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Discovering and developing pharmaceutical drugs increas-1

ingly relies on mechanistic mathematical modeling and simu-2

lation. In immuno-oncology, models that capture causal rela-3

tions among genetic drivers of oncogenesis, functional plastic-4

ity, and host immunity provide an important complement to wet5

experiments, given the cellular complexity and dynamics within6

the tumor microenvironment. Unfortunately, formulating such7

mechanistic cell-level models currently relies on hand curation8

by experts, which can bias how data is interpreted or the pri-9

ority of drug targets. In modeling molecular-level networks,10

rules and algorithms have been developed to limit a priori bi-11

ases in formulating mechanistic models. To realize an equivalent12

approach for cell-level networks, we combined digital cytome-13

try with Bayesian network inference to generate causal models14

that link an increase in gene expression associated with onco-15

genesis with alterations in stromal and immune cell subsets di-16

rectly from bulk transcriptomic datasets. To illustrate, we pre-17

dicted how an increase in expression of Cell Communication18

Network factor 4 (CCN4/WISP1) altered the tumor microenvi-19

ronment using data from patients diagnosed with breast cancer20

and melanoma. Network predictions were then tested using two21

immunocompetent mouse models for melanoma. In contrast to22

hand-curated approaches, we posit that combining digital cy-23

tometry with Bayesian network inference provides a less biased24

approach for elaborating mechanistic cell-level models directly25

from data.26
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Introduction30

Tissues are dynamic structures where different cell types or-31

ganize to maintain function in a changing environment. For32

instance, the mammary epithelium reorganizes during dis-33

tinct stages of the ovarian cycle in preparation for lactation34

(Klinke, 2016). At the same time, immune cells clear dead35

cells and defend against pathogens present in the tissue mi-36

croenvironment. Ultimately, the number and functional ori-37

entation of different cell types within a tissue interact to cre-38

ate a network, that is a heterocellular network. This hetero-39

cellular network is essential for creating and maintaining tis-40

sue homeostasis. While we know that tissue homeostasis is41

disrupted during oncogenesis, our understanding of how ge-42

netic alterations quantitatively and dynamically influence the43

heterocellular network within malignant tissues in humans44

is not well developed despite large efforts, like The Cancer 45

Genome Atlas (TCGA), to characterize the genomic and tran- 46

scriptomic landscape in human malignancy (Hoadley et al., 47

2018; Wells and Wiley, 2018). In parallel with these large 48

scale data gathering efforts, two informatic developments, 49

namely digital cytometry and Bayesian network inference, 50

may be helpful in interrogating these datasets. 51

In cytometry, single-cell sequencing technology elicits a 52

lot of excitement as it enables unbiased discovery of novel 53

cell subsets in particular disease states (Papalexi and Satija, 54

2018; Singer and Anderson, 2019). Unfortunately, per- 55

sistent challenges related to confounding of batch effects 56

with biological replicates limit the statistical power of these 57

datasets to link oncogenic transcriptional changes with re- 58

organization of the cellular network (Grun et al., 2014; Stuart 59

and Satija, 2019). Due to the high number of biological repli- 60

cates, transcriptomic datasets, such as the Cancer Genome 61

Atlas, provide a rich resource in characterizing the hetero- 62

geneity of oncogenic transformation. Yet, these data were 63

obtained from homogenized tissue samples and reflect the ex- 64

pression of genes averaged across a heterogeneous cell pop- 65

ulation. Computationally, "Digital Cytometry" can deconvo- 66

lute the prevalence of individual cell types present within a 67

mixed cell population (Newman et al., 2019). The approach 68

stems from the idea that the influx of a particular cell subset 69

into a tissue corresponds to an increase in a gene signature 70

uniquely associated with this particular cell subset (Shen-Orr 71

et al., 2012; Yoshihara et al., 2013; Wang et al., 2018; Zait- 72

sev et al., 2019). Gene signatures of immune cells have been 73

developed in a number of studies, which increasingly lever- 74

age scRNAseq data and machine-learning methods (Shen- 75

Orr et al., 2010; Becht et al., 2016; Schelker et al., 2017; 76

Torang et al., 2019). Besides representing different cellu- 77

lar subsets, gene signatures can also represent intracellular 78

processes associated with oncogenesis, like the epithelial- 79

mesenchymal transition (Tan et al., 2014; Koplev et al., 2018; 80

Malta et al., 2018; George et al., 2017; Klinke and Torang, 81

2020). Though, the predictive value of many of these tis- 82

sue "features" in inferring how heterocellular networks are 83

altered in diseased tissues remain unclear, as establishing cor- 84

relations among features tends to be the end point of studies 85

(e.g., (Tosolini et al., 2011; Malta et al., 2018; Thorsson et al., 86

2018)). 87

Increases in size and information content of transcrip- 88
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tomic datasets enable using probabilistic inference methods89

to identify relationships within the data that could not be ob-90

served using simpler statistical techniques (Hill et al., 2016;91

Friedman, 2004). However to infer how heterocellular net-92

works are altered in diseased tissues, we need to be able93

to identify the direction of information flow within the net-94

work, that is the causal relationships among interacting com-95

ponents. One method to identify the topology of a causal96

network in an unbiased way is to use algorithms that identify97

Bayesian networks (Scutari, 2010). Bayesian networks are a98

type of directed acyclic graphs (DAG), where each node rep-99

resents a random variable, or "feature", and each edge rep-100

resents a causal relationship between two nodes. As algo-101

rithms for reconstructing Bayesian networks emerged, they102

were used to model signaling pathways within cells (Sachs103

et al., 2002), to identify known DNA repair networks in E.104

coli using microarray data (Perrin et al., 2003) and to iden-105

tify simple phosphorylation cascades in T lymphocytes using106

flow cytometry data (Sachs et al., 2005, 2009). While many107

more studies have been published since, a common conclu-108

sion is that the statistical confidence associated with an in-109

ferred network improves as the number of samples included110

in a dataset is greater than the number of random variables.111

However, transcriptomics data, like that obtained as part of112

the TCGA, typically have a large number of random vari-113

ables (ngenes) and a small number of biological replicates114

(npatients), which makes inferring gene-level networks com-115

putationally difficult (Zou and Conzen, 2005).116

As summarized in Figure 1, we propose an approach that117

combines digital cytometry with Bayesian network infer-118

ence to identify how heterocellular networks associated with119

functional plasticity and anti-tumor immunity change during120

oncogenesis in humans. Conceptually, digital cytometry im-121

proves the statistical power by projecting the transcriptomic122

space onto a smaller number of "features" that estimate the123

prevalence of stromal and immune cell types and the average124

differentiation state of malignant cells present within the tu-125

mor microenvironment, such that nfeatures << npatients.126

The causal structure among these features can then be pre-127

dicted using Bayesian network inference. While data un-128

structured in time, such as the TCGA datasets, are not ideal129

for inferring causality, we test the inferred networks using in130

vivo experiments using syngeneic murine tumor models.131

To illustrate the approach, we focused on Cell Communi-132

cation Network factor 4 (CCN4/WISP1), as it is upregulated133

in invasive breast cancer (Klinke, 2014) and correlates with134

a lower overall survival in patients diagnosed with primary135

melanoma (Deng et al., 2019). Functionally, CCN4 promotes136

metastasis in melanoma by promoting a process similar to the137

epithelial-mesenchymal transition (Deng et al., 2019, 2020).138

In developing state metrics that quantify functional plastic-139

ity in breast cancer and melanoma using an unsupervised ap-140

proach, CCN4 was the only gene associated with both a mes-141

enchymal state metric in breast cancer and a de-differentiated142

state metric in melanoma that results in a secreted protein143

(Klinke and Torang, 2020). The collective set of features,144

or simply nodes of a network, were quantified in three tran-145

scriptomic datasets obtained from bulk tissue samples from 146

patients with breast cancer and melanoma and used to gen- 147

erate a casual network describing how expression of a "gene 148

driver" associated with oncogenesis, such as CCN4, alters 149

the heterocellular network within a tissue using Bayesian net- 150

work inference. 151

Results 152

Generating causal graphs that link oncogenic 153

changes in gene expression with changes in the het- 154

erocellular network. Bayesian network inference involves 155

inferring the structure of the network, which captures the 156

specific interactions or edges among the nodes of a network 157

and represents them as a directed acyclic graph (DAG), and 158

then estimating the parameters of the conditional probability 159

distribution from the datasets. We used a two-step process to 160

learn the causal structure associated the cell-level networks. 161

First, we created a collection of edges that were consistently 162

identified among the different structural learning algorithms, 163

that is a consensus seed network. In the initial structure 164

learning step, an overall flow of the network was specified 165

by limiting the inclusion of edges into a proposed network. 166

In particular, we considered only edges into the "CD8 T 167

cells" node (i.e., a leaf node), only edges that originate 168

from the "Cancer" node (i.e., a root node), mostly edges 169

that originate from the "CCN4" node (with exception for 170

the "Cancer" node), and only edges into the "CD4 T cells" 171

and "Neutrophils" nodes. Specifying "CD4 T cells" and 172

"Neutrophils" as leaf nodes follows from the high number of 173

zero values for those features in the dataset, which were 350 174

and 439 samples in the BRCA dataset, respectively. This 175

was implemented by assigning the corresponding edges to a 176

"blacklist". Collectively, this represents a way to incorporate 177

prior knowledge about causal relationships associated with 178

oncogenesis and the roles that specific immune cells play in 179

controlling tumor cell growth. 180

As algorithms for structural learning have different under- 181

lying assumptions, we used an ensemble approach to average 182

across the different algorithms to identify an initial structure 183

of the DAG. Specifically, we used nine different structural 184

learning algorithms (Scutari, 2010), including a pairwise mu- 185

tual information (ARACNE), constraint-based (Incremental 186

association Markov Blanket - IAMB, Incremental associa- 187

tion with false discovery rate control - IAMB.FDR, practi- 188

cal constraint - PC.STABLE), local discovery of undirected 189

graphs (max-min parents and children - MMPC, Hiton par- 190

ents and children - SI.HITON.PC), score-based (hill climbing 191

- HC, Tabu search - Tabu), and hybrid learning (max-min hill- 192

climbing - MMHC) algorithms. Bootstrap resampling was 193

used in learning the network structure with each algorithm, 194

which resulted in generating 10,000 network structures. For 195

each algorithm, an averaged network structure was calculated 196

from the collection of network structures, where the thresh- 197

old for inclusion of a edge into the average network was 198

automatically determined by each algorithm and was nom- 199

inally 0.5. Whether a particular edge promotes or inhibits 200

the target node was determined based on the sign of the cor- 201
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relation coefficient between the two nodes. We applied the202

