

Data-driven learning how oncogenic gene expression locally alters heterocellular networks

David J. Klinke II^{1,3}✉, Audry Fernandez^{2,3}, Wentao Deng^{2,3}, and Anika C. Pirkey¹

¹Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV

²Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV

³WVU Cancer Institute, West Virginia University, Morgantown, WV

1 Discovering and developing pharmaceutical drugs increasingly relies on mechanistic mathematical modeling and simulation. In immuno-oncology, models that capture causal relations among genetic drivers of oncogenesis, functional plasticity, and host immunity provide an important complement to wet experiments, given the cellular complexity and dynamics within the tumor microenvironment. Unfortunately, formulating such mechanistic cell-level models currently relies on hand curation by experts, which can bias how data is interpreted or the priority of drug targets. In modeling molecular-level networks, rules and algorithms have been developed to limit *a priori* biases in formulating mechanistic models. To realize an equivalent approach for cell-level networks, we combined digital cytometry with Bayesian network inference to generate causal models that link an increase in gene expression associated with oncogenesis with alterations in stromal and immune cell subsets directly from bulk transcriptomic datasets. To illustrate, we predicted how an increase in expression of Cell Communication Network factor 4 (CCN4/WISP1) altered the tumor microenvironment using data from patients diagnosed with breast cancer and melanoma. Network predictions were then tested using two immunocompetent mouse models for melanoma. In contrast to hand-curated approaches, we posit that combining digital cytometry with Bayesian network inference provides a less biased approach for elaborating mechanistic cell-level models directly from data.

27 Heterocellular networks | digital cytometry | deconvolution | anti-tumor
28 immunity | Bayesian network inference | functional plasticity

29 Correspondence: david.klinke@mail.wvu.edu

30 Introduction

31 Tissues are dynamic structures where different cell types organize to maintain function in a changing environment. For
32 instance, the mammary epithelium reorganizes during distinct stages of the ovarian cycle in preparation for lactation
33 (Klinke, 2016). At the same time, immune cells clear dead
34 cells and defend against pathogens present in the tissue microenvironment. Ultimately, the number and functional orientation of different cell types within a tissue interact to create
35 a network, that is a heterocellular network. This heterocellular network is essential for creating and maintaining tissue homeostasis. While we know that tissue homeostasis is disrupted during oncogenesis, our understanding of how genetic alterations quantitatively and dynamically influence the heterocellular network within malignant tissues in humans

45 is not well developed despite large efforts, like The Cancer
46 Genome Atlas (TCGA), to characterize the genomic and transcriptomic landscape in human malignancy (Hoadley et al.,
47 2018; Wells and Wiley, 2018). In parallel with these large
48 scale data gathering efforts, two informatic developments,
49 namely digital cytometry and Bayesian network inference,
50 may be helpful in interrogating these datasets.

51 In cytometry, single-cell sequencing technology elicits a
52 lot of excitement as it enables unbiased discovery of novel
53 cell subsets in particular disease states (Papalexi and Satija,
54 2018; Singer and Anderson, 2019). Unfortunately, persistent
55 challenges related to confounding of batch effects with
56 biological replicates limit the statistical power of these
57 datasets to link oncogenic transcriptional changes with re-
58 organization of the cellular network (Grun et al., 2014; Stuart
59 and Satija, 2019). Due to the high number of biological replicates,
60 transcriptomic datasets, such as the Cancer Genome
61 Atlas, provide a rich resource in characterizing the heterogeneity
62 of oncogenic transformation. Yet, these data were
63 obtained from homogenized tissue samples and reflect the
64 expression of genes averaged across a heterogeneous cell population.
65 Computationally, "Digital Cytometry" can deconvolute
66 the prevalence of individual cell types present within a
67 mixed cell population (Newman et al., 2019). The approach
68 stems from the idea that the influx of a particular cell subset
69 into a tissue corresponds to an increase in a gene signature
70 uniquely associated with this particular cell subset (Shen-Orr
71 et al., 2012; Yoshihara et al., 2013; Wang et al., 2018; Zaitsev
72 et al., 2019). Gene signatures of immune cells have been
73 developed in a number of studies, which increasingly leverage
74 scRNAseq data and machine-learning methods (Shen-
75 Orr et al., 2010; Becht et al., 2016; Schelker et al., 2017;
76 Torang et al., 2019). Besides representing different cellular
77 subsets, gene signatures can also represent intracellular
78 processes associated with oncogenesis, like the epithelial-
79 mesenchymal transition (Tan et al., 2014; Koplev et al., 2018;
80 Malta et al., 2018; George et al., 2017; Klinke and Torang,
81 2020). Though, the predictive value of many of these tissue
82 "features" in inferring how heterocellular networks are
83 altered in diseased tissues remain unclear, as establishing correlations
84 among features tends to be the end point of studies
85 (e.g., (Tosolini et al., 2011; Malta et al., 2018; Thorsson et al.,
86 2018)).

87 Increases in size and information content of transcrip-
88

89 transcriptomic datasets enable using probabilistic inference methods
90 to identify relationships within the data that could not be ob-
91 served using simpler statistical techniques (Hill et al., 2016;
92 Friedman, 2004). However to infer how heterocellular net-
93 works are altered in diseased tissues, we need to be able
94 to identify the direction of information flow within the net-
95 work, that is the causal relationships among interacting com-
96 ponents. One method to identify the topology of a causal
97 network in an unbiased way is to use algorithms that identify
98 Bayesian networks (Scutari, 2010). Bayesian networks are a
99 type of directed acyclic graphs (DAG), where each node rep-
100 presents a random variable, or "feature", and each edge rep-
101 presents a causal relationship between two nodes. As algo-
102 rithms for reconstructing Bayesian networks emerged, they
103 were used to model signaling pathways within cells (Sachs
104 et al., 2002), to identify known DNA repair networks in *E.*
105 *coli* using microarray data (Perrin et al., 2003) and to iden-
106 tify simple phosphorylation cascades in T lymphocytes using
107 flow cytometry data (Sachs et al., 2005, 2009). While many
108 more studies have been published since, a common conclu-
109 sion is that the statistical confidence associated with an in-
110 ferred network improves as the number of samples included
111 in a dataset is greater than the number of random variables.
112 However, transcriptomics data, like that obtained as part of
113 the TCGA, typically have a large number of random vari-
114 ables (n_{genes}) and a small number of biological replicates
115 ($n_{patients}$), which makes inferring gene-level networks com-
116 putationally difficult (Zou and Conzen, 2005).

117 As summarized in Figure 1, we propose an approach that
118 combines digital cytometry with Bayesian network infer-
119 ence to identify how heterocellular networks associated with
120 functional plasticity and anti-tumor immunity change during
121 oncogenesis in humans. Conceptually, digital cytometry im-
122 proves the statistical power by projecting the transcriptomic
123 space onto a smaller number of "features" that estimate the
124 prevalence of stromal and immune cell types and the average
125 differentiation state of malignant cells present within the tu-
126 mor microenvironment, such that $n_{features} \ll n_{patients}$.
127 The causal structure among these features can then be pre-
128 dicted using Bayesian network inference. While data un-
129 structured in time, such as the TCGA datasets, are not ideal
130 for inferring causality, we test the inferred networks using *in*
131 *vivo* experiments using syngeneic murine tumor models.

132 To illustrate the approach, we focused on Cell Communi-
133 cation Network factor 4 (CCN4/WISP1), as it is upregulated
134 in invasive breast cancer (Klinke, 2014) and correlates with
135 a lower overall survival in patients diagnosed with primary
136 melanoma (Deng et al., 2019). Functionally, CCN4 promotes
137 metastasis in melanoma by promoting a process similar to the
138 epithelial-mesenchymal transition (Deng et al., 2019, 2020).
139 In developing state metrics that quantify functional plastic-
140 ity in breast cancer and melanoma using an unsupervised ap-
141 proach, CCN4 was the only gene associated with both a mes-
142 enchymal state metric in breast cancer and a de-differentiated
143 state metric in melanoma that results in a secreted protein
144 (Klinke and Torang, 2020). The collective set of features,
145 or simply nodes of a network, were quantified in three tran-

scriptomic datasets obtained from bulk tissue samples from
146 patients with breast cancer and melanoma and used to gen-
147 erate a causal network describing how expression of a "gene
148 driver" associated with oncogenesis, such as CCN4, alters
149 the heterocellular network within a tissue using Bayesian net-
150 work inference.

Results

Generating causal graphs that link oncogenic changes in gene expression with changes in the heterocellular network. Bayesian network inference involves inferring the structure of the network, which captures the specific interactions or edges among the nodes of a network and represents them as a directed acyclic graph (DAG), and then estimating the parameters of the conditional probability distribution from the datasets. We used a two-step process to learn the causal structure associated with the cell-level networks. First, we created a collection of edges that were consistently identified among the different structural learning algorithms, that is a consensus seed network. In the initial structure learning step, an overall flow of the network was specified by limiting the inclusion of edges into a proposed network. In particular, we considered only edges into the "CD8 T cells" node (i.e., a leaf node), only edges that originate from the "Cancer" node (i.e., a root node), mostly edges that originate from the "CCN4" node (with exception for the "Cancer" node), and only edges into the "CD4 T cells" and "Neutrophils" nodes. Specifying "CD4 T cells" and "Neutrophils" as leaf nodes follows from the high number of zero values for those features in the dataset, which were 350 and 439 samples in the BRCA dataset, respectively. This was implemented by assigning the corresponding edges to a "blacklist". Collectively, this represents a way to incorporate prior knowledge about causal relationships associated with oncogenesis and the roles that specific immune cells play in controlling tumor cell growth.

As algorithms for structural learning have different under-
181 lying assumptions, we used an ensemble approach to average
182 across the different algorithms to identify an initial structure
183 of the DAG. Specifically, we used nine different structural
184 learning algorithms (Scutari, 2010), including a pairwise mu-
185 tual information (ARACNE), constraint-based (Incremental
186 association Markov Blanket - IAMB, Incremental associa-
187 tion with false discovery rate control - IAMB.FDR, practi-
188 cal constraint - PC.STABLE), local discovery of undirected
189 graphs (max-min parents and children - MMPC, Hiton par-
190 ents and children - SI.HITON.PC), score-based (hill climbing
191 - HC, Tabu search - Tabu), and hybrid learning (max-min hill-
192 climbing - MMHC) algorithms. Bootstrap resampling was
193 used in learning the network structure with each algorithm,
194 which resulted in generating 10,000 network structures. For
195 each algorithm, an averaged network structure was calculated
196 from the collection of network structures, where the thresh-
197 old for inclusion of an edge into the average network was
198 automatically determined by each algorithm and was nom-
199 inally 0.5. Whether a particular edge promotes or inhibits
200 the target node was determined based on the sign of the cor-

relation coefficient between the two nodes. We applied the same approach to both the breast cancer (BRCA - Figures 2 and 3) and the two melanoma datasets (common melanocytic nevi and primary melanoma: GEO and primary melanoma from the TCGA: SKCM - Figures S4 and 5). To generate consensus seed networks, the BRCA dataset was analyzed alone (see Table S1) while results for the two melanoma datasets (see Tables S2 (GEO) and S3 (SKCM)) were used together. Including edges in the consensus seed network was based on consistency among algorithms, strength of the edge, and whether the edge provided a new connection linking the "Cancer" node with effector immune cell nodes, such as "CD4 T cells" or "CD8 T cells", or potential negative feedback mechanisms, which is illustrated graphically in Figures 2 and S4. For instance, in analyzing the BRCA dataset, edge numbers 32 ("Cancer" → "pM1"), 37 ("Cancer" → "B cells naive"), 45 ("CCN4" → "Macrophages"), 46 ("Cancer" → "resting NK cells"), and 53 ("CCN4" → "active NK cells") were included as they provided novel edges to the consensus seed network. The inferred direction of a number of edges varied among the algorithms (yellow bars in Figures 2 and S4) and were left out of the consensus seed network. The final network for each dataset was generated using a hybrid learning algorithm (mmhc) using a "blacklist" specified based on prior causal knowledge and a "whitelist" corresponding to the consensus seed network. Similar to the first step, bootstrap resampling ($n_{boot} = 10,000$) and network averaging were used to generate the DAGs shown in Figures 3 and 5. The averaged DAG was used to generate parameters for a linear Gaussian model estimated by maximum likelihood and conditioned on the network structure that approximates the joint probability distribution associated with the dataset. Values for the linear coefficients and the average node values were used to annotate the DAGs.

Oncogenesis in breast cancer was associated with a shift from epithelial to mesenchymal cell state accompanied by an increase in cell proliferation and a suppression of endothelial cells, which were inferred with high confidence. In turn, endothelial cells promote the infiltration of CD4 T cells. The local structure associated with "Cancer"'s influence on the "Mesenchymal" state via "CCN4" suggests an incoherent type-3 feed-forward motif to regulate the mesenchymal state, with CCN4 also inhibiting active NK cells. The high confidence edge between active NK and resting NK cells follows from these features being mutually exclusive in the dataset and very few samples having zero values for both features. The mesenchymal state increased cancer-associated fibroblasts ("s") with high confidence. Interestingly, oncogenesis was also associated with increasing the prevalence of a type 1 macrophage, which in turn promoted the recruitment of CD8 T cells. The prevalence of CD8 T cells are also connected to "Cancer" via a larger incoherent feed-forward motif involving "CCN4" and "CAF"s with high confidence.

As there was more data supporting the BRCA DAG, the resulting Bayesian network model was compared against the underlying experimental data and used to explore the impact of varying CCN4 expression in the context of normal and

tumor tissue (Figure 4). To simulate "normal" and "tumor" tissue, we queried the conditional probability distribution by generating samples from the Bayesian network and filtered the values based on $p(\text{"Cancer"} < 0.15)$ and $p(\text{"Cancer"} > 0.85)$, which are colored in orange and blue, respectively. Corresponding experimental data points and trendlines are overlaid upon the posterior distributions. The posterior distributions mirror the experimental data points, where there is an increase in CCN4 expression between "normal" and "tumor" tissue. The posterior distributions mirror the variability observed in the experimental data when comprised of non-zero values, such as CD8 T cells. In contrast, the prevalence of zero values increased the range of the posterior distribution, such as for CD4 T cells. In comparing "normal" to "tumor" tissue, CD8 T cells was the only feature, on average, increased in "tumor" tissue, while CD4 T cells, B cells, and cancer associated fibroblasts were decreased. Slopes of the trendlines highlight the influence of CCN4 gene expression on the prevalence of different immune cell populations. Increased CCN4 had the most pronounced inhibition on NK cells and also suppressed CD8 T cells. CCN4 also had a pronounced positive impact on the prevalence of cancer-associated fibroblasts, macrophages, and slightly promoted CD4 T cells. CCN4 seemed to have little to no impact on B cells in "normal" tissue while inhibited B cells in "tumor" tissue.

The breast cancer dataset contained 582 samples, of which 8.8% were from normal mammary tissue. In contrast, the two melanoma datasets contained 78 GEO samples, which includes 34.6% benign nevi, and 94 SKCM samples of primary melanoma only. While a lower number of samples limits the inferential power of a dataset, we decided not to combine them together as they had different distributions in transcript abundance as a function of transcript length. As the Bayesian network inference algorithm leverages differences in the magnitude of a feature within a population, approaches to harmonize these two datasets may introduce a systemic bias that is convoluted with oncogenic transformation, as the GEO dataset has many samples obtained from benign nevi while the SKCM dataset does not. We decided to analyze the melanoma datasets separately and combine the enriched edges in each dataset into a consensus seed network that reflects both datasets. In analyzing the melanoma datasets, edge numbers 26 ("CAF" → "CD8 T cells") and 30 ("CCN4" → "CAF") in the GEO analysis while edge numbers 17 ("CCN4" → "CAF"), 18 ("CAF" → "CD8 T cells"), and 22 ("Active NK cells" → "CD8 T cells") from the SKCM analysis were included in the consensus seed network. This consensus seed network was then included in the "whitelist" to learn the structure and parameters associated with Bayesian network inferred from the melanoma datasets (see Figure 5).

Given the high prevalence of samples from benign nevi in the GEO dataset, high confidence edges in the GEO network focus on changes associated with oncogenesis. Similar to the breast cancer analysis, oncogenesis was associated with a shift from an epithelial to a mesenchymal-like cell state and

316 the promotion of cell proliferation. Here, the mesenchymal
317 cell state is promoted by both oncogenesis and CCN4 with
318 a coherent feed-forward motif. Similar to the breast cancer
319 analysis, oncogenesis promoted an increase in CD8 T cells,
320 but indirectly by recruiting active NK cells. In contrast to
321 the breast cancer analysis, CCN4 directly impacted CAFs
322 and resting NK cells, although the "CCN4" → "resting NK
323 cells" edge had both low confidence and low influence pa-
324 rameter. In analyzing the SKCM dataset, less emphasis is
325 placed on the changes associated with oncogenesis but how
326 expression of CCN4 influenced the network. Similarly to the
327 GEO analysis, the SKCM dataset suggested that CCN4 di-
328 rectly impacted the mesenchymal state, CAFs, and resting
329 NK cells, but the influence on resting NK cells changed from
330 a slight inhibition in the GEO dataset (-0.11) to strong pro-
331 motion in the SKCM dataset (0.75). In addition, the edge
332 between CAFs and the mesenchymal state was inferred with
333 high confidence but changing direction between GEO and
334 SKCM datasets suggests that the algorithms were unable to
335 discern edge direction from the data. In both melanoma
336 datasets, CAFs influence CD8 T cells via an incoherent feed-
337 forward motif involving the prevalence of macrophages. In
338 addition, Neutrophils, macrophage polarization, and B cells
339 were independent of oncogenesis and CCN4 expression. In
340 all three analysis, there was high confidence associated with
341 the edges among the nodes quantifying macrophage polariza-
342 tion, which is likely an artifact of formula used to calculate
343 $p(M\Phi)$'s. Queries of the conditional probability distribu-
344 tion based on the SKCM DAG for CD8 T cells, active NK
345 cells, Macrophages, B cells, and CAFs were similar to the
346 BRCA analysis (Fig. S5). Similar to the BRCA analysis, a
347 high number of zero values for the CD4 T cell features in the
348 SKCM dataset suggests caution in interpreting differences in
349 CD4 T cell predictions.

350 **Validating the impact of CCN4 on heterocellular net-
351 works using syngeneic mouse models.** Syngeneic im-
352 munocompetent mouse models of cancer provide an impor-
353 tant complement to retrospective studies of human data as
354 they can aid in causally linking genetic alterations with cel-
355 lular changes the tumor microenvironment. Here we used
356 two syngeneic transplantable models for melanoma to test
357 the predictions generated by the Bayesian network inference:
358 the spontaneous B16F0 model and the YUMM1.7 model that
359 displays $Braf^{V600E/WT}$ $Pten^{-/-}$ $Cdkn2^{-/-}$ genotype. As
360 these cell lines basally produce CCN4, we generated CCN4
361 knock-out (KO) variants of these parental cell lines using a
362 CRISPR/Cas9 approach and confirmed CCN4 KO by test-
363 ing conditioned media for CCN4 by ELISA. Tumors were
364 generated by injecting the cell variants subcutaneously in 6-
365 8 week old female C57BL/6 mice and monitoring for tumor
366 growth. Once wt tumors reached between 1000 and 1500
367 mm^3 in size, tumors were surgically removed from all mice
368 that were not considered outliers and processed into single
369 cell suspensions ($n = 7$ for YUMM1.7 variants and $n = 4$ for
370 B16F0 variants). The single cell suspensions were aliquoted
371 among three antibody panels to characterize the tumor infil-
372 trating lymphocytes by flow cytometry (see Supplementary

373 Figures S6-S8 for gating strategies). While the B16F0 and
374 YUMM1.7 KO variants were generated using a double nick-
375 as CRISPR/Cas9 approach, similar results were obtained
376 using a homology directed repair strategy (Fernandez et al.,
377 2020; Deng et al., 2020). Additional controls for puromycin
378 selection of CRISPR/Cas9 edited cells using B16F0 cells
379 transfected with a pBabe-puromycin retrovirus also behaved
380 functionally similar in vitro and in vivo as wild-type B16F0
381 cells (Deng et al., 2020).

