

1 **Increased antibiotic susceptibility in *Neisseria gonorrhoeae* through
2 adaptation to the cervical environment**

3
4 Kevin C Ma^{1¶}, Tatum D Mortimer^{1¶}, Allison L Hicks¹, Nicole E Wheeler², Leonor Sánchez-Busó²,
5 Daniel Golparian³, George Taiaroa⁴, Daniel HF Rubin¹, Yi Wang¹, Deborah A Williamson⁴,
6 Magnus Unemo³, Simon R Harris⁵, Yonatan H Grad^{1,6*}

7
8 ¹Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public
9 Health, Boston, USA

10 ²Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome
11 Campus, Hinxton, Cambridgeshire, United Kingdom

12 ³WHO Collaborating Centre for Gonorrhoea and other STIs, Swedish Reference Laboratory for
13 STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden

14 ⁴Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and
15 Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and
16 Immunity, Melbourne, Australia

17 ⁵Microbiotica Ltd, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton,
18 Cambridgeshire, United Kingdom

19 ⁶Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School,
20 Boston, USA

21

22

23 * Corresponding author

24 E-mail: ygrad@hsph.harvard.edu (YHG)

25

26 ¶ These authors contributed equally to this work.

27

28 **Abstract**

29 *Neisseria gonorrhoeae* is an urgent public health threat due to rapidly increasing incidence and
30 antibiotic resistance. In contrast with the trend of increasing resistance, clinical isolates that
31 have reverted to susceptibility regularly appear, prompting questions about which pressures
32 compete with antibiotics to shape gonococcal evolution. Here, we used genome-wide
33 association on the largest collection of *N. gonorrhoeae* isolates to date (n=4852) to identify loss-
34 of-function (LOF) mutations in the efflux pump *mtrCDE* operon as a mechanism of increased
35 antibiotic susceptibility and demonstrate that these mutations are overrepresented in cervical
36 isolates relative to urethral isolates (odds ratio (OR) = 3.74, 95% CI [1.98-6.70]). In support of a
37 model in which pump expression incurs a fitness cost in this niche, cervical isolates were also
38 enriched relative to urethral isolates in LOF mutations in the *mtrCDE* activator *mtrA* (OR = 8.60,
39 95% CI [4.96-14.57]) and in *farA*, a subunit of the FarAB efflux pump (OR = 6.25, 95% CI [3.90-
40 9.83]). In total, approximately 2 in 5 cervical isolates (42.6%) contained a LOF mutation in either
41 the efflux pump components *mtrC* or *farA* or the activator *mtrA*. Our findings extend beyond *N.*
42 *gonorrhoeae* to other *Neisseria*: *mtrC* LOF mutations are rare (<1%) in the primarily
43 nasopharyngeal-colonizing *N. meningitidis* in a collection of 14,798 genomes but enriched in a
44 heterosexual urethritis-associated lineage (8.6%, $p = 9.90 \times 10^{-5}$), indicating that efflux pump
45 downregulation contributes broadly to the adaptation of pathogenic *Neisseria* to the female
46 urogenital tract. Overall, our findings highlight the impact of integrating microbial population
47 genomics with host metadata and demonstrate how host environmental pressures can lead to
48 increased antibiotic susceptibility.

49

50

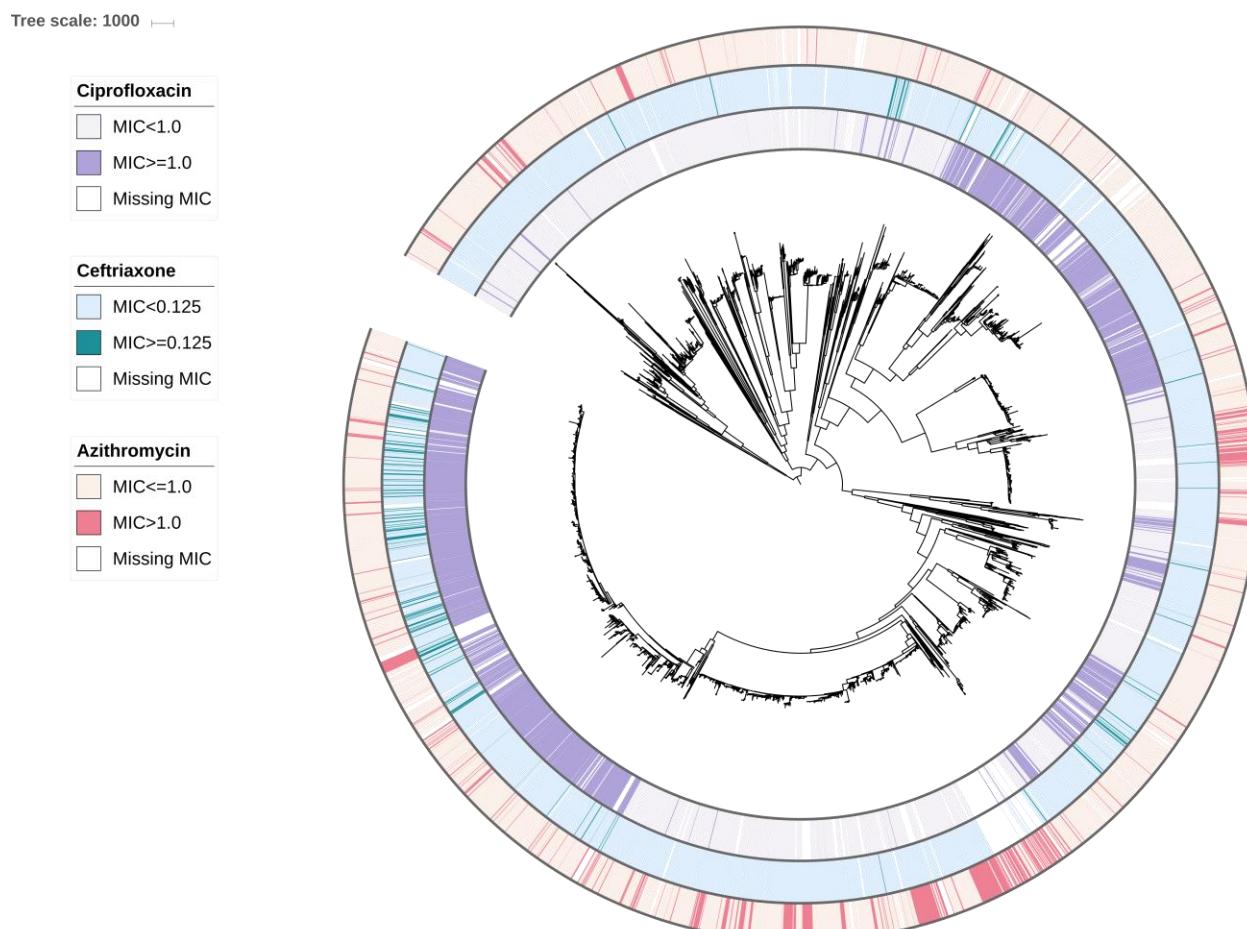
51 **Introduction**

52 *Neisseria gonorrhoeae* is the causative agent of the sexually transmitted disease gonorrhea.
53 Antibiotics have played a key role in shaping gonococcal evolution¹⁻³, with *N. gonorrhoeae*
54 gaining resistance to each of the first line antibiotics used to treat it⁴⁻⁶. As *N. gonorrhoeae* is an
55 obligate human pathogen, the mucosal niches it infects—most commonly including the urethra,
56 cervix, pharynx, and rectum—must also influence its evolution⁷. The gonococcal phylogeny
57 suggests the interaction of these factors, with an ancestral split between a drug-susceptible
58 lineage circulating primarily in heterosexuals and a drug-resistant lineage circulating primarily in
59 men who have sex with men³.

60

61 Despite the deeply concerning increase in antibiotic resistance reported in gonococcal
62 populations globally⁸, some clinical isolates of *N. gonorrhoeae* have become more susceptible
63 to antibiotics^{9,10}. This unexpected phenomenon prompts questions about which environmental
64 pressures could be drivers of increased susceptibility and the mechanisms by which
65 suppression or reversion of resistance may occur. To address these questions, we analyzed the
66 genomes of a global collection of clinical isolates together with patient demographic and clinical
67 data to identify mutations associated with increased susceptibility and define the environments
68 in which they appear.

69


70 **Antibiotic susceptibility is influenced by unknown genetic determinants in *N.*
71 *gonorrhoeae***

72 We first assessed how well variation in antibiotic resistance phenotype was captured by the
73 presence and absence of known resistance markers. To do so, we assembled and examined a
74 global dataset comprising the genomes and minimum inhibitory concentrations (MICs) of 4852
75 isolates collected across 65 countries and 38 years (Figure 1, Supplementary Table 1)^{3,9-20}. We
76 modeled log-transformed MICs using multiple regression on a panel of experimentally
77 characterized resistance markers for the three most clinically relevant antibiotics²¹⁻²³
78 (Supplementary Table 2). This enabled us to make quantitative predictions of MIC based on
79 known genotypic markers and to assess how well these markers predicted true MIC values. For
80 the macrolide azithromycin, we observed that 434/4505 (9.63%) isolates had predicted MICs
81 that deviated by two dilutions or more from their reported phenotypic values. The majority
82 (59.4%) of these isolates had MICs that were lower than expected, indicative of increased
83 susceptibility unexplained by the genetic determinants in our model. Overall MIC variance
84 explained by known resistance mutations was relatively low (adjusted $R^2 = 0.667$), in agreement

85 with prior studies that employed whole-genome supervised learning algorithms to predict
86 azithromycin resistance²⁴. MIC variance explained by known resistance mutations was also low
87 for ceftriaxone (adjusted $R^2 = 0.674$) but higher for ciprofloxacin (adjusted $R^2 = 0.937$), with
88 2.02% and 2.90% of strains, respectively, exhibiting two dilutions or lower reported MICs
89 compared to predictions, similarly indicating unexplained susceptibility. The predictive modeling
90 results therefore suggested unknown modifiers that promote susceptibility for multiple classes of
91 antibiotics in *N. gonorrhoeae*.

92

93

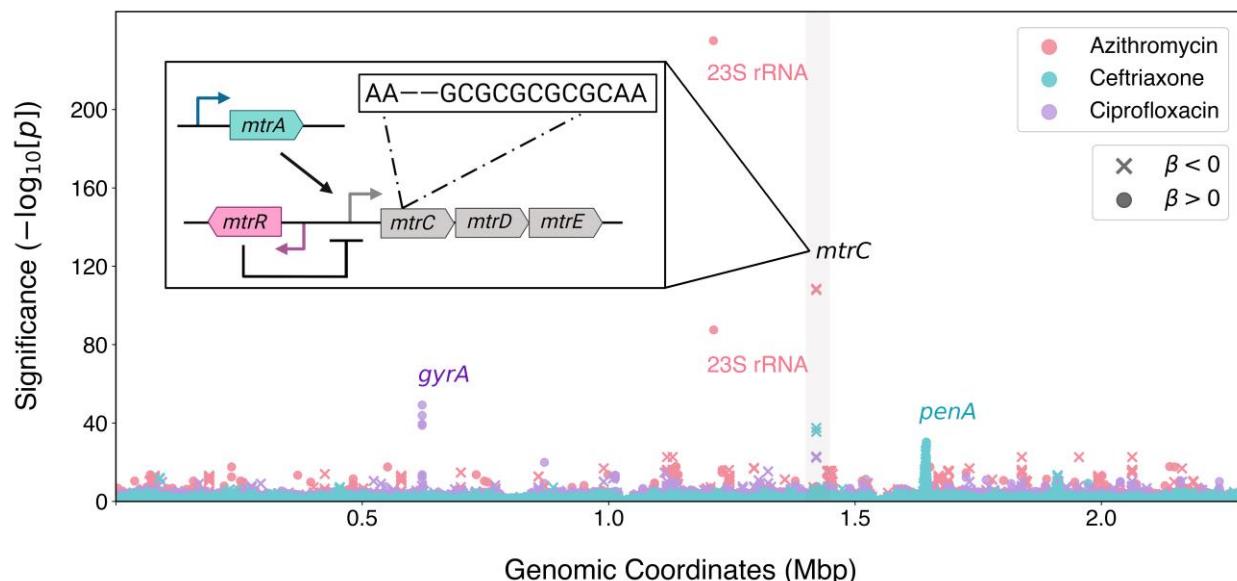
94

95

96 **Figure 1 – Population structure and susceptibility profile of *N. gonorrhoeae* global meta-**
97 **analysis collection.** A midpoint rooted recombination-corrected maximum likelihood phylogeny
98 of 4852 genomes based on 68697 SNPs (Supplementary Table 1) was annotated with binarized
99 resistance (ciprofloxacin) or decreased susceptibility (azithromycin, ceftriaxone) values.
100 Annotation rings are listed in order of ciprofloxacin (purple), ceftriaxone (blue), and azithromycin
101 (pink) from innermost to outermost. Branch length represents total number of substitutions after
102 removal of predicted recombination.