same approach to both the breast cancer (BRCA - Figures 2203

and 3) and the two melanoma datasets (common melanocytic204

nevi and primary melanoma: GEO and primary melanoma205

from the TCGA: SKCM - Figures S4 and 5). To generate206

consensus seed networks, the BRCA dataset was analyzed207

alone (see Table S1) while results for the two melanoma208

datasets (see Tables S2 (GEO) and S3 (SKCM)) were used209

together. Including edges in the consensus seed network210

was based on consistency among algorithms, strength of the211

edge, and whether the edge provided a new connection link-212

ing the "Cancer" node with effector immune cell nodes, such213

as "CD4 T cells" or "CD8 T cells", or potential negative feed-214

back mechanisms, which is illustrated graphically in Figures215

2 and S4. For instance, in analyzing the BRCA dataset, edge216

numbers 32 ("Cancer"→ "pM1"), 37 ("Cancer"→ "B cells217

naive"), 45 ("CCN4" → "Macrophages"), 46 ("Cancer" →218

"resting NK cells"), and 53 ("CCN4" → "active NK cells")219

were included as they provided novel edges to the consen-220

sus seed network. The inferred direction of a number of221

edges varied among the algorithms (yellow bars in Figures222

2 and S4) and were left out of the consensus seed network.223

The final network for each dataset was generated using a224

hybrid learning algorithm (mmhc) using a "blacklist" spec-225

ified based on prior causal knowledge and a "whitelist" cor-226

responding to the consensus seed network. Similar to the first227

step, bootstrap resampling (nboot = 10,000) and network av-228

eraging were used to generate the DAGs shown in Figures 3229

and 5. The averaged DAG was used to generate parameters230

for a linear Gaussian model estimated by maximum likeli-231

hood and conditioned on the network structure that approx-232

imates the joint probability distribution associated with the233

dataset. Values for the linear coefficients and the average234

node values were used to annotate the DAGs.235

Oncogenesis in breast cancer was associated with a shift236

from epithelial to mesenchymal cell state accompanied by237

an increase in cell proliferation and a suppression of en-238

dothelial cells, which were inferred with high confidence. In239

turn, endothelial cells promote the infiltration of CD4 T cells.240

The local structure associated with "Cancer"’s influence on241

the "Mesenchymal" state via "CCN4" suggests an incoherent242

type-3 feed-forward motif to regulate the mesenchymal state,243

with CCN4 also inhibiting active NK cells. The high confi-244

dence edge between active NK and resting NK cells follows245

from these features being mutually exclusive in the dataset246

and very few samples having zero values for both features.247

The mesenchymal state increased cancer-associated fibrob-248

lasts ("s) with high confidence. Interestingly, oncogenesis249

was also associated with increasing the prevalence of a type 1250

macrophage, which in turn promoted the recruitment of CD8251

T cells. The prevalence of CD8 T cells are also connected to252

"Cancer" via a larger incoherent feed-forward motif involv-253

ing "CCN4" and "CAFs" with high confidence.254

As there was more data supporting the BRCA DAG, the255

resulting Bayesian network model was compared against the256

underlying experimental data and used to explore the impact257

of varying CCN4 expression in the context of normal and258

tumor tissue (Figure 4). To simulate "normal" and "tumor" 259

tissue, we queried the conditional probability distribution by 260

generating samples from the Bayesian network and filtered 261

the values based on p("Cancer" < 0.15) and p("Cancer" > 262

0.85), which are colored in orange and blue, respectively. 263

Corresponding experimental data points and trendlines are 264

overlaid upon the posterior distributions. The posterior dis- 265

tributions mirror the experimental data points, where there is 266

an increase in CCN4 expression between "normal" and "tu- 267

mor" tissue. The posterior distributions mirror the variability 268

observed in the experimental data when comprised of non- 269

zero values, such as CD8 T cells. In contrast, the prevalence 270

of zero values increased the range of the posterior distribu- 271

tion, such as for CD4 T cells. In comparing "normal" to 272

"tumor" tissue, CD8 T cells was the only feature, on aver- 273

age, increased in "tumor" tissue, while CD4 T cells, B cells, 274

and cancer associated fibroblasts were decreased. Slopes 275

of the trendlines highlight the influence of CCN4 gene ex- 276

pression on the prevalence of different immune cell popula- 277

tions. Increased CCN4 had the most pronounced inhibition 278

on NK cells and also suppressed CD8 T cells. CCN4 also had 279

a pronounced positive impact on the prevalence of cancer- 280

associated fibroblasts, macrophages, and slightly promoted 281

CD4 T cells. CCN4 seemed to have little to no impact on 282

B cells in "normal" tissue while inhibited B cells in "tumor" 283

tissue. 284

The breast cancer dataset contained 582 samples, of which 285

8.8% were from normal mammary tissue. In contrast, the 286

two melanoma datasets contained 78 GEO samples, which 287

includes 34.6% benign nevi, and 94 SKCM samples of pri- 288

mary melanoma only. While a lower number of samples 289

limits the inferential power of a dataset, we decided not to 290

combine them together as they had different distributions in 291

transcript abundance as a function of transcript length. As 292

the Bayesian network inference algorithm leverages differ- 293

ences in the magnitude of a feature within a population, ap- 294

proaches to harmonize these two datasets may introduce a 295

systemic bias that is convoluted with oncogenic transforma- 296

tion, as the GEO dataset has many samples obtained from be- 297

nign nevi while the SKCM dataset does not. We decided to 298

analyze the melanoma datasets separately and combine the 299

enriched edges in each dataset into a consensus seed net- 300

work that reflects both datasets. In analyzing the melanoma 301

datasets, edge numbers 26 ("CAF" → "CD8 T cells") and 302

30 ("CCN4" → "CAF") in the GEO analysis while edge 303

numbers 17 ("CCN4" → "CAF"), 18 ("CAF" → "CD8 T 304

cells"), and 22 ("Active NK cells" → "CD8 T cells") from 305

the SKCM analysis were included in the consensus seed net- 306

work. This consensus seed network was then included in the 307

"whitelist" to learn the structure and parameters associated 308

with Bayesian network inferred from the melanoma datasets 309

(see Figure 5). 310

Given the high prevalence of samples from benign nevi in 311

the GEO dataset, high confidence edges in the GEO network 312

focus on changes associated with oncogenesis. Similar to 313

the breast cancer analysis, oncogenesis was associated with a 314

shift from an epithelial to a mesenchymal-like cell state and 315
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the promotion of cell proliferation. Here, the mesenchymal316

cell state is promoted by both oncogenesis and CCN4 with317

a coherent feed-forward motif. Similar to the breast cancer318

analysis, oncogenesis promoted an increase in CD8 T cells,319

but indirectly by recruiting active NK cells. In contrast to320

the breast cancer analysis, CCN4 directly impacted CAFs321

and resting NK cells, although the "CCN4" → "resting NK322

cells" edge had both low confidence and low influence pa-323

rameter. In analyzing the SKCM dataset, less emphasis is324

placed on the changes associated with oncogenesis but how325

expression of CCN4 influenced the network. Similarly to the326

GEO analysis, the SKCM dataset suggested that CCN4 di-327

rectly impacted the mesenchymal state, CAFs, and resting328

NK cells, but the influence on resting NK cells changed from329

a slight inhibition in the GEO dataset (-0.11) to strong pro-330

motion in the SKCM dataset (0.75). In addition, the edge331

between CAFs and the mesenchymal state was inferred with332

high confidence but changing direction between GEO and333

SKCM datasets suggests that the algorithms were unable to334

discern edge direction from the data. In both melanoma335

datasets, CAFs influence CD8 T cells via an incoherent feed-336

forward motif involving the prevalence of macrophages. In337

addition, Neutrophils, macrophage polarization, and B cells338

were independent of oncogenesis and CCN4 expression. In339

all three analysis, there was high confidence associated with340

the edges among the nodes quantifying macrophage polariza-341

tion, which is likely an artifact of formula used to calculate342

p(MΦi)’s. Queries of the conditional probability distribu-343

tion based on the SKCM DAG for CD8 T cells, active NK344

cells, Macrophages, B cells, and CAFs were similar to the345

BRCA analysis (Fig. S5). Similar to the BRCA analysis, a346

high number of zero values for the CD4 T cell features in the347

SKCM dataset suggests caution in interpreting differences in348

CD4 T cell predictions.349

Validating the impact of CCN4 on heterocellular net-350

works using syngeneic mouse models. Syngeneic im-351

munocompetent mouse models of cancer provide an impor-352

tant complement to retrospective studies of human data as353

they can aid in causally linking genetic alterations with cel-354

lular changes the tumor microenvironment. Here we used355

two syngeneic transplantable models for melanoma to test356

the predictions generated by the Bayesian network inference:357

the spontaneous B16F0 model and the YUMM1.7 model that358

displays BrafV 600E/WT Pten−/− Cdkn2−/− genotype. As359

these cell lines basally produce CCN4, we generated CCN4360

knock-out (KO) variants of these parental cell lines using a361

CRISPR/Cas9 approach and confirmed CCN4 KO by test-362

ing conditioned media for CCN4 by ELISA. Tumors were363

generated by injecting the cell variants subcutaneously in 6-364

8 week old female C57BL/6 mice and monitoring for tumor365

growth. Once wt tumors reached between 1000 and 1500366

mm3 in size, tumors were surgically removed from all mice367

that were not considered outliers and processed into single368

cell suspensions (n = 7 for YUMM1.7 variants and n = 4 for369

B16F0 variants). The single cell suspensions were aliquoted370

among three antibody panels to characterize the tumor infil-371

trating lymphocytes by flow cytometry (see Supplementary372

Figures S6-S8 for gating strategies). While the B16F0 and 373

YUMM1.7 KO variants were generated using a double nick- 374

ase CRISPR/Cas9 approach, similar results were obtained 375

using a homology directed repair strategy (Fernandez et al., 376

2020; Deng et al., 2020). Additional controls for puromycin 377

selection of CRIPSR/Cas9 edited cells using B16F0 cells 378

transfected with a pBabe-puromycin retrovirus also behaved 379

functionally similar in vitro and in vivo as wild-type B16F0 380

cells (Deng et al., 2020). 381

The percentage of CD45+ cells among total live cells ex- 382

hibited a semi-log dependence on tumor size (Fig. 6A - 383

B16F0: R2 = 0.607, F-test p-value = 7.27E-6; YUMM1.7: 384

R2 = 0.830, F-test p-value = 1.48E-7), where CCN4 KO 385

resulted in smaller tumors in both cell models with greater 386

CD45+ cell infiltration. As illustrated in Figure 6A, 387

YUMM1.7 variants had a much higher dependence on tumor 388

size than B16F0 variants. Conventionally, flow cytometry 389

data are normalized to tumor size to estimate the prevalence 390

of a particular cell type per tumor volume. Yet, the depen- 391

dence on tumor size could be a confounding factor in addi- 392

tion to CCN4 expression that could skew the results. More- 393

over, the Bayesian network analysis predicts the impact of 394

CCN4 alone on the prevalence of specific immune cell sub- 395

sets. Thus, we focused instead on the prevalence of a par- 396

ticular cell type within the live CD45+ TIL compartment to 397

compare against the Bayesian network predictions. 398

In comparing the wt B16F0 and YUMM1.7 models, the 399

relative prevalence of NK, CD4+ T, and CD8+ T cells were 400

similar while B cells were almost 10-times more prevalent in 401

the B16F0 tumors compared to YUMM1.7 tumors (Fig. 6B). 402

The prevalence of these different cell types changed within 403

the CD45+ TIL compartment upon CCN4 KO (Fig. 6C and 404

D). Figure 6C highlights the trends among the mouse mod- 405

els and compares against the Bayesian network predictions 406

obtained from the BRCA and SKCM datasets. Predictions 407

for the change in cell type prevalence by CCN4 expression 408

were obtained by propagating a change in the "CCN4" node 409

from 0 to 1 within the linear Gaussian model to the target 410

node, which is also represented by the slope of the "Can- 411

cer" trendlines in Figures 4 and S5. Specifically, CD4 and 412

CD8 T cells and B cells had analogous nodes in the Bayesian 413

networks as assayed in the flow panel, while NK cells were 414

mapped to "active NK cells" in the Bayesian network. The 415

relative change in abundance was largely consistent among 416

the four systems, with the YUMM1.7 model being the most 417

different. The BRCA and SKCM datasets predicted that NK 418

cells were most reduced by CCN4, which was observed in 419

the B16F0 model (p-value = 0.047). Both BRCA and SKCM 420

datasets predicted that CCN4 reduced CD8+ T cells, which 421

was observed in the YUMM1.7 model (YUMM1.7 p-value 422

= 0.002). The CD4+ T cells seemed to vary in response to 423

CCN4 expression as the BRCA and B16F0 results showed 424

an increase while the SKCM and YUMM1.7 results showed a 425

decrease. As stated previously, the BRCA and SKCM predic- 426

tions for CD4 T cells should be interpreted with caution given 427

the high frequency of zero values for the features. B cell re- 428

sponse was mixed with both the BRCA and SKCM results 429
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suggesting no change and an increase in the B16F0 model430