382 The percentage of $CD45^+$ cells among total live cells ex-
383 hibited a semi-log dependence on tumor size (Fig. 6A -
384 B16F0: $R^2 = 0.607$, F-test p-value = 7.27E-6; YUMM1.7:
385 $R^2 = 0.830$, F-test p-value = 1.48E-7), where CCN4 KO
386 resulted in smaller tumors in both cell models with greater
387 $CD45^+$ cell infiltration. As illustrated in Figure 6A,
388 YUMM1.7 variants had a much higher dependence on tumor
389 size than B16F0 variants. Conventionally, flow cytometry
390 data are normalized to tumor size to estimate the prevalence
391 of a particular cell type per tumor volume. Yet, the depen-
392 dence on tumor size could be a confounding factor in addi-
393 tion to CCN4 expression that could skew the results. More-
394 over, the Bayesian network analysis predicts the impact of
395 CCN4 alone on the prevalence of specific immune cell sub-
396 sets. Thus, we focused instead on the prevalence of a par-
397 ticular cell type within the live $CD45^+$ TIL compartment to
398 compare against the Bayesian network predictions.

399 In comparing the wt B16F0 and YUMM1.7 models, the
400 relative prevalence of NK, $CD4^+$ T, and $CD8^+$ T cells were
401 similar while B cells were almost 10-times more prevalent in
402 the B16F0 tumors compared to YUMM1.7 tumors (Fig. 6B).
403 The prevalence of these different cell types changed within
404 the $CD45^+$ TIL compartment upon CCN4 KO (Fig. 6C and
405 D). Figure 6C highlights the trends among the mouse mod-
406 els and compares against the Bayesian network predictions
407 obtained from the BRCA and SKCM datasets. Predictions
408 for the change in cell type prevalence by CCN4 expression
409 were obtained by propagating a change in the "CCN4" node
410 from 0 to 1 within the linear Gaussian model to the target
411 node, which is also represented by the slope of the "Can-
412 cer" trendlines in Figures 4 and S5. Specifically, CD4 and
413 CD8 T cells and B cells had analogous nodes in the Bayesian
414 networks as assayed in the flow panel, while NK cells were
415 mapped to "active NK cells" in the Bayesian network. The
416 relative change in abundance was largely consistent among
417 the four systems, with the YUMM1.7 model being the most
418 different. The BRCA and SKCM datasets predicted that NK
419 cells were most reduced by CCN4, which was observed in
420 the B16F0 model (p-value = 0.047). Both BRCA and SKCM
421 datasets predicted that CCN4 reduced $CD8^+$ T cells, which
422 was observed in the YUMM1.7 model (YUMM1.7 p-value
423 = 0.002). The $CD4^+$ T cells seemed to vary in response to
424 CCN4 expression as the BRCA and B16F0 results showed
425 an increase while the SKCM and YUMM1.7 results showed a
426 decrease. As stated previously, the BRCA and SKCM predic-
427 tions for CD4 T cells should be interpreted with caution given
428 the high frequency of zero values for the features. B cell re-
429 sponse was mixed with both the BRCA and SKCM results

430 suggesting no change and an increase in the B16F0 model
431 and a decrease in the YUMM1.7 model, with the low number
432 of B cells infiltrating YUMM1.7 tumors rendered the results
433 more variable. Given the small sample size of the exper-
434 imental mouse cohorts, only the extremes were statistically
435 significant, with NK cells significantly increased (p-value =
436 0.047) and B cells significantly decreased (p-value = 0.002)
437 in B16F0 CCN4 KO tumors and CD8 T cells significantly
438 increased (p-value = 0.002) in YUMM1.7 CCN4 KO tumors
439 (Fig. 6D).

440 **Concordance in CCN4-induced changes in the**
441 **myeloid compartment are less clear.** In addition to
442 changes in T and NK cells within the live CD45⁺ compart-
443 ment, we also assayed myeloid subsets in tumors generated
444 by wt and CCN4 KO variants of the B16F0 and YUMM1.7
445 cell lines. Using the gating strategy summarized in Fig-
446 ure S8, we focused on CD11c⁺ and CD11c⁻ macrophages
447 (live CD45⁺ CD11b⁺ GR1⁻ F4/80⁺ cells), neutrophils (live
448 CD45⁺ CD11b^{lo/int} CD11c⁺ GR1⁻ F4/80⁻ cells), den-
449 dritic cells, and two different myeloid-derived suppressor cell
450 (MDSC) subsets: CD11c⁻ and CD11c⁺ MDSC. In compar-
451 ing tumors derived from wt cell lines, CD11c⁺ macrophages
452 were the most predominant infiltrating myeloid cell subset
453 and, except for CD11c⁻ macrophages, most subsets were
454 consistent between the two mouse models (Fig. 7A). Upon
455 CCN4 KO in the mouse models, the macrophage subsets
456 tended to increase while the MDSC subsets decreased (Fig.
457 7B-E) within the CD45⁺ compartment, while the neutrophil
458 response varied. The reduction in CD11c⁺ MDSC in CCN4
459 KO variants were most pronounced and statistically signif-
460 icant (p=0.004 in YUMM1.7 and p = 0.153 in B16F0). While
461 Ly6G and Ly6C staining may have been a better staining
462 strategy for distinguishing among monocytic (Mo-) and poly-
463 morphonuclear (PMN-) MDSC subsets, we observed a re-
464 duction in PMN-MDSCs in YUMM1.7 tumors upon CCN4
465 KO using Ly6G/Ly6C antibodies (Fernandez et al., 2020).
466 Consistent with the idea that PMN-MDSCs arise from im-
467 pairied differentiation of granulocytes, neutrophils were in-
468 creased within the CD45⁺ compartment in CCN4 KO tu-
469 mors derived from YUMM1.7 cells (p = 0.002) but not sta-
470 tistically different in the B16F0 model (p = 0.097). Other
471 myeloid subsets trended similarly but with differences that
472 were not statistically significant. In addition, we noted that
473 a dendritic cell subset (live CD45⁺ CD11b^{lo/int} CD11c⁺
474 GR1⁻ F4/80⁻ cells) increased upon CCN4 KO (p=0.045 in
475 YUMM1.7 and p=0.011 in B16F0).

476 Comparing the trends in the myeloid compartment ob-
477 served among the mouse models and the Bayesian network
478 predictions obtained from the BRCA and SKCM datasets is
479 less clear, given the uncertainty as to how the digital cytome-
480 try features map onto the quantified myeloid subsets in these
481 mouse models. Key myeloid features in the Bayesian net-
482 works were macrophages oriented towards a M1 phenotype.
483 Correspondingly, CD11c⁺ macrophages, a subset that has
484 been associated with pro-inflammatory M1 tumor-associated
485 macrophages (Jeong et al., 2019), were the most predomi-
486 nant myeloid subset in wt B16F0 and YUMM1.7 tumors and

487 didn't change upon CCN4 KO. In the BRCA dataset, the
488 prevalence of macrophages was influenced by CCN4 expres-
489 sion; yet, the functional orientation away from the M2 and to-
490 wards the M1 phenotype depended solely on oncogenic trans-
491 formation. Similarly, the prevalence of macrophages was in-
492 fluenced by both CCN4 expression and oncogenic trans-
493 formation in both melanoma datasets. In contrast to the BRCA
494 results, functional orientation of macrophages were indepen-
495 dent of both oncogenic transformation and CCN4 expression.
496 Neutrophils were predicted to be independent of CCN4 in
497 the melanoma datasets, which is not surprising considering
498 that the the majority of tumors had zero values for the Neu-
499 trophil feature (see Figs. S1-S3). Similarly, neutrophils were
500 about 10 times less abundant than CD11c+ macrophages in
501 the mouse models. Given the significant changes observed
502 in MDSCs in the mouse models, challenging digital cytom-
503 etry predictions in this way highlights features that can be
504 improved, such as discriminating among terminally differ-
505 entiated and immature subsets, like Mo-MDSC and PMN-
506 MDSC.

507 **CCN4 has no direct effect on T cell proliferation but al-**
508 **ters CD8⁺ T cell function.** The local proliferation of CD8⁺
509 T cells correlates with clinical response to immune check-
510 point blockade (Huang et al., 2017; Twyman-Saint Victor
511 et al., 2015). In addition, the DAGs inferred from both the
512 breast cancer and melanoma datasets suggest that a decrease
513 in CD8⁺ T cells is driven indirectly through CCN4 via mod-
514 ulating cancer-associated fibroblasts or the activity of NK
515 cells. While the structural learning algorithms rejected a di-
516 rect edge between CCN4 and CD8⁺ cells, we tested whether
517 CCN4 directly inhibits T cell proliferation (see Fig. 8A
518 and B) using a statistical analysis of Cell Trace distributions
519 in CD4⁺ and CD8⁺ T cells stimulated in vitro (see Table
520 S4). Specifically, splenocytes were stimulated in vitro with
521 α CD3/ α CD28-loaded beads in the presence of media condi-
522 tioned by wt or CCN4 KO B16F0 cells or supplemented with
523 10 ng/ml recombinant mouse CCN4. In both the CD4⁺ and
524 CD8⁺ T cell populations, the presence of tumor-conditioned
525 media significantly inhibited the fraction of cells that divided
526 at least once (Dil - CD4 p-value = 0.022, CD8 p-value =
527 0.018) and the probability that a cell will divide at least once
528 (PF - CD4 p-value = 0.024, CD8 p-value = 0.013) while
529 CCN4 exposure was not a statistically significant factor. For
530 responding cells, the average number of divisions they un-
531 dergo (PI) was not different among experimental conditions
532 for CD4⁺ T cells (p-value = 0.22) but reduced in CD8⁺ T
533 cells exposed to tumor-conditioned media (p-value = 0.0077).
534 Overall, the presence of tumor-conditioned media and not
535 CCN4 influenced T cell proliferation, which was consistent
536 with the DAGs.

537 Another characteristic of CD8⁺ T cells present within the
538 tumor microenvironment is that they are dysfunctional (Li
539 et al., 2019). As the digital cytometry approach used here
540 doesn't estimate the functional state of CD8⁺ T cells only
541 their prevalence within a tissue sample, we decided to test
542 whether CCN4 had a direct impact on CD8⁺ T cell func-
543 tion, as quantified by target-specific ex vivo cytokine release

544 as measured by ELISpot. First we generated YUMM1.7-
545 reactive CD8⁺ T cells by immunizing C57BL/6mice against
546 YUMM1.7 cells and isolated CD8a⁺ T cells from spleno-
547 cytes three days after re-priming with live YUMM1.7 cells.
548 We also created a variant of CCN4 KO YUMM1.7 cells with
549 CCN4 expression induced by doxycycline and vector con-
550 trols that were used as target cells (see Fig. S9). IFN γ
551 and TNF α ELISpots were used to quantify the CD8⁺ T cell
552 functional response to the different tumor targets in the pres-
553 ence or absence of tumor-produced CCN4. As expected for
554 a re-call CD8a⁺ effector T cell response, the most prominent
555 IFN γ and lowest TNF α responses were against wt and CCN4
556 KO YUMM1.7 cells, with a slightly higher IFN γ response to
557 wt YUMM1.7 targets (see Fig. 8C, p-value < 0.05). Inter-
558 interestingly, re-expression of CCN4 by CCN4 KO YUMM1.7
559 cells following doxycycline induction significantly reduced
560 both IFN γ and TNF α production (p-value < 0.001), which
561 suggests that CCN4 plays a direct role in inhibiting CD8a⁺
562 T cell function. Of note, CCN4 was predicted to directly in-
563 hibit the activity of NK cells, which share cytokine release
564 and cytotoxicity mechanisms with CD8⁺ T cells. Overall,
565 the changes observed between wt and CCN4 KO variants
566 of the B16F0 and YUMM1.7 mouse models were consistent
567 with the causal networks inferred from the breast cancer and
568 melanoma datasets.

569 Discussion

570 Validating the role that a particular molecule plays in driving
571 the disease state using targeted experiments is central for im-
572 proving understanding of biological mechanisms or selecting
573 among competing drug targets. Given the limited observabil-
574 ity of the biological response in experimental models and pa-
575 tients, mechanistic modeling and simulation is playing an in-
576 creasing role in helping answer many central questions in dis-
577 covering, developing, and receiving federal approval of phar-
578 maceutical drugs and also basic biology (Moore and Allen,
579 2019). In immuno-oncology, there is increasing interest in
580 modeling the heterocellular network of relevance for a spe-
581 cific immunotherapy. The first step in creating mathematical
582 models of cell-level networks is to create the topology of the
583 network, which is expressed in terms of which nodes to in-
584 clude and how they influence each other. The structure of
585 these cell-level models is created using a fully supervised ap-
586 proach, which means by hand using expert knowledge (Gad-
587 kar et al., 2016). For instance, systems of ordinary differen-
588 tial equations have been developed to capture multiple spa-
589 tial compartments containing interacting malignant, antigen
590 presenting, and T cells and to predict a general immune re-
591 sponse (Palsson et al., 2013), a response to immune check-
592 point blockade using CTLA-4, PD-1, and PD-L1 antibodies
593 (Milberg et al., 2019) or adoptive cell transfer (Klinke and
594 Wang, 2016).

595 While leveraging the knowledge of experts is a great start-
596 ing point, hand-curated models can also implicitly impose
597 bias on how data is interpreted. In the context of molecular
598 level networks, rules and algorithms have been developed
599 to elaborate causal networks based on a limited set of rules

(Chylek et al., 2014; Sekar and Faeder, 2012; Boutilier et al.,
600 2018; Vernuccio and Broadbelt, 2019). The rules constrain
601 the types of interactions, or edges, that are realistic between
602 the nodes while the algorithms generate all possible edges
603 that are consistent with the rules and collection of nodes. The
604 resulting rule-based networks are then used to interpret data
605 by filter the edges for the most consistent and, in the process,
606 may reveal previously unappreciated pathways. For instance,
607 a rule-based model was used to interpret single-molecule de-
608 tection of multisite phosphorylation on intact EGFR to re-
609 veal new a role for the abundance of adaptor proteins to
610 redirect signaling (Salazar-Cavazos et al., 2020). Given the
611 challenges with representing the various activation states of
612 a 12-subunit Ca²⁺/calmodulin-dependent protein kinase II
613 (CaMKII) holoenzyme that is essential for memory function,
614 a rule-based model identified a molecular mechanism sta-
615 bilizing protein activity that was obscured in prior reduced
616 models (Pharris et al., 2019). Inspired by engineering better
617 CAR T cells, Rohrs et al. developed a rule-based model to
618 interpret site-specific phosphorylation dynamics associated
619 with Chimeric Antigen Receptors (Rohrs et al., 2018).

620 To our knowledge, no equivalent approaches exist in the
621 context of modeling cell-level networks.¹ We posit that cou-
622 pling digital cytometry with Bayesian network inference is
623 analogous to rule-based modeling in the context of modeling
624 cell-level networks. Here, the rules comprise a limited set of
625 constraints, or heuristics, related to the direction of informa-
626 tion flow. Specifically, the rules limit how changes in gene
627 expression within the malignant cell introduced during onco-
628 genesis propagate to stromal and immune cells present within
629 the tumor microenvironment and are implemented as a "black
630 list". The algorithms that underpin Bayesian network infer-
631 ence search over all possible network topologies for edges
632 that are consistent with the data. The resulting networks can
633 be used in multiple ways. As an unsupervised approach, the
634 network topology could complement existing workflows for
635 creating mechanistic mathematical models fit for use in test-
636 ing molecular targets (Gadkar et al., 2016; Ramanujan et al.,
637 2019). In addition, DAGs represent explicit hypotheses gen-
638 erated from pre-existing human data that motivate new exper-
639 iments to validate the predictions, as illustrated by the B16F0
640 and YUMM1.7 results.

641 While the focus here is in the context of breast cancer
642 and melanoma due the pre-existing breadth of data, the ap-
643 proach could be generally applied to other biological con-
644 texts and motivate new experimental studies. For instance,
645 one of the limitations of inferring the network topology in

646 ¹One might consider agent-based or cellular automata models to apply
647 as the cellular interactions are specified by rules. In rule-based modeling
648 of molecular networks, the rules and algorithms elaborate a network space
649 that encompasses all possible topologies of the network and data is used to
650 prune the network to the most relevant. Similarly, the edges included in the
651 "blacklist" and "whitelists" can be considered as a Bayesian prior, where the
652 strength of inclusion in the final DAG and the coefficient associated with a
653 particular edge in the conditional probability function depend on the data.
654 In contrast, agent-based or cellular automata models require specifying all
655 interactions between cells as rules a priori and are validated qualitatively
656 by comparing emergent behavior against experimental observations (Hwang
657 et al., 2009; López et al., 2017; Mallet and De Pillis, 2006).

the form of directed acyclic graphs is that some direct and indirect causal relationships can be confounded, such as reciprocal feedback modes of communication between cells (Zhou et al., 2018). Discerning the difference between a direct and indirect causal relationship has practical importance, such as for selecting therapeutic targets (Pearl, 2005). Methods, like Granger causality and dynamic Bayesian networks (Finkle et al., 2018; Li et al., 2014; Zou and Conzen, 2005), do exist that could reveal direct and indirect causal relationships, but time-series data is required. Unfortunately, human tissue samples, like those in the TGCA, are very rarely sampled with time. Analysis of pre-existing human datasets can be complemented by a more focused experimental study of a pre-clinical model. Specifically, single-cell RNAseq to identify the cell types present and their associated gene signatures can be combined with bulk transcriptomic sequencing to capture the prevalence of all of the cell types within the tissue sample and provide a large number of biological replicates spanning the disease space - normal homeostasis; initiation; early, middle and late progression; and productive resolution or adverse outcomes. Similar network topologies would suggest similar biological mechanisms and help select relevant pre-clinical models for drug development. In short, we feel that combining digital cytometry with Bayesian network inference has the potential to become an indispensable unsupervised approach for discovering relevant heterocellular networks associated with disease.

Methods

Digital Cytometry. Transcriptomics profiling of bulk tissue samples using Illumina RNA sequencing for the breast cancer (BRCA) and cutaneous melanoma (SKCM) arms of the Cancer Genome Atlas was downloaded from TCGA data commons, where values for gene expression were expressed in counts using the "TCGAbiolinks" (V2.8.2) package in R (V3.6.1) and converted to TPM. RNA-seq data expressed in counts assayed in samples acquired from benign melanocytic nevi and untreated primary melanoma tissue and associated sample annotation were downloaded from GEO entry GSE98394 and converted to TPM. TCGA data and the benign nevi and melanoma data were filtered to remove sample outliers and normalized based on housekeeping gene expression (Eisenberg and Levanon, 2013). Digital cytometry features associated with the functional plasticity of tumor cells within an epithelial to mesenchymal-like state space were calculated based on state metrics developed separately for bulk breast cancer and melanoma tissue samples (Klinke and Torang, 2020). Cell proliferation features were calculated based on the median expression of genes associated with cell proliferation identified previously using human cell line data (Deng et al., 2020). Features corresponding to the prevalence of endothelial cells, cancer-associated fibroblasts, macrophages, and CD4⁺ T cells were calculated using CIBERSORTx (<https://cibersortx.stanford.edu>) using the gene signatures derived from single cell RNAseq data (Tirosh et al., 2016) while the prevalence of B cells naïve, CD8⁺ T cells, Macrophage M0 ($M\Phi 0$), Macrophage M1 ($M\Phi 1$),

Macrophage M2 ($M\Phi 2$), activated NK cells, resting NK cells, and neutrophils were calculated using the LM22 immune cell gene signatures in CIBERSORTx run in absolute mode.

Given the potential lack of independence among the macrophage features, the LM22 macrophage features were combined to estimate the probability of the average functional orientation using the formula described previously(Kaiser et al., 2016):

$$p(M\Phi i) = \frac{M\Phi i}{M\Phi 0 + M\Phi 1 + M\Phi 2}, \quad (1)$$

where $i = \{0, 1, 2\}$ and denotes the specific macrophage subtype. Additional cellular features were excluded from the analysis as they tended to have a large number of zero values across the datasets or were disconnected from the rest of the network in preliminary network inference studies. Sample attributes were transformed to numerical values, which were assumed to be extremes of a continuous variable (e.g., Normal = 0, Cancer = 1). The sample attributes, CCN4 gene expression, and estimated cellular features extracted from the bulk RNAseq data calculated for each sample are included in the GitHub repository.