103

104 **Microbial genome-wide association identifies a variant that contributes to susceptibility**
105 **in the operon encoding the MtrCDE efflux pump**


106 To identify novel antibiotic susceptibility loci in an unbiased manner, we conducted a bacterial
107 genome-wide association study (GWAS). We used a linear mixed model framework to control
108 for population structure, and we used unitigs constructed from genome assemblies to capture
109 SNPs, indels, and accessory genome elements (see methods)²⁵⁻²⁷. Unitigs are a flexible
110 representation of the genetic variation across a dataset that are constructed using compacted
111 de Bruijn graphs, and have been previously applied as markers for microbial GWAS²⁸. We
112 performed a GWAS on the sequences of 4505 isolates with associated azithromycin MICs using
113 a Bonferroni-corrected significance threshold of 3.38×10^{-7} . The linear mixed model adequately
114 controlled for population structure (Supplementary Figure 1), and the proportion of phenotypic
115 MIC variance attributable to genotype (i.e., narrow-sense heritability) estimated by the linear
116 mixed model was high ($h^2 = 0.97$). In line with this, we observed highly significant unitigs with
117 positive effect sizes corresponding to the known resistance substitutions C2611T and A2059G
118 (*E. coli* numbering) in the 23S ribosomal RNA gene (Figure 2)²⁹. The next most significant
119 variant was a unitig associated with increased susceptibility that mapped to *mtrC* (β , or effect
120 size on the \log_2 -transformed MIC scale, = -2.82, 95% CI [-3.06, -2.57]; p -value = 2.81×10^{-108}).
121 Overexpression of the *mtrCDE* efflux pump operon has been shown to decrease gonococcal
122 susceptibility to a range of hydrophobic acids and antimicrobial agents^{4,30}, and conversely,
123 knockout of the pump results in multi-drug hypersusceptibility³¹. To assess whether this *mtrC*
124 variant was associated with increased susceptibility to other antibiotics, we performed GWAS
125 for ceftriaxone (for which MICs were available from 4497 isolates) and for ciprofloxacin (4135
126 isolates). We recovered known ceftriaxone resistance mutations including recombination in the
127 *penA* gene and ciprofloxacin resistance substitutions in DNA gyrase (*gyrA*). In agreement with
128 the known pleiotropic effect of the MtrCDE efflux pump³¹, we observed the same *mtrC* unitig at
129 genome-wide significance associated with increased susceptibility to both ceftriaxone ($\beta = -$
130 1.18 , 95% CI [-1.34, -1.02]; p -value = 2.00×10^{-44}) and ciprofloxacin ($\beta = -1.29$, 95% CI [-1.54, -
131 1.04]; p -value = 1.87×10^{-23}) (Figure 2). Across all three drugs, heritability estimates for this *mtrC*
132 variant were comparable to that of prevalent major resistance determinants (azithromycin h^2 :
133 0.323; ceftriaxone h^2 : 0.208; ciprofloxacin h^2 : 0.155), indicating that unexplained susceptibility in
134 our model could be partially addressed by inclusion of this mutation.

135

136 Annotation of the *mtrC* unitig revealed that it represented a two base pair deletion in a 'GC'
137 dinucleotide hexarepeat, leading to early termination of *mtrC* translation and probable loss of
138 MtrCDE activity³² (Figure 2 inset). We also checked whether the two base pair deletion would
139 affect recognition by any of the gonococcal methylases³³, but no methylase target motif sites
140 mapped to the hexarepeat or its direct surrounding sequences. A laboratory-generated
141 gonococcal mutant with a four base pair deletion in this same *mtrC* dinucleotide hexarepeat
142 exhibited multi-drug susceptibility³², and clinical gonococcal isolates hypersensitive to
143 erythromycin were shown to have mutations mapping to this locus³⁴. To directly test the
144 hypothesis that the two base pair deletion also contributed to increased susceptibility for the
145 panel of antibiotics we examined, we complemented the mutation in a clinical isolate belonging
146 to the multidrug-resistant lineage ST-1901³⁵ and observed significant increases in MICs for all
147 three antibiotics, as predicted by the GWAS (Supplementary Table 4).

148

149

151 **Figure 2 – GWAS identifies a variant mapping to *mtrC* associated with increased**
152 **susceptibility to azithromycin, ceftriaxone, and ciprofloxacin.** Negative \log_{10} -transformed p -
153 values for unitigs tested in GWAS on MICs to azithromycin (pink, $n=4505$), ceftriaxone (blue,
154 $n=4497$), and ciprofloxacin (purple, $n=4135$) are shown in the Manhattan plot. The sign of the
155 GWAS regression coefficient β (with positive indicating an association with increased resistance
156 and negative indicating an association with increased susceptibility) is indicated by symbol
157 shape, as depicted in the legend. Labels indicate known influential resistance determinants, and
158 the *mtrC* variant associated with increased susceptibility was highlighted in gray. A full list of the
159 annotated significant unitigs for each antibiotic can be found in Supplementary Table 3. Inset:
160 schematic of the *mtr* genetic regulon including structural genes *mtrCDE*, the activator *mtrA*, and
161 the repressor *mtrR*. The approximate genomic location within *mtrC* and specific nucleotide

162 change of the *mtrC* GWAS variant relative to the gonococcal NCCP11945 reference genome
163 (i.e., a two base pair deletion in a 'GC' dinucleotide repeat) is shown.

164

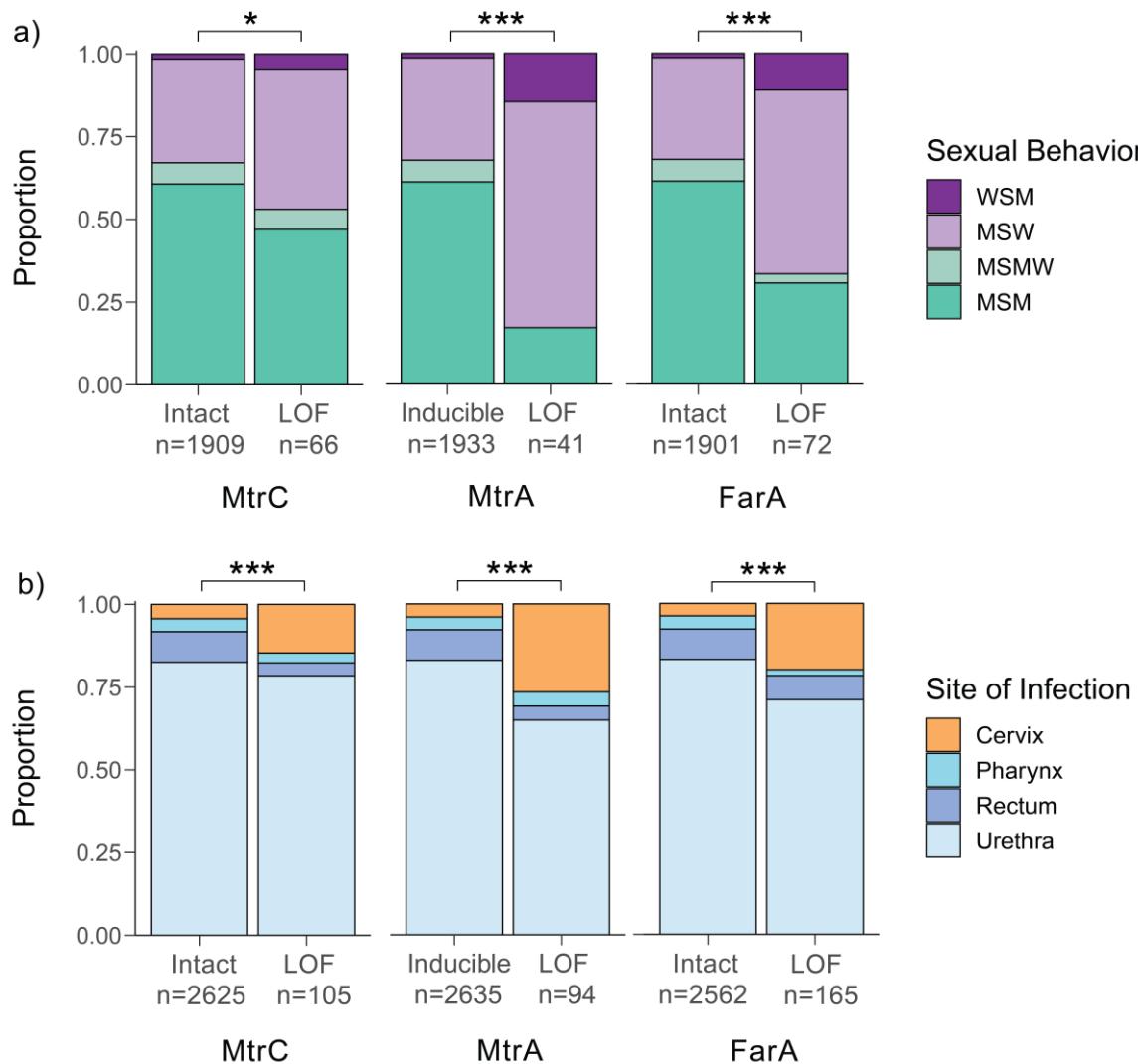
165

166 We searched for additional *mtrC* loss-of-function (LOF) mutations and found six clinical isolates
167 with genomes encoding indels outside of the dinucleotide hexarepeat that also were associated
168 with increased susceptibility (Supplementary Figure 2A). Ten isolates that had acquired the two
169 base pair deletion also have a two base pair insertion elsewhere in *mtrC* that restores the
170 original coding frame, suggesting that loss of MtrC function may be reverted by further mutation
171 or recombination (Supplementary Figure 2A). In line with this, *mtrC* LOF mutations have
172 emerged numerous times throughout the phylogeny (Supplementary Figure 3), indicative of
173 possible repeated losses of a dinucleotide in the hexarepeat region due to DNA polymerase
174 slippage, which may occur at a higher rate than single nucleotide nonsense mutations³⁶. In total,
175 including all strains with *mtrC* frameshift mutations and excluding revertants, we identified 185
176 isolates (3.82%) that encoded a LOF allele of *mtrC*. Presence of the *mtrC* LOF mutation in
177 isolates with known resistance markers was correlated with significantly reduced MICs
178 (Supplementary Figure 4), and inclusion of *mtrC* LOF mutations in our linear model increased
179 adjusted R^2 values (azithromycin: 0.667 to 0.704; ceftriaxone: 0.674 to 0.690; ciprofloxacin:
180 0.937 to 0.939), decreased the proportion of strains with unexplained susceptibility
181 (azithromycin: 5.73% to 3.88%; ceftriaxone: 2.02% to 1.73%; ciprofloxacin: 2.90% to 2.42%),
182 and significantly improved model fit (p -value $< 2.2 \times 10^{-16}$ for all three antibiotics; Likelihood-ratio
183 χ^2 test for nested models). *mtrC* LOF strains were identified in 28 of the 66 countries surveyed
184 and ranged in isolation date from 2002 to 2017. Because most strains in this dataset were
185 collected within the last two decades, we also examined a dataset of strains collected in
186 Denmark from 1928 to 2013 to understand the historical prevalence of *mtrC* LOF mutations³⁷.
187 We observed an additional 10 strains with the 'GC' two base pair deletion ranging in isolation
188 date from 1951-2000, indicating that *mtrC* LOF strains have either repeatedly arisen or
189 persistently circulated for decades. Our results demonstrate that a relatively common
190 mechanism of gonococcal acquired antibiotic susceptibility is a two base pair deletion in *mtrC*
191 and that such mutations are globally and temporally widespread.

192

193 **Loss of the MtrCDE efflux pump is associated with cervical infection**

194 The MtrCDE pump has been demonstrated to play a critical role in gonococcal survival in the
195 presence of human neutrophils and in the female murine genital tract model of gonococcal
196 infection, and overexpression of *mtrCDE* results in substantial fitness benefits for dealing with


197 both antimicrobial and environmental pressures³⁸⁻⁴¹. The relative frequency of the *mtrC* LOF
198 mutations we observe (occurring in approximately 1 in every 25 isolates) thus seems unusual
199 for a mutation predicted to be deleterious for human infection. *mtrC* LOF strains do not grow
200 more or less quickly *in vitro* than *mtrC* wild-type strains, indicating that this mutation does not
201 confer a simple fitness benefit due to reduced energetic cost^{34,38,42}. Instead, we hypothesized
202 that there are unique environments that select for non-functional efflux pump.

203

204 We aggregated patient-level metadata across included studies on sex partner preferences and
205 anatomical site of infection. Sexual behavior and *mtrC* genotypic information was available for
206 1975 isolates from individual patients. There was a significant association between *mtrC* LOF
207 and sexual behavior (*p*-value = 0.04021; Fisher's exact test) (Figure 3a), and *mtrC* LOF
208 occurred more often in isolates from men who have sex with women (MSW) (28/626, 4.47%)
209 compared to isolates from men who have sex with men (MSM) (31/1189, 2.61%) (OR = 1.75,
210 95% CI [1.00-3.04], *p*-value = 0.037; Fisher's exact test). To understand whether anatomical
211 selective pressures contributed to this enrichment, we analyzed the site of infection and *mtrC*
212 genotypic information available for 2730 isolates. *mtrC* LOF mutations were significantly
213 associated with site of infection (*p*-value = 6.49×10⁻⁵; Fisher's exact test) and were
214 overrepresented particularly in cervical isolates: 16 out of 129 (12.4%) cervical isolates
215 contained an *mtrC* LOF mutation compared to 82 out of 2249 urethral isolates (3.65%; OR =
216 3.74, 95% CI [1.98-6.70], *p*-value = 4.71×10⁻⁵; Fisher's exact test), 3 out of 106 pharyngeal
217 isolates (2.83%; OR = 4.83, 95% CI [1.33-26.63], *p*-value = 0.00769; Fisher's exact test), and 4
218 out of 246 rectal isolates (1.63%; OR = 8.52, 95% CI [2.67-35.787], *p*-value = 2.39×10⁻⁵;
219 Fisher's exact test) (Figure 3b). Because our meta-analysis collection comprises datasets
220 potentially biased by preferential sampling for drug-resistant strains, we validated our
221 epidemiological associations on a set of 2186 sequenced isolates, corresponding to all cultured
222 isolates of *N. gonorrhoeae* in the state of Victoria, Australia in 2017⁴³. We again observed
223 significant associations between *mtrC* LOF and sexual behavior (*p*-value = 0.0180; Fisher's
224 exact test) as well as anatomical site of infection (*p*-value = 0.0256; Fisher's exact test)
225 (Supplementary Figure 5, Supplementary Text). *mtrC* LOF mutations were again
226 overrepresented in cervical isolates: 9 out of 227 (3.96%) cervical isolates contained an *mtrC*
227 LOF mutation compared to 15 out of 882 urethral isolates (1.70%; OR = 2.38, 95% CI [0.91-
228 5.91], *p*-value = 0.0679; Fisher's exact test), 3 out of 386 pharyngeal isolates (0.78%; OR =
229 5.26, 95% CI [1.29-30.51], *p*-value = 0.0117; Fisher's exact test), and 7 out of 632 rectal
230 isolates (1.11%; OR = 3.68, 95% CI [1.20-11.78], *p*-value = 0.0173; Fisher's exact test). These

231 results indicate that environmental pressures unique to female urogenital infection may select
232 for loss of the primary gonococcal efflux pump resulting in broadly increased susceptibility to
233 antibiotics and host-derived antimicrobial peptides.

