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Abstract

Background: Prevalence rates of opioid use disorder (OUD) have increased
dramatically, accompanied by a surge of overdose deaths. While opioid dependence
has been extensively studied in preclinical models, an understanding of the biological
alterations that occur in the brains of people who chronically use opioids and who are
diagnosed with OUD remains limited. To address this limitation, RNA-sequencing (RNA-
seq) was conducted on the dorsolateral prefrontal cortex (DLPFC) and nucleus
accumbens (NAc), regions heavily implicated in OUD, from postmortem brains in
subjects with OUD.

Methods: We performed RNA-seq on the DLPFC and NAc from unaffected
comparison subjects (n=20) and subjects diagnosed with OUD (n=20). Our
transcriptomic analyses identified differentially expressed (DE) transcripts and
investigated the transcriptional coherence between brain regions using rank-rank
hypergeometric ordering (RRHO). Weighted gene co-expression analyses (WGCNA)
also identified OUD-specific modules and gene networks. Integrative analyses between
DE transcripts and GWAS datasets using linkage disequilibrium score (LDSC) assessed
the genetic liability psychiatric-related phenotypes.

Results: RRHO analyses revealed extensive overlap in transcripts between DLPFC
and NAc in OUD, primarily relating to synaptic remodeling and neuroinflammation.
Identified transcripts were enriched for factors that control pro-inflammatory cytokine-
mediated, chondroitin sulfate, and extracellular matrix signaling. Cell-type deconvolution

implicated a role for microglia as a critical driver for opioid-induced neuroplasticity.
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Using LDSC, we discovered genetic liabilities for risky behavior, attention deficit
hyperactivity disorder, and depression.
Conclusions: Overall, our findings reveal new connections between the brain’'s

immune system and opioid dependence in the human brain.
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Introduction

Prevalence of opioid use disorder (OUD) and deaths from opioid overdose have
soared in the United States (1). The enormity of the public health impact have been the
impetus for broad efforts to develop new treatments for OUD. Progress towards
effective therapeutics requires better understanding of the alterations in the brain of

those who develop dependence.

Impulsivity and deficits in cognition are hallmarks of OUD (3). These impairments
have been attributed to functional alterations in corticostriatal circuits including the
dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc) (3, 4). Moreover,
a history of substance use is associated with corticostriatal circuit dysfunction that
contributes to cognitive impairment and promotes risky behavior (5). However, we still
have a limited understanding of the cellular and molecular alterations due to chronic

opioid use and OUD that occur in these circuits in human brain.

Although few studies have studied postmortem brains in subjects diagnosed with
OUD, the approach has potential to uncover relevant and therapeutically viable
pathways in the brain in opioid dependence. Previous work reported changes in opioid
receptor expression in DLPFC (6-8) and altered expression of the machinery that
regulates presynaptic glutamate release in NAc (9, 10), potentially related to addiction
severity in heroin users. Preclinical evidence has corroborated these findings by
demonstrating unique interactions between opioid and glutamate receptor signaling in
opioid withdrawal and dependence (11-13). Nevertheless, deeper knowledge into the
molecular alterations by chronic opioid use in the human DLPFC and NAc is extremely

limited.
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We aimed to establish a more comprehensive understanding of the molecular
changes across DLPFC and NAc in brains from subjects who were chronic opioid users
also diagnosed with OUD. We used multiple levels of analysis by integrating
transcriptomics across brain regions with traits related to OUD vulnerability using
GWAS. Between the DLPFC and NAc, we found remarkable overlap in both
upregulated and downregulated transcripts. Further investigation into these overlapping
transcripts revealed pathways enriched for factors that control the formation and
degradation of the extracellular matrix (ECM) and pro-inflammatory cytokine-mediated
signaling. These pathways implicate neuroinflammation as a driver of ECM remodeling
and synaptic reorganization, processes which are critical for opioid-induced
neuroplasticity (14). Our analyses showed that microglia were central to these OUD
effects in both the DLPFC and NAc. Finally, we found links between neuroinflammation
and OUD, and strong associations with a genetic liability to risky behavior using GWAS.
Our findings revealed novel genetic and molecular changes that may ultimately

contribute to opioid dependence.


https://doi.org/10.1101/2020.09.14.296707
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.296707; this version posted April 5, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Materials and Methods
Detailed procedures are provided in Supplementary Methods.
Human Subjects

