

Transcriptional alterations in opioid use disorder reveal an interplay between neuroinflammation and synaptic remodeling

Marianne L. Seney^{1,2}, Sam-Moon Kim^{1,2,3}, Jill R. Glausier¹, Mariah A. Hildebrand¹, Xiangning Xue⁴, Wei Zong⁴, Jiebiao Wang⁴, Micah A. Shelton¹, BaDoi N. Phan⁵, Chaitanya Srinivasan⁵, Andreas R. Pfenning^{5,6}, George C. Tseng⁴, David A. Lewis¹, Zachary Freyberg^{1,7} and Ryan W. Logan^{3,8,9*}

¹Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.

²Center for Adolescent Reward, Rhythms, and Sleep, University of Pittsburgh, Pittsburgh, PA 15219, USA.

³Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME 04609.

⁴Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA.

⁵Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

⁶Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

⁷Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.

⁸Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118

⁹Center for Systems Neuroscience, Boston University, Boston, MA 02118

*To whom correspondence should be addressed:

Ryan W. Logan, PhD
Department of Pharmacology and Experimental Therapeutics
Boston University School of Medicine
700 Albany Street, Office W507A
Boston, MA 02118
rwlogan@bu.edu
617-358-9563

Abstract

Background: Prevalence rates of opioid use disorder (OUD) have increased dramatically, accompanied by a surge of overdose deaths. While opioid dependence has been extensively studied in preclinical models, an understanding of the biological alterations that occur in the brains of people who chronically use opioids and who are diagnosed with OUD remains limited. To address this limitation, RNA-sequencing (RNA-seq) was conducted on the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc), regions heavily implicated in OUD, from postmortem brains in subjects with OUD.

Methods: We performed RNA-seq on the DLPFC and NAc from unaffected comparison subjects (n=20) and subjects diagnosed with OUD (n=20). Our transcriptomic analyses identified differentially expressed (DE) transcripts and investigated the transcriptional coherence between brain regions using rank-rank hypergeometric ordering (RRHO). Weighted gene co-expression analyses (WGCNA) also identified OUD-specific modules and gene networks. Integrative analyses between DE transcripts and GWAS datasets using linkage disequilibrium score (LDSC) assessed the genetic liability psychiatric-related phenotypes.

Results: RRHO analyses revealed extensive overlap in transcripts between DLPFC and NAc in OUD, primarily relating to synaptic remodeling and neuroinflammation. Identified transcripts were enriched for factors that control pro-inflammatory cytokine-mediated, chondroitin sulfate, and extracellular matrix signaling. Cell-type deconvolution implicated a role for microglia as a critical driver for opioid-induced neuroplasticity.

Using LDSC, we discovered genetic liabilities for risky behavior, attention deficit hyperactivity disorder, and depression.

Conclusions: Overall, our findings reveal new connections between the brain's immune system and opioid dependence in the human brain.

Introduction

Prevalence of opioid use disorder (OUD) and deaths from opioid overdose have soared in the United States (1). The enormity of the public health impact have been the impetus for broad efforts to develop new treatments for OUD. Progress towards effective therapeutics requires better understanding of the alterations in the brain of those who develop dependence.

Impulsivity and deficits in cognition are hallmarks of OUD (3). These impairments have been attributed to functional alterations in corticostriatal circuits including the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc) (3, 4). Moreover, a history of substance use is associated with corticostriatal circuit dysfunction that contributes to cognitive impairment and promotes risky behavior (5). However, we still have a limited understanding of the cellular and molecular alterations due to chronic opioid use and OUD that occur in these circuits in human brain.

Although few studies have studied postmortem brains in subjects diagnosed with OUD, the approach has potential to uncover relevant and therapeutically viable pathways in the brain in opioid dependence. Previous work reported changes in opioid receptor expression in DLPFC (6-8) and altered expression of the machinery that regulates presynaptic glutamate release in NAc (9, 10), potentially related to addiction severity in heroin users. Preclinical evidence has corroborated these findings by demonstrating unique interactions between opioid and glutamate receptor signaling in opioid withdrawal and dependence (11-13). Nevertheless, deeper knowledge into the molecular alterations by chronic opioid use in the human DLPFC and NAc is extremely limited.

We aimed to establish a more comprehensive understanding of the molecular changes across DLPFC and NAc in brains from subjects who were chronic opioid users also diagnosed with OUD. We used multiple levels of analysis by integrating transcriptomics across brain regions with traits related to OUD vulnerability using GWAS. Between the DLPFC and NAc, we found remarkable overlap in both upregulated and downregulated transcripts. Further investigation into these overlapping transcripts revealed pathways enriched for factors that control the formation and degradation of the extracellular matrix (ECM) and pro-inflammatory cytokine-mediated signaling. These pathways implicate neuroinflammation as a driver of ECM remodeling and synaptic reorganization, processes which are critical for opioid-induced neuroplasticity (14). Our analyses showed that microglia were central to these OUD effects in both the DLPFC and NAc. Finally, we found links between neuroinflammation and OUD, and strong associations with a genetic liability to risky behavior using GWAS. Our findings revealed novel genetic and molecular changes that may ultimately contribute to opioid dependence.

Materials and Methods

Detailed procedures are provided in **Supplementary Methods**.

Human Subjects

Brains were obtained during routine autopsies conducted by the Office of the Allegheny County of the Medical Examiner (Pittsburgh, PA) after consent was obtained from next-of-kin. Procedures were approved by the University of Pittsburgh's Committee for Oversight of Research and Clinical Training Involving Decedents and Institutional Review Board for Biomedical Research. Each subject meeting diagnostic criteria for OUD at time of death (n=20) was matched with one unaffected comparison subject (n=20) for sex and as closely as possible for age (**Table 1**; **Table S1**). Cohorts only differed by race ($p=0.02$). DLPFC (area 9) and NAc were identified on fresh-frozen right hemisphere coronal tissue blocks using anatomical landmarks (15), and tissue (~50mg) was collected via cryostat, using an approach that minimizes contamination from white matter and other striatal subregions and ensures RNA preservation (16, 17).

RNA Sequencing analyses

Differential expression (DE) was assessed using limma with covariate selection (18). Transcripts with corrected $p<0.01$ and $\log_2FC>\pm 0.26$ were considered DE (20-22). The top 250 DE transcripts were ordered by \log_2FC for unsupervised clustering of subjects. Biotypes of transcripts were determined using metaseqR (v3.11) (23). Overrepresentation of pathways (GO, KEGG, Hallmark, Canonical Pathways, Reactome, BioCarta, CORUM) was assessed using Metascape

(<http://www.metascape.org>), with expressed transcripts as background. Networks were visualized with Cytoscape. INGENUITY® Pathway Analysis (Qiagen) and HOMER (v4.11) (24) was used to predict upstream regulators of DE transcripts. Rank-rank hypergeometric overlap (RRHO) (25, 26) was used to assess overlap of DE transcripts ($p<0.01$ in both regions).

Identification of OUD-specific co-expression networks

We used weighted gene co-expression network analysis (WGCNA) to identify gene modules across samples (27, 28). Module differential connectivity (MDC) was used to quantify differences in co-expression within modules between OUD and unaffected comparison subjects. We used Fisher's exact test to determine whether DE transcripts were enriched within WGCNA modules. ARACNe was used to identify hub and OUD-specific hub genes for network analysis (29) and Cytoscape was used to visualize networks. Overrepresentation of pathway categories for each module was assessed using Metascape, with the 5000 WGNCA-analyzed genes as background.

Cell-type-specific DE analysis

We estimated cell-type fractions from bulk RNA-seq using Digital Sorting Algorithm (30) through deconvolution in BRETIGEA into astrocytes, endothelial cells, microglia, neurons, and oligodendrocytes (31). OUD and unaffected comparison subjects are compared for enrichment of each cell type using hypergeometric t-tests

adjusting for brain region. We conducted cell-type-specific DE analysis with CellIDMC (32) (FDR<0.05).

Integration of DE transcripts with GWAS

Region-specific differentially up- and down-regulated transcripts (corrected $p<0.01$) were used to construct foregrounds for GWAS enrichment. We computed the partitioned heritability (GWAS enrichment) of brain region-specific noncoding regions containing and surrounding OUD transcript sets using the LD score regression pipeline for cell type-specific enrichment (33, 34). LD score regression coefficients were adjusted for FDR<0.1 on enrichments performed on all GWAS for foregrounds. A significant p-value indicates enrichment of the foreground genomic regions for GWAS SNPs relative to the background.

Results

Enrichment of DE transcripts involved in neuroinflammation and ECM remodeling in DLPFC and NAc in OUD

We first determined whether there were transcriptional differences by brain region in unaffected comparison subjects. Overall, the DLPFC and NAc had unique transcriptional profiles (**Fig.S2**). In DLPFC, many of the transcripts were related to synaptic vesicle transport (e.g., *KIF5C* (35, 36), *STXBP5L* (37)), exocytosis (e.g., *STX1A* (38)), and neurotransmitter release (e.g., *CADPS2* (39), *RIMS3* (40)) (**Data file S1**), while the NAc was enriched for cytoskeletal remodeling and chemotaxis (e.g., *ROBO1* (41), *MTUS1* (42)) (**Data file S1**).

We next investigated the impact of OUD on region-specific transcriptional differences. Our results showed that opioid dependence had a profound effect on gene expression in DLPFC and NAc, with high numbers of DE transcripts in both brain regions (567 in DLPFC (**Data file S2**); 1306 in NAc (**Data file S3**; **Table S2**). The volcano plot of DE results for the DLPFC revealed an even distribution of downregulated (339) or upregulated (228) transcripts in OUD (**Table S2**, **Fig.1A, data file S2**). Unaffected comparison subjects were differentiated from OUD subjects by unsupervised clustering based on the expression of the top 250 DE transcripts ($\log_2\text{FC}$) in DLPFC (**Fig.1B**). The volcano plot for NAc revealed that many of the DE transcripts were downregulated (1085 compared to 221 upregulated transcripts) in OUD subjects (**Fig.1C, Data file S3**). Unsupervised clustering of subjects based on the top 250 DE transcripts in NAc identified subgroups in both the unaffected comparison and OUD cohorts (**Fig.1D**). Further analysis using principal components analysis (PCA) identified

five subjects with OUD that clustered together with four unaffected subjects (**Fig.S3**).

Each subject was diagnosed with an inflammatory disease (e.g., asthma or arthritis;

Table S1). Another three subjects from the unaffected comparison cohort also had histories of inflammatory disease, although these subjects seemed to cluster with the remainder of comparison cohort (**Fig.S3**). Overall, our findings suggest inflammatory disease may impact the NAc transcriptome, and further supports enrichment of neuroinflammation in subjects with OUD are independent of acute or chronic inflammation.

Most transcripts in both DLPFC and NAc were protein-coding and long noncoding RNAs (lncRNAs) (**Fig.1E-F**; DLPFC: 73.4% protein-coding, 19.5% lncRNAs; NAc: 89.5% protein coding, 7.43% lncRNAs). Further analysis revealed pathways associated with inflammation in both DLPFC and NAc (**Supplementary Results, Fig.S4-S5**). Other pathways included chondroitin/dermatan sulfate metabolism and synapse organization in NAc, suggesting links between extracellular matrix (ECM) remodeling, microglial cell migration, and synaptic plasticity, in line with recent work (43).