and a decrease in the YUMM1.7 model, with the low number431

of B cells infiltrating YUMM1.7 tumors rendered the results432

more variable. Given the small sample size of the experi-433

mental mouse cohorts, only the extremes were statistically434

significant, with NK cells significantly increased (p-value =435

0.047) and B cells significantly decreased (p-value = 0.002)436

in B16F0 CCN4 KO tumors and CD8 T cells significantly437

increased (p-value = 0.002) in YUMM1.7 CCN4 KO tumors438

(Fig. 6D).439

Concordance in CCN4-induced changes in the440

myeloid compartment are less clear. In addition to441

changes in T and NK cells within the live CD45+ compart-442

ment, we also assayed myeloid subsets in tumors generated443

by wt and CCN4 KO variants of the B16F0 and YUMM1.7444

cell lines. Using the gating strategy summarized in Fig-445

ure S8, we focused on CD11c+ and CD11c− macrophages446

(live CD45+ CD11b+ GR1− F4/80+ cells), neutrophils (live447

CD45+ CD11blo/int CD11c+ GR1− F4/80− cells), den-448

dritic cells, and two different myeloid-derived suppressor cell449

(MDSC) subsets: CD11c− and CD11c+ MDSC. In compar-450

ing tumors derived from wt cell lines, CD11c+ macrophages451

were the most predominant infiltrating myeloid cell subset452

and, except for CD11c− macrophages, most subsets were453

consistent between the two mouse models (Fig. 7A). Upon454

CCN4 KO in the mouse models, the macrophage subsets455

tended to increase while the MDSC subsets decreased (Fig.456

7B-E) within the CD45+ compartment, while the neutrophil457

response varied. The reduction in CD11c+ MDSC in CCN4458

KO variants were most pronounced and statistically signifi-459

cant (p=0.004 in YUMM1.7 and p = 0.153 in B16F0). While460

Ly6G and Ly6C staining may have been a better staining461

strategy for distinguishing among monocytic (Mo-) and poly-462

morphonuclear (PMN-) MDSC subsets, we observed a re-463

duction in PMN-MDSCs in YUMM1.7 tumors upon CCN4464

KO using Ly6G/Ly6C antibodies (Fernandez et al., 2020).465

Consistent with the idea that PMN-MDSCs arise from im-466

paired differentiation of granulocytes, neutrophils were in-467

creased within the CD45+ compartment in CCN4 KO tu-468

mors derived from YUMM1.7 cells (p = 0.002) but not sta-469

tistically different in the B16F0 model (p = 0.097). Other470

myeloid subsets trended similarly but with differences that471

were not statistically significant. In addition, we noted that472

a dendritic cell subset (live CD45+ CD11blo/int CD11c+
473

GR1− F4/80− cells) increased upon CCN4 KO (p=0.045 in474

YUMM1.7 and p=0.011 in B16F0).475

Comparing the trends in the myeloid compartment ob-476

served among the mouse models and the Bayesian network477

predictions obtained from the BRCA and SKCM datasets is478

less clear, given the uncertainty as to how the digital cytome-479

try features map onto the quantified myeloid subsets in these480

mouse models. Key myeloid features in the Bayesian net-481

works were macrophages oriented towards a M1 phenotype.482

Correspondingly, CD11c+ macrophages, a subset that has483

been associated with pro-inflammatory M1 tumor-associated484

macrophages (Jeong et al., 2019), were the most predomi-485

nant myeloid subset in wt B16F0 and YUMM1.7 tumors and486

didn’t change upon CCN4 KO. In the BRCA dataset, the 487

prevalence of macrophages was influenced by CCN4 expres- 488

sion; yet, the functional orientation away from the M2 and to- 489

wards the M1 phenotype depended solely on oncogenic trans- 490

formation. Similarly, the prevalence of macrophages was in- 491

fluenced by both CCN4 expression and oncogenic transfor- 492

mation in both melanoma datasets. In contrast to the BRCA 493

results, functional orientation of macrophages were indepen- 494

dent of both oncogenic transformation and CCN4 expression. 495

Neutrophils were predicted to be independent of CCN4 in 496

the melanoma datasets, which is not surprising considering 497

that the the majority of tumors had zero values for the Neu- 498

trophil feature (see Figs. S1-S3). Similarly, neutrophils were 499

about 10 times less abundant than CD11c+ macrophages in 500

the mouse models. Given the significant changes observed 501

in MDSCs in the mouse models, challenging digital cytom- 502

etry predictions in this way highlights features that can be 503

improved, such as discriminating among terminally differ- 504

entiated and immature subsets, like Mo-MDSC and PMN- 505

MDSC. 506

CCN4 has no direct effect on T cell proliferation but al- 507

ters CD8+ T cell function. The local proliferation of CD8+
508

T cells correlates with clinical response to immune check- 509

point blockade (Huang et al., 2017; Twyman-Saint Victor 510

et al., 2015). In addition, the DAGs inferred from both the 511

breast cancer and melanoma datasets suggest that a decrease 512

in CD8+ T cells is driven indirectly through CCN4 via mod- 513

ulating cancer-associated fibroblasts or the activity of NK 514

cells. While the structural learning algorithms rejected a di- 515

rect edge between CCN4 and CD8+ cells, we tested whether 516

CCN4 directly inhibits T cell proliferation (see Fig. 8A 517

and B) using a statistical analysis of Cell Trace distributions 518

in CD4+ and CD8+ T cells stimulated in vitro (see Table 519

S4). Specifically, splenocytes were stimulated in vitro with 520

αCD3/αCD28-loaded beads in the presence of media condi- 521

tioned by wt or CCN4 KO B16F0 cells or supplemented with 522

10 ng/ml recombinant mouse CCN4. In both the CD4+ and 523

CD8+ T cell populations, the presence of tumor-conditioned 524

media significantly inhibited the fraction of cells that divided 525

at least once (Dil - CD4 p-value = 0.022, CD8 p-value = 526

0.018) and the probability that a cell will divide at least once 527

(PF - CD4 p-value = 0.024, CD8 p-value = 0.013) while 528

CCN4 exposure was not a statistically significant factor. For 529

responding cells, the average number of divisions they un- 530

dergo (PI) was not different among experimental conditions 531

for CD4+ T cells (p-value = 0.22) but reduced in CD8+ T 532

cells exposed to tumor-conditioned media (p-value = 0.0077). 533

Overall, the presence of tumor-conditioned media and not 534

CCN4 influenced T cell proliferation, which was consistent 535

with the DAGs. 536

Another characteristic of CD8+ T cells present within the 537

tumor microenvironment is that they are dysfunctional (Li 538

et al., 2019). As the digital cytometry approach used here 539

doesn’t estimate the functional state of CD8+ T cells only 540

their prevalence within a tissue sample, we decided to test 541

whether CCN4 had a direct impact on CD8+ T cell func- 542

tion, as quantified by target-specific ex vivo cytokine release 543
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as measured by ELISpot. First we generated YUMM1.7-544

reactive CD8+ T cells by immunizing C57BL/6mice against545

YUMM1.7 cells and isolated CD8a+ T cells from spleno-546

cytes three days after re-priming with live YUMM1.7 cells.547

We also created a variant of CCN4 KO YUMM1.7 cells with548

CCN4 expression induced by doxycycline and vector con-549

trols that were used as target cells (see Fig. S9). IFNγ550

and TNFα ELISpots were used to quantify the CD8+ T cell551

functional response to the different tumor targets in the pres-552

ence or absence of tumor-produced CCN4. As expected for553

a re-call CD8a+ effector T cell response, the most prominent554

IFNγ and lowest TNFα responses were against wt and CCN4555

KO YUMM1.7 cells, with a slightly higher IFNγ response to556

wt YUMM1.7 targets (see Fig. 8C, p-value < 0.05). Inter-557

estingly, re-expression of CCN4 by CCN4 KO YUMM1.7558

cells following doxycycline induction significantly reduced559

both IFNγ and TNFα production (p-value < 0.001), which560

suggests that CCN4 plays a direct role in inhibiting CD8a+
561

T cell function. Of note, CCN4 was predicted to directly in-562

hibit the activity of NK cells, which share cytokine release563

and cytotoxicity mechanisms with CD8+ T cells. Overall,564

the changes observed between wt and CCN4 KO variants565

of the B16F0 and YUMM1.7 mouse models were consistent566

with the causal networks inferred from the breast cancer and567

melanoma datasets.568

Discussion569

Validating the role that a particular molecule plays in driving570

the disease state using targeted experiments is central for im-571

proving understanding of biological mechanisms or selecting572

among competing drug targets. Given the limited observabil-573

ity of the biological response in experimental models and pa-574

tients, mechanistic modeling and simulation is playing an in-575

creasing role in helping answer many central questions in dis-576

covering, developing, and receiving federal approval of phar-577

maceutical drugs and also basic biology (Moore and Allen,578

2019). In immuno-oncology, there is increasing interest in579

modeling the heterocellular network of relevance for a spe-580

cific immunotherapy. The first step in creating mathematical581

models of cell-level networks is to create the topology of the582

network, which is expressed in terms of which nodes to in-583

clude and how they influence each other. The structure of584

these cell-level models is created using a fully supervised ap-585

proach, which means by hand using expert knowledge (Gad-586

kar et al., 2016). For instance, systems of ordinary differen-587

tial equations have been developed to capture multiple spa-588

tial compartments containing interacting malignant, antigen589

presenting, and T cells and to predict a general immune re-590

sponse (Palsson et al., 2013), a response to immune check-591

point blockade using CTLA-4, PD-1, and PD-L1 antibodies592

(Milberg et al., 2019) or adoptive cell transfer (Klinke and593

Wang, 2016).594

While leveraging the knowledge of experts is a great start-595

ing point, hand-curated models can also implicitly impose596

bias on how data is interpreted. In the context of molecular-597

level networks, rules and algorithms have been developed598

to elaborate causal networks based on a limited set of rules599

(Chylek et al., 2014; Sekar and Faeder, 2012; Boutillier et al., 600

2018; Vernuccio and Broadbelt, 2019). The rules constrain 601

the types of interactions, or edges, that are realistic between 602

the nodes while the algorithms generate all possible edges 603

that are consistent with the rules and collection of nodes. The 604

resulting rule-based networks are then used to interpret data 605

by filter the edges for the most consistent and, in the process, 606

may reveal previously unappreciated pathways. For instance, 607

a rule-based model was used to interpret single-molecule de- 608

tection of multisite phosphorylation on intact EGFR to re- 609

veal new a role for the abundance of adaptor proteins to 610

redirect signaling (Salazar-Cavazos et al., 2020). Given the 611

challenges with representing the various activation states of 612

a 12-subunit Ca2+/calmodulin-dependent protein kinase II 613

(CaMKII) holoenzyme that is essential for memory function, 614

a rule-based model identified a molecular mechanism sta- 615

bilizing protein activity that was obscured in prior reduced 616

models (Pharris et al., 2019). Inspired by engineering better 617

CAR T cells, Rohrs et al. developed a rule-based model to 618

interpret site-specific phosphorylation dynamics associated 619

with Chimeric Antigen Receptors (Rohrs et al., 2018). 620

To our knowledge, no equivalent approaches exist in the 621

context of modeling cell-level networks.1 We posit that cou- 622

pling digital cytometry with Bayesian network inference is 623

analogous to rule-based modeling in the context of modeling 624

cell-level networks. Here, the rules comprise a limited set of 625

constraints, or heuristics, related to the direction of informa- 626

tion flow. Specifically, the rules limit how changes in gene 627

expression within the malignant cell introduced during onco- 628

genesis propagate to stromal and immune cells present within 629

the tumor microenvironment and are implemented as a "black 630

list". The algorithms that underpin Bayesian network infer- 631

ence search over all possible network topologies for edges 632

that are consistent with the data. The resulting networks can 633

be used in multiple ways. As an unsupervised approach, the 634

network topology could complement existing workflows for 635

creating mechanistic mathematical models fit for use in test- 636

ing molecular targets (Gadkar et al., 2016; Ramanujan et al., 637

2019). In addition, DAGs represent explicit hypotheses gen- 638

erated from pre-existing human data that motivate new exper- 639

iments to validate the predictions, as illustrated by the B16F0 640

and YUMM1.7 results. 641

While the focus here is in the context of breast cancer 642

and melanoma due the pre-existing breadth of data, the ap- 643

proach could be generally applied to other biological con- 644

texts and motivate new experimental studies. For instance, 645

one of the limitations of inferring the network topology in 646

1One might consider agent-based or cellular automata models to apply
as the cellular interactions are specified by rules. In rule-based modeling
of molecular networks, the rules and algorithms elaborate a network space
that encompasses all possible topologies of the network and data is used to
prune the network to the most relevant. Similarly, the edges included in the
"blacklist" and "whitelists" can be considered as a Bayesian prior, where the
strength of inclusion in the final DAG and the coefficient associated with a
particular edge in the conditional probability function depend on the data.
In contrast, agent-based or cellular automata models require specifying all
interactions between cells as rules a priori and are validated qualitatively
by comparing emergent behavior against experimental observations (Hwang
et al., 2009; López et al., 2017; Mallet and De Pillis, 2006).
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the form of directed acyclic graphs is that some direct and in-647

