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Abstract

Indirect parental genetic effects may be defined as the influence of parental genotypes on
offspring phenotypes over and above that which results from the transmission of genes from
parents to children. However, given the relative paucity of large-scale family-based cohorts
around the world, it is difficult to demonstrate parental genetic effects on human traits,
particularly at individual loci. In this manuscript, we illustrate how parental genetic effects on
offspring phenotypes, including late onset diseases, can be estimated at individual loci in
principle using large-scale genome-wide association study (GWAS) data, even in the absence
of parental genotypes. Our strategy involves creating “virtual” mothers and fathers by
estimating the genotypic dosages of parental genotypes using physically genotyped data from
relative pairs. We then utilize the expected dosages of the parents, and the actual genotypes
of the offspring relative pairs, to perform conditional genetic association analyses to obtain
asymptotically unbiased estimates of maternal, paternal and offspring genetic effects. We
develop a freely available web application that quantifies the power of our approach using
closed form asymptotic solutions. We implement our methods in a user-friendly software
package IMPI SH (1M puting Parental genotypes I n Siblings and Half-Siblings) which allows
users to quickly and efficiently impute parental genotypes across the genome in large
genome-wide datasets, and then use these estimated dosages in downstream linear mixed
model association analyses. We conclude that imputing parental genotypes from relative pairs
may provide a useful adjunct to existing large-scale genetic studies of parents and their
offspring.
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There is increasing interest in estimating the indirect effect of parental genotypes on the
phenotypes of their offspring (Bates et al. 2018; Evans et al. 2019; Kong et al. 2018;
Lawlor et a. 2017). We and others have shown in human populations that the maternal and
paternal genomes can indirectly affect a range of offspring traits including perinatal
(Beaumont et a. 2018; Evans et al. 2019; Tyrrell et a. 2016; Warrington et al. 2019;
Warrington et a. 2018; Yang et al. 2019; Zhang et a. 2015; Zhang et al. 2017; Zhang et al.
2018) and later life phenotypes (Kong et al. 2018; Warrington et al. 2019). However, these
sorts of analyses typically require large numbers of genotyped parent-offspring duos and trios
in order to partition genetic effects into parental and offspring mediated components (Evans
et a. 2019; Moen et a. 2019). Unfortunately, there are only a few cohorts around the world
with large numbers of genotyped parents and children (Boyd et al. 2013; Fraser et a. 2013;
Krokstad et al. 2013; Magnus et a. 2006; Sudlow et al. 2015) implying that even if
investigators were able to combine al the large-scale family-based cohorts in the world
together, the statistical power to resolve parental genetic effects on offspring phenotypes may
be low (Moen et al. 2019). The problem of low statistical power is exacerbated further if the
interest is on identifying parental genetic effects on late onset diseases, since many of the
cohorts that contain genotypic information on parents and their children are birth cohorts that
were established less than thirty years ago (Boyd et al. 2013; Fraser et a. 2013; Magnus et
al. 2006). This means that offspring from these cohorts are not old enough to have developed
many late onset diseases of interest. There is therefore a considerable need to develop
statistical genetics methods and software that can maximize the amount of data available to
detect indirect parental genetic effects (Evans et al. 2019).

In the following manuscript, we describe a smple strategy for estimating indirect parental
genetic effects on offspring phenotypes which is capable of leveraging the considerable
information contained within large publicly available cohorts and the tens of thousands of
individuals contained within twin registries and family studies from around the world
(Silventoinen et al. 2015). Briefly, our strategy involves creating “virtual” mothers and
fathers by estimating the genotypic dosages of parental genotypes using physically genotyped
data from sibling and half sibling relative pairs. We then use the expected dosages of the
parents, and the actual genotypes of the siblings/half sibling pairs to perform conditional
genetic association analyses and estimate maternal, paternal and offspring genetic effects on
the offspring phenotype.

We derive formulae to impute the expected dosage of maternal and paternal genotypes given
sibling or half-sib genotypes a both autosoma and X-linked loci. We implement our
calculations in a user-friendly software package, IMPISH (I M puting Parental genotypes In
Siblings and Half siblings) that allows users to quickly and efficiently impute parental
genotypes across the genome in large genome-wide datasets, and then use these estimated
dosages in downstream genome-wide association analyses
(http://evansgroup.di.ug.edu.au/software.html). We investigate the statistical power, type 1
error and bias associated with estimating parental and offspring genetic effects via simulation
and using closed form asymptotic solutions. Finally, we develop a series of freely available
web applications (http://evansgroup.di.uq.edu.au/power-cal culators.html) that researchers can
use to estimate power to detect parental and offspring genetic effects in studies of sibling or
half sibling pairs, with or without parental genotypes.


https://doi.org/10.1101/2020.02.21.959114
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.21.959114; this version posted March 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Methods
Imputing Expected Gene Dosages for Parents Given Observed Offspring Genotypes

The intuition for why relative pairs enable imputation of parental genotypes is illustrated in
Figure 1. Essentially, an individual’s sibling/half sibling provides additional information on
the likely genotype of their parents- so that some parental genotypes are more probable than
others given the observed genotype data. For example in Figure 1, it is possible to conclude
that both parents of siblings who have genotypes “AA” and “aa’ at an autosomal locus must
be heterozygous. Likewise, maternal half siblings (i.e. half siblings who share a common
mother) whom have genotype “AA” and “aa” at an autosomal locus, imply that their shared
mother must be genotype “Aa” and their fathers “AA” or “Aa’ and “Aa’ or “ad’ respectively
(the exact probabilities depending on the allele frequencies at the locus under consideration).
We calculated the probability of maternal and paternal biallelic SNP genotypes given data
from sibling pairs or half sibling pairs at the same locus. We did this for autosomal and non-
pseudoautosomal X chromosome loci for bi-allelic SNP markers using Bayes Theorem e.g.
for an autosomal locus:

P(Gy =J,G, = k|Gp = 1)P(Gp = 1)
P(Gy=J,G, =k)

P(Gp=1i|G, =J,G, =k) =
j.k €{AAAa,aa}

where Gp € {“AA”, “Aad’, “aa’} refers to the genotype of the parent, and G; and G; the
genotypes of offspring one and two. In the case of full sibling pairs, separate maternal and
paternal genotypes can be resolved for X-linked loci. However, in the case of autosomal loci,
the expected dosage for maternal and paternal genotypes is the same, meaning that it is
impossible to distinguish maternal from paternal genotypes.