High transcriptional coherence between DLPFC and NAc converges on neuroinflammatory and ECM pathways in OUD

Since pathways were largely similar between brain regions in OUD, we explored the extent of transcriptional overlap between DLPFC and NAc using rank-rank hypergeometric ordering (RRHO) (44, 45). RRHO orders transcripts in each brain region by both effect size direction and p-value. Substantial transcriptional overlap in

both upregulated and downregulated transcripts was found between DLPFC and NAc (**Fig.2A-C**, Fisher's exact test, $p<10^{-6}$; **Fig.S6**). Such analyses may provide critical insight into the functional alterations across DLPFC—NAc circuits (3, 14, 46-49). Given the extent of transcriptional coherence, pathway enrichment analysis was conducted on DE transcripts shared between regions. Across DLPFC and NAc, the top shared pathways included those related to ECM (e.g., biosynthesis of glycosaminoglycans and chondroitin sulfate) and inflammation (e.g., cytokine-mediated immune signaling via tumor necrosis factor alpha (TNFa) and nuclear factor kappa B (NFkB) (**Fig.2D**). Other pathways were associated with cellular stress responses (e.g., DNA damage repair), and protein and histone modifications (e.g., ubiquitination and acetylation) that govern epigenetic regulation (**Fig.2D**, **Fig.S7**).

Given the association with epigenetic regulation, we investigated the enrichment of chromatin state by comparing the transcription start sites from DE transcripts in OUD to states previously defined in postmortem brains from unaffected comparison subjects using genome-wide maps of epigenetic modifications (50). Transcription start sites of DE transcripts in DLPFC were enriched for genomic regions marked by weak polycomb repression (**Fig.S8A**, $p<10^{-5}$). Weak polycomb repression diminishes histone marks (e.g., H3K27me3), which would otherwise inhibit transcription at the start site (50). Relative to unaffected subjects, the enrichment of upregulated DE transcripts in DLPFC from OUD subjects suggests that opioids induce the activation of otherwise repressed areas of the genome to promote transcription (Figure S6). In NAc, DE transcripts were enriched for genomic regions marked for a quiescent state (**Fig.S8A**; $p<10^{-6}$). Quiescent states are characterized by the complete absence of histone marks linked to

transcriptional inactivity (50). Similar to DLPFC, such findings suggest opioids activate otherwise inactive genomic regions, resulting in upregulation of specific transcripts in NAc (**Fig.8B**). Overall, these findings reflect a fundamental disturbance of chromatin states and transcriptional regulation by opioids relative to baseline epigenetic states.

Upregulation of microglia markers in OUD

By leveraging the high transcriptional coherence between DLPFC and NAc, we identified cell types with specific DE transcripts expressed in both brain regions using deconvolution (32). Transcripts were clustered in major brain cell types including astrocytes, endothelial cells, microglia, neurons, and oligodendrocytes and oligodendrocyte precursor cells. Compared to unaffected subjects, markers for microglia (e.g., *ZNF812*) were significantly enriched in OUD ($p=0.03$; **Fig.3A**). We next conducted cell type-specific DE analysis in DLPFC and NAc by identifying DE transcripts that significantly co-varied with specific cell markers. Using brain region as a covariate, we detected a single DE transcript associated with microglia markers, *HSD17B14* (**Table S3**). Previous work showed that reduced expression of *HSD17B14* in microglia resulted in exaggerated pro-inflammatory glial activation (51). This further supports evidence for neuroinflammatory processes in DLPFC and NAc in OUD.

Focusing on transcripts that correlated with changes in neuronal markers, we identified 25 DE transcripts significantly enriched for pathways related to neuroimmune signaling between neurons and local inflammatory cells (e.g., microglia) (**Fig.3B, Table S3**). We found several upregulated genes that are controlled by a single microRNA (miR), miR223 (**Fig.3B**). miR223 is a crucial modulator of macrophage activation (52),

further implicating microglia in the regulation of neuroimmune responses in OUD. A broader view indicated that immune-related pathways were largely distinct between microglia and other immune cell types including CD4⁺ and CD8⁺ T-cells (**Fig.3C**). This highlights the possibility of interactions between neurons and other immune cells in brains of OUD subjects. Lastly, we also found strong enrichment of DE transcripts with synapse-related pathways (**Fig.S9**).

Increased connectivity of neuroinflammatory and ECM signaling gene modules in OUD

We used WGCNA to investigate correlations among transcripts in both unaffected comparison and OUD subjects. WGCNA identified 17 co-expression modules in DLPFC and 15 modules in NAc (**Fig.4A**). To identify OUD-specific modules, we used MDC to directly compare network connectivity of each module between OUD and unaffected subjects. More coordinated expression of transcripts in unaffected subjects relative to OUD subjects indicates a 'gain' of connectivity in unaffected subjects. Conversely, a module that loses connectivity in unaffected subjects is more coordinated in OUD. In DLPFC, 15/17 modules lost connectivity and two remained unchanged in unaffected subjects (**Fig.4B**). In NAc, 13/15 modules lost connectivity, while one module gained connectivity, and another remained unchanged in unaffected subjects (**Fig.4B**). These findings indicate that overall module structures were largely distinct between OUD and unaffected comparison subjects.

To further investigate the biological significance of OUD-specific modules, we examined DE enrichment within each module focused on highly represented mRNAs and lncRNAs (**Fig.1E-F**). The DLPFC blue module and the NAc forestgreen module

were of particular interest because of their increased connectivity in OUD compared to the other modules and significant enrichment of both DE mRNA and lncRNA transcripts in OUD (DLPFC blue full DE list $q < 10^{-26}$, mRNA $q < 10^{-23}$, lncRNA $p = 0.002$; NAc forestgreen full DE list $q < 10^{-23}$, mRNA $q < 10^{-22}$, lncRNA $p = 0.004$). The topography of DLPFC blue and NAc forestgreen networks were more correlated in OUD relative to unaffected comparison subjects (**Fig.4E-F**), consistent with strengthening of module connectivity.

Given the substantial overlap in transcripts and pathways across DLPFC and NAc, we next tested the degree of overlap in transcript co-expression networks between DLPFC blue and NAc forestgreen modules. Indeed, there was substantial overlap in transcripts between these modules (Fisher's exact test, $p < 10^{-16}$). These modules were enriched for pathways related to neuroinflammation and ECM remodeling, consistent with our above findings (**Fig.4D**, **Fig.S10**). The top shared pathways include TNF α signaling via NF κ B, interferon- γ response, and acute inflammatory response via IL-6 (53) and IL-2 (54) signaling (**Fig.4D**). Each of the top shared upstream regulators are modulators of inflammatory response: PPAR γ (55), NFKB1 (56), RELA (56), STAT1 (57), and SP1 (58) (**Fig.4D**). Notably, we also found pathways related to ECM remodeling (**Fig.4D**). These data build upon our above analyses highlighting critical roles for neuroinflammation and ECM in OUD.

To identify potential drivers of co-expression networks, we detected highly connected "hub" genes within a module that were predicted to regulate the expression of other module genes. Many of the hub genes that were specific to OUD in DLPFC and NAc included inflammatory regulators, such as *JAK3* (59), *SERPINB1* (60), and *RELL1*

(61) in DLPFC (**Fig.4F**), and *TLR2* (62), *TNFRSF10B* (63), and *NFIL3* (64) in NAc (**Fig.4F**). We also found additional classes of highly connected transcriptional regulators within our co-expression networks including lncRNAs and RNA-binding proteins. Several lncRNAs were highly connected in OUD-specific networks in DLPFC and NAc (e.g., DLPFC: AC0101086.3 and NAc: *BAALC.AS1*) (**Fig.4F, Table S4**). AC0101086.3 is located proximal to *CLEC2D* in the genome, another OUD-specific hub gene. *CLEC2D* encodes ELT1, an activator of innate immunity (65, 66). *BAALC.AS1* is highly expressed in brain and regulates astrocytes (67). In the NAc forestgreen module, we also identified *YBX3*, an RNA-binding protein. *YBX3* regulates the expression of large neutral amino acid transporter 1 (LAT1) (68), which is necessary for the uptake of catecholamine precursor, L-DOPA in dopaminergic cells (69). Notably, changes in *YBX3* expression in human midbrain has previously been implicated in opioid dependence (70). We identify putative mechanisms involved in neuroinflammation and dopamine neurotransmission in OUD.

Associations between DE transcripts in NAc and genetic liability for substance use-related traits in OUD

Opioid dependence is strongly linked to impulsivity and risk-taking. Given our results highlighting inflammation in OUD, we determined whether these pathways were linked to traits related to opioid dependence. To test this, we employed a GWAS-based approach that integrated risk loci associated with substance use-related traits (e.g., opioid dependence, smoking, and risky behavior) and psychiatric disorders (71-73) with transcriptional profiles in DLPFC and NAc from OUD subjects. Loci identified by GWAS

are known to overlap with intronic and distal intergenic noncoding regions within *cis*-acting regulators of gene expression (50). Using this information, we examined whether noncoding regions proximal to our DE transcripts were enriched for genetic risk variants associated with vulnerability to opioid dependence. We discovered significant enrichment of downregulated DE transcripts in NAc of OUD subjects for genes associated with smoking initiation and cessation (**Fig.5A**), along with attention deficit hyperactivity disorder (ADHD), bipolar disorder, depression, and risky behavior GWAS (**Fig.5C**, FDR<0.05). Many of these transcripts were associated with neuroimmune signaling, along with the machinery involved in synaptic neurotransmission (**Fig.2**, **Fig.4**). There was no enrichment of DE transcripts in chronic pain, opioid dependence, or unrelated GWAS traits (*i.e.*, bone mineral density, coronary artery disease, and lean body mass) (**Fig.5A-D**). Our results therefore bridge substance use related genetic risk factors to our transcriptomic findings in OUD.

Discussion

Our work demonstrates that inflammation is the most salient biological process identified in OUD. Clinical findings that link inflammation to OUD are primarily from reports of elevated levels of circulating pro-inflammatory cytokines in opioid dependent individuals (74). Pro-inflammatory cytokines in periphery and brain may have functional consequences that contribute to OUD. In line with this, microglial inhibition mitigates subjective withdrawal (75), reduces motivation to consume opioids in dependent individuals (76), and attenuates opioid conditioned reward and seeking in rodents (77-80). However, the unanswered question was whether these findings were clinically relevant for OUD. By focusing on key regions involved in OUD, we reveal several key inflammatory pathways altered in OUD in DLPFC and NAc.

One of the top pathways shared between DLPFC and NAc is TNF α signaling via NF κ B. Receptors known to activate NF κ B, TNF and TLR4 (81, 82), are among the top predicted upstream regulators of DE transcripts. Though still controversial, there is growing evidence that opioids can also induce a neuroinflammatory response via direct activation of TLR4, a transmembrane receptor which activates NF κ B signaling and inflammatory cascades (83). Upon activation, NF κ B dimers translocate to the nucleus to drive transcription of cytokines, chemokines, and interleukins (81, 82). Additionally, opioids can activate NF κ B via opioid receptors (85-89), and activation of NF κ B signaling can, in turn, promotes transcription of opioid receptors and peptides (90-95), involved in opioid reward (90, 96, 97). Thus, while opioids can influence immune function via NF κ B, opioids may also activate NF κ B, with downstream effects on addiction-related behaviors, independent of immune function.

An effective neuroinflammatory response involves the interplay between immune cells and local ECM remodeling. The ECM is an assembly of adhesion molecules, proteins, polysaccharides, and proteoglycans, critical for BBB integrity and synaptic function (98). Both the formation and degradation of ECM in the brain depend on the aggregation of a specific family of proteoglycans, chondroitin sulfate glycoaminoglycans (CS-GAGs) (100). Significantly, CS-GAGs constitute the top shared pathway enriched between DLPFC and NAc in OUD subjects. CS-GAGs aggregate in the perisynaptic space in response to inflammation. Increasingly, ECM remodeling is also implicated in synaptic plasticity (101), with roles in neurite outgrowth, dendritic spine formation and morphology (100, 102), and myelination (103, 104). Indeed, reduced myelination has been found in clinical neuroimaging and postmortem brain studies of chronic opioid users (105-109), as well as in rodent models of chronic opioid exposure (110, 111). Importantly, the cytokines we identified in DLPFC and NAc of OUD subjects, such as interferons and TNFs, modulate ECM remodeling (112, 113), and therefore, directly link neuroinflammation, ECM, and opioids.

