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Discovering and developing pharmaceutical drugs increas-
ingly relies on mechanistic mathematical modeling and simu-
lation. In immuno-oncology, models that capture causal rela-
tions among genetic drivers of oncogenesis, functional plastic-
ity, and host immunity provide an important complement to wet
experiments, given the cellular complexity and dynamics within
the tumor microenvironment. Unfortunately, formulating such
mechanistic cell-level models currently relies on hand curation
by experts, which can bias how data is interpreted or the pri-
ority of drug targets. In modeling molecular-level networks,
rules and algorithms have been developed to limit a priori bi-
ases in formulating mechanistic models. To realize an equivalent
approach for cell-level networks, we combined digital cytome-
try with Bayesian network inference to generate causal models
that link an increase in gene expression associated with onco-
genesis with alterations in stromal and immune cell subsets di-
rectly from bulk transcriptomic datasets. To illustrate, we pre-
dicted how an increase in expression of Cell Communication
Network factor 4 (CCN4/WISP1) altered the tumor microenvi-
ronment using data from patients diagnosed with breast cancer
and melanoma. Network predictions were then tested using two
immunocompetent mouse models for melanoma. In contrast to
hand-curated approaches, we posit that combining digital cy-
tometry with Bayesian network inference provides a less biased
approach for elaborating mechanistic cell-level models directly
from data.

Heterocellular networks | digital cytometry | deconvolution | anti-tumor
immunity | Bayesian network inference | functional plasticity
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Introduction

Tissues are dynamic structures where different cell types or-
ganize to maintain function in a changing environment. For
instance, the mammary epithelium reorganizes during dis-
tinct stages of the ovarian cycle in preparation for lactation
(Klinke, 2016). At the same time, immune cells clear dead
cells and defend against pathogens present in the tissue mi-
croenvironment. Ultimately, the number and functional ori-
entation of different cell types within a tissue interact to cre-
ate a network, that is a heterocellular network. This hetero-
cellular network is essential for creating and maintaining tis-
sue homeostasis. While we know that tissue homeostasis is
disrupted during oncogenesis, our understanding of how ge-
netic alterations quantitatively and dynamically influence the
heterocellular network within malignant tissues in humans

is not well developed despite large efforts, like The Cancer
Genome Atlas (TCGA), to characterize the genomic and tran-
scriptomic landscape in human malignancy (Hoadley et al.,
2018; Wells and Wiley, 2018). In parallel with these large
scale data gathering efforts, two informatic developments,
namely digital cytometry and Bayesian network inference,
may be helpful in interrogating these datasets.

In cytometry, single-cell sequencing technology elicits a
lot of excitement as it enables unbiased discovery of novel
cell subsets in particular disease states (Papalexi and Satija,
2018; Singer and Anderson, 2019). Unfortunately, per-
sistent challenges related to confounding of batch effects
with biological replicates limit the statistical power of these
datasets to link oncogenic transcriptional changes with re-
organization of the cellular network (Grun et al., 2014; Stuart
and Satija, 2019). Due to the high number of biological repli-
cates, transcriptomic datasets, such as the Cancer Genome
Atlas, provide a rich resource in characterizing the hetero-
geneity of oncogenic transformation. Yet, these data were
obtained from homogenized tissue samples and reflect the ex-
pression of genes averaged across a heterogeneous cell pop-
ulation. Computationally, "Digital Cytometry" can deconvo-
lute the prevalence of individual cell types present within a
mixed cell population (Newman et al., 2019). The approach
stems from the idea that the influx of a particular cell subset
into a tissue corresponds to an increase in a gene signature
uniquely associated with this particular cell subset (Shen-Orr
et al., 2012; Yoshihara et al., 2013; Wang et al., 2018; Zait-
sev et al., 2019). Gene signatures of immune cells have been
developed in a number of studies, which increasingly lever-
age scRNAseq data and machine-learning methods (Shen-
Orr et al., 2010; Becht et al., 2016; Schelker et al., 2017;
Torang et al., 2019). Besides representing different cellu-
lar subsets, gene signatures can also represent intracellular
processes associated with oncogenesis, like the epithelial-
mesenchymal transition (Tan et al., 2014; Koplev et al., 2018;
Malta et al., 2018; George et al., 2017; Klinke and Torang,
2020). Though, the predictive value of many of these tis-
sue "features" in inferring how heterocellular networks are
altered in diseased tissues remain unclear, as establishing cor-
relations among features tends to be the end point of studies
(e.g., (Tosolini et al., 2011; Malta et al., 2018; Thorsson et al.,
2018)).

Increases in size and information content of transcrip-
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tomic datasets enable using probabilistic inference methods
to identify relationships within the data that could not be ob-
served using simpler statistical techniques (Hill et al., 2016;
Friedman, 2004). However to infer how heterocellular net-
works are altered in diseased tissues, we need to be able
to identify the direction of information flow within the net-
work, that is the causal relationships among interacting com-
ponents. One method to identify the topology of a causal
network in an unbiased way is to use algorithms that identify
Bayesian networks (Scutari, 2010). Bayesian networks are a
type of directed acyclic graphs (DAG), where each node rep-
resents a random variable, or "feature", and each edge rep-
resents a causal relationship between two nodes. As algo-
rithms for reconstructing Bayesian networks emerged, they
were used to model signaling pathways within cells (Sachs
et al., 2002), to identify known DNA repair networks in E.
coli using microarray data (Perrin et al., 2003) and to iden-
tify simple phosphorylation cascades in T lymphocytes using
flow cytometry data (Sachs et al., 2005, 2009). While many
more studies have been published since, a common conclu-
sion is that the statistical confidence associated with an in-
ferred network improves as the number of samples included
in a dataset is greater than the number of random variables.
However, transcriptomics data, like that obtained as part of
the TCGA, typically have a large number of random vari-
ables (ngenes) and a small number of biological replicates
(Npatients), which makes inferring gene-level networks com-
putationally difficult (Zou and Conzen, 2005).

As summarized in Figure 1, we propose an approach that
combines digital cytometry with Bayesian network infer-
ence to identify how heterocellular networks associated with
functional plasticity and anti-tumor immunity change during
oncogenesis in humans. Conceptually, digital cytometry im-
proves the statistical power by projecting the transcriptomic
space onto a smaller number of "features" that estimate the
prevalence of stromal and immune cell types and the average
differentiation state of malignant cells present within the tu-
mor microenvironment, such that 1 feqtures << Mpatients-
The causal structure among these features can then be pre-
dicted using Bayesian network inference. While data un-
structured in time, such as the TCGA datasets, are not ideal
for inferring causality, we test the inferred networks using in
vivo experiments using syngeneic murine tumor models.

To illustrate the approach, we focused on Cell Communi-
cation Network factor 4 (CCN4/WISP1), as it is upregulated
in invasive breast cancer (Klinke, 2014) and correlates with
a lower overall survival in patients diagnosed with primary
melanoma (Deng et al., 2019). Functionally, CCN4 promotes
metastasis in melanoma by promoting a process similar to the
epithelial-mesenchymal transition (Deng et al., 2019, 2020).
In developing state metrics that quantify functional plastic-
ity in breast cancer and melanoma using an unsupervised ap-
proach, CCN4 was the only gene associated with both a mes-
enchymal state metric in breast cancer and a de-differentiated
state metric in melanoma that results in a secreted protein
(Klinke and Torang, 2020). The collective set of features,
or simply nodes of a network, were quantified in three tran-
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scriptomic datasets obtained from bulk tissue samples from
patients with breast cancer and melanoma and used to gen-
erate a casual network describing how expression of a "gene
driver" associated with oncogenesis, such as CCN4, alters
the heterocellular network within a tissue using Bayesian net-
work inference.

Results

Generating causal graphs that link oncogenic
changes in gene expression with changes in the het-
erocellular network. Bayesian network inference involves
inferring the structure of the network, which captures the
specific interactions or edges among the nodes of a network
and represents them as a directed acyclic graph (DAG), and
then estimating the parameters of the conditional probability
distribution from the datasets. We used a two-step process to
learn the causal structure associated the cell-level networks.
First, we created a collection of edges that were consistently
identified among the different structural learning algorithms,
that is a consensus seed network. In the initial structure
learning step, an overall flow of the network was specified
by limiting the inclusion of edges into a proposed network.
In particular, we considered only edges into the "CD8 T
cells" node (i.e., a leaf node), only edges that originate
from the "Cancer" node (i.e., a root node), mostly edges
that originate from the "CCN4" node (with exception for
the "Cancer" node), and only edges into the "CD4 T cells"
and "Neutrophils" nodes. Specifying "CD4 T cells" and
"Neutrophils" as leaf nodes follows from the high number of
zero values for those features in the dataset, which were 350
and 439 samples in the BRCA dataset, respectively. This
was implemented by assigning the corresponding edges to a
"blacklist". Collectively, this represents a way to incorporate
prior knowledge about causal relationships associated with
oncogenesis and the roles that specific immune cells play in
controlling tumor cell growth.

As algorithms for structural learning have different under-
lying assumptions, we used an ensemble approach to average
across the different algorithms to identify an initial structure
of the DAG. Specifically, we used nine different structural
learning algorithms (Scutari, 2010), including a pairwise mu-
tual information (ARACNE), constraint-based (Incremental
association Markov Blanket - IAMB, Incremental associa-
tion with false discovery rate control - IAMB.FDR, practi-
cal constraint - PC.STABLE), local discovery of undirected
graphs (max-min parents and children - MMPC, Hiton par-
ents and children - SLHITON.PC), score-based (hill climbing
- HC, Tabu search - Tabu), and hybrid learning (max-min hill-
climbing - MMHC) algorithms. Bootstrap resampling was
used in learning the network structure with each algorithm,
which resulted in generating 10,000 network structures. For
each algorithm, an averaged network structure was calculated
from the collection of network structures, where the thresh-
old for inclusion of a edge into the average network was
automatically determined by each algorithm and was nom-
inally 0.5. Whether a particular edge promotes or inhibits
the target node was determined based on the sign of the cor-
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relation coefficient between the two nodes. We applied the
same approach to both the breast cancer (BRCA - Figures 2
and 3) and the two melanoma datasets (common melanocytic
nevi and primary melanoma: GEO and primary melanoma
from the TCGA: SKCM - Figures S4 and 5). To generate
consensus seed networks, the BRCA dataset was analyzed
alone (see Table S1) while results for the two melanoma
datasets (see Tables S2 (GEO) and S3 (SKCM)) were used
together. Including edges in the consensus seed network
was based on consistency among algorithms, strength of the
edge, and whether the edge provided a new connection link-
ing the "Cancer" node with effector immune cell nodes, such
as "CD4 T cells" or "CD8 T cells", or potential negative feed-
back mechanisms, which is illustrated graphically in Figures
2 and S4. For instance, in analyzing the BRCA dataset, edge
numbers 32 ("Cancer" — "pM1"), 37 ("Cancer" — "B cells
naive"), 45 ("CCN4" — "Macrophages"), 46 ("Cancer" —
"resting NK cells"), and 53 ("CCN4" — "active NK cells")
were included as they provided novel edges to the consen-
sus seed network. The inferred direction of a number of
edges varied among the algorithms (yellow bars in Figures
2 and S4) and were left out of the consensus seed network.
The final network for each dataset was generated using a
hybrid learning algorithm (mmhc) using a "blacklist" spec-
ified based on prior causal knowledge and a "whitelist" cor-
responding to the consensus seed network. Similar to the first
step, bootstrap resampling (np00¢ = 10,000) and network av-
eraging were used to generate the DAGs shown in Figures 3
and 5. The averaged DAG was used to generate parameters
for a linear Gaussian model estimated by maximum likeli-
hood and conditioned on the network structure that approx-
imates the joint probability distribution associated with the
dataset. Values for the linear coefficients and the average
node values were used to annotate the DAGs.