Brains were obtained during routine autopsies conducted by the Office of the
Allegheny County of the Medical Examiner (Pittsburgh, PA) after consent was obtained
from next-of-kin. Procedures were approved by the University of Pittsburgh’s Committee
for Oversight of Research and Clinical Training Involving Decedents and Institutional
Review Board for Biomedical Research. Each subject meeting diagnostic criteria for
OUD at time of death (n=20) was matched with one unaffected comparison subject
(n=20) for sex and as closely as possible for age (Table 1; Table S1). Cohorts only
differed by race (p=0.02). DLPFC (area 9) and NAc were identified on fresh-frozen right
hemisphere coronal tissue blocks using anatomical landmarks (15), and tissue (~50mg)
was collected via cryostat, using an approach that minimizes contamination from white

matter and other striatal subregions and ensures RNA preservation (16, 17).

RNA Sequencing analyses

Differential expression (DE) was assessed using limma with covariate selection
(18). Transcripts with corrected p<0.01 and log,FC>%0.26 were considered DE (20-22).
The top 250 DE transcripts were ordered by log,FC for unsupervised clustering of
subjects. Biotypes of transcripts were determined using metaseqR (v3.11) (23).
Overrepresentation of pathways (GO, KEGG, Hallmark, Canonical Pathways,

Reactome, BioCarta, CORUM) was assessed using Metascape
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(http://lwww.metascape.org), with expressed transcripts as background. Networks were
visualized with Cytoscape. INGENUITY® Pathway Analysis (Qiagen) and HOMER
(v4.11) (24) was used to predict upstream regulators of DE transcripts. Rank-rank
hypergeometric overlap (RRHO) (25, 26) was used to assess overlap of DE transcripts

(p<0.01 in both regions).

Identification of OUD-specific co-expression networks

We used weighted gene co-expression network analysis (WGCNA) to identify
gene modules across samples (27, 28). Module differential connectivity (MDC) was
used to quantify differences in co-expression within modules between OUD and
unaffected comparison subjects. We used Fisher’s exact test to determine whether DE
transcripts were enriched within WGCNA modules. ARACNe was used to identify hub
and OUD-specific hub genes for network analysis (29) and Cytoscape was used to
visualize networks. Overrepresentation of pathway categories for each module was

assessed using Metascape, with the 5000 WGNCA-analyzed genes as background.

Cell-type-specific DE analysis

We estimated cell-type fractions from bulk RNA-seq using Digital Sorting
Algorithm (30) through deconvolution in  BRETIGEA into astrocytes, endothelial cells,
microglia, neurons, and oligodendrocytes (31). OUD and unaffected comparison

subjects are compared for enrichment of each cell type using hypergeometric t-tests
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adjusting for brain region. We conducted cell-type-specific DE analysis with CellDMC

(32) (FDR<0.05).

Integration of DE transcripts with GWAS

Region-specific differentially up- and down-regulated transcripts (corrected
p<0.01) were used to construct foregrounds for GWAS enrichment. We computed the
partitioned heritability (GWAS enrichment) of brain region-specific noncoding regions
containing and surrounding OUD transcript sets using the LD score regression pipeline
for cell type-specific enrichment (33, 34). LD score regression coefficients were
adjusted for FDR<0.1 on enrichments performed on all GWAS for foregrounds. A
significant p-value indicates enrichment of the foreground genomic regions for GWAS

SNPs relative to the background.
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Results

Enrichment of DE transcripts involved in neuroinflammation and ECM remodeling in

DLPFC and NAc in OUD

We first determined whether there were transcriptional differences by brain
region in unaffected comparison subjects. Overall, the DLPFC and NAc had unique
transcriptional profiles (Fig.S2). In DLPFC, many of the transcripts were related to
synaptic vesicle transport (e.g., KIF5C (35, 36), STXBP5L (37)), exocytosis (e.g.,
STX1A (38)), and neurotransmitter release (e.g,. CADPS2 (39), RIMS3 (40)) (Data file
S1), while the NAc was enriched for cytoskeletal remodeling and chemotaxis (e.qg,

ROBOL1 (41), MTUSL1 (42)) (Data file S1).