We therefore posit that opioid-induced changes in CS-GAG signaling driven by neuroinflammation disrupt ECM structure and have profound consequences on dendritic, synaptic, and behavioral plasticity. For example, reorganization of ECM in NAc via matrix metalloproteinases (MMPs), which facilitate matrix degradation and reassembly, leads to increased potentiation of glutamatergic synapses (114) and opioid relapse (115). Importantly, we identified *TIMP1* and *TLR2* as OUD-specific hub genes, both of which have crucial roles in ECM remodeling (116) and functional reorganization of excitatory synapses by directly inhibiting MMPs (114). We therefore speculate: 1)

opioid use elicits release of pro-inflammatory cytokines in the brain that activate TIMP1 and TLR2, protein modulators of ECM organization (117); 2) these activated modulators modify MMP activity to alter ECM organization; and 3) these disturbances to ECM remodeling alter synaptic plasticity¹³⁶ and result in the behavioral changes related to OUD. Future experiments using animal models will directly test these possibilities.

Multiple lines of evidence point to the centrality of microglia, the primary resident immune cells in the brain, in the pathways we have identified in OUD subjects. First, microglial markers were significantly enriched across DLPFC and NAc in OUD. Moreover, our cell-type marker-based approach revealed that the top DE transcript, *HSD17B14*, was highly correlated with microglial markers. *HSD17B14* maintains microglial homeostasis during inflammation (51). Second, our cell-type marker analysis revealed pathways involved in microglial activation and the activation of additional immune cell types, including CD4⁺ and CD8⁺ T-cells. Earlier work suggests synergistic relationships between microglia and T-cells that may potentiate neuroinflammation in OUD (118). Third, the cytokines we identified, including IL-1 β , IL-6, IL-2, and TNF α , are secreted by microglia (119), all of which are implicated in opioid reward and dependence (120-122). Fourth, pathways identified in OUD map are related to transcriptional regulation in microglia during inflammation. Specifically, network analyses predicted the following top upstream regulators as PPAR γ , NF κ B1, RELA, STAT1, and SP1. While microglia rely on multiple families of transcription factors (123), our findings in OUD largely identify transcription factors that are important for guiding microglial response to inflammatory signals. For example, PPAR γ is a nuclear transcription factor preferentially expressed in human microglia. PPAR γ is activated in

response to neuroinflammation and leads to anti-inflammatory responses that are neuroprotective (123). Aberrant activation of STAT1 in microglia upregulates several pro-inflammatory cytokines. Intriguingly, STAT1-dependent signaling regulates the expression of the human μ -opioid receptor via IL-6, another pro-inflammatory cytokine that we identified in our analyses (124). Finally, we found two pathways intimately linked to microglial function: ameboidal migration and integrin signaling. Integrins physically tether microglia and neurons to the ECM scaffold (125). Microglia rely on the ECM for ameboidal migration, further linking microglia, ECM, and neuroinflammation in OUD.

In addition to changes in protein-coding transcripts, we discovered that subjects with OUD exhibited marked expression changes in lncRNAs. LncRNAs are key regulators of gene and protein expression (126). Several of the lncRNAs we identified in OUD subjects, *AC0101086.3*, *BAALC.AS1*, and *AL136366.1*, are implicated in both neurotransmission and neuroinflammation. In DLPFC, we found *AC0101086.3* to be an OUD-specific hub lncRNA. This lncRNA is located proximally to *CLEC2D*, which encodes ELT1, the functional ligand for the natural-killer cell receptor NKR-P1A. NKR-P1A controls immunosurveillance via natural-killer, dendritic, and B-cells (65, 66). In NAc, we found *BAALC.AS1* (127) and *AL136366.1* (128) as OUD-specific hub lncRNAs, both of which are involved in various brain functions (129, 130).

Functional alterations occur at the circuit-level across multiple brain regions in opioid dependence and treatment (131). One such change occurs at the transcriptional level, where different brain regions can increasingly synchronize their patterns of transcription. There is evidence that increases in transcriptional synchrony across brain regions occur in response to insults including stress and drugs of abuse (20, 132).

Consistent with this, we found significant transcriptional synchrony between DLPFC and NAc in OUD. To date, the relevance of such synchrony remains unclear. We speculate that, because the ranking, effect size, and direction of change in numerous transcripts is highly similar between brain regions, such synchrony may represent a common pathophysiological response to neuroinflammation in OUD. Clearly, further work is required to explore these possibilities.

Integrating large-scale gene expression profiles with relevant GWAS findings reveals novel gene-trait associations in OUD. We demonstrated that downregulated genes in the NAc of OUD subjects were significantly enriched for GWAS of risky behavior (71). Risky behavior forms a functional triad with mood and impulsivity (133), where impulsivity is a risk factor for substance use (134-136). Our findings therefore support relationships between genetic risk, brain region-specific transcriptional changes, and vulnerability to OUD.

Overall, our data reveal new connections between the brain's immune system and opioid dependence in the human brain. These results provide a novel putative mechanism across transcriptional networks, biological pathways, and specific cell types for the detrimental neuroadaptations across corticostriatal circuitry that result from chronic opioids and OUD. The insights provided by our work offer the opportunity for new therapeutic targets with improved efficacy to treat OUD.

Figure Legends

Fig. 1. Transcriptomic changes in DLPFC and NAc from OUD subjects. A. $\log_2\text{FC}$ plotted relative to $-\log_{10}\text{p-value}$ by volcano plot for DE genes in DLPFC. Horizontal dashed lines represent p-value significance cutoff of corrected $p<0.01$, while vertical dashed lines represent $\log_2\text{FC}$ cutoffs of ≤-0.26 or ≥0.26 ($\text{FC}\geq1.2$). Red circles represent DE genes that reach significance, $\log_2\text{FC}$, and $\text{FDR}<0.05$ cutoffs. **B.** Heatmap of the top 250 DE genes (corrected $p<0.01$ and $\log_2\text{FC}$ of ≤-0.26 or ≥0.26) clustered by gene and subject. Each column represents a subject (unaffected comparison, purple; OUD, blue). Subjects within groups cluster together. **C.** Volcano plot for DE genes in NAc. Note the large numbers of genes that are significantly reduced in expression compared to genes that are increased. **D.** Heatmap of the top 250 DE genes clustered by gene and subject. Overall, subjects within groups cluster together with several groups of subjects forming separate clusters. **E.** Biotypes of DE genes (corrected $p<0.01$ and $\log_2\text{FC}$ of ≤-0.26 or ≥0.26) in DLPFC. Protein coding genes represent the majority of DE genes (blue; 73.4%) followed by lncRNAs (orange; 19.5%). **F.** Biotypes of DE genes in NAc. Protein coding genes represent the majority of DE genes (blue; 89.5%) followed by lncRNAs (orange; 7.43%).

Fig. 2. High transcriptional concordance reveals commonly altered molecular pathways between brain regions associated with opioid dependence. A. RRHO plot indicating high degree of overlap, or transcriptional concordance, between DLPFC and NAc in OUD subjects. **B.** Venn diagram of DE genes between DLPFC and NAc. **C.**

DE genes (purple lines) and their ontology (light blue lines) highly overlapped (orange) between DLPFC and NAc. **D.** Top 20 pathways of DE genes shared between DLPFC and NAc. Many of these pathways are related to ECM and neuroinflammatory signaling.

Fig. 3. Predicted microglial cell-type enrichment in both DLPFC and NAc. A. Deconvolution analyses indicates modest enrichment of microglia gene markers in DLPFC and NAc of OUD subjects ($p<0.03$; hypergeometric t-test controlling for brain region), consistent with enrichment of pathways in DE genes related to immune function. **B.** Pathway enrichment analysis on the significantly altered DE genes in neurons identified pathways related to inflammation. **C.** Significantly enriched terms based on pathways included in multiple annotated sets (e.g., GO, KEGG, hallmark, etc.) using hypergeometric p-values and enrichment factors. The network is visualized with Cytoscape using Community cluster with categorical labels representing multiple clusters. Individual nodes are also labeled. Note nodes are related to presynaptic structure and function and miR233-dependent regulation of macrophage and T-cell activation.

Fig. 4. OUD associated gene networks in DLPFC and NAc. A. Weighted gene co-expression network analysis (WGCNA) was used to generate co-expression modules, with the network structure generated on each brain region separately. The identified modules that survived module preservation analysis were arbitrarily assigned colors and the dendrogram shows average linkage hierarchical clustering of genes. **B.** Pie charts summarize results from the module differential connectivity (MDC) analysis compared

OUD to unaffected comparison subjects. The majority of modules were lost in unaffected comparison subjects, revealing OUD-specific modules in both DLPFC and NAc. **C.** Circos plot identified by module names and colors. Enrichment for full list of differentially expressed (DE) genes, protein-coding (mRNA), and long non-coding RNAs (lncRNA), are indicated by semi-circle colors within each module, with increasing warm colors indicating increasing $-\log_{10}$ p-value. LncRNA enrichment was examined based on the high prevalence of these transcripts in the Biotype analysis (see Figure 2a,e). MDC analysis indicated a loss of connectivity in the DLPFC blue module and NAc forestgreen module. These modules were also enriched for DE mRNA and lncRNAs. **D.** Pathway enrichment analysis compared gene networks within the DLPFC blue module and NAc forestgreen module. Warmer colors indicate increasing $-\log_{10}$ p-value and highly shared pathways between the modules. Hub gene co-expression networks of the DLPFC blue module **E.** unaffected comparison subjects and **F.** OUD subjects, and networks of the forestgreen module in NAc **E.** unaffected comparison subjects and **F.** OUD subjects. Node size indicates the degree of connectivity for that gene. Turquoise nodes indicate OUD-specific hub genes, purple nodes indicate lncRNA gene, gray nodes indicate hub genes, and red halos indicate DE genes. Edges indicate significant co-expression between two particular genes.

Fig. 5. Differentially expressed genes in the DLPFC and NAc enrich for genetic liability of risky behavior. Several well-powered genome-wide associated studies (GWAS) have identified risk loci associated with substance use (SU), substance use disorder (SUD)-, and neuropsychiatry (neuropsych)-related traits. Significant risk loci

overlap with intronic and distal intergenic noncoding regions, presumably within cis-acting regulatory elements of gene expression. **A.** Proximal noncoding regions of differentially expressed (DE) genes in DLPFC and NAc from OUD subjects were investigated for enrichment of genetic risk variants of SU-related traits using partitioned heritability linkage-disequilibrium score regression analysis. No enrichment was found in the DLPFC, but significant enrichment was found in the NAc for up and down-regulated genes with smoking cessation and smoking initiation. **B.** No enrichment was found in the DLPFC or NAc for SUD-related GWAS. **C.** No enrichment was found for neuropsychiatry-related GWAS in the DLPFC, but there was enrichment in the NAc for attention deficit hyperactivity disorder (ADHD; down-regulated), bipolar disorder (downregulated), depression (up and downregulated), and risky behavior (up and downregulated) GWAS. **D.** No enrichment in DLPFC or NAc for unrelated GWAS traits, including bone mineral density (BMD), coronary artery disease (CAD), and lean body mass (LBM). *, indicates in African American population; lack of asterisk indicates European American population.