Bayesian Network Inference. Prior to network inference, feature values were log transformed, normalized to values between 0 and 1, and discretized (BRCA: 15 intervals; GEO and SKCM: 6 intervals), as summarized in supplemental Figures S1-S3. The features were then assigned to nodes. The relationships among the nodes, or edges, were represented by directed acyclic graphs inferred from the datasets using a two-stage process, as detailed in the results section. Given the inferred structure, a Bayesian network in the form of a linear Gaussian model was fit to the datasets using maximum likelihood estimation of the model parameters. Conditional probability queries of the Bayesian networks were performed by logic sampling with 10^5 samples. Bayesian network inference was performed using the 'bnlearn' package (V4.5) in R (V3.6.1).

Reagents and Cell Culture. Cytokines and antibodies were obtained from commercial sources and used according to the suppliers' recommendations unless otherwise indicated. The mouse melanoma line B16F0 (purchased in 2008, RRID: CVCL_0604) was obtained from American Tissue Culture Collection (ATCC, Manassas, VA). The mouse melanoma line YUMM1.7 (received in September 2017, RRID: CVCL_JK16) was a gift from Drs. William E. Damsky and Marcus W. Bosenberg (Yale University) (Meeth et al., 2016). B16F0 and YUMM1.7 cells were cultured at 37°C in 5% CO₂ in high-glucose DMEM (Cellgro/Corning) supplemented with L-glutamine (Lonza), penicillin-streptomycin (Gibco), and 10% heat-inactivated fetal bovine serum (Hyclone). All cell lines were revived from frozen stock, used within 10-15 passages that did not exceed a period of 6 months, and routinely tested for mycoplasma contamination by PCR. CCN4 knock-out variants of B16F0 and YUMM1.7 cells were generated using a

757 double-nickase CRISPR/Cas9 editing strategy described previously (Deng et al., 2019). Briefly, two pairs of mouse
758 CCN4 double nickase plasmids that target the mouse CCN4
759 gene at different locations were purchased from Santa Cruz
760 Biotechnology, Inc. (Dallas, TX) and transfected into B16F0
761 and YUMM1.7 cells following the manufacturer's instruc-
762 tions. Following antibiotic selection, surviving single clones
763 were isolated and expanded on 6-well plates. The concen-
764 tration of CCN4 in the cell culture media from those wells
765 was assayed using the Human WISP-1/CCN4 DuoSet ELISA
766 Kit (R&D Systems, Minneapolis, MN) to confirm CCN4
767 knockout. CCN4-knockout cells were further expanded and
768 aliquoted to create a low passage frozen stock.
769

770 **In vivo Tumor Assays and in vitro T cell proliferation**
771 **assays.** All animal experiments were approved by West Vir-
772 ginia University (WVU) Institutional Animal Care and Use
773 Committee and performed on-site. C57BL/6Ncrl mice (6-
774 8 week-old female) were from Charles River Laboratories.
775 Mice were randomly assigned to treatment groups and co-
776 housed following tumor initiation. Subcutaneous tumors
777 were initiated by injecting mice subcutaneously with 3×10^5
778 of the indicated YUMM1.7 cells and 2.2×10^5 of the in-
779 dicated B16F0 cells in 100 μ L and, once palpable, tumor
780 sizes were recorded every other day via caliper. Tumor vol-
781 ume was calculated using the formula: $0.5236 \times \text{width}^2 \times$
782 length, where the width is the smaller dimension of the tu-
783 mor. Once WT tumors reached between 1000 and 1500 mm³
784 in size, the tumors were surgically removed from mice in
785 both arms of the study (WT and CCN4 KO) after euthana-
786 sia and processed into single cell suspensions. This normally
787 occurred at Day 14 with the B16F0 model and at Day 27
788 with the YUMM1.7 model. Seven tumors were processed
789 separately for each YUMM1.7 variant while four tumors
790 were processed for each B16F0 variant. Single-cell suspen-
791 sions were obtained by enzymatically digesting the excised
792 tumors using the Tumor Dissociation Kit and gentleMACS
793 C system (Miltenyi Biotec, Auburn, CA). In addition to
794 following the manufacturer's instructions, the gentleMACS
795 program 37C_m_TDK_1 was used for B16F0 tumors and
796 37C_m_TDK_2 was used for YUMM1.7 tumors. Following
797 lysing of the red blood cells, the remaining single-cell sus-
798 pensions were washed and stained with Live/Dead Fixable
799 Pacific Blue Dead Cell Stain Kit (ThermoFisher). Following
800 blocking with Mouse BD Fc Block (BD Biosciences), the
801 surface of the cells were stained with one of three different
802 antibody mixes that focused on T cells (CD45, CD3, CD4,
803 CD8, and PD1), NK and B cells (CD45, B220, NK11, DX5,
804 and PD1), and myeloid cells (CD45, CD11b, CD11c, Gr-1,
805 F4/80, and MHCII) and quantified by flow cytometry. The
806 specific antibodies used are listed in Supplemental Table S1.

807 To assess the impact of CCN4 on T cell proliferation
808 in vitro, splenocytes were obtained from naïve C57BL/6
809 mice and stained with CellTrace Pacific Blue Cell Prolifera-
810 tion Kit (ThermoFisher). Stained splenocytes (2.5×10^5)
811 were stimulated for 3 days in 96 well plate with MACS-
812 Beads loaded with anti-mouse CD3 and anti-mouse CD28
813 antibodies (AP beads, Miltenyi Biotec), at a 1:1 propor-

814 tion. Fresh serum-free DMEM media conditioned for 24
815 hours by either confluent wild-type (WT TCM) or conflu-
816 ent CCN4 KO (CCN4 KO TCM) melanoma B16F0 cells
817 were collected, centrifuged to remove cells and cell debris,
818 and added at 50% final volume during T cell stimulation
819 with AP beads. In addition, splenocytes were either left
820 unstimulated or stimulated with AP beads alone, or stimu-
821 lated in the presence of recombinant mouse CCN4 (rCCN4,
822 R&D) at a final concentration of 10 ng/mL. After 72h, cells
823 were washed and stained with Live/Dead Fixable Green Dead
824 Cell Stain Kit (ThermoFisher). Surface staining with anti-
825 mouse CD8/APC (Miltenyi Biotec), anti-mouse CD4/APC-
826 Cy7 (BD Biosciences), anti-mouse CD62L/PE (eBioscience,
827 ThermoFisher) and anti-mouse CD44/PerCP Cy5.5 (eBio-
828 science, ThermoFisher) was performed after incubating the
829 cells with Mouse BD Fc Block (BD Biosciences). The pro-
830 liferation of both CD4 and CD8 T cells were quantified by
831 flow cytometry.

832 **In vitro suppression of CD8⁺ T cell function.** Inducible
833 mouse CCN4 expression lentiviral vector (IDmCCN4) was
834 constructed with Gateway cloning using Tet-on destination
835 lentiviral vector pCW57.1 (Addgene Plasmid #41393, a
836 gift from David Root) and pShuttle Gateway PLUS ORF
837 Clone for mouse CCN4 (GC-Mm21303, GeneCopoeia).
838 Lentiviruses were packaged as described (Deng et al., 2019)
839 to transduce YUMM1.7 cell with *Ccn4* CRISPR knockout
840 (Ym1.7-KO1) (Deng et al., 2019). After puromycin selec-
841 tion, two pools of cells with inducible mCCN4 (Ym1.7-
842 KO1-IDmCCN4) or vector control (Ym1.7-KO1-IDvector)
843 were obtained. ELISA tests with doxycycline (Dox, final
844 0.5 μ g/ml) induction revealed the mCCN4 expression was un-
845 der stringent control and the secreted protein was in the sim-
846 ilar level as compared with wild-type YUMM1.7 cells (data
847 not shown).

848 To generate YUMM1.7-reactive CD8⁺ T cells, healthy
849 C57BL/6Ncrl mice were inoculated subcutaneously with
850 irradiated YUMM1.7 cells (10^5 /mouse), followed by live
851 YUMM1.7 cells (3×10^5 /mouse) 3 weeks later. The mice
852 without tumor growth in the next five weeks were main-
853 tained. Three days before the assay, the mice were injected
854 again with live YUMM1.7 cells (10^5 /mouse). On the day
855 of assay, these mice were euthanized and the YUMM1.7-
856 reactive cells were isolated from mouse splenocytes using
857 mouse CD8a⁺ T Cell Isolation Kit (130-104-075, Miltenyi
858 Biotec), resuspended in a concentration of 10^6 /ml. 50 μ l
859 (5×10^4) of the YUMM1.7-reactive CD8⁺ T cells were
860 aliquoted into each well on a 96-well plate for ELISpot assay
861 using Mouse IFN γ /TNF α Double-Color ELISpot kit (Cellular
862 Technology Limited, CTL) following manufacturer's in-
863 structions. Briefly, target tumor cells were stimulated with
864 IFN γ (200U/ml, or, 20ng/ml) for 24 hours, harvested and
865 resuspended in a concentration of 2×10^6 /ml. 50 μ l (10^5)
866 of indicated tumor cells in triplicates were aliquoted into
867 each well, with or without doxycycline (Dox, final 0.5 μ g/ml).
868 The reactions were incubated at 37°C for 24 hours and
869 colored spots were developed (Red for IFN γ and blue for
870 TNF α). The spots were counted and imaged using an Olym-

871 pus MVX10 Microscope and the result was plotted and ana-
872 lyzed by GraphPad Prism (version 5).

873 **Flow Cytometry.** Single cell suspensions described above
874 were stained with specific antibodies or isotype controls
875 using conventional protocols. Fluorescence-activated cell
876 counting was performed using a BD LSRIFortessa and FACS-Diva
877 software (BD Biosciences) as where the fluorescence
878 intensity for each parameter was reported as a pulse area
879 with 18-bit resolution. Unstained samples were used as nega-
880 tive flow cytometry controls. Single-stain controls were used
881 to establish fluorescence compensation parameters. For TIL
882 analysis, greater than 5×10^5 events were acquired in each
883 antibody panel in each biological replicate. In analyzing en-
884 riched cell populations, 2×10^4 events were acquired in each
885 biological replicate. Flow cytometric data were exported
886 as FCS3.0 files and analyzed with using R/Bioconductor
887 (V3.5.1), as described previously (Klinke and Brundage,
888 2009). The typical gating strategies for T cells, NK and B
889 cells, and myeloid cells are shown in supplementary Figures
890 S4-S6, respectively. The statistical difference in tumor infil-
891 trating lymphocytes between wt and CCN4 KO variants was
892 assessed using log-transformed values and a two-tailed ho-
893 moscedastic Student's t test. Cell proliferation was quantified
894 using metrics: fraction diluted (Dil), Precursor frequency,
895 %dividing cells (PF), Proliferation index (PI), and prolif-
896 eration variance (SD^D) (Roederer, 2011). Statistical differ-
897 ences among these proliferation parameters were assessed us-
898 ing type III repeated measures ANOVA in the "car" (V3.0-7)
899 package in R. A p-value < 0.05 was considered statistically
900 significant.

901 **Data and Code Availability.** The code used in the analysis
902 can be obtained from the following GitHub repository:

- https://github.com/KlinkeLab/CellNetwork_2020

904 **ACKNOWLEDGEMENTS**

905 This work was supported by National Science Foundation (NSF CBET-1644932
906 to DJK) and National Cancer Institute (NCI 1R01CA193473 to DJK). The content is
907 solely the responsibility of the authors and does not necessarily represent the official
908 views of the NSF or NCI. We also used equipment from the WVU Flow Cytometry
909 & Single Cell core, which was supported by the National Institutes of Health Grants
910 GM103488/RR032138, GM104942, GM103434, and OD016165.

911 **AUTHOR CONTRIBUTIONS**

912 These contributions follow the International Committee of Medical Journal Editors
913 guidelines: <http://www.icmje.org/recommendations/>. Conceptualization: DJK;
914 Study Design: DJK; Data Acquisition: DJK, AF, and WD; Data Analysis: DJK
915 and WD; Data Interpretation: DJK; Funding acquisition: DJK; Methodology: DJK;
916 Project administration: DJK; Software: DJK and ACP; Supervision: DJK; Writing -
917 original draft: DJK; Writing - review & editing: all authors.

918 **COMPETING FINANCIAL INTERESTS**

919 The authors declare no competing financial interests.

920 **Bibliography**

921 Becht, E., Giraldo, N.A., Lacroix, L., Buttard, B., Elaroui, N., Petitprez, F., Selves, J., Laurent-
922 Puig, P., Sautès-Fridman, C., Fridman, W.H., de Reynies, A., 2016. Estimating the population
923 abundance of tissue-infiltrating immune and stromal cell populations using gene expression.
924 *Genome Biol.* 17, 218.

925 Boutilier, P., Maasha, M., Li, X., Medina-Abarca, H.F., Krivine, J., Feret, J., Cristescu, I., Forbes,
926 A.G., Fontana, W., 2018. The Kappa platform for rule-based modeling. *Bioinformatics* 34,
927 i583-i592.

928 Chylek, L.A., Harris, L.A., Tung, C.S., Faeder, J.R., Lopez, C.F., Hlavacek, W.S., 2014. Rule-
929 based modeling: a computational approach for studying biomolecular site dynamics in cell
930 signaling systems. *Wiley Interdiscip Rev Syst Biol Med* 6, 13–36.

931 Deng, W., Fernandez, A., McLaughlin, S.L., Klinke, D.J., 2019. WNT1-inducible signaling pathway
932 protein 1 (WISP1/CCN4) stimulates melanoma invasion and metastasis by promoting the
933 epithelial-mesenchymal transition. *J. Biol. Chem.* 294, 5261–5280.

934 Deng, W., Fernandez, A., McLaughlin, S.L., Klinke, D.J., 2020. Cell Communication Network
935 Factor 4 (CCN4/WISP1) Shifts Melanoma Cells from a Fragile Proliferative State to a Resilient
936 Metastatic State. *Cell Mol Bioeng* 13, 45–60.

937 Eisenberg, E., Levanon, E.Y., 2013. Human housekeeping genes, revisited. *Trends Genet.* 29,
938 569–574.

939 Fernandez, A., Deng, W., McLaughlin, S., Pirkey, A., Rellick, S., Klinke, D.J., 2020. Cell com-
940 munication network factor 4 (ccn4/wisp1) promotes tumor-induced immunosuppression in
941 melanoma. *bioRxiv*, (submitted).

942 Finkle, J.D., Wu, J.J., Bagheri, N., 2018. Windowed Granger causal inference strategy improves
943 discovery of gene regulatory networks. *Proc. Natl. Acad. Sci. U.S.A.* 115, 2252–2257.

944 Friedman, N., 2004. Inferring cellular networks using probabilistic graphical models. *Science* 303,
945 799–805.

946 Gadkar, K., Kirouac, D.C., Mager, D.E., van der Graaf, P.H., Ramanujan, S., 2016. A Six-Stage
947 Workflow for Robust Application of Systems Pharmacology. *CPT Pharmacometrics Syst
948 Pharmacol* 5, 235–249.

949 George, J.T., Jolly, M.K., Xu, S., Somarelli, J.A., Levine, H., 2017. Survival Outcomes in Cancer
950 Patients Predicted by a Partial EMT Gene Expression Scoring Metric. *Cancer Res.* 77, 6415–
951 6428.

952 Grun, D., Kester, L., van Oudenaarden, A., 2014. Validation of noise models for single-cell tran-
953 scriptomics. *Nat. Methods* 11, 637–640.

954 Hill, S.M., Heiser, L.M., Cokelaer, T., Unger, M., Nesser, N.K., Carlin, D.E., Zhang, Y., Sokolov,
955 A., Paull, E.O., Wong, C.K., Graim, K., Bivol, A., Wang, H., Zhu, F., Afshari, B., Danilova, L.V.,
956 Favorov, A.V., Lee, W.S., Taylor, D., Hu, C.W., Long, B.L., Noren, D.P., Bisberg, A.J., Mills,
957 G.B., Gray, J.W., Kellen, M., Norman, T., Friend, S., Qutub, A.A., Fertig, E.J., Guan, Y., Song,
958 M., Stuart, J.M., Spellman, P.T., Koepli, H., Stolovitzky, G., Saez-Rodriguez, J., Mukherjee,
959 S., Afshari, B., Al-Oura, R., Anton, B., Arold, T., Sichani, O.A., Bagheri, N., Berlow, N.,
960 Bisberg, A.J., Bivol, A., Bohler, A., Bonet, J., Bonneau, R., Budak, G., Bunescu, R., Caglar,
961 M., Cai, B., Cai, C., Carlin, D.E., Carlon, A., Chen, L., Ciacchio, M.F., Cokelaer, T., Cooper, G.,
962 Coort, S., Creighton, C.J., Daneshmand, S.M., de la Fuente, A., Di Camillo, B., Danilova, L.V.,
963 Dutta-Moscati, J., Emmett, K., Evelo, C., Fassia, M.K., Favorov, A.V., Fertig, E.J., Finkle, J.D.,
964 Finotello, F., Friend, S., Gao, X., Gao, J., Garcia-Garcia, J., Ghosh, S., Giaretta, A., Graim,
965 K., Gray, J.W., Grossholz, R., Guan, Y., Guinney, J., Hafemeister, C., Hahn, O., Haider, S.,
966 Hase, T., Heiser, L.M., Hill, S.M., Hodgson, J., Hoff, B., Hsu, C.H., Hu, C.W., Hu, Y., Huang,
967 X., Jallil, M., Jiang, X., Kacprowski, T., Kaderali, L., Kang, M., Kannan, V., Kellen, M., Kikuchi,
968 K., Kim, D.C., Kitano, H., Knapp, B., Komatsoulis, G., Koepli, H., Kramer, A., Kursa, M.B.,
969 Kutmon, M., Lee, W.S., Li, Y., Liang, X., Liu, Z., Liu, Y., Long, B.L., Lu, S., Lu, X., Manfrini,
970 M., Matos, M.R., Meerzaman, D., Mills, G.B., Min, W., Mukherjee, S., Muller, C.L., Neapolitan,
971 R.E., Nesser, N.K., Noren, D.P., Norman, T., Oliva, B., Opiyo, S.O., Pal, R., Palinkas, A., Paull,
972 E.O., Planas-Iglesias, J., Poglajen, D., Qutub, A.A., Saez-Rodriguez, J., Sambo, F., Sanavia,
973 T., Sharifi-Zarchi, A., Slawek, S., Sokolov, A., Song, M., Spellman, P.T., Streck, A., Stolovitzky,
974 G., Strunz, S., Stuart, J.M., Taylor, D., Tegner, J., Thobe, K., Toffolo, G.M., Trifoglio, E., Unger,
975 M., Wan, Q., Wang, H., Welch, L., Wong, C.K., Wu, J.J., Xue, A.Y., Yamanaka, R., Yan, C.,
976 Zairis, S., Zengerling, M., Zenil, H., Zhang, S., Zhang, Y., Zhu, F., Zi, Z., 2016. Inferring causal
977 molecular networks: empirical assessment through a community-based effort. *Nat. Methods*
978 13, 310–318.

979 Hoadley, K.A., Yau, C., Hinoue, T., Wolf, D.M., Lazar, A.J., Drill, E., Shen, R., Taylor, A.M., Cherni-
980 ack, A.D., Thorsson, V., Akbani, R., Bowby, R., Wong, C.K., Wiznerowicz, M., Sanchez-Vega,
981 F., Robertson, A.G., Schneider, B.G., Lawrence, M.S., Noushmehr, H., Malta, T.M., Cancer
982 Genome Atlas Network, Stuart, J.M., Benz, C.C., Laird, P.W., 2018. Cell-of-Origin Patterns
983 Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. *Cell* 173,
984 291–304.

