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Abstract 

Background: Prevalence rates of opioid use disorder (OUD) have increased 

dramatically, accompanied by a surge of overdose deaths. While opioid dependence 

has been extensively studied in preclinical models, an understanding of the biological 

alterations that occur in the brains of people who chronically use opioids and who are 

diagnosed with OUD remains limited. To address this limitation, RNA-sequencing (RNA-

seq) was conducted on the dorsolateral prefrontal cortex (DLPFC) and nucleus 

accumbens (NAc), regions heavily implicated in OUD, from postmortem brains in 

subjects with OUD. 

Methods:  We performed RNA-seq on the DLPFC and NAc from unaffected 

comparison subjects (n=20) and subjects diagnosed with OUD (n=20). Our 

transcriptomic analyses identified differentially expressed (DE) transcripts and 

investigated the transcriptional coherence between brain regions using rank-rank 

hypergeometric ordering (RRHO). Weighted gene co-expression analyses (WGCNA) 

also identified OUD-specific modules and gene networks. Integrative analyses between 

DE transcripts and GWAS datasets using linkage disequilibrium score (LDSC) assessed 

the genetic liability psychiatric-related phenotypes. 

Results: RRHO analyses revealed extensive overlap in transcripts between DLPFC 

and NAc in OUD, primarily relating to synaptic remodeling and neuroinflammation. 

Identified transcripts were enriched for factors that control pro-inflammatory cytokine-

mediated, chondroitin sulfate, and extracellular matrix signaling. Cell-type deconvolution 

implicated a role for microglia as a critical driver for opioid-induced neuroplasticity. 
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Using LDSC, we discovered genetic liabilities for risky behavior, attention deficit 

hyperactivity disorder, and depression.  

Conclusions: Overall, our findings reveal new connections between the brain’s 

immune system and opioid dependence in the human brain. 
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Introduction 

Prevalence of opioid use disorder (OUD) and deaths from opioid overdose have 

soared in the United States (1). The enormity of the public health impact have been the 

impetus for broad efforts to develop new treatments for OUD. Progress towards 

effective therapeutics requires better understanding of the alterations in the brain of 

those who develop dependence.  

 Impulsivity and deficits in cognition are hallmarks of OUD (3). These impairments 

have been attributed to functional alterations in corticostriatal circuits including the 

dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc) (3, 4). Moreover, 

a history of substance use is associated with corticostriatal circuit dysfunction that 

contributes to cognitive impairment and promotes risky behavior (5). However, we still 

have a limited understanding of the cellular and molecular alterations due to chronic 

opioid use and OUD that occur in these circuits in human brain.  

Although few studies have studied postmortem brains in subjects diagnosed with 

OUD, the approach has potential to uncover relevant and therapeutically viable 

pathways in the brain in opioid dependence. Previous work reported changes in opioid 

receptor expression in DLPFC (6-8) and altered expression of the machinery that 

regulates presynaptic glutamate release in NAc (9, 10), potentially related to addiction 

severity in heroin users. Preclinical evidence has corroborated these findings by 

demonstrating unique interactions between opioid and glutamate receptor signaling in 

opioid withdrawal and dependence (11-13). Nevertheless, deeper knowledge into the 

molecular alterations by chronic opioid use in the human DLPFC and NAc is extremely 

limited. 
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We aimed to establish a more comprehensive understanding of the molecular 

changes across DLPFC and NAc in brains from subjects who were chronic opioid users 

also diagnosed with OUD. We used multiple levels of analysis by integrating 

transcriptomics across brain regions with traits related to OUD vulnerability using 

GWAS. Between the DLPFC and NAc, we found remarkable overlap in both 

upregulated and downregulated transcripts. Further investigation into these overlapping 

transcripts revealed pathways enriched for factors that control the formation and 

degradation of the extracellular matrix (ECM) and pro-inflammatory cytokine-mediated 

signaling. These pathways implicate neuroinflammation as a driver of ECM remodeling 

and synaptic reorganization, processes which are critical for opioid-induced 

neuroplasticity (14). Our analyses showed that microglia were central to these OUD 

effects in both the DLPFC and NAc. Finally, we found links between neuroinflammation 

and OUD, and strong associations with a genetic liability to risky behavior using GWAS. 

Our findings revealed novel genetic and molecular changes that may ultimately 

contribute to opioid dependence.  
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Materials and Methods 

Detailed procedures are provided in Supplementary Methods. 