Oncogenesis in breast cancer was associated with a shift
from epithelial to mesenchymal cell state accompanied by
an increase in cell proliferation and a suppression of en-
dothelial cells, which were inferred with high confidence. In
turn, endothelial cells promote the infiltration of CD4 T cells.
The local structure associated with "Cancer"’s influence on
the "Mesenchymal" state via "CCN4" suggests an incoherent
type-3 feed-forward motif to regulate the mesenchymal state,
with CCN4 also inhibiting active NK cells. The high confi-
dence edge between active NK and resting NK cells follows
from these features being mutually exclusive in the dataset
and very few samples having zero values for both features.
The mesenchymal state increased cancer-associated fibrob-
lasts ("s) with high confidence. Interestingly, oncogenesis
was also associated with increasing the prevalence of a type 1
macrophage, which in turn promoted the recruitment of CD8
T cells. The prevalence of CD8 T cells are also connected to
"Cancer" via a larger incoherent feed-forward motif involv-
ing "CCN4" and "CAFs" with high confidence.

As there was more data supporting the BRCA DAG, the
resulting Bayesian network model was compared against the
underlying experimental data and used to explore the impact
of varying CCN4 expression in the context of normal and
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tumor tissue (Figure 4). To simulate "normal” and "tumor"
tissue, we queried the conditional probability distribution by
generating samples from the Bayesian network and filtered
the values based on p("Cancer" < 0.15) and p("Cancer" >
0.85), which are colored in orange and blue, respectively.
Corresponding experimental data points and trendlines are
overlaid upon the posterior distributions. The posterior dis-
tributions mirror the experimental data points, where there is
an increase in CCN4 expression between "normal" and "tu-
mor" tissue. The posterior distributions mirror the variability
observed in the experimental data when comprised of non-
zero values, such as CD8 T cells. In contrast, the prevalence
of zero values increased the range of the posterior distribu-
tion, such as for CD4 T cells. In comparing "normal" to
"tumor" tissue, CD8 T cells was the only feature, on aver-
age, increased in "tumor" tissue, while CD4 T cells, B cells,
and cancer associated fibroblasts were decreased. Slopes
of the trendlines highlight the influence of CCN4 gene ex-
pression on the prevalence of different immune cell popula-
tions. Increased CCN4 had the most pronounced inhibition
on NK cells and also suppressed CD8 T cells. CCN4 also had
a pronounced positive impact on the prevalence of cancer-
associated fibroblasts, macrophages, and slightly promoted
CD4 T cells. CCN4 seemed to have little to no impact on
B cells in "normal" tissue while inhibited B cells in "tumor"
tissue.

The breast cancer dataset contained 582 samples, of which
8.8% were from normal mammary tissue. In contrast, the
two melanoma datasets contained 78 GEO samples, which
includes 34.6% benign nevi, and 94 SKCM samples of pri-
mary melanoma only. While a lower number of samples
limits the inferential power of a dataset, we decided not to
combine them together as they had different distributions in
transcript abundance as a function of transcript length. As
the Bayesian network inference algorithm leverages differ-
ences in the magnitude of a feature within a population, ap-
proaches to harmonize these two datasets may introduce a
systemic bias that is convoluted with oncogenic transforma-
tion, as the GEO dataset has many samples obtained from be-
nign nevi while the SKCM dataset does not. We decided to
analyze the melanoma datasets separately and combine the
enriched edges in each dataset into a consensus seed net-
work that reflects both datasets. In analyzing the melanoma
datasets, edge numbers 26 ("CAF" — "CD8 T cells") and
30 ("CCN4" — "CAF") in the GEO analysis while edge
numbers 17 ("CCN4" — "CAF"), 18 ("CAF" — "CD8 T
cells"), and 22 ("Active NK cells" — "CD8 T cells") from
the SKCM analysis were included in the consensus seed net-
work. This consensus seed network was then included in the
"whitelist" to learn the structure and parameters associated
with Bayesian network inferred from the melanoma datasets
(see Figure 5).

Given the high prevalence of samples from benign nevi in
the GEO dataset, high confidence edges in the GEO network
focus on changes associated with oncogenesis. Similar to
the breast cancer analysis, oncogenesis was associated with a
shift from an epithelial to a mesenchymal-like cell state and
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the promotion of cell proliferation. Here, the mesenchymal
cell state is promoted by both oncogenesis and CCN4 with
a coherent feed-forward motif. Similar to the breast cancer
analysis, oncogenesis promoted an increase in CD8 T cells,
but indirectly by recruiting active NK cells. In contrast to
the breast cancer analysis, CCN4 directly impacted CAFs
and resting NK cells, although the "CCN4" — "resting NK
cells" edge had both low confidence and low influence pa-
rameter. In analyzing the SKCM dataset, less emphasis is
placed on the changes associated with oncogenesis but how
expression of CCN4 influenced the network. Similarly to the
GEO analysis, the SKCM dataset suggested that CCN4 di-
rectly impacted the mesenchymal state, CAFs, and resting
NK cells, but the influence on resting NK cells changed from
a slight inhibition in the GEO dataset (-0.11) to strong pro-
motion in the SKCM dataset (0.75). In addition, the edge
between CAFs and the mesenchymal state was inferred with
high confidence but changing direction between GEO and
SKCM datasets suggests that the algorithms were unable to
discern edge direction from the data. In both melanoma
datasets, CAFs influence CD8 T cells via an incoherent feed-
forward motif involving the prevalence of macrophages. In
addition, Neutrophils, macrophage polarization, and B cells
were independent of oncogenesis and CCN4 expression. In
all three analysis, there was high confidence associated with
the edges among the nodes quantifying macrophage polariza-
tion, which is likely an artifact of formula used to calculate
p(M®i)’s. Queries of the conditional probability distribu-
tion based on the SKCM DAG for CD8 T cells, active NK
cells, Macrophages, B cells, and CAFs were similar to the
BRCA analysis (Fig. S5). Similar to the BRCA analysis, a
high number of zero values for the CD4 T cell features in the
SKCM dataset suggests caution in interpreting differences in
CD4 T cell predictions.

Validating the impact of CCN4 on heterocellular net-
works using syngeneic mouse models. Syngeneic im-
munocompetent mouse models of cancer provide an impor-
tant complement to retrospective studies of human data as
they can aid in causally linking genetic alterations with cel-
lular changes the tumor microenvironment. Here we used
two syngeneic transplantable models for melanoma to test
the predictions generated by the Bayesian network inference:
the spontaneous B16F0 model and the YUMM1.7 model that
displays Braf¥'600E/WT pen—/= Cdkn2~/~ genotype. As
these cell lines basally produce CCN4, we generated CCN4
knock-out (KO) variants of these parental cell lines using a
CRISPR/Cas9 approach and confirmed CCN4 KO by test-
ing conditioned media for CCN4 by ELISA. Tumors were
generated by injecting the cell variants subcutaneously in 6-
8 week old female C57BL/6 mice and monitoring for tumor
growth. Once wt tumors reached between 1000 and 1500
mm? in size, tumors were surgically removed from all mice
that were not considered outliers and processed into single
cell suspensions (n =7 for YUMMI.7 variants and n = 4 for
B16FO0 variants). The single cell suspensions were aliquoted
among three antibody panels to characterize the tumor infil-
trating lymphocytes by flow cytometry (see Supplementary

4 | bioRxiv

Figures S6-S8 for gating strategies). While the B16F0 and
YUMMI.7 KO variants were generated using a double nick-
ase CRISPR/Cas9 approach, similar results were obtained
using a homology directed repair strategy (Fernandez et al.,
2020; Deng et al., 2020). Additional controls for puromycin
selection of CRIPSR/Cas9 edited cells using B16FO0 cells
transfected with a pBabe-puromycin retrovirus also behaved
functionally similar in vitro and in vivo as wild-type B16F0
cells (Deng et al., 2020).

The percentage of CD457 cells among total live cells ex-
hibited a semi-log dependence on tumor size (Fig. 6A -
B16F0: R? = 0.607, F-test p-value = 7.27E-6; YUMM1.7:
R? = 0.830, F-test p-value = 1.48E-7), where CCN4 KO
resulted in smaller tumors in both cell models with greater
CD457% cell infiltration. As illustrated in Figure 6A,
YUMMI.7 variants had a much higher dependence on tumor
size than B16F0 variants. Conventionally, flow cytometry
data are normalized to tumor size to estimate the prevalence
of a particular cell type per tumor volume. Yet, the depen-
dence on tumor size could be a confounding factor in addi-
tion to CCN4 expression that could skew the results. More-
over, the Bayesian network analysis predicts the impact of
CCN4 alone on the prevalence of specific immune cell sub-
sets. Thus, we focused instead on the prevalence of a par-
ticular cell type within the live CD45% TIL compartment to
compare against the Bayesian network predictions.

In comparing the wt B16FO and YUMMI1.7 models, the
relative prevalence of NK, CD4T T, and CD8™ T cells were
similar while B cells were almost 10-times more prevalent in
the B16F0 tumors compared to YUMM1.7 tumors (Fig. 6B).
The prevalence of these different cell types changed within
the CD45" TIL compartment upon CCN4 KO (Fig. 6C and
D). Figure 6C highlights the trends among the mouse mod-
els and compares against the Bayesian network predictions
obtained from the BRCA and SKCM datasets. Predictions
for the change in cell type prevalence by CCN4 expression
were obtained by propagating a change in the "CCN4" node
from O to 1 within the linear Gaussian model to the target
node, which is also represented by the slope of the "Can-
cer" trendlines in Figures 4 and S5. Specifically, CD4 and
CDS8 T cells and B cells had analogous nodes in the Bayesian
networks as assayed in the flow panel, while NK cells were
mapped to "active NK cells" in the Bayesian network. The
relative change in abundance was largely consistent among
the four systems, with the YUMMI1.7 model being the most
different. The BRCA and SKCM datasets predicted that NK
cells were most reduced by CCN4, which was observed in
the B16F0 model (p-value = 0.047). Both BRCA and SKCM
datasets predicted that CCN4 reduced CD8* T cells, which
was observed in the YUMMI1.7 model (YUMM1.7 p-value
=0.002). The CD4™" T cells seemed to vary in response to
CCN4 expression as the BRCA and B16FO0 results showed
an increase while the SKCM and YUMM1.7 results showed a
decrease. As stated previously, the BRCA and SKCM predic-
tions for CD4 T cells should be interpreted with caution given
the high frequency of zero values for the features. B cell re-
sponse was mixed with both the BRCA and SKCM results
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suggesting no change and an increase in the B16FO model
and a decrease in the YUMM 1.7 model, with the low number
of B cells infiltrating YUMM1.7 tumors rendered the results
more variable. Given the small sample size of the experi-
mental mouse cohorts, only the extremes were statistically
significant, with NK cells significantly increased (p-value =
0.047) and B cells significantly decreased (p-value = 0.002)
in BI6FO CCN4 KO tumors and CD8 T cells significantly
increased (p-value = 0.002) in YUMM1.7 CCN4 KO tumors
(Fig. 6D).