985 Huang, A.C., Postow, M.A., Orlowski, R.J., Mick, R., Bengsch, B., Manne, S., Xu, W., Harmon,
986 S., Giles, J.R., Wenz, B., Adamow, M., Kuk, D., Panageas, K.S., Carrera, C., Wong, P.,
987 Quagliarello, F., Wubbendorst, B., D'Andrea, K., Pauken, K.E., Herati, R.S., Staube, R.P.,
988 Schenkel, J.M., McGettigan, S., Kothari, S., George, S.M., Vonderheide, R.H., Amaravadi,
989 R.K., Karakousis, G.C., Schuchert, L.M., Xu, X., Nathanson, K.L., Wolchok, J.D., Gangadhar,
990 T.C., Wherry, E.J., 2017. T-cell invigoration to tumour burden ratio associated with anti-PD-1
991 response. *Nature* 545, 60–65.

992 Hwang, M., Garbey, M., Berceli, S.A., Tran-Son-Tay, R., 2009. Rule-Based Simulation of Multi-
993 Cellular Biological Systems-A Review of Modeling Techniques. *Cell Mol Bioeng* 2, 285–294.

994 Jeong, H., Hwang, I., Kang, S.H., Shin, H.C., Kwon, S.Y., 2019. Tumor-Associated Macrophages
995 as Potential Prognostic Biomarkers of Invasive Breast Cancer. *J Breast Cancer* 22, 38–51.

996 Kaiser, J.L., Bland, C.L., Klinke, D.J., 2016. Identifying causal networks linking cancer pro-
997 cesses and anti-tumor immunity using Bayesian network inference and metagenic constructs.
998 *Biotechnol. Prog.* 32, 470–479.

999 Klinke, D.J., 2014. Induction of Wnt-inducible signaling protein-1 correlates with invasive breast
1000 cancer oncogenesis and reduced type 1 cell-mediated cytotoxic immunity: a retrospective
1001 study. *PLoS Comput. Biol.* 10, e1003409.

1002 Klinke, D.J., 2016. Eavesdropping on altered cell-to-cell signaling in cancer by secretome profiling.
1003 *Mol Cell Oncol* 3, e1029061.

1004 Klinke, D.J., Brundage, K.M., 2009. Scalable analysis of flow cytometry data using
1005 R/Bioconductor. *Cytometry A* 75, 699–706.

1006 Klinke, D.J., Torang, A., 2020. An unsupervised feature extraction and selection strategy for
1007 identifying epithelial-mesenchymal transition state metrics in breast cancer and melanoma.
1008 *iScience* , (in press).

1009 Klinke, D.J., Wang, Q., 2016. Inferring the Impact of Regulatory Mechanisms that Underpin CD8+
1010 T Cell Control of B16 Tumor Growth In vivo Using Mechanistic Models and Simulation. *Front
1011 Pharmacol* 7, 515.

1012 Koplev, S., Lin, K., Dohlm, A.B., Ma'ayan, A., 2018. Integration of pan-cancer transcriptomics
1013 with RPPA proteomics reveals mechanisms of epithelial-mesenchymal transition. *PLoS Com-
1014 put. Biol.* 14, e1005911.

1015 Li, H., van der Leun, A.M., Yofe, I., Lubling, Y., Gelbard-Solodkin, D., van Akkooi, A.C.J., van
1016 Braber, M., Rozeman, E.A., Haanen, J.B.A.G., Blank, C.U., Horlings, H.M., David, E., Baran,
1017

1017 Y, Bercovich, A., Lifshitz, A., Schumacher, T.N., Tanay, A., Amit, I., 2019. Dysfunctional CD8
1018 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma.
1019 *Cell* 176, 775–789.

1020 Li, P., Gong, P., Li, H., Perkins, E.J., Wang, N., Zhang, C., 2014. Gene regulatory network inference
1021 and validation using relative change ratio analysis and time-delayed dynamic Bayesian
1022 network. *EURASIP J Bioinform Syst Biol* 2014, 12.

1023 López, A.G., Seoane, J.M., Sanjuán, M.A.F., 2017. Dynamics of the cell-mediated immune re-
1024 sponse to tumour growth. *Philos Trans A Math Phys Eng Sci* 375.

1025 Mallet, D.G., De Pillis, L.G., 2006. A cellular automata model of tumor-immune system interactions.
1026 *J. Theor. Biol.* 239, 334–350.

1027 Malta, T.M., Sokolov, A., Gentles, A.J., Burzykowski, T., Poisson, L., Weinstein, J.N., Kami'nska,
1028 B., Huelksen, J., Omberg, L., Gevaert, O., Colaprico, A., Czerwinski, P., Mazurek, S.,
1029 Mishra, L., Heyn, H., Krasnitz, A., Godwin, A.K., Lazar, A.J., Cancer Genome Atlas Research
1030 Network, Stuart, J. M., Hoadley, K.A., Laird, P.W., Noushmehr, H., Wiznerowicz, M.,
1031 2018. Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation.
1032 *Cell* 173, 338–354.

1033 Meeth, K., Wang, J.X., Micevic, G., Damsky, W., Bosenberg, M.W., 2016. The YUMM lines: a
1034 series of congenic mouse melanoma cell lines with defined genetic alterations. *Pigment Cell
1035 Melanoma Res* 29, 590–597.

1036 Milberg, O., Gong, C., Jafarnejad, M., Bartelink, I.H., Wang, B., Vicini, P., Narwal, R., Roskos,
1037 L., Popel, A.S., 2019. A QSP Model for Predicting Clinical Responses to Monotherapy, Com-
1038 bination and Sequential Therapy Following CTLA-4, PD-1, and PD-L1 Checkpoint Blockade.
1039 *Sci Rep* 9, 11286.

1040 Moore, H., Allen, R., 2019. What Can Mathematics Do for Drug Development? *Bull. Math. Biol.*
1041 81, 3421–3424.

1042 Newman, A.M., Steen, C.B., Liu, C.L., Gentles, A.J., Chaudhuri, A.A., Scherer, F., Khodadoust,
1043 M.S., Esfahani, M.S., Luca, B.A., Steiner, D., Diehn, M., Alizadeh, A.A., 2019. Determining
1044 cell type abundance and expression from bulk tissues with digital cytometry. *Nat. Biotechnol.*
1045 37, 782–787.

1046 Palsson, S., Hickling, T.P., Bradshaw-Pierce, E.L., Zager, M., Jooss, K., O'Brien, P.J., Spilker,
1047 M.E., Palsson, B.O., Vicini, P., 2013. The development of a fully-integrated immune response
1048 model (FIRM) simulator of the immune response through integration of multiple subset mod-
1049 els. *BMC Syst Biol* 7, 95.

1050 Papalexis, E., Satija, R., 2018. Single-cell RNA sequencing to explore immune cell heterogeneity.
1051 *Nat. Rev. Immunol.* 18, 35–45.

1052 Pearl, J., 2005. Direct and indirect effects, in: *Proc Am Stat Assoc Joint Stat Meetings* (Minneapolis, MN), MIRA Digital Publishing, pp. 1572–1581.

1053 Perrin, B.E., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., dlichBuc, F., 2003. Gene networks
1054 inference using dynamic bayesian networks. *Bioinformatics* 19, ii38–ii48.

1055 Pharris, M.C., Patel, N.M., VanDyk, T.G., Bartol, T.M., Sejnowski, T.J., Kennedy, M.B., Stefan,
1056 M.I., Kinzer-Ursen, T.L., 2019. A multi-state model of the CaMKII dodecamer suggests a role
1057 for calmodulin in maintenance of autophosphorylation. *PLoS Comput. Biol.* 15, e1006941.

1058 Ramanujan, S., Chan, J.R., Friedrich, C.M., Thalhauser, C.J., 2019. A Flexible Approach for
1059 Context-Dependent Assessment of Quantitative Systems Pharmacology Models. *CPT Pharmacometrics
1060 Syst Pharmacol* 8, 340–343.

1061 Roederer, M., 2011. Interpretation of cellular proliferation data: avoid the panglossian. *Cytometry A* 79, 95–101.

1062 Rohrs, J.A., Zheng, D., Graham, N.A., Wang, P., Finley, S.D., 2018. Computational Model of
1063 Chimeric Antigen Receptors Explains Site-Specific Phosphorylation Kinetics. *Biophys. J.* 115,
1064 1116–1129.

1065 Rose, S., Misharin, A., Perlman, H., 2012. A novel Ly6C/Ly6G-based strategy to analyze the
1066 mouse splenic myeloid compartment. *Cytometry A* 81, 343–350.

1067 Sachs, K., Gifford, D., Jaakkola, T., Sorger, P., Lauffenburger, D.A., 2002. Bayesian network
1068 approach to cell signaling pathway modeling. *Science Signaling* 2002, pe38.

1069 Sachs, K., Itani, S., Carlisle, J., Nolan, G.P., Pe'er, D., Lauffenburger, D.A., 2009. Learning
1070 signaling network structures with sparsely distributed data. *J Comp Biol* 16, 201–212.

1071 Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D.A., Nolan, G.P., 2005. Causal protein-signaling
1072 networks derived from multiparameter single-cell data. *Science* 308, 523–529.

1073 Salazar-Cavazos, E., Nitta, C.F., Mitra, E.D., Wilson, B.S., Lidke, K.A., Hlavacek, W.S., Lidke,
1074 D.S., 2020. Multisite EGFR phosphorylation is regulated by adaptor protein abundances and
1075 dimer lifetimes. *Mol. Biol. Cell* 31, 695–708.

1076 Schelker, M., Feau, S., Du, J., Ranu, N., Klipp, E., MacBeath, G., Schoeberl, B., Rau, A.,
1077 2017. Estimation of immune cell content in tumour tissue using single-cell RNA-seq data. *Nat
1078 Commun* 8, 2032.

1079 Scutari, M., 2010. Learning Bayesian Networks with the bnlearn R Package. *J Stat Software* 35,
1080 1–22.

1081 Sekar, J.A., Faeder, J.R., 2012. Rule-based modeling of signal transduction: a primer. *Methods
1082 Mol. Biol.* 880, 139–218.

1083 Shen-Orr, S., Tibshirani, R., Butte, A., 2012. Gene expression deconvolution in linear space.
1084 *Nature Methods* 9, 9.

1085 Shen-Orr, S.S., Tibshirani, R., Khatri, P., Bodian, D.L., Staedtler, F., Perry, N.M., Hastie, T., Sar-
1086 wal, M.M., Davis, M.M., Butte, A.J., 2010. Cell type-specific gene expression differences in
1087 complex tissues. *Nat. Methods* 7, 287–289.

1088 Singer, M., Anderson, A.C., 2019. Revolutionizing Cancer Immunology: The Power of Next-
1089 Generation Sequencing Technologies. *Cancer Immunol Res* 7, 168–173.

1090 Stuart, T., Satija, R., 2019. Integrative single-cell analysis. *Nat. Rev. Genet.* 20, 257–272.

1091 Tan, T.Z., Miow, Q.H., Miki, Y., Noda, T., Mori, S., Huang, R.Y., Thiery, J.P., 2014. Epithelial-
1092 mesenchymal transition spectrum quantification and its efficacy in deciphering survival and
1093 drug responses of cancer patients. *EMBO Mol Med* 6, 1279–1293.

1094 Thorsson, V., Gibbs, D.L., Brown, S.D., Wolf, D., Bortone, D.S., Ou Yang, T.H., Porta-Pardo, E.,
1095 Gao, G.F., Plaisier, C.L., Eddy, J.A., Ziv, E., Culhane, A.C., Paull, E.O., Sivakumar, I.K.A.,
1096 Gentles, A.J., Malhotra, R., Farshidfar, F., Colaprico, A., Parker, J.S., Mose, L.E., Vo, N.S.,
1097 Liu, J., Liu, Y., Rader, J., Dhankani, V., Reynolds, S.M., Bowby, R., Califano, A., Cherniack,
1098 A.D., Anastassiou, D., Bedognetti, D., Rao, A., Chen, K., Krasnitz, A., Hu, H., Malta, T.M.,
1099 Noushmehr, H., Pedamallu, C.S., Bullman, S., Ojesina, A.I., Lamb, A., Zhou, W., Shen, H.,
1100 Choueiri, T.K., Weinstein, J.N., Guinney, J., Saltz, J., et al., 2018. The Immune Landscape of
1101 Cancer. *Immunity* 48, 812–830.

1102 Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth, M.H., Treacy, D., Trombetta, J.J., Rotem, A.,
1103 Rodman, C., Lian, C., Murphy, G., Fallahi-Sichani, M., Dutton-Regester, K., Lin, J.R., Cohen,
1104 O., Shah, P., Lu, D., Genshaft, A.S., Hughes, T.K., Ziegler, C.G., Kazer, S.W., Gaillard,
1105 A., Kolb, K.E., Villani, A.C., Johannessen, C.M., Andreev, A.Y., Van Allen, E.M., Bertagnoli,
1106 M., Sorger, P.K., Sullivan, R.J., Flaherty, K.T., Frederick, D.T., Jane-Valbuena, J., Yoon, C.H.,
1107 Rozenblatt-Rosen, O., Shalek, A.K., Regev, A., Garraway, L.A., 2016. Dissecting the multi-
1108 cellular ecosystem of metastatic melanoma by single-cell RNA-seq. *Science* 352, 189–196.

1109 Torang, A., Gupta, P., Klinke, D.J., 2019. An elastic-net logistic regression approach to generate
1110 classifiers and gene signatures for types of immune cells and T helper cell subsets. *BMC
1111 Bioinformatics* 20, 433.

1112 Tosolini, M., Kirilovsky, A., Mlecnik, B., Fredriksen, T., Mauger, S., Bindea, G., Berger, A.,
1113 Brunewal, P., Fridman, W., Pagès, F., Galon, J., 2011. Clinical impact of different classes
1114 of infiltrating t cytotoxic and helper cells (th1, th2, treg, th17) in patients with colorectal can-
1115 cer. *Cancer Research* 71, 1263–1271.

1116 Twyman-Saint Victor, C., Rech, A.J., Maity, A., Rengan, R., Pauken, K.E., Stelekatit, E., Bencic,
1117 J.L., Xu, B., Dada, H., Odrizzi, P.M., Herati, R.S., Mansfield, K.D., Patsch, D., Amaravadi,
1118 R.K., Schuchert, L.M., Ishwaran, H., Mick, R., Pryma, D.A., Xu, X., Feldman, M.D., Gangad-
1119 har, T.C., Hahn, S.M., Wherry, E.J., Vonderheide, R.H., Minn, A.J., 2015. Radiation and dual
1120 checkpoint blockade activate non-redundant immune mechanisms in cancer. *Nature* 520,
1121 373–377.

1122 Vernuccio, S., Broadbelt, L.J., 2019. Discerning complex reaction networks using automated
1123 generators. *AIChE Journal* 65, e16663.

1124 Wang, Z., Cao, S., Morris, J.S., Ahn, J., Liu, R., Tyekucheva, S., Gao, F., Li, B., Lu, W., Tang,
1125 X., Wistuba, I.I., Bowden, M., Mucci, L., Loda, M., Parmigiani, G., Holmes, C.C., Wang,
1126 W., 2018. Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune
1127 Infiltration. *iScience* 9, 451–460.

1128 Wells, A., Wiley, H.S., 2018. A systems perspective of heterocellular signaling. *Essays Biochem.*
1129 62, 607–617.

1130 Yoshihara, K., Shahmoradgoli, M., Martinez, E., Vegesna, R., Kim, H., Torres-Garcia, W., Treviño,
1131 V., Shen, H., Laird, P., Levine, D., Carter, S.L., Getz, G., Stemke-hale, K., Mills, G.B., Verhaak,
1132 R., 2013. Inferring tumour purity and stromal and immune cell admixture from expression
1133 data. *Nature Communications* 4, 2612.

1134 Zaitsev, K., Bambouskova, M., Swain, A., Artymov, M., 2019. Complete deconvolution of cellular
1135 mixtures based on linearity of transcriptional signatures. *Nature communications* 10, 2209.

1136 Zhou, X., Franklin, R.A., Adler, M., Jaxco, J.B., Bailis, W., Shyer, J.A., Flavell, R.A., Mayo, A.,
1137 Alon, U., Medzhitov, R., 2018. Circuit Design Features of a Stable Two-Cell System. *Cell*
1138 172, 744–757.

1139 Zou, M., Conzen, S.D., 2005. A new dynamic bayesian network (DBN) approach for identifying
1140 gene regulatory networks from time course microarray data. *Bioinformatics* 21, 71–79.

1141

1142

Figure Legends

Figure 1 - A computational workflow combines digital cytometry with Bayesian network inference to estimate how a genetic driver impacts the heterocellular network within a tissue. Digital cytometry deconvolutes a bulk transcriptomic profile using gene signatures that correspond to different stromal, malignant, and immune cell types. The results estimate the prevalence of the different cell types within the tissue sample, that is digital cytometry features. By using bulk transcriptomic profiles of defined patient populations, underlying variation in the inferred cellular composition coupled with changes in expression of a putative gene driver can be used to estimate how the heterocellular network is impacted by a gene driver using Bayesian Network inference. To illustrate the approach, we focused on CCN4 as a gene driver. The resulting directed acyclic graphs represent the collective conditional independence among modeled nodes of the network.

1143
1144
1145
1146
1147
1148
1149
1150
1151

Figure 2 - Summary of the evidence obtained from the TCGA breast cancer dataset supporting the consensus edges in the seed network. Edges ordered based on the number of algorithms that detected that an edge was enriched (bar graph - left axis) and the strength of enrichment (dotted lines - right axis). The lines associated with the strength of enrichment represent the minimum (dashed line) and maximum (dotted line) values obtained by the different algorithms. Coloring of bar graph indicates whether a clear direction was associated with an edge (green), an edge was significantly enriched but without a clear direction (yellow), or that an edge was excluded from the consensus seed network list (tan).

1152
1153
1154
1155
1156
1157

Figure 3 - A directed acyclic graph (DAG) representing the conditional probability distribution inferred using the digital cytometry features extracted from the breast cancer arm of the TCGA. The nodes of the graph represent features, such as CCN4 gene expression (rectangle), sample attribute (hexagon), or the prevalence of a particular cell type/state (oval). The edges represent inferred causal relationships among the nodes. The black lines with arrow heads represent a positive causal relation while red lines with horizontal bars represent a negative or inhibitory causal relation, where the extent of influence of the parental node is annotated by the number beside the edge. The number included within the node symbol represents the average normalized value of the digital cytometry feature within the dataset with values of all of the parental nodes set to zero. The width of the edge is proportional to the posterior probability of inclusion into the DAG.

1158
1159
1160
1161
1162
1163
1164
1165

Figure 4 - Conditional probability query of the BRCA DAG compared against digital cytometry estimates obtained from experimental data. Experimental samples obtained from normal mammary and tumor tissue are shown as filled versus open circles, respectively. Samples of the conditional probability model for $p(\text{Cancer} < 0.15)$ (orange) and $p(\text{Cancer} > 0.85)$ (blue) for CD8 T cells (A), CD4 T cells (B), active NK cells (C), B cells (D), Macrophages (E) and Cancer Associated Fibroblasts (F). Linear trendlines are superimposed on the conditional probability samples.

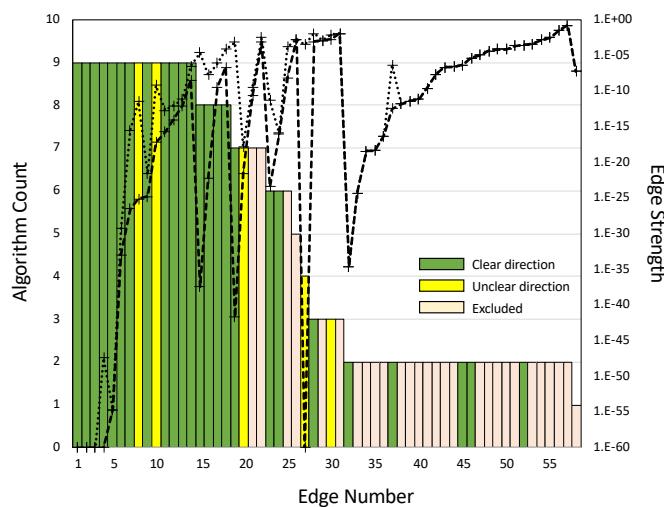
1166
1167
1168
1169
1170

Figure 5 - Two DAGs representing the conditional probability distributions inferred using the digital cytometry features extracted from the two melanoma-related datasets. (A) Analysis of a bulk RNAseq dataset obtained from patients with common pigmented nevi and primary melanoma ($n_{samples} = 78$). (B) Analysis of primary melanoma samples extracted from the SKCM arm of the TCGA ($n_{samples} = 94$). The DAGs are summarized using similar notation as described in Figure 3. Dotted lines indicate edges that were included in the consensus seed network but, as the samples were all from patients with cancer, had no evidence in the TCGA dataset.