Human Subjects 

Brains were obtained during routine autopsies conducted by the Office of the 

Allegheny County of the Medical Examiner (Pittsburgh, PA) after consent was obtained 

from next-of-kin. Procedures were approved by the University of Pittsburgh’s Committee 

for Oversight of Research and Clinical Training Involving Decedents and Institutional 

Review Board for Biomedical Research. Each subject meeting diagnostic criteria for 

OUD at time of death (n=20) was matched with one unaffected comparison subject 

(n=20) for sex and as closely as possible for age (Table 1; Table S1). Cohorts only 

differed by race (p=0.02). DLPFC (area 9) and NAc were identified on fresh-frozen right 

hemisphere coronal tissue blocks using anatomical landmarks (15), and tissue (~50mg) 

was collected via cryostat, using an approach that minimizes contamination from white 

matter and other striatal subregions and ensures RNA preservation (16, 17). 

 

RNA Sequencing analyses 

Differential expression (DE) was assessed using limma with covariate selection 

(18). Transcripts with corrected p<0.01 and log2FC>±0.26 were considered DE (20-22). 

The top 250 DE transcripts were ordered by log2FC for unsupervised clustering of 

subjects. Biotypes of transcripts were determined using metaseqR (v3.11) (23). 

Overrepresentation of pathways (GO, KEGG, Hallmark, Canonical Pathways, 

Reactome, BioCarta, CORUM) was assessed using Metascape 
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(http://www.metascape.org), with expressed transcripts as background. Networks were 

visualized with Cytoscape. INGENUITY® Pathway Analysis (Qiagen) and HOMER 

(v4.11) (24) was used to predict upstream regulators of DE transcripts. Rank-rank 

hypergeometric overlap (RRHO) (25, 26) was used to assess overlap of DE transcripts 

(p<0.01 in both regions).  

 

Identification of OUD-specific co-expression networks 

We used weighted gene co-expression network analysis (WGCNA) to identify 

gene modules across samples (27, 28). Module differential connectivity (MDC) was 

used to quantify differences in co-expression within modules between OUD and 

unaffected comparison subjects. We used Fisher’s exact test to determine whether DE 

transcripts were enriched within WGCNA modules. ARACNe was used to identify hub 

and OUD-specific hub genes for network analysis (29) and Cytoscape was used to 

visualize networks. Overrepresentation of pathway categories for each module was 

assessed using Metascape, with the 5000 WGNCA-analyzed genes as background.  

 

Cell-type-specific DE analysis 

We estimated cell-type fractions from bulk RNA-seq using Digital Sorting 

Algorithm (30) through deconvolution in  BRETIGEA into astrocytes, endothelial cells, 

microglia, neurons, and oligodendrocytes (31). OUD and unaffected comparison 

subjects are compared for enrichment of each cell type using hypergeometric t-tests 
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adjusting for brain region. We conducted cell-type-specific DE analysis with CellDMC 

(32) (FDR<0.05). 

     

Integration of DE transcripts with GWAS 

Region-specific differentially up- and down-regulated transcripts (corrected 

p<0.01) were used to construct foregrounds for GWAS enrichment. We computed the 

partitioned heritability (GWAS enrichment) of brain region-specific noncoding regions 

containing and surrounding OUD transcript sets using the LD score regression pipeline 

for cell type-specific enrichment (33, 34). LD score regression coefficients were 

adjusted for FDR<0.1 on enrichments performed on all GWAS for foregrounds. A 

significant p-value indicates enrichment of the foreground genomic regions for GWAS 

SNPs relative to the background. 
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Results  

Enrichment of DE transcripts involved in neuroinflammation and ECM remodeling in 

DLPFC and NAc in OUD  

We first determined whether there were transcriptional differences by brain 

region in unaffected comparison subjects. Overall, the DLPFC and NAc had unique 

transcriptional profiles (Fig.S2). In DLPFC, many of the transcripts were related to 

synaptic vesicle transport (e.g., KIF5C (35, 36), STXBP5L (37)), exocytosis (e.g., 

STX1A (38)), and neurotransmitter release (e.g,. CADPS2 (39), RIMS3 (40)) (Data file 

S1), while the NAc was enriched for cytoskeletal remodeling and chemotaxis (e.g, 

ROBO1 (41), MTUS1 (42)) (Data file S1).  