234

235

236 **Figure 3 – Gonococcal *mtrC*, *mtrA*, and *farA* LOF mutations are associated with patient**
237 **sexual behavior and site of infection in the global meta-analysis dataset. a)** Sexual
238 behavior of patients infected with isolates with either intact or LOF alleles of *mtrC* (left), *mtrA*
239 (middle), or *farA* (right). b) Site of infection in patients infected with isolates with either intact or
240 LOF alleles of *mtrC* (left), *mtrA* (middle), or *farA* (right). *mtrA* alleles were predicted as LOF only
241 in the absence of other epistatic Mtr overexpression mutations. Statistical significance between
242 genotype and patient metadata was assessed by Fisher's exact test: * p<0.05, ** p<0.01, and
243 *** p<0.001. WSM = women who have sex with men, MSW = men who have sex with women,
244 MSMW = men who have sex with men and women, MSM = men who have sex with men.
245 **Activator loss-of-function offers an additional level of adaptive regulatory control**

246 The association of *mtrC* LOF mutations with cervical specimens suggests that other mutations
247 that downregulate expression of the *mtrCDE* operon should also promote adaptation to the
248 cervical niche. The MtrCDE efflux pump regulon comprises the MtrR repressor and the MtrA
249 activator (Figure 2 inset), the latter of which exists in two allelic forms: a wild-type functional
250 gene capable of inducing *mtrCDE* expression and a variant rendered non-functional by an 11-bp
251 deletion near the 5' end of the gene⁴⁴ (Supplementary Figure 2B). Knocking out *mtrA* has a
252 detrimental effect on fitness in the gonococcal mouse model, and epistatic *mtrR* mutations
253 resulting in overexpression of *mtrCDE* compensate for this fitness defect by masking the effect
254 of the *mtrA* knockout³⁹. Prior work assessing the genomic diversity of *mtrA* in a set of 922
255 primarily male urethral specimens found only four isolates with the 11-bp deletion (0.43%)⁴⁵,
256 seemingly in agreement with the *in vivo* importance of *mtrA*. However, in our global meta-
257 analysis dataset, 362/4842 isolates (7.48%) were predicted to be *mtrA* LOF, of which the
258 majority (357/362, 98.6%) were due to the 11-bp deletion. Of the 4842 isolates, 268 (5.53%)
259 had *mtrA* LOF mutations in non-*mtrCDE* overexpression backgrounds (as defined by the
260 absence of known *mtrR* promoter or coding sequence mutations or *mtrCDE* mosaic alleles) and
261 therefore not epistatically masked. We repeated our epidemiological associations on these *mtrA*
262 LOF strains without concurrent overexpression mutations and observed highly significant
263 associations with reported patient sexual behavior (*p*-value = 1.81×10⁻¹¹; Fisher's exact test)
264 and site of infection (*p*-value = 1.64×10⁻¹²; Fisher's exact test) (Figure 3). As with *mtrC* LOF
265 mutations, *mtrA* LOF mutations were significantly overrepresented in cervical isolates: 25 out of
266 129 (19.4%) cervical isolates contained an *mtrA* LOF mutation compared to 61 out of 2248
267 urethral isolates (2.71%; OR = 8.60, 95% CI [4.96-14.57], *p*-value = 4.60×10⁻¹³; Fisher's exact
268 test), 4 out of 106 pharyngeal isolates (3.78%; OR = 6.09, 95% CI [2.00-24.93], *p*-value =
269 0.000240; Fisher's exact test), and 4 out of 246 rectal isolates (1.63%; OR = 14.43, 95% CI
270 [4.81-58.52], *p*-value = 3.00×10⁻⁹; Fisher's exact test). In the Australian validation cohort⁴³, the
271 majority (81/85, 95.3%) of *mtrA* LOF strains had concurrent *mtrCDE* overexpression mutations,
272 so it was not possible to test for these associations. In such genetic backgrounds where
273 overexpression mutations mask the effect of *mtrA* LOF, *mtrC* LOF is the preferred method of
274 efflux pump downregulation: the majority of *mtrC* LOF mutations in both the global dataset
275 (174/180, 96.7%) and the Australian cohort (33/35, 94.3%) occurred in backgrounds with known
276 *mtr* overexpression mutations. Phylogenetic analysis showed that the distribution of *mtrA* LOF
277 differed from that of *mtrC* LOF with fewer introductions but more sustained transmission and
278 that the two mutations were largely non-overlapping (Supplementary Figure 3). Our results

279 indicate that multiple adaptive paths for MtrCDE efflux pump downregulation exist depending on
280 genetic interactions with other concurrent mutations in the *mtrCDE* regulon.

281

282 **A second class of proton-dependent efflux pumps appears to contribute to adaptation**
283 **via loss of function mutations**

284 The associations we observed in the *mtrCDE* regulon raised the question of the mechanism by
285 which the cervical environment could select for pump downregulation. Recent work on
286 *Pseudomonas* suggested one possible model: overexpression of homologous *P. aeruginosa*
287 efflux pumps belonging to the same resistance/nodulation/cell division (RND) proton/substrate
288 antiporter family as MtrCDE results in a fitness cost due to increased cytoplasmic acidification⁴⁶.
289 This fitness cost was only observed in anaerobic conditions, where aerobic respiration cannot
290 be used to dissipate excess protons efficiently⁴⁶. Analogous conditions in the female urogenital
291 tract, potentially augmented by environmental acidity, could create a similar selective pressure
292 during human infection that leads to pump downregulation or loss.

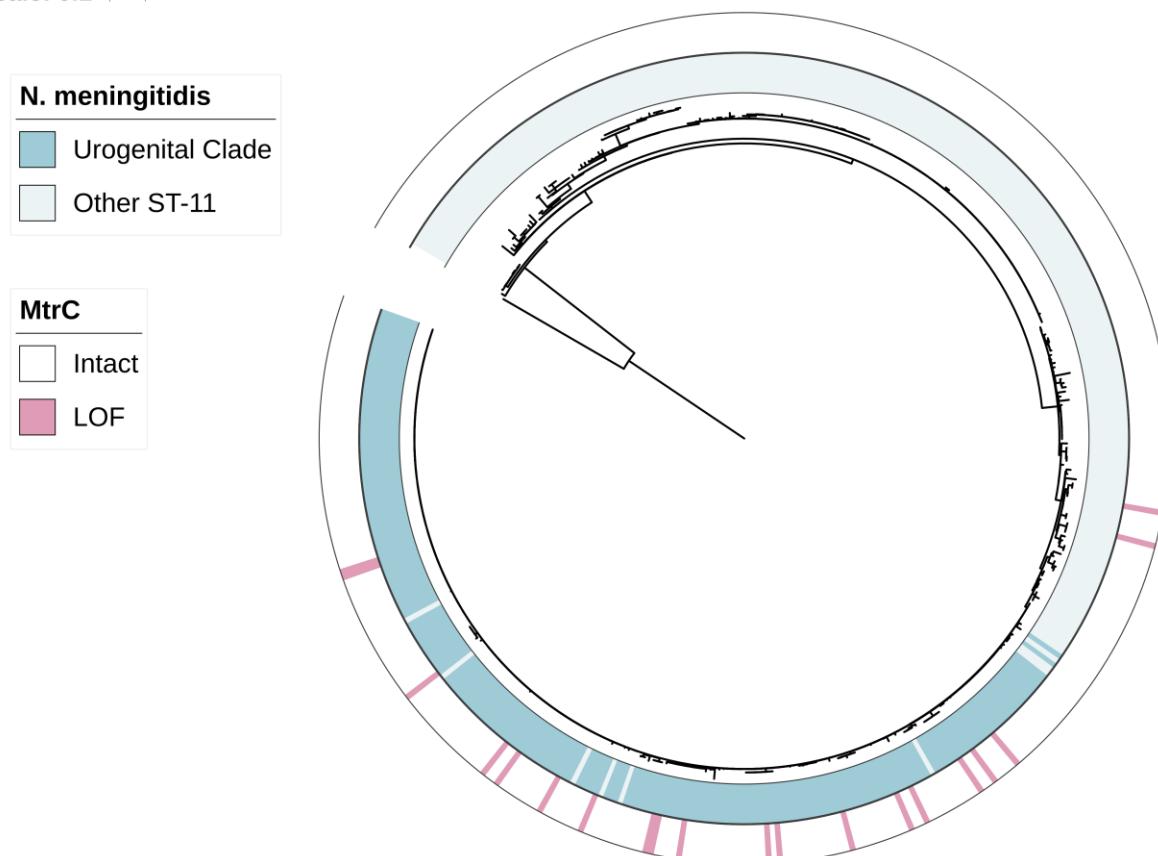
293

294 This model predicts that adaptation to these conditions would similarly result in downregulation
295 of FarAB, the other proton-substrate antiporter efflux pump in *N. gonorrhoeae*. FarAB is a
296 member of the major facilitator superfamily (MFS) of efflux pumps and effluxes long-chain fatty
297 acids^{47,48}. In our global dataset, 332/4838 (6.86%) of isolates were predicted to have *farA* LOF
298 mutations, of which the majority (316/332; 95.2%) were due to indels in a homopolymeric
299 stretch of eight 'T' nucleotides near the 5' end of the gene (Supplementary Figure 2C). *farA* LOF
300 mutations were associated with patient sexual behavior (*p*-value = 5.06×10⁻¹⁰; Fisher's exact
301 test) and site of infection (*p*-value = 1.78×10⁻¹²; Fisher's exact test) and overrepresented in
302 cervical isolates: 33 out of 129 (25.6%) cervical isolates contained a *farA* LOF mutation
303 compared to 117 out of 2246 urethral isolates (5.21%; OR = 6.25, 95% CI [3.90-9.83], *p*-value =
304 3.24×10⁻¹³; Fisher's exact test), 3 out of 106 pharyngeal isolates (2.83%; OR = 11.70, 95% CI
305 [3.50-61.61], *p*-value = 3.80×10⁻⁷; Fisher's exact test), and 12 out of 246 rectal isolates (4.88%;
306 OR = 6.66, 95% CI [3.19-14.80], *p*-value = 1.57×10⁻⁸; Fisher's exact test) (Figure 3). *farA* LOF
307 mutations were prevalent also in our Australian validation dataset⁴³ (225/2180; 10.32%) and
308 again associated with sexual behavior (*p*-value < 2.20×10⁻¹⁶; Fisher's exact test) and site of
309 infection (*p*-value < 2.20×10⁻¹⁶; Fisher's exact test) (Supplementary Figure 5). The phylogenetic
310 distribution of *farA* LOF indicated sustained transmission (Supplementary Figure 3) and
311 overlapped with that of *mtrA* LOF mutations, potentially indicating additive contributions to
312 cervical adaptation. Furthermore, MtrR activates *farAB* expression by repressing the *farR*

313 repressor⁴⁹. This cross-talk between the two efflux pump operons indicates that in *mtrCDE*
314 overexpression strains where MtrR activity is impaired, the effect of *farA* LOF – like *mtrA* LOF –
315 may be masked. We did not observe frequent LOF mutations in the sodium gradient-dependent
316 MATE family efflux pump NorM⁵⁰ or in the ATP-dependent ABC family pump MacAB⁵¹
317 (Supplementary Table 5). The prevalence and cervical enrichment of *farA* LOF mutations and
318 the relative rarity of LOF mutations in other non-proton motive force-driven pumps suggests that
319 cytoplasmic acidification may be a mechanism by which the female urogenital tract selects for
320 efflux pump loss.

321

322 **Meningococcal evolution of efflux pump loss-of-function is driven by urogenital 323 adaptation**


324 *N. meningitidis*, a species closely related to *N. gonorrhoeae*, colonizes the oropharyngeal tract
325 and can cause invasive disease, including meningitis and septicemia⁵². We characterized *mtrC*
326 diversity in a collection of 14,798 *N. meningitidis* genomes, reasoning that the cervical
327 environmental pressures that select for efflux pump LOF in the gonococcus will be rarely
328 encountered by the meningococcus. In agreement with this, the 'GC' hexarepeat associated
329 with most gonococcal *mtrC* LOF mutations was less conserved in *N. meningitidis*; only
330 9684/14798 (65.4%) isolates contained an intact hexarepeat compared to 4644/4847 (95.8%) of
331 *N. gonorrhoeae* isolates (*p*-value < 2.2e-16; Fisher's exact test). In this same collection, we
332 observed *mtrC* LOF due to deletions in the hexarepeat region in only 82 meningococcal isolates
333 (0.55%), with a similar frequency of 25/4059 (0.62%) in a curated dataset comprising all
334 invasive meningococcal disease isolates collected in the UK from 2009-2013⁵³. The observed
335 interruption of 'GC' dinucleotide repeats, predicted to result in a lower mutation rate⁵⁴, and the
336 relative rarity of *mtrC* LOF mutations suggests that efflux pump loss is not generally adaptive in
337 *N. meningitidis*. However, a urogenitally-adapted meningococcal lineage has recently emerged
338 in the US associated with outbreaks of non-gonococcal urethritis in heterosexual patients⁵⁵⁻⁵⁷. In
339 isolates from this lineage, the prevalence of *mtrC* LOF mutations was 18/207 (8.70%),
340 substantially higher than typical *N. meningitidis* and comparable to the prevalence of
341 gonococcal *mtrC* LOF mutations in MSW in our global dataset (4.47%). We compared the
342 frequency of *mtrC* LOF mutations in the urogenital lineage to geographically and genetically
343 matched isolates (i.e., all publicly available n=456 PubMLST ST-11 North American isolates)
344 and observed a significant difference in prevalence (18 out of 207 or 8.70% versus 2 out of 249
345 or 0.80%; OR = 11.71, 95% CI [2.75-105.37], *p*-value = 3.31×10⁻⁵; Fisher's exact test). Most
346 *mtrC* LOF mutations occurred due to the same hexarepeat two base pair deletion that we

347 previously observed for *N. gonorrhoeae*, and in line with this, *mtrC* LOF in this urogenital
348 lineage arose multiple times independently similarly to gonococcal *mtrC* LOF mutations (Figure
349 4, Supplementary Figure 3). *farA* LOF mutations were not observed in this meningococcal
350 lineage. We conclude that MtrCDE efflux pump LOF is rare in typical meningococcal strains that
351 inhabit the oropharynx but elevated in frequency in a unique urogenitally-adapted lineage
352 circulating in heterosexuals, indicative of potential ongoing adaptation to the cervical niche. Our
353 results suggest that efflux pump loss is broadly adaptive for cervical colonization across
354 pathogenic *Neisseria*.