Concordance in CCN4-induced changes in the
myeloid compartment are less clear.In addition to
changes in T and NK cells within the live CD45% compart-
ment, we also assayed myeloid subsets in tumors generated
by wt and CCN4 KO variants of the BI6FO and YUMMI1.7
cell lines. Using the gating strategy summarized in Fig-
ure S8, we focused on CD11c™ and CD11c™ macrophages
(live CD45" CD11b™ GR1~ F4/807 cells), neutrophils (live
CD45% CD11bl/it CD11ct GR1~ F4/80~ cells), den-
dritic cells, and two different myeloid-derived suppressor cell
(MDSC) subsets: CD11c™ and CD11ct MDSC. In compar-
ing tumors derived from wt cell lines, CD11c™ macrophages
were the most predominant infiltrating myeloid cell subset
and, except for CD11c™ macrophages, most subsets were
consistent between the two mouse models (Fig. 7A). Upon
CCN4 KO in the mouse models, the macrophage subsets
tended to increase while the MDSC subsets decreased (Fig.
7B-E) within the CD45" compartment, while the neutrophil
response varied. The reduction in CD11c¢t MDSC in CCN4
KO variants were most pronounced and statistically signifi-
cant (p=0.004 in YUMM1.7 and p = 0.153 in BI6F0). While
Ly6G and Ly6C staining may have been a better staining
strategy for distinguishing among monocytic (Mo-) and poly-
morphonuclear (PMN-) MDSC subsets, we observed a re-
duction in PMN-MDSCs in YUMM1.7 tumors upon CCN4
KO using Ly6G/Ly6C antibodies (Fernandez et al., 2020).
Consistent with the idea that PMN-MDSCs arise from im-
paired differentiation of granulocytes, neutrophils were in-
creased within the CD45" compartment in CCN4 KO tu-
mors derived from YUMMI.7 cells (p = 0.002) but not sta-
tistically different in the B16FO model (p = 0.097). Other
myeloid subsets trended similarly but with differences that
were not statistically significant. In addition, we noted that
a dendritic cell subset (live CD45T CDI11bt/it CD11ct
GR17~ F4/80~ cells) increased upon CCN4 KO (p=0.045 in
YUMMI.7 and p=0.011 in B16FO0).

Comparing the trends in the myeloid compartment ob-
served among the mouse models and the Bayesian network
predictions obtained from the BRCA and SKCM datasets is
less clear, given the uncertainty as to how the digital cytome-
try features map onto the quantified myeloid subsets in these
mouse models. Key myeloid features in the Bayesian net-
works were macrophages oriented towards a M1 phenotype.
Correspondingly, CD11c™ macrophages, a subset that has
been associated with pro-inflammatory M1 tumor-associated
macrophages (Jeong et al., 2019), were the most predomi-
nant myeloid subset in wt B16FO and YUMM1.7 tumors and
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didn’t change upon CCN4 KO. In the BRCA dataset, the
prevalence of macrophages was influenced by CCN4 expres-
sion; yet, the functional orientation away from the M2 and to-
wards the M1 phenotype depended solely on oncogenic trans-
formation. Similarly, the prevalence of macrophages was in-
fluenced by both CCN4 expression and oncogenic transfor-
mation in both melanoma datasets. In contrast to the BRCA
results, functional orientation of macrophages were indepen-
dent of both oncogenic transformation and CCN4 expression.
Neutrophils were predicted to be independent of CCN4 in
the melanoma datasets, which is not surprising considering
that the the majority of tumors had zero values for the Neu-
trophil feature (see Figs. S1-S3). Similarly, neutrophils were
about 10 times less abundant than CD11c+ macrophages in
the mouse models. Given the significant changes observed
in MDSCs in the mouse models, challenging digital cytom-
etry predictions in this way highlights features that can be
improved, such as discriminating among terminally differ-
entiated and immature subsets, like Mo-MDSC and PMN-
MDSC.

CCN4 has no direct effect on T cell proliferation but al-
ters CD8™ T cell function. The local proliferation of CD8
T cells correlates with clinical response to immune check-
point blockade (Huang et al., 2017; Twyman-Saint Victor
et al., 2015). In addition, the DAGs inferred from both the
breast cancer and melanoma datasets suggest that a decrease
in CD8™T T cells is driven indirectly through CCN4 via mod-
ulating cancer-associated fibroblasts or the activity of NK
cells. While the structural learning algorithms rejected a di-
rect edge between CCN4 and CD8™ cells, we tested whether
CCN4 directly inhibits T cell proliferation (see Fig. 8A
and B) using a statistical analysis of Cell Trace distributions
in CD41 and CD81 T cells stimulated in vitro (see Table
S4). Specifically, splenocytes were stimulated in vitro with
aCD3/aCD28-loaded beads in the presence of media condi-
tioned by wt or CCN4 KO B16FO cells or supplemented with
10 ng/ml recombinant mouse CCN4. In both the CD4 ™ and
CDS8™ T cell populations, the presence of tumor-conditioned
media significantly inhibited the fraction of cells that divided
at least once (Dil - CD4 p-value = 0.022, CD8 p-value =
0.018) and the probability that a cell will divide at least once
(PF - CD4 p-value = 0.024, CD8 p-value = 0.013) while
CCN4 exposure was not a statistically significant factor. For
responding cells, the average number of divisions they un-
dergo (PI) was not different among experimental conditions
for CD41 T cells (p-value = 0.22) but reduced in CD8* T
cells exposed to tumor-conditioned media (p-value = 0.0077).
Overall, the presence of tumor-conditioned media and not
CCN4 influenced T cell proliferation, which was consistent
with the DAGs.

Another characteristic of CD8T T cells present within the
tumor microenvironment is that they are dysfunctional (Li
et al., 2019). As the digital cytometry approach used here
doesn’t estimate the functional state of CD8" T cells only
their prevalence within a tissue sample, we decided to test
whether CCN4 had a direct impact on CD8T T cell func-
tion, as quantified by target-specific ex vivo cytokine release
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as measured by ELISpot. First we generated YUMMI.7-
reactive CD8T T cells by immunizing C57BL/6mice against
YUMMI1.7 cells and isolated CD8a™ T cells from spleno-
cytes three days after re-priming with live YUMMI1.7 cells.
We also created a variant of CCN4 KO YUMM1.7 cells with
CCN4 expression induced by doxycycline and vector con-
trols that were used as target cells (see Fig. S9). IFN~y
and TNFa ELISpots were used to quantify the CD8T T cell
functional response to the different tumor targets in the pres-
ence or absence of tumor-produced CCN4. As expected for
are-call CD8a™ effector T cell response, the most prominent
IFN~ and lowest TNFa responses were against wt and CCN4
KO YUMM1.7 cells, with a slightly higher IFN+y response to
wt YUMMI.7 targets (see Fig. 8C, p-value < 0.05). Inter-
estingly, re-expression of CCN4 by CCN4 KO YUMMI1.7
cells following doxycycline induction significantly reduced
both IFN~y and TNFa production (p-value < 0.001), which
suggests that CCN4 plays a direct role in inhibiting CD8a™
T cell function. Of note, CCN4 was predicted to directly in-
hibit the activity of NK cells, which share cytokine release
and cytotoxicity mechanisms with CD8" T cells. Overall,
the changes observed between wt and CCN4 KO variants
of the B16F0 and YUMM1.7 mouse models were consistent
with the causal networks inferred from the breast cancer and
melanoma datasets.

Discussion

Validating the role that a particular molecule plays in driving
the disease state using targeted experiments is central for im-
proving understanding of biological mechanisms or selecting
among competing drug targets. Given the limited observabil-
ity of the biological response in experimental models and pa-
tients, mechanistic modeling and simulation is playing an in-
creasing role in helping answer many central questions in dis-
covering, developing, and receiving federal approval of phar-
maceutical drugs and also basic biology (Moore and Allen,
2019). In immuno-oncology, there is increasing interest in
modeling the heterocellular network of relevance for a spe-
cific immunotherapy. The first step in creating mathematical
models of cell-level networks is to create the topology of the
network, which is expressed in terms of which nodes to in-
clude and how they influence each other. The structure of
these cell-level models is created using a fully supervised ap-
proach, which means by hand using expert knowledge (Gad-
kar et al., 2016). For instance, systems of ordinary differen-
tial equations have been developed to capture multiple spa-
tial compartments containing interacting malignant, antigen
presenting, and T cells and to predict a general immune re-
sponse (Palsson et al., 2013), a response to immune check-
point blockade using CTLA-4, PD-1, and PD-L1 antibodies
(Milberg et al., 2019) or adoptive cell transfer (Klinke and
Wang, 2016).

While leveraging the knowledge of experts is a great start-
ing point, hand-curated models can also implicitly impose
bias on how data is interpreted. In the context of molecular-
level networks, rules and algorithms have been developed
to elaborate causal networks based on a limited set of rules
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(Chylek et al., 2014; Sekar and Faeder, 2012; Boutillier et al.,
2018; Vernuccio and Broadbelt, 2019). The rules constrain
the types of interactions, or edges, that are realistic between
the nodes while the algorithms generate all possible edges
that are consistent with the rules and collection of nodes. The
resulting rule-based networks are then used to interpret data
by filter the edges for the most consistent and, in the process,
may reveal previously unappreciated pathways. For instance,
a rule-based model was used to interpret single-molecule de-
tection of multisite phosphorylation on intact EGFR to re-
veal new a role for the abundance of adaptor proteins to
redirect signaling (Salazar-Cavazos et al., 2020). Given the
challenges with representing the various activation states of
a 12-subunit Ca?*/calmodulin-dependent protein kinase II
(CaMKII) holoenzyme that is essential for memory function,
a rule-based model identified a molecular mechanism sta-
bilizing protein activity that was obscured in prior reduced
models (Pharris et al., 2019). Inspired by engineering better
CAR T cells, Rohrs et al. developed a rule-based model to
interpret site-specific phosphorylation dynamics associated
with Chimeric Antigen Receptors (Rohrs et al., 2018).