We next investigated the impact of OUD on region-specific transcriptional 

differences. Our results showed that opioid dependence had a profound effect on gene 

expression in DLPFC and NAc, with high numbers of DE transcripts in both brain 

regions (567 in DLPFC (Data file S2); 1306 in NAc (Data file S3; Table S2). The 

volcano plot of DE results for the DLPFC revealed an even distribution of 

downregulated (339) or upregulated (228) transcripts in OUD (Table S2, Fig.1A, data 

file S2). Unaffected comparison subjects were differentiated from OUD subjects by 

unsupervised clustering based on the expression of the top 250 DE transcripts (log2FC) 

in DLPFC (Fig.1B). The volcano plot for NAc revealed that many of the DE transcripts 

were downregulated (1085 compared to 221 upregulated transcripts) in OUD subjects 

(Fig.1C, Data file S3). Unsupervised clustering of subjects based on the top 250 DE 

transcripts in NAc identified subgroups in both the unaffected comparison and OUD 

cohorts (Fig.1D). Further analysis using principal components analysis (PCA) identified 
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five subjects with OUD that clustered together with four unaffected subjects (Fig.S3). 

Each subject was diagnosed with an inflammatory disease (e.g., asthma or arthritis; 

Table S1). Another three subjects from the unaffected comparison cohort also had 

histories of inflammatory disease, although these subjects seemed to cluster with the 

remainder of comparison cohort (Fig.S3). Overall, our findings suggest inflammatory 

disease may impact the NAc transcriptome, and further supports enrichment of 

neuroinflammation in subjects with OUD are independent of acute or chronic 

inflammation. 

Most transcripts in both DLPFC and NAc were protein-coding and long 

noncoding RNAs (lncRNAs) (Fig.1E-F; DLPFC: 73.4% protein-coding, 19.5% lncRNAs; 

NAc: 89.5% protein coding, 7.43% lncRNAs). Further analysis revealed pathways 

associated with inflammation in both DLPFC and NAc (Supplementary Results, 

Fig.S4-S5). Other pathways included chondroitin/dermatan sulfate metabolism and 

synapse organization in NAc, suggesting links between extracellular matrix (ECM) 

remodeling, microglial cell migration, and synaptic plasticity, in line with recent work 

(43).  

  

High transcriptional coherence between DLPFC and NAc converges on 

neuroinflammatory and ECM pathways in OUD 

Since pathways were largely similar between brain regions in OUD, we explored 

the extent of transcriptional overlap between DLPFC and NAc using rank-rank 

hypergeometric ordering (RRHO) (44, 45). RRHO orders transcripts in each brain 

region by both effect size direction and p-value. Substantial transcriptional overlap in 
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both upregulated and downregulated transcripts was found between DLPFC and NAc 

(Fig.2A-C, Fisher’s exact test, p<10-6; Fig.S6). Such analyses may provide critical 

insight into the functional alterations across DLPFC—NAc circuits (3, 14, 46-49). Given 

the extent of transcriptional coherence, pathway enrichment analysis was conducted on 

DE transcripts shared between regions. Across DLPFC and NAc, the top shared 

pathways included those related to ECM (e.g., biosynthesis of glycosaminoglycans and 

chondroitin sulfate) and inflammation (e.g., cytokine-mediated immune signaling via 

tumor necrosis factor alpha (TNFα) and nuclear factor kappa B (NFκB) (Fig.2D). Other 

pathways were associated with cellular stress responses (e.g., DNA damage repair), 

and protein and histone modifications (e.g., ubiquitination and acetylation) that govern 

epigenetic regulation (Fig.2D, Fig.S7).  

Given the association with epigenetic regulation, we investigated the enrichment 

of chromatin state by comparing the transcription start sites from DE transcripts in OUD 

to states previously defined in postmortem brains from unaffected comparison subjects 

using genome-wide maps of epigenetic modifications (50). Transcription start sites of 

DE transcripts in DLPFC were enriched for genomic regions marked by weak polycomb 

repression (Fig.S8A, p<10-5). Weak polycomb repression diminishes histone marks 

(e.g., H3K27me3), which would otherwise inhibit transcription at the start site (50). 

Relative to unaffected subjects, the enrichment of upregulated DE transcripts in DLPFC 

from OUD subjects suggests that opioids induce the activation of otherwise repressed 

areas of the genome to promote transcription (Figure S6). In NAc, DE transcripts were 

enriched for genomic regions marked for a quiescent state (Fig.S8A; p<10-6). Quiescent 

states are characterized by the complete absence of histone marks linked to 
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transcriptional inactivity (50). Similar to DLPFC, such findings suggest opioids activate 

otherwise inactive genomic regions, resulting in upregulation of specific transcripts in 

NAc (Fig.S8B). Overall, these findings reflect a fundamental disturbance of chromatin 

states and transcriptional regulation by opioids relative to baseline epigenetic states. 