Tables

Table 1. Subject summary demographic and tissue characteristics

Characteristic	Unaffected comparison (n=20)	Opioid dependent (n=20)
Age	47.3 ± 9.5	46.9 ± 7.3
Sex	10M 10F	10M 10F
Race	13W 7B	19W 1B
PMI (hours)	15.7 ± 6.1	16.0 ± 5.3
Brain pH	6.6 ± 0.3	6.4 ± 0.2
RIN	8.0 ± 0.7	7.8 ± 0.7
Tissue		
Storage Time (months)	100.3 ± 86.1	103.0 ± 59.7

Values are mean \pm SD. M, male; F, female; B, black; W, white

References:

1. Jones CM, Einstein EB, Compton WM (2018): Changes in Synthetic Opioid Involvement in Drug Overdose Deaths in the United States, 2010-2016. *JAMA*. 319:1819-1821.
2. Gossop M, Green L, Phillips G, Bradley B (1989): Lapse, relapse and survival among opiate addicts after treatment. A prospective follow-up study. *Br J Psychiatry*. 154:348-353.
3. Koob GF (2020): Neurobiology of Opioid Addiction: Opponent Process, Hyperkatifeia, and Negative Reinforcement. *Biol Psychiatry*. 87:44-53.
4. Adinoff B, Rilling LM, Williams MJ, Schreffler E, Schepis TS, Rosvall T, et al. (2007): Impulsivity, neural deficits, and the addictions: the "oops" factor in relapse. *J Addict Dis*. 26 Suppl 1:25-39.
5. Baldo BA (2016): Prefrontal Cortical Opioids and Dysregulated Motivation: A Network Hypothesis. *Trends Neurosci*. 39:366-377.
6. Xu J, Lu Z, Xu M, Pan L, Deng Y, Xie X, et al. (2014): A heroin addiction severity-associated intronic single nucleotide polymorphism modulates alternative pre-mRNA splicing of the mu opioid receptor gene OPRM1 via hnRNPH interactions. *J Neurosci*. 34:11048-11066.
7. Brown TG, Xu J, Hurd YL, Pan YX (2020): Dysregulated expression of the alternatively spliced variant mRNAs of the mu opioid receptor gene, OPRM1, in the medial prefrontal cortex of male human heroin abusers and heroin self-administering male rats. *J Neurosci Res*.
8. Sillivan SE, Whittard JD, Jacobs MM, Ren Y, Mazloom AR, Caputi FF, et al. (2013): ELK1 transcription factor linked to dysregulated striatal mu opioid receptor signaling network and OPRM1 polymorphism in human heroin abusers. *Biol Psychiatry*. 74:511-519.
9. Albertson DN, Schmidt CJ, Kapatos G, Bannon MJ (2006): Distinctive profiles of gene expression in the human nucleus accumbens associated with cocaine and heroin abuse. *Neuropsychopharmacology*. 31:2304-2312.
10. Koo JW, Mazei-Robison MS, LaPlant Q, Egervari G, Braunscheidel KM, Adank DN, et al. (2015): Epigenetic basis of opiate suppression of Bdnf gene expression in the ventral tegmental area. *Nat Neurosci*. 18:415-422.
11. Chartoff EH, Connery HS (2014): It's MORe exciting than mu: crosstalk between mu opioid receptors and glutamatergic transmission in the mesolimbic dopamine system. *Front Pharmacol*. 5:116.
12. Garzon J, Rodriguez-Munoz M, Sanchez-Blazquez P (2012): Direct association of Mu-opioid and NMDA glutamate receptors supports their cross-regulation: molecular implications for opioid tolerance. *Curr Drug Abuse Rev*. 5:199-226.
13. Tokuyama S, Wakabayashi H, Ho IK (1996): Direct evidence for a role of glutamate in the expression of the opioid withdrawal syndrome. *Eur J Pharmacol*. 295:123-129.
14. Browne CJ, Godino A, Salery M, Nestler EJ (2020): Epigenetic Mechanisms of Opioid Addiction. *Biol Psychiatry*. 87:22-33.
15. Mai JK, Majtanik M, Paxinos G (2016): Atlas of the human brain.

16. Hashimoto T, Bazmi HH, Mirnics K, Wu Q, Sampson AR, Lewis DA (2008): Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. *The American Journal of Psychiatry*. 165:479-489.
17. Volk DW, Matsubara T, Li S, Sengupta EJ, Georgiev D, Minabe Y, et al. (2012): Deficits in transcriptional regulators of cortical parvalbumin neurons in schizophrenia. *Am J Psychiatry*. 169:1082-1091.
18. Seney ML, Huo Z, Cahill K, French L, Puralewski R, Zhang J, et al. (2018): Opposite Molecular Signatures of Depression in Men and Women. *Biol Psychiatry*. 84:18-27.
19. Benjamini Y, Hochberg Y (1995): Controlling the false discovery rate: a practical approach to multiple testing. *Journal of the Royal Statistical Society: Series B*. 57:289-300.
20. Walker DM, Cates HM, Loh YE, Purushothaman I, Ramakrishnan A, Cahill KM, et al. (2018): Cocaine Self-administration Alters Transcriptome-wide Responses in the Brain's Reward Circuitry. *Biol Psychiatry*. 84:867-880.
21. Labonté B, Engmann O, Purushothaman I, Menard C, Wang J, Tan C, et al. (2017): Sex-specific transcriptional signatures in human depression. *Nat Med*. 23:1102-1111.
22. Paden W, Barko K, Puralewski R, Cahill KM, Huo Z, Shelton MA, et al. (2020): Sex differences in adult mood and in stress-induced transcriptional coherence across mesocorticolimbic circuitry. *Transl Psychiatry*. 10:59.
23. Moulou P, Hatzis P (2015): Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns. *Nucleic Acids Res*. 43:e25.
24. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. (2010): Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. *Mol Cell*. 38:576-589.
25. Plaisier SB, Taschereau R, Wong JA, Graeber TG (2010): Rank-rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures. *Nucleic Acids Res*. 38:e169.
26. Cahill KM, Huo Z, Tseng GC, Logan RW, Seney ML (2018): Improved identification of concordant and discordant gene expression signatures using an updated rank-rank hypergeometric overlap approach. *Sci Rep*. 8:9588.
27. Zhang B, Horvath S (2005): A general framework for weighted gene co-expression network analysis. *Stat Appl Genet Mol Biol*. 4:Article17.
28. Langfelder P, Zhang B, Horvath S (2008): Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. *Bioinformatics*. 24:719-720.
29. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, et al. (2006): ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. *BMC Bioinformatics*. 7 Suppl 1:S7.
30. Zhong Y, Wan YW, Pang K, Chow LM, Liu Z (2013): Digital sorting of complex tissues for cell type-specific gene expression profiles. *BMC Bioinformatics*. 14:89.
31. McKenzie AT, Wang M, Hauberg ME, Fullard JF, Kozlenkov A, Keenan A, et al. (2018): Brain Cell Type Specific Gene Expression and Co-expression Network Architectures. *Sci Rep*. 8:8868.

32. Zheng SC, Breeze CE, Beck S, Teschendorff AE (2018): Identification of differentially methylated cell types in epigenome-wide association studies. *Nat Methods*. 15:1059-1066.

33. Finucane HK, Reshef YA, Anttila V, Slowikowski K, Gusev A, Byrnes A, et al. (2018): Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. *Nat Genet*. 50:621-629.

34. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics C, et al. (2015): LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. *Nat Genet*. 47:291-295.

35. Schafer B, Gotz C, Dudek J, Hessenauer A, Matti U, Montenarh M (2009): KIF5C: a new binding partner for protein kinase CK2 with a preference for the CK2alpha' subunit. *Cell Mol Life Sci*. 66:339-349.

36. Schafer B, Gotz C, Montenarh M (2008): The kinesin I family member KIF5C is a novel substrate for protein kinase CK2. *Biochem Biophys Res Commun*. 375:179-183.

37. Batten SR, Matveeva EA, Whiteheart SW, Vanaman TC, Gerhardt GA, Slevin JT (2017): Linking kindling to increased glutamate release in the dentate gyrus of the hippocampus through the STXBP5/tomosyn-1 gene. *Brain Behav*. 7:e00795.

38. Cupertino RB, Kappel DB, Bandeira CE, Schuch JB, da Silva BS, Muller D, et al. (2016): SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond. *J Neural Transm (Vienna)*. 123:867-883.

39. Grishanin RN, Kowalchyk JA, Klenchin VA, Ann K, Earles CA, Chapman ER, et al. (2004): CAPS acts at a prefusion step in dense-core vesicle exocytosis as a PIP2 binding protein. *Neuron*. 43:551-562.

40. Wang Y, Sugita S, Sudhof TC (2000): The RIM/NIM family of neuronal C2 domain proteins. Interactions with Rab3 and a new class of Src homology 3 domain proteins. *J Biol Chem*. 275:20033-20044.

41. Dun XP, Parkinson DB (2020): Classic axon guidance molecules control correct nerve bridge tissue formation and precise axon regeneration. *Neural Regen Res*. 15:6-9.

42. Di Benedetto M, Bieche I, Deshayes F, Vacher S, Nouet S, Collura V, et al. (2006): Structural organization and expression of human MTUS1, a candidate 8p22 tumor suppressor gene encoding a family of angiotensin II AT2 receptor-interacting proteins, ATIP. *Gene*. 380:127-136.

43. Nguyen PT, Dorman LC, Pan S, Vainchtein ID, Han RT, Nakao-Inoue H, et al. (2020): Microglial Remodeling of the Extracellular Matrix Promotes Synapse Plasticity. *Cell*.

44. Plaisier SB, Taschereau R, Wong JA, Graeber TG (2010): Rank-rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures. *Nucleic Acids Res*. 38:e169.

45. Cahill KM, Huo Z, Tseng GC, Logan RW, Seney ML (2018): Improved identification of concordant and discordant gene expression signatures using an updated rank-rank hypergeometric overlap approach. *Sci Rep*. 8:9588.

46. Evans CJ, Cahill CM (2016): Neurobiology of opioid dependence in creating addiction vulnerability. *F1000Res*. 5.

47. Le Merrer J, Becker JA, Befort K, Kieffer BL (2009): Reward processing by the opioid system in the brain. *Physiol Rev.* 89:1379-1412.
48. Nestler EJ (1997): Molecular mechanisms of opiate and cocaine addiction. *Curr Opin Neurobiol.* 7:713-719.
49. Nestler EJ (2004): Historical review: Molecular and cellular mechanisms of opiate and cocaine addiction. *Trends Pharmacol Sci.* 25:210-218.
50. Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. (2015): Integrative analysis of 111 reference human epigenomes. *Nature.* 518:317-330.
51. Saijo K, Collier JG, Li AC, Katzenellenbogen JA, Glass CK (2011): An ADIOL-ERbeta-CtBP transrepression pathway negatively regulates microglia-mediated inflammation. *Cell.* 145:584-595.
52. Zhuang G, Meng C, Guo X, Cheruku PS, Shi L, Xu H, et al. (2012): A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. *Circulation.* 125:2892-2903.
53. Spooren A, Kolmus K, Laureys G, Clinckers R, De Keyser J, Haegeman G, et al. (2011): Interleukin-6, a mental cytokine. *Brain Res Rev.* 67:157-183.
54. Zelikoff JT, Parmalee NL, Corbett K, Gordon T, Klein CB, Aschner M (2018): Microglia Activation and Gene Expression Alteration of Neurotrophins in the Hippocampus Following Early-Life Exposure to E-Cigarette Aerosols in a Murine Model. *Toxicol Sci.* 162:276-286.
55. Tufano M, Pinna G (2020): Is There a Future for PPARs in the Treatment of Neuropsychiatric Disorders? *Molecules.* 25.
56. Shih RH, Wang CY, Yang CM (2015): NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. *Front Mol Neurosci.* 8:77.
57. Butturini E, Boriero D, Carcereri de Prati A, Mariotto S (2019): STAT1 drives M1 microglia activation and neuroinflammation under hypoxia. *Arch Biochem Biophys.* 669:22-30.
58. Mao XR, Moerman-Herzog AM, Chen Y, Barger SW (2009): Unique aspects of transcriptional regulation in neurons--nuances in NFkappaB and Sp1-related factors. *J Neuroinflammation.* 6:16.
59. Wang H, Brown J, Gao S, Liang S, Jotwani R, Zhou H, et al. (2013): The role of JAK-3 in regulating TLR-mediated inflammatory cytokine production in innate immune cells. *J Immunol.* 191:1164-1174.
60. Choi YJ, Kim S, Choi Y, Nielsen TB, Yan J, Lu A, et al. (2019): SERPINB1-mediated checkpoint of inflammatory caspase activation. *Nat Immunol.* 20:276-287.
61. Huang HS, Huang XY, Yu HZ, Xue Y, Zhu PL (2020): Circular RNA circ-RELL1 regulates inflammatory response by miR-6873-3p/MyD88/NF-kappaB axis in endothelial cells. *Biochem Biophys Res Commun.* 525:512-519.
62. Luz A, Fainstein N, Einstein O, Ben-Hur T (2015): The role of CNS TLR2 activation in mediating innate versus adaptive neuroinflammation. *Exp Neurol.* 273:234-242.
63. Zelova H, Hosek J (2013): TNF-alpha signalling and inflammation: interactions between old acquaintances. *Inflamm Res.* 62:641-651.
64. Kim HS, Sohn H, Jang SW, Lee GR (2019): The transcription factor NFIL3 controls regulatory T-cell function and stability. *Exp Mol Med.* 51:80.