direct causal relationships can be confounded, such as recip-648

rocal feedback modes of communication between cells (Zhou649

et al., 2018). Discerning the difference between a direct and650

indirect causal relationship has practical importance, such as651

for selecting therapeutic targets (Pearl, 2005). Methods, like652

Granger causality and dynamic Bayesian networks (Finkle653

et al., 2018; Li et al., 2014; Zou and Conzen, 2005), do ex-654

ist that could reveal direct and indirect causal relationships,655

but time-series data is required. Unfortunately, human tis-656

sue samples, like those in the TGCA, are very rarely sampled657

with time. Analysis of pre-existing human datasets can be658

complemented by a more focused experimental study of a659

pre-clinical model. Specifically, single-cell RNAseq to iden-660

tify the cell types present and their associated gene signatures661

can be combined with bulk transcriptomic seqencing to cap-662

ture the prevalence of all of the cell types within the tissue663

sample and provide a large number of biological replicates664

spanning the disease space - normal homeostasis; initiation;665

early, middle and late progression; and productive resolution666

or adverse outcomes. Similar network topologies would sug-667

gest similar biological mechanisms and help select relevant668

pre-clinical models for drug development. In short, we feel669

that combining digital cytometry with Bayesian network in-670

ference has the potential to become an indispensable unsu-671

pervised approach for discovering relevant heterocellular net-672

works associated with disease.673

Methods674

Digital Cytometry. Transcriptomics profiling of bulk tissue675

samples using Illumina RNA sequencing for the breast can-676

cer (BRCA) and cutaneous melanoma (SKCM) arms of the677

Cancer Genome Atlas was downloaded from TCGA data678

commons, where values for gene expression were expressed679

in counts using the "TCGAbiolinks" (V2.8.2) package in R680

(V3.6.1) and converted to TPM. RNA-seq data expressed in681

counts assayed in samples acquired from benign melanocytic682

nevi and untreated primary melanoma tissue and associ-683

ated sample annotation were downloaded from GEO entry684

GSE98394 and converted to TPM. TCGA data and the be-685

nign nevi and melanoma data were filtered to remove sam-686

ple outliers and normalized based on housekeeping gene ex-687

pression (Eisenberg and Levanon, 2013). Digital cytometry688

features associated with the functional plasticity of tumor689

cells within an epithelial to mesenchymal-like state space690

were calculated based on state metrics developed separately691

for bulk breast cancer and melanoma tissue samples (Klinke692

and Torang, 2020). Cell proliferation features were calcu-693

lated based on the median expression of genes associated694

with cell proliferation identified previously using human cell695

line data (Deng et al., 2020). Features corresponding to696

the prevalence of endothelial cells, cancer-associated fibrob-697

lasts, macrophages, and CD4+ T cells were calculated us-698

ing CIBERSORTx (https://cibersortx.stanford.edu) using the699

gene signatures derived from single cell RNAseq data (Tirosh700

et al., 2016) while the prevalence of B cells naïve, CD8+
701

T cells, Macrophage M0 (MΦ0), Macrophage M1 (MΦ1),702

Macrophage M2 (MΦ2), activated NK cells, resting NK 703

cells, and neutrophils were calculated using the LM22 im- 704

mune cell gene signatures in CIBERSORTx run in absolute 705

mode. 706

Given the potential lack of independence among the 707

macrophage features, the LM22 macrophage features were 708

combined to estimate the probability of the average 709

functional orientation using the formula described previ- 710

ously(Kaiser et al., 2016): 711

p(MΦi) = MΦi
MΦ0 +MΦ1 +MΦ2 , (1) 712

where i= {0,1,2} and denotes the specific macrophage sub- 713

type. Additional cellular features were excluded from the 714

analysis as they tended to have a large number of zero val- 715

ues across the datasets or were disconnected from the rest of 716

the network in preliminary network inference studies. Sam- 717

ple attributes were transformed to numerical values, which 718

were assumed to be extremes of a continuous variable (e.g., 719

Normal = 0, Cancer = 1). The sample attributes, CCN4 gene 720

expression, and estimated cellular features extracted from the 721

bulk RNAseq data calculated for each sample are included in 722

the GitHub repository. 723

Bayesian Network Inference. Prior to network inference, 724

feature values were log transformed, normalized to values 725

between 0 and 1, and discretized (BRCA: 15 intervals; GEO 726

and SKCM: 6 intervals), as summarized in supplemental Fig- 727

ures S1-S3. The features were then assigned to nodes. The 728

relationships among the nodes, or edges, were represented 729

by directed acyclic graphs inferred from the datasets using a 730

two-stage process, as detailed in the results section. Given 731

the inferred structure, a Bayesian network in the form of a 732

linear Gaussian model was fit to the datasets using maximum 733

likelihood estimation of the model parameters. Conditional 734

probability queries of the Bayesian networks were performed 735

by logic sampling with 105 samples. Bayesian network infer- 736

ence was performed using the ‘bnlearn’ package (V4.5) in R 737

(V3.6.1). 738

Reagents and Cell Culture. Cytokines and antibodies 739

were obtained from commercial sources and used accord- 740

ing to the suppliers’ recommendations unless otherwise in- 741

dicated. The mouse melanoma line B16F0 (purchased 742

in 2008, RRID: CVCL_0604) was obtained from Ameri- 743

can Tissue Culture Collection (ATCC, Manassas, VA). The 744

mouse melanoma line YUMM1.7 (received in September 745

2017, RRID: CVCL_JK16) was a gift from Drs. William 746

E. Damsky and Marcus W. Bosenberg (Yale University) 747

(Meeth et al., 2016). B16F0 and YUMM1.7 cells were 748

cultured at 37oC in 5% CO2 in high-glucose DMEM 749

(Cellgro/Corning) supplemented with L-glutamine (Lonza), 750

penicillin-streptomycin (Gibco), and 10% heat-inactivated 751

fetal bovine serum (Hyclone). All cell lines were revived 752

from frozen stock, used within 10-15 passages that did not 753

exceed a period of 6 months, and routinely tested for my- 754

coplasma contamination by PCR. CCN4 knock-out vari- 755

ants of B16F0 and YUMM1.7 cells were generated using a 756
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double-nickase CRISPR/Cas9 editing strategy described pre-757