Given conditional genotype probabilities, it is then a simple matter to calculate the expected
genotype dosages (X) of the parents for a given pair of offspring genotypes:

E(Xp|Gy =j,G, = k) = P(Gp = AalG, = j,G, = k) + 2 X P(Gp = aa|G, =j,G, = k)

These expected maternal and/or paternal dosages can then be included as terms in the fixed
effects part of a linear mixed model together with the observed dosages of the offspring
genotypes and then estimates of maternal, paternal and fetal genetic effects on the offspring
phenotype can be obtained. Derivations of expected parental genotype dosages given
sbling/haf sibling genotypes for autosomes and the X chromosome are given in
Supplementary Tables 1-4.

Exploring Parameter Bias, Power and Type 1 Error of Tests of Genetic Association via
Smulation

We investigated parameter bias, power and type 1 error rate of tests of genetic association via
simulation. Genotypes were simulated for nuclear families (mother, father and two siblings)
and maternal half sibling families (common mother, two fathers and two half siblings). In the
case of sibling pairs at autosomal loci, trait values were simulated according to the following
model:

lebX1+de+fo+T+£1
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Yz = sz +de+fo+T+82
X1 =05Xn +X,) +my

where Y; and Y, are the phenotypes of siblings one and two, Xi, Xz, Xm and X; € {0, 1, 2} are
the genotype dosages of siblings one and two and their mother and father respectively, b, d
and f are the effect of the offspring, maternal and paternal genotypes on the offspring
phenotype, 7 is arandom effect shared by the siblings, & and &, are uncorrelated error terms
for the two phenotypes, and 7, and 77, are random effects due to the segregation of alleles.
Without loss of generality, effects were scaled so that the variance of the genotype dosages
and phenotype terms was one. The variances of the random effects are:

Var(e,) = Var(ey) = o?
Var(t) = ¢?
Var(n) = 0.5

In the case of X chromosome loci for sibling pairs, we assume that the effect of genotypes on
offspring phenotype are equal in males and females (i.e. the regression coefficients b, d and f
are equal regardless of whether the sibling is male or female). Unstandardized female
genotypes are coded X € {0, 1, 2} whilst unstandardized male genotypes are coded {0, 2}.
This means that male genotypes have twice the variance of female genotypes, and explain
double the variance in the offspring phenotype. We simulated sibling phenotypes at X
chromosomal loci under the following model:

Yz :bX2+de+fo+T+£2
Xy =X+ 1y

where the terms are defined similar to the sibling model above where sibling one is male and
sibling two is femae, and 7w and 7 are random effects due to segregation in male and
female offspring. The variances of the random effects are:

Var(e;) = o4
Var(e;) = a2
Var(t) = ¢?
Var(ny) =1

Var(ng) = 0.25

At X chromosome loci, the covariances between genotypes of relative pairs are sex-
dependent:

Mother-Daughter:
Cov(Xz, Xm) =0.5
Mother-Son:
Cov(Xy, Xm) =1
Father-Daughter:
Cov(Xz, Xp) =1
Father-Son:
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Cov(Xy, X5) =0
Brother-Brother:
COV(Xl, X2) =1
Sister-Sister:
Cov(Xy, X2) =0.75
Brother-Sister:
COV(Xl, X2) =05

and so we simulate under three separate models for female-female, male-male, and opposite
sex sibling pairs (see Supplementary Materials for more details).

Finally, in the case of (maternal) half sibling pairs at autosomal loci we smulated data
according to the model:

Vi =bX;+dXpm+ fXp+T+ 8
Y, =bX, +dXp + fXp + T+ &,
X1 = 05X, + Xp) + 14
X; = 05X, + Xp2) + 12

where the subscripts f1 and f2 denote the fathers of half sibling one and half sibling two
respectively. The variances of the random effects are

Var(e,) = Var(e,) = o2
Var(z) = ¢?
Var(n) = 0.5

Paternal half sibling pairs can be parameterized analogously. The reason we don’t show this
explicitly is that for autosomal loci, the power to detect maternal effects using paterna half
sibling pairs is the same as the power to detect paternal effects using maternal half sibling
pairs, and the power to detect paterna effects using paternal half sibling pairs is the same as
the power to detect maternal effects using maternal half sibling pairs.

For each simulated pair, we calculated the expected genotype dosages of the parents based on
the formulae from the preceding section (Supplementary Tables 1 to 4). Offspring phenotype
was regressed on offspring genotype, and imputed (or physically genotyped) parental dosages
using the Imer package in R. Tests were conducted using full information maximum
likelihood. In the case of sibling pairs at autosomal SNPs, we investigated the properties of
the following tests of association:

(1) Omnibus test: We compared the full model where free terms for the offspring and
parental genetic effect(s) were estimated versus a model where the offspring and
parental regression coefficient(s) were fixed to zero (i.e. either a two degrees of
freedom test if parental genotype was imputed; or a three degree of freedom test if
genotypes for both parents were available).

(2) Test using offspring genotypes only: We compared a model where there was a free
term for the offspring genetic effect only, against a model where this term was set
to zero (i.e. a one degree of freedom test). In other words, the effect of parenta
genotypes was not modelled in this analysis, even though parental genetic effects
may influence the offspring phenotypes and parental genotypes may or may not be
present.
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(3) Test of the offspring genetic effect: We compared the full model where free terms
for the offspring and parental genetic effect were estimated versus a model where
the offspring regression coefficient was fixed to zero (a one degree of freedom
test).