65. Rosen DB, Cao W, Avery DT, Tangye SG, Liu YJ, Houchins JP, et al. (2008): Functional consequences of interactions between human NKR-P1A and its ligand LLT1 expressed on activated dendritic cells and B cells. *J Immunol.* 180:6508-6517.

66. Germain C, Meier A, Jensen T, Knapnougel P, Poupon G, Lazzari A, et al. (2011): Induction of lectin-like transcript 1 (LLT1) protein cell surface expression by pathogens and interferon-gamma contributes to modulate immune responses. *J Biol Chem.* 286:37964-37975.

67. Moodbidri MS, Shirsat NV (2006): Induction of BAALC and down regulation of RAMP3 in astrocytes treated with differentiation inducers. *Cell Biol Int.* 30:210-213.

68. Cooke A, Schwarzl T, Huppertz I, Kramer G, Mantas P, Alleaume AM, et al. (2019): The RNA-Binding Protein YBX3 Controls Amino Acid Levels by Regulating SLC mRNA Abundance. *Cell Rep.* 27:3097-3106 e3095.

69. Singh N, Ecker GF (2018): Insights into the Structure, Function, and Ligand Discovery of the Large Neutral Amino Acid Transporter 1, LAT1. *Int J Mol Sci.* 19.

70. Saad MH, Rumschlag M, Guerra MH, Savonen CL, Jaster AM, Olson PD, et al. (2019): Differentially expressed gene networks, biomarkers, long noncoding RNAs, and shared responses with cocaine identified in the midbrains of human opioid abusers. *Sci Rep.* 9:1534.

71. Karlsson Linner R, Biroli P, Kong E, Meddens SFW, Wedow R, Fontana MA, et al. (2019): Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. *Nat Genet.* 51:245-257.

72. Liu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, et al. (2019): Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. *Nat Genet.* 51:237-244.

73. Pasman JA, Verweij KJH, Gerring Z, Stringer S, Sanchez-Roige S, Treur JL, et al. (2019): Author Correction: GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal effect of schizophrenia liability. *Nat Neurosci.* 22:1196.

74. Hofford RS, Russo SJ, Kiraly DD (2019): Neuroimmune mechanisms of psychostimulant and opioid use disorders. *Eur J Neurosci.* 50:2562-2573.

75. Cooper ZD, Johnson KW, Pavlicova M, Glass A, Vosburg SK, Sullivan MA, et al. (2016): The effects of ibudilast, a glial activation inhibitor, on opioid withdrawal symptoms in opioid-dependent volunteers. *Addict Biol.* 21:895-903.

76. Metz VE, Jones JD, Manubay J, Sullivan MA, Mogali S, Segoshi A, et al. (2017): Effects of Ibudilast on the Subjective, Reinforcing, and Analgesic Effects of Oxycodone in Recently Detoxified Adults with Opioid Dependence. *Neuropsychopharmacology.* 42:1825-1832.

77. Bland ST, Hutchinson MR, Maier SF, Watkins LR, Johnson KW (2009): The glial activation inhibitor AV411 reduces morphine-induced nucleus accumbens dopamine release. *Brain Behav Immun.* 23:492-497.

78. Hutchinson MR, Northcutt AL, Chao LW, Kearney JJ, Zhang Y, Berkelhammer DL, et al. (2008): Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia. *Brain Behav Immun.* 22:1248-1256.

79. de Guglielmo G, Melis M, De Luca MA, Kallupi M, Li HW, Niswender K, et al. (2015): PPARgamma activation attenuates opioid consumption and modulates mesolimbic dopamine transmission. *Neuropsychopharmacology*. 40:927-937.

80. Theberge FR, Li X, Kambhampati S, Pickens CL, St Laurent R, Bossert JM, et al. (2013): Effect of chronic delivery of the Toll-like receptor 4 antagonist (+)-naltrexone on incubation of heroin craving. *Biol Psychiatry*. 73:729-737.

81. Oeckinghaus A, Ghosh S (2009): The NF-kappaB family of transcription factors and its regulation. *Cold Spring Harb Perspect Biol*. 1:a000034.

82. Ghosh S, May MJ, Kopp EB (1998): NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. *Annu Rev Immunol*. 16:225-260.

83. Eisenstein TK (2019): The Role of Opioid Receptors in Immune System Function. *Front Immunol*. 10:2904.

84. Valentinova K, Tchenio A, Trusel M, Clerke JA, Lalive AL, Tzanoulinou S, et al. (2019): Morphine withdrawal recruits lateral habenula cytokine signaling to reduce synaptic excitation and sociability. *Nat Neurosci*. 22:1053-1056.

85. Lieb K, Fiebich BL, Berger M, Bauer J, Schulze-Osthoff K (1997): The neuropeptide substance P activates transcription factor NF-kappa B and kappa B-dependent gene expression in human astrocytoma cells. *J Immunol*. 159:4952-4958.

86. Wang X, Douglas SD, Commons KG, Pleasure DE, Lai J, Ho C, et al. (2004): A non-peptide substance P antagonist (CP-96,345) inhibits morphine-induced NF-kappa B promoter activation in human NT2-N neurons. *J Neurosci Res*. 75:544-553.

87. Sun J, Ramnath RD, Zhi L, Tamizhselvi R, Bhatia M (2008): Substance P enhances NF-kappaB transactivation and chemokine response in murine macrophages via ERK1/2 and p38 MAPK signaling pathways. *Am J Physiol Cell Physiol*. 294:C1586-1596.

88. Sawaya BE, Deshmane SL, Mukerjee R, Fan S, Khalili K (2009): TNF alpha production in morphine-treated human neural cells is NF-kappaB-dependent. *J Neuroimmune Pharmacol*. 4:140-149.

89. Hou YN, Vlaskovska M, Cebers G, Kasakov L, Liljequist S, Terenius L (1996): A mu-receptor opioid agonist induces AP-1 and NF-kappa B transcription factor activity in primary cultures of rat cortical neurons. *Neurosci Lett*. 212:159-162.

90. Rehni AK, Bhateja P, Singh TG, Singh N (2008): Nuclear factor-kappa-B inhibitor modulates the development of opioid dependence in a mouse model of naloxone-induced opioid withdrawal syndrome. *Behav Pharmacol*. 19:265-269.