To our knowledge, no equivalent approaches exist in the
context of modeling cell-level networks.! We posit that cou-
pling digital cytometry with Bayesian network inference is
analogous to rule-based modeling in the context of modeling
cell-level networks. Here, the rules comprise a limited set of
constraints, or heuristics, related to the direction of informa-
tion flow. Specifically, the rules limit how changes in gene
expression within the malignant cell introduced during onco-
genesis propagate to stromal and immune cells present within
the tumor microenvironment and are implemented as a "black
list". The algorithms that underpin Bayesian network infer-
ence search over all possible network topologies for edges
that are consistent with the data. The resulting networks can
be used in multiple ways. As an unsupervised approach, the
network topology could complement existing workflows for
creating mechanistic mathematical models fit for use in test-
ing molecular targets (Gadkar et al., 2016; Ramanujan et al.,
2019). In addition, DAGs represent explicit hypotheses gen-
erated from pre-existing human data that motivate new exper-
iments to validate the predictions, as illustrated by the B16F0
and YUMM1.7 results.

While the focus here is in the context of breast cancer
and melanoma due the pre-existing breadth of data, the ap-
proach could be generally applied to other biological con-
texts and motivate new experimental studies. For instance,
one of the limitations of inferring the network topology in

1One might consider agent-based or cellular automata models to apply
as the cellular interactions are specified by rules. In rule-based modeling
of molecular networks, the rules and algorithms elaborate a network space
that encompasses all possible topologies of the network and data is used to
prune the network to the most relevant. Similarly, the edges included in the
"blacklist" and "whitelists" can be considered as a Bayesian prior, where the
strength of inclusion in the final DAG and the coefficient associated with a
particular edge in the conditional probability function depend on the data.
In contrast, agent-based or cellular automata models require specifying all
interactions between cells as rules a priori and are validated qualitatively
by comparing emergent behavior against experimental observations (Hwang
et al., 2009; Lépez et al., 2017; Mallet and De Pillis, 2006).
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the form of directed acyclic graphs is that some direct and in-
direct causal relationships can be confounded, such as recip-
rocal feedback modes of communication between cells (Zhou
et al., 2018). Discerning the difference between a direct and
indirect causal relationship has practical importance, such as
for selecting therapeutic targets (Pearl, 2005). Methods, like
Granger causality and dynamic Bayesian networks (Finkle
et al., 2018; Li et al., 2014; Zou and Conzen, 2005), do ex-
ist that could reveal direct and indirect causal relationships,
but time-series data is required. Unfortunately, human tis-
sue samples, like those in the TGCA, are very rarely sampled
with time. Analysis of pre-existing human datasets can be
complemented by a more focused experimental study of a
pre-clinical model. Specifically, single-cell RNAseq to iden-
tify the cell types present and their associated gene signatures
can be combined with bulk transcriptomic seqgencing to cap-
ture the prevalence of all of the cell types within the tissue
sample and provide a large number of biological replicates
spanning the disease space - normal homeostasis; initiation;
early, middle and late progression; and productive resolution
or adverse outcomes. Similar network topologies would sug-
gest similar biological mechanisms and help select relevant
pre-clinical models for drug development. In short, we feel
that combining digital cytometry with Bayesian network in-
ference has the potential to become an indispensable unsu-
pervised approach for discovering relevant heterocellular net-
works associated with disease.

Methods

Digital Cytometry. Transcriptomics profiling of bulk tissue
samples using Illumina RNA sequencing for the breast can-
cer (BRCA) and cutaneous melanoma (SKCM) arms of the
Cancer Genome Atlas was downloaded from TCGA data
commons, where values for gene expression were expressed
in counts using the "TCGAbiolinks" (V2.8.2) package in R
(V3.6.1) and converted to TPM. RNA-seq data expressed in
counts assayed in samples acquired from benign melanocytic
nevi and untreated primary melanoma tissue and associ-
ated sample annotation were downloaded from GEO entry
GSE98394 and converted to TPM. TCGA data and the be-
nign nevi and melanoma data were filtered to remove sam-
ple outliers and normalized based on housekeeping gene ex-
pression (Eisenberg and Levanon, 2013). Digital cytometry
features associated with the functional plasticity of tumor
cells within an epithelial to mesenchymal-like state space
were calculated based on state metrics developed separately
for bulk breast cancer and melanoma tissue samples (Klinke
and Torang, 2020). Cell proliferation features were calcu-
lated based on the median expression of genes associated
with cell proliferation identified previously using human cell
line data (Deng et al., 2020). Features corresponding to
the prevalence of endothelial cells, cancer-associated fibrob-
lasts, macrophages, and CD4™" T cells were calculated us-
ing CIBERSORTX (https://cibersortx.stanford.edu) using the
gene signatures derived from single cell RNAseq data (Tirosh
et al., 2016) while the prevalence of B cells naive, CD8*
T cells, Macrophage MO (M ®0), Macrophage M1 (M ®1),
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Macrophage M2 (M ®2), activated NK cells, resting NK
cells, and neutrophils were calculated using the LM22 im-
mune cell gene signatures in CIBERSORTX run in absolute
mode.

Given the potential lack of independence among the
macrophage features, the LM22 macrophage features were
combined to estimate the probability of the average
functional orientation using the formula described previ-
ously(Kaiser et al., 2016):

MPq

PIM®) = a1 - M2’ D

where i = {0,1,2} and denotes the specific macrophage sub-
type. Additional cellular features were excluded from the
analysis as they tended to have a large number of zero val-
ues across the datasets or were disconnected from the rest of
the network in preliminary network inference studies. Sam-
ple attributes were transformed to numerical values, which
were assumed to be extremes of a continuous variable (e.g.,
Normal = 0, Cancer = 1). The sample attributes, CCN4 gene
expression, and estimated cellular features extracted from the
bulk RNAseq data calculated for each sample are included in
the GitHub repository.

Bayesian Network Inference. Prior to network inference,
feature values were log transformed, normalized to values
between 0 and 1, and discretized (BRCA: 15 intervals; GEO
and SKCM: 6 intervals), as summarized in supplemental Fig-
ures S1-S3. The features were then assigned to nodes. The
relationships among the nodes, or edges, were represented
by directed acyclic graphs inferred from the datasets using a
two-stage process, as detailed in the results section. Given
the inferred structure, a Bayesian network in the form of a
linear Gaussian model was fit to the datasets using maximum
likelihood estimation of the model parameters. Conditional
probability queries of the Bayesian networks were performed
by logic sampling with 10° samples. Bayesian network infer-
ence was performed using the ‘bnlearn’ package (V4.5) in R
(V3.6.1).

Reagents and Cell Culture. Cytokines and antibodies
were obtained from commercial sources and used accord-
ing to the suppliers’ recommendations unless otherwise in-
dicated. @ The mouse melanoma line B16F0 (purchased
in 2008, RRID: CVCL_0604) was obtained from Ameri-
can Tissue Culture Collection (ATCC, Manassas, VA). The
mouse melanoma line YUMMI.7 (received in September
2017, RRID: CVCL_JK16) was a gift from Drs. William
E. Damsky and Marcus W. Bosenberg (Yale University)
(Meeth et al., 2016). B16F0 and YUMMI.7 cells were
cultured at 37°C in 5% CO2 in high-glucose DMEM
(Cellgro/Corning) supplemented with L-glutamine (Lonza),
penicillin-streptomycin (Gibco), and 10% heat-inactivated
fetal bovine serum (Hyclone). All cell lines were revived
from frozen stock, used within 10-15 passages that did not
exceed a period of 6 months, and routinely tested for my-
coplasma contamination by PCR. CCN4 knock-out vari-
ants of B16F0 and YUMMI1.7 cells were generated using a
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double-nickase CRISPR/Cas9 editing strategy described pre-
viously (Deng et al., 2019). Briefly, two pairs of mouse
CCN4 double nickase plasmids that target the mouse CCN4
gene at different locations were purchased from Santa Cruz
Biotechnology, Inc. (Dallas, TX) and transfected into B16F0
and YUMMI.7 cells following the manufacturer’s instruc-
tions. Following antibiotic selection, surviving single clones
were isolated and expanded on 6-well plates. The concen-
tration of CCN4 in the cell culture media from those wells
was assayed using the Human WISP-1/CCN4 DuoSet ELISA
Kit (R&D Systems, Minneapolis, MN) to confirm CCN4
knockout. CCN4-knockout cells were further expanded and
aliquoted to create a low passage frozen stock.

In vivo Tumor Assays and in vitro T cell proliferation
assays. All animal experiments were approved by West Vir-
ginia University (WVU) Institutional Animal Care and Use
Committee and performed on-site. C57BL/6Ncrl mice (6-
8 week-old female) were from Charles River Laboratories.
Mice were randomly assigned to treatment groups and co-
housed following tumor initiation. Subcutaneous tumors
were initiated by injecting mice subcutaneously with 3 x 10°
of the indicated YUMMI1.7 cells and 2.2 x 10° of the in-
dicated B16FO0 cells in 100 pL. and, once palpable, tumor
sizes were recorded every other day via caliper. Tumor vol-
ume was calculated using the formula: 0.5236 x width? x
length, where the width is the smaller dimension of the tu-
mor. Once WT tumors reached between 1000 and 1500 mm?3
in size, the tumors were surgically removed from mice in
both arms of the study (WT and CCN4 KO) after euthana-
sia and processed into single cell suspensions. This normally
occurred at Day 14 with the BI6F0 model and at Day 27
with the YUMMI1.7 model. Seven tumors were processed
separately for each YUMMI1.7 variant while four tumors
were processed for each B16F0 variant. Single-cell suspen-
sions were obtained by enzymatically digesting the excised
tumors using the Tumor Dissociation Kit and gentleMACS
C system (Miltenyi Biotec, Auburn, CA). In addition to
following the manufacturer’s instructions, the gentleMACS
program 37C_m_TDK_1 was used for B16F0 tumors and
37C_m_TDK_2 was used for YUMM1.7 tumors. Following
lysing of the red blood cells, the remaining single-cell sus-
pensions were washed and stained with Live/Dead Fixable
Pacific Blue Dead Cell Stain Kit (ThermoFisher). Following
blocking with Mouse BD Fc Block (BD Biosciences), the
surface of the cells were stained with one of three different
antibody mixes that focused on T cells (CD45, CD3, CD4,
CD8, and PD1), NK and B cells (CD45, B220, NK11, DXS5,
and PD1), and myeloid cells (CD45, CD11b, CDl1c, Gr-1,
F4/80, and MHCII) and quantified by flow cytometry. The
specific antibodies used are listed in Supplemental Table S1.