1171
1172
1173
1174
1175

Figure 6 - CCN4 knock-out in two syngeneic mouse models of melanoma induces a similar shift in NK cells and T and B lymphocytes as observed in human breast cancer and melanoma. (A) The percentage of live CD45+ cells isolated from tumors generated by inoculating s.c. with wt (red) and CCN4 KO (blue) variants of B16F0 (o and x's) and YUMM1.7 (□ and +'s) cells, where the log-linear trends are highlighted by dotted lines. CD45+ values were obtained from three different antibody panels that quantified T cells, B/NK cells, and myeloid cells in TIL isolates from each mouse. (B) A comparison of the ratio of NK cells (black), CD8+ T cells (red), CD4+ T cells (blue), and B cells (green) to live CD45+ TILs in s.c. tumors generated using wt B16F0 and YUMM1.7 cells (mean \pm s.d.). (C) Comparing the log ratio in prevalence of the different cell types when CCN4 is present (WT) versus absent (CCN4 KO) predicted by the BRCA (1st column) and SKCM (4th column) DAGs and observed experimentally using the B16F0 (2nd column) and YUMM1.7 (3rd column) mouse models. Mean results for NK cells (black), CD8+ T cells (red), CD4+ T cells (blue), and B cells (green) in the different settings are connected by lines. (D) TIL comparison upon CCN4 KO in B16F0 and YUMM1.7 mouse models stratified by NK cells, CD8+ T cells, CD4+ T cells, and B cells (top to bottom) ($n = 7$ for YUMM1.7 and $n = 4$ for B16F0 variants and mean \pm s.d.). p-values calculated between wt and CCN4 KO pairs using Student's t-test.

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187


Figure 7 - Myeloid immune cell subsets differentially infiltrate tumors derived from wt B16F0 and YUMM1.7 cells but shift in similar ways upon CCN4 knock-out. (A) A comparison of the ratio of CD11c- (black) and CD11c+ (gray) macrophages, CD11c+ MDSC (green), MDSC (blue), and Neutrophils (red) to live CD45+ TILs in s.c. tumors generated using wt B16F0 and YUMM1.7 cells. (B) Comparing the log ratio in prevalence of the different myeloid cell types when CCN4 is present (WT) versus absent (CCN4 KO) predicted by the BRCA (1st column) and SKCM (4th column) DAGs and observed experimentally using the B16F0 (2nd column) and YUMM1.7 (3rd column) mouse models. Macrophages are the only myeloid cell subset inferred from the BRCA and SKCM datasets and are assumed to be related to CD11c- macrophages in mouse models. Mean results in the different settings are connected by lines. (C) A representative scatter plot of GR1 versus CD11c expression in gated live CD45+ CD11b+ TILs obtained from wt (top) and CCN4 KO (bottom) YUMM1.7 tumors. (D and E) TIL comparison upon CCN4 KO in B16F0 and YUMM1.7 mouse models stratified by myeloid-derived suppressor cell subsets (panel D - top: MDSC; bottom: CD11c+ MDSC) and other myeloid cell subsets (panel E - top to bottom: CD11c- and CD11c+ macrophages, neutrophils, and dendritic cells) ($n = 7$ for YUMM1.7 and $n = 4$ for B16F0 variants and mean \pm s.d.). p-values calculated between wt and CCN4 KO pairs using Student's t-test.

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199

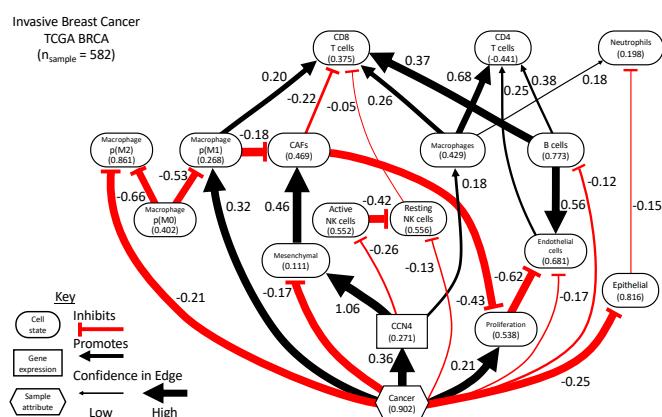

1200 **Figure 8 - CCN4 has no direct effect on T cell proliferation but impairs CD8⁺ T cell function.** The distribution in cell trace staining
1201 among live CD4⁺ (A) and CD8⁺ (B) T cells stimulated with α CD3/ α CD28 (AP beads) alone or in the presence of media conditioned by
1202 wt B16F0 cells (AP beads + WT TCM), media conditioned by CCN4 KO B16F0 cells (AP beads + CCN4 KO TCM), or with 10 ng/ml of
1203 recombinant mouse CCN4 (AP beads + rCCN4). The distribution in the corresponding unstimulated cells (gray) are shown at the bottom.
1204 The colored vertical lines indicate the predicted dilution of cell trace staining in each generation based on the unstimulated controls. (C)
1205 CD8⁺ T cells isolated from the spleens of C57BL/6 mice that rejected YUMM1.7 tumors were cultured in an in vitro ELISPOT assay using
1206 variants of the YUMM1.7 cell line as targets (wt YUMM1.7 - yellow, CCN4 KO YUMM1.7 - light green, CCN4 KO YUMM1.7 with a blank
1207 inducible expression vector - dark green and blue, CCN4 KO YUMM1.7 with a CCN4 inducible expression vector - purple and red). Variants
1208 containing the inducible expression vector were also cultured in the absence (dark green and purple) or presence of doxycycline (blue and
1209 red). CD8⁺ T cells expressing IFN γ and TNF α were quantified following 24 hour co-culture (bar graph). Statistical significant between
1210 pairs was assessed using a Student's t-test, where * = p-value < 0.05 and *** = p-value < 0.001.

Fig. 1. A computational workflow combines digital cytometry with Bayesian network inference to estimate how a genetic driver impacts the heterocellular network within a tissue.

Fig. 2. Summary of the evidence obtained from the TCGA breast cancer dataset supporting the consensus edges in the seed network.

Fig. 3. A directed acyclic graph (DAG) representing the conditional probability distribution inferred using the digital cytometry features extracted from the breast cancer arm of the TCGA.

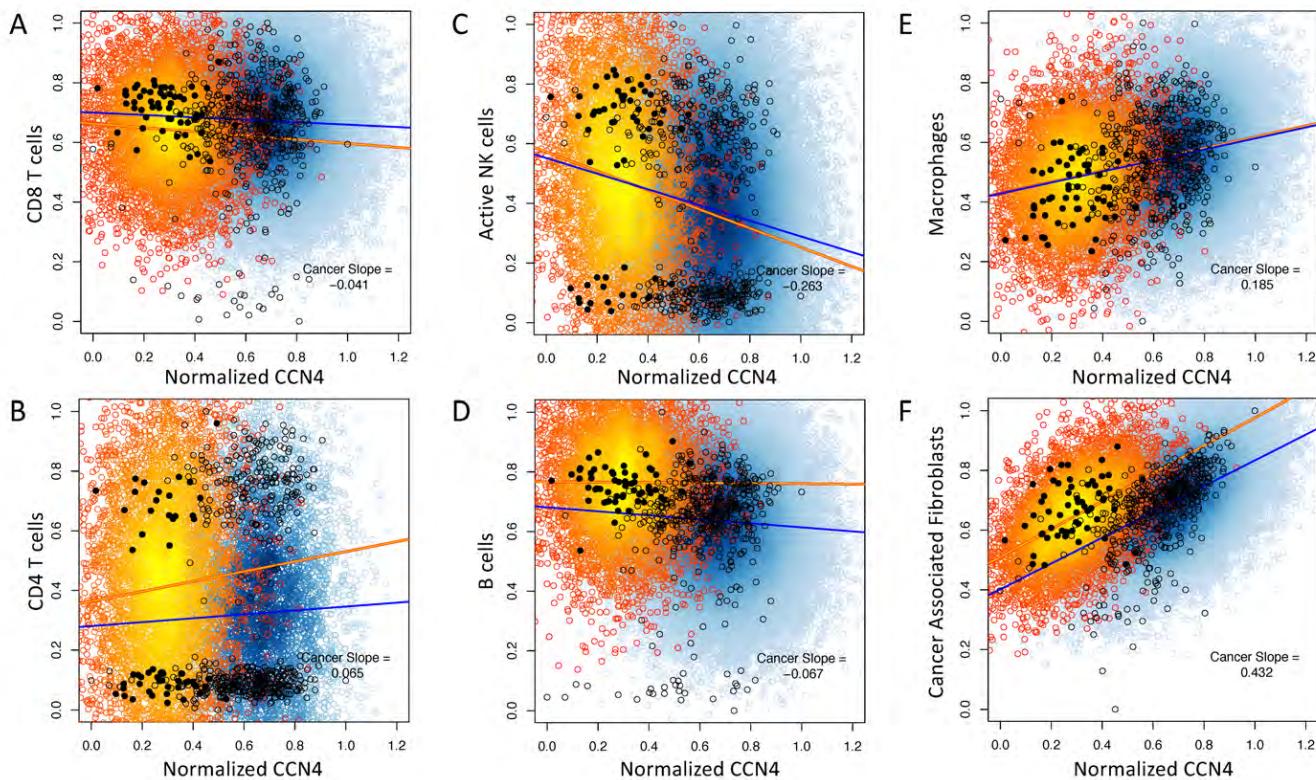
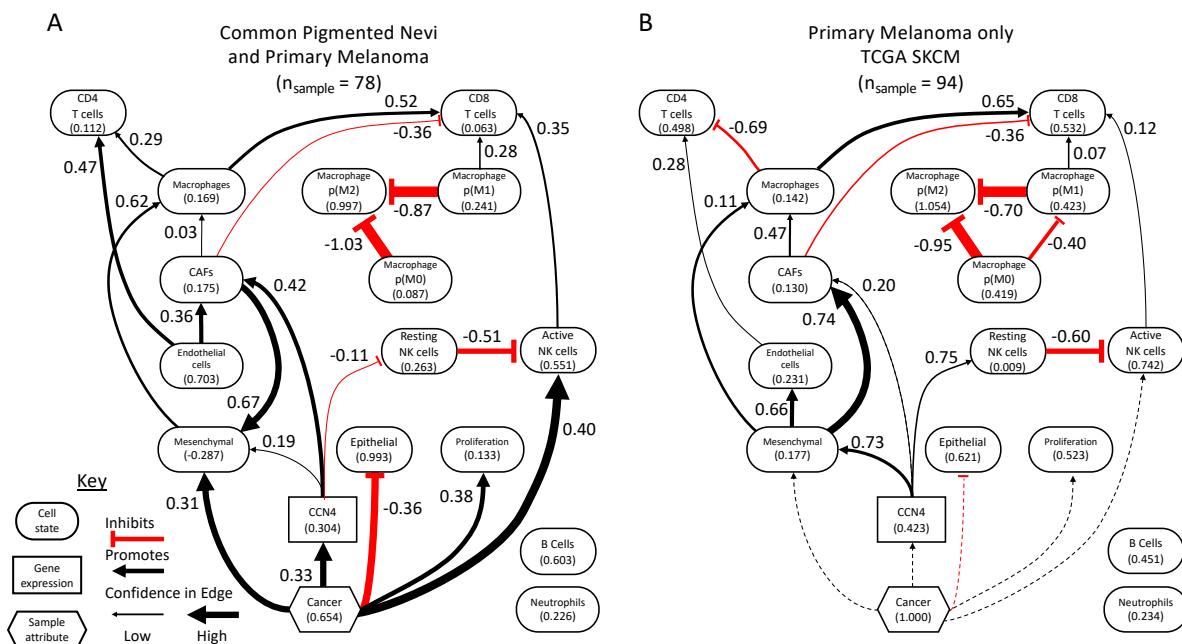
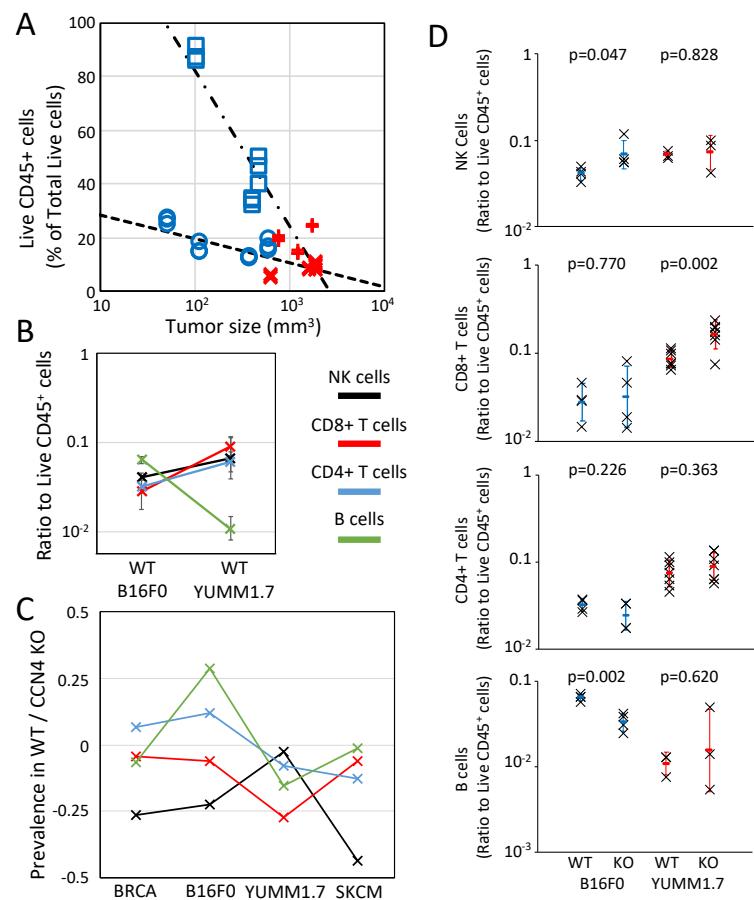
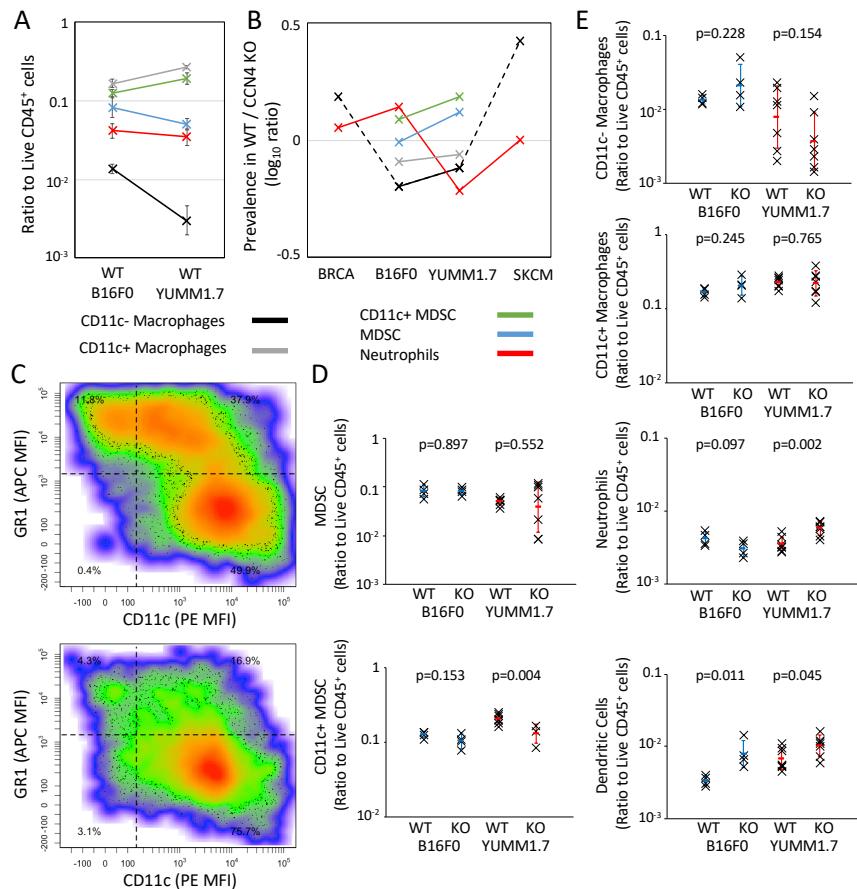


Fig. 4. Conditional probability query of the BRCA DAG compared against digital cytometry estimates obtained from experimental data.

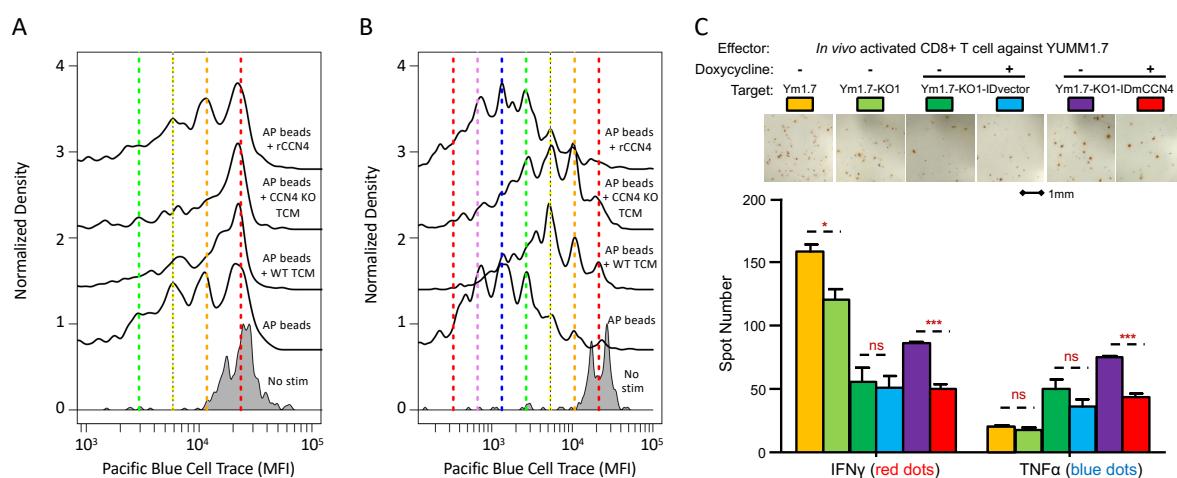

Fig. 5. A DAG representing the conditional probability distribution inferred using the digital cytometry features extracted from the two melanoma-related datasets.

Fig. 6. CCN4 knock-out in two syngeneic mouse models of melanoma induces a similar shift in NK cells and T and B lymphocytes as observed in human breast cancer and melanoma.

Fig. 7. Myeloid immune cell subsets differentially infiltrate tumors derived from wt B16F0 and YUMM1.7 cells but shift in similar ways upon CCN4 knock-out.

Fig. 8. CCN4 has no direct effect on T cell proliferation but impairs CD8⁺ T cell function.

Table S1. List of edges, whether an edge was predicted to promote or inhibit the target node, and the strength inferred using the different structure learning algorithms in analyzing the features present in TCGA breast cancer dataset. Rows highlighted in green were included in the consensus seed network, yellow indicate that the directionality was unclear, and red indicate edges included in the “blacklist”. The edge numbers correspond to the x-axis in Figure 2.