viously (Deng et al., 2019). Briefly, two pairs of mouse758

CCN4 double nickase plasmids that target the mouse CCN4759

gene at different locations were purchased from Santa Cruz760

Biotechnology, Inc. (Dallas, TX) and transfected into B16F0761

and YUMM1.7 cells following the manufacturer’s instruc-762

tions. Following antibiotic selection, surviving single clones763

were isolated and expanded on 6-well plates. The concen-764

tration of CCN4 in the cell culture media from those wells765

was assayed using the Human WISP-1/CCN4 DuoSet ELISA766

Kit (R&D Systems, Minneapolis, MN) to confirm CCN4767

knockout. CCN4-knockout cells were further expanded and768

aliquoted to create a low passage frozen stock.769

In vivo Tumor Assays and in vitro T cell proliferation770

assays. All animal experiments were approved by West Vir-771

ginia University (WVU) Institutional Animal Care and Use772

Committee and performed on-site. C57BL/6Ncrl mice (6-773

8 week-old female) were from Charles River Laboratories.774

Mice were randomly assigned to treatment groups and co-775

housed following tumor initiation. Subcutaneous tumors776

were initiated by injecting mice subcutaneously with 3×105
777

of the indicated YUMM1.7 cells and 2.2× 105 of the in-778

dicated B16F0 cells in 100 µL and, once palpable, tumor779

sizes were recorded every other day via caliper. Tumor vol-780

ume was calculated using the formula: 0.5236 x width2 x781

length, where the width is the smaller dimension of the tu-782

mor. Once WT tumors reached between 1000 and 1500 mm3
783

in size, the tumors were surgically removed from mice in784

both arms of the study (WT and CCN4 KO) after euthana-785

sia and processed into single cell suspensions. This normally786

occurred at Day 14 with the B16F0 model and at Day 27787

with the YUMM1.7 model. Seven tumors were processed788

separately for each YUMM1.7 variant while four tumors789

were processed for each B16F0 variant. Single-cell suspen-790

sions were obtained by enzymatically digesting the excised791

tumors using the Tumor Dissociation Kit and gentleMACS792

C system (Miltenyi Biotec, Auburn, CA). In addition to793

following the manufacturer’s instructions, the gentleMACS794

program 37C_m_TDK_1 was used for B16F0 tumors and795

37C_m_TDK_2 was used for YUMM1.7 tumors. Following796

lysing of the red blood cells, the remaining single-cell sus-797

pensions were washed and stained with Live/Dead Fixable798

Pacific Blue Dead Cell Stain Kit (ThermoFisher). Following799

blocking with Mouse BD Fc Block (BD Biosciences), the800

surface of the cells were stained with one of three different801

antibody mixes that focused on T cells (CD45, CD3, CD4,802

CD8, and PD1), NK and B cells (CD45, B220, NK11, DX5,803

and PD1), and myeloid cells (CD45, CD11b, CD11c, Gr-1,804

F4/80, and MHCII) and quantified by flow cytometry. The805

specific antibodies used are listed in Supplemental Table S1.806

To assess the impact of CCN4 on T cell proliferation807

in vitro, splenocytes were obtained from naïve C57BL/6808

mice and stained with CellTrace Pacific Blue Cell Prolifer-809

ation Kit (ThermoFisher). Stained splenocytes (2.5× 105)810

were stimulated for 3 days in 96 well plate with MACSi-811

Beads loaded with anti-mouse CD3 and anti-mouse CD28812

antibodies (AP beads, Miltenyi Biotec), at a 1:1 propor-813

tion. Fresh serum-free DMEM media conditioned for 24 814

hours by either confluent wild-type (WT TCM) or conflu- 815

ent CCN4 KO (CCN4 KO TCM) melanoma B16F0 cells 816

were collected, centrifuged to remove cells and cell debris, 817

and added at 50% final volume during T cell stimulation 818

with AP beads. In addition, splenocytes were either left 819

unstimulated or stimulated with AP beads alone, or stimu- 820

lated in the presence of recombinant mouse CCN4 (rCCN4, 821

R&D) at a final concentration of 10 ng/mL. After 72h, cells 822

were washed and stained with Live/Dead Fixable Green Dead 823

Cell Stain Kit (ThermoFisher). Surface staining with anti- 824

mouse CD8/APC (Miltenyi Biotec), anti-mouse CD4/APC- 825

Cy7 (BD Biosciences), anti-mouse CD62L/PE (eBioscience, 826

ThermoFisher) and anti-mouse CD44/PerCPCy5.5 (eBio- 827

science, ThermoFisher) was performed after incubating the 828

cells with Mouse BD Fc Block (BD Biosciences). The pro- 829

liferation of both CD4 and CD8 T cells were quantified by 830

flow cytometry. 831

In vitro suppression of CD8+ T cell function. Inducible 832

mouse CCN4 expression lentiviral vector (IDmCCN4) was 833

constructed with Gateway cloning using Tet-on destination 834

lentiviral vector pCW57.1 (Addgene Plasmid #41393, a 835

gift from David Root) and pShuttle Gateway PLUS ORF 836

Clone for mouse CCN4 (GC-Mm21303, GeneCopoeia). 837

Lentiviruses were packaged as described (Deng et al., 2019) 838

to transduce YUMM1.7 cell with Ccn4 CRISPR knockout 839

(Ym1.7-KO1) (Deng et al., 2019). After puromycin selec- 840

tion, two pools of cells with inducible mCCN4 (Ym1.7- 841

KO1-IDmCCN4) or vector control (Ym1.7-KO1-IDvector) 842

were obtained. ELISA tests with doxycycline (Dox, final 843

0.5µg/ml) induction revealed the mCCN4 expression was un- 844

der stringent control and the secreted protein was in the sim- 845

ilar level as compared with wild-type YUMM1.7 cells (data 846

not shown). 847

To generate YUMM1.7-reactive CD8+ T cells, healthy 848

C57BL/6Ncrl mice were inoculated subcutaneously with 849

irradiated YUMM1.7 cells (105/mouse), followed by live 850

YUMM1.7 cells (3× 105/mouse) 3 weeks later. The mice 851

without tumor growth in the next five weeks were main- 852

tained. Three days before the assay, the mice were injected 853

again with live YUMM1.7 cells (105/mouse). On the day 854

of assay, these mice were euthanized and the YUMM1.7- 855

reactive cells were isolated from mouse splenocytes using 856

mouse CD8a+ T Cell Isolation Kit (130-104-075, Miltenyi 857

Biotec), resuspended in a concentration of 106/ml. 50µl 858

(5 × 104) of the YUMM1.7-reactive CD8+ T cells were 859

aliquoted into each well on a 96-well plate for ELISpot assay 860

using Mouse IFNγ/TNFα Double-Color ELISpot kit (Cellu- 861

lar Technology Limited, CTL) following manufacturer’s in- 862

structions. Briefly, target tumor cells were stimulated with 863

IFNγ (200U/ml, or, 20ng/ml) for 24 hours, harvested and 864

resuspended in a concentration of 2× 106/ml. 50µl (105) 865

of indicated tumor cells in triplicates were aliquoted into 866

each well, with or without doxycycline (Dox, final 0.5µg/ml). 867

The reactions were incubated at 37oC for 24 hours and 868

colored spots were developed (Red for IFNγ and blue for 869

TNFα). The spots were counted and imaged using an Olym- 870
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pus MVX10 Microscope and the result was plotted and ana-871

lyzed by GraphPad Prism (version 5).872

Flow Cytometry. Single cell suspensions described above873

were stained with specific antibodies or isotype controls874

using conventional protocols. Fluorescence-activated cell875

counting was performed using a BD LSRFortessa and FACS-876

Diva software (BD Biosciences) as where the fluorescence877

intensity for each parameter was reported as a pulse area878

with 18-bit resolution. Unstained samples were used as nega-879

tive flow cytometry controls. Single-stain controls were used880

to establish fluorescence compensation parameters. For TIL881

analysis, greater than 5× 105 events were acquired in each882

antibody panel in each biological replicate. In analyzing en-883

riched cell populations, 2×104 events were acquired in each884

biological replicate. Flow cytometric data were exported885

as FCS3.0 files and analyzed with using R/Bioconductor886

(V3.5.1), as described previously (Klinke and Brundage,887

2009). The typical gating strategies for T cells, NK and B888

cells, and myeloid cells are shown in supplementary Figures889

S4-S6, respectively. The statistical difference in tumor infil-890

trating lymphocytes between wt and CCN4 KO variants was891

assessed using log-transformed values and a two-tailed ho-892

moscedastic Student’s t test. Cell proliferation was quantified893

using metrics: fraction diluted (Dil), Precursor frequency,894

%dividing cells (PF), Proliferation index (PI), and prolifer-895

ation variance (SDD) (Roederer, 2011). Statistical differ-896

ences among these proliferation parameters were assessed us-897

ing type III repeated measures ANOVA in the "car" (V3.0-7)898

package in R. A p-value < 0.05 was considered statistically899

significant.900

Data and Code Availability. The code used in the analysis901

can be obtained from the following GitHub repository:902

• https://github.com/KlinkeLab/CellNetwork_2020903
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Figure Legends 1143

Figure 1 - A computational workflow combines digital cytometry with Bayesian network inference to estimate how a genetic 1144

driver impacts the heterocellular network within a tissue. Digital cytometry deconvolutes a bulk transcriptomic profile using gene 1145

signatures that correspond to different stromal, malignant, and immune cell types. The results estimate the prevalence of the different 1146

cell types within the tissue sample, that is digital cytometry features. By using bulk transcriptomic profiles of defined patient populations, 1147

underlying variation in the inferred cellular composition coupled with changes in expression of a putative gene driver can be used to estimate 1148

how the heterocellular network is impacted by a gene driver using Bayesian Network inference. To illustrate the approach, we focused on 1149

CCN4 as a gene driver. The resulting directed acyclic graphs represent the collective conditional independence among modeled nodes of the 1150

network. 1151

Figure 2 - Summary of the evidence obtained from the TCGA breast cancer dataset supporting the consensus edges in the 1152

seed network. Edges ordered based on the number of algorithms that detected that an edge was enriched (bar graph - left axis) and the 1153

strength of enrichment (dotted lines - right axis). The lines associated with the strength of enrichment represent the minimum (dashed 1154

line) and maximum (dotted line) values obtained by the different algorithms. Coloring of bar graph indicates whether a clear direction was 1155

associated with an edge (green), an edge was significantly enriched but without a clear direction (yellow), or that an edge was excluded from 1156

the consensus seed network list (tan). 1157

Figure 3 - A directed acyclic graph (DAG) representing the conditional probability distribution inferred using the digital cy- 1158

tometry features extracted from the breast cancer arm of the TCGA. The nodes of the graph represent features, such as CCN4 gene 1159

expression (rectangle), sample attribute (hexagon), or the prevalence of a particular cell type/state (oval). The edges represent inferred causal 1160

relationships among the nodes. The black lines with arrow heads represent a positive causal relation while red lines with horizontal bars 1161

represent a negative or inhibitory causal relation, where the extent of influence of the parental node is annotated by the number beside the 1162

edge. The number included within the node symbol represents the average normalized value of the digital cytometry feature within the dataset 1163

with values of all of the parental nodes set to zero. The width of the edge is proportional to the posterior probability of inclusion into the 1164

DAG. 1165

Figure 4 - Conditional probability query of the BRCA DAG compared against digital cytometry estimates obtained from exper- 1166

imental data. Experimental samples obtained from normal mammary and tumor tissue are shown as filled versus open circles, respectively. 1167

Samples of the conditional probability model for p(Cancer < 0.15) (orange) and p(Cancer > 0.85) (blue) for CD8 T cells (A), CD4 T cells 1168

(B), active NK cells (C), B cells (D), Macrophages (E) and Cancer Associated Fibroblasts (F). Linear trendlines are superimposed on the 1169

conditional probability samples. 1170

Figure 5 - Two DAGs representing the conditional probability distributions inferred using the digital cytometry features ex- 1171

tracted from the two melanoma-related datasets. (A) Analysis of a bulk RNAseq dataset obtained from patients with common pig- 1172

mented nevi and primary melanoma (nsamples = 78). (B) Analysis of primary melanoma samples extracted from the SKCM arm of the 1173

TCGA (nsamples = 94). The DAGs are summarized using similar notation as described in Figure 3. Dotted lines indicate edges that were 1174

included in the consensus seed network but, as the samples were all from patients with cancer, had no evidence in the TCGA dataset. 1175

Figure 6 - CCN4 knock-out in two syngeneic mouse models of melanoma induces a similar shift in NK cells and T and B 1176

lymphocytes as observed in human breast cancer and melanoma. (A) The percentage of live CD45+ cells isolated from tumors 1177

generated by inoculating s.c. with wt (red) and CCN4 KO (blue) variants of B16F0 (o and x’s) and YUMM1.7 (� and +’s) cells, where the 1178

log-linear trends are highlighted by dotted lines. CD45+ values were obtained from three different antibody panels that quantified T cells, 1179

B/NK cells, and myeloid cells in TIL isolates from each mouse. (B) A comparison of the ratio of NK cells (black), CD8+ T cells (red), 1180

CD4+ T cells (blue), and B cells (green) to live CD45+ TILs in s.c. tumors generated using wt B16F0 and YUMM1.7 cells (mean ± s.d.). 1181

(C) Comparing the log ratio in prevalence of the different cell types when CCN4 is present (WT) versus absent (CCN4 KO) predicted by 1182

the BRCA (1st column) and SKCM (4th column) DAGs and observed experimentally using the B16F0 (2nd column) and YUMM1.7 (3rd 1183

column) mouse models. Mean results for NK cells (black), CD8+ T cells (red), CD4+ T cells (blue), and B cells (green) in the different 1184

settings are connected by lines. (D) TIL comparison upon CCN4 KO in B16F0 and YUMM1.7 mouse models stratified by NK cells, CD8+ 1185

T cells, CD4+ T cells, and B cells (top to bottom) (n = 7 for YUMM1.7 and n = 4 for B16F0 variants and mean ± s.d.). p-values calculated 1186

between wt and CCN4 KO pairs using Student’s t-test. 1187

Figure 7 - Myeloid immune cell subsets differentially infiltrate tumors derived from wt B16F0 and YUMM1.7 cells but shift 1188

in similar ways upon CCN4 knock-out. (A) A comparison of the ratio of CD11c- (black) and CD11c+ (gray) macrophages, CD11c+ 1189

MDSC (green), MDSC (blue), and Neutrophils (red) to live CD45+ TILs in s.c. tumors generated using wt B16F0 and YUMM1.7 cells. (B) 1190

Comparing the log ratio in prevalence of the different myeloid cell types when CCN4 is present (WT) versus absent (CCN4 KO) predicted 1191

by the BRCA (1st column) and SKCM (4th column) DAGs and observed experimentally using the B16F0 (2nd column) and YUMM1.7 (3rd 1192

column) mouse models. Macrophages are the only myeloid cell subset inferred from the BRCA and SKCM datasets and are assumed to be 1193

related to CD11c- macrophages in mouse models. Mean results in the different settings are connected by lines. (C) A representative scatter 1194

plot of GR1 versus CD11c expression in gated live CD45+ CD11b+ TILs obtained from wt (top) and CCN4 KO (bottom) YUMM1.7 tumors. 1195

(D and E) TIL comparison upon CCN4 KO in B16F0 and YUMM1.7 mouse models stratified by myeloid-derived suppressor cell subsets 1196

(panel D - top: MDSC; bottom: CD11c+ MDSC) and other myeloid cell subsets (panel E - top to bottom: CD11c- and CD11c+ macrophages, 1197

neutrophils, and dendritic cells) (n = 7 for YUMM1.7 and n = 4 for B16F0 variants and mean ± s.d.). p-values calculated between wt and 1198

CCN4 KO pairs using Student’s t-test. 1199
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Figure 8 - CCN4 has no direct effect on T cell proliferation but impairs CD8+ T cell function. The distribution in cell trace staining1200

among live CD4+ (A) and CD8+ (B) T cells stimulated with αCD3/αCD28 (AP beads) alone or in the presence of media conditioned by1201

wt B16F0 cells (AP beads + WT TCM), media conditioned by CCN4 KO B16F0 cells (AP beads + CCN4 KO TCM), or with 10 ng/ml of1202

recombinant mouse CCN4 (AP beads + rCCN4). The distribution in the corresponding unstimulated cells (gray) are shown at the bottom.1203

The colored vertical lines indicate the predicted dilution of cell trace staining in each generation based on the unstimulated controls. (C)1204

CD8+ T cells isolated from the spleens of C57BL/6 mice that rejected YUMM1.7 tumors were cultured in an in vitro ELISPOT assay using1205

variants of the YUMM1.7 cell line as targets (wt YUMM1.7 - yellow, CCN4 KO YUMM1.7 - light green, CCN4 KO YUMM1.7 with a blank1206

inducible expression vector - dark green and blue, CCN4 KO YUMM1.7 with a CCN4 inducible expression vector - purple and red). Variants1207

containing the inducible expression vector were also cultured in the absence (dark green and purple) or presence of doxycycline (blue and1208

red). CD8+ T cells expressing IFNγ and TNFα were quantified following 24 hour co-culture (bar graph). Statistical significant between1209

pairs was assessed using a Student’s t-test, where * = p-value < 0.05 and *** = p-value < 0.001.1210
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Fig. 1. A computational workflow combines digital cytometry with Bayesian network inference to estimate how a genetic driver impacts the heterocellular network
within a tissue.
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Fig. 4. Conditional probability query of the BRCA DAG compared against digital cytometry estimates obtained from experimental data.
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Fig. 6. CCN4 knock-out in two syngeneic mouse models of melanoma induces a similar shift in NK cells and T and B lymphocytes as observed in human breast
cancer and melanoma.
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Fig. 7. Myeloid immune cell subsets differentially infiltrate tumors derived from wt B16F0 and YUMM1.7 cells but shift in similar ways upon CCN4 knock-out.
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Table S1. List of edges, whether an edge was predicted to promote or inhibit the target node, and the strength inferred using
the different structure learning algorithms in analyzing the features present in TCGA breast cancer dataset. Rows highlighted in
green were included in the consensus seed network, yellow indicate that the directionality was unclear, and red indicate edges included
in the “blacklist". The edge numbers correspond to the x-axis in Figure 2.