355

356

Tree scale: 0.1

357

358

359 **Figure 4 – *mtrC* LOF mutations are enriched in a lineage of ST-11 urogenitally-adapted *N.***
360 ***meningitidis*.** A core-genome maximum likelihood phylogeny based on 25045 SNPs was
361 estimated of all North American ST-11 *N. meningitidis* strains from PubMLST (n=456; accessed
362 2019-09-03) rooted with meningococcal reference genome MC58. Membership in ST-11
363 urogenital clade (blue) defined as in Retchless et al., 2018⁵⁶. Genomes with *mtrC* LOF
364 mutations are indicated in pink. Branch length represents substitutions per site.

365

366 **Discussion**

367 In an era in which widespread antimicrobial pressure has led to the emergence of extensively
368 drug-resistant *N. gonorrhoeae*⁵⁸, isolates that appear to have reverted to susceptibility still
369 arise^{9,10}, demonstrating that antibiotic and host environmental pressures interact to shape the
370 evolution of *N. gonorrhoeae*. Here, we showed that frameshift-mediated truncations in the
371 *mtrC* component of the MtrCDE efflux pump are the primary mechanism for epistatic increases
372 in antibiotic susceptibility across a global collection of clinical gonococcal isolates, as
373 suggested by prior work^{32,34}. *mtrC* LOF mutations are enriched in cervical isolates and a
374 frameshifted form of the pump activator MtrA exhibits similar trends, supporting a model in
375 which reduced or eliminated *mtrCDE* efflux pump expression contributes to adaptation to the
376 female genital tract. We hypothesized that the mechanism by which this occurs is through
377 increased cytoplasmic acidification in anaerobic conditions⁴⁶ and demonstrated that LOF
378 mutations in *farA*, encoding a subunit of the other proton motive force-driven pump FarAB,
379 were likewise enriched in cervical isolates. The LOF mutations we observed in *mtrC* and *farA*
380 primarily occurred in short homopolymeric sequences (though with low numbers of repeated
381 units) and thus may occur at a frequency higher than baseline mutation rate, similar to other
382 resistance suppressor mutations⁵⁹. In total, 42.6% of cervical isolates in the global dataset and
383 32.6% in the validation dataset contained a LOF mutation in either *mtrC*, *farA*, or *mtrA*,
384 indicating that efflux pump downregulation via multiple genetic mechanisms is prevalent in
385 cervical infection. These results complement prior studies suggesting that *mtrR* LOF resulting
386 in increased resistance to fecal lipids plays a critical role in gonococcal adaptation to the rectal
387 environment^{60,61}, and taken together suggest a model in which the fitness benefit of efflux
388 pump expression is highly context dependent.

389

390 Other selective forces could also have contributed to the observed enrichment of LOF
391 mutations in cervical isolates. For instance, iron levels modulate *mtrCDE* expression through
392 Fur (the ferric uptake regulator) and MpeR⁶². Iron limitation results in increased expression of
393 *mtrCDE*, and conversely, iron enrichment result in decreased expression, suggesting a fitness
394 cost for *mtrCDE* expression during high iron conditions. Variation in environmental iron levels,
395 such as in the menstrual cycle, may provide another selective pressure for LOF mutations to
396 arise particularly when MtrR function is impaired through active site or promoter mutations.
397 Differing rates of antibiotic use for gonorrhea in men and women due to increased
398 asymptomatic infection in women might also select for *mtrC* LOF mutations, but this would not

399 explain the associations we observed for the non-antibiotic substrate efflux pump *farAB* or the
400 increased frequency of *mtrC* LOF mutations in urogenitally-adapted meningococci. RNA
401 sequencing from men and women infected with gonorrhea demonstrated a 4-fold lower
402 expression of *mtrCDE* in women, re-affirming the idea that efflux pump expression in the
403 female genital tract incurs a fitness cost⁶³.

404

405 Despite significant associations, only a proportion of cervical isolates exhibited these LOF
406 genotypes, suggesting variation in cervix-associated pressures or indicating that cervical
407 culture specimens were obtained before niche pressures could select for pump
408 downregulation. This variation could also lead to mixed populations of efflux pump WT and
409 LOF strains; however, because only one clonal isolate per site per patient is typically
410 sequenced in clinical surveillance studies, we would be unable to detect this intra-host patient
411 diversity. Targeted amplicon sequencing of LOF loci directly from patients in future studies
412 would help to assess whether this intra-host diversity plays a role in infection and transmission.
413 Additionally, while the cervix is the primary site of infection and source for culture in women,
414 the selective pressures at play may include other sites more broadly in the female genital tract
415 and may be influenced by the presence of other microbial species both pathogenic and
416 commensal.

417

418 Our model extended to the other pathogenic *Neisseria* species, *N. meningitidis*, in that a
419 urogenital clade transmitting in primarily heterosexual populations appeared to be undergoing
420 further urogenital adaptation via the same *mtrC* frameshift mutation that was most commonly
421 observed for *N. gonorrhoeae*. In the absence of data on cases of cervicitis, we hypothesized
422 that for this meningococcal lineage, efflux pump LOF emerged in the female urogenital tract
423 and was transmitted to heterosexual men resulting in the enrichment we observed. Efflux
424 pumps are common across Gram-negative bacteria⁶⁴, and their loss may be a general
425 adaptive strategy for species that face similar pressures as *N. gonorrhoeae* and urogenitally-
426 adapted *N. meningitidis*. In support of this, clinical isolates of *Pseudomonas aeruginosa* with
427 truncations in genes homologous to *mtrC*^{65,66} and exhibiting antibiotic hypersensitivity have
428 been obtained from cystic fibrosis patients, in whom the thick mucus in airway environments
429 can likewise exhibit increased acidity and decreased oxygen availability^{67,68}.

430

431 Our results also suggest potential therapeutic avenues for addressing the emergence of
432 multidrug-resistant gonococcal strains. Selective knockdown of MtrCDE homologs in other
433 bacteria via antisense RNA⁶⁹ and bacteriophages⁷⁰ has successfully re-sensitized resistant
434 strains and enhanced antibiotic efficacy, and ectopic expression in *N. gonorrhoeae* of the *mtrR*
435 repressor in a cephalosporin-resistant strain enhances gonococcal killing by β -lactam
436 antibiotics in the mouse model⁷¹. Our population-wide estimated effect sizes for *mtrC* LOF
437 mutations provide a prediction for the re-sensitization effect of MtrCDE knockdown across
438 multiple genetic backgrounds and suggest particularly strong effects for the macrolide
439 azithromycin (Supplementary Figure 4). Because the correlation between MIC differences and
440 clinical efficacy is still not well understood^{72,73}, follow up studies to assess treatment efficacy
441 differences in patients with and without *mtrC* LOF strains can help to quantify the expected
442 effect of MtrCDE knockdown in the clinical context.

443

444 In summary, by analysis of population genomics and patient clinical data, we have shown that
445 pathogenic *Neisseria* can use multiple avenues of efflux pump perturbation as an adaptive
446 strategy to respond to host environmental pressures and illustrate how these host pressures
447 may result in increased antibiotic susceptibility in *N. gonorrhoeae*.

448 **Methods**

449

450 **Genomics pipeline:** Reads for isolates with either associated azithromycin, ciprofloxacin, or
451 ceftriaxone MIC metadata were downloaded from datasets listed in Supplementary Table 1.
452 Reads were inspected using FastQC
453 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) and removed if GC content
454 diverged notably from expected values (approximately 52-54%) or if base quality was
455 systematically poor. We mapped read data to the NCCP11945 reference genome (RefSeq
456 accession: NC_011035.1) using BWA-MEM (version 0.7.17-r1188)^{74,75} and deduplicated reads
457 using Picard (version 2.8.0) (<https://github.com/broadinstitute/picard>). BamQC in Qualimap
458 (version 2.2.1)⁷⁶ was run to identify samples with less than 70% of reads aligned or samples
459 with less than 40X coverage, which were discarded. We used Pilon (version 1.16)⁷⁷ to call
460 variants with mindepth set to 10 and minmq set to 20 and generated pseudogenomes from
461 Pilon VCFs by including all PASS sites and alternate alleles with AF > 0.9; all other sites were
462 assigned as 'N'. Samples with greater than 15% of sites across the genome missing were also
463 excluded. We created *de novo* assemblies using SPAdes (version 3.12.0 run using 8 threads,
464 paired end reads where available, and the --careful flag set)⁷⁸ and quality filtered contigs to
465 ensure coverage greater than 10X, length greater than 500 base pairs, and total genome size
466 approximately equal to the FA1090 genome size (2.0 to 2.3 Mbp). We annotated assemblies
467 with Prokka (version 1.13)⁷⁹, and clustered core genes using Roary (version 3.12)⁸⁰ (flags -z -e
468 -n -v -s -i 92) and core intergenic regions using piggy (version 1.2)⁸¹. A recombination-
469 corrected phylogeny of all isolates was constructed by running Gubbins (version 2.3.4) on the
470 aligned pseudogenomes and visualized in iTOL (version 4.4.2)⁸²⁻⁸⁴. All isolates with associated
471 metadata and accession numbers are listed in Supplementary Tables 6 and 7.

472

473 **Resistance allele calling:** Known resistance determinants in single-copy genes were called
474 by identifying expected SNPs in the pseudogenomes. For categorizing mosaic alleles of *mtr*,
475 we ran BLASTn (version 2.6.0)⁸⁵ on the *de novo* assemblies using a query sequence from
476 FA1090 (Genbank accession: NC_002946.2) comprising the *mtr* intergenic promoter region
477 and *mtrCDE*. BLAST results were aligned using MAFFT (version 7.450)⁸⁶ and clustered into
478 distinct allelic families using FastBAPS (version 1.0.0)⁸⁷. We confirmed that horizontally-
479 transferred *mtr* alleles associated with resistance from prior studies⁵ corresponded to distinct
480 clusters in FastBAPS. A similar approach was used to cluster *penA* alleles after running

481 BLASTn with a *penA* reference sequence from FA1090. Variant calling in the multi-copy 23S
482 rRNA locus was done by mapping to a modified NCCP11945 reference genome containing
483 only one copy of the 23S rRNA and analyzing variant allele frequencies⁸⁸. We identified
484 truncated MtrR proteins using Prokka annotations, and mutations in the *mtr* promoter region
485 associated with upregulation of *mtrCDE* (A deletion and TT insertion in inverted repeat, *mtr*
486 120) using an alignment of the *mtr* promoter from piggy output.

487

488 **Phenotype processing and linear models:** We doubled GISP azithromycin MICs before
489 2005 to account for the GISP MIC protocol testing change⁸⁹. Samples with binary resistance
490 phenotypes (i.e., “SUS” and “RES”) were discarded. For samples with MICs listed as above or
491 below a threshold (indicated by greater than or less than symbols), the MIC was set to equal
492 the provided threshold. MICs were log₂-transformed for use as continuous outcome variables
493 in linear modeling and GWAS. We modeled transformed MICs using a panel of known
494 resistance markers^{22,23} and included the recently characterized mosaic *mtrCDE* alleles⁵ and
495 *rpD* G70D substitution⁹⁰ conferring azithromycin resistance, as well as isolate country of
496 origin. Formulas called by the lm function in R (version 3.5.1) for each drug were (with codon
497 or nucleotide site indicated after each gene or rRNA, respectively):

498 Azithromycin: Log_AZI ~ Country + MtrR 39 + MtrR 45 + MtrR LOF + *mtrR* promoter +
499 *mtrRCDE* BAPS + RplD G70D + 23S rRNA 2059 + 23S rRNA 2611

500 Ceftriaxone: Log_CRO ~ Country + MtrR 39 + MtrR 45 + MtrR LOF + *mtrR* promoter + *penA*
501 BAPS + PonA 421 + PenA 501 + PenA 542 + PenA 551 + PorB 120 + PorB 121

502 Ciprofloxacin: Log_CIP ~ Country + MtrR 39 + MtrR 45 + MtrR LOF + *mtrR* promoter + GyrA
503 91 + GyrA 95 + ParC 86 + ParC 87 + ParC 91 + PorB 120 + PorB 121

504 To visualize the continuous MICs using thresholds as on Figure 1, we binarized MICs using
505 the CLSI resistance breakpoint for ciprofloxacin, the CLSI non-susceptibility breakpoint for
506 azithromycin, and the CDC GISP surveillance breakpoint for ceftriaxone.