Edge No	from	to	mmpc CorSign	aracne CorSign	hiton CorSign	lamb strength	lamb CorSign	lamb,fdr CorSign	lamb,fdr CorSign	tabu strength	tabu CorSign	mmhc strength	mmhc CorSign	hc CorSign	hc CorSign	pc_stable CorSign	pc_stable CorSign	Hit Number	Min strength	Max strength
1	CCN4	Mesenchymal	+	+	+	2.02E-138	+	2.02E-138	+	1.95E-148	+	1.79E-139	+	1.95E-148	+	1.79E-139	+	9	1.95E-148	2.02E-138
2	Mesenchymal	CCN4	+	+	+													9		
2	pM0	pM1	-	-	-	0.00E+00	-	0.00E+00	-	3.77E-48	-	3.77E-48	-	0.00E+00	-	0.00E+00	-	9	0.00E+00	3.77E-48
2	pM1	pM0	-	-	-													9	0.00E+00	0.00E+00
3	pM0	pM2	-	-	-	0.00E+00	-	0.00E+00	-	0.00E+00	-	0.00E+00	-	0.00E+00	-	0.00E+00	-	9		
4	CAF_Ig	Mesenchymal	+	+	+													9	2.94E-97	9.62E-73
4	Mesenchymal	CAF_Ig	+	+	+	9.62E-73	+	9.62E-73	+	2.94E-97	+	2.35E-86	+	2.94E-97	+	8.08E-86	+	9		
5	Cancer	CCN4	+	+	+	2.06E-55	+	2.06E-55	+	2.06E-55	+	2.06E-55	+	2.06E-55	+	2.06E-55	+	9	2.06E-55	2.06E-55
5	CCN4	Cancer	+	+	+													9		
6	NK.cells.active_Ig	NK.cells.rest_Ig	-	-	-	4.80E-30	-	4.80E-30	-	1.15E-33	-	4.80E-30	-	1.15E-33	-	4.80E-30	-	9	1.15E-33	4.80E-30
6	NK.cells.rest_Ig	NK.cells.active_Ig	-	-	-													9		
7	B.cells.Ive_Ig	T.cells.CD8_Ig	+	+	+	9.25E-27	+	2.92E-27	+	3.10E-16	+	2.92E-27	+	3.10E-16	+	2.92E-27	+	9	2.92E-27	3.10E-16
7	T.cells.CD8_Ig	B.cells.Ive_Ig	+	+	+													9		
8	Cancer	Epithelial	-	-	-	1.66E-25	-	1.66E-25	-	1.66E-25	-	1.66E-25	-	1.66E-25	-	2.23E-22	-	9		
8	Epithelial	Cancer	-	-	-													9	1.66E-25	2.23E-22
9	CAF_Ig	proliferation	-	-	-													9	7.61E-26	3.37E-12
9	CAF_Ig	CAF_Ig	-	-	-	6.37E-21	-	6.37E-21	-	3.37E-12	-	3.37E-12	-	1.80E-18	-	1.80E-18	-	9	6.23E-18	5.75E-10
10	Endothelial.cells_Ig	proliferation	-	-	-													9		
10	proliferation	Endothelial.cells_Ig	-	-	-	2.88E-15	-	2.88E-15	-	2.88E-15	-	2.88E-15	-	6.23E-18	-	6.23E-18	-	9		
11	Cd47cell_sc_Ig	Mesophages_sc_Ig	-	-	-													9	1.91E-16	2.01E-13
11	Macrophages_sc_Ig	CD47cell_sc_Ig	+	+	+	1.91E-16	+	5.09E-16	+	3.07E-14	+	5.09E-16	+	3.07E-14	+	2.01E-13	+	9		
12	pM1	T.cells.CD8_Ig	+	+	+	8.18E-13	+	3.53E-14	+	8.98E-15	+	3.53E-14	+	8.98E-15	+	3.53E-14	+	9	8.98E-15	8.18E-13
12	T.cells.CD8_Ig	pM1	+	+	+													9		
13	Macrophages_sc_Ig	T.cells.CD8_Ig	+	+	+	9.15E-13	+	2.38E-12	+	6.55E-12	+	2.38E-12	+	6.55E-12	+	2.38E-12	+	9	9.15E-13	6.55E-12
13	T.cells.CD8_Ig	Macrophages_sc_Ig	+	+	+													9		
14	CAF_Ig	T.cells.CD8_Ig	-	-	-	2.84E-07	-	3.06E-07	-	3.42E-09	-	3.06E-07	-	3.42E-09	-	3.06E-07	-	9	3.42E-09	3.06E-07
14	T.cells.CD8_Ig	CAF_Ig	-	-	-													9		
15	Cancer	proliferation	-	-	-	6.68E-23	-	6.68E-23	-	4.70E-12	+	3.72E-10	+	4.70E-12	+	1.93E-08	+	8	6.68E-23	1.93E-08
15	proliferation	Cancer	-	-	-													8		
16	Endothelial.cells_Ig	Cancer	-	-	-	7.40E-09	-	7.40E-09	-	3.67E-38	-	7.40E-09	-	3.67E-38	-	2.10E-05	-	8	3.67E-38	2.10E-05
16	Endothelial.cells_Ig	Endothelial.cells_Ig	-	-	-													8		
17	CD47cell_sc_Ig	Endothelial.cells_Ig	-	-	-													8	3.64E-10	7.84E-07
17	Endothelial.cells_Ig	CD47cell_sc_Ig	-	-	-													8		
18	B.cells.Ive_Ig	CD47cell_sc_Ig	-	-	-	2.95E-06	+	1.95E-06	+	2.17E-07	+	1.95E-06	+	2.17E-07	+	7.31E-05	+	8	2.17E-07	7.31E-05
18	CD47cell_sc_Ig	B.cells.Ive_Ig	-	-	-													8		
19	Cancer	pM2	-	-	-													7	1.91E-42	7.00E-04
19	pM2	Cancer	-	-	-													7		
20	B.cells.Ive_Ig	Endothelial.cells_Ig	+	+	+													7	2.71E-22	1.52E-18
20	Endothelial.cells_Ig	B.cells.Ive_Ig	+	+	+	2.71E-22	+	2.71E-22	+	1.02E-10	-	2.09E-11	-	1.02E-10	-	3.30E-10	-	7	2.09E-11	3.30E-10
21	pM2	proliferation	-	-	-													7		
21	proliferation	pM2	-	-	-													7	6.79E-04	2.82E-03
22	Epithelial	Neutrophils_Ig	-	-	-	2.82E-03	-			1.62E-03	-	6.79E-04	-	1.62E-03	-	6.79E-04	-	7		
22	Neutrophils_Ig	Epithelial	-	-	-													7		
23	CAF_Ig	pM1	-	-	-													6	3.74E-24	4.37E-12
23	pM1	CAF_Ig	-	-	-													6		
24	Cancer	Mesenchymal	+	+	+													6	8.89E-17	1.16E-16
24	Mesenchymal	Cancer	-	-	-													6		
25	pM2	Neutrophils_Ig	+	+	+													6	7.51E-09	1.57E-04
25	Neutrophils_Ig	pM2	-	-	-													6		
26	Macrophages_sc_Ig	Neutrophils_Ig	+	+	+	1.59E-03	+			7.51E-09	+	1.57E-04	+	7.51E-09	+	1.57E-04	+	5	1.59E-03	1.86E-03
26	Neutrophils_Ig	Macrophages_sc_Ig	-	-	-													5		
27	pM1	pM2	-	-	-	3.43E-04	-	3.43E-04	-	0.00E+00	-	0.00E+00	-	0.00E+00	-	0.00E+00	-	4	0.00E+00	3.43E-04
27	pM2	pM1	-	-	-													4		
28	NK.cells.rest_Ig	T.cells.CD8_Ig	-	-	-	1.24E-02	-			7.88E-04	-	7.88E-04	-	7.88E-04	-	7.88E-04	-	3	7.88E-04	1.24E-02
28	T.cells.CD8_Ig	NK.cells.rest_Ig	-	-	-													3		
29	NK.cells.active_Ig	CD47cell_sc_Ig	-	-	-	1.26E-03	-			1.08E-03	-	1.08E-03	-	1.08E-03	-	1.08E-03	-	3	1.08E-03	1.26E-03
29	CD47cell_sc_Ig	NK.cells.active_Ig	-	-	-													3		
30	B.cells.Ive_Ig	Epithelial	+	+	+													3	1.73E-03	8.19E-03
30	Epithelial	B.cells.Ive_Ig	-	-	-													3		
31	CD47cell_sc_Ig	pM1	-	-	-													3	1.23E-02	1.23E-02
31	pM1	CD47cell_sc_Ig	-	-	-													3		
32	Cancer	pM1	-	-	-													2	2.35E-35	2.35E-35
32	pM1	Cancer	-	-	-													2		
33	pM0	Cancer	-	-	-													2	5.03E-25	5.03E-25
33	pM0	Cancer	-	-	-													2		
34	Mesenchymal	Endothelial.cells_Ig	-	-	-													2	4.02E-19	4.02E-19
34	Endothelial.cells_Ig	Mesenchymal	-	-	-													2		
35	B.cells.Ive_Ig	pM1	-	-	-													2	4.18E-19	4.18E-19
35	pM1	B.cells.Ive_Ig	-	-	-													2		
36	Macrophages_sc_Ig	CAF_Ig	-	-	-													2	5.33E-17	5.33E-17
36	CAF_Ig	Macrophages_sc_Ig	-	-	-													2		
37	Cancer	B.cells.Ive_Ig	-	-	-													2	3.36E-13	4.79E-07
37	B.cells.Ive_Ig	Cancer	-	-	-													2		
38	pM0	Mesenchymal	-	-	-													2	1.51E-12	1.51E-12
38	Mesenchymal	pM0	-	-	-													2		
39	pM1	Endothelial.cells_Ig	-	-	-													2	4.23E-12	4.23E-12
39	Endothelial.cells_Ig	pM1	-	-	-													2		
40	CCN4	proliferation	-	-	-													2	7.29E-12	7.29E-12
41	Cancer	T.cells.CD8_Ig	-	-	-													2	2.30E-10	2.30E-10
41</td																				

Table S2. List of edges, whether an edge was predicted to promote or inhibit the target node, and the strength inferred using the different structure learning algorithms in analyzing the features present in dataset comprised of common melanocytic nevi and primary melanoma tissue samples (GEO). Rows highlighted in green were included in the consensus seed network, yellow indicate that the directionality was unclear, and red indicate edges included in the “blacklist”. The edge numbers correspond to the x-axis in Figure 4A.

Edge No	from	to	mmpc CorSign	aracne CorSign	hiton CorSign	iamb strength	iamb CorSign	iamb.fdr strength	iamb.fdr CorSign	tabu strength	tabu CorSign	mmhc strength	mmhc CorSign	hc strength	hc CorSign	pc_stable strength	pc_stable CorSign	Hit Number	Min strength	Max strength
1	pM1	pM2	-	-	-	2.40E-41	-	2.40E-41	-	2.40E-41	-	3.31E-38	-	3.31E-38	-	3.31E-38	-	9	2.40E-41	2.40E-41
1	pM2	pM1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9	-	9
2	pM0	pM2	-	-	-	3.31E-38	-	3.31E-38	-	3.31E-38	-	3.31E-38	-	3.31E-38	-	3.31E-38	-	9	3.31E-38	3.31E-38
2	pM2	pM0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9	-	9
3	Cancer	Mesenchymal	+	+	+	6.29E-09	+	2.09E-18	+	8.02E-13	+	6.29E-09	+	8.02E-13	+	2.46E-12	+	9	2.09E-18	6.29E-09
3	Mesenchymal	Cancer	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	9	-	9
4	Cancer	Epithelial	+	+	+	4.24E-15	-	4.24E-15	-	4.24E-15	-	4.24E-15	-	2.79E-16	-	4.24E-15	-	9	2.79E-16	4.24E-15
4	Epithelial	Cancer	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	9	-	9
5	CAF_Ig	Mesenchymal	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	9	6.70E-15	5.98E-05
5	Mesenchymal	CAF_Ig	+	+	+	2.75E-14	+	-	-	7.46E-12	+	2.75E-14	+	5.98E-05	+	-	-	9	-	9
6	Macrophages_sc_Ig	T.cells.CD8_Ig	+	+	+	9.32E-06	+	1.82E-11	+	7.68E-06	+	1.79E-04	+	7.68E-06	+	1.79E-04	+	9	1.82E-11	1.79E-04
6	T.cells.CD8_Ig	Macrophages_sc_Ig	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	9	-	9
7	NK.cells.active_Ig	NK.cells.rest_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9	1.01E-09	1.68E-05
7	NK.cells.rest_Ig	NK.cells.active_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9	-	9
8	CD4Tcell_sc_Ig	Endothelial.cells_Ig	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	9	8.60E-08	4.15E-07
8	Endothelial.cells_Ig	CD4Tcell_sc_Ig	+	+	+	4.15E-07	+	8.60E-08	+	4.15E-07	+	4.15E-07	+	4.15E-07	+	-	-	9	-	9
9	CCN4	Mesenchymal	+	+	+	6.48E-05	+	-	-	8.38E-07	+	6.48E-05	+	8.38E-07	+	2.29E-02	+	8	8.38E-07	2.29E-02
9	Mesenchymal	CCN4	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	8	-	8
10	NK.cells.active_Ig	T.cells.CD8_Ig	+	+	+	1.05E-04	+	-	-	1.19E-03	+	3.93E-03	+	1.19E-03	+	3.93E-03	+	8	1.05E-04	3.93E-03
10	T.cells.CD8_Ig	NK.cells.active_Ig	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	8	-	8
11	CD4Tcell_sc_Ig	Macrophages_sc_Ig	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	8	4.58E-04	4.58E-04
11	Macrophages_sc_Ig	CD4Tcell_sc_Ig	+	+	+	4.58E-04	+	-	-	4.58E-04	+	4.58E-04	+	4.58E-04	+	4.58E-04	+	8	-	8
12	NK.cells.rest_Ig	pM0	+	+	+	-	-	-	-	2.22E-04	+	-	-	-	-	-	-	7	6.30E-05	1.17E-03
12	pM0	NK.cells.rest_Ig	+	+	+	-	-	-	-	-	-	6.30E-05	+	-	-	-	-	7	-	7
13	pM1	T.cells.CD8_Ig	+	+	+	-	-	-	-	5.96E-03	+	3.70E-03	+	5.96E-03	+	3.70E-03	+	7	3.70E-03	5.96E-03
13	T.cells.CD8_Ig	pM1	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	7	-	7
14	Cancer	NK.cells.active_Ig	+	+	+	8.85E-16	+	-	-	8.85E-16	+	-	-	-	-	-	-	4	8.85E-16	8.85E-16
14	NK.cells.active_Ig	Cancer	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	4	-	4
15	CAF_Ig	Endothelial.cells_Ig	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	3.11E-06	8.04E-04
15	Endothelial.cells_Ig	CAF_Ig	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	-	4
16	Cancer	proliferation	-	-	-	1.47E-09	+	-	-	6.39E-11	+	-	-	6.39E-11	+	-	-	3	6.39E-11	1.47E-09
16	proliferation	Cancer	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	-	3
17	Macrophages_sc_Ig	Mesenchymal	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	7.24E-09	7.24E-09
17	Mesenchymal	Macrophages_sc_Ig	+	-	-	-	-	-	-	7.24E-09	+	-	-	-	-	-	-	3	-	3
18	Endothelial.cells_Ig	pM0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	1.27E-04	1.27E-04
18	pM0	Endothelial.cells_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	-	3
19	B.cells.naive_Ig	Endothelial.cells_Ig	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	3.41E-03	3.41E-03
19	Endothelial.cells_Ig	B.cells.naive_Ig	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	-	3
20	Cancer	CCN4	-	-	-	-	-	-	-	5.06E-11	+	-	-	-	-	-	-	2	5.06E-11	5.06E-11
20	CCN4	Cancer	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	2
21	Endothelial.cells_Ig	Mesenchymal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2.75E-10	2.75E-10
21	Mesenchymal	Endothelial.cells_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	2
22	Macrophages_sc_Ig	pM1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	5.29E-07	5.29E-07
22	pM1	Macrophages_sc_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	2
23	Epithelial	pM0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	3.92E-05	3.92E-05
23	pM0	Epithelial	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	2
24	Endothelial.cells_Ig	proliferation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	5.19E-05	5.19E-05
24	proliferation	Endothelial.cells_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	2
25	CCN4	Neutrophils_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	7.22E-04	7.22E-04
25	Neutrophils_Ig	CCN4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	2
26	CAF_Ig	T.cells.CD8_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	8.87E-03	8.87E-03
26	T.cells.CD8_Ig	CAF_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	2
27	Macrophages_sc_Ig	NK.cells.rest_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2.08E-02	2.08E-02
27	NK.cells.rest_Ig	Macrophages_sc_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	2
28	pM0	pM1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2.28E-02	2.28E-02
28	pM1	pM0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	2
29	Endothelial.cells_Ig	Epithelial	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	9.69E-04	9.69E-04
29	Epithelial	Endothelial.cells_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	1
30	CAF_Ig	CCN4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	2.35E-01	2.35E-01
30	CCN4	CAF_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	1
31	Cancer	pM2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1.00E+00	1.00E+00
31	pM2	Cancer	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	1

Table S3. List of edges, whether an edge was predicted to promote or inhibit the target node, and the strength inferred using the different structure learning algorithms in analyzing the features present in primary melanoma tissue samples in the TCGA SKCM dataset. Rows highlighted in green were included in the consensus seed network, yellow indicate that the directionality was unclear, and red indicate edges included in the “blacklist”. The edge numbers correspond to the x-axis in Figure 4B.