 

Upregulation of microglia markers in OUD 

By leveraging the high transcriptional coherence between DLPFC and NAc, we 

identified cell types with specific DE transcripts expressed in both brain regions using 

deconvolution (32). Transcripts were clustered in major brain cell types including 

astrocytes, endothelial cells, microglia, neurons, and oligodendrocytes and 

oligodendrocyte precursor cells. Compared to unaffected subjects, markers for microglia 

(e.g., ZNF812) were significantly enriched in OUD (p=0.03; Fig.3A). We next conducted 

cell type-specific DE analysis in DLPFC and NAc by identifying DE transcripts that 

significantly co-varied with specific cell markers. Using brain region as a covariate, we 

detected a single DE transcript associated with microglia markers, HSD17B14 (Table 

S3). Previous work showed that reduced expression of HSD17B14 in microglia resulted 

in exaggerated pro-inflammatory glial activation (51). This further supports evidence for 

neuroinflammatory processes in DLPFC and NAc in OUD. 

Focusing on transcripts that correlated with changes in neuronal markers, we 

identified 25 DE transcripts significantly enriched for pathways related to neuroimmune 

signaling between neurons and local inflammatory cells (e.g., microglia) (Fig.3B, Table 

S3). We found several upregulated genes that are controlled by a single microRNA 

(miR), miR223 (Fig.3B). miR223 is a crucial modulator of macrophage activation (52), 
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further implicating microglia in the regulation of neuroimmune responses in OUD. A 

broader view indicated that immune-related pathways were largely distinct between 

microglia and other immune cell types including CD4+ and CD8+ T-cells (Fig.3C). This 

highlights the possibility of interactions between neurons and other immune cells in 

brains of OUD subjects. Lastly, we also found strong enrichment of DE transcripts with 

synapse-related pathways (Fig.S9). 

 

Increased connectivity of neuroinflammatory and ECM signaling gene modules in OUD 

We used WGCNA to investigate correlations among transcripts in both 

unaffected comparison and OUD subjects. WGCNA identified 17 co-expression 

modules in DLPFC and 15 modules in NAc (Fig.4A). To identify OUD-specific modules, 

we used MDC to directly compare network connectivity of each module between OUD 

and unaffected subjects. More coordinated expression of transcripts in unaffected 

subjects relative to OUD subjects indicates a ‘gain’ of connectivity in unaffected 

subjects. Conversely, a module that loses connectivity in unaffected subjects is more 

coordinated in OUD. In DLPFC, 15/17 modules lost connectivity and two remained 

unchanged in unaffected subjects (Fig.4B). In NAc, 13/15 modules lost connectivity, 

while one module gained connectivity, and another remained unchanged in unaffected 

subjects (Fig.4B). These findings indicate that overall module structures were largely 

distinct between OUD and unaffected comparison subjects.  

To further investigate the biological significance of OUD-specific modules, we 

examined DE enrichment within each module focused on highly represented mRNAs 

and lncRNAs (Fig.1E-F). The DLPFC blue module and the NAc forestgreen module 
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were of particular interest because of their increased connectivity in OUD compared to 

the other modules and significant enrichment of both DE mRNA and lncRNA transcripts 

in OUD (DLPFC blue full DE list q<10-26, mRNA q<10-23, lncRNA p=0.002; NAc 

forestgreen full DE list q<10-23, mRNA q<10-22, lncRNA p=0.004). The topography of 

DLPFC blue and NAc forestgreen networks were more correlated in OUD relative to 

unaffected comparison subjects (Fig.4E-F), consistent with strengthening of module 

connectivity.  

Given the substantial overlap in transcripts and pathways across DLPFC and 

NAc, we next tested the degree of overlap in transcript co-expression networks between 

DLPFC blue and NAc forestgreen modules. Indeed, there was substantial overlap in 

transcripts between these modules (Fisher’s exact test, p<10-16). These modules were 

enriched for pathways related to neuroinflammation and ECM remodeling, consistent 

with our above findings (Fig.4D, Fig.S10). The top shared pathways include TNFα 

signaling via NFκB, interferon-γ response, and acute inflammatory response via IL-6 

(53) and IL-2 (54) signaling (Fig.4D). Each of the top shared upstream regulators are 

modulators of inflammatory response: PPARγ (55), NFKB1 (56), RELA (56), STAT1 

(57), and SP1 (58) (Fig.4D). Notably, we also found pathways related to ECM 

remodeling (Fig.4D). These data build upon our above analyses highlighting critical 

roles for neuroinflammation and ECM in OUD.  