(4) Test of the parental genetic effect: We compared the full model where free terms
for the offspring and parental genetic effect are estimated versus a model where the
imputed parental regression coefficient was fixed to zero (a one degree of freedom
test).

In the case of half sibling pairs, as well as sibling pairs a X chromosome SNPs, we
investigated the properties of the following tests of association:

(1) Omnibus test: We compared the full model where free terms for offspring,
maternal and paterna genetic effects are estimated versus a model where the
offspring, maternal and paternal regression coefficients were fixed to zero (a three
degrees of freedom test).

(2) Test using offspring genotypes only: We compared a model where there was a free
term for the offspring genetic effect only, against a model where this term was set
to zero (a one degree of freedom test). In other words, the effect of parental
genotypes were not modelled in this analysis, even though maternal and/or paternal
genetic effects may influence the offspring phenotypes and parental genotypes may
or may not be present.

(3) Test of the offspring genetic effect: We compared the full model where free terms
for offspring, maternal and imputed paternal genetic effects are estimated versus a
model where the offspring regression coefficient was fixed to zero (a one degree of
freedom test).

(4) Test of the maternal genetic effect: We compared the full model where free terms
for offspring, maternal and paternal genetic effects are estimated versus a model
where the maternal regression coefficient was fixed to zero (a one degree of
freedom test).

(5) Test of the paternal genetic effect: We compared the full model where free terms
for offspring, maternal and paternal genetic effects are estimated versus a model
where the paternal regression coefficient was fixed to zero (a one degree of
freedom test).

In the case of the Omnibus test (Model 1) and the test using the offspring genotypes only
(Modél 2), the focus is on locus detection (i.e. whether there is a genetic effect at the locus,
regardless of whether it is mediated through the offspring or parental genomes). In contrast,
in the case of the tests for the parental, maternal, paternal or offspring genetic effects (Models
3 to 5), the focus is on partitioning a known locus into its indirect parental genetic and/or
offspring genetic components. These tests are more relevant if the goal is to determine which
genome mediates a known genetic effect on the offspring phenotype, or if the objective is on
deriving unbiased effect estimates of genetic effects eg. for Mendelian randomization
analyses.

For our simulations, we varied the size of genetic effects (two conditions: b* = d? = f* = 0; b?
= d? = f* = 0.1%), frequency of the trait decreasing allele (three conditions: p=0.1, p= 0.5, p
= 0.9), and shared residual variance (two conditions: ¢? = 0; ¢? = 0.2). For al simulations
we used N = 2000 sibling pairs/half sibling pairs, a type 1 error rate of o = 0.05, and 1000
replications. R code implementing the simulations are provided in the Supplementary
Materials.
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Calculating Power Analytically Using the Non-Centrality Parameter

We derived closed form expressions for the non-centrality parameter of the statistical tests
described above for actual and imputed parental genotypes and confirmed the results of these
against our smulations. We have implemented these asymptotic power calculations in a
series of  applications which are freely available on our  website
(http://evansgroup.di.ug.edu.au/power-calculators.html). In the results section, we use our
utilities to compare the statistical power to detect genetic effects when parental genotypes are
available and when they need to be imputed for both sibling and half sibling pairs.

Softwar e to impute Parental Genotypes

We have coded the parental imputation routines described above in a C++ software package
called IMPISH (IMputing Parental genotypes in Siblings and Half siblings) which is freely
available on our website (http://evansgroup.di.ug.edu.aw/software.html). IMPISH uses source
code adapted from the GCTA software package (version 1.26.0) that has been modified to
impute parental genotype data given genotypes from sibling or half sibling pairs (Yang et al.
2010). IMPISH accepts data in the form of PLINK style binary .bed, .bim and .fam file
formats (Purcell et al. 2007). Users can elect to output expected parental genotype dosages or
have the software compute these internally and utilize them in genome-wide association
testing. IMPISH fits a genetic mixed linear model with fixed effects for offspring genotype
and (imputed) maternal and paternal genotypes and allows users to compute these statistics
across the genome in a computationally efficient fashion. A genome-wide genetic
relationship matrix is used in the random effects part of the model just as in the original
GCTA software, alowing users to account for population stratification and cryptic
relatednessin their analyses.

To quantify the computational requirements of the IMPISH software, we simulated datasets
that ranged in size from N = 1,000 to 20,000 sibling pairs and M = 500,000 autosomal SNP
markers. The datasets were simulated using an approach similar to that described above. We
benchmarked the running time and memory use of the IMPISH software by running
simulations on these datasets. Reported runtimes are the medians of five identical runs in a
computing environment with 256 GB memory and 16 CPU cores with solid-state disk in one
compute node.
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Results
Smulation Results

A summary of the results of our data simulations is presented in Supplementary Figure 1.
Estimates of paternal, maternal and offspring genetic effects from the full omnibus models
were unbiased, even when imputed parental genotypes were used in the place of real
genotypes. Type 1 error rates were also maintained at expected levels (Supplementary Tables
5-9). Estimates of statistical power, closely matched those from asymptotic calculations
(Supplementary Tables 5-9 and see below).

Derivation of non-centrality parameters and asymptotic power for tests of association in
sibling pairs (autosomal loci)

Under full information maximum likelihood, all the tests of association considered in this
manuscript are distributed as non-central chi-square distributions under the alternative
hypothesis of genetic association, with degrees of freedom equal to the difference in the
number of free parameters between full and reduced models. The non-centrality parameter ()
of these distributions is equal to twice the difference in expected log-likelihoods between the
full and reduced models. Given the non-centrality parameter ({) of the statistical test, the
power to detect association (P) can be obtained by the formula:

co

p= f dy2(v,0)
X6 (v,0)

where x/2(v, 0) isthe 100(1 - o) percentage point of the central x° distribution with v degrees
of freedom, and y'?(v,{) denotes a non-central chi-square distribution with non-centrality
parameter ¢ and degrees of freedom v. In the section below, we derive the expected
covariance matrix of the residuals for each statistical model and its associated expected minus
two log-likelihood. From these values the non-centrality parameter and statistical power of
the relevant test of association can be calculated.