Edge 
No

from to mmpc 
CorSign

aracne 
CorSign

hiton 
CorSign

iamb 
strength

iamb 
CorSign

iamb.fdr 
strength

iamb.fdr 
CorSign

tabu 
strength

tabu 
CorSign

mmhc 
strength

mmhc 
CorSign

hc 
strength

hc 
CorSign

pc_stable 
strength

pc_stable 
CorSign

Hit 
Number

Min 
strength

Max 
strength

1 CCN4 Mesenchymal + + + 2.02E-138 + 2.02E-138 + 1.95E-148 + 1.79E-139 + 1.95E-148 + 1.79E-139 + 9 1.95E-148 2.02E-138
1 Mesenchymal CCN4 + + + 9
2 pM0 pM1 - - - 3.77E-48 - 3.77E-48 - 9 0.00E+00 3.77E-48
2 pM1 pM0 - - - 0.00E+00 - 0.00E+00 - 0.00E+00 - 0.00E+00 - 9
3 pM0 pM2 - - - 0.00E+00 - 0.00E+00 - 9 0.00E+00 0.00E+00
3 pM2 pM0 - - - 0.00E+00 - 0.00E+00 - 0.00E+00 - 0.00E+00 - 9
4 CAF_lg Mesenchymal + + + 9 2.94E-97 9.62E-73
4 Mesenchymal CAF_lg + + + 9.62E-73 + 9.62E-73 + 2.94E-97 + 2.35E-86 + 2.94E-97 + 8.08E-86 + 9
5 Cancer CCN4 + + + 2.06E-55 + 2.06E-55 + 2.06E-55 + 2.06E-55 + 2.06E-55 + 2.06E-55 + 9 2.06E-55 2.06E-55
5 CCN4 Cancer + + + 9
6 NK.cells.active_lg NK.cells.rest_lg - - - 4.80E-30 - 4.80E-30 - 1.15E-33 - 4.80E-30 - 1.15E-33 - 4.80E-30 - 9 1.15E-33 4.80E-30
6 NK.cells.rest_lg NK.cells.active_lg - - - 9
7 B.cells.ive_lg T.cells.CD8_lg + + + 9.25E-27 + 2.92E-27 + 3.10E-16 + 2.92E-27 + 3.10E-16 + 2.92E-27 + 9 2.92E-27 3.10E-16
7 T.cells.CD8_lg B.cells.ive_lg + + + 9
8 Cancer Epithelial - - - 1.66E-25 - 1.66E-25 - 1.66E-25 - 1.66E-25 - 1.66E-25 - 2.23E-22 - 9 1.66E-25 2.23E-22
8 Epithelial Cancer - - - 9
9 CAF_lg proliferation - - - 7.61E-26 - 9 7.61E-26 3.37E-12
9 proliferation CAF_lg - - - 6.37E-21 - 6.37E-21 - 3.37E-12 - 3.37E-12 - 1.80E-18 - 9

10 Endothelial.cells_lg proliferation - - - 5.75E-10 - 5.75E-10 - 9 6.23E-18 5.75E-10
10 proliferation Endothelial.cells_lg - - - 2.88E-15 - 2.88E-15 - 2.88E-15 - 6.23E-18 - 9
11 CD4Tcell_sc_lg Macrophages_sc_lg + + + 9 1.91E-16 2.01E-13
11 Macrophages_sc_lg CD4Tcell_sc_lg + + + 1.91E-16 + 5.09E-16 + 3.07E-14 + 5.09E-16 + 3.07E-14 + 2.01E-13 + 9
12 pM1 T.cells.CD8_lg + + + 8.18E-13 + 3.53E-14 + 8.98E-15 + 3.53E-14 + 8.98E-15 + 3.53E-14 + 9 8.98E-15 8.18E-13
12 T.cells.CD8_lg pM1 + + + 9
13 Macrophages_sc_lg T.cells.CD8_lg + + + 9.15E-13 + 2.38E-12 + 6.56E-12 + 2.38E-12 + 6.56E-12 + 2.38E-12 + 9 9.15E-13 6.56E-12
13 T.cells.CD8_lg Macrophages_sc_lg + + + 9
14 CAF_lg T.cells.CD8_lg - - - 2.84E-07 - 3.06E-07 - 3.42E-09 - 3.06E-07 - 3.42E-09 - 3.06E-07 - 9 3.42E-09 3.06E-07
14 T.cells.CD8_lg CAF_lg - - - 9
15 Cancer proliferation + + 6.68E-23 + 6.68E-23 + 4.70E-12 + 3.72E-10 + 4.70E-12 + 1.93E-08 + 8 6.68E-23 1.93E-08
15 proliferation Cancer + + 8
16 Cancer Endothelial.cells_lg - - 7.40E-09 - 7.40E-09 - 3.67E-38 - 7.40E-09 - 3.67E-38 - 2.10E-05 - 8 3.67E-38 2.10E-05
16 Endothelial.cells_lg Cancer - - 8
17 CD4Tcell_sc_lg Endothelial.cells_lg + + 8 3.64E-10 7.84E-07
17 Endothelial.cells_lg CD4Tcell_sc_lg + + 5.65E-08 + 2.93E-07 + 3.64E-10 + 2.93E-07 + 3.64E-10 + 7.84E-07 + 8
18 B.cells.ive_lg CD4Tcell_sc_lg + + 2.95E-06 + 1.95E-06 + 2.17E-07 + 1.95E-06 + 2.17E-07 + 7.31E-05 + 8 2.17E-07 7.31E-05
18 CD4Tcell_sc_lg B.cells.ive_lg + + 8
19 Cancer pM2 - - - 7.00E-04 - 1.91E-42 - 7.00E-04 - 1.91E-42 - 7 1.91E-42 7.00E-04
19 pM2 Cancer - - - 7
20 B.cells.ive_lg Endothelial.cells_lg + + + 4.01E-20 + 7 2.71E-22 1.52E-18
20 Endothelial.cells_lg B.cells.ive_lg + + + 2.71E-22 + 2.71E-22 + 1.52E-18 + 7
21 pM2 proliferation - - - 1.02E-10 - 2.09E-11 - 1.02E-10 - 3.30E-10 - 7 2.09E-11 3.30E-10
21 proliferation pM2 - - - 7
22 Epithelial Neutrophils_lg - - 2.82E-03 - 1.62E-03 - 6.79E-04 - 1.62E-03 - 6.79E-04 - 7 6.79E-04 2.82E-03
22 Neutrophils_lg Epithelial - - 7
23 CAF_lg pM1 - - 6 3.74E-24 4.37E-12
23 pM1 CAF_lg - - 4.37E-12 - 3.74E-24 - 4.37E-12 - 1.06E-21 - 6
24 Cancer Mesenchymal + + 8.89E-17 + 1.16E-16 + 8.89E-17 + 1.16E-16 + 6 8.89E-17 1.16E-16
24 Mesenchymal Cancer + + 6
25 Neutrophils_lg pM2 + + 6 7.51E-09 1.57E-04
25 pM2 Neutrophils_lg + + 7.51E-09 + 1.57E-04 + 7.51E-09 + 1.57E-04 + 6
26 Macrophages_sc_lg Neutrophils_lg + + 1.59E-03 + 1.86E-03 + 1.86E-03 + 5 1.59E-03 1.86E-03
26 Neutrophils_lg Macrophages_sc_lg + + 5
27 pM1 pM2 0.00E+00 - 0.00E+00 - 4 0.00E+00 3.43E-04
27 pM2 pM1 3.43E-04 - 3.43E-04 - 4
28 NK.cells.rest_lg T.cells.CD8_lg 1.24E-02 - 7.88E-04 - 7.88E-04 - 3 7.88E-04 1.24E-02
28 T.cells.CD8_lg NK.cells.rest_lg 3
29 NK.cells.active_lg CD4Tcell_sc_lg 1.26E-03 - 1.08E-03 - 1.08E-03 - 3 1.08E-03 1.26E-03
29 CD4Tcell_sc_lg NK.cells.active_lg 3
30 B.cells.ive_lg Epithelial + 1.73E-03 + 3 1.73E-03 8.19E-03
30 Epithelial B.cells.ive_lg + 8.19E-03 + 3
31 CD4Tcell_sc_lg pM1 + + 3 1.23E-02 1.23E-02
31 pM1 CD4Tcell_sc_lg + + 1.23E-02 + 3
32 Cancer pM1 2.35E-35 + 2.35E-35 + 2 2.35E-35 2.35E-35
32 pM1 Cancer 2
33 Cancer pM0 5.03E-25 + 5.03E-25 + 2 5.03E-25 5.03E-25
33 pM0 Cancer 2
34 Mesenchymal Endothelial.cells_lg 4.02E-19 + 4.02E-19 + 2 4.02E-19 4.02E-19
34 Endothelial.cells_lg Mesenchymal 2
35 B.cells.ive_lg pM1 4.18E-19 + 4.18E-19 + 2 4.18E-19 4.18E-19
35 pM1 B.cells.ive_lg 2
36 Macrophages_sc_lg CAF_lg 5.33E-17 - 5.33E-17 - 2 5.33E-17 5.33E-17
36 CAF_lg Macrophages_sc_lg 2
37 Cancer B.cells.ive_lg 3.36E-13 - 4.79E-07 - 2 3.36E-13 4.79E-07
37 B.cells.ive_lg Cancer 2
38 pM0 Mesenchymal 1.51E-12 + 1.51E-12 + 2 1.51E-12 1.51E-12
38 Mesenchymal pM0 2
39 pM1 Endothelial.cells_lg 4.23E-12 + 4.23E-12 + 2 4.23E-12 4.23E-12
39 Endothelial.cells_lg pM1 2
40 CCN4 proliferation 7.29E-12 - 7.29E-12 - 2 7.29E-12 7.29E-12
40 proliferation CCN4 2
41 Cancer T.cells.CD8_lg 2.30E-10 - 2.30E-10 - 2 2.30E-10 2.30E-10
41 T.cells.CD8_lg Cancer 2
42 Macrophages_sc_lg pM0 2.14E-08 - 2.14E-08 - 2 2.14E-08 2.14E-08
42 pM0 Macrophages_sc_lg 2
43 NK.cells.rest_lg pM0 2.12E-07 + 2.12E-07 + 2 2.12E-07 2.12E-07
43 pM0 NK.cells.rest_lg 2
44 Mesenchymal Neutrophils_lg 2.39E-07 + 2.39E-07 + 2 2.39E-07 2.39E-07
44 Neutrophils_lg Mesenchymal 2
45 CCN4 Macrophages_sc_lg 4.84E-07 + 4.84E-07 + 2 4.84E-07 4.84E-07
45 Macrophages_sc_lg CCN4 2
46 Cancer NK.cells.rest_lg 4.25E-06 - 4.25E-06 - 2 4.25E-06 4.25E-06
46 NK.cells.rest_lg Cancer 2
47 Epithelial CD4Tcell_sc_lg 9.98E-06 - 9.98E-06 - 2 9.98E-06 9.98E-06
47 CD4Tcell_sc_lg Epithelial 2
48 B.cells.ive_lg NK.cells.rest_lg 3.72E-05 - 3.72E-05 - 2 3.72E-05 3.72E-05
48 NK.cells.rest_lg B.cells.ive_lg 2
49 Epithelial Mesenchymal 7.35E-05 + 7.35E-05 + 2 7.35E-05 7.35E-05
49 Mesenchymal Epithelial 2
50 Endothelial.cells_lg Neutrophils_lg 7.61E-05 - 7.61E-05 - 2 7.61E-05 7.61E-05
50 Neutrophils_lg Endothelial.cells_lg 2
51 pM2 CAF_lg 3.71E-04 + 3.71E-04 + 2 3.71E-04 3.71E-04
51 CAF_lg pM2 2
52 Mesenchymal T.cells.CD8_lg 2.04E-04 + 2.04E-04 + 2 2.04E-04 2.04E-04
52 T.cells.CD8_lg Mesenchymal 2
53 CCN4 NK.cells.active_lg 2.64E-04 - 2.64E-04 - 2 2.64E-04 2.64E-04
53 NK.cells.active_lg CCN4 2
54 B.cells.ive_lg CAF_lg 1.48E-03 - 1.48E-03 - 2 1.48E-03 1.48E-03
54 CAF_lg B.cells.ive_lg 2
55 Epithelial CAF_lg 2.94E-03 + 2.94E-03 + 2 2.94E-03 2.94E-03
55 CAF_lg Epithelial 2
56 NK.cells.rest_lg proliferation 2.80E-02 + 2.80E-02 + 2 2.80E-02 2.80E-02
56 proliferation NK.cells.rest_lg 2
57 Macrophages_sc_lg proliferation 1.53E-01 - 1.53E-01 - 2 1.53E-01 1.53E-01
57 proliferation Macrophages_sc_lg 2
58 CCN4 B.cells.ive_lg 5.87E-08 + 1 5.87E-08 5.87E-08
58 B.cells.ive_lg CCN4 1
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Table S2. List of edges, whether an edge was predicted to promote or inhibit the target node, and the strength inferred using
the different structure learning algorithms in analyzing the features present in dataset comprised of common melanocytic
nevi and primary melanoma tissue samples (GEO). Rows highlighted in green were included in the consensus seed network, yellow
indicate that the directionality was unclear, and red indicate edges included in the “blacklist". The edge numbers correspond to the
x-axis in Figure 4A.