We next investigated the impact of OUD on region-specific transcriptional
differences. Our results showed that opioid dependence had a profound effect on gene
expression in DLPFC and NAc, with high numbers of DE transcripts in both brain
regions (567 in DLPFC (Data file S2); 1306 in NAc (Data file S3; Table S2). The
volcano plot of DE results for the DLPFC revealed an even distribution of
downregulated (339) or upregulated (228) transcripts in OUD (Table S2, Fig.1A, data
file S2). Unaffected comparison subjects were differentiated from OUD subjects by
unsupervised clustering based on the expression of the top 250 DE transcripts (log.FC)
in DLPFC (Fig.1B). The volcano plot for NAc revealed that many of the DE transcripts
were downregulated (1085 compared to 221 upregulated transcripts) in OUD subjects
(Fig.1C, Data file S3). Unsupervised clustering of subjects based on the top 250 DE
transcripts in NAc identified subgroups in both the unaffected comparison and OUD

cohorts (Fig.1D). Further analysis using principal components analysis (PCA) identified
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five subjects with OUD that clustered together with four unaffected subjects (Fig.S3).
Each subject was diagnosed with an inflammatory disease (e.g., asthma or arthritis;
Table S1). Another three subjects from the unaffected comparison cohort also had
histories of inflammatory disease, although these subjects seemed to cluster with the
remainder of comparison cohort (Fig.S3). Overall, our findings suggest inflammatory
disease may impact the NAc transcriptome, and further supports enrichment of
neuroinflammation in subjects with OUD are independent of acute or chronic

inflammation.

Most transcripts in both DLPFC and NAc were protein-coding and long
noncoding RNAs (IncRNAs) (Fig.1E-F; DLPFC: 73.4% protein-coding, 19.5% IncRNAs;
NAc: 89.5% protein coding, 7.43% IncRNAs). Further analysis revealed pathways
associated with inflammation in both DLPFC and NAc (Supplementary Results,
Fig.S4-S5). Other pathways included chondroitin/dermatan sulfate metabolism and
synapse organization in NAc, suggesting links between extracellular matrix (ECM)
remodeling, microglial cell migration, and synaptic plasticity, in line with recent work

(43).

High transcriptional coherence between DLPFC and NAc converges on

neuroinflammatory and ECM pathways in OUD

Since pathways were largely similar between brain regions in OUD, we explored
the extent of transcriptional overlap between DLPFC and NAc using rank-rank
hypergeometric ordering (RRHO) (44, 45). RRHO orders transcripts in each brain

region by both effect size direction and p-value. Substantial transcriptional overlap in
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both upregulated and downregulated transcripts was found between DLPFC and NAc
(Fig.2A-C, Fisher's exact test, p<10® Fig.S6). Such analyses may provide critical
insight into the functional alterations across DLPFC—NAc circuits (3, 14, 46-49). Given
the extent of transcriptional coherence, pathway enrichment analysis was conducted on
DE transcripts shared between regions. Across DLPFC and NAc, the top shared
pathways included those related to ECM (e.g., biosynthesis of glycosaminoglycans and
chondroitin sulfate) and inflammation (e.g., cytokine-mediated immune signaling via
tumor necrosis factor alpha (TNFa) and nuclear factor kappa B (NFkB) (Fig.2D). Other
pathways were associated with cellular stress responses (e.g., DNA damage repair),
and protein and histone modifications (e.g., ubiquitination and acetylation) that govern

epigenetic regulation (Fig.2D, Fig.S7).

Given the association with epigenetic regulation, we investigated the enrichment
of chromatin state by comparing the transcription start sites from DE transcripts in OUD
to states previously defined in postmortem brains from unaffected comparison subjects
using genome-wide maps of epigenetic modifications (50). Transcription start sites of
DE transcripts in DLPFC were enriched for genomic regions marked by weak polycomb
repression (Fig.S8A, p<10®). Weak polycomb repression diminishes histone marks
(e.g., H3K27me3), which would otherwise inhibit transcription at the start site (50).
Relative to unaffected subjects, the enrichment of upregulated DE transcripts in DLPFC
from OUD subjects suggests that opioids induce the activation of otherwise repressed
areas of the genome to promote transcription (Figure S6). In NAc, DE transcripts were
enriched for genomic regions marked for a quiescent state (Fig.S8A; p<10). Quiescent

states are characterized by the complete absence of histone marks linked to
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transcriptional inactivity (50). Similar to DLPFC, such findings suggest opioids activate
otherwise inactive genomic regions, resulting in upregulation of specific transcripts in
NAc (Fig.S8B). Overall, these findings reflect a fundamental disturbance of chromatin

states and transcriptional regulation by opioids relative to baseline epigenetic states.