507

508 **GWAS and unitig annotation:** We used a regression-based GWAS approach to identify novel
509 susceptibility mutations. In particular, we employed a linear mixed model with a random effect
510 to control for the confounding influence of population structure and a fixed effect to control for
511 isolate country of origin. Though the outcome variable (log₂-transformed MICs) is the same, in

512 contrast to the linear modeling approach described above, which models the linear, additive
513 effect of multiple, known resistance mutations, regression in a GWAS is usually run
514 independently and univariately on each variant for all identified variants in the genome,
515 providing a systematic way to identify novel contributors to the outcome variable. Linear mixed
516 model GWAS was run using Pyseer (version 1.2.0 with default allele frequency filters) on the
517 480,902 unitigs generated from GATB (version 1.3.0); the recombination-corrected phylogeny
518 from Gubbins was used to parameterize the Pyseer population structure random effects term
519 and isolate country of origin was included as a fixed effect covariate. To create the Manhattan
520 plot, we mapped all unitigs from the GWAS using BWA-MEM (modified parameters: -B 2 and -
521 O 3) to the pan-susceptible WHO F strain reference genome (Genbank accession:
522 GCA_900087635.2) edited to contain only one locus of the 23S rRNA. Significant unitigs were
523 annotated using Pyseer's annotation pipeline. Unitigs mapping to multiple sites in the genome
524 and in or near the highly variable *pilE* (encoding pilus subunit) or *piiC* (encoding opacity protein
525 family) genes were excluded, as were unitigs less than twenty base pairs in length. Due to
526 redundancy and linkage, variants will be spanned by multiple overlapping unitigs with similar
527 frequencies and p-values. For ease of interpretation, we grouped unitigs within 50 base pairs
528 of each other and represented each cluster by the most significant unitig. Unitigs with allele
529 frequency greater than 50% were also excluded as they represented the majority allele. Unitig
530 clusters were then annotated by gene or adjacent genes for unitigs mapping to intergenic
531 regions and further analyzed for predicted functional effect relative to the WHO F reference
532 genome in Geneious Prime (version 2019.2.1, <https://www.geneious.com>).

533

534 **Identifying LOF and upregulation alleles:** To identify predicted LOF alleles of efflux pump
535 proteins, we ran BLASTn on the *de novo* assemblies using a query sequence from FA1090
536 (reference genome FA19 was used for *mtrA*). Sequences that were full-length or
537 approximately full-length (+/- 5 nucleotides) beginning with expected start codons were
538 translated using Python (version 3.6.5) and Biopython (version 1.69)⁹¹. Peptides shorter than
539 90% of the expected full-length size of the protein were further analyzed using Geneious Prime
540 (version 2019.2.1, <https://www.geneious.com>) to identify the nucleotide mutations resulting in
541 predicted LOF by alignment of the nucleotide sequences. We called *mtrCDE* overexpression
542 status by identifying the presence of any of the known *mtrR* promoter mutations, MtrR coding
543 sequence mutations, and mosaic *mtrCDE* alleles.

544

545 **Experimental validation:** *N. gonorrhoeae* culture was conducted on GCB agar (Difco) plates
546 supplemented with 1% Kellogg's supplements⁹² at 37°C in a 5% CO₂ atmosphere.
547 Antimicrobial susceptibility testing was conducted on GCB agar supplemented with 1%
548 IsoVitaleX (Becton Dickinson) using Etests (bioMérieux) at 37°C in a 5% CO₂ atmosphere. We
549 selected a clinical isolate (NY0195⁹³) from the multidrug-resistant lineage ST-1901³⁵ that
550 contained an *mtrC* LOF mutation mediated by a two base pair hexarepeat deletion and
551 confirmed via Etests that its MIC matched, within one dilution, its reported MIC. Isolate
552 NY0195 contained mosaic *penA* allele XXXIV conferring cephalosporin reduced susceptibility
553 and the *gyrA* S91F substitution conferring ciprofloxacin resistance⁹. We complemented the
554 *mtrC* LOF mutation in this strain by transforming it via electroporation⁹² with a 2kb PCR
555 product containing a *Neisseria* DNA uptake sequence and an in-frame *mtrC* allele, obtained
556 by colony PCR from a neighboring isolate (GCGS0759). After obtaining transformants by
557 selecting on an azithromycin 0.05 µg/mL GCB plate supplemented with Kellogg's supplement,
558 we confirmed successful transformation by Sanger sequencing of the *mtrC* gene. No
559 spontaneous mutants on azithromycin 0.05 µg/mL plates were observed after conducting
560 control transformations in the absence of GCGS0759 *mtrC* PCR product. We conducted
561 antimicrobial susceptibility testing in triplicate using Etests, assessing statistical significance
562 between parental and transformant MICs by a two-sample t-test.

563

564 **Metadata analysis:** Patient metadata were collected from the following publications from
565 Supplementary Table 1 that had information on site of infection: Demczuk et al., 2015,
566 Demczuk et al., 2016, Ezewudo et al., 2015, Grad et al., 2014 and 2016, Kwong et al., 2017,
567 Lee et al., 2018, and Mortimer et al., 2020. Sites of infection were standardized across
568 datasets using a common ontology (i.e., specified as urethra, rectum, pharynx, cervix, or
569 other). Fisher's two-sided exact test in R (version 3.5.1) was used to infer whether there was
570 nonrandom association between *mtrC* LOF presence and either anatomical site of infection or
571 sexual behavior. For sexual behavior analysis, isolates cultured from multiple sites on the
572 same patient were counted as only one data point.

573

574 **Meningococcal *mtrC* analysis:** *mtrC* alleles from *N. meningitidis* assembled genomes were
575 downloaded from PubMLST (n=14798; accessed 2019-09-03) by setting (species = "Neisseria
576 meningitidis"), filtering by (Sequence bin size >= 2 Mbp), and exporting sequences for Locus
577 "NEIS1634"⁹⁴. *mtrC* LOF alleles were identified as described above. We generated a core-

578 genome maximum likelihood phylogeny of all North American ST-11 *N. meningitidis* strains
579 from PubMLST (n=456; accessed 2019-09-03) rooted with meningococcal reference genome
580 MC58 (Genbank accession: AE002098.2) using Roary (version 3.12) (flags -z -e -n -v -s -i 92)
581 and annotated it using metadata from Retchless et al., 2018⁵⁶ (see Supplementary Table 8 for
582 PubMLST IDs). Overrepresentation of *mtrC* LOF alleles in the US urogenital lineage compared
583 to selected control datasets was assessed using Fisher's two-sided exact test in R (version
584 3.5.1).

585

586 **Data and code availability**

587 Accession numbers for all sequences used are listed in the supplementary tables. Code to
588 reproduce the analyses and figures is available at <https://github.com/gradlab/mtrC-GWAS> or
589 from the authors upon request. Source data underlying Figure 2 is available in the
590 supplementary tables or at the above GitHub link.

591

592 **Acknowledgements**

593 This work was supported by the NIH/NIAID grant 1R01AI132606-01 and the Smith Family
594 Foundation. TDM is additionally supported by the NIH/NIAID 1 F32 AI145157-01, and KCM is
595 additionally supported by the NSF GRFP. DHFR was supported by award Number
596 T32GM007753 from the National Institute of General Medical Sciences. The content is solely
597 the responsibility of the authors and does not necessarily represent the official views of the
598 National Institute of General Medical Sciences or the National Institutes of Health. DAW is
599 supported by an Early Career Fellowship from the National Health and Medical Research
600 Council of Australia (GNT1123854). Portions of this research were conducted on the O2 high-
601 performance computing cluster, supported by the Research Computing Group at Harvard
602 Medical School. This publication made use of the Meningitis Research Foundation
603 Meningococcus Genome Library (<http://www.meningitis.org/research/genome>) developed by
604 Public Health England, the Wellcome Trust Sanger Institute, and the University of Oxford as a
605 collaboration and funded by the Meningitis Research Foundation. The authors additionally thank
606 Crista Wadsworth, Samantha Palace, and other members of the Grad Lab for helpful comments
607 during development of the project.

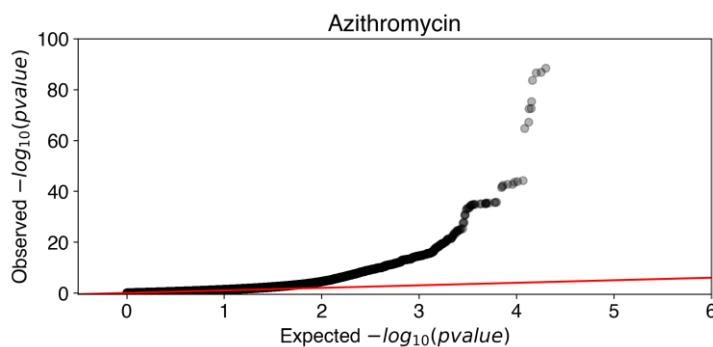
Publication	Study summary	Timespan	Included number
Mortimer et al., 2020 ⁹³	Transmission and AMR surveillance in New York City, USA	2011-2015	888
Sánchez-Busó et al., 2019 ³	Worldwide phylogeography and evolution of gonococcus	1979-2012	408
Yahara et al., 2018 ¹⁰	AMR surveillance in Kyoto and Osaka, Japan	1996-2015	260
Ryan et al., 2018 ¹¹	AMR surveillance in Ireland	2012-2016	39
Harris et al., 2018 ¹²	Genomic survey across European Euro-GASP participant countries (n=20)	2013	1048
Fifer et al., 2018 ¹³	High-level azithromycin resistance outbreak in UK	2004-2017	50
Lee et al., 2018 ¹⁴	Genomic epidemiology in New Zealand	2014-2015	397
Kwong et al., 2017 ¹⁵	Transmission among MSM in Melbourne, Australia	2005-2014	94
Eyre et al., 2017 ²² and De Silva et al., 2016 ²⁰	Transmission in Brighton, UK	2004-2011	231
Grad et al., 2016 ⁹ and 2014 ¹⁷	AMR surveillance across CDC GISP clinics, USA	2000-2013	1100
Demczuk et al., 2016 ¹⁹	Azithromycin resistance surveillance in Canada	1991-2014	199
Demczuk et al., 2015 ¹⁸	Cephalosporin decreased susceptibility surveillance in Canada	1989-2013	114
Ezewudo et al., 2015 ¹⁶	Population structure and AMR surveillance	1982-2011	54

608
609
610
611
612
613
614

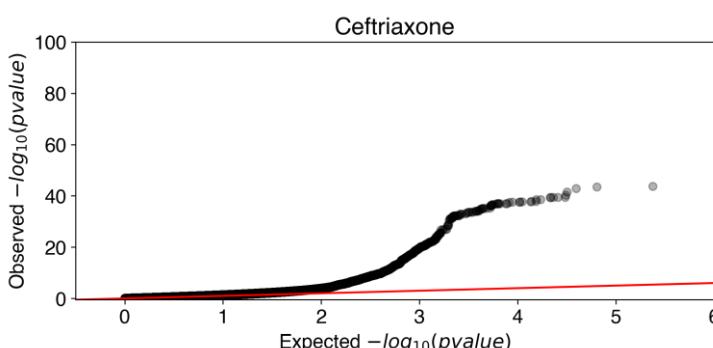
Supplementary Table 1 – Datasets included in global meta-analysis collection. All isolates that passed genomics quality control filters (see methods) with associated azithromycin, or ceftriaxone, or ciprofloxacin metadata were included (n=4852 in total). Euro-GASP = European Gonococcal Antimicrobial Surveillance Program; CDC GISP = Centers for Disease Control and Prevention Gonococcal Isolate Surveillance Project.

Strain	Azithromycin	Ceftriaxone	Ciprofloxacin
NY0195	0.064, 0.094, 0.094	0.016, 0.023, 0.023	6, 6, 4
NY0195 <i>mtrC</i> (in-frame)	0.5, 0.75, 0.75	0.064, 0.064, 0.064	≥ 32, ≥ 32, ≥ 32
	p = 0.0187	p = 0.00289	p = 0.000624

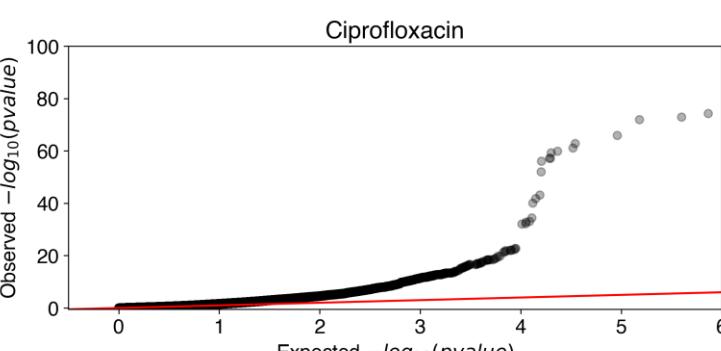
615
616
617
618
619
620
621
622
623
624
625
626


Supplementary Table 4 – Restoration of the *mtrC* coding frame in a clinical isolate by transformation increases MICs to azithromycin, ceftriaxone, and ciprofloxacin. MIC Etests were conducted in triplicate with all results reported. Statistical significance for MIC differences between parental strain and transformant strain was assessed by a two-sample t-test after setting the value of “≥ 32” to 32.

Dataset	Gene	N LOF	N Total	Percentage
Global	<i>farA</i>	332	4838	6.86%
Global	<i>farB</i>	2	4850	0.04%
Global	<i>norM</i>	2	4852	0.04%
Global	<i>macA</i>	1	4847	0.02%
Global	<i>macB</i>	13	4845	0.27%
Global	<i>mtrR</i>	386	4845	7.97%
Global	<i>mtrA</i>	268 (362)	4842	5.45% (7.48%)
Global	<i>mtrC</i>	185	4847	3.82%
Global	<i>mtrD</i>	10	4815	0.21%
Global	<i>mtrE</i>	0	4849	0.00%
Australia	<i>farA</i>	225	2180	10.32%
Australia	<i>farB</i>	1	2186	0.05%
Australia	<i>norM</i>	0	2186	0.00%
Australia	<i>macA</i>	0	2186	0.00%
Australia	<i>macB</i>	0	2186	0.00%
Australia	<i>mtrA</i>	4 (85)	2186	0.18% (3.89%)
Australia	<i>mtrR</i>	253	2183	11.59%
Australia	<i>mtrC</i>	35	2186	1.60%
Australia	<i>mtrD</i>	2	2185	0.09%
Australia	<i>mtrE</i>	0	2186	0.00%


627
628
629
630
631

Supplementary Table 5 – Prevalence of predicted LOF mutations in efflux pump genes for both global and Australian datasets. Counts for *mtrA* LOF mutations in the absence of other epistatic *mtrCDE* overexpression mutations are listed first, with counts for total number of *mtrA* LOF mutations regardless of *mtrCDE* overexpression status listed in parentheses.