To identify potential drivers of co-expression networks, we detected highly 

connected “hub” genes within a module that were predicted to regulate the expression 

of other module genes. Many of the hub genes that were specific to OUD in DLPFC and 

NAc included inflammatory regulators, such as JAK3 (59), SERPINB1 (60), and RELL1 
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(61) in DLPFC (Fig.4F), and TLR2 (62), TNFRSF10B (63), and NFIL3 (64) in NAc 

(Fig.4F). We also found additional classes of highly connected transcriptional regulators 

within our co-expression networks including lncRNAs and RNA-binding proteins. 

Several lncRNAs were highly connected in OUD-specific networks in DLPFC and NAc 

(e.g., DLPFC: AC0101086.3 and NAc: BAALC.AS1) (Fig.4F, Table S4). AC0101086.3 

is located proximal to CLEC2D in the genome, another OUD-specific hub gene. 

CLEC2D encodes ELT1, an activator of innate immunity (65, 66). BAALC.AS1 is highly 

expressed in brain and regulates astrocytes (67). In the NAc forestgreen module, we 

also identified YBX3, an RNA-binding protein. YBX3 regulates the expression of large 

neutral amino acid transporter 1 (LAT1) (68), which is necessary for the uptake of 

catecholamine precursor, L-DOPA in dopaminergic cells (69). Notably, changes in 

YBX3 expression in human midbrain has previously been implicated in opioid 

dependence (70). We identify putative mechanisms involved in neuroinflammation and 

dopamine neurotransmission in OUD. 

 

Associations between DE transcripts in NAc and genetic liability for substance use-

related traits in OUD  

Opioid dependence is strongly linked to impulsivity and risk-taking. Given our 

results highlighting inflammation in OUD, we determined whether these pathways were 

linked to traits related to opioid dependence. To test this, we employed a GWAS-based 

approach that integrated risk loci associated with substance use-related traits (e.g., 

opioid dependence, smoking, and risky behavior) and psychiatric disorders (71-73) with 

transcriptional profiles in DLPFC and NAc from OUD subjects. Loci identified by GWAS 
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are known to overlap with intronic and distal intergenic noncoding regions within cis-

acting regulators of gene expression (50). Using this information, we examined whether 

noncoding regions proximal to our DE transcripts were enriched for genetic risk variants 

associated with vulnerability to opioid dependence. We discovered significant 

enrichment of downregulated DE transcripts in NAc of OUD subjects for genes 

associated with smoking initiation and cessation (Fig.5A), along with attention deficit 

hyperactivity disorder (ADHD), bipolar disorder, depression, and risky behavior GWAS 

(Fig.5C, FDR<0.05). Many of these transcripts were associated with neuroimmune 

signaling, along with the machinery involved in synaptic neurotransmission (Fig.2, 

Fig.4). There was no enrichment of DE transcripts in chronic pain, opioid dependence, 

or unrelated GWAS traits (i.e., bone mineral density, coronary artery disease, and lean 

body mass) (Fig.5A-D). Our results therefore bridge substance use related genetic risk 

factors to our transcriptomic findings in OUD. 
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Discussion  

 Our work demonstrates that inflammation is the most salient biological process 

identified in OUD. Clinical findings that link inflammation to OUD are primarily from 

reports of elevated levels of circulating pro-inflammatory cytokines in opioid dependent 

individuals (74). Pro-inflammatory cytokines in periphery and brain may have functional 

consequences that contribute to OUD. In line with this, microglial inhibition mitigates 

subjective withdrawal (75), reduces motivation to consume opioids in dependent 

individuals (76), and attenuates opioid conditioned reward and seeking in rodents (77-

80). However, the unanswered question was whether these findings were clinically 

relevant for OUD. By focusing on key regions involved in OUD, we reveal several key 

inflammatory pathways altered in OUD in DLPFC and NAc. 

One of the top pathways shared between DLPFC and NAc is TNFα signaling via 

NFκB. Receptors known to activate NFκB, TNF and TLR4 (81, 82), are among the top 

predicted upstream regulators of DE transcripts. Though still controversial, there is 

growing evidence that opioids can also induce a neuroinflammatory response via direct 

activation of TLR4, a transmembrane receptor which activates NFκB signaling and 

inflammatory cascades (83). Upon activation, NFκB dimers translocate to the nucleus to 

drive transcription of cytokines, chemokines, and interleukins (81, 82). Additionally, 

opioids can activate NFκB via opioid receptors (85-89), and activation of NFκB signaling 

can, in turn, promotes transcription of opioid receptors and peptides (90-95), involved in 

opioid reward (90, 96, 97). Thus, while opioids can influence immune function via NFκB, 

opioids may also activate NFκB, with downstream effects on addiction-related 

behaviors, independent of immune function.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2021. ; https://doi.org/10.1101/2020.09.14.296707doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.296707
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