To illustrate our derivations, we consider the case of sibling pairs with phenotype data Y; and
Y,, and corresponding genotype data X; and X, at an autosoma single nucleotide
polymorphism (SNP). Similar derivations for sibling pairs at X chromosome loci and for half
sibling pairs on the autosomes are provided in the Supplementary Materias. The coding of
genotype assumes additivity (i.e. no dominance), and without loss of generality, al genotypes
and phenotypes are standardized to have mean 0 and variance 1. In situations where the
genotype data of parents (i.e. paternal genotype X; and maternal genotype X.) are
unavailable, the maternal and paternal genotypes are imputed from the genotypes of the
sibling pairs as:

Xm' = E(Xm | X1, X2)
Xi' = E(X | X1, X2)

We assume the model above for sibling pairs (see Methods) and random mating so that
Cov(Xm, %) = 0. The covariances between genotypes are:

Cov(Xy, Xz) = Cov(X1, Xm) = Cov(Xz, Xy) = Cov(Xy, Xf) = Cov(Xz, Xs) =0.5
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the covariance between phenotypes and genotypes are:

Cov(Y, X3) = Cov(Yz, X2) =b+0.5(d + f)

COV(Yl, Xz) = COV(Yz, Xl) = 05(b +d+ f)

Cov(Y1, Xm) = Cov(Y2, Xyn) =0.5b +d
Cov(Y1, X;) = Cov(Yz, Xf) =0.5b + f
and the covariance between the two phenotypesiis:
Cov(Y1, Y2) = 0.5b% + d?+ f2+ bd + bf + ¢?

The phenotypic variance can be decomposed as follows:

Var(Y) = (b?+d?>+ f2+bd+bf)+9p?+0%2 =1

The variance of the true maternal and paternal genotypes prior to standardization is
equivalent to the expected heterozygosity, given the allele frequencies p and g:

Var(Xm) =Var(X;) = 2pg =H
Full sibling relationships do not provide adequate information to distinguish between aleles
of materna versus paterna origin, therefore the imputed maternal genotype X,, will be

equivalent to the imputed paternal genotype X;. Thus, models using the imputed parental
genotype X, estimate the parameter c, the combined effects of d and f suchthat c = d + f.

The variance of theimputed parental genotype, Var (X,,), imputed from full sibling pairsis:

var(xy) = 2H? + 5H + 12
TE) = 4H + 2)(H + 4

The covariance between actual and imputed genotype is equal to the variance of the imputed
genotype:

Cov(Xpm, Xp) = Cov(Xf,X{,) = Var(X,)

and the covariance between the imputed parental genotype and sib genotypes and phenotypes
are;

Cov(X’,Xl) = Cov(X{,,XZ) =0.5
Cov(Xp,Yy) = Cov(Xp,Y,) = b/2 + cVar(X,)
When actual maternal and paternal genotypes are available, the linear mixed model is

lebX1+de+pr+T+€1
Y,=bX;+dXp + fX, + T+ ¢,
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The fixed effects b, d, and f may be estimated by generalised least squares (GLS), where the
covariance matrix of random effectsis:

(0242 02
Q _( 2 2 2)
@ ot

The inverse of the covariance matrix of random effectsis:

0-1 :;(rzwz —¢? )
0-2(0-2+2q)2) —QDZ 0'2+(p2

The asymptotic GL S estimates of a vector of parameters § are given by
B =EXTQ'X)'E(XTQ"1Y)
We consider the following models:

Null model of no association

The residual covariance matrix is ssimply the covariance matrix of Y:
T=13,
_( 1 0.5b2+d2+f2+bd+bf+(p2)
“\0.5b% +d? + f% + bd + bf + @? 1
The expected minus two log-likelihood (-2InL) of the model per sibling pair is therefore:
E(=2InL) =In (1 - (0.5 + d? + f2 + bd + bf + ¢?)*) + 2

One parental genotype (maternal genotype) in the model:

The X matrix contains one column with elements X,,,. The asymptotic GLS estimate of the
regression coefficient of X, is:

d=EXTQ ' X)'EXTQ 1Y)
= EQo?X2)'E(0%X,n(Y; + 1))
= Cov(X,,,Y)
=d+b/2

The residua covariance matrix is:

s = E(Y — xd)(Y — xd)"
=E(YY" —vd"x" — Xdy" + Xdd"X")
=2y — d(Tyx + Zxy) + d?5

where
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: _(b/2+d b/2+d)
vx =\p/2 +d bJ2 +d

. _(b/2+d b/2+d)
XY =\p/2 +d bJ2+d

=1 )
Therefore:

5 (1 —(d +0.5b)2  0.25b2 + ¢? )
~\ 0.25b% + 9%  1-—(d+0.5b)?

The expected -2InL of the model per sibpair is therefore:
E(—2InL) = In((1 — (d + 0.5b)%)? — (0.25b% + ¢*)?) + 2

Both parental genotypes only in modd (terms for X,,, and Xy only):

The X matrix contains two columns with elements X;,, and X. The asymptotic GL S estimates
for the regression coefficients of X,,, and X, are:

= (d f) = E(XTQ—1X)—1E(XTQ—1Y)
/ 2X2,  2X,X; \ / (Y +Y) \
0242¢? 0?4292 024+2¢?

2Xp Xy 2X2 X (Y, + V)
624+2¢% o2+2¢2 o2+2¢?