632 a)

633
634 b)

635
636 c)

637
638
639

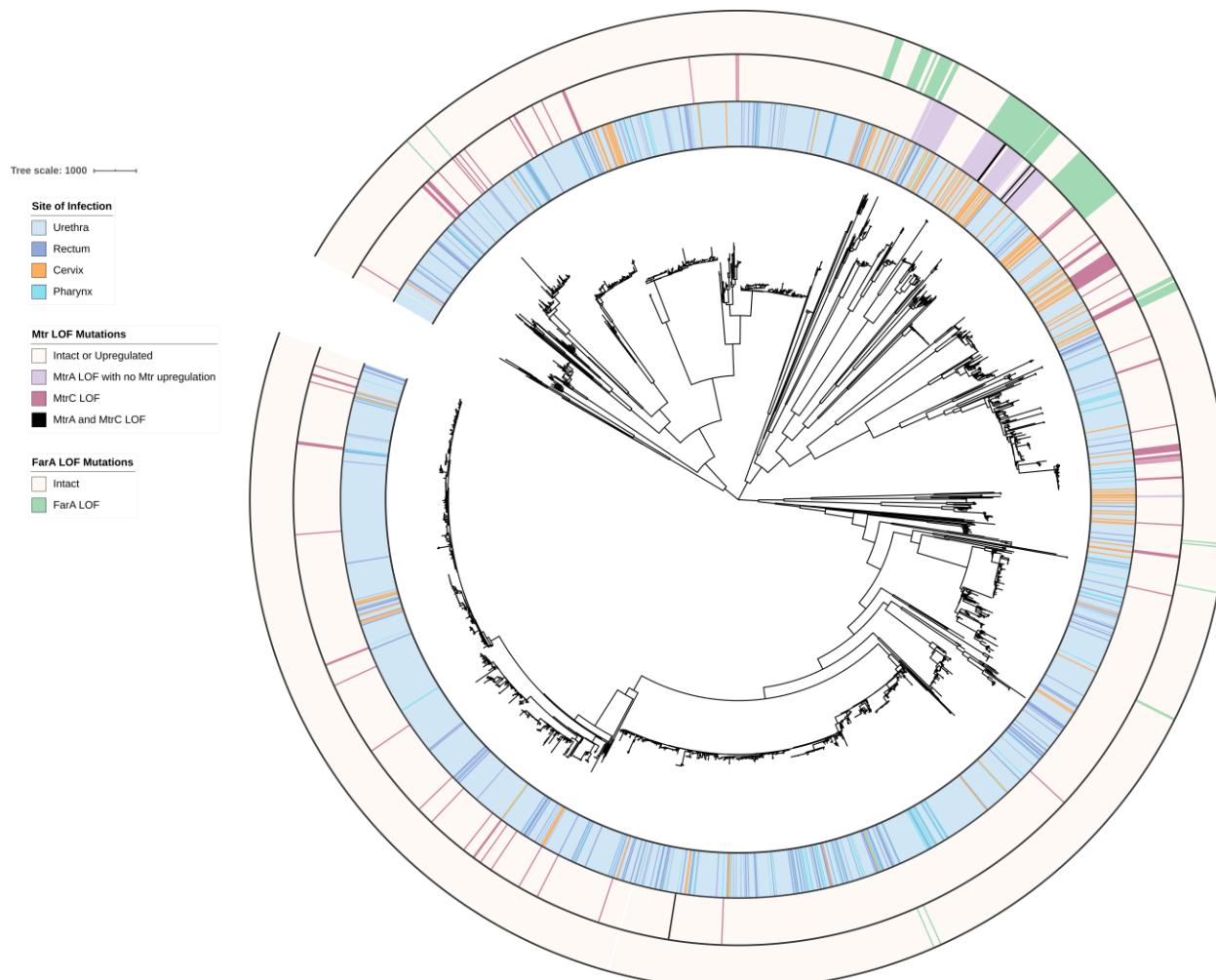
640 **Supplementary Figure 1 – Diagnostic Q-Q plots of expected versus observed p -values for**
641 **GWAS on a) azithromycin, b) ceftriaxone, and c) ciprofloxacin.** In the absence of
642 confounders such as population structure, p -values are distributed uniformly and would be
643 expected to lie along the $y=x$ line (in red) before diverging at higher $-\log_{10}(p\text{-values})$ due to true
644 causal variants⁹⁵. Q-Q plots for all three antibiotics appear to be well-behaved, indicating that
645 the steps we have taken to control for population structure (i.e., using a linear mixed model
646 parameterized by the recombination-corrected phylogeny) were adequate. Highly significant
647 markers corresponding to diverging variants at higher $-\log_{10}(p\text{-values})$ were confirmed to map to
648 known causal variants for all three antibiotics (see Supplementary Table 3).

649

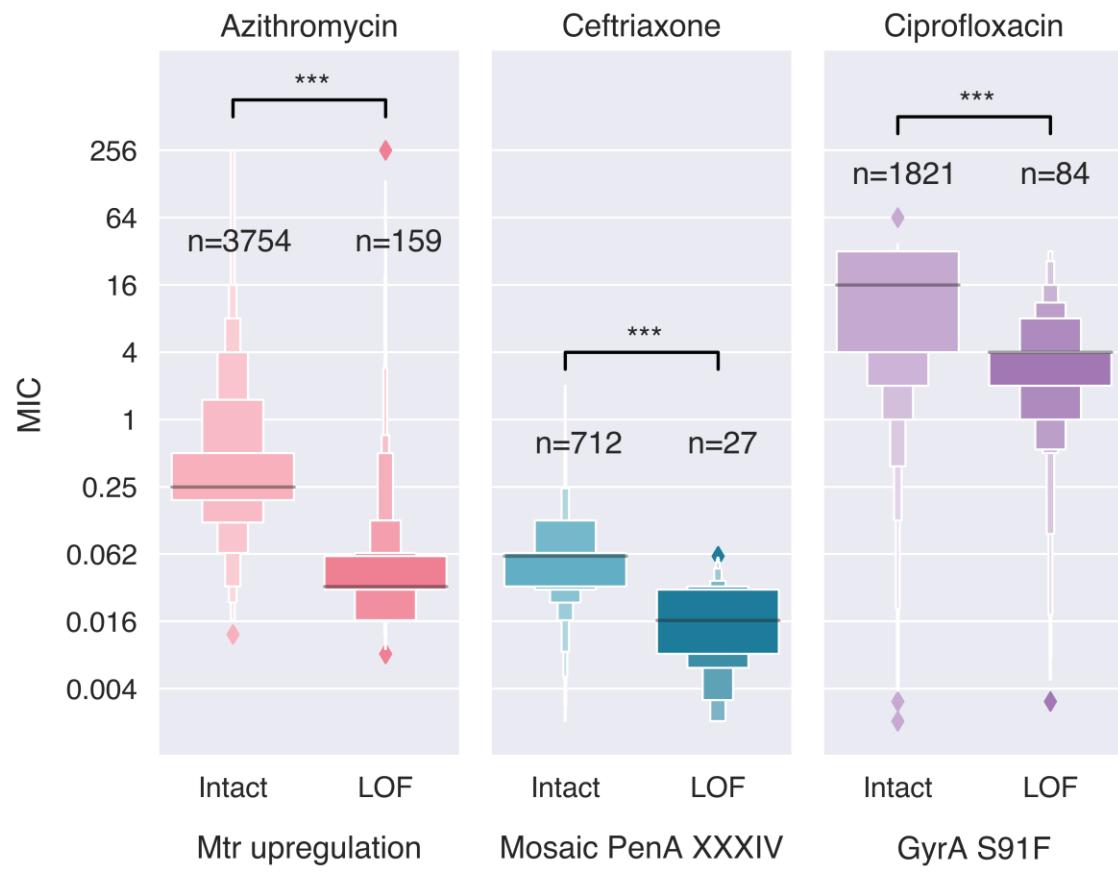
a) Mutational diversity in *mtrC*

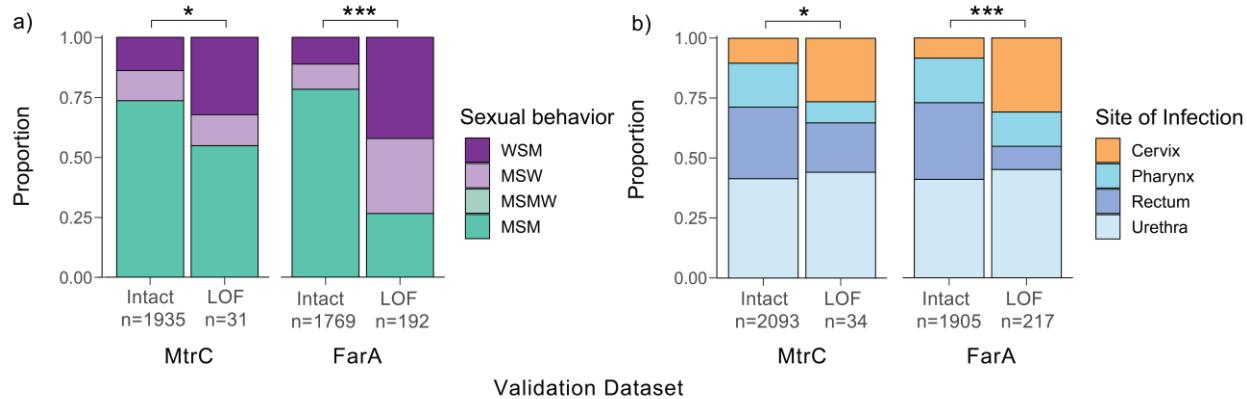
- Wild-type *mtrC*
- 'GC' deletion in hexarepeat region
- 'GC' deletion reverted via insertion elsewhere in gene
- 'A' insertion leading to nonsense mutation
- Mosaic *mtrC* with 'GC' deletion

Sequence alignment showing the first 357 nucleotides of the target sequence (ATGACAGTTCACCT-ATGAA-) aligned with the first 357 nucleotides of the reference sequence (GCAGGTCCTGGAA- and GCGCGCGCGCAACTGGCA). The alignment highlights identical sequences with a red box around the sequence 'S A R A T G'.


b) Mutational diversity in *mtrA*

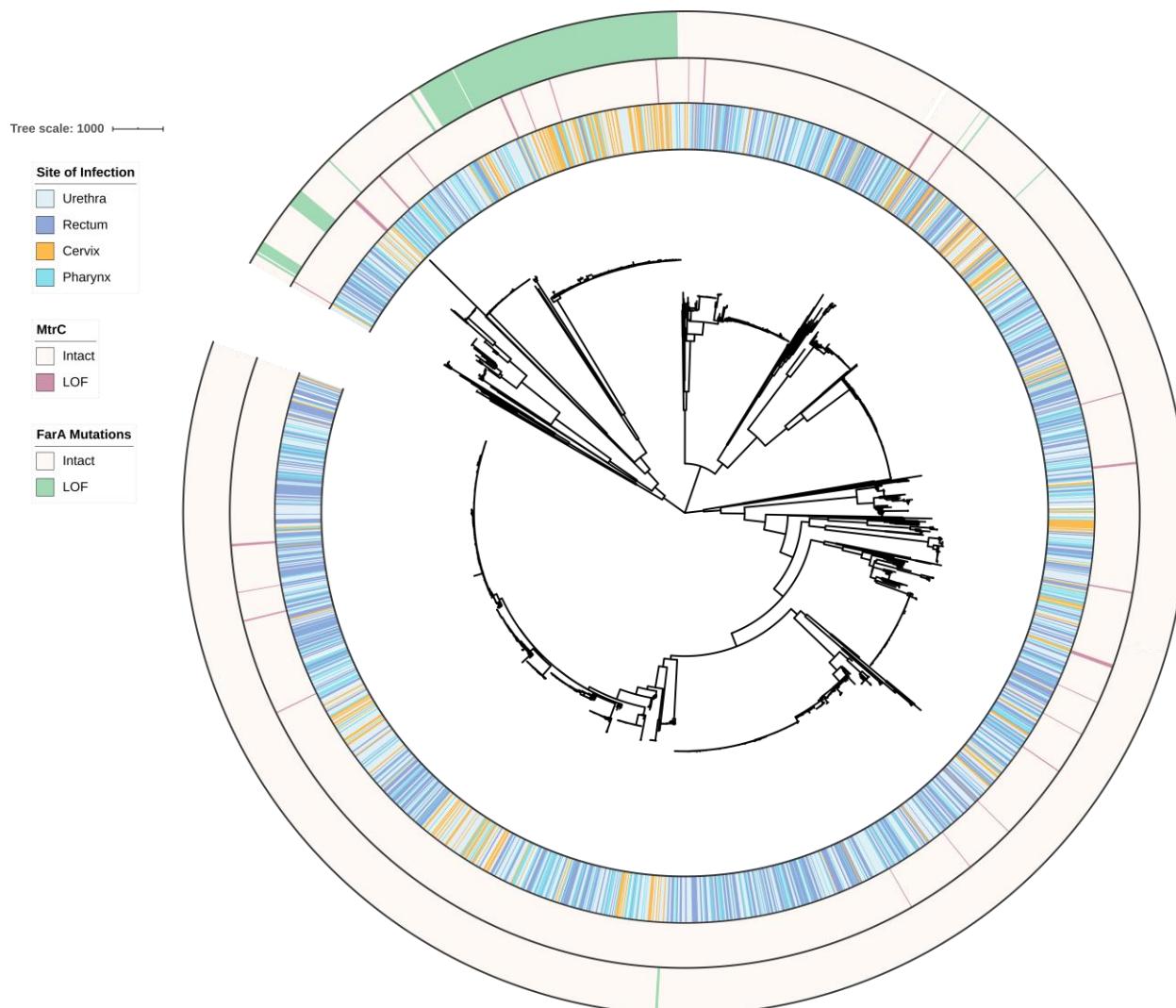
Wild-type *mtrA*


c) Mutational diversity in *farA*


- Wild-type *farA*
- Nonsense mutation
- 'T' deletion in homopolymeric tract
- 'T' insertion in homopolymeric tract
- 'G' deletion near homopolymeric tract

650
651
652
653
654
655
656
657
658
659
660
661
662
663

664
665
666 **Supplementary Figure 3 – Phylogenetic distribution of gonococcal *mtrC*, *MtrA*, and *farA***
667 **LOF alleles with patient site of infection (n=2742) in global dataset.** The recombination-
668 corrected maximum likelihood phylogeny based on 36347 SNPs is shown annotated with rings
669 (from innermost to outermost) for site of infection, *mtrCDE* regulon LOF mutations, and *farA*
670 LOF mutations. Branch length represents total number of substitutions after removal of
671 predicted recombination.
672


682

683 **Supplementary Figure 5 – Gonococcal *mtrC* and *farA* LOF mutations are associated with**
684 **sexual behavior and site of infection in the validation dataset.** a) Sex partner information in
685 patients infected with isolates with either intact or LOF alleles of *mtrC* (left) or *farA* (right).
686 MSMW patients were labelled as MSM in the validation dataset⁴³. b) Site of infection in patients
687 infected with isolates with either intact or LOF alleles of *mtrC* (left) or *farA* (right) datasets.
688 Statistical significance between intact versus LOF patient metadata distributions was assessed
689 by Fisher's exact test: * p<0.05, ** p<0.01, and *** p<0.001. WSM = women who have sex with
690 men, MSW = men who have sex with women, MSMW = men who have sex with men and
691 women, MSM = men who have sex with men.