To assess the impact of CCN4 on T cell proliferation
in vitro, splenocytes were obtained from naive C57BL/6
mice and stained with CellTrace Pacific Blue Cell Prolifer-
ation Kit (ThermoFisher). Stained splenocytes (2.5 x 10°)
were stimulated for 3 days in 96 well plate with MACSi-
Beads loaded with anti-mouse CD3 and anti-mouse CD28
antibodies (AP beads, Miltenyi Biotec), at a 1:1 propor-

8 | bioRxiv

tion. Fresh serum-free DMEM media conditioned for 24
hours by either confluent wild-type (WT TCM) or conflu-
ent CCN4 KO (CCN4 KO TCM) melanoma B16F0 cells
were collected, centrifuged to remove cells and cell debris,
and added at 50% final volume during T cell stimulation
with AP beads. In addition, splenocytes were either left
unstimulated or stimulated with AP beads alone, or stimu-
lated in the presence of recombinant mouse CCN4 (rCCN4,
R&D) at a final concentration of 10 ng/mL. After 72h, cells
were washed and stained with Live/Dead Fixable Green Dead
Cell Stain Kit (ThermoFisher). Surface staining with anti-
mouse CD8/APC (Miltenyi Biotec), anti-mouse CD4/APC-
Cy7 (BD Biosciences), anti-mouse CD62L/PE (eBioscience,
ThermoFisher) and anti-mouse CD44/PerCPCy5.5 (eBio-
science, ThermoFisher) was performed after incubating the
cells with Mouse BD Fc Block (BD Biosciences). The pro-
liferation of both CD4 and CD8 T cells were quantified by
flow cytometry.

In vitro suppression of CD8™ T cell function. Inducible
mouse CCN4 expression lentiviral vector IDmCCN4) was
constructed with Gateway cloning using Tet-on destination
lentiviral vector pCW57.1 (Addgene Plasmid #41393, a
gift from David Root) and pShuttle Gateway PLUS ORF
Clone for mouse CCN4 (GC-Mm21303, GeneCopoeia).
Lentiviruses were packaged as described (Deng et al., 2019)
to transduce YUMMI1.7 cell with Ccn4 CRISPR knockout
(Ym1.7-KO1) (Deng et al., 2019). After puromycin selec-
tion, two pools of cells with inducible mCCN4 (Yml.7-
KO1-IDmCCN4) or vector control (Ym1.7-KO1-IDvector)
were obtained. ELISA tests with doxycycline (Dox, final
0.5p1g/ml) induction revealed the mCCN4 expression was un-
der stringent control and the secreted protein was in the sim-
ilar level as compared with wild-type YUMM1.7 cells (data
not shown).

To generate YUMMI.7-reactive CD8+ T cells, healthy
C57BL/6Ncrl mice were inoculated subcutaneously with
irradiated YUMM1.7 cells (10°/mouse), followed by live
YUMMI1.7 cells (3 x 10°/mouse) 3 weeks later. The mice
without tumor growth in the next five weeks were main-
tained. Three days before the assay, the mice were injected
again with live YUMMI1.7 cells (10%/mouse). On the day
of assay, these mice were euthanized and the YUMMI.7-
reactive cells were isolated from mouse splenocytes using
mouse CD8a+ T Cell Isolation Kit (130-104-075, Miltenyi
Biotec), resuspended in a concentration of 10%/ml. 50ul
(5 x 10%) of the YUMMI.7-reactive CD8+ T cells were
aliquoted into each well on a 96-well plate for ELISpot assay
using Mouse IFN~/TNFa Double-Color ELISpot kit (Cellu-
lar Technology Limited, CTL) following manufacturer’s in-
structions. Briefly, target tumor cells were stimulated with
IFNv (200U/ml, or, 20ng/ml) for 24 hours, harvested and
resuspended in a concentration of 2 x 105/ml. 50l (10%)
of indicated tumor cells in triplicates were aliquoted into
each well, with or without doxycycline (Dox, final 0.5g/ml).
The reactions were incubated at 37°C for 24 hours and
colored spots were developed (Red for IFN~ and blue for
TNFcq). The spots were counted and imaged using an Olym-
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pus MVX10 Microscope and the result was plotted and ana-
lyzed by GraphPad Prism (version 5).

Flow Cytometry. Single cell suspensions described above
were stained with specific antibodies or isotype controls
using conventional protocols. Fluorescence-activated cell
counting was performed using a BD LSRFortessa and FACS-
Diva software (BD Biosciences) as where the fluorescence
intensity for each parameter was reported as a pulse area
with 18-bit resolution. Unstained samples were used as nega-
tive flow cytometry controls. Single-stain controls were used
to establish fluorescence compensation parameters. For TIL
analysis, greater than 5 x 10° events were acquired in each
antibody panel in each biological replicate. In analyzing en-
riched cell populations, 2 x 10% events were acquired in each
biological replicate. Flow cytometric data were exported
as FCS3.0 files and analyzed with using R/Bioconductor
(V3.5.1), as described previously (Klinke and Brundage,
2009). The typical gating strategies for T cells, NK and B
cells, and myeloid cells are shown in supplementary Figures
S4-S6, respectively. The statistical difference in tumor infil-
trating lymphocytes between wt and CCN4 KO variants was
assessed using log-transformed values and a two-tailed ho-
moscedastic Student’s t test. Cell proliferation was quantified
using metrics: fraction diluted (Dil), Precursor frequency,
%dividing cells (PF), Proliferation index (PI), and prolifer-
ation variance (SDP) (Roederer, 2011). Statistical differ-
ences among these proliferation parameters were assessed us-
ing type III repeated measures ANOVA in the "car" (V3.0-7)
package in R. A p-value < 0.05 was considered statistically
significant.

Data and Code Availability. The code used in the analysis
can be obtained from the following GitHub repository:

* https://github.com/KlinkeLab/CellNetwork_2020
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Figure Legends

Figure 1 - A computational workflow combines digital cytometry with Bayesian network inference to estimate how a genetic
driver impacts the heterocellular network within a tissue. Digital cytometry deconvolutes a bulk transcriptomic profile using gene
signatures that correspond to different stromal, malignant, and immune cell types. The results estimate the prevalence of the different
cell types within the tissue sample, that is digital cytometry features. By using bulk transcriptomic profiles of defined patient populations,
underlying variation in the inferred cellular composition coupled with changes in expression of a putative gene driver can be used to estimate
how the heterocellular network is impacted by a gene driver using Bayesian Network inference. To illustrate the approach, we focused on
CCN4 as a gene driver. The resulting directed acyclic graphs represent the collective conditional independence among modeled nodes of the
network.

Figure 2 - Summary of the evidence obtained from the TCGA breast cancer dataset supporting the consensus edges in the
seed network. Edges ordered based on the number of algorithms that detected that an edge was enriched (bar graph - left axis) and the
strength of enrichment (dotted lines - right axis). The lines associated with the strength of enrichment represent the minimum (dashed
line) and maximum (dotted line) values obtained by the different algorithms. Coloring of bar graph indicates whether a clear direction was
associated with an edge (green), an edge was significantly enriched but without a clear direction (yellow), or that an edge was excluded from
the consensus seed network list (tan).

Figure 3 - A directed acyclic graph (DAG) representing the conditional probability distribution inferred using the digital cy-
tometry features extracted from the breast cancer arm of the TCGA. The nodes of the graph represent features, such as CCN4 gene
expression (rectangle), sample attribute (hexagon), or the prevalence of a particular cell type/state (oval). The edges represent inferred causal
relationships among the nodes. The black lines with arrow heads represent a positive causal relation while red lines with horizontal bars
represent a negative or inhibitory causal relation, where the extent of influence of the parental node is annotated by the number beside the
edge. The number included within the node symbol represents the average normalized value of the digital cytometry feature within the dataset
with values of all of the parental nodes set to zero. The width of the edge is proportional to the posterior probability of inclusion into the
DAG.

Figure 4 - Conditional probability query of the BRCA DAG compared against digital cytometry estimates obtained from exper-
imental data. Experimental samples obtained from normal mammary and tumor tissue are shown as filled versus open circles, respectively.
Samples of the conditional probability model for p(Cancer < 0.15) (orange) and p(Cancer > 0.85) (blue) for CD8 T cells (A), CD4 T cells
(B), active NK cells (C), B cells (D), Macrophages (E) and Cancer Associated Fibroblasts (F). Linear trendlines are superimposed on the
conditional probability samples.

Figure 5 - Two DAGs representing the conditional probability distributions inferred using the digital cytometry features ex-
tracted from the two melanoma-related datasets. (A) Analysis of a bulk RNAseq dataset obtained from patients with common pig-
mented nevi and primary melanoma (Nsqmpies = 78)- (B) Analysis of primary melanoma samples extracted from the SKCM arm of the
TCGA (ngqmpies = 94). The DAGs are summarized using similar notation as described in Figure 3. Dotted lines indicate edges that were
included in the consensus seed network but, as the samples were all from patients with cancer, had no evidence in the TCGA dataset.

Figure 6 - CCN4 knock-out in two syngeneic mouse models of melanoma induces a similar shift in NK cells and T and B
lymphocytes as observed in human breast cancer and melanoma. (A) The percentage of live CD45+ cells isolated from tumors
generated by inoculating s.c. with wt (red) and CCN4 KO (blue) variants of B16FO0 (o and x’s) and YUMM1.7 (. and +’s) cells, where the
log-linear trends are highlighted by dotted lines. CD45+ values were obtained from three different antibody panels that quantified T cells,
B/NK cells, and myeloid cells in TIL isolates from each mouse. (B) A comparison of the ratio of NK cells (black), CD8+ T cells (red),
CD4+ T cells (blue), and B cells (green) to live CD45+ TILs in s.c. tumors generated using wt B16FO and YUMM1.7 cells (mean =+ s.d.).
(C) Comparing the log ratio in prevalence of the different cell types when CCN4 is present (WT) versus absent (CCN4 KO) predicted by
the BRCA (1st column) and SKCM (4th column) DAGs and observed experimentally using the B16F0 (2nd column) and YUMM1.7 (3rd
column) mouse models. Mean results for NK cells (black), CD8+ T cells (red), CD4+ T cells (blue), and B cells (green) in the different
settings are connected by lines. (D) TIL comparison upon CCN4 KO in B16F0 and YUMMI1.7 mouse models stratified by NK cells, CD8+
T cells, CD4+ T cells, and B cells (top to bottom) (n = 7 for YUMM1.7 and n = 4 for B16F0 variants and mean = s.d.). p-values calculated
between wt and CCN4 KO pairs using Student’s t-test.