_ (Cov(Xm, Y)) + Cov(X,,,Ys) Cov(Xf, Yl) + Cov(Xf, YZ))T

2
= (0.5b+d 05b+ f)T

The residua covariance matrix is;

T=EY-X5)Y -Xx5)"
=%, —EXGYT+vg"x"T —Xxgg"x")

where

0.5b> +d?+ f2+ bd + bf 0.5b*+d? + f? + bd + bf

E(XgY") = E(YgTxT ( )
(Xgy™) = EC )= 0.5b> +d? + f2+ bd + bf 0.5b%+d? + f? + bd + bf
E(XG57XT) = (O.Sb2 +d*+ f?+bd+bf 05b>+d*+f%+bd +bf>
99 %)= 05b2 + d2 + f2 + bd + bf 0.5b% +d? + f2 + bd + bf

Therefore:
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Z_(l—(0.5b2+d2+f2+bd+bf) @2 )
a @? 1—(0.5b% + d* + f2 4 bd + bf)

The expected -2InL of the model per sibling pair is therefore:
E(=2InL) =1In ((1 — (0.5b% + d? + f2 + bd + bf))? — p*) + 2

Offspring genotypes in model only (terms for X; and X, only):

The X matrix contains one column with elements X; and X,. The asymptotic GLS estimate of
the regression coefficient of X; and X, is:

b=EXTQ X)) E(XTQ"1Y)
= E((6? + 9D (X2 + X2) - 2X,X,0%) E((6? + o) (X,Y; + X,1,)
— @*(X,Y, + X2Y1))
2

g
=bh+ <—202 n (p2> da+1
The residua covariance matrix is;

s = E(Y — Xb)(Y — Xb)"
= Zy - B(EYX + ZXY) + BZZX

where:
5 _<b+0.5(d+f) O.5(b+d+f))
YX7\05(b+d+f) b+ 05(d+f)
. _(b+0.5(d+f) 0.5(b+d+f))
XY =\05(b+d+f) b+ 05d+f)
(1 05
2y = (0.5 1 )
Therefore:
b
_( 1—2b+d+f)b+b? 0.5b2+d2+f2+bd+bf+<p2—(b+d+f)B+o.552>
“\05P2 +d% + f2+bd+bf +¢*—(b+d+ f)b+0.5h2 1—2b+d+f)b+ b2

The expected -2InL of the model per sibling pair is:
E(=2InL) =In |Z| + 2

Full Omnibus Model (termsfor X,,. X, X; and X,):
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The X matrix contains three columns; column 1 with elements X; and X,, column 2 with
elements X,,, and X,,, and column 3 with elements X, and X;. The asymptotic GLS estimate
of the regression coefficients of columns 1, 2 and 3 are:

g=0,d N =EXTQX)TEXTQY)
= (b,d, )"
The residual covariance matrix is:
T=EY-X)H¥ -X)T
=0
_ (0'2+(/)2 (pZ )

- (pZ O_Z_I_(pZ

The expected -2InL of the model per sibling pair is:
E(—2InL) =1n |Z]| + 2

| mputed parental genotypes only in model (terms for X,f, only)

When only imputed parental genotypes are available, the linear mixed model becomes:

lebX1+CXl’)+T+€1
Y, =bX, +cX, +1+¢,

The X matrix contains one column with elements X;,. The asymptotic GLS estimate of the
regression coefficient of X, is:

¢ =EXTQ1X)1E(XTQ 1Y)

' -1 .
_ g 2X; B X, (Y, +7)
a2 42¢? 24 2¢?
B Cov(X’,Y) B 0.5b + cVar(X,’,) B 0.5b

= c
Var(Xj) Var(Xp) Var(X})

The residual covariance matrix is:
T=EY -X&( —-Xx&T
=E(YYT —veTxT — xevyT + xee™xT)
= ZY - 6(ZYX + ny) + 622)(

where:

B (0.5b + cVar(X,) 0.5b + cVar(X{,))
X 7\0.50 + cVar(X{,) 0.5b + cVar(X;,)

B (O.Sb + cVar(Xl',) 0.5p + CVar(XI’,))
7 \0.5p + cVar(Xz’,) 0.5p + cVar(Xz’,)
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B <Var(x,',) Var(X{,))

¥ \var(x}) var(x})
The expected -2InL of the model per sibling pair is:
E(=2InL) =In |Z| + 2

Full omnibus model with imputed parental genotypes (terms for Xg,. X; and X,)

The X matrix contains two columns; column 1 with elements X; and X,, and column 2 with
elements X, and X,,. The asymptotic GLS estimate of the regression coefficients of columns
1land 2 are:

§=b"=EXTQ ) EXTQY)
= (b,)"

The residua covariance matrix is:

T=EQY-X¥ -Xx9)"
= sy T ATy T & oT T
=2y —EXgY' +Yg' X' —Xgg' X")

where:

bCov(Xy,Yy) + éCov(X.,Y,; bCov(X,,Y,) + éCov(X.,Y,
E(XQ\YT) :E(YgTXT) = ( 1 1) X ( ; 1) - ( 2 1) - ( 1,7 1)
bCov(X,,Y;) + ECov(Xy,Y,) bCov(Xy,Y,) + ECov(X),Y,)
and:
b? + bé + c*Var(X,) O

b? + bé + e*Var (X))
0.5b2 + bé + ¢?Var(X,) 2+ be

5 é
b + c*Var(X,)

E(XXgg'x") = (

The expected -2InL of the model per sibling pair is:
E(—2InL) =1n |Z]| + 2
Results of Asymptotic Power Calculations

We used our asymptotic formulae to investigate the statistical power to detect association
across a range of different parameters, study designs and statistical tests (Supplementary
Tables 10-14). We highlight some general results from our power calculations that we hope
investigators may find useful in terms of planning genetic association studies, particularly
those aimed at identifying and/or estimating the contribution of indirect parental genetic
effects on offspring phenotypes.

A key question for researchers is, what is the optimal analysis strategy if the primary focusis
on locus detection? According to our power calculations, the answer to this question, perhaps
unsurprisingly, depends on the genetic architecture of the trait, in particular on the existence
of indirect maternal/paternal genetic effects and whether these are in the same or opposing
directions. Figure 2 displays power to detect a locus using sibling pairs when a locus is
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influenced by maternal and/or offspring genetic effects (e.g. a perinatal trait like birth
weight). When the locus under study involves an offspring genetic effect only (green linesin
Figure 2), which is probably the case for the majority of loci in the genome for most traits,
then the most powerful strategy appears to be simply testing for an offspring genetic effect
against the null model of no association (i.e. performing a one degree of freedom test just
using the sibling pairs with no parental imputation). This includes situations where parents
have been genotyped. This is because fitting the full omnibus model and testing against the
null model requires extra degrees of freedom to model parental genetic effects (which in this
case are not present) which adversely affects power. We note that this decrement does not
appear to be great in the case of sibling pairs if only the mother is genotyped and paternal
genetic effects are not modelled and do not contribute to the trait of interest, (Figure 2,
Supplementary Table 10)- which is perhaps a reasonable assumption for many perinatal
phenotypes.