Edge 
No

from to mmpc 
CorSign

aracne 
CorSign

hiton 
CorSign

iamb 
strength

iamb 
CorSign

iamb.fdr 
strength

iamb.fdr 
CorSign

tabu 
strength

tabu 
CorSign

mmhc 
strength

mmhc 
CorSign

hc 
strength

hc 
CorSign

pc_stable 
strength

pc_stable 
CorSign

Hit 
Number

Min 
strength

Max 
strength

1 pM1 pM2 - - - 2.40E-41 - 2.40E-41 - 2.40E-41 - 2.40E-41 - 2.40E-41 - 2.40E-41 - 9 2.40E-41 2.40E-41
1 pM2 pM1 - - - 9
2 pM0 pM2 - - - 3.31E-38 - 3.31E-38 - 3.31E-38 - 3.31E-38 - 3.31E-38 - 3.31E-38 - 9 3.31E-38 3.31E-38
2 pM2 pM0 - - - 9
3 Cancer Mesenchymal + + + 6.29E-09 + 2.09E-18 + 8.02E-13 + 6.29E-09 + 8.02E-13 + 2.46E-12 + 9 2.09E-18 6.29E-09
3 Mesenchymal Cancer + + + 9
4 Cancer Epithelial - - - 4.24E-15 - 4.24E-15 - 4.24E-15 - 4.24E-15 - 2.79E-16 - 4.24E-15 - 9 2.79E-16 4.24E-15
4 Epithelial Cancer - - - 9
5 CAF_lg Mesenchymal + + + 6.70E-15 + 2.20E-12 + 9 6.70E-15 5.98E-05
5 Mesenchymal CAF_lg + + + 2.75E-14 + 7.46E-12 + 2.75E-14 + 5.98E-05 + 9
6 Macrophages_sc_lg T.cells.CD8_lg + + + 9.32E-06 + 1.82E-11 + 7.68E-06 + 1.79E-04 + 7.68E-06 + 1.79E-04 + 9 1.82E-11 1.79E-04
6 T.cells.CD8_lg Macrophages_sc_lg + + + 9
7 NK.cells.active_lg NK.cells.rest_lg - - - 1.02E-06 - 9 1.01E-09 1.68E-05
7 NK.cells.rest_lg NK.cells.active_lg - - - 1.01E-09 - 1.68E-05 - 1.01E-09 - 1.01E-09 - 1.68E-05 - 9
8 CD4Tcell_sc_lg Endothelial.cells_lg + + + 9 8.60E-08 4.15E-07
8 Endothelial.cells_lg CD4Tcell_sc_lg + + + 4.15E-07 + 8.60E-08 + 4.15E-07 + 4.15E-07 + 4.15E-07 + 4.15E-07 + 9
9 CCN4 Mesenchymal + + + 6.48E-05 + 8.38E-07 + 6.48E-05 + 8.38E-07 + 2.29E-02 + 8 8.38E-07 2.29E-02
9 Mesenchymal CCN4 + + + 8

10 NK.cells.active_lg T.cells.CD8_lg + + + 1.05E-04 + 1.19E-03 + 3.93E-03 + 1.19E-03 + 3.93E-03 + 8 1.05E-04 3.93E-03
10 T.cells.CD8_lg NK.cells.active_lg + + + 8
11 CD4Tcell_sc_lg Macrophages_sc_lg + + + 8 4.58E-04 4.58E-04
11 Macrophages_sc_lg CD4Tcell_sc_lg + + + 4.58E-04 + 4.58E-04 + 4.58E-04 + 4.58E-04 + 4.58E-04 + 8
12 NK.cells.rest_lg pM0 + + + 2.22E-04 + 2.22E-04 + 1.17E-03 + 7 6.30E-05 1.17E-03
12 pM0 NK.cells.rest_lg + + + 6.30E-05 + 7
13 pM1 T.cells.CD8_lg + + + 5.96E-03 + 3.70E-03 + 5.96E-03 + 3.70E-03 + 7 3.70E-03 5.96E-03
13 T.cells.CD8_lg pM1 + + + 7
14 Cancer NK.cells.active_lg + 8.85E-16 + 8.85E-16 + 8.85E-16 + 4 8.85E-16 8.85E-16
14 NK.cells.active_lg Cancer + 4
15 CAF_lg Endothelial.cells_lg + 3.11E-06 + 4 3.11E-06 8.04E-04
15 Endothelial.cells_lg CAF_lg + 8.04E-04 + 4.19E-04 + 4
16 Cancer proliferation 1.47E-09 + 6.39E-11 + 6.39E-11 + 3 6.39E-11 1.47E-09
16 proliferation Cancer 3
17 Macrophages_sc_lg Mesenchymal + 3 7.24E-09 7.24E-09
17 Mesenchymal Macrophages_sc_lg + 7.24E-09 + 7.24E-09 + 3
18 Endothelial.cells_lg pM0 - - 3 1.27E-04 1.27E-04
18 pM0 Endothelial.cells_lg - - 1.27E-04 - 3
19 B.cells.naive_lg Endothelial.cells_lg + 3 3.41E-03 3.41E-03
19 Endothelial.cells_lg B.cells.naive_lg + 3.41E-03 + 3.41E-03 + 3
20 Cancer CCN4 5.06E-11 + 5.06E-11 + 2 5.06E-11 5.06E-11
20 CCN4 Cancer 2
21 Endothelial.cells_lg Mesenchymal 2.75E-10 + 2.75E-10 + 2 2.75E-10 2.75E-10
21 Mesenchymal Endothelial.cells_lg 2
22 Macrophages_sc_lg pM1 5.29E-07 + 5.29E-07 + 2 5.29E-07 5.29E-07
22 pM1 Macrophages_sc_lg 2
23 Epithelial pM0 3.92E-05 - 3.92E-05 - 2 3.92E-05 3.92E-05
23 pM0 Epithelial 2
24 Endothelial.cells_lg proliferation 5.19E-05 - 5.19E-05 - 2 5.19E-05 5.19E-05
24 proliferation Endothelial.cells_lg 2
25 CCN4 Neutrophils_lg 7.22E-04 + 7.22E-04 + 2 7.22E-04 7.22E-04
25 Neutrophils_lg CCN4 2
26 CAF_lg T.cells.CD8_lg 8.87E-03 + 8.87E-03 + 2 8.87E-03 8.87E-03
26 T.cells.CD8_lg CAF_lg 2
27 Macrophages_sc_lg NK.cells.rest_lg 2 2.08E-02 2.08E-02
27 NK.cells.rest_lg Macrophages_sc_lg 2.08E-02 - 2.08E-02 - 2
28 pM0 pM1 2.28E-02 - 2.28E-02 - 2 2.28E-02 2.28E-02
28 pM1 pM0 2
29 Endothelial.cells_lg Epithelial 9.69E-04 + 1 9.69E-04 9.69E-04
29 Epithelial Endothelial.cells_lg 1
30 CAF_lg CCN4 1 2.35E-01 2.35E-01
30 CCN4 CAF_lg 2.35E-01 + 1
31 Cancer pM2 - 1 1.00E+00 1.00E+00
31 pM2 Cancer - 1
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Table S3. List of edges, whether an edge was predicted to promote or inhibit the target node, and the strength inferred using
the different structure learning algorithms in analyzing the features present in primary melanoma tissue samples in the TCGA
SKCM dataset. Rows highlighted in green were included in the consensus seed network, yellow indicate that the directionality was
unclear, and red indicate edges included in the “blacklist". The edge numbers correspond to the x-axis in Figure 4B.

Edge 
No

from to mmpc 
CorSign

aracne 
CorSign

hiton 
CorSign

iamb 
strength

iamb 
CorSign

iamb.fdr 
strength

iamb.fdr 
CorSign

tabu 
strength

tabu 
CorSign

mmhc 
strength

mmhc 
CorSign

hc 
strength

hc 
CorSign

pc_stable 
strength

pc_stable 
CorSign

Hit 
Number

Min 
strength

Max 
strength

1 pM0 pM2 - - - 6.36E-46 - 2.04E-18 - 6.36E-46 - 9 6.36E-46 2.04E-18
1 pM2 pM0 - - - 6.36E-46 - 6.36E-46 - 6.36E-46 - 9
2 pM0 pM1 - - - 9.96E-07 - 9.96E-07 - 9.96E-07 - 9 1.59E-34 9.96E-07
2 pM1 pM0 - - - 1.59E-34 - 1.59E-34 - 1.59E-34 - 9
3 CAF_lg Mesenchymal + + + 5.38E-14 + 3.26E-18 + 9 3.26E-18 5.38E-14
3 Mesenchymal CAF_lg + + + 3.26E-18 + 3.26E-18 + 3.26E-18 + 3.26E-18 + 9
4 CAF_lg Macrophages_sc_lg + + + 1.45E-08 + 1.45E-08 + 8.38E-11 + 1.45E-08 + 1.02E-11 + 1.45E-08 + 9 1.02E-11 1.45E-08
4 Macrophages_sc_lg CAF_lg + + + 9
5 Macrophages_sc_lg T.cells.CD8_lg + + + 1.43E-07 + 1.43E-07 + 1.23E-11 + 1.43E-07 + 1.23E-11 + 1.43E-07 + 9 1.23E-11 1.43E-07
5 T.cells.CD8_lg Macrophages_sc_lg + + + 9
6 NK.cells.active_lg NK.cells.rest_lg - - - 2.37E-09 - 2.37E-09 - 2.37E-09 - 9 2.01E-10 2.37E-09
6 NK.cells.rest_lg NK.cells.active_lg - - - 2.01E-10 - 2.01E-10 - 2.01E-10 - 9
7 Endothelial.cells_lg Mesenchymal + + + 1.28E-07 + 8 3.73E-08 1.28E-07
7 Mesenchymal Endothelial.cells_lg + + + 3.73E-08 + 3.73E-08 + 3.73E-08 + 3.73E-08 + 8
8 CD4Tcell_sc_lg Macrophages_sc_lg - - - 8 1.96E-06 2.61E-04
8 Macrophages_sc_lg CD4Tcell_sc_lg - - - 2.61E-04 - 1.96E-06 - 2.61E-04 - 1.96E-06 - 2.61E-04 - 8
9 CCN4 NK.cells.rest_lg + + + 1.32E-03 + 1.57E-02 + 1.32E-03 + 1.57E-02 + 1.57E-02 + 8 1.32E-03 1.57E-02
9 NK.cells.rest_lg CCN4 + + + 8