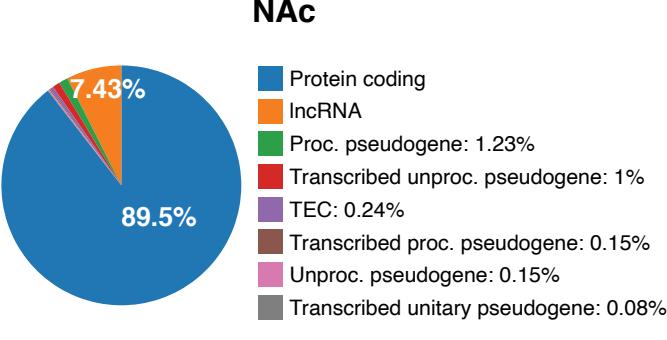
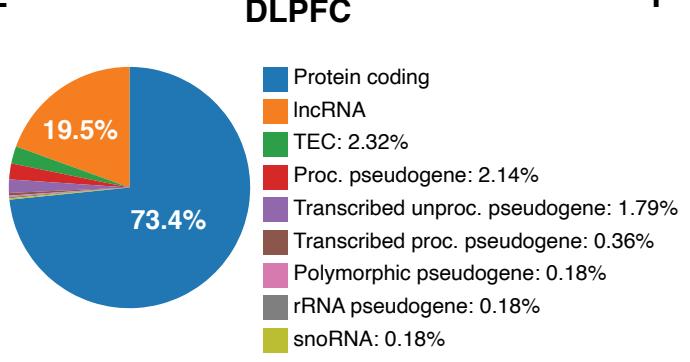
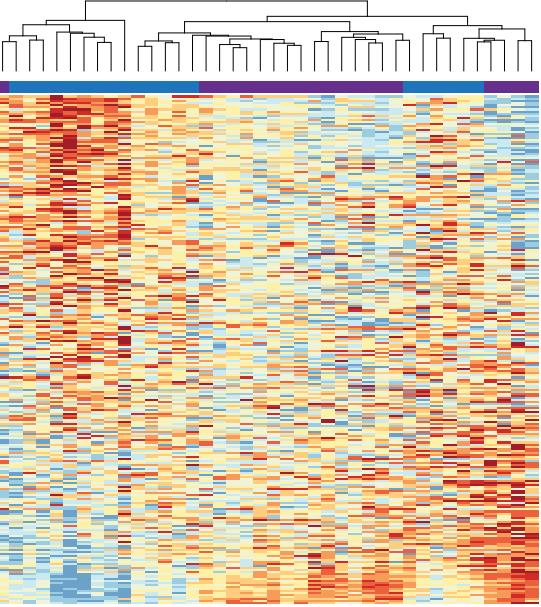
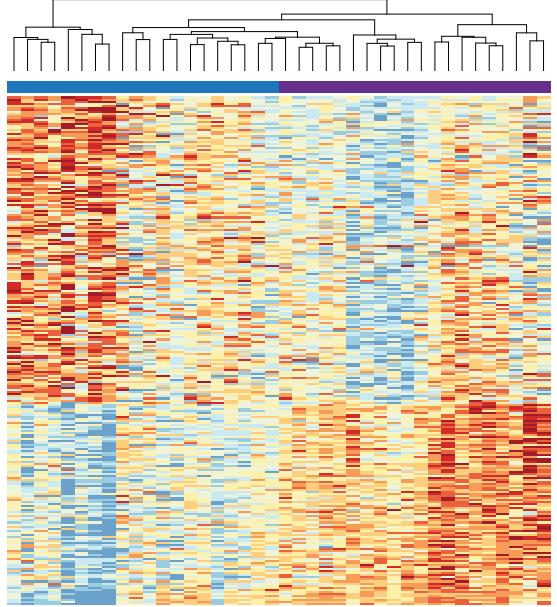
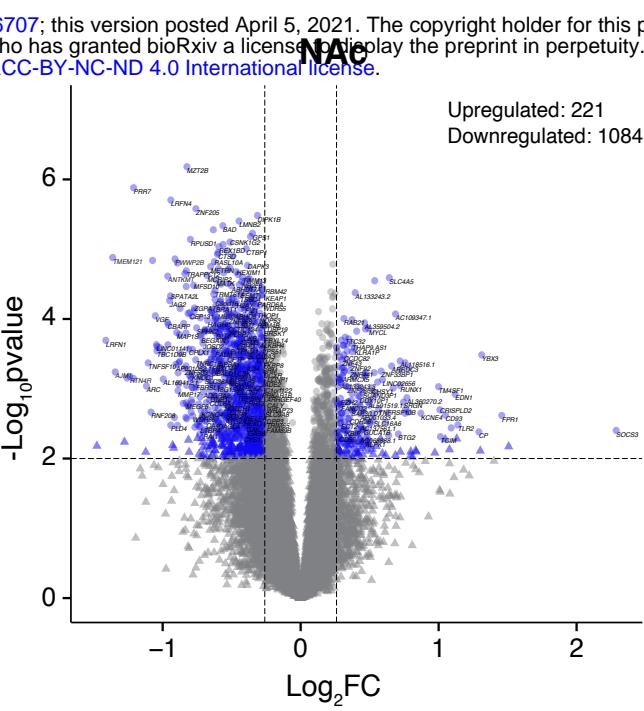
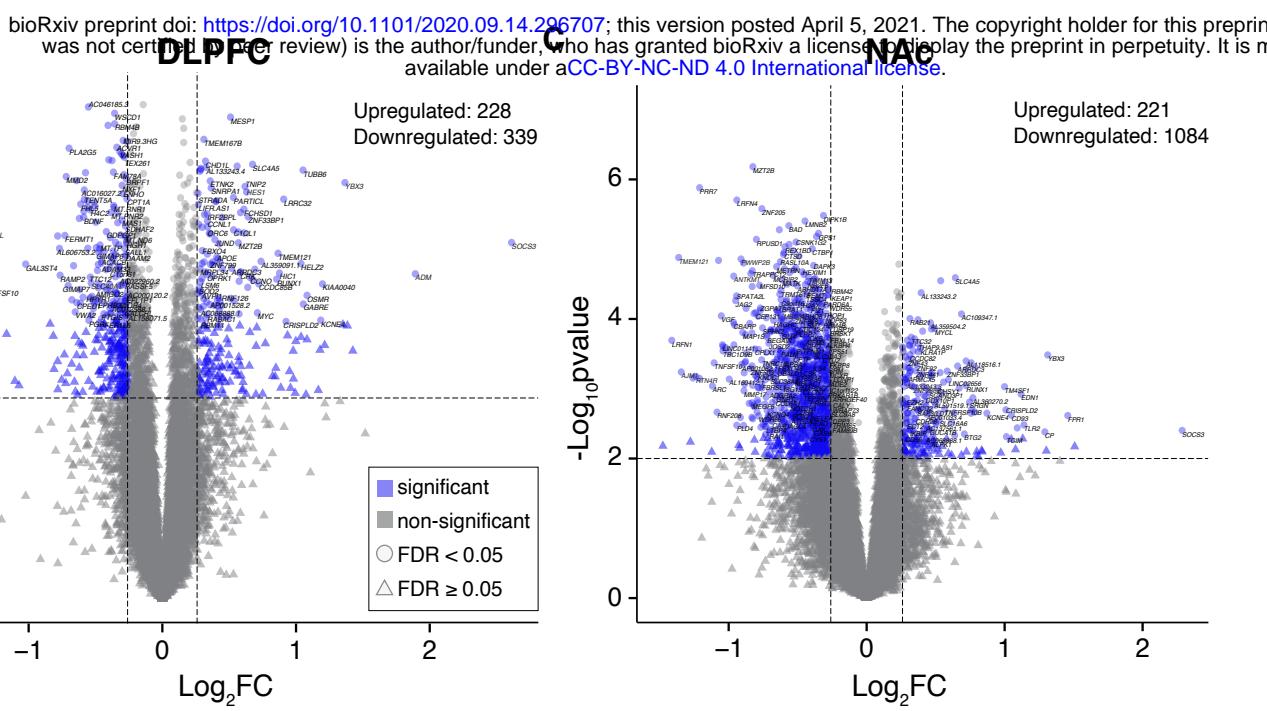
91. Kraus J, Borner C, Giannini E, Hollt V (2003): The role of nuclear factor kappaB in tumor necrosis factor-regulated transcription of the human mu-opioid receptor gene. *Mol Pharmacol*. 64:876-884.

92. Karalis KP, Venihaki M, Zhao J, van Vlerken LE, Chandras C (2004): NF-kappaB participates in the corticotropin-releasing, hormone-induced regulation of the pituitary proopiomelanocortin gene. *J Biol Chem*. 279:10837-10840.

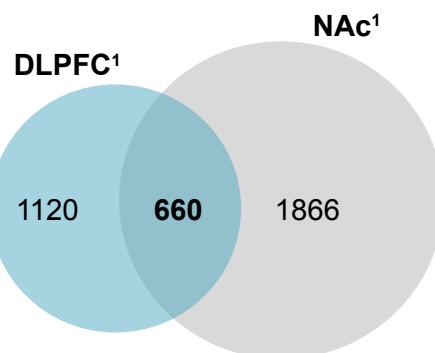
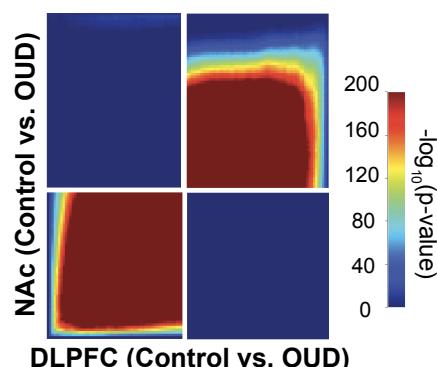
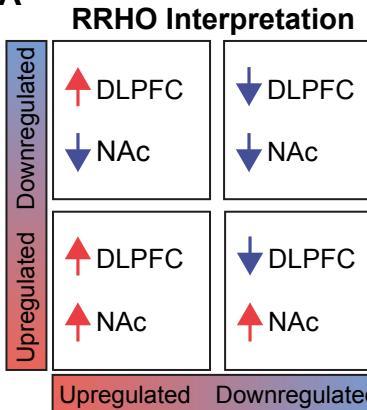
93. Chen YL, Law PY, Loh HH (2007): Action of NF-kappaB on the delta opioid receptor gene promoter. *Biochem Biophys Res Commun*. 352:818-822.

94. Rattner A, Korner M, Rosen H, Baeuerle PA, Citri Y (1991): Nuclear factor kappa B activates proenkephalin transcription in T lymphocytes. *Mol Cell Biol*. 11:1017-1022.

95. Simeonidis S, Castagliuolo I, Pan A, Liu J, Wang CC, Mykoniatis A, et al. (2003): Regulation of the NK-1 receptor gene expression in human macrophage cells via an NF-kappa B site on its promoter. *Proc Natl Acad Sci U S A.* 100:2957-2962.
96. Zhang X, Cui Y, Jing J, Cui Y, Xin W, Liu X (2011): Involvement of p38/NF-kappaB signaling pathway in the nucleus accumbens in the rewarding effects of morphine in rats. *Behav Brain Res.* 218:184-189.
97. Chen YL, Law PY, Loh HH (2006): Nuclear factor kappaB signaling in opioid functions and receptor gene expression. *J Neuroimmune Pharmacol.* 1:270-279.
98. Kangwantas K, Pinteaux E, Penny J (2016): The extracellular matrix protein laminin-10 promotes blood-brain barrier repair after hypoxia and inflammation in vitro. *J Neuroinflammation.* 13:25.
99. Faissner A, Reinhard J (2015): The extracellular matrix compartment of neural stem and glial progenitor cells. *Glia.* 63:1330-1349.
100. Li HP, Komuta Y, Kimura-Kuroda J, van Kuppevelt TH, Kawano H (2013): Roles of chondroitin sulfate and dermatan sulfate in the formation of a lesion scar and axonal regeneration after traumatic injury of the mouse brain. *J Neurotrauma.* 30:413-425.
101. Dityatev A, Schachner M, Sonderegger P (2010): The dual role of the extracellular matrix in synaptic plasticity and homeostasis. *Nat Rev Neurosci.* 11:735-746.
102. Smith PD, Coulson-Thomas VJ, Foscarin S, Kwok JC, Fawcett JW (2015): "GAG-ing with the neuron": The role of glycosaminoglycan patterning in the central nervous system. *Exp Neurol.* 274:100-114.
103. Harlow DE, Macklin WB (2014): Inhibitors of myelination: ECM changes, CSPGs and PTPs. *Exp Neurol.* 251:39-46.
104. Pendleton JC, Shambrott MJ, Gary DS, Belegu V, Hurtado A, Malone ML, et al. (2013): Chondroitin sulfate proteoglycans inhibit oligodendrocyte myelination through PTPsigma. *Exp Neurol.* 247:113-121.
105. Bora E, Yucel M, Fornito A, Pantelis C, Harrison BJ, Cocchi L, et al. (2012): White matter microstructure in opiate addiction. *Addict Biol.* 17:141-148.
106. Li W, Zhu J, Li Q, Ye J, Chen J, Liu J, et al. (2016): Brain white matter integrity in heroin addicts during methadone maintenance treatment is related to relapse propensity. *Brain Behav.* 6:e00436.
107. Liu H, Li L, Hao Y, Cao D, Xu L, Rohrbaugh R, et al. (2008): Disrupted white matter integrity in heroin dependence: a controlled study utilizing diffusion tensor imaging. *Am J Drug Alcohol Abuse.* 34:562-575.
108. Upadhyay J, Maleki N, Potter J, Elman I, Rudrauf D, Knudsen J, et al. (2010): Alterations in brain structure and functional connectivity in prescription opioid-dependent patients. *Brain.* 133:2098-2114.
109. Wang Y, Li W, Li Q, Yang W, Zhu J, Wang W (2011): White matter impairment in heroin addicts undergoing methadone maintenance treatment and prolonged abstinence: a preliminary DTI study. *Neurosci Lett.* 494:49-53.
110. Avey D, Sankararaman S, Yim AKY, Barve R, Milbrandt J, Mitra RD (2018): Single-Cell RNA-Seq Uncovers a Robust Transcriptional Response to Morphine by Glia. *Cell Rep.* 24:3619-3629 e3614.
111. Fan R, Schrott LM, Arnold T, Snelling S, Rao M, Graham D, et al. (2018): Chronic oxycodone induces axonal degeneration in rat brain. *BMC Neurosci.* 19:15.