692

693

694

695
696
697

698 **Supplementary Figure 6 – Phylogenetic distribution of gonococcal *mtrC* LOF alleles with**
699 **patient site of infection (n=2186) in the validation dataset.** The recombination-corrected
700 maximum likelihood phylogeny based on 26669 SNPs is shown annotated with rings (from
701 innermost to outermost) for site of infection, *mtrC* LOF mutations, and *farA* LOF mutations.
702 Branch length represents total number of substitutions after removal of predicted recombination.

703
704
705

706

707 **References**

708 1 Olesen, S. W. *et al.* Azithromycin susceptibility in *Neisseria gonorrhoeae* and seasonal
709 macrolide use. *J Infect Dis*, doi:10.1093/infdis/jiy551 (2018).

710 2 Olesen, S. W. & Grad, Y. H. Deciphering the impact of bystander selection for antibiotic
711 resistance in *Neisseria gonorrhoeae*. *J Infect Dis*, doi:10.1093/infdis/jiz156 (2019).

712 3 Sanchez-Buso, L. *et al.* The impact of antimicrobials on gonococcal evolution. *Nat
713 Microbiol*, doi:10.1038/s41564-019-0501-y (2019).

714 4 Unemo, M. & Shafer, W. M. Antimicrobial resistance in *Neisseria gonorrhoeae* in the
715 21st century: past, evolution, and future. *Clin Microbiol Rev* **27**, 587-613,
716 doi:10.1128/CMR.00010-14 (2014).

717 5 Wadsworth, C. B., Arnold, B. J., Sater, M. R. A. & Grad, Y. H. Azithromycin Resistance
718 through Interspecific Acquisition of an Epistasis-Dependent Efflux Pump Component and
719 Transcriptional Regulator in *Neisseria gonorrhoeae*. *MBio* **9**, doi:10.1128/mBio.01419-18
720 (2018).

721 6 Rouquette-Loughlin, C. E. *et al.* Mechanistic Basis for Decreased Antimicrobial
722 Susceptibility in a Clinical Isolate of *Neisseria gonorrhoeae* Possessing a Mosaic-Like
723 mtr Efflux Pump Locus. *MBio* **9**, doi:10.1128/mBio.02281-18 (2018).

724 7 Quillin, S. J. & Seifert, H. S. *Neisseria gonorrhoeae* host adaptation and pathogenesis.
725 *Nat Rev Microbiol* **16**, 226-240, doi:10.1038/nrmicro.2017.169 (2018).

726 8 Wi, T. *et al.* Antimicrobial resistance in *Neisseria gonorrhoeae*: Global surveillance and a
727 call for international collaborative action. *PLoS Med* **14**, e1002344,
728 doi:10.1371/journal.pmed.1002344 (2017).

729 9 Grad, Y. H. *et al.* Genomic Epidemiology of Gonococcal Resistance to Extended-
730 Spectrum Cephalosporins, Macrolides, and Fluoroquinolones in the United States, 2000-
731 2013. *J Infect Dis* **214**, 1579-1587, doi:10.1093/infdis/jiw420 (2016).

732 10 Yahara, K. *et al.* Genomic surveillance of *Neisseria gonorrhoeae* to investigate the
733 distribution and evolution of antimicrobial-resistance determinants and lineages. *Microb
734 Genom* **4**, doi:10.1099/mgen.0.000205 (2018).

735 11 Ryan, L. *et al.* Antimicrobial resistance and molecular epidemiology using whole-genome
736 sequencing of *Neisseria gonorrhoeae* in Ireland, 2014-2016: focus on extended-
737 spectrum cephalosporins and azithromycin. *Eur J Clin Microbiol Infect Dis*,
738 doi:10.1007/s10096-018-3296-5 (2018).

739 12 Harris, S. R. *et al.* Public health surveillance of multidrug-resistant clones of *Neisseria
740 gonorrhoeae* in Europe: a genomic survey. *Lancet Infect Dis* **18**, 758-768,
741 doi:10.1016/S1473-3099(18)30225-1 (2018).

742 13 Fifer, H. *et al.* Sustained transmission of high-level azithromycin-resistant *Neisseria
743 gonorrhoeae* in England: an observational study. *Lancet Infect Dis* **18**, 573-581,
744 doi:10.1016/S1473-3099(18)30122-1 (2018).

745 14 Lee, R. S. *et al.* Genomic epidemiology and antimicrobial resistance of *Neisseria
746 gonorrhoeae* in New Zealand. *J Antimicrob Chemother* **73**, 353-364,
747 doi:10.1093/jac/dkx405 (2018).

748 15 Kwong, J. C. *et al.* Whole-genome sequencing reveals transmission of gonococcal
749 antibiotic resistance among men who have sex with men: an observational study. *Sex
750 Transm Infect* **94**, 151-157, doi:10.1136/sextrans-2017-053287 (2018).

751 16 Ezewudo, M. N. *et al.* Population structure of *Neisseria gonorrhoeae* based on whole
752 genome data and its relationship with antibiotic resistance. *PeerJ* **3**, e806,
753 doi:10.7717/peerj.806 (2015).

754 17 Grad, Y. H. *et al.* Genomic epidemiology of *Neisseria gonorrhoeae* with reduced
755 susceptibility to cefixime in the USA: a retrospective observational study. *Lancet Infect
756 Dis* **14**, 220-226, doi:10.1016/S1473-3099(13)70693-5 (2014).

757 18 Demczuk, W. *et al.* Whole-genome phylogenomic heterogeneity of *Neisseria*
758 gonorrhoeae isolates with decreased cephalosporin susceptibility collected in Canada
759 between 1989 and 2013. *J Clin Microbiol* **53**, 191-200, doi:10.1128/JCM.02589-14
760 (2015).

761 19 Demczuk, W. *et al.* Genomic Epidemiology and Molecular Resistance Mechanisms of
762 Azithromycin-Resistant *Neisseria gonorrhoeae* in Canada from 1997 to 2014. *J Clin*
763 *Microbiol* **54**, 1304-1313, doi:10.1128/JCM.03195-15 (2016).

764 20 De Silva, D. *et al.* Whole-genome sequencing to determine transmission of *Neisseria*
765 gonorrhoeae: an observational study. *Lancet Infect Dis* **16**, 1295-1303,
766 doi:10.1016/S1473-3099(16)30157-8 (2016).

767 21 Wadsworth, C. B., Arnold, B. J., Abdul Sater, M. R. & Grad, Y. H. Azithromycin
768 resistance through interspecific acquisition of an epistasis dependent efflux pump
769 component and transcriptional regulator in *Neisseria gonorrhoeae*. *BioRxiv* (2018).

770 22 Eyre, D. W. *et al.* WGS to predict antibiotic MICs for *Neisseria gonorrhoeae*. *J*
771 *Antimicrob Chemother* **72**, 1937-1947, doi:10.1093/jac/dkx067 (2017).

772 23 Demczuk, W. *et al.* Equations To Predict Antimicrobial MICs in *Neisseria gonorrhoeae*
773 Using Molecular Antimicrobial Resistance Determinants. *Antimicrob Agents Chemother*
774 **64**, doi:10.1128/AAC.02005-19 (2020).

775 24 Hicks, A. L. *et al.* Evaluation of parameters affecting performance and reliability of
776 machine learning-based antibiotic susceptibility testing from whole genome sequencing
777 data. *PLoS Comput Biol* **15**, e1007349, doi:10.1371/journal.pcbi.1007349 (2019).

778 25 Earle, S. G. *et al.* Identifying lineage effects when controlling for population structure
779 improves power in bacterial association studies. *Nat Microbiol* **1**, 16041,
780 doi:10.1038/nmicrobiol.2016.41 (2016).

781 26 Lees, J. A., Galardini, M., Bentley, S. D., Weiser, J. N. & Corander, J. *pyseer*: a
782 comprehensive tool for microbial pangenome-wide association studies. *Bioinformatics*,
783 bty539-bty539, doi:10.1093/bioinformatics/bty539 (2018).

784 27 Jaillard, M. *et al.* A fast and agnostic method for bacterial genome-wide association
785 studies: Bridging the gap between k-mers and genetic events. *PLoS Genet* **14**,
786 e1007758, doi:10.1371/journal.pgen.1007758 (2018).

787 28 Jaillard, M. *et al.* A fast and agnostic method for bacterial genome-wide association
788 studies: Bridging the gap between k-mers and genetic events. *PLoS Genet.* **14**,
789 e1007758, doi:10.1371/journal.pgen.1007758 (2018).

790 29 Mortimer, T. D. & Grad, Y. H. Applications of genomics to slow the spread of multidrug-
791 resistant *Neisseria gonorrhoeae*. *Ann N Y Acad Sci*, doi:10.1111/nyas.13871 (2018).

792 30 Veal, W. L., Nicholas, R. A. & Shafer, W. M. Overexpression of the MtrC-MtrD-MtrE
793 efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin
794 resistance in *Neisseria gonorrhoeae*. *J Bacteriol* **184**, 5619-5624,
795 doi:10.1128/jb.184.20.5619-5624.2002 (2002).

796 31 Golparian, D., Shafer, W. M., Ohnishi, M. & Unemo, M. Importance of multidrug efflux
797 pumps in the antimicrobial resistance property of clinical multidrug-resistant isolates of
798 *Neisseria gonorrhoeae*. *Antimicrob Agents Chemother* **58**, 3556-3559,
799 doi:10.1128/AAC.00038-14 (2014).

800 32 Veal, W. L. *et al.* Loss-of-function mutations in the mtr efflux system of *Neisseria*
801 gonorrhoeae. *Microbiology* **144** (Pt 3), 621-627, doi:10.1099/00221287-144-3-621
802 (1998).

803 33 Sanchez-Buso, L., Golparian, D., Parkhill, J., Unemo, M. & Harris, S. R. Genetic
804 variation regulates the activation and specificity of Restriction-Modification systems in
805 *Neisseria gonorrhoeae*. *Sci Rep* **9**, 14685, doi:10.1038/s41598-019-51102-2 (2019).

806 34 Eisenstein, B. I. & Sparling, P. F. Mutations to increased antibiotic sensitivity in naturally-
807 occurring gonococci. *Nature* **271**, 242-244, doi:10.1038/271242a0 (1978).

808 35 Shimuta, K. *et al.* Emergence and evolution of internationally disseminated
809 cephalosporin-resistant *Neisseria gonorrhoeae* clones from 1995 to 2005 in Japan. *BMC*
810 *Infect Dis* **15**, 378, doi:10.1186/s12879-015-1110-x (2015).

811 36 Bichara, M., Pinet, I., Schumacher, S. & Fuchs, R. P. Mechanisms of dinucleotide repeat
812 instability in *Escherichia coli*. *Genetics* **154**, 533-542 (2000).

813 37 Golparian, D. *et al.* Genomic evolution of *Neisseria gonorrhoeae* since the preantibiotic
814 era (1928-2013): antimicrobial use/misuse selects for resistance and drives evolution.
815 *BMC Genomics* **21**, 116, doi:10.1186/s12864-020-6511-6 (2020).

816 38 Handing, J. W., Ragland, S. A., Bharathan, U. V. & Criss, A. K. The MtrCDE Efflux Pump
817 Contributes to Survival of *Neisseria gonorrhoeae* From Human Neutrophils and Their
818 Antimicrobial Components. *Front Microbiol* **9**, 2688, doi:10.3389/fmicb.2018.02688
819 (2018).

820 39 Warner, D. M., Folster, J. P., Shafer, W. M. & Jerse, A. E. Regulation of the MtrC-MtrD-
821 MtrE efflux-pump system modulates the in vivo fitness of *Neisseria gonorrhoeae*. *J Infect*
822 *Dis* **196**, 1804-1812, doi:10.1086/522964 (2007).

823 40 Warner, D. M., Shafer, W. M. & Jerse, A. E. Clinically relevant mutations that cause
824 derepression of the *Neisseria gonorrhoeae* MtrC-MtrD-MtrE Efflux pump system confer
825 different levels of antimicrobial resistance and in vivo fitness. *Mol Microbiol* **70**, 462-478,
826 doi:10.1111/j.1365-2958.2008.06424.x (2008).

827 41 Folster, J. P. *et al.* MtrR modulates *rpoH* expression and levels of antimicrobial
828 resistance in *Neisseria gonorrhoeae*. *J Bacteriol* **191**, 287-297, doi:10.1128/JB.01165-08
829 (2009).

830 42 Wang, S. *et al.* Gonococcal MtrE and its surface-expressed Loop 2 are immunogenic
831 and elicit bactericidal antibodies. *J Infect* **77**, 191-204, doi:10.1016/j.jinf.2018.06.001
832 (2018).