Upregulation of microglia markers in OUD

By leveraging the high transcriptional coherence between DLPFC and NAc, we
identified cell types with specific DE transcripts expressed in both brain regions using
deconvolution (32). Transcripts were clustered in major brain cell types including
astrocytes, endothelial cells, microglia, neurons, and oligodendrocytes and
oligodendrocyte precursor cells. Compared to unaffected subjects, markers for microglia
(e.g., ZNF812) were significantly enriched in OUD (p=0.03; Fig.3A). We next conducted
cell type-specific DE analysis in DLPFC and NAc by identifying DE transcripts that
significantly co-varied with specific cell markers. Using brain region as a covariate, we
detected a single DE transcript associated with microglia markers, HSD17B14 (Table
S3). Previous work showed that reduced expression of HSD17B14 in microglia resulted
in exaggerated pro-inflammatory glial activation (51). This further supports evidence for

neuroinflammatory processes in DLPFC and NAc in OUD.

Focusing on transcripts that correlated with changes in neuronal markers, we
identified 25 DE transcripts significantly enriched for pathways related to neuroimmune
signaling between neurons and local inflammatory cells (e.g., microglia) (Fig.3B, Table
S3). We found several upregulated genes that are controlled by a single microRNA

(miR), miR223 (Fig.3B). miR223 is a crucial modulator of macrophage activation (52),
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further implicating microglia in the regulation of neuroimmune responses in OUD. A
broader view indicated that immune-related pathways were largely distinct between
microglia and other immune cell types including CD4" and CD8" T-cells (Fig.3C). This
highlights the possibility of interactions between neurons and other immune cells in
brains of OUD subjects. Lastly, we also found strong enrichment of DE transcripts with

synapse-related pathways (Fig.S9).

Increased connectivity of neuroinflammatory and ECM signaling gene modules in OUD

We used WGCNA to investigate correlations among transcripts in both
unaffected comparison and OUD subjects. WGCNA identified 17 co-expression
modules in DLPFC and 15 modules in NAc (Fig.4A). To identify OUD-specific modules,
we used MDC to directly compare network connectivity of each module between OUD
and unaffected subjects. More coordinated expression of transcripts in unaffected
subjects relative to OUD subjects indicates a ‘gain’ of connectivity in unaffected
subjects. Conversely, a module that loses connectivity in unaffected subjects is more
coordinated in OUD. In DLPFC, 15/17 modules lost connectivity and two remained
unchanged in unaffected subjects (Fig.4B). In NAc, 13/15 modules lost connectivity,
while one module gained connectivity, and another remained unchanged in unaffected
subjects (Fig.4B). These findings indicate that overall module structures were largely

distinct between OUD and unaffected comparison subjects.

To further investigate the biological significance of OUD-specific modules, we
examined DE enrichment within each module focused on highly represented mRNAs

and IncRNAs (Fig.1E-F). The DLPFC blue module and the NAc forestgreen module
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were of particular interest because of their increased connectivity in OUD compared to
the other modules and significant enrichment of both DE mRNA and IncRNA transcripts
in OUD (DLPFC blue full DE list g<10%, mRNA g<10%, IncRNA p=0.002; NAc
forestgreen full DE list g<10%, mRNA q<10?% IncRNA p=0.004). The topography of
DLPFC blue and NAc forestgreen networks were more correlated in OUD relative to
unaffected comparison subjects (Fig.4E-F), consistent with strengthening of module

connectivity.

Given the substantial overlap in transcripts and pathways across DLPFC and
NAc, we next tested the degree of overlap in transcript co-expression networks between
DLPFC blue and NAc forestgreen modules. Indeed, there was substantial overlap in
transcripts between these modules (Fisher’s exact test, p<10™°). These modules were
enriched for pathways related to neuroinflammation and ECM remodeling, consistent
with our above findings (Fig.4D, Fig.S10). The top shared pathways include TNFa
signaling via NFkB, interferon-y response, and acute inflammatory response via IL-6
(53) and IL-2 (54) signaling (Fig.4D). Each of the top shared upstream regulators are
modulators of inflammatory response: PPARy (55), NFKB1 (56), RELA (56), STAT1
(57), and SP1 (58) (Fig.4D). Notably, we also found pathways related to ECM
remodeling (Fig.4D). These data build upon our above analyses highlighting critical

roles for neuroinflammation and ECM in OUD.