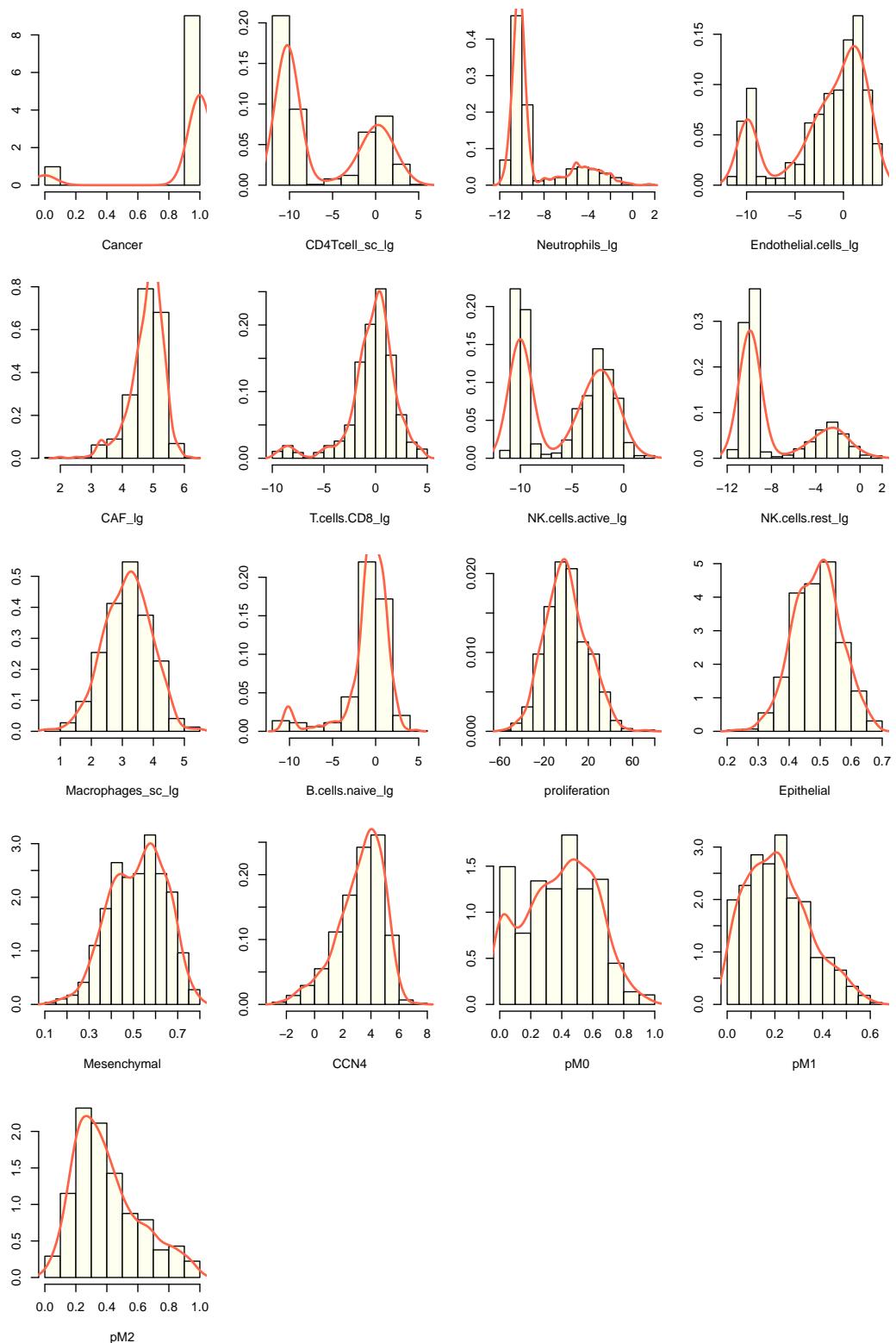

Edge No	from	to	mmpc CorSign	aracne CorSign	hiton CorSign	iamb strength	iamb CorSign	iamb.fdr	iamb.fdr CorSign	tabu strength	tabu CorSign	mmhc strength	mmhc CorSign	hc strength	hc CorSign	pc_stable CorSign	pc_stable CorSign	Hit Number	Min strength	Max strength
1	pM0	pM2	-	-	-	6.36E-46	-	6.36E-46	-	6.36E-46	-	2.04E-18	-	6.36E-46	-	6.36E-46	-	9	6.36E-46	2.04E-18
1	pM2	pM0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9	-	-
2	pM0	pM1	-	-	-	1.59E-34	-	1.59E-34	-	9.96E-07	-	9.96E-07	-	9.96E-07	-	9.96E-07	-	9	1.59E-34	9.96E-07
2	pM1	pM0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9	-	-
3	CAF_Ig	Mesenchymal	+	+	+	-	-	-	-	5.38E-14	+	-	-	3.26E-18	+	1.59E-34	-	9	3.26E-18	5.38E-14
3	Mesenchymal	CAF_Ig	+	+	+	3.26E-18	+	3.26E-18	+	3.26E-18	+	3.26E-18	+	3.26E-18	+	3.26E-18	+	9	-	-
4	CAF_Ig	Macrophages_sc_Ig	+	+	+	1.45E-08	+	1.45E-08	+	8.38E-11	+	1.45E-08	+	1.02E-11	+	1.45E-08	+	9	1.02E-11	1.45E-08
4	Macrophages_sc_Ig	CAF_Ig	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	9	-	-
5	Macrophages_sc_Ig	T.cells.CD8_Ig	+	+	+	1.43E-07	+	1.43E-07	+	1.23E-11	+	1.43E-07	+	1.23E-11	+	1.43E-07	+	9	1.23E-11	1.43E-07
5	T.cells.CD8_Ig	Macrophages_sc_Ig	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	9	-	-
6	NK.cells.active_Ig	NK.cells.rest_Ig	-	-	-	-	-	-	-	2.37E-09	-	-	-	2.37E-09	-	2.37E-09	-	9	2.01E-10	2.37E-09
6	NK.cells.rest_Ig	NK.cells.active_Ig	-	-	-	2.01E-10	-	2.01E-10	-	-	-	2.01E-10	-	-	-	-	-	9	-	-
7	Endothelial.cells_Ig	Mesenchymal	+	+	+	-	-	-	-	3.73E-08	+	-	-	3.73E-08	+	1.28E-07	+	8	3.73E-08	1.28E-07
7	Mesenchymal	Endothelial.cells_Ig	+	+	+	3.73E-08	+	-	-	3.73E-08	+	3.73E-08	+	3.73E-08	+	-	-	8	-	-
8	CD4Tcell_sc_Ig	Macrophages_sc_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8	1.96E-06	2.61E-04
8	Macrophages_sc_Ig	CD4Tcell_sc_Ig	-	-	-	2.61E-04	-	-	-	1.96E-06	-	2.61E-04	-	1.96E-06	-	2.61E-04	-	8	-	-
9	CCN4	NK.cells.rest_Ig	+	+	+	1.32E-03	+	-	-	1.57E-02	+	1.32E-03	+	1.57E-02	+	1.57E-02	+	8	1.32E-03	1.57E-02
9	NK.cells.rest_Ig	CCN4	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	8	-	-
10	CCN4	Mesenchymal	+	+	+	1.14E-06	+	-	-	2.38E-02	+	-	-	-	-	3.83E-06	+	6	1.14E-06	2.38E-02
10	Mesenchymal	CCN4	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	6	-	-
11	NK.cells.active_Ig	pM0	-	-	-	-	-	-	-	3.16E-05	-	-	-	3.16E-05	-	-	-	3	3.16E-05	3.16E-05
11	pM0	NK.cells.active_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	-	-
12	Macrophages_sc_Ig	proliferation	-	-	-	-	-	-	-	1.72E-04	-	-	-	1.72E-04	-	-	-	3	1.72E-04	1.72E-04
12	proliferation	Macrophages_sc_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	-	-
13	Endothelial.cells_Ig	Epithelial	+	-	-	-	-	-	-	1.01E-02	+	-	-	1.01E-02	+	-	-	3	1.01E-02	1.01E-02
13	Epithelial	Endothelial.cells_Ig	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	-	-
14	CD4Tcell_sc_Ig	Epithelial	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	1.36E-02	1.36E-02
14	Epithelial	CD4Tcell_sc_Ig	+	-	-	-	-	-	-	1.36E-02	+	-	-	1.36E-02	+	-	-	3	-	-
15	pM1	pM2	-	-	-	-	-	-	-	9.70E-30	-	-	-	9.70E-30	-	-	-	2	9.70E-30	9.70E-30
15	pM2	pM1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	-
16	Macrophages_sc_Ig	NK.cells.active_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2.51E-06	1.29E-04
16	NK.cells.active_Ig	Macrophages_sc_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	-
17	CAF_Ig	CCN4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	4.75E-06	4.75E-06
17	CCN4	CAF_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	-
18	CAF_Ig	T.cells.CD8_Ig	-	-	-	-	-	-	-	1.58E-05	-	-	-	1.58E-05	-	-	-	2	1.58E-05	1.58E-05
18	T.cells.CD8_Ig	CAF_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	-
19	CAF_Ig	CD4Tcell_sc_Ig	-	-	-	-	-	-	-	5.54E-03	+	-	-	5.54E-03	+	-	-	2	5.54E-03	5.54E-03
20	Macrophages_sc_Ig	pM1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1.64E-02	1.64E-02
20	pM1	Macrophages_sc_Ig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
21	B.cells.naive_Ig	T.cells.CD8_Ig	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1.00E+00	1.00E+00
21	T.cells.CD8_Ig	B.cells.naive_Ig	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
22	NK.cells.active_Ig	T.cells.CD8_Ig	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1.00E+00	1.00E+00
22	T.cells.CD8_Ig	NK.cells.active_Ig	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-

Table S4. Proliferation metrics associated CD4⁺ and CD8⁺ T cells stimulated in vitro in different conditions. Dil: fraction diluted; PF: Precursor frequency, %dividing cells; PI: Proliferation index; and SD^D: proliferation variance. Summary statistics were calculated from three biological replicates and represented as mean (standard deviation). Statistical significance was assessed using type III repeated measures ANOVA, where * indicates a p-value < 0.05.

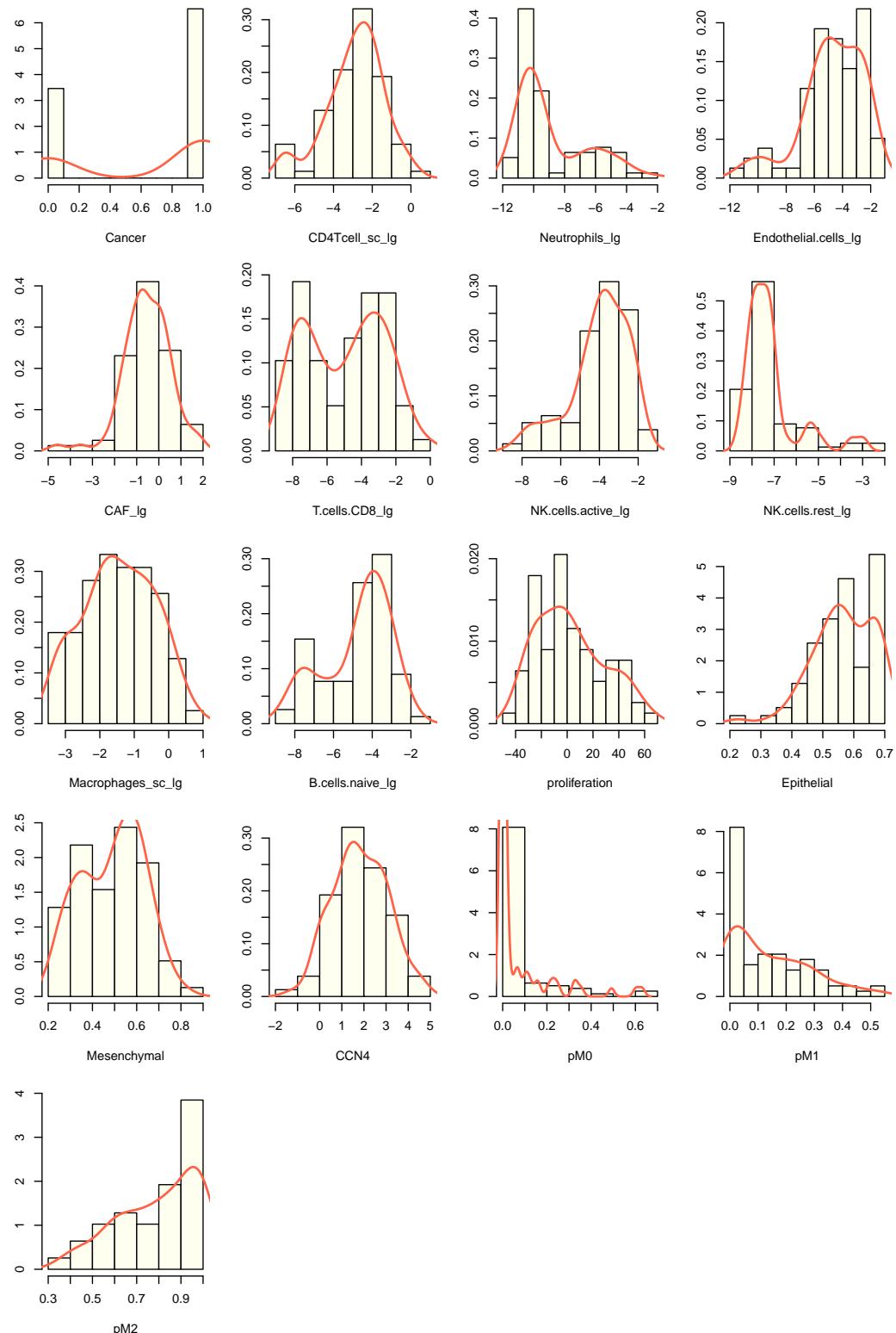
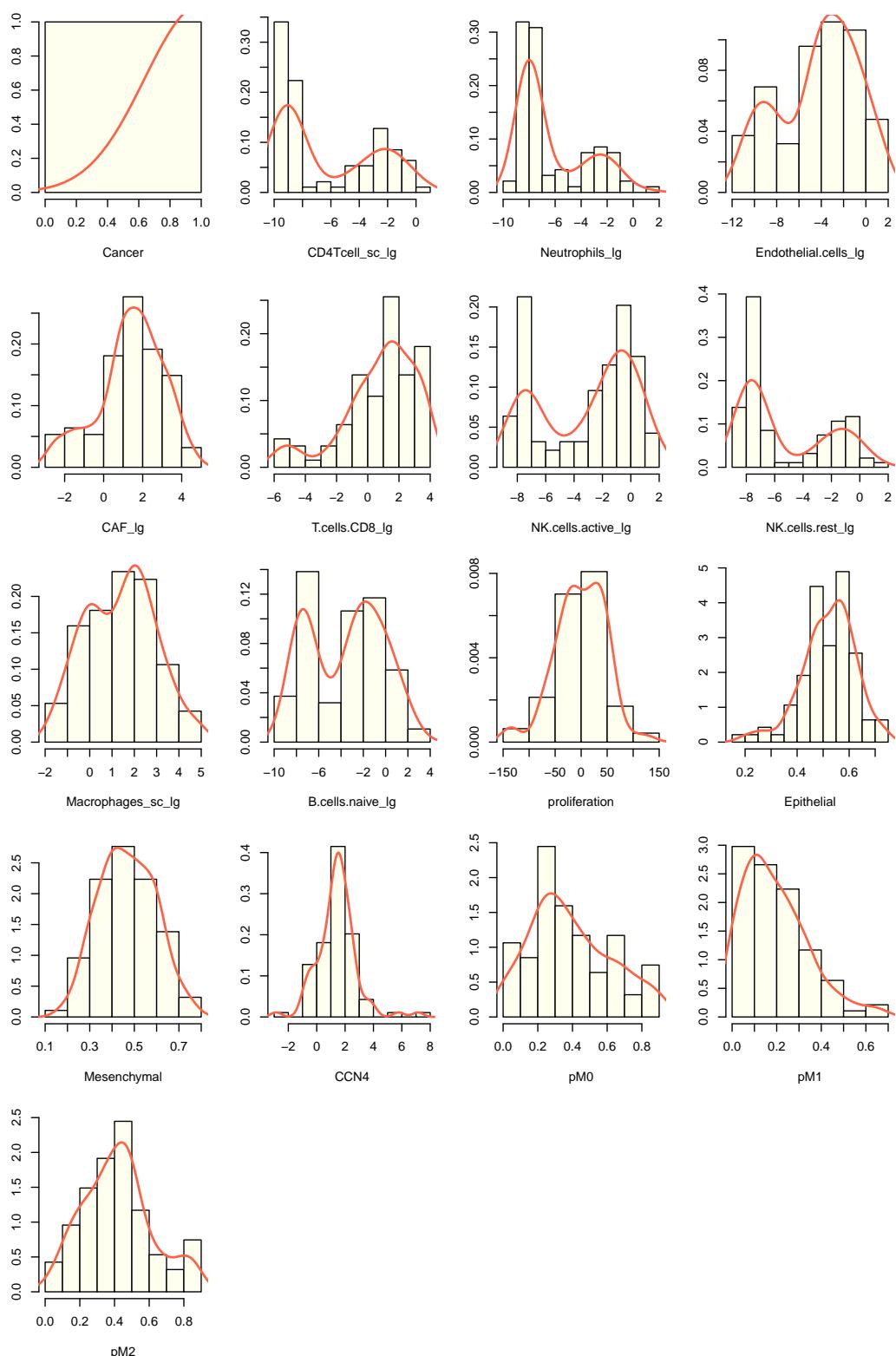
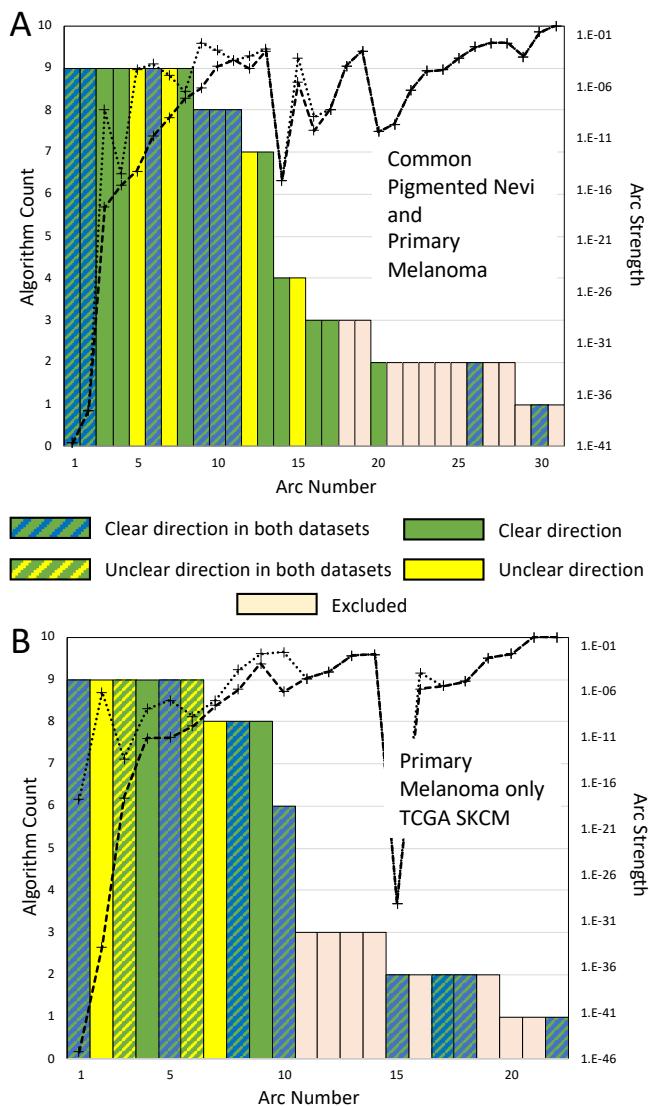
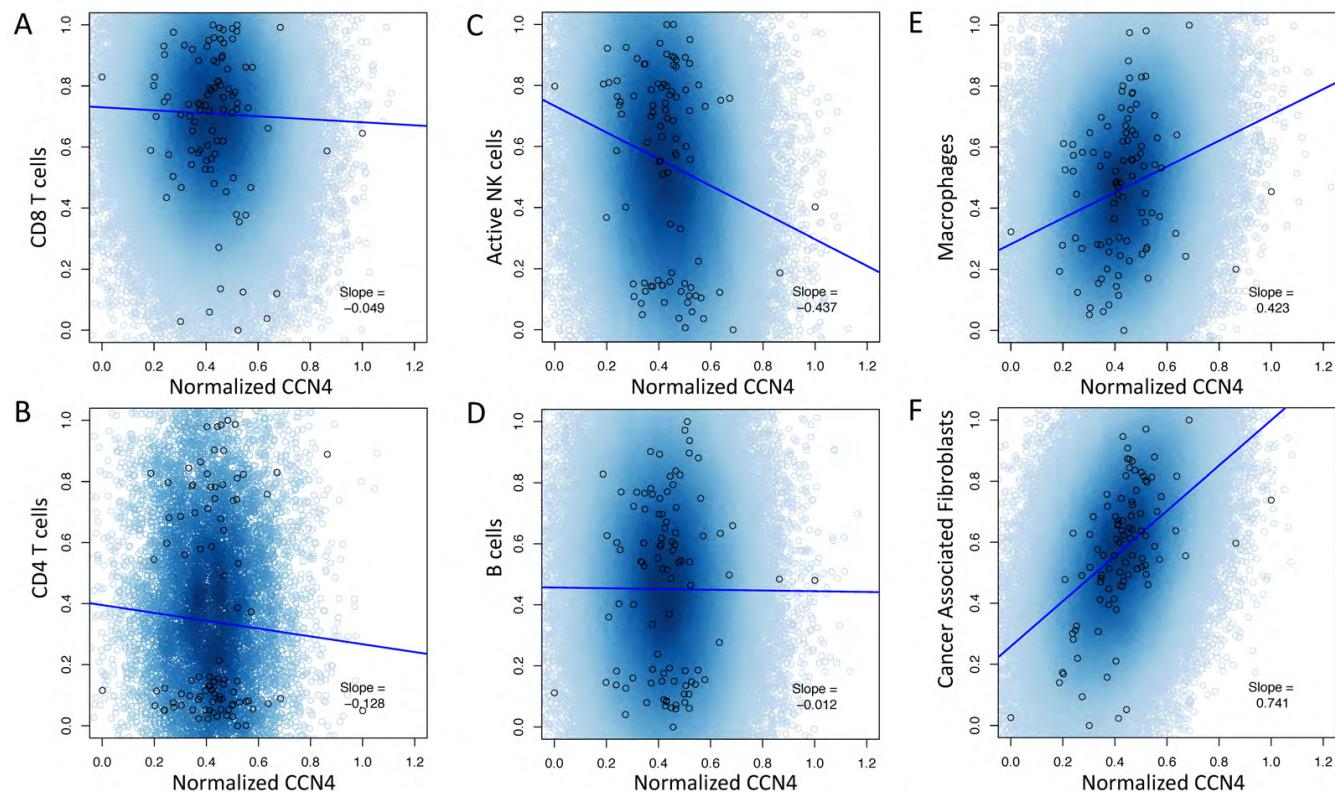
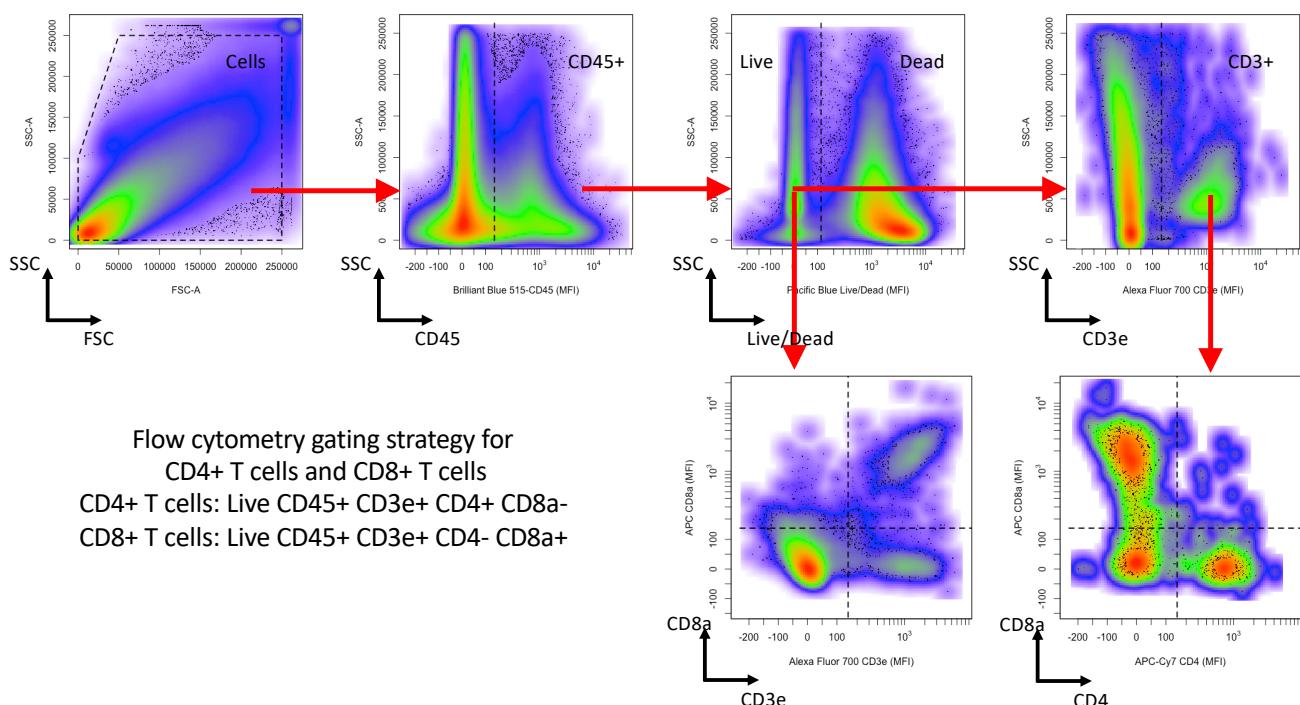