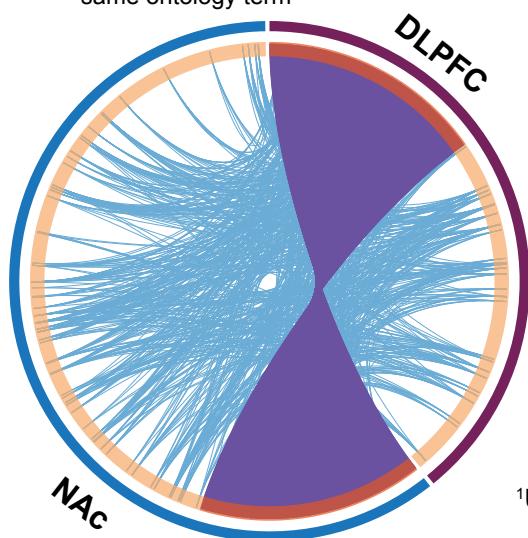
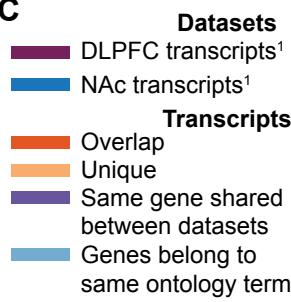






112. Franitz S, Hershkoviz R, Kam N, Lichtenstein N, Vaday GG, Alon R, et al. (2000): TNF-alpha associated with extracellular matrix fibronectin provides a stop signal for chemotactically migrating T cells. *J Immunol.* 165:2738-2747.
113. Camejo EH, Rosengren B, Camejo G, Sartipy P, Fager G, Bondjers G (1995): Interferon gamma binds to extracellular matrix chondroitin-sulfate proteoglycans, thus enhancing its cellular response. *Arterioscler Thromb Vasc Biol.* 15:1456-1465.
114. Beroun A, Mitra S, Michaluk P, Pijet B, Stefaniuk M, Kaczmarek L (2019): MMPs in learning and memory and neuropsychiatric disorders. *Cell Mol Life Sci.* 76:3207-3228.
115. Kruyer A, Chioma VC, Kalivas PW (2020): The Opioid-Addicted Tetrapartite Synapse. *Biol Psychiatry.* 87:34-43.
116. Ries C (2014): Cytokine functions of TIMP-1. *Cell Mol Life Sci.* 71:659-672.
117. Akhter N, Nix M, Abdul Y, Singh S, Husain S (2013): Delta-opioid receptors attenuate TNF-alpha-induced MMP-2 secretion from human ONH astrocytes. *Invest Ophthalmol Vis Sci.* 54:6605-6611.
118. Schetters STT, Gomez-Nicola D, Garcia-Vallejo JJ, Van Kooyk Y (2017): Neuroinflammation: Microglia and T Cells Get Ready to Tango. *Front Immunol.* 8:1905.
119. Hanisch UK (2002): Microglia as a source and target of cytokines. *Glia.* 40:140-155.
120. Eidson LN, Inoue K, Young LJ, Tansey MG, Murphy AZ (2017): Toll-like Receptor 4 Mediates Morphine-Induced Neuroinflammation and Tolerance via Soluble Tumor Necrosis Factor Signaling. *Neuropsychopharmacology.* 42:661-670.
121. Chan YY, Yang SN, Lin JC, Chang JL, Lin JG, Lo WY (2015): Inflammatory response in heroin addicts undergoing methadone maintenance treatment. *Psychiatry Res.* 226:230-234.
122. Lu RB, Wang TY, Lee SY, Chen SL, Chang YH, See Chen P, et al. (2019): Correlation between interleukin-6 levels and methadone maintenance therapy outcomes. *Drug Alcohol Depend.* 204:107516.
123. Holtman IR, Skola D, Glass CK (2017): Transcriptional control of microglia phenotypes in health and disease. *J Clin Invest.* 127:3220-3229.
124. Borner C, Kraus J, Schroder H, Ammer H, Hollt V (2004): Transcriptional regulation of the human mu-opioid receptor gene by interleukin-6. *Mol Pharmacol.* 66:1719-1726.
125. Dityatev A, Rusakov DA (2011): Molecular signals of plasticity at the tetrapartite synapse. *Curr Opin Neurobiol.* 21:353-359.
126. Yao RW, Wang Y, Chen LL (2019): Cellular functions of long noncoding RNAs. *Nat Cell Biol.* 21:542-551.
127. Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. (2018): Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. *Nat Genet.* 50:1112-1121.
128. Mez J, Chung J, Jun G, Kriegel J, Bourlas AP, Sherva R, et al. (2017): Two novel loci, COBL and SLC10A2, for Alzheimer's disease in African Americans. *Alzheimers Dement.* 13:119-129.
129. Canals I, Ginisty A, Quist E, Timmerman R, Fritze J, Miskinyte G, et al. (2018): Rapid and efficient induction of functional astrocytes from human pluripotent stem cells. *Nat Methods.* 15:693-696.

130. Lozzi B, Huang TW, Sardar D, Huang AY, Deneen B (2020): Regionally Distinct Astrocytes Display Unique Transcription Factor Profiles in the Adult Brain. *Front Neurosci.* 14:61.
131. Hanlon CA, Dowdle LT, Henderson JS (2018): Modulating Neural Circuits with Transcranial Magnetic Stimulation: Implications for Addiction Treatment Development. *Pharmacol Rev.* 70:661-683.
132. Bagot RC, Cates HM, Purushothaman I, Lorsch ZS, Walker DM, Wang J, et al. (2016): Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility. *Neuron.* 90:969-983.
133. Torres A, Catena A, Megias A, Maldonado A, Candido A, Verdejo-Garcia A, et al. (2013): Emotional and non-emotional pathways to impulsive behavior and addiction. *Front Hum Neurosci.* 7:43.
134. Kreek MJ, Nielsen DA, Butelman ER, LaForge KS (2005): Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. *Nat Neurosci.* 8:1450-1457.
135. Rodriguez-Cintas L, Daigre C, Grau-Lopez L, Barral C, Perez-Pazos J, Voltes N, et al. (2016): Impulsivity and addiction severity in cocaine and opioid dependent patients. *Addict Behav.* 58:104-109.
136. Winstanley CA (2007): The orbitofrontal cortex, impulsivity, and addiction: probing orbitofrontal dysfunction at the neural, neurochemical, and molecular level. *Ann N Y Acad Sci.* 1121:639-655.




Acknowledgments: We would like to thank the staff and technicians who work diligently as part of the Brain Tissue Program at the University of Pittsburgh. Human tissue was obtained from the NIH NeuroBioBank and the University of Pittsburgh Brain Tissue Donation Program. This study was funded by the Hamilton Family Prize for Basic Neuroscience Research in Psychiatry at the University of Pittsburgh School of Medicine to R.W.L., NHLBI R01HL150432 to R.W.L, and NIDA R01DA051390 to R.W.L and M.L.S.

Author Contributions: M.L.S., J.R.G., D.A.L., G.C.T. and R.W.L. designed and coordinated the study. X.X., W.Z., J.W., B.N.P., C.S., A.R.P., Z.F., G.C.T., and R.W.L. conducted statistical analysis and data interpretation. S.M.K., M.A.H., J.R.G., and M.A.S. obtained samples and processed samples for RNA-sequencing. M.L.S. and R.W.L. obtained funding for the project, and M.L.S., Z.F., and R.W.L. drafted the manuscript.

Competing Interests: None.

A

¹Using cutoff of $p < 0.01$ for all transcripts

C

D

Top Pathways of Transcripts Shared between DLPFC and NAc¹

glycosaminoglycan biosynthesis, chondroitin sulfate backbone
reg. of DNA damage checkpoint

DNA topoisomerase (ATP-hydrolyzing) activity

negative reg. of protein modification by small protein conjugation

TNF α signaling via NF κ B

positive reg. of protein polyubiquitination

reg. of cellular response to stress

negative reg. of cellular response to insulin

negative reg. of mRNA processing

positive reg. of NIK/NF κ B signaling

reg. of MAP kinase activity

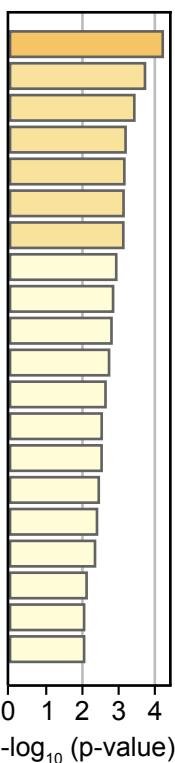
carbohydrate derivative catabolic process

negative reg. of DNA biosynthetic process

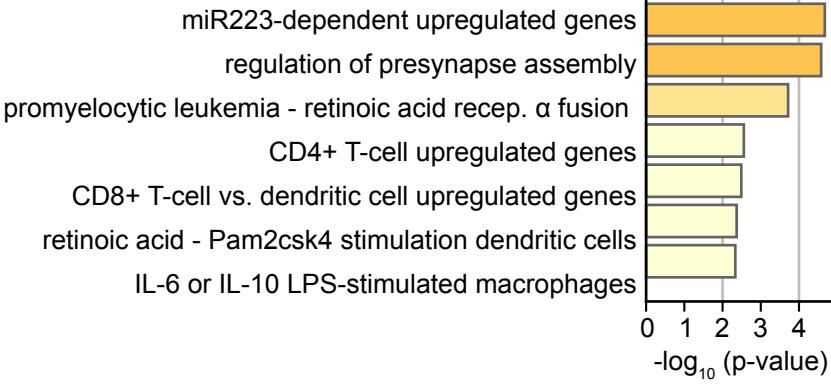
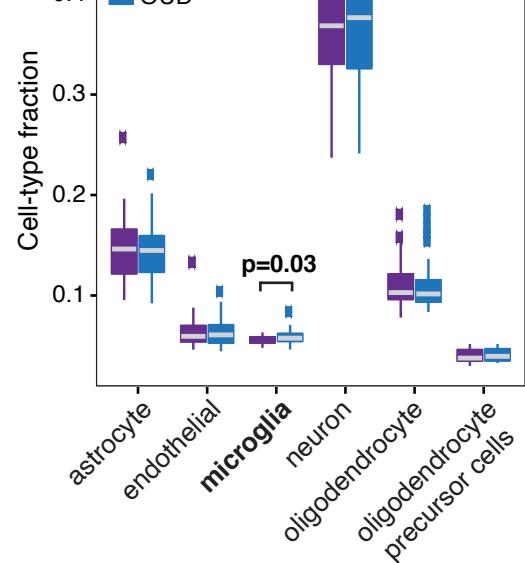
cytokine-mediated signaling pathway

positive reg. of cysteine-type endopeptidase activity

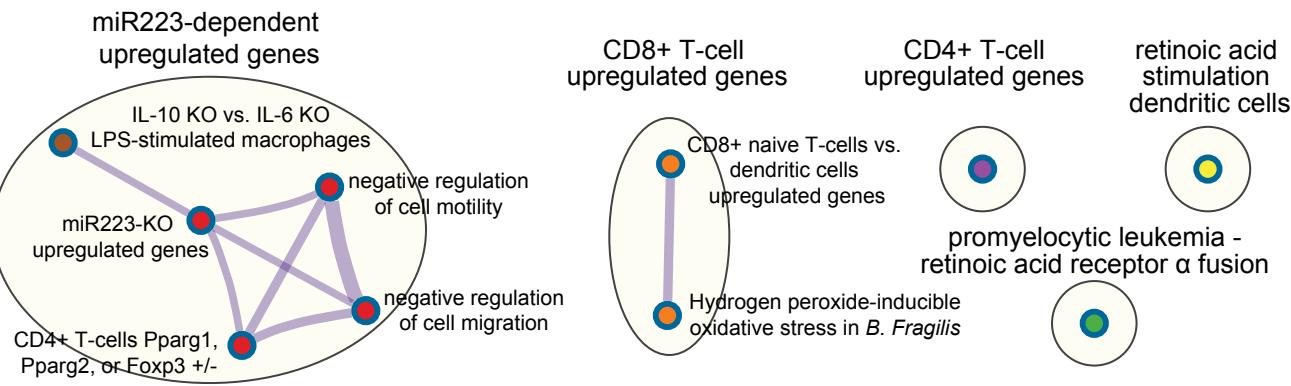
positive reg. of Rho protein signal transduction