In contrast, when indirect maternal (or paterna) genetic effects substantialy influence the
offspring phenotype (blue and red lines Figure 2), and parental genotypes are present, the full
omnibus model (lines with crosses) often performs comparably or better than a simple one
degree of freedom test using the sibling genotypes alone (lines with small circles). This is
especialy the case when offspring and/or parental genetic effects are directionally discordant
(red lines), as is frequently observed for some trait-locus combinations like fasting glucose
associated loci and offspring birth weight (Warrington et a. 2019; Warrington et al. 2018).
Here the power of a simple one degree of freedom test involving the sibling genotypes only
can be vastly diminished, because the discordant parental and offspring genetic effects tend to
cancel each other out. In contrast, an omnibus test which models both offspring and indirect
parental genetic effects performs much better in these situations. Importantly, when parental
genotypes are unavailable, for many situations there appears to be little gained by imputing
parental genotypes and including these in an omnibus test if the focus is solely on locus
detection (Figure 2; Supplementary Tables 10-11).

Another goal investigators might be interested in is partitioning effects at known genetic loci
into direct offspring and indirect parental genetic components. This may be of relevance if
investigators want to prove the existence of indirect maternal genetic effects on offspring
phenotypes for example. Figure 3 displays the power to partition a genetic effect into
maternal (or equivalently paternal) genetic sources of variation in the case of half sibling or
sibling pairs, with and without parental genotypes at autosomal loci. The graph highlights the
clear advantage in power of including actual as opposed to imputed parental genotypes in the
statistical model when the focus is on resolving indirect genetic effects on offspring
phenotypes. Figure 3 shows that if parental genotypes are unavailable, then a considerable
number of sibling pairs (>40,000) and maternal half sibling pairs (>60,000) will be required
to achieve high power (>80%, o = 0.05) to partition genetic effects at alocus- even for those
of relatively large effect (d ? = 0.1%). Interestingly, paternal half sibling pairs who have not
had their parents genotyped, provide much less power to estimate maternal genetic effects
and require even larger numbers (a similar decrement in power is also observed in the case
for maternal half sibling pairs if the interest is in estimating paterna genetic effects). The
lower power of the imputed half sibling analyses compared to the imputed sibling analyses
partially reflects the fact that only two sources of variation are modelled in the imputed
sibling models (i.e. offspring and parental genetic sources of variation), whereas in the half
sibling models, three different sources of variation are modelled (offspring, parental, maternal
genetic sources of variation). If investigators believe that paternal genetic effects do not
contribute to offspring trait variation (a reasonable assumption for perinatal traits), then one
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option to increase power is to fix this path to zero in models involving half siblings.
Interestingly, the presence/absence of other genetic effects has little effect on power of the
conditional tests of association for realistic effect sizes when correctly modelled.

In order to put the above numbers in context, in the publicly available UK Biobank dataset
(which roughly consists of ~20,000 sibling pairs), we estimate that an autosomal parental
genotype would need to explain ~0.2% of the variance in the offspring phenotype in order to
have 80% power to resolve an indirect genetic effect if parental genotypes need to be imputed
(assuming the same parameters as in Figure 3). An indirect effect size this large is probably
unrealistic for most traits, implying that larger samples will be needed to resolve genetic
effects at known loci into indirect and direct genetic effects if parental genotypes need to be
imputed. We also note that the power of the conditional tests are typically lower than
omnibus tests, implying that omnibus tests of association should be used for locus discovery
purposes whilst conditional tests of association should be reserved for partitioning
effects/estimating effect sizes at known loci (Supplementary Tables 10-14).

We found that the effect of the other parameters we investigated (alele frequency, shared
residual variance) on statistical power was complicated and often interacted with the level of
other factors in the calculation (Supplementary Tables 10-11). Allele frequency exerted a
modest effect on the power of most of the statistical tests examined, and its effect on power
appeared to be symmetric around p = 0.5. The effect of the shared residual variance on
statistical power was complex and depended on the statistical test, the underlying genetic
model, allele frequency etc (Supplementary Tables 10-11).

Imputing parental genotypes on the X chromosome has the advantage that separate maternal,
paternal and offspring genetic effects can be resolved for sibling pairs (although at X linked
loci, male siblings are uninformative for paternal transmissions, and so contribute nothing in
terms of identifying paternal genetic effects when fathers have not been genotyped). We
parameterize the statistical model at X linked loci so that unstandardized male genotypes are
coded G; € {0, 2} and female genotypes are coded G, € {0, 1, 2}. We also assume that the
regression coefficient of offspring phenotype on (maternal/paternal/offspring) genotypeis the
same in male and female offspring. This means that male loci explain double the amount of
variance in the phenotype compared to females (see Supplementary Materias). We have
coded the web utilities (http://evansgroup.di.uq.edu.au/power-calculators.ntml) so that users
enter the variance in the offspring phenotype explained by maternal, paternal and/or offspring
genotypes at the locus. For offspring genetic effects in opposite sex siblings, users enter the
variance explained by maleloci.