Figure 7 - Myeloid immune cell subsets differentially infiltrate tumors derived from wt B16F0 and YUMM1.7 cells but shift
in similar ways upon CCN4 knock-out. (A) A comparison of the ratio of CD11c- (black) and CD11c+ (gray) macrophages, CD11c+
MDSC (green), MDSC (blue), and Neutrophils (red) to live CD45+ TILs in s.c. tumors generated using wt B16FO and YUMM1.7 cells. (B)
Comparing the log ratio in prevalence of the different myeloid cell types when CCN4 is present (WT) versus absent (CCN4 KO) predicted
by the BRCA (1st column) and SKCM (4th column) DAGs and observed experimentally using the B16F0 (2nd column) and YUMM1.7 (3rd
column) mouse models. Macrophages are the only myeloid cell subset inferred from the BRCA and SKCM datasets and are assumed to be
related to CD11c- macrophages in mouse models. Mean results in the different settings are connected by lines. (C) A representative scatter
plot of GR1 versus CD11c expression in gated live CD45+ CD11b+ TILs obtained from wt (top) and CCN4 KO (bottom) YUMM1.7 tumors.
(D and E) TIL comparison upon CCN4 KO in B16F0 and YUMM1.7 mouse models stratified by myeloid-derived suppressor cell subsets
(panel D - top: MDSC; bottom: CD11c+ MDSC) and other myeloid cell subsets (panel E - top to bottom: CD11c- and CD11c+ macrophages,
neutrophils, and dendritic cells) (n = 7 for YUMMI1.7 and n = 4 for B16FO variants and mean =+ s.d.). p-values calculated between wt and
CCN4 KO pairs using Student’s t-test.
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Figure 8 - CCN4 has no direct effect on T cell proliferation but impairs CD8™ T cell function. The distribution in cell trace staining
among live CD4™ (A) and CD8™" (B) T cells stimulated with «CD3/aCD28 (AP beads) alone or in the presence of media conditioned by
wt B16FO cells (AP beads + WT TCM), media conditioned by CCN4 KO B16FO0 cells (AP beads + CCN4 KO TCM), or with 10 ng/ml of
recombinant mouse CCN4 (AP beads + rCCN4). The distribution in the corresponding unstimulated cells (gray) are shown at the bottom.
The colored vertical lines indicate the predicted dilution of cell trace staining in each generation based on the unstimulated controls. (C)
CD8+ T cells isolated from the spleens of C57BL/6 mice that rejected YUMMI1.7 tumors were cultured in an in vitro ELISPOT assay using
variants of the YUMM1.7 cell line as targets (wt YUMM1.7 - yellow, CCN4 KO YUMM1.7 - light green, CCN4 KO YUMM1.7 with a blank
inducible expression vector - dark green and blue, CCN4 KO YUMM1.7 with a CCN4 inducible expression vector - purple and red). Variants
containing the inducible expression vector were also cultured in the absence (dark green and purple) or presence of doxycycline (blue and
red). CD8+ T cells expressing IFN+ and TNFa were quantified following 24 hour co-culture (bar graph). Statistical significant between
pairs was assessed using a Student’s t-test, where * = p-value < 0.05 and *** = p-value < 0.001.
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Fig. 1. A computational workflow combines digital cytometry with Bayesian network inference to estimate how a genetic driver impacts the heterocellular network
within a tissue.
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Fig. 2. Summary of the evidence obtained from the TCGA breast cancer dataset supporting the consensus edges in the seed network.
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Fig. 4. Conditional probability query of the BRCA DAG compared against digital cytometry estimates obtained from experimental data.
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Table S1. List of edges, whether an edge was predicted to promote or inhibit the target node, and the strength inferred using
the different structure learning algorithms in analyzing the features present in TCGA breast cancer dataset. Rows highlighted in
green were included in the consensus seed network, yellow indicate that the directionality was unclear, and red indicate edges included
in the “blacklist”. The edge numbers correspond to the x-axis in Figure 2.
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Edge from © mmpc aracne hiton  iamb  iamb iamb.fdr iambfdr  tabu  tabu mmhc  mmhc he hc  pc_stable pc_stable  Hit Min Max
No CorSign CorSign CorSign strength CorSign strength CorSign strength CorSign strength CorSign strength CorSign strength CorSign Number strength strength
1 CCN4 Mesenchymal + + + 2.02E-138 + 2.02E-138 + 1.95E-148 + 1.79E-139 + 1.95E-148 + 1.79E-139 + 9 1.95E-148 2.02E-138

S S
2 pMO pM1 - - - 3.77E-48 - 3.77E-48 - 9 0.00E+00 3.77E-48
2 pM1 pMO - - - 0.00E+00 - 0.00E+00 - 0.00E+00 - 0.00E+00 - 9
3 pMO pM2 - - - 0.00E+00 - 0.00E+00 - 9 0.00E+00 0.00E+00
3 pMm2 pMO - - - 0.00E+00 - 0.00E+00 - 0.00E+00 - 0.00E+00 - 9
4 CAF_lg Mesenchymal + + + 9 2.94E-97 9.62E-73
4 Mesenchymal CAF_lg + + + 9.62E-73 + 9.62E-73 + 2.94€-97 + 2.35E-86 + 2.94€-97 + 8.08E-86 + 9
5 Cancer CCN4 + + + 2.06E-55 + 2.06E-55 + 2.06E-55 + 2.06E-55 + 2.06E-55 + 2.06E-55 + 9 2.06E-55 2.06E-55

Csce e e e e T o e
6 NK.cells.active_lg NK.cells.rest_lg - - - 4.80E-30 - 4.80E-30 - 1.15€-33 - 4.80E-30 - 1.15€-33 - 4.80E-30 - 9 1.15E-33  4.80E-30
6 NK.cells.rest_lg NK.cells.active_lg - - - 9
7 B.cells.ive_l T.cells.CD8_|| + + + 9.25E-27 + 2.92E-27 + 3.10E-16 + 2.92E-27 + 3.10E-16 + 2.92E-27 + 9 2.92E-27 3.10E-16

9
8 Cancer Epithelial - - - 1.66E-25 - 1.66E-25 - 1.66E-25 - 1.66E-25 - 1.66E-25 - 2.23E-22 - 9 1.66E-25 2.23E-22

Lo el e o ..o e e e
9 CAF_lg proliferation - - - 7.61E-26 - 9 7.61E-26 3.37E-12
9 proliferation CAF_lg - - - 6.37E-21 - 6.37E-21 - 3.37E-12 - 3.37E-12 - 1.80E-18 - 9
10 Endothelial.cells_lg  proliferation - - - 5.75E-10 - 5.75E-10 - 9 6.23E-18 5.75E-10
10 proliferation Endothelial.cells_lg 2.88E-15 2.88E-15 2.88E-15 6.23E-18 9
11 Macrophages_sc_lg CDATcell_sc_lg 19116  + 5.096-16  + 3.076-14 5.09E-16  + 3.076-14 2.01€-13 9
12 pM1 T.cells.CD8_lg 8.18E-13 + 3.53E-14 + 8.98E-15 3.53E-14 + 8.98E-15 3.53E-14 9 8.98E-15 8.18E-13

B oTeloosl Mt e e e oo R e
13 Macrophages_sc_lg T.cells.CD8_Ig 9.15E-13 + 2.38E-12 + 6.56E-12 + 2.38E-12 + 6.56E-12 + 2.38E-12 9 9.15E-13 6.56E-12

13 Tekoonly  Meawshegesscle ¢ v v oo om e mmEon e
14 CAF_lg T.cells.CD8_lg 2.84E-07 - 3.06E-07 - 3.42E-09 - 3.06E-07 - 3.42E-09 - 3.06E-07 9 3.42E-09 3.06E-07

T
15 Cancer proliferation 6.68E-23 + 6.68E-23 + 4.70E-12 + 3.72E-10 + 4.70E-12 + 1.93E-08 8 6.68E-23 1.93E-08

35 prolferon ™ Ganesr Ry
16 Cancer Endothelial.cells_lg 7.40E-09 7.40E-09 3.67E-38 7.40E-09 3.67E-38 2.10E-05 8 3.67E-38 2.10E-05

8

— 8 3.64E-10 7.84E-07
17 Endothelial.cells_lg  CDA4Tcell_sc_lg 5.65E-08 + 2.93E-07 + 3.64E-10 + 2.93E-07 + 3.64E-10 + 7.84E-07 8
18 B.cells.ive_lg CDATcell_sc_lg 2.95E-06 + 1.95E-06 + 2.17E-07 + 1.95E-06 + 2.17E-07 + 7.31E-05 8 2.17E-07 7.31E-05

i commeelals  mesbnel o+ e Lo
19 Cancer pM2 7.00E-04 1.91E-42 7.00E-04 1.91E-42 7 1.91E-42 7.00E-04

Ceewe e Lo e e e
20 B.cells.ive_lg Endothelial.cells_lg 4.01E-20 7 2.71E-22 1.52E-18
20 Endothelial.cells_lg  B.cells.ive_lg + + + 2.71E-22 + 2.71E-22 + 1.52E-18 + 7
21 pm2 proliferation - - - 1.02E-10 - 2.09E-11 - 1.02E-10 - 3.30E-10 - 7 2.09E-11 3.30E-10
21 proliferation pM2 - - - 7
22 Epithelial Neutrophils_lg - - 2.82E-03 - 1.62E-03 - 6.79E-04 - 1.62E-03 - 6.79E-04 - 7 6.79E-04 2.82E-03

T
23 CAF_lg pML - - 6 3.74E-24 4.37E-12
23 pm1 CAF_lg - - 4.37€-12 - 3.74E-24 - 4.37€-12 - 1.06E-21 - 6
24 Cancer Mesenchymal + + 8.89E-17 + 1.16E-16 + 8.89E-17 + 1.16E-16 + 6 8.89E-17 1.16E-16

6

— 6  7.51E-09 157E-04
25 pM2 Neutrophils_lg + + 7.51E-09 + 1.57E-04 + 7.51E-09 + 1.57€E-04 + 6
26 Macrophages_sc_lg Neutrophils_lg + + 159603  + 186603  + 1.86E-03  + 5 1.59E-03 1.86E-03

T T S —————

27 pM1 pM2 0.00E+00 - 0.00E+00 - 4 0.00E+00 3.43E-04
27 pM2 pM1 3.43E-04 - 3.43E-04 - 4
28 NK.cells.rest_lg T.cells.CD8_lg 1.24E-02 - 7.88E-04 - 7.88E-04 - 3 7.88E-04 1.24E-02

L Teseml Nt
29 NK.cells.active_lg CDA4Tcell_sc_lg 1.26E-03 - 1.08E-03 - 1.08E-03 - 3 1.086-03 1.26E-03

o oty Wesavely o
30 B.cells.ive_lg Epithelial + 1.73E-03 + 3 1.73E-03 8.19E-03
30 Epithelial B.cells.ive_lg + 8.19E-03  + 3
31 pM1 CD4Tcell_sc_lg + + 12302+ 3
32 Cancer pM1 2.35E-35 + 2.35E-35 + 2 2.356-35 2.35E-35

moaw @ T
33 Cancer pMO 5.03E-25 + 5.03E-25 + 2 5.03E-25 5.03E-25

moaw0 e
34 Mesenchymal Endothelial.cells_lg 4.02E-19 + 4.02E-19 + 2 4.02E-19 4.02E-19
34 Endothelial.cells_lg Mesenchymal 2
35 B.cells.ive_lg pM1 4.18E-19 + 4.18E-19 + 2 4.18E-19 4.18E-19
35 pm1 B.cells.ive_lg 2
36 Macrophages_sc_lg CAF_lg 533617 - 533E17 - 2 5.33E-17 5.33E-17
36 CAF_lg Macrophages_sc_lg 2
37 Cancer B.cells.ive_lg 3.36E-13 - 4.79E-07 - 2 3.36E-13 4.79E-07

T —

38 pMO Mesenchymal 1.51E-12 + 1.51E-12 + 2 1.51E-12 1.51E-12
38  Mesenchymal pMO 2
39 pmM1 Endothelial.cells_lg 4.23E-12 + 4.23E-12 + 2 4.23E-12 4.23E-12
39 Endothelial.cells_lg  pM1 2
40 CCN4 proliferation 7.29E-12 - 7.29E-12 - 2 7.29e-12  7.29E-12
a0 pifeon cow
41 Cancer T.cells.CD8_lg 2.30E-10 - 2.30E-10 - 2 2.30E-10 2.30E-10