To identify potential drivers of co-expression networks, we detected highly
connected “hub” genes within a module that were predicted to regulate the expression
of other module genes. Many of the hub genes that were specific to OUD in DLPFC and

NAc included inflammatory regulators, such as JAK3 (59), SERPINB1 (60), and RELL1
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(61) in DLPFC (Fig.4F), and TLR2 (62), TNFRSF10B (63), and NFIL3 (64) in NAC
(Fig.4F). We also found additional classes of highly connected transcriptional regulators
within our co-expression networks including IncRNAs and RNA-binding proteins.
Several IncRNAs were highly connected in OUD-specific networks in DLPFC and NAc
(e.g., DLPFC: AC0101086.3 and NAc: BAALC.AS1) (Fig.4F, Table S4). AC0101086.3
is located proximal to CLEC2D in the genome, another OUD-specific hub gene.
CLEC2D encodes ELT1, an activator of innate immunity (65, 66). BAALC.ASL1 is highly
expressed in brain and regulates astrocytes (67). In the NAc forestgreen module, we
also identified YBX3, an RNA-binding protein. YBX3 regulates the expression of large
neutral amino acid transporter 1 (LAT1) (68), which is necessary for the uptake of
catecholamine precursor, L-DOPA in dopaminergic cells (69). Notably, changes in
YBX3 expression in human midbrain has previously been implicated in opioid
dependence (70). We identify putative mechanisms involved in neuroinflammation and

dopamine neurotransmission in OUD.

Associations between DE transcripts in NAc and genetic liability for substance use-

related traits in OUD

Opioid dependence is strongly linked to impulsivity and risk-taking. Given our
results highlighting inflammation in OUD, we determined whether these pathways were
linked to traits related to opioid dependence. To test this, we employed a GWAS-based
approach that integrated risk loci associated with substance use-related traits (e.qg.,
opioid dependence, smoking, and risky behavior) and psychiatric disorders (71-73) with

transcriptional profiles in DLPFC and NAc from OUD subjects. Loci identified by GWAS
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are known to overlap with intronic and distal intergenic noncoding regions within cis-
acting regulators of gene expression (50). Using this information, we examined whether
noncoding regions proximal to our DE transcripts were enriched for genetic risk variants
associated with vulnerability to opioid dependence. We discovered significant
enrichment of downregulated DE transcripts in NAc of OUD subjects for genes
associated with smoking initiation and cessation (Fig.5A), along with attention deficit
hyperactivity disorder (ADHD), bipolar disorder, depression, and risky behavior GWAS
(Fig.5C, FDR<0.05). Many of these transcripts were associated with neuroimmune
signaling, along with the machinery involved in synaptic neurotransmission (Fig.2,
Fig.4). There was no enrichment of DE transcripts in chronic pain, opioid dependence,
or unrelated GWAS traits (i.e., bone mineral density, coronary artery disease, and lean
body mass) (Fig.5A-D). Our results therefore bridge substance use related genetic risk

factors to our transcriptomic findings in OUD.
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Discussion

Our work demonstrates that inflammation is the most salient biological process
identified in OUD. Clinical findings that link inflammation to OUD are primarily from
reports of elevated levels of circulating pro-inflammatory cytokines in opioid dependent
individuals (74). Pro-inflammatory cytokines in periphery and brain may have functional
consequences that contribute to OUD. In line with this, microglial inhibition mitigates
subjective withdrawal (75), reduces motivation to consume opioids in dependent
individuals (76), and attenuates opioid conditioned reward and seeking in rodents (77-
80). However, the unanswered question was whether these findings were clinically
relevant for OUD. By focusing on key regions involved in OUD, we reveal several key
inflammatory pathways altered in OUD in DLPFC and NAc.

One of the top pathways shared between DLPFC and NAc is TNFa signaling via
NFkB. Receptors known to activate NFkB, TNF and TLR4 (81, 82), are among the top
predicted upstream regulators of DE transcripts. Though still controversial, there is
growing evidence that opioids can also induce a neuroinflammatory response via direct
activation of TLR4, a transmembrane receptor which activates NFkB signaling and
inflammatory cascades (83). Upon activation, NFKB dimers translocate to the nucleus to
drive transcription of cytokines, chemokines, and interleukins (81, 82). Additionally,
opioids can activate NFKB via opioid receptors (85-89), and activation of NFkB signaling
can, in turn, promotes transcription of opioid receptors and peptides (90-95), involved in
opioid reward (90, 96, 97). Thus, while opioids can influence immune function via NFkB,
opioids may also activate NFkB, with downstream effects on addiction-related