Experimental Conditions	Live CD4+ T cells				Live CD8+ T cells			
	Dil	PF	PI	SD ^D	Dil	PF	PI	SD ^D
AP beads + rCCN4	0.670 (0.012)	0.392 (0.014)	1.407 (0.033)	0.274	0.983 (0.003)	0.851 (0.014)	2.655 (0.045)	0.103
AP beads + CCN4 KO TCM	0.472* (0.008)	0.221* (0.003)	1.404 (0.023)	0.274	0.914* (0.015)	0.715* (0.032)	1.729* (0.044)	0.205
AP beads + WT TCM	0.552* (0.047)	0.282* (0.038)	1.403 (0.031)	0.272	0.920* (0.020)	0.704* (0.044)	1.923* (0.052)	0.189
AP beads	0.655 (0.043)	0.366 (0.035)	1.473 (0.060)	0.255	0.982 (0.002)	0.841 (0.026)	2.756 (0.187)	0.106
No stimulation	0.046 (0.025)	0.016 (0.013)	1.763 (1.056)	0.371	0.062 (0.018)	0.008 (0.004)	2.520 (0.441)	0.229

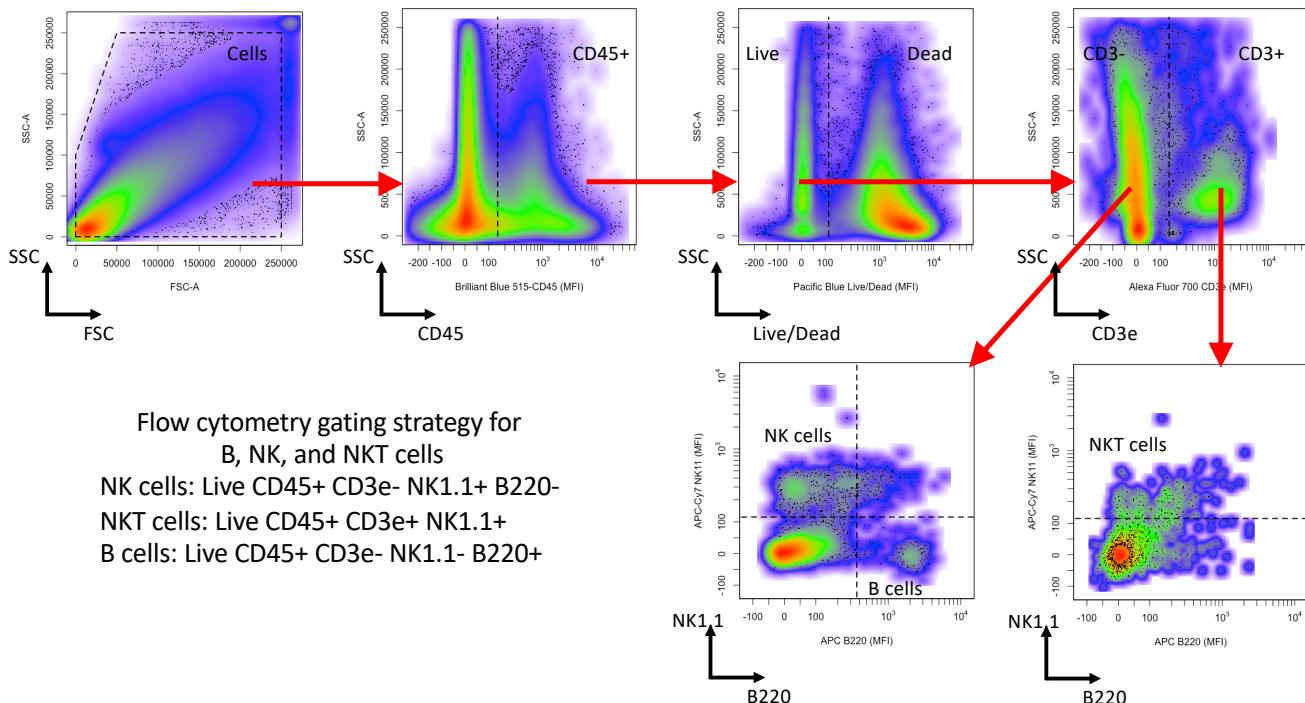
Table S5. List of fluorophore-conjugated antibodies using to quantify cell subsets by flow cytometry.

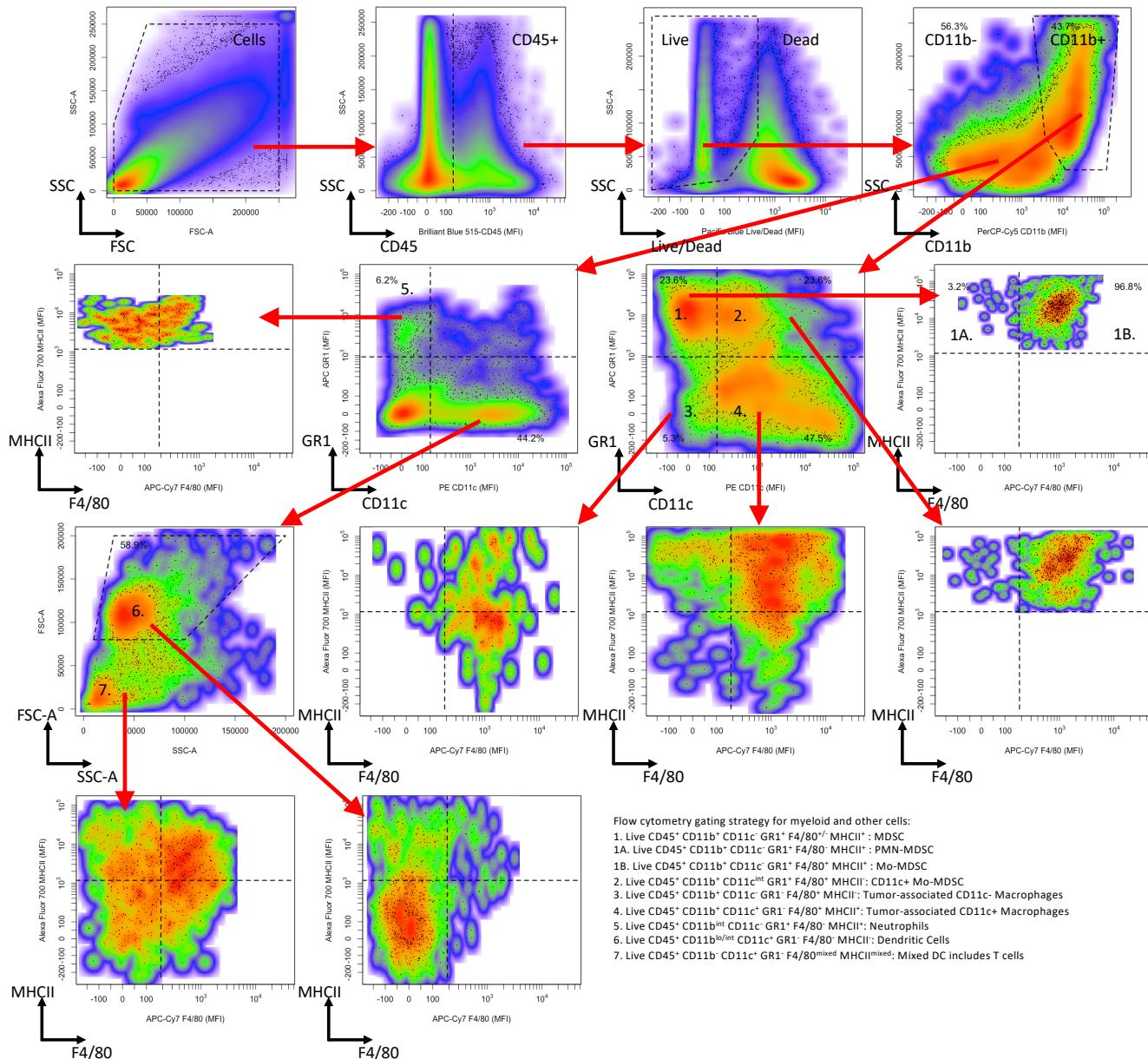

Marker	Clone	Fluorophore	Manufacturer
LIVE/DEAD Fix	--	Violet/Pacific Blue	Invitrogen
CD45	30-F11	BB515	BD Biosciences #564590
CD3e	500A2	Alexa Fluor 700	BioLegend #152316
CD4	GK1.5	APC-Cy7	BD Biosciences #552051
CD8a	REA601	APC	Miltenyi 130-109-248
CD161 (NK-1.1)	PK136	APC-Cy7	BioLegend #108723
CD45R/B220	RA3-6B2	APC	BioLegend #103212
CD49b	DX5	PerCP/Cy5.5	BioLegend #108915
CD11b	M1/70	PerCP/Cy5.5	eBioscience #45-0112-80
CD11c	N418	PE	eBioscience #12-0114-81
F4/80	BM8	APC-Cy7	BioLegend #123117
Ly-6G/Ly-6C (Gr-1)	RB6-8C5	APC	BioLegend #108412
CD279 (PD-1)	REA802	PE	BioLegend #135205
I-A/I-E (MHC-II)	M5/114.15.2	Alexa Fluor 700	BioLegend #107622


Fig. S1. Distribution of extracted features associated with the BRCA TCGA dataset. Figure represents a normalized histogram (bar graph) and distribution (red line) in log-transformed feature values. The panels from left to right, top to bottom are Cancer attribute, CD4 T cells, Neutrophils, Endothelial cells, Cancer associated fibroblasts (CAFs), CD8 T cells, active NK cells, resting NK cells, Macrophages, naïve B cells, proliferation, epithelial cell state, mesenchymal cell state, CCN4 gene expression, $p(M\Phi 0)$, $p(M\Phi 1)$, and $p(M\Phi 2)$.


Fig. S2. Distribution of extracted features associated with the dataset containing common melanocytic nevi and primary melanoma tissue samples (GEO). Figure represents a normalized histogram (bar graph) and distribution (red line) in log-transformed feature values. The panels from left to right, top to bottom are Cancer attribute, CD4 T cells, Neutrophils, Endothelial cells, Cancer associated fibroblasts, CD8 T cells, active NK cells, resting NK cells, Macrophages, naïve B cells, proliferation, epithelial cell state, mesenchymal cell state, CCN4 gene expression, $p(M\Phi 0)$, $p(M\Phi 1)$, and $p(M\Phi 2)$.


Fig. S3. Distribution of extracted features associated with primary melanoma samples in the TCGA SKCM dataset. Figure represents a normalized histogram (bar graph) and distribution (red line) in log-transformed feature values. The panels from left to right, top to bottom are Cancer attribute, CD4 T cells, Neutrophils, Endothelial cells, Cancer associated fibroblasts, CD8 T cells, active NK cells, resting NK cells, Macrophages, naïve B cells, proliferation, epithelial cell state, mesenchymal cell state, CCN4 gene expression, $p(M\Phi 0)$, $p(M\Phi 1)$, and $p(M\Phi 2)$.


Fig. S4. Summary of the evidence obtained from two melanoma datasets supporting the consensus edges in the seed network. Analysis of datasets containing samples from both common pigmented nevi and primary melanoma (A) and from only primary melanoma (B). Edges ordered based on the number of algorithms that detected that an edge was enriched (bar graph - left axis) and the strength of enrichment (dotted lines - right axis). The lines associated with the strength of enrichment represent the minimum (dashed line) and maximum (dotted line) values obtained by the different algorithms. Coloring of bar graph indicates whether a clear direction was associated with an edge in one dataset (green) and in both datasets (green/blue), an edge was significantly enriched but without a clear direction in one dataset (yellow) and in both datasets (green/yellow), or that an edge was excluded from the consensus seed network list (tan). .


Fig. S5. Conditional probability query of the SKCM DAG compared against digital cytometry estimates obtained from experimental data. Experimental samples obtained from primary melanoma tissue are shown as open circles. Samples of the conditional probability model for $p(\text{Cancer} > 0.85)$ (blue) for CD8 T cells (A), CD4 T cells (B), active NK cells (C), B cells (D), Macrophages (E) and Cancer Associated Fibroblasts (F). Linear trendlines are superimposed on the conditional probability samples.

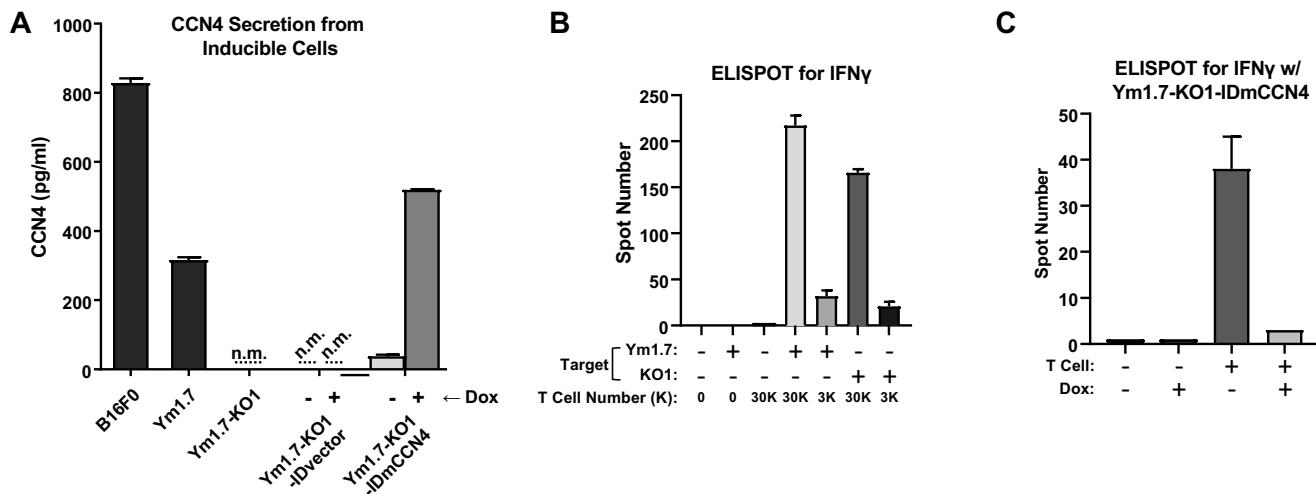

Fig. S6. Flow cytometry gating strategy for T cells. CD45 staining versus side scatter area was used to gate for CD45+ cells. Live Dead Pacific Blue staining versus side scatter area was used to then gate for Live CD45+ cells, which were then gated based on CD3e⁺ expression. Live CD45⁺ CD3e⁺ cells were further subdivided into CD8⁺ T cells (live CD8⁺ CD3e⁺ CD45⁺ cells), CD4 T cells (live CD4⁺ CD3e⁺ CD45⁺ cells), and double negative T cells (live CD8⁻ CD4⁻ CD3e⁺ CD45⁺ cells).

Fig. S7. Flow cytometry gating strategy for B, NK, and NKT cells. CD45 staining versus side scatter area was used to gate for CD45⁺ cells. Live Dead Pacific Blue staining versus side scatter area was used to gate for Live CD45⁺ cells, which were then subdivided into B cells (live NK1.1⁻ B220⁺ CD3⁻ CD45⁺ cells), NK cells (live NK1.1⁺ B220⁻ CD3⁻ CD45⁺ cells), and NKT cells (live NK1.1⁺ CD3e⁺ CD45⁺ cells).

Fig. S8. Flow cytometry gating strategy for Tumor associated neutrophils and myeloid cell subsets. CD45 staining versus side scatter area was used to gate for CD45⁺ cells. Live Dead Pacific Blue staining versus side scatter area was used to gate for Live CD45⁺ cells, which were then subdivided into subsets based on CD11b staining followed by Gr1 versus CD11c staining. From the CD11b⁺ gate, myeloid-derived suppressor cells (MDSC) (live CD45⁺ CD11b⁺ Gr1⁺ cells) were subdivided into CD11c^{int/+} MDSC (F4/80⁺ MHCI⁺) and CD11c⁻ MDSC (F4/80^{mixed} MHCI⁺). Also from the CD11b⁺ gate, macrophages (live Gr1⁺ F4/80⁺ CD11b⁺ CD45⁺ cells) were subdivided into tumor-associated CD11c⁺ (CD11c^{int/+} MHCI^{hi}) and CD11c⁻ (CD11c⁻ MHCI^{lo}) subsets. The CD11b⁻ subset included tumor-associated neutrophils (TAN) (Gr1⁺ CD11c⁻ CD11b^{int} MHCI^{hi} F4/80⁻) and dendritic cells (Gr1⁺ CD11c⁺ CD11b^{lo/int} FSC-A^{hi} MHCI^{lo} F4/80⁻).

Fig. S9. Control experiments related to ELISPOT assay using an inducible CCN4 YUMM1.7 cell line. (A) CCN4 secretion, measured with ELISA, from CCN4-inducible cells in conditioned media in the presence of absence of doxycycline. (B) ELISPOT for IFN γ release with different target cells and different amount of effector CD8 $^{+}$ T cells (In vivo activated CD8 $^{+}$ T cells against YUMM1.7 (Ym1.7)). (C) ELISPOT for IFN γ with CCN4-inducible cells as targets using in vivo activated CD8 $^{+}$ T cell against YUMM1.7. Results shown as mean \pm S.D. for three biological replicates.