Laesesl e
42 Macrophages_sc_lg pMO 2.14E-08 - 2.14E-08 - 2 2.14E-08 2.14E-08
42 pMo Macrophages_sc_lg 2
43 NK.cells.rest_lg pMO 2.12€-07 + 2.12E-07 + 2 2.12E-07 2.12E-07
43 pMo NK.cells.rest_lg 2
44 Mesenchymal Neutrophils_lg 2.39E-07 + 2.39E-07 + 2 2.39E-07 2.39E-07

Y S —

45 CCN4 Macrophages_sc_|| 4.84E-07 + 4.84E-07 + 2 4.84E-07 4.84E-07

b 2
46 Cancer NK.cells.rest_| 4.25E-06 - 4.25E-06 - 2 4.25E-06 4.25E-06

— 2
47  Epithelial CDA4Tcell_sc_lg 9.98E-06 - 9.98E-06 - 2 9.98E-06 9.98E-06

T
48 B.cells.ive_lg NK.cells.rest_lg 3.72E05 - 3.72E05 - 2 3.72E-05 3.72E-05
48 NK.cells.rest_lg B.cells.ive_lg 2
49  Epithelial Mesenchymal 7.35E-05 + 7.35E-05 + 2 7.35E-05 7.35E-05
49 Mesenchymal Epithelial 2
50 Endothelial.cells_lg  Neutrophils_lg 7.616-05 - 7.616-05 - 2 7.61E-05 7.61E-05

s Newophlslg  Endotmelcelsls
51 pm2 CAF_lg 3.71E-04 + 3.71E-04 + 2 3.71E-04 3.71E-04
51 CAF_lg pM2 2
52 Mesenchymal T.cells.CD8_lg 2.04E-04 + 2.04E-04 + 2 2.04E-04 2.04E-04

U5 Tekoosl  Mesechmd o T
53 CCN4 NK.cells.active_lg 2.64E-04 - 2.64E-04 - 2 2.64E-04 2.64E-04

T
54 B.cells.ive_lg CAF_lg 1.48E-03 - 1.48E-03 - 2 1.48E-03 1.48E-03
54 CAF_lg B.cells.ive_lg 2
55  Epithelial CAF_lg 2.94E-03 + 2.94E-03 + 2 2.94E-03 2.94E-03
55 CAF_lg Epithelial 2
56 NK.cells.rest_lg proliferation 2.80E-02 + 2.80E-02 + 2 2.80E-02 2.80E-02
56  proliferation NK.cells.rest_lg 2
57 Macrophages_sc_lg proliferation 15301 - 153601 - 2 1.536-01 1.53E-01
57 proliferation Macrophages_sc_lg 2
58 CCN4 B.cells.ive_Ig 5.87E-08 + 1 5.87E-08 5.87E-08

s omeelswels  cow
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Table S2. List of edges, whether an edge was predicted to promote or inhibit the target node, and the strength inferred using
the different structure learning algorithms in analyzing the features present in dataset comprised of common melanocytic
nevi and primary melanoma tissue samples (GEO). Rows highlighted in green were included in the consensus seed network, yellow
indicate that the directionality was unclear, and red indicate edges included in the “blacklist". The edge numbers correspond to the

x-axis in Figure 4A.

Edge from to mmpc aracne hiton iamb iamb  iamb.fdr iamb.fdr  tabu tabu mmhc  mmhc hc hc  pc_stable pc_stable  Hit Min
No CorSign CorSign CorSign strength CorSign strength CorSign strength CorSign strength CorSign strength CorSign strength CorSign Number strength
1 pM1 pM2 = = = 2.40E-41 = 2.40E-41 = 2.40E-41 = 2.40E-41 = 2.40E-41 = 2.40E-41 = 9 2.40E-41
1 pM2 pM1 - - - 9
2 pMO pM2 = = = 3.31E-38 = 3.31E-38 = 3.31E-38 = 3.31E-38 = 3.31E-38 = 3.31E-38 = 9 3.31E-38
2  pm2 pMO - - - 9
3 Cancer Mesenchymal + i + 6.29E-09  + 2.09E-18 i 8.02E-13  + 6.29E-09  + 8.02E-13  + 2.46E-12 + 9 2.09E-18

[08 Wesenchymal Cancer e e e ]
4 Cancer Epithelial = > = 4.24E-15 = 4.24E-15 = 4.24E-15 = 4.24E-15 = 2.79E-16 = 4.24E-15 = 9 2.79E-16
[a Epithelial T cancer e ]
5 CAF_lg Mesenchymal + + + 6.70E-15 + 2.20E-12 + 9 6.70E-15
5 Mesenchymal CAF_lg + + + 2.75E-14 + 7.46E-12 + 2.75E-14 + 5.98E-05 + 9
6  Macrophages_sc_lg  T.cells.CD8_lg + + + 9.32E-06 + 1.82E-11 + 7.68E-06 + 1.79E-04 + 7.68E-06 + 1.79E-04 + 9 1.82E-11
6 TcelsCDBlg  Macrophagessclg  + o+« e ]
7  NK.cells.active_lg NK.cells.rest_lg - - - 1.02E-06 - 9 1.01E-09
7  NK.cells.rest_lg NK.cells.active_lg - - - 1.01E-09 - 1.68E-05 - 1.01E-09 - 1.01E-09 - 1.68E-05 - 9
|8 cpaTcellsclg Endothelialcells |+ s e e seoe s
8  Endothelial.cells_lg  CD4Tcell_sc_Ig + + + 4.15E-07  + 8.60E-08 + 4.15€E-07  + 4.15E-07  + 4.15E-07 + 4.15E-07 + 9
9 CCN4 Mesenchymal 6.48E-05 + 8.38E-07 + 6.48E-05 + 8.38E-07 + 2.29E-02 8.38E-07
10  NK.cells.active_|| T.cells.CD8_Ig 1.05E-04 + 1.19E-03 + 3.93E-03 + 1.19E-03 + 3.93E-03 1.05E-04
4.58E-04
11 Macrophages_sc_lg  CDATcell_sc_lg + + + 4.58E-04 458E-04 +  A58E-04 +  A458E-04 8
12 NK.cells.rest_lg pMO + + + 2.22E-04  + 2.22E-04 + 1.17€-03 + 7 6.30E-05
12 pMO NK.cells.rest_lg + + + 6.30E-05 + 7
13 pM1 T.cells.CD8_lg + i + 5.96E-03 + 3.70E-03 + 5.96E-03 + 3.70E-03 + 7 3.70€-03
13 meellscoslg pMi e e
14  Cancer NK.cells.active_lg + 8.85E-16  + 8.85E-16  + 8.85E-16  + 4 8.85E-16
18 WKeellsactivelg  Cancer e e
15 CAF_lg Endothelial.cells_lg + 3.11E-06 + 4 3.11E-06
15 Endothelial.cells_Ig CAF_lg + 8.04E-04 + 4.19E-04 + 4
16 Cancer proliferation 1.47E-09 + 6.39E-11 + 6.39E-11 + 3 6.39E-11
[736 Tproliferation cancer e

17 Macrophages_sc_lg  Mesenchymal + 3 7.24E-09
17 Mesenchymal Macrophages_sc_lg + 7.24E-09  + 7.24E-09 + 3
18 Endothelial.cells_lg pMO - - 3 1.27€E-04
18 pMO Endothelial.cells_lg - - 1.27E-04 - 3
19 B.cells.naive_lg Endothelial.cells_lg + 3 3.41E-03
19 Endothelial.cells_lg B.cells.naive_lg + 3.41E-03 + 3.41E-03 + 3
20 Cancer CCN4 5.06E-11 + 5.06E-11 + 2 5.06E-11

Lo cena 0 encer ]

21 Endothelial.cells_Ig Mesenchymal 2.75E-10 + 2.75E-10 + 2 2.75E-10
21 Mesenchymal Endothelial.cells_lg 2
22 Macrophages_sc_lg  pM1 5.29€-07 + 5.29E-07 + 2 5.29€-07
22 pM1 Macrophages_sc_lg 2
23 Epithelial pMO 3.92E-05 - 3.92E-05 - 2 3.92E-05
23 pMO Epithelial 2
24 Endothelial.cells_lg proliferation 5.19E-05 - 5.19E-05 - 2 5.19E-05
24 proliferation Endothelial.cells_lg 2
25 CCN4 Neutrophils_lg 7.22E-04 + 7.22E-04 + 2 7.22E-04

[25 Newwophislg e e
26 CAF_lg T.cells.CD8_Ig 8.87E-03 + 8.87E-03 + 2 8.87E-03
(a6 meelscmslg el e

27 Macrophages_sc_lg  NK.cells.rest_lg 2 2.08E-02
27 NK.cells.rest_lg Macrophages_sc_lg 2.08E-02 - 2.08E-02 - 2
28 pMO pM1 2.28E-02 - 2.28E-02 - 2 2.28E-02
28 pM1 pMO 2
29 Endothelial.cells_lg Epithelial 9.69E-04 + 1 9.69E-04
29 Epithelial Endothelial.cells_lg 1
30 CCN4 CAF_lg 235601+ 1
31 Cancer pM2 - 1.00E+00

|

N
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Max

strength
2.40E-41
3.31E-38
6.29E-09
4.24€-15
5.98E-05
1.79€-04
1.68E-05
4.15E-07
2.29E-02
3.93E-03
4.58E-04
1.17e-03
5.96E-03
8.85E-16
8.04E-04
1.47€-09
7.24€-09
1.27€-04
3.41E-03
5.06E-11
2.75E-10
5.29€-07
3.92E-05
5.19€-05
7.22E-04
8.87E-03
2.08E-02
2.28E-02
9.69E-04
2.35E-01

1.00E+00
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Table S3. List of edges, whether an edge was predicted to promote or inhibit the target node, and the strength inferred using
the different structure learning algorithms in analyzing the features present in primary melanoma tissue samples in the TCGA
SKCM dataset. Rows highlighted in green were included in the consensus seed network, yellow indicate that the directionality was
unclear, and red indicate edges included in the “blacklist". The edge numbers correspond to the x-axis in Figure 4B.