An effective neuroinflammatory response involves the interplay between immune 

cells and local ECM remodeling. The ECM is an assembly of adhesion molecules, 

proteins, polysaccharides, and proteoglycans, critical for BBB integrity  and synaptic 

function (98). Both the formation and degradation of ECM in the brain depend on the 

aggregation of a specific family of proteoglycans, chondroitin sulfate glycoaminoglycans 

(CS-GAGs) (100). Significantly, CS-GAGs constitute the top shared pathway enriched 

between DLPFC and NAc in OUD subjects. CS-GAGs aggregate in the perisynaptic 

space in response to inflammation. Increasingly, ECM remodeling is also implicated in 

synaptic plasticity (101), with roles in neurite outgrowth, dendritic spine formation and 

morphology (100, 102), and myelination (103, 104). Indeed, reduced myelination has 

been found in clinical neuroimaging and postmortem brain studies of chronic opioid 

users (105-109), as well as in rodent models of chronic opioid exposure (110, 111). 

Importantly, the cytokines we identified in DLPFC and NAc of OUD subjects, such as 

interferons and TNFs, modulate ECM remodeling (112, 113), and therefore, directly link 

neuroinflammation, ECM, and opioids.   

 We therefore posit that opioid-induced changes in CS-GAG signaling driven by 

neuroinflammation disrupt ECM structure and have profound consequences on 

dendritic, synaptic, and behavioral plasticity. For example, reorganization of ECM in 

NAc via matrix metalloproteinases (MMPs), which facilitate matrix degradation and 

reassembly, leads to increased potentiation of glutamatergic synapses (114) and opioid 

relapse (115). Importantly, we identified TIMP1 and TLR2 as OUD-specific hub genes, 

both of which have crucial roles in ECM remodeling (116) and functional reorganization 

of excitatory synapses by directly inhibiting MMPs (114). We therefore speculate: 1) 
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opioid use elicits release of pro-inflammatory cytokines in the brain that activate TIMP1 

and TLR2, protein modulators of ECM organization (117); 2) these activated modulators 

modify MMP activity to alter ECM organization; and 3) these disturbances to ECM 

remodeling alter synaptic plasticity136 and result in the behavioral changes related to 

OUD. Future experiments using animal models will directly test these possibilities.  

Multiple lines of evidence point to the centrality of microglia, the primary resident 

immune cells in the brain, in the pathways we have identified in OUD subjects. First, 

microglial markers were significantly enriched across DLPFC and NAc in OUD. 

Moreover, our cell-type marker-based approach revealed that the top DE transcript, 

HSD17B14, was highly correlated with microglial markers. HSD17B14 maintains 

microglial homeostasis during inflammation (51). Second, our cell-type marker analysis 

revealed pathways involved in microglial activation and the activation of additional 

immune cell types, including CD4+ and CD8+ T-cells. Earlier work suggests synergistic 

relationships between microglia and T-cells that may potentiate neuroinflammation in 

OUD (118). Third, the cytokines we identified, including IL-1β, IL-6, IL-2, and TNFα, are 

secreted by microglia (119), all of which are implicated in opioid reward and 

dependence (120-122). Fourth, pathways identified in OUD map are related to 

transcriptional regulation in microglia during inflammation. Specifically, network 

analyses predicted the following top upstream regulators as PPARγ, NFκΒ1, RELA, 

STAT1, and SP1. While microglia rely on multiple families of transcription factors (123), 

our findings in OUD largely identify transcription factors that are important for guiding 

microglial response to inflammatory signals. For example, PPARγ is a nuclear 

transcription factor preferentially expressed in human microglia. PPARγ is activated in 
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response to neuroinflammation and leads to anti-inflammatory responses that are 

neuroprotective (123). Aberrant activation of STAT1 in microglia upregulates several 

pro-inflammatory cytokines. Intriguingly, STAT1-dependent signaling regulates the 

expression of the human μ-opioid receptor via IL-6, another pro-inflammatory cytokine 

that we identified in our analyses (124). Finally, we found two pathways intimately linked 

to microglial function: ameboidal migration and integrin signaling. Integrins physically 

tether microglia and neurons to the ECM scaffold (125). Microglia rely on the ECM for 

ameboidal migration, further linking microglia, ECM, and neuroinflammation in OUD.  