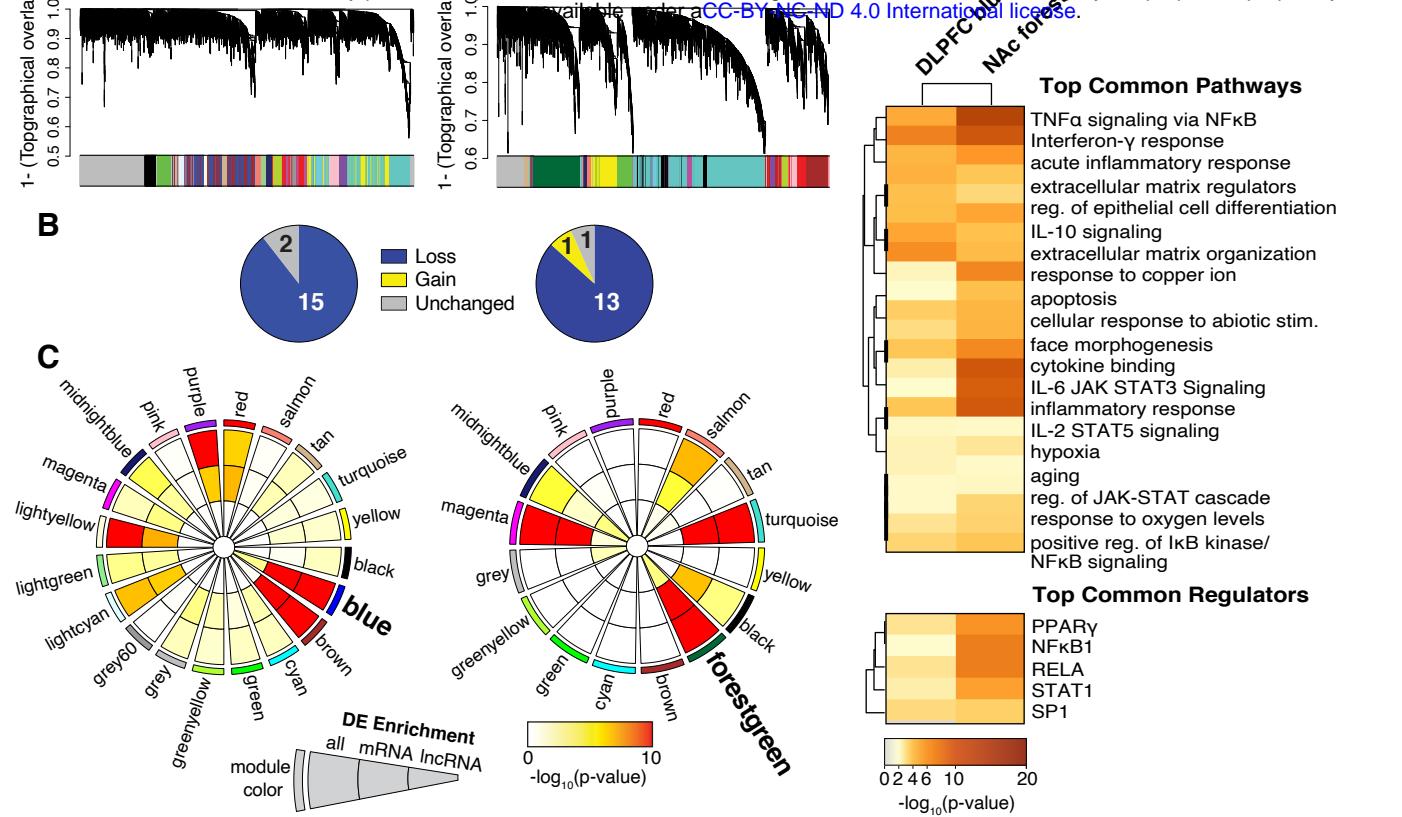

mitral valve development

cellular response to TGF β stimulus

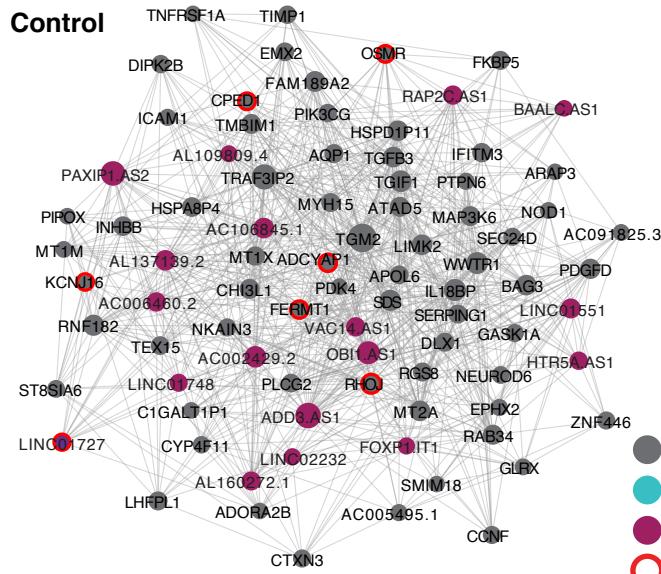


negative reg. of TNF-mediated signaling pathway

positive reg. of glial cell proliferation

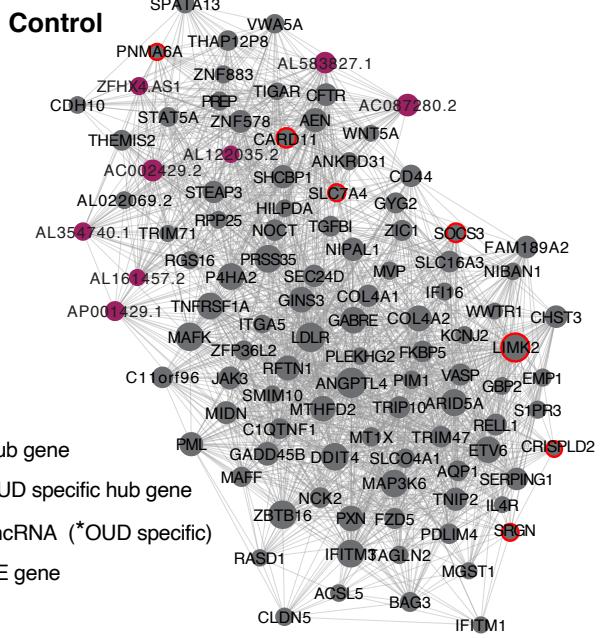

¹Using cutoff of $p < 0.01$ for genes

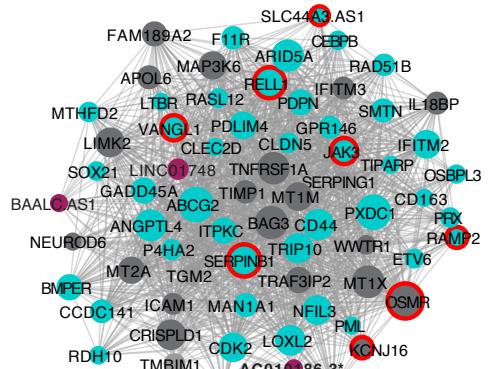


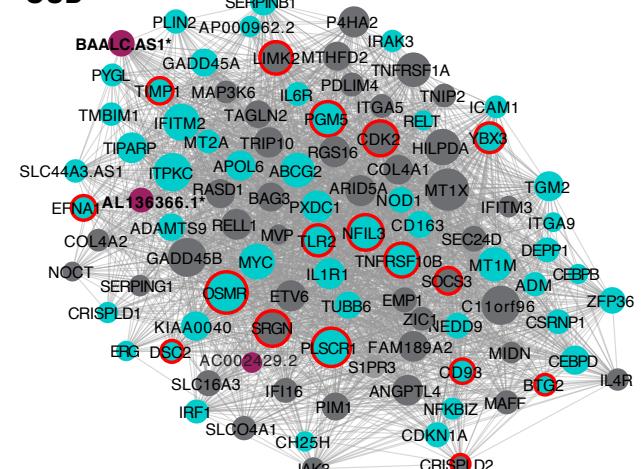
For the pathways from DE transcripts significantly correlated with neuronal markers

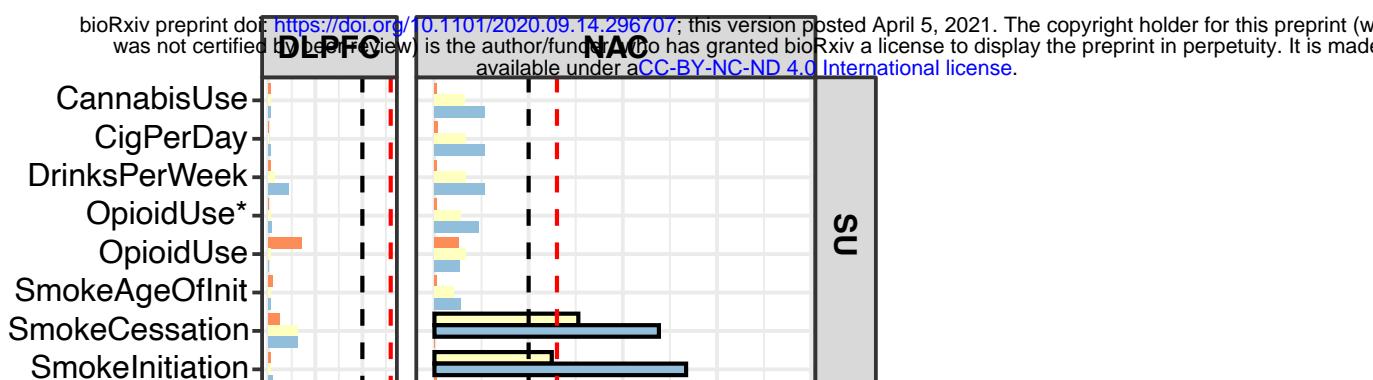
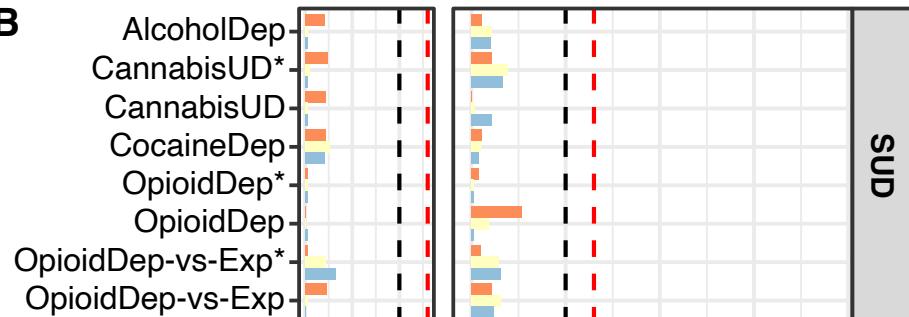
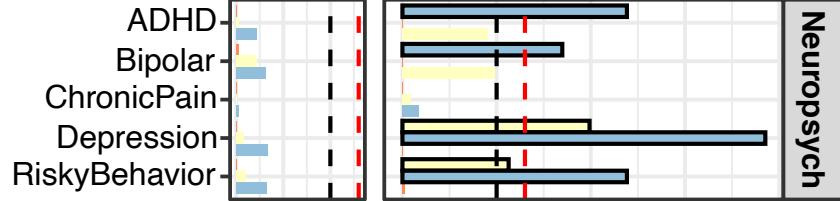
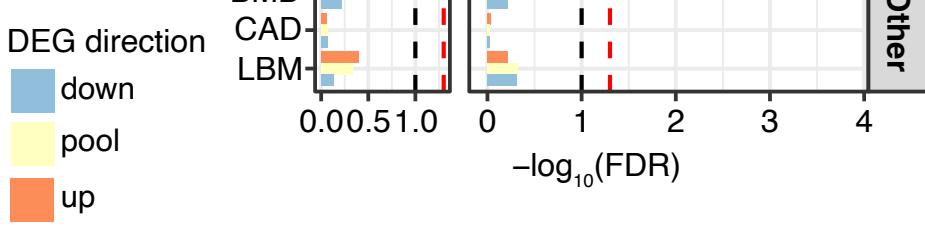


C




DLPFC blue module


NAc forestgreen module

F QUD

OUD

A**B****C****D**