behaviors, independent of immune function.
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An effective neuroinflammatory response involves the interplay between immune
cells and local ECM remodeling. The ECM is an assembly of adhesion molecules,
proteins, polysaccharides, and proteoglycans, critical for BBB integrity and synaptic
function (98). Both the formation and degradation of ECM in the brain depend on the
aggregation of a specific family of proteoglycans, chondroitin sulfate glycoaminoglycans
(CS-GAGS) (100). Significantly, CS-GAGs constitute the top shared pathway enriched
between DLPFC and NAc in OUD subjects. CS-GAGs aggregate in the perisynaptic
space in response to inflammation. Increasingly, ECM remodeling is also implicated in
synaptic plasticity (101), with roles in neurite outgrowth, dendritic spine formation and
morphology (100, 102), and myelination (103, 104). Indeed, reduced myelination has
been found in clinical neuroimaging and postmortem brain studies of chronic opioid
users (105-109), as well as in rodent models of chronic opioid exposure (110, 111).
Importantly, the cytokines we identified in DLPFC and NAc of OUD subjects, such as
interferons and TNFs, modulate ECM remodeling (112, 113), and therefore, directly link
neuroinflammation, ECM, and opioids.

We therefore posit that opioid-induced changes in CS-GAG signaling driven by
neuroinflammation disrupt ECM structure and have profound consequences on
dendritic, synaptic, and behavioral plasticity. For example, reorganization of ECM in
NAc via matrix metalloproteinases (MMPs), which facilitate matrix degradation and
reassembly, leads to increased potentiation of glutamatergic synapses (114) and opioid
relapse (115). Importantly, we identified TIMP1 and TLR2 as OUD-specific hub genes,
both of which have crucial roles in ECM remodeling (116) and functional reorganization

of excitatory synapses by directly inhibiting MMPs (114). We therefore speculate: 1)
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opioid use elicits release of pro-inflammatory cytokines in the brain that activate TIMP1
and TLR2, protein modulators of ECM organization (117); 2) these activated modulators
modify MMP activity to alter ECM organization; and 3) these disturbances to ECM

remodeling alter synaptic plasticity**®

and result in the behavioral changes related to
OUD. Future experiments using animal models will directly test these possibilities.
Multiple lines of evidence point to the centrality of microglia, the primary resident
immune cells in the brain, in the pathways we have identified in OUD subjects. First,
microglial markers were significantly enriched across DLPFC and NAc in OUD.
Moreover, our cell-type marker-based approach revealed that the top DE transcript,
HSD17B14, was highly correlated with microglial markers. HSD17B14 maintains
microglial homeostasis during inflammation (51). Second, our cell-type marker analysis
revealed pathways involved in microglial activation and the activation of additional
immune cell types, including CD4" and CD8" T-cells. Earlier work suggests synergistic
relationships between microglia and T-cells that may potentiate neuroinflammation in
OUD (118). Third, the cytokines we identified, including IL-1B, IL-6, IL-2, and TNFa, are
secreted by microglia (119), all of which are implicated in opioid reward and
dependence (120-122). Fourth, pathways identified in OUD map are related to
transcriptional regulation in microglia during inflammation. Specifically, network
analyses predicted the following top upstream regulators as PPARy, NFkB1, RELA,
STAT1, and SP1. While microglia rely on multiple families of transcription factors (123),
our findings in OUD largely identify transcription factors that are important for guiding
microglial response to inflammatory signals. For example, PPARy is a nuclear

transcription factor preferentially expressed in human microglia. PPARYy is activated in
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response to neuroinflammation and leads to anti-inflammatory responses that are
neuroprotective (123). Aberrant activation of STAT1 in microglia upregulates several
pro-inflammatory cytokines. Intriguingly, STAT1-dependent signaling regulates the
expression of the human y-opioid receptor via IL-6, another pro-inflammatory cytokine
that we identified in our analyses (124). Finally, we found two pathways intimately linked
to microglial function: ameboidal migration and integrin signaling. Integrins physically
tether microglia and neurons to the ECM scaffold (125). Microglia rely on the ECM for

ameboidal migration, further linking microglia, ECM, and neuroinflammation in OUD.