The results of the power analyses for sibling pairs on the X chromosome are displayed in
Supplementary Tables 12-14. The genera pattern of results for loci on the X chromosome
was similar to that described for the autosomes, and consequently we make similar
recommendations regarding the appropriate analyses for locus detection and partitioning
genetic effects at X linked loci. Comparing the power across the different study designs
however revealed a few interesting results which we highlight. First, male sibling pairs offer
increased power to resolve indirect paternal genetic effects on the X chromosome compared
to the autosomes- so long as fathers have been genotyped. This is because (under random
mating) father’'s genotype is uncorrelated with maternal and male offspring genotype at X
linked loci. Correlation between paternal X linked loci and male offspring phenotype can
therefore not be explained by maternal or offspring genotype. The corollary is that male
sibling pairs cannot be used to impute paternal genotypes at X linked loci and so are
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uninformative for paternal genetic effects unless the father has been genotyped (opposite sex
sibling pairs aso provide slightly elevated power to detect paternal genetic effects when
fathers have been genotyped for the same reason).

When parental genotypes are present, male siblings also provide lower power to detect X
linked loci (3 degree of freedom tests) compared to many of the other study designs. The
reason is the converse of the explanation above- paternal genetic effects do not contribute to
the covariance between male sibling pairs. Opposite sex sibling pairs also provide reduced
power to detect loci (3 degree of freedom tests), but this partly a consequence of how we
parameterize the model of association on the X chromosome (i.e. we calculate the size of
offspring genetic effects in reference to the variance explained by male offspring, meaning
that the variance explained by the same locus in the sister will be half this amount). We
choose not to compare results across the different study designs when parental genotypes are
imputed because the different models and their tests are usually not equivalent (e.g. one can’t
resolve paternal genotypes at X linked loci for male sibling pairs; opposite sex sibling pairs
have their variances parameterized slightly differently to the other sibships etc). These results
are tabulated in Supplementary Tables 12-14.

IMPISH Softwar e Perfor mance

Supplementary Table 15 shows the performance of the IMPISH software in terms of CPU
times and time to perform genome-wide association. Our results show that IMPISH can be
used to impute parental genotypes from large numbers of relative pairs and perform tests of
association across the genome in a reasonable time frame.
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Discussion

In this manuscript we have shown that it is possible to impute parental genotypes given
genotype data on sibling and half sibling pairs and then subsequently use this information to
derive unbiased estimates of parental genetic effects. We have derived asymptotic formulae
to compute power to detect association when parental genotypes are observed or imputed,
and implemented these calculations in a series of freely available online power calculators
that investigators can use to guide study design and analysis strategy. Finally, we developed
IMPISH, afreely available easy to use software package that imputes parental genotypes
given genotype information on sibling or half sibling pairs, and then uses this information to
perform genome-wide conditional tests of paternal, maternal and offspring genetic effects.

Our asymptotic calculations reveal that the power to partition known individua loci into
parental and offspring genetic effects using imputed parental genotypesislow in general, and
highlights the value in having parents genotyped if the interest is in resolving indirect
parental genetic effects at known loci. In situations where parental genotypes are unavailable,
we show that indirect parental genetic effects can till be estimated without bias, but very
large numbers of sibling (or half sibling) pairs will be required (e.g. >40,000 sibling and
>60,000 half sibling pairs). Whilst these sorts of numbers may be realistic in the case of
siblings (e.g. UK biobank contains roughly 20,000 sibling pairs, and there are many twin
cohorts around the world that contain large numbers of dizygotic twins), most cohorts contain
very few half sibling pairs. For these reasons we suggest our method may currently be more
suitable as a complement to existing large-scale genetic studies of parents and their children.
For example, both the Norwegian MOBA and HUNT cohorts not only contain tens of
thousands of parent-offspring trios and duos, but aso large numbers of sibling pairs that
could be combined with more traditional parent-offspring analyses to further increase power
to detect parental genetic effects (Krokstad et al. 2013; Magnus et al. 2006).

A key motivation for developing our approach was the realization that estimates of parental
genetic effects derived from imputed genotypes could also be used in two sample Mendelian
randomization (MR) studies examining possible causal relationships between parental
exposures and offspring outcomes (Evans et al. 2019). Whilst our method could be used to
increase the power of existing MR analyses involving perinatal outcomes (Tyrrell et al.
2016), an exciting novel application would be the examination of the influence of parental
exposures on later life offspring outcomes. The mgjority of the world’s large-scale cohorts
with genotyped mother-offspring pairs are relatively new historically (Boyd et al. 2013;
Fraser et a. 2013; Magnus et a. 2006; Wright et al. 2013). This means that the children in
these cohorts are not old enough to have developed many late onset diseases of interest
including adverse cardiometabolic phenotypes. Consequently, it is currently difficult, if not
impossible, to perform maternal-offspring MR studies on late onset diseases. Our procedure
of imputing parental genotypes means that in principle mother-offspring MR analyses are
now possible utilizing cohorts of mature sibling and half sibling pairs. Such an approach
would enable the investigation of hypotheses in life course epidemiology such as the
Developmental Origins of Health and Disease which posits a link between intrauterine
growth restriction and the development of disease in the offspring in later life (Barker 1990).

Besides low statistical power, there are a number of limitations with our approach. In the case
of sibling pairs, separate maternal and paternal genotypes can be resolved for X linked (non-
pseudoautosomal) loci. However, for autosomal loci, the expected dosage for maternal and
paternal genotypes is the same. This means that it is impossible to distinguish maternal and
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paternal genotypes using data from sibling pairs aone. Thus, utilization of sibling pairs to
detect indirect genetic effects requires the non-trivial assumption that either paternal (or
maternal) genetic effects do not affect the offspring phenotype under study. Whilst this
assumption may be justified for certain perinatal phenotypes where the contribution of the
father’s phenotype to trait variation in the offspring may be minimal (like birth weight), it
may not be justifiable for other phenotypes. Sensitivity analyses could be performed by
testing whether estimates derived from using sibling pairs are consistent with those derived
from e.g. parent-offspring trios or even half sibling pairs where estimates of maternal,
paternal and offspring genetic effects can be estimated consistently.