 In addition to changes in protein-coding transcripts, we discovered that subjects 

with OUD exhibited marked expression changes in lncRNAs. LncRNAs are key 

regulators of gene and protein expression (126). Several of the lncRNAs we identified in 

OUD subjects, AC0101086.3, BAALC.AS1, and AL136366.1, are implicated in both 

neurotransmission and neuroinflammation. In DLPFC, we found AC0101086.3 to be an 

OUD-specific hub lncRNA. This lncRNA is located proximally to CLEC2D, which 

encodes ELT1, the functional ligand for the natural-killer cell receptor NKR-P1A. NKR-

P1A controls immunosurveillance via natural-killer, dendritic, and B-cells (65, 66). In 

NAc, we found BAALC.AS1 (127) and AL136366.1 (128) as OUD-specific hub lncRNAs, 

both of which are involved in various brain functions (129, 130).  

 Functional alterations occur at the circuit-level across multiple brain regions in 

opioid dependence and treatment (131). One such change occurs at the transcriptional 

level, where different brain regions can increasingly synchronize their patterns of 

transcription. There is evidence that increases in transcriptional synchrony across brain 

regions occur in response to insults including stress and drugs of abuse (20, 132). 
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Consistent with this, we found significant transcriptional synchrony between DLPFC and 

NAc in OUD. To date, the relevance of such synchrony remains unclear. We speculate 

that, because the ranking, effect size, and direction of change in numerous transcripts is 

highly similar between brain regions, such synchrony may represent a common 

pathophysiological response to neuroinflammation in OUD. Clearly, further work is 

required to explore these possibilities. 

 Integrating large-scale gene expression profiles with relevant GWAS findings 

reveals novel gene-trait associations in OUD. We demonstrated that downregulated 

genes in the NAc of OUD subjects were significantly enriched for GWAS of risky 

behavior (71). Risky behavior forms a functional triad with mood and impulsivity (133), 

where impulsivity is a risk factor for substance use (134-136). Our findings therefore 

support relationships between genetic risk, brain region-specific transcriptional changes, 

and vulnerability to OUD.  

Overall, our data reveal new connections between the brain’s immune system 

and opioid dependence in the human brain. These results provide a novel putative 

mechanism across transcriptional networks, biological pathways, and specific cell types 

for the detrimental neuroadaptations across corticostriatal circuitry that result from 

chronic opioids and OUD. The insights provided by our work offer the opportunity for 

new therapeutic targets with improved efficacy to treat OUD. 
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Figure Legends 

Fig. 1. Transcriptomic changes in DLPFC and NAc from OUD subjects. A. Log2FC 

plotted relative to -log10p-value by volcano plot for DE genes in DLFPC. Horizontal 

dashed lines represent p-value significance cutoff of corrected p<0.01, while vertical 

dashed lines represent log2FC cutoffs of ≤-0.26 or ≥0.26 (FC≥1.2). Red circles 

represent DE genes that reach significance, log2FC, and FDR<0.05 cutoffs. B. Heatmap 

of the top 250 DE genes (corrected p<0.01 and log2FC of ≤-0.26 or ≥0.26) clustered by 

gene and subject. Each column represents a subject (unaffected comparison, purple; 

OUD, blue). Subjects within groups cluster together. C. Volcano plot for DE genes in 

NAc. Note the large numbers of genes that are significantly reduced in expression 

compared to genes that are increased. D. Heatmap of the top 250 DE genes clustered 

by gene and subject. Overall, subjects within groups cluster together with several 

groups of subjects forming separate clusters. E. Biotypes of DE genes (corrected 

p<0.01 and log2FC of ≤-0.26 or ≥0.26) in DLPFC. Protein coding genes represent the 

majority of DE genes (blue; 73.4%) followed by lncRNAs (orange; 19.5%). F. Biotypes 

of DE genes in NAc. Protein coding genes represent the majority of DE genes (blue; 

89.5%) followed by lncRNAs (orange; 7.43%). 

 

Fig. 2. High transcriptional concordance reveals commonly altered molecular 

pathways between brain regions associated with opioid dependence. A. RRHO 

plot indicating high degree of overlap, or transcriptional concordance, between DLPFC 

and NAc in OUD subjects. B. Venn diagram of DE genes between DLPFC and NAc. C. 
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DE genes (purple lines) and their ontology (light blue lines) highly overlapped (orange) 

between DLPFC and NAc. D. Top 20 pathways of DE genes shared between DLPFC 

and NAc. Many of these pathways are related to ECM and neuroinflammatory signaling.  

 

Fig. 3. Predicted microglial cell-type enrichment in both DLPFC and NAc. A. 