833 43 Williamson, D. A. *et al.* Bridging of *Neisseria gonorrhoeae* lineages across sexual
834 networks in the HIV pre-exposure prophylaxis era. *Nat Commun* **10**, 3988,
835 doi:10.1038/s41467-019-12053-4 (2019).

836 44 Rouquette, C., Harmon, J. B. & Shafer, W. M. Induction of the mtrCDE-encoded efflux
837 pump system of *Neisseria gonorrhoeae* requires MtrA, an AraC-like protein. *Mol*
838 *Microbiol* **33**, 651-658, doi:10.1046/j.1365-2958.1999.01517.x (1999).

839 45 Vidyaprakash, E., Abrams, A. J., Shafer, W. M. & Trees, D. L. Whole-Genome
840 Sequencing of a Large Panel of Contemporary *Neisseria gonorrhoeae* Clinical Isolates
841 Indicates that a Wild-Type *mtrA* Gene Is Common: Implications for Inducible
842 Antimicrobial Resistance. *Antimicrob Agents Chemother* **61**, doi:10.1128/AAC.00262-17
843 (2017).

844 46 Olivares Pacheco, J., Alvarez-Ortega, C., Alcalde Rico, M. & Martinez, J. L. Metabolic
845 Compensation of Fitness Costs Is a General Outcome for Antibiotic-Resistant
846 *Pseudomonas aeruginosa* Mutants Overexpressing Efflux Pumps. *MBio* **8**,
847 doi:10.1128/mBio.00500-17 (2017).

848 47 Zgurskaya, H. I. Multicomponent drug efflux complexes: architecture and mechanism of
849 assembly. *Future Microbiol* **4**, 919-932, doi:10.2217/fmb.09.62 (2009).

850 48 Lee, E. H. & Shafer, W. M. The *farAB*-encoded efflux pump mediates resistance of
851 gonococci to long-chained antibacterial fatty acids. *Mol Microbiol* **33**, 839-845,
852 doi:10.1046/j.1365-2958.1999.01530.x (1999).

853 49 Lee, E. H., Rouquette-Loughlin, C., Folster, J. P. & Shafer, W. M. FarR regulates the
854 *farAB*-encoded efflux pump of *Neisseria gonorrhoeae* via an MtrR regulatory
855 mechanism. *J Bacteriol* **185**, 7145-7152, doi:10.1128/jb.185.24.7145-7152.2003 (2003).

856 50 Rouquette-Loughlin, C., Dunham, S. A., Kuhn, M., Balthazar, J. T. & Shafer, W. M. The
857 NorM efflux pump of *Neisseria gonorrhoeae* and *Neisseria meningitidis* recognizes

858 antimicrobial cationic compounds. *J Bacteriol* **185**, 1101-1106,
859 doi:10.1128/jb.185.3.1101-1106.2003 (2003).

860 51 Rouquette-Loughlin, C. E., Balthazar, J. T. & Shafer, W. M. Characterization of the
861 MacA-MacB efflux system in *Neisseria gonorrhoeae*. *J Antimicrob Chemother* **56**, 856-
862 860, doi:10.1093/jac/dki333 (2005).

863 52 Stephens, D. S., Greenwood, B. & Brandtzaeg, P. Epidemic meningitis,
864 meningococcaemia, and *Neisseria meningitidis*. *Lancet* **369**, 2196-2210,
865 doi:10.1016/S0140-6736(07)61016-2 (2007).

866 53 Hill, D. M. *et al.* Genomic epidemiology of age-associated meningococcal lineages in
867 national surveillance: an observational cohort study. *Lancet Infect Dis* **15**, 1420-1428,
868 doi:10.1016/S1473-3099(15)00267-4 (2015).

869 54 Bichara, M., Schumacher, S. & Fuchs, R. P. Genetic instability within monotonous runs
870 of CpG sequences in *Escherichia coli*. *Genetics* **140**, 897-907 (1995).

871 55 Bazan, J. A. *et al.* Notes from the Field: Increase in *Neisseria meningitidis*-Associated
872 Urethritis Among Men at Two Sentinel Clinics - Columbus, Ohio, and Oakland County,
873 Michigan, 2015. *MMWR Morb Mortal Wkly Rep* **65**, 550-552,
874 doi:10.15585/mmwr.mm6521a5 (2016).

875 56 Retchless, A. C. *et al.* Expansion of a urethritis-associated *Neisseria meningitidis* clade
876 in the United States with concurrent acquisition of *N. gonorrhoeae* alleles. *BMC*
877 *Genomics* **19**, 176, doi:10.1186/s12864-018-4560-x (2018).

878 57 Tzeng, Y. L. *et al.* Emergence of a new *Neisseria meningitidis* clonal complex 11 lineage
879 11.2 clade as an effective urogenital pathogen. *Proc Natl Acad Sci U S A* **114**, 4237-
880 4242, doi:10.1073/pnas.1620971114 (2017).

881 58 Whiley, D. M., Jennison, A., Pearson, J. & Lahra, M. M. Genetic characterisation of
882 *Neisseria gonorrhoeae* resistant to both ceftriaxone and azithromycin. *Lancet Infect Dis*
883 **18**, 717-718, doi:10.1016/S1473-3099(18)30340-2 (2018).

884 59 Kime, L. *et al.* Transient Silencing of Antibiotic Resistance by Mutation Represents a
885 Significant Potential Source of Unanticipated Therapeutic Failure. *MBio* **10**,
886 doi:10.1128/mBio.01755-19 (2019).

887 60 Morse, S. A. *et al.* Gonococcal strains from homosexual men have outer membranes
888 with reduced permeability to hydrophobic molecules. *Infect Immun* **37**, 432-438 (1982).

889 61 Shafer, W. M., Balthazar, J. T., Hagman, K. E. & Morse, S. A. Missense mutations that
890 alter the DNA-binding domain of the MtrR protein occur frequently in rectal isolates of
891 *Neisseria gonorrhoeae* that are resistant to faecal lipids. *Microbiology* **141** (Pt 4), 907-
892 911, doi:10.1099/13500872-141-4-907 (1995).

893 62 Mercante, A. D. *et al.* MpeR regulates the mtr efflux locus in *Neisseria gonorrhoeae* and
894 modulates antimicrobial resistance by an iron-responsive mechanism. *Antimicrob Agents*
895 *Chemother* **56**, 1491-1501, doi:10.1128/AAC.06112-11 (2012).

896 63 Nudel, K. *et al.* Transcriptome Analysis of *Neisseria gonorrhoeae* during Natural
897 Infection Reveals Differential Expression of Antibiotic Resistance Determinants between
898 Men and Women. *mSphere* **3**, doi:10.1128/mSphereDirect.00312-18 (2018).

899 64 Du, D. *et al.* Multidrug efflux pumps: structure, function and regulation. *Nat Rev Microbiol*
900 **16**, 523-539, doi:10.1038/s41579-018-0048-6 (2018).

901 65 Vettoretti, L. *et al.* Efflux unbalance in *Pseudomonas aeruginosa* isolates from cystic
902 fibrosis patients. *Antimicrob Agents Chemother* **53**, 1987-1997, doi:10.1128/AAC.01024-
903 08 (2009).

904 66 Chalhoub, H. *et al.* Mechanisms of intrinsic resistance and acquired susceptibility of
905 *Pseudomonas aeruginosa* isolated from cystic fibrosis patients to temocillin, a revived
906 antibiotic. *Sci Rep* **7**, 40208, doi:10.1038/srep40208 (2017).

907 67 Garnett, J. P. *et al.* Hyperglycaemia and *Pseudomonas aeruginosa* acidify cystic fibrosis
908 airway surface liquid by elevating epithelial monocarboxylate transporter 2 dependent
909 lactate-H(+) secretion. *Sci Rep* **6**, 37955, doi:10.1038/srep37955 (2016).

910 68 Worlitzsch, D. *et al.* Effects of reduced mucus oxygen concentration in airway
911 *Pseudomonas* infections of cystic fibrosis patients. *J Clin Invest* **109**, 317-325,
912 doi:10.1172/JCI13870 (2002).

913 69 Ayhan, D. H. *et al.* Sequence-Specific Targeting of Bacterial Resistance Genes
914 Increases Antibiotic Efficacy. *PLoS Biol* **14**, e1002552, doi:10.1371/journal.pbio.1002552
915 (2016).

916 70 Chan, B. K. *et al.* Phage selection restores antibiotic sensitivity in MDR *Pseudomonas*
917 *aeruginosa*. *Sci Rep* **6**, 26717, doi:10.1038/srep26717 (2016).

918 71 Chen, S. *et al.* Could Dampening Expression of the *Neisseria gonorrhoeae* mtrCDE-
919 Encoded Efflux Pump Be a Strategy To Preserve Currently or Resurrect Formerly Used
920 Antibiotics To Treat Gonorrhea? *MBio* **10**, doi:10.1128/mBio.01576-19 (2019).

921 72 Cole, M. J. *et al.* Gentamicin, azithromycin and ceftriaxone in the treatment of
922 gonorrhoea: the relationship between antibiotic MIC and clinical outcome. *J Antimicrob*
923 *Chemother* **75**, 449-457, doi:10.1093/jac/dkz436 (2020).

924 73 Tapsall, J. W. *et al.* Failure of azithromycin therapy in gonorrhea and discorrelation with
925 laboratory test parameters. *Sex Transm Dis* **25**, 505-508, doi:10.1097/00007435-
926 199811000-00002 (1998).

927 74 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler
928 transform. *Bioinformatics* **25**, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009).

929 75 Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
930 *arXiv preprint* **1303.3997** (2013).

931 76 Garcia-Alcalde, F. *et al.* Qualimap: evaluating next-generation sequencing alignment
932 data. *Bioinformatics* **28**, 2678-2679, doi:10.1093/bioinformatics/bts503 (2012).

933 77 Walker, B. J. *et al.* Pilon: an integrated tool for comprehensive microbial variant
934 detection and genome assembly improvement. *PLoS One* **9**, e112963,
935 doi:10.1371/journal.pone.0112963 (2014).

936 78 Bankevich, A. *et al.* SPAdes: a new genome assembly algorithm and its applications to
937 single-cell sequencing. *J Comput Biol* **19**, 455-477, doi:10.1089/cmb.2012.0021 (2012).

938 79 Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068-
939 2069, doi:10.1093/bioinformatics/btu153 (2014).

940 80 Page, A. J. *et al.* Roary: rapid large-scale prokaryote pan genome analysis.
941 *Bioinformatics* **31**, 3691-3693, doi:10.1093/bioinformatics/btv421 (2015).

942 81 Thorpe, H. A., Bayliss, S. C., Sheppard, S. K. & Feil, E. J. Piggy: a rapid, large-scale
943 pan-genome analysis tool for intergenic regions in bacteria. *Gigascience* **7**, 1-11,
944 doi:10.1093/gigascience/giy015 (2018).

945 82 Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new
946 developments. *Nucleic Acids Res* **47**, W256-W259, doi:10.1093/nar/gkz239 (2019).

947 83 Croucher, N. J. *et al.* Rapid phylogenetic analysis of large samples of recombinant
948 bacterial whole genome sequences using Gubbins. *Nucleic Acids Res* **43**, e15,
949 doi:10.1093/nar/gku1196 (2015).

950 84 Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
951 large phylogenies. *Bioinformatics* **30**, 1312-1313, doi:10.1093/bioinformatics/btu033
952 (2014).

953 85 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment
954 search tool. *J Mol Biol* **215**, 403-410, doi:10.1016/S0022-2836(05)80360-2 (1990).

955 86 Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple
956 sequence alignment based on fast Fourier transform. *Nucleic Acids Res* **30**, 3059-3066,
957 doi:10.1093/nar/gkf436 (2002).

958 87 Tonkin-Hill, G., Lees, J. A., Bentley, S. D., Frost, S. D. W. & Corander, J. Fast
959 hierarchical Bayesian analysis of population structure. *Nucleic Acids Res* **47**, 5539-5549,
960 doi:10.1093/nar/gkz361 (2019).

961 88 Johnson, S. R., Grad, Y., Abrams, A. J., Pettus, K. & Trees, D. L. Use of whole-genome
962 sequencing data to analyze 23S rRNA-mediated azithromycin resistance. *Int J*
963 *Antimicrob Agents* **49**, 252-254, doi:10.1016/j.ijantimicag.2016.10.023 (2017).

964 89 Kersh, E. N. *et al.* Rationale for a *Neisseria gonorrhoeae* Susceptible Only Interpretive
965 Breakpoint for Azithromycin. *Clin Infect Dis*, doi:10.1093/cid/ciz292 (2019).

966 90 Ma, K. C. *et al.* Increased power from bacterial genome-wide association conditional on
967 known effects identifies Neisseria gonorrhoeae macrolide resistance
968 mutations in the 50S ribosomal protein L4. *bioRxiv* (2020).

969 91 Cock, P. J. *et al.* Biopython: freely available Python tools for computational molecular
970 biology and bioinformatics. *Bioinformatics* **25**, 1422-1423,
971 doi:10.1093/bioinformatics/btp163 (2009).

972 92 Dillard, J. P. Genetic Manipulation of *Neisseria gonorrhoeae*. *Curr Protoc Microbiol*
973 **Chapter 4**, Unit4A 2, doi:10.1002/9780471729259.mc04a02s23 (2011).

974 93 Mortimer, T. D. *et al.* The distribution and spread of susceptible and resistant
975 Neisseria gonorrhoeae across demographic groups in a major metropolitan
976 center. *medRxiv*, 2020.2004.2030.20086413, doi:10.1101/2020.04.30.20086413 (2020).

977 94 Jolley, K. A., Bray, J. E. & Maiden, M. C. J. Open-access bacterial population genomics:
978 BIGSdb software, the PubMLST.org website and their applications. *Wellcome Open Res*
979 **3**, 124, doi:10.12688/wellcomeopenres.14826.1 (2018).

980 95 Power, R. A., Parkhill, J. & de Oliveira, T. Microbial genome-wide association studies:
981 lessons from human GWAS. *Nat Rev Genet* **18**, 41-50, doi:10.1038/nrg.2016.132
982 (2017).

983