We have shown that for haf sibling pairs, different maternal and paternal genotype
probabilities (and therefore expected dosages) can be resolved at genetic loci. This means
that, in principle, the half sibling pairs within large publicly available biobanks could be
leveraged to provide information on parental genotypes and consequently help obtain
unbiased estimates of indirect parental genetic effects on offspring traits. This will be
possible if there is explicit pedigree information that unequivocally identifies half sibling
relationships. However, the task becomes more challenging if half siblings have to be
identified on the basis of genetic information alone. This is because half siblings share the
same expected number of alleles identical by descent as grandparent-grandchild pairs and
avuncular relationships, making it difficult to distinguish between these relationships given
only genetic data. The mgjority of grandparent-grandchild pairs can be differentiated from
half sibling pairs on the basis of age (i.e. the age difference in most grandparent-grandchild
relationships will be >30 years). However, it is much more difficult to resolve half sibling
from avuncular pairs. Half siblings and avuncular pairs can be partialy distinguished by the
former’s longer haplotype sharing. Intuitively, this is because any chromosome segments that
half siblings share have only gone through a total of two meioses since their common
ancestor (i.e. transmission from the shared parent to half sibling one and transmission from
the shared parent to half sibling two). In contrast, any shared haplotype segments have gone
through a total of three meioses since the last common ancestor in the case of avuncular
relationships (i.e. transmission from shared grandparent to uncle/aunt and transmission from
shared grandparent to parent to child). However, classification is imperfect (Gusev et al.
2009; Hill and Weir 2011; Hill and White 2013), but could be improved further through the
use of additional information including age difference of the pair and reported information on
the parents (e.g. half siblings who share the same mother should produce consistent reports of
maternal illnesses). Any half sibling pairs that are identified would need to be classified into
maternal half siblings (who share a mother) and paternal half siblings (who share a father).
Genetic data on the sex chromosomes and mitochondria could help facilitate this
differentiation.

Finally, we note that there are several ways that our procedure could be improved/extended.
First, we have only considered relative pairs in our derivations. Additional first degree
relatives (i.e. additional siblings, the addition of one parent etc) would enable better genotype
imputation and therefore increased power to detect parental genetic effects on offspring
phenotypes. It is aso possible that more distant relatives may also be informative for
imputation, particularly if shared haplotypes could be identified within larger pedigree
structures. Third, we have only considered one SNP at atime. It is possible that the inclusion
of haplotype information may increase imputation fidelity. Fourth we note that it is likely that
family dynamics will alter the strength of indirect parental genetic effects depending on the
relationship of offspring to their parents. For example, the relationship between half siblings
and their birth parentsis likely to be qualitatively different to those of full siblings in nuclear
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families. Thus, for later-life phenotypes especialy, parental genetic effect size estimates in
half siblings may not be comparable to those estimated from full siblings. This may be
perhaps less of an issue for maternal genetic effects on perinatal phenotypes. Finally, we note
that the models that we have considered in this manuscript could be extended in a variety of
ways including adding more relatives to help estimate sibling and/or parent of origin effects.

In conclusion, we have developed a suite of online genetic power calculators and software to
assist researchers in detecting and partitioning loci that exhibit indirect parental genetic
effects. We hope that our methods and utilities will form useful adjuncts to large ongoing
genetic studies of parents and their offspring.
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Figure 1. lllustration showing the intuition behind why the genotypes of relative pairs such
as siblings and half siblings provide information on parental genotypes. In the case of sibling
pairs at autosoma loci, sibling genotypes provide information on parental genotypes.
However, mothers and fathers have the same expected genotypes and so separate maternal
and paternal genotypes cannot be imputed given only genotype information from sibling
pairs. However, mothers and fathers have different expected genotypes given sibling pair
genotypes at non-autosomal X chromosome loci, and so different maternal and paternal
genotypes can be imputed at these loci. Likewise, in the case of half sibling pairs, mothers
and fathers have different expectations for their genotypes given half sibling genotypes, and
so maternal and paternal genotypes can be imputed at loci. Male individuals are
uninformative for paternal genotypes at (non-pseudoautosomal) X chromosome loci.

Figure 2. Power of locus detection in sibling pairs assuming directionally concordant
maternal and offspring genetic effects (blue lines: d® = 0.1%; b* = 0.1%), directionally
discordant maternal and offspring genetic effects (red lines: d® = 0.1%; b® = 0.1%), or
offspring genetic effects only (green lines: d* = 0%; b* = 0.1%). Shown are results of a one
degree of freedom test using sibling genotypes only (lines with large circles), an omnibus two
degree of freedom test using observed maternal and sibling genotypes (lines with crosses),
and an omnibus two degree of freedom test of association when parental genotypes need to
be imputed from sibling genotypes (lines with small circles). We note that the power of three
conditions are equivalent (i.e. offspring effects only omnibus imputed and omnibus tests;
discordant maternal and offspring effects omnibus test). To understand this result intuitively,
the variance in the phenotype explained under the offspring genetic effects only model (b* =
0.1%; d® = 0%) is the same as that explained under the directionaly discordant model
because of the negative covariance between maternal and offspring genotypes (i.e. variance
explained = b? + d*— bd = 0.1% + 0.1% - 0.1% = 0.1%). Likewise, the power is also identical
under the omnibus test when parental genotypes are imputed because the effect in this
condition is completely driven by the offspring genotype (i.e. the presence/absence of
maternal genotypes does not contribute to the model fit). For all calculations we assume an
autosomal locus, shared variance @2 = 0.2, atype 1 error rate o = 5x10°®, and where relevant,
adecreasing alele frequency of p =0.1.

Figure 3. Power to resolve an autosomal maternal genetic effect (d? = 0.1%; f 2 = 0%; b® =
0%;) at a known genetic locus, using a conditional one degree of freedom test of association
in sibling pairs (green lines), maternal half sibling pairs who share the same mother (red
lines) and paterna half sibling pairs who share the same father (blue lines). All calculations
assume p = 0.3 frequency of the trait decreasing allele; shared variance ¢? = 0.2; type 1 error
rate oo = 0.05). The red dashed verticd line in the figure indicates the approximate number of
sibling pairs in the UK Biobank (N = 20,000). This figure highlights the advantage of having
actual parental genotypes in the statistical model.
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