In addition to changes in protein-coding transcripts, we discovered that subjects
with OUD exhibited marked expression changes in IncRNAs. LncRNAs are key
regulators of gene and protein expression (126). Several of the IncCRNAs we identified in
OUD subjects, AC0101086.3, BAALC.AS1, and AL136366.1, are implicated in both
neurotransmission and neuroinflammation. In DLPFC, we found AC0101086.3 to be an
OUD-specific hub IncRNA. This IncRNA is located proximally to CLEC2D, which
encodes ELT1, the functional ligand for the natural-killer cell receptor NKR-P1A. NKR-
P1A controls immunosurveillance via natural-killer, dendritic, and B-cells (65, 66). In
NAc, we found BAALC.AS1 (127) and AL136366.1 (128) as OUD-specific hub IncRNAs,

both of which are involved in various brain functions (129, 130).

Functional alterations occur at the circuit-level across multiple brain regions in
opioid dependence and treatment (131). One such change occurs at the transcriptional
level, where different brain regions can increasingly synchronize their patterns of
transcription. There is evidence that increases in transcriptional synchrony across brain

regions occur in response to insults including stress and drugs of abuse (20, 132).
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Consistent with this, we found significant transcriptional synchrony between DLPFC and
NAc in OUD. To date, the relevance of such synchrony remains unclear. We speculate
that, because the ranking, effect size, and direction of change in numerous transcripts is
highly similar between brain regions, such synchrony may represent a common
pathophysiological response to neuroinflammation in OUD. Clearly, further work is

required to explore these possibilities.

Integrating large-scale gene expression profiles with relevant GWAS findings
reveals novel gene-trait associations in OUD. We demonstrated that downregulated
genes in the NAc of OUD subjects were significantly enriched for GWAS of risky
behavior (71). Risky behavior forms a functional triad with mood and impulsivity (133),
where impulsivity is a risk factor for substance use (134-136). Our findings therefore
support relationships between genetic risk, brain region-specific transcriptional changes,
and vulnerability to OUD.

Overall, our data reveal new connections between the brain’s immune system
and opioid dependence in the human brain. These results provide a novel putative
mechanism across transcriptional networks, biological pathways, and specific cell types
for the detrimental neuroadaptations across corticostriatal circuitry that result from
chronic opioids and OUD. The insights provided by our work offer the opportunity for

new therapeutic targets with improved efficacy to treat OUD.
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Figure Legends

Fig. 1. Transcriptomic changes in DLPFC and NAc from OUD subjects. A. Log:FC
plotted relative to -logiop-value by volcano plot for DE genes in DLFPC. Horizontal
dashed lines represent p-value significance cutoff of corrected p<0.01, while vertical
dashed lines represent log,FC cutoffs of <-0.26 or >0.26 (FC>1.2). Red circles
represent DE genes that reach significance, log,FC, and FDR<0.05 cutoffs. B. Heatmap
of the top 250 DE genes (corrected p<0.01 and log,FC of <-0.26 or >0.26) clustered by
gene and subject. Each column represents a subject (unaffected comparison, purple;
OUD, blue). Subjects within groups cluster together. C. Volcano plot for DE genes in
NAc. Note the large numbers of genes that are significantly reduced in expression
compared to genes that are increased. D. Heatmap of the top 250 DE genes clustered
by gene and subject. Overall, subjects within groups cluster together with several
groups of subjects forming separate clusters. E. Biotypes of DE genes (corrected
p<0.01 and log,FC of <-0.26 or >0.26) in DLPFC. Protein coding genes represent the
majority of DE genes (blue; 73.4%) followed by IncRNAs (orange; 19.5%). F. Biotypes
of DE genes in NAc. Protein coding genes represent the majority of DE genes (blue;

89.5%) followed by INcCRNAs (orange; 7.43%).

Fig. 2. High transcriptional concordance reveals commonly altered molecular
pathways between brain regions associated with opioid dependence. A. RRHO
plot indicating high degree of overlap, or transcriptional concordance, between DLPFC

and NAc in OUD subjects. B. Venn diagram of DE genes between DLPFC and NAc. C.
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DE genes (purple lines) and their ontology (light blue lines) highly overlapped (orange)
between DLPFC and NAc. D. Top 20 pathways of DE genes shared between DLPFC

and NAc. Many of these pathways are related to ECM and neuroinflammatory signaling.