10 CCN4 Mesenchymal + + + 1.14E-06 + 2.38E-02 + 3.83E-06 + 6 1.14E-06 2.38E-02
10 Mesenchymal CCN4 + + + 6
11 NK.cells.active_lg pM0 - 3.16E-05 - 3.16E-05 - 3 3.16E-05 3.16E-05
11 pM0 NK.cells.active_lg - 3
12 Macrophages_sc_lg proliferation - 1.72E-04 - 1.72E-04 - 3 1.72E-04 1.72E-04
12 proliferation Macrophages_sc_lg - 3
13 Endothelial.cells_lg Epithelial + 1.01E-02 + 1.01E-02 + 3 1.01E-02 1.01E-02
13 Epithelial Endothelial.cells_lg + 3
14 CD4Tcell_sc_lg Epithelial + 3 1.36E-02 1.36E-02
14 Epithelial CD4Tcell_sc_lg + 1.36E-02 + 1.36E-02 + 3
15 pM1 pM2 9.70E-30 - 9.70E-30 - 2 9.70E-30 9.70E-30
15 pM2 pM1 2
16 Macrophages_sc_lg NK.cells.active_lg 2 2.51E-06 1.29E-04
16 NK.cells.active_lg Macrophages_sc_lg 2.51E-06 + 1.29E-04 + 2
17 CAF_lg CCN4 2 4.75E-06 4.75E-06
17 CCN4 CAF_lg 4.75E-06 + 4.75E-06 + 2
18 CAF_lg T.cells.CD8_lg 1.58E-05 - 1.58E-05 - 2 1.58E-05 1.58E-05
18 T.cells.CD8_lg CAF_lg 2
19 CAF_lg CD4Tcell_sc_lg 5.54E-03 + 5.54E-03 + 2 5.54E-03 5.54E-03
19 CD4Tcell_sc_lg CAF_lg 2
20 Macrophages_sc_lg pM1 1 1.64E-02 1.64E-02
20 pM1 Macrophages_sc_lg 1.64E-02 + 1
21 B.cells.naive_lg T.cells.CD8_lg + 1 1.00E+00 1.00E+00
21 T.cells.CD8_lg B.cells.naive_lg + 1
22 NK.cells.active_lg T.cells.CD8_lg + 1 1.00E+00 1.00E+00
22 T.cells.CD8_lg NK.cells.active_lg + 1

Table S4. Proliferation metrics associated CD4+ and CD8+ T cells stimulated in vitro in different conditions. Dil: fraction
diluted; PF: Precursor frequency, %dividing cells; PI: Proliferation index; and SDD : proliferation variance. Summary statistics were
calculated from three biological replicates and represented as mean (standard deviation). Statistical significance was assessed using
type III repeated measures ANOVA, where * indicates a p-value < 0.05.

Live CD4+ T cells Live CD8+ T cells

Experimental Conditions DiI PF PI SDD DiI PF PI SDD

AP beads + rCCN4 0.670 
(0.012)

0.392 
(0.014)

1.407 
(0.033)

0.274 0.983 
(0.003)

0.851 
(0.014)

2.655 
(0.045)

0.103

AP beads + CCN4 KO TCM 0.472* 
(0.008)

0.221* 
(0.003)

1.404 
(0.023)

0.274 0.914* 
(0.015)

0.715* 
(0.032)

1.729* 
(0.044)

0.205

AP beads + WT TCM 0.552* 
(0.047)

0.282* 
(0.038)

1.403 
(0.031)

0.272 0.920* 
(0.020)

0.704* 
(0.044)

1.923* 
(0.052)

0.189

AP beads 0.655 
(0.043)

0.366 
(0.035)

1.473 
(0.060)

0.255 0.982 
(0.002)

0.841 
(0.026)

2.756 
(0.187)

0.106

No stimulation 0.046 
(0.025)

0.016 
(0.013)

1.763 
(1.056)

0.371 0.062 
(0.018)

0.008 
(0.004)

2.520 
(0.441)

0.229
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Table S5. List of fluorophore-conjugated antibodies using to quantify cell subsets by flow cytometry.Supplemental Table S1. List of fluorescently-conjugated antibodies using to quantify 
cell subsets by flow cytometry. 

Marker Clone Fluorophore Manufacturer 
LIVE/DEAD Fix -- Violet/Pacific Blue Invitrogen 
CD45 30-F11 BB515 BD Biosciences #564590 
CD3e 500A2 Alexa Fluor 700 BioLegend #152316 
CD4 GK1.5 APC-Cy7 BD Biosciences #552051 
CD8a REA601 APC Miltenyi 130-109-248 
CD161 (NK-1.1) PK136 APC-Cy7 BioLegend #108723 
CD45R/B220 RA3-6B2 APC BioLegend #103212 
CD49b DX5 PerCP/Cy5.5 Biolegend #108915 
CD11b M1/70 PerCP/Cy5.5 eBioscience #45-0112-80 
CD11c N418 PE eBioscience #12-0114-81 
F4/80 BM8 APC-Cy7 BioLegend #123117 
Ly-6G/Ly-6C (Gr-1) RB6-8C5 APC BioLegend #108412 
CD279 (PD-1) REA802 PE BioLegend #135205 
I-A/I-E (MHC-II) M5/114.15.2 Alexa Fluor 700 BioLegend #107622 
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Fig. S1. Distribution of extracted features associated with the BRCA TCGA dataset. Figure represents a normalized histogram
(bar graph) and distribution (red line) in log-transformed feature values. The panels from left to right, top to bottom are Cancer attribute,
CD4 T cells, Neutrophils, Endothelial cells, Cancer associated fibroblasts (CAFs), CD8 T cells, active NK cells, resting NK cells,
Macrophages, näive B cells, proliferation, epithelial cell state, mesenchymal cell state, CCN4 gene expression, p(MΦ0), p(MΦ1), and
p(MΦ2).
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Fig. S2. Distribution of extracted features associated with the dataset containing common melanocytic nevi and primary
melanoma tissue samples (GEO). Figure represents a normalized histogram (bar graph) and distribution (red line) in log-transformed
feature values. The panels from left to right, top to bottom are Cancer attribute, CD4 T cells, Neutrophils, Endothelial cells, Cancer
associated fibroblasts, CD8 T cells, active NK cells, resting NK cells, Macrophages, naïve B cells, proliferation, epithelial cell state,
mesenchymal cell state, CCN4 gene expression, p(MΦ0), p(MΦ1), and p(MΦ2).
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Fig. S3. Distribution of extracted features associated with primary melanoma samples in the TCGA SKCM dataset. Figure
represents a normalized histogram (bar graph) and distribution (red line) in log-transformed feature values. The panels from left to
right, top to bottom are Cancer attribute, CD4 T cells, Neutrophils, Endothelial cells, Cancer associated fibroblasts, CD8 T cells,
active NK cells, resting NK cells, Macrophages, naïve B cells, proliferation, epithelial cell state, mesenchymal cell state, CCN4 gene
expression, p(MΦ0), p(MΦ1), and p(MΦ2).
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Fig. S4. Summary of the evidence obtained from two melanoma datasets supporting the consensus edges in the seed net-
work. Analysis of datasets containing samples from both common pigmented nevi and primary melanoma (A) and from only primary
melanoma (B). Edges ordered based on the number of algorithms that detected that an edge was enriched (bar graph - left axis) and
the strength of enrichment (dotted lines - right axis). The lines associated with the strength of enrichment represent the minimum
(dashed line) and maximum (dotted line) values obtained by the different algorithms. Coloring of bar graph indicates whether a clear
direction was associated with an edge in one dataset (green) and in both datasets (green/blue), an edge was significantly enriched but
without a clear direction in one dataset (yellow) and in both datasets (green/yellow), or that an edge was excluded from the consensus
seed network list (tan). .
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Fig. S5. Conditional probability query of the SKCM DAG compared against digital cytometry estimates obtained from exper-
imental data. Experimental samples obtained from primary melanoma tissue are shown as open circles. Samples of the conditional
probability model for p(Cancer > 0.85) (blue) for CD8 T cells (A), CD4 T cells (B), active NK cells (C), B cells (D), Macrophages (E)
and Cancer Associated Fibroblasts (F). Linear trendlines are superimposed on the conditional probability samples.
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FSC
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CD45
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CD3e

CD8a

CD4

SSC

Live/Dead

Dead

Flow cytometry gating strategy for 
CD4+ T cells and CD8+ T cells

CD4+ T cells: Live CD45+ CD3e+ CD4+ CD8a-
CD8+ T cells: Live CD45+ CD3e+ CD4- CD8a+

Fig. S6. Flow cytometry gating strategy for T cells. CD45 staining versus side scatter area was used to gate for CD45+ cells.
Live Dead Pacific Blue staining versus side scatter area was used to then gate for Live CD45+ cells, which were then gated based on
CD3e+ expression. Live CD45+ CD3e+ cells were further subdivided into CD8+ T cells (live CD8+ CD3e+ CD45+ cells), CD4 T
cells (live CD4+ CD3e+ CD45+ cells), and double negative T cells (live CD8− CD4− CD3e+ CD45+ cells).
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Fig. S7. Flow cytometry gating strategy for B, NK, and NKT cells. CD45 staining versus side scatter area was used to gate
for CD45+ cells. Live Dead Pacific Blue staining versus side scatter area was used to gate for Live CD45+ cells, which were then
subdivided into B cells (live NK1.1− B220+ CD3− CD45+ cells), NK cells (live NK1.1+ B220− CD3− CD45+ cells), and NKT cells
(live NK1.1+ CD3e+ CD45+ cells).
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Fig. S8. Flow cytometry gating strategy for Tumor associated neutrophils and myeloid cell subsets. CD45 staining versus side
scatter area was used to gate for CD45+ cells. Live Dead Pacific Blue staining versus side scatter area was used to gate for Live
CD45+ cells, which were then subdivided into subsets based on CD11b staining followed by Gr1 versus CD11c staining. From the
CD11b+ gate, myeloid-derived suppressor cells (MDSC) (live CD45+ CD11b+ Gr1+ cells) were subdivided into CD11cint/+ MDSC
(F4/80+ MHCII+) and CD11c− MDSC (F4/80mixed MHCII+). Also from the CD11b+ gate, macrophages (live Gr1− F4/80+ CD11b+

CD45+ cells) were subdivided into tumor-associated CD11c+ (CD11cint/+ MHCIIhi) and CD11c− (CD11c− MHCIIlo)subsets. The
CD11b− subset included tumor-associated neutrophils (TAN) (Gr1+ CD11c− CD11bint MHCIIhi F4/80−) and dendritic cells (Gr1−

CD11c+ CD11blo/int FSC-Ahi MHCIIlo F4/80−).
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A. CCN4 secretion, measured with ELISA, from CCN4-inducible cells in conditioned media; B. ELISPOT for IFNγ with different target cells and different 
amount of effector cells (In vivo activated CD8+ T cell against Ym1.7); C. ELISPOT for IFNγ with CCN4-inducible cells as targets using in vivo activated 
CD8+ T cell against Ym1.7;

Fig. S9. Control experiments related to ELISPOT assay using an inducible CCN4 YUMM1.7 cell line. (A) CCN4 secretion,
measured with ELISA, from CCN4-inducible cells in conditioned media in the presence of absence of doxycycline. (B) ELISPOT for
IFNγ release with different target cells and different amount of effector CD8+ T cells (In vivo activated CD8+ T cells against YUMM1.7
(Ym1.7)). (C) ELISPOT for IFNγ with CCN4-inducible cells as targets using in vivo activated CD8+ T cell against YUMM1.7. Results
shown as mean ± S.D. for three biological replicates.

12 | Supplementary Information Klinke et al. | Inferring how oncogenesis alters heterocellular networks

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.05.04.077107doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.04.077107
http://creativecommons.org/licenses/by-nc-nd/4.0/