Deconvolution analyses indicates modest enrichment of microglia gene markers in 

DLPFC and NAc of OUD subjects (p<0.03; hypergeometric t-test controlling for brain 

region), consistent with enrichment of pathways in DE genes related to immune 

function. B. Pathway enrichment analysis on the significantly altered DE genes in 

neurons identified pathways related to inflammation. C. Significantly enriched terms 

based on pathways included in multiple annotated sets (e.g., GO, KEGG, hallmark, etc.) 

using hypergeometric p-values and enrichment factors. The network is visualized with 

Cytoscape using Community cluster with categorical labels representing multiple 

clusters. Individual nodes are also labeled. Note nodes are related to presynaptic 

structure and function and miR233-dependent regulation of macrophage and T-cell 

activation.  

 

Fig. 4. OUD associated gene networks in DLPFC and NAc. A. Weighted gene co-

expression network analysis (WGCNA) was used to generate co-expression modules, 

with the network structure generated on each brain region separately. The identified 

modules that survived module preservation analysis were arbitrarily assigned colors and 

the dendrogram shows average linkage hierarchical clustering of genes. B. Pie charts 

summarize results from the module differential connectivity (MDC) analysis compared 
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OUD to unaffected comparison subjects. The majority of modules were lost in 

unaffected comparison subjects, revealing OUD-specific modules in both DLPFC and 

NAc. C. Circos plot identified by module names and colors. Enrichment for full list of 

differentially expressed (DE) genes, protein-coding (mRNA), and long non-coding RNAs 

(lncRNA), are indicated by semi-circle colors within each module, with increasing warm 

colors indicating increasing -log10 p-value. LncRNA enrichment was examined based on 

the high prevalence of these transcripts in the Biotype analysis (see Figure 2a,e). MDC 

analysis indicated a loss of connectivity in the DLPFC blue module and NAc forestgreen 

module. These modules were also enriched for DE mRNA and lncRNAs. D. Pathway 

enrichment analysis compared gene networks within the DLPFC blue module and NAc 

forestgreen module. Warmer colors indicate increasing -log10 p-value and highly shared 

pathways between the modules. Hub gene co-expression networks of the DLPFC blue 

module E. unaffected comparison subjects and F. OUD subjects, and networks of the 

forestgreen module in NAc E unaffected comparison subjects and F. OUD subjects. 

Node size indicates the degree of connectivity for that gene. Turquoise nodes indicate 

OUD-specific hub genes, purple nodes indicate LncRNA gene, gray nodes indicate hub 

genes, and red halos indicate DE genes. Edges indicate significant co-expression 

between two particular genes. 

 

Fig. 5. Differentially expressed genes in the DLPFC and NAc enrich for genetic 

liability of risky behavior. Several well-powered genome-wide associated studies 

(GWAS) have identified risk loci associated with substance use (SU), substance use 

disorder (SUD)-, and neuropsychiatry (neuropsych)-related traits. Significant risk loci 
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overlap with intronic and distal intergenic noncoding regions, presumably within cis-

acting regulatory elements of gene expression. A. Proximal noncoding regions of 

differentially expressed (DE) genes in DLPFC and NAc from OUD subjects were 

investigated for enrichment of genetic risk variants of SU-related traits using partitioned 

heritability linkage-disequilibrium score regression analysis. No enrichment was found in 

the DLPFC, but significant enrichment was found in the NAc for up and down-regulated 

genes with smoking cessation and smoking initiation. B. No enrichment was found in 

the DLPFC or NAc for SUD-related GWAS. C. No enrichment was found for 

neuropsychiatry-related GWAS in the DLPFC, but there was enrichment in the NAc for 

attention deficit hyperactivity disorder (ADHD; down-regulated), bipolar disorder 

(downregulated), depression (up and downregulated), and risky behavior (up and 

downregulated) GWAS. D. No enrichment in DLPFC or NAc for unrelated GWAS traits, 

including bone mineral density (BMD), coronary artery disease (CAD), and lean body 

mass (LBM). *, indicates in African American population; lack of asterisk indicates 

European American population.  
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Tables 

Table 1. Subject summary demographic and tissue characteristics  

Characteristic 
Unaffected 
comparison 
(n=20) 

Opioid  
dependent 
(n=20) 

Age 47.3 ± 9.5 46.9 ± 7.3 
Sex 10M 10F 10M 10F 
Race 13W 7B 19W 1B 
PMI (hours) 15.7 ± 6.1 16.0 ± 5.3 
Brain pH 6.6 ± 0.3 6.4 ± 0.2 
RIN 8.0 ± 0.7 7.8 ± 0.7 
Tissue 
Storage Time 
(months) 

100.3 ± 86.1 103.0 ± 59.7 

Values are mean ± SD. M, male; F, female; B, black; W, white 
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