Fig. 3. Predicted microglial cell-type enrichment in both DLPFC and NAc. A.
Deconvolution analyses indicates modest enrichment of microglia gene markers in
DLPFC and NAc of OUD subjects (p<0.03; hypergeometric t-test controlling for brain
region), consistent with enrichment of pathways in DE genes related to immune
function. B. Pathway enrichment analysis on the significantly altered DE genes in
neurons identified pathways related to inflammation. C. Significantly enriched terms
based on pathways included in multiple annotated sets (e.g., GO, KEGG, hallmark, etc.)
using hypergeometric p-values and enrichment factors. The network is visualized with
Cytoscape using Community cluster with categorical labels representing multiple
clusters. Individual nodes are also labeled. Note nodes are related to presynaptic
structure and function and miR233-dependent regulation of macrophage and T-cell

activation.

Fig. 4. OUD associated gene networks in DLPFC and NAc. A. Weighted gene co-
expression network analysis (WGCNA) was used to generate co-expression modules,
with the network structure generated on each brain region separately. The identified
modules that survived module preservation analysis were arbitrarily assigned colors and
the dendrogram shows average linkage hierarchical clustering of genes. B. Pie charts

summarize results from the module differential connectivity (MDC) analysis compared
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OUD to unaffected comparison subjects. The majority of modules were lost in
unaffected comparison subjects, revealing OUD-specific modules in both DLPFC and
NAc. C. Circos plot identified by module names and colors. Enrichment for full list of
differentially expressed (DE) genes, protein-coding (mMRNA), and long non-coding RNAs
(IncRNA), are indicated by semi-circle colors within each module, with increasing warm
colors indicating increasing -logio p-value. LncRNA enrichment was examined based on
the high prevalence of these transcripts in the Biotype analysis (see Figure 2a,e). MDC
analysis indicated a loss of connectivity in the DLPFC blue module and NAc forestgreen
module. These modules were also enriched for DE mRNA and IncRNAs. D. Pathway
enrichment analysis compared gene networks within the DLPFC blue module and NAc
forestgreen module. Warmer colors indicate increasing -logio p-value and highly shared
pathways between the modules. Hub gene co-expression networks of the DLPFC blue
module E. unaffected comparison subjects and F. OUD subjects, and networks of the
forestgreen module in NAc E unaffected comparison subjects and F. OUD subijects.
Node size indicates the degree of connectivity for that gene. Turquoise nodes indicate
OUD-specific hub genes, purple nodes indicate LncRNA gene, gray nodes indicate hub
genes, and red halos indicate DE genes. Edges indicate significant co-expression

between two particular genes.

Fig. 5. Differentially expressed genes in the DLPFC and NAc enrich for genetic
liability of risky behavior. Several well-powered genome-wide associated studies
(GWAS) have identified risk loci associated with substance use (SU), substance use

disorder (SUD)-, and neuropsychiatry (neuropsych)-related traits. Significant risk loci
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overlap with intronic and distal intergenic noncoding regions, presumably within cis-
acting regulatory elements of gene expression. A. Proximal noncoding regions of
differentially expressed (DE) genes in DLPFC and NAc from OUD subjects were
investigated for enrichment of genetic risk variants of SU-related traits using partitioned
heritability linkage-disequilibrium score regression analysis. No enrichment was found in
the DLPFC, but significant enrichment was found in the NAc for up and down-regulated
genes with smoking cessation and smoking initiation. B. No enrichment was found in
the DLPFC or NAc for SUD-related GWAS. C. No enrichment was found for
neuropsychiatry-related GWAS in the DLPFC, but there was enrichment in the NAc for
attention deficit hyperactivity disorder (ADHD; down-regulated), bipolar disorder
(downregulated), depression (up and downregulated), and risky behavior (up and
downregulated) GWAS. D. No enrichment in DLPFC or NAc for unrelated GWAS traits,
including bone mineral density (BMD), coronary artery disease (CAD), and lean body
mass (LBM). *, indicates in African American population; lack of asterisk indicates

European American population.
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Tables

Table 1. Subject summary demographic and tissue characteristics

Unaffected Opioid
Characteristic comparison dependent

(n=20) (n=20)
Age 47.3+95 46.9+7.3
Sex 10M 10F 10M 10F
Race 13w 7B 19w 1B
PMI (hours) 15.7+6.1 16.0+5.3
Brain pH 6.6 £0.3 6.4+0.2
RIN 8.0+0.7 7.8+0.7
Tissue
Storage Time  100.3 £86.1 103.0 £59.7
(months)

Values are mean + SD. M, male; F, female; B, black; W, white
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