of the interaction term of ANOVA results were observed in
cells with significant interaction (NMS) terms. Higher F score for the variable of
stimuli location was observed in error trials in the location x Epoch comparison.
Box boundaries represent 25%-75% data range, whiskers indicate 1.5 IQR and
squares indicates means across cells.
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900 Fig. S1. Plotting conventions same as Fig. 6. Comparing cell selectivity between
901 the spatial and the conjunction tasks. The analysis was performed on neural data
902 from the same population of cells, with matching numbers of trials in the spatial
903 and the conjunction tasks. Only trials with the same stimuli were included in this
904 analysis. (A) Examining interaction (NMS) between stimulus preference and

905 matching status. Bar graphs display the proportions of cells tuned to stimuli

906  shape, trials matching status and their interaction in different stages of the tasks,
907 in both the feature and conjunction task. Pie charts display the proportion of

908 different selectivity categories (NS, CS, LMS and NMS) in corresponding sample
909 and delay2 periods. (B) Cell selectivity category mapping across tasks. (C) F
910  scores of the interaction term in the ANOVA were compared between cells that
911 were classified as NMS cells in both tasks (overlapping cells), and those only
912 classified as NMS in one of the tasks (non-overlapping cells). Similar to the

913 comparison between the feature and the conjunction tasks, no change in the

914  proportion of NMS was observed.
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915
916 Fig. S2. Incorporation of new information after training for the spatial and the

917 feature tasks. Linear SVM decoders were trained to classify either stimuli identity
918 or match/nonmatch status with z-score normalized pseudo-population response.
919  Color bars indicate time points when the performance for NMS and linear cells
920 differs significantly. Red bar for decoding matching status, blue bar for decoding
921  stimuli identity.
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