Edge from to mmpc  aracne  hiton iamb iamb  iamb.fdr iamb.fdr  tabu tabu mmhc mmhc hc hc pc_stable pc_stable  Hit Min Max
No CorSign CorSign CorSign strength CorSign strength CorSign strength CorSign strength CorSign strength CorSign strength CorSign Number strength strength
1 pMo pM2 - - - 6.36E-46 - 2.04E-18 - 6.36E-46 - 9 6.36E-46 2.04E-18
1 pM2 pMO - - - 6.36E-46 - 6.36E-46 - 6.36E-46 9

2 pMO pM1 s ° 9.96E-07 = 9.96E-07 © 9.96E-07 s 9 1.59E-34 9.96E-07
2 pM1 pMO = = 1.59E-34 = 1.59E-34 = 1.59E-34 e

3 CAF_g Mesenchymal + + + 5.38E-14 + 3.26E-18 + 9 3.26E-18 5.38E-14
3 Mesenchymal CAF_lg + + + 3.26E-18 + 3.26E-18 + 3.26E-18 + 3.26E-18 9

4 CAF_lg Macrophages_sc_lg + + + 1.45E-08 + 1.45E-08 + 8.38E-11 + 1.45E-08 + 1.02E-11 + 1.45E-08 9 1.02E-11 1.45E-08
4 Macrophages_sc_lg CAF_lg + + + 9

5 Macrophages_sc_lg T.cells.CD8_Ig + + + 1.43E-07 + 1.43E-07 + 1.23E-11 + 1.43E-07 + 1.23E-11 + 1.43E-07 + 9 1.23E-11 1.43E-07

6 NK.cells.active_lg  NK.cells.rest_lg - - 2.37E-09 2.37E-09 - 2.37E-09 - 9 2.01E-10 2.37E-09
6  NK.cells.rest_lg NK.cells.active_lg - - 2.01E-10 - 2.01E-10 - 2.01E-10 9
7  Endothelial.cells_lg Mesenchymal + + + 1.28E-07 + 8 3.73E-08 1.28E-07
7  Mesenchymal Endothelial.cells_lg + + + 3.73E-08 + 3.73E-08 + 3.73E-08 + 3.73E-08 + 8

1.96E-06 2.61E-04

o
o

Macrophages_sc_lg CD4Tcell_sc_lg
9 CCN4 NK.cells.rest_lg

2.61E-04 1.96E-06 2.61E-04 1.96E-06 - 2.61E-04
1.32E-03 + 1.57E-02 + 1.32E-03 + 1.57E-02 + 1.57E-02

-
+

+
o

1.326-03 1.57E-02

10 CCN4 Mesenchymal

o
+
+

1.14E-06 + 2.38E-02 + 3.83E-06

+
o

1.14E-06  2.38E-02

11 NK.cells.active_lg ~ pMO - 3.16E-05 - 3.16E-05 3 3.16E-05 3.16E-05
11  pMO NK.cells.active_lg - 3
12 Macrophages_sc_lg proliferation - 1.72E-04 - 1.72E-04 3 1.72E-04 1.72E-04
12 proliferation Macrophages_sc_|g - 3
13 Endothelial.cells_lg Epithelial + 1.01E-02 + 1.01E-02 + 3 1.01E-02 1.01E-02
13 Epithelial Endothelial.cells_lg + 3
14  Epithelial CDATcell_sc_lg + 1.36E-02 + 1.36E-02 + 3
15 pM1 pM2 9.70E-30 = 9.70E-30 2 9.70E-30 9.70E-30
15 pM2 pM1 2
16  Macrophages_sc_lg NK.cells.active_lg 2 2.51E-06 1.29E-04
16 NK.cells.active_lg  Macrophages_sc_lg 2.51E-06 + 1.296-04  + 2
G <.75£06 4.75E-06
17 CCN4 CAF_lg 4.75E-06 i 4.75E-06 + 2
18 CAF_lg T.cells.CD8_lg 1.58E-05 = 1.58E-05 2 1.58E-05 1.58E-05

19 CAF_Ig CD4Tcell_sc_lg 5.54E-03 + 5.54E-03 + 2 5.54E-03 5.54E-03

20 Macrophages_sc_lg pM1
20 pM1 Macrophages_sc_|g 1.64E-02 +
21 B.cells.naive_lg T.cells.CD8_Ig +

-

1.64E-02  1.64E-02

)

1.00E+00 1.00E+00

22 NK.cells.active_Ig  T.cells.CD8_Ig +

.

1.00E+00 1.00E+00

Table S4. Proliferation metrics associated CD4™ and CD8™" T cells stimulated in vitro in different conditions. Dil: fraction
diluted; PF: Precursor frequency, %dividing cells; PI: Proliferation index; and spP: proliferation variance. Summary statistics were
calculated from three biological replicates and represented as mean (standard deviation). Statistical significance was assessed using
type lll repeated measures ANOVA, where * indicates a p-value < 0.05.

Live CD4+ T cells Live CD8+ T cells

Experimental Conditions Dil PF Pl SDP Dil PF Pl SDP

AP beads + rCCN4 0.670 0.392 1.407 0.274 0.983 0.851 2.655 0.103
(0.012) (0.014)  (0.033) (0.003) (0.014)  (0.045)

AP beads + CCN4 KO TCM 0.472* 0.221* 1.404 0.274 0.914* 0.715* 1.729* 0.205
(0.008)  (0.003)  (0.023) (0.015)  (0.032)  (0.044)

AP beads + WT TCM 0.552* 0.282* 1.403 0.272 0.920* 0.704* 1.923* 0.189
(0.047) (0.038)  (0.031) (0.020) (0.044)  (0.052)

AP beads 0.655 0.366 1.473 0.255 0.982 0.841 2.756 0.106
(0.043)  (0.035)  (0.060) (0.002) (0.026) (0.187)

No stimulation 0.046 0.016 1.763 0.371 0.062 0.008 2.520 0.229
(0.025)  (0.013)  (1.056) (0.018)  (0.004)  (0.441)
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Table S5. List of fluorophore-conjugated antibodies using to quantify cell subsets by flow cytometry.
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Marker Clone Fluorophore Manufacturer
LIVE/DEAD Fix - Violet/Pacific Blue | Invitrogen
CD45 30-F11 BB515 BD Biosciences #564590
CD3e 500A2 Alexa Fluor 700 BioLegend #152316
CD4 GK1.5 APC-Cy7 BD Biosciences #552051
CD8a REA601 APC Miltenyi 130-109-248
CD161 (NK-1.1) PK136 APC-Cy7 BioLegend #108723
CD45R/B220 RA3-6B2 APC BioLegend #103212
CD49b DX5 PerCP/Cy5.5 Biolegend #108915
CD11b M1/70 PerCP/Cy5.5 eBioscience #45-0112-80
CD11c N418 PE eBioscience #12-0114-81
F4/80 BM8 APC-Cy7 BioLegend #123117
Ly-6G/Ly-6C (Gr-1) | RB6-8C5 APC BioLegend #108412
CD279 (PD-1) REA802 PE BioLegend #135205
I-A/1-E (MHC-II) M5/114.15.2 | Alexa Fluor 700 BioLegend #107622
Klinke etal. |
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Fig. S1. Distribution of extracted features associated with the BRCA TCGA dataset. Figure represents a normalized histogram
(bar graph) and distribution (red line) in log-transformed feature values. The panels from left to right, top to bottom are Cancer attribute,
CD4 T cells, Neutrophils, Endothelial cells, Cancer associated fibroblasts (CAFs), CD8 T cells, active NK cells, resting NK cells,
Macrophages, néive B cells, proliferation, epithelial cell state, mesenchymal cell state, CCN4 gene expression, p(M ®0), p(M 1), and
p(MD2).
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Fig. S2. Distribution of extracted features associated with the dataset containing common melanocytic nevi and primary
melanoma tissue samples (GEO). Figure represents a normalized histogram (bar graph) and distribution (red line) in log-transformed
feature values. The panels from left to right, top to bottom are Cancer attribute, CD4 T cells, Neutrophils, Endothelial cells, Cancer
associated fibroblasts, CD8 T cells, active NK cells, resting NK cells, Macrophages, naive B cells, proliferation, epithelial cell state,
mesenchymal cell state, CCN4 gene expression, p(M ®0), p(M P1), and p(M $2).
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Fig. S3. Distribution of extracted features associated with primary melanoma samples in the TCGA SKCM dataset. Figure
represents a normalized histogram (bar graph) and distribution (red line) in log-transformed feature values. The panels from left to
right, top to bottom are Cancer attribute, CD4 T cells, Neutrophils, Endothelial cells, Cancer associated fibroblasts, CD8 T cells,
active NK cells, resting NK cells, Macrophages, naive B cells, proliferation, epithelial cell state, mesenchymal cell state, CCN4 gene
expression, p(M ®0), p(M P1), and p(M $2).
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Fig. S4. Summary of the evidence obtained from two melanoma datasets supporting the consensus edges in the seed net-
work. Analysis of datasets containing samples from both common pigmented nevi and primary melanoma (A) and from only primary
melanoma (B). Edges ordered based on the number of algorithms that detected that an edge was enriched (bar graph - left axis) and
the strength of enrichment (dotted lines - right axis). The lines associated with the strength of enrichment represent the minimum
(dashed line) and maximum (dotted line) values obtained by the different algorithms. Coloring of bar graph indicates whether a clear
direction was associated with an edge in one dataset (green) and in both datasets (green/blue), an edge was significantly enriched but
without a clear direction in one dataset (yellow) and in both datasets (green/yellow), or that an edge was excluded from the consensus
seed network list (tan). .
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Fig. S5. Conditional probability query of the SKCM DAG compared against digital cytometry estimates obtained from exper-
imental data. Experimental samples obtained from primary melanoma tissue are shown as open circles. Samples of the conditional
probability model for p(Cancer > 0.85) (blue) for CD8 T cells (A), CD4 T cells (B), active NK cells (C), B cells (D), Macrophages (E)
and Cancer Associated Fibroblasts (F). Linear trendlines are superimposed on the conditional probability samples.
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Fig. S8. Flow cytometry gating strategy for Tumor associated neutrophils and myeloid cell subsets. CD45 staining versus side
scatter area was used to gate for CD45% cells. Live Dead Pacific Blue staining versus side scatter area was used to gate for Live
CD45™ cells, which were then subdivided into subsets based on CD11b staining followed by Gr1 versus CD11c staining. From the
CD11b* gate, myeloid-derived suppressor cells (MDSC) (live CD45" CD11b™ Gri™ cells) were subdivided into CD11¢*/+ MDSC
(F4/80" MHCIIT) and CD11¢c™ MDSC (F4/80™¢4 MHCIIT). Also from the CD11b™ gate, macrophages (live Gr1~ F4/80" CD11b*
CD451 cells) were subdivided into tumor-associated CD11ct (CD11¢™*/* MHCII™) and CD11c™ (CD11c™ MHCII*®)subsets. The
CD11b™ subset included tumor-associated neutrophils (TAN) (Gr1™ CD11¢™ CD11b*™ MHCII® F4/80~) and dendritic cells (Gr1~
CD11ct CD11b!*/""t FSC-A"M MHCII' F4/807).
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Fig. S9. Control experiments related to ELISPOT assay using an inducible CCN4 YUMM1.7 cell line. (A) CCN4 secretion,
measured with ELISA, from CCN4-inducible cells in conditioned media in the presence of absence of doxycycline. (B) ELISPOT for
IFN~ release with different target cells and different amount of effector CD8™ T cells (In vivo activated CD8™ T cells against YUMM1.7
(Ym1.7)). (C) ELISPOT for IFN~y with CCN4-inducible cells as targets using in vivo activated CD8+ T cell against YUMM1.7. Results
shown as mean + S.D. for three biological replicates.
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