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Abstract

A key question in theoretical neuroscience is the relation between the connectivity structure
and the collective dynamics of a network of neurons. Here we study the connectivity-dynamics
relation as reflected in the distribution of eigenvalues of the covariance matrix of the dynamic
fluctuations of the neuronal activities, which is closely related to the network’s Principal Compo-
nent Analysis (PCA) and the associated effective dimensionality. We consider the spontaneous
fluctuations around a steady state in a randomly connected recurrent network of stochastic
neurons. An exact analytical expression for the covariance eigenvalue distribution in the large-
network limit can be obtained using results from random matrices. The distribution has a
finitely supported smooth bulk spectrum and exhibits an approximate power-law tail for cou-
pling matrices near the critical edge. We generalize the results to include connectivity motifs and
discuss extensions to Excitatory-Inhibitory networks. The theoretical results are compared with
those from finite-size networks and and the effects of temporal and spatial sampling are studied.
Preliminary application to whole-brain imaging data is presented. Using simple connectivity
models, our work provides theoretical predictions for the covariance spectrum, a fundamental
property of recurrent neuronal dynamics, that can be compared with experimental data.

1 Introduction

Collective dynamics in networked systems are of great interest, with numerous applications in
many fields, including neuroscience, spin glasses, social and ecological networks [57]. Many
studies of neuronal networks have focused on how certain statistics of dynamics depend on the
network’s connectivity structure [48, 18, 55], including the population average [27] and variance
[11] of pairwise correlations. Although powerful and directly comparable with experimental
data, these are local features of dynamics, and can therefore be estimated just from the lo-
cal measurements of the activity of involved neurons. However, important salient aspects of
the dynamics are captured only at the global scale. Probing these aspects experimentally re-
quires simultaneously recorded activities of a population of neurons, which has recently become
increasingly feasible.

An important example of a global aspect of population dynamics is the eigenvalues of the
covariance matrix, which are complicated nonlinear functions of all matrix elements. These
eigenvalues arise naturally when performing the widely used Principal Component Analysis
(PCA) of population activity, where they correspond to the amount of variance contained in
each principal component of the activity. Another example that has received substantial recent
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interest [34, 31, 46, 50, 43] is the effective dimensionality of neural population activity, which
can be defined based on the moments of the covariance eigenvalues. Many recent experimental
studies have observed a low dimensional dynamics of neurons in the brain [45, 15], and theoretical
investigations have illustrated the importance of having a low dimensionality for brain function
and computation [14], such as when representing stimuli [12] and generating motor outputs [15].

As the experimental techniques of measuring the activity of large population of neurons in
biological networks become increasingly available, new opportunities arise for studying how the
network’s connectivity structure affects these global aspects of population dynamics.

In this work, we study the eigenvalue distribution (i.e., spectrum) of the covariance matrix
of spontaneous activity in a large recurrent network of stochastic neurons with random con-
nectivity. We focus on several basic and widely used models of random connectivity, including
independent and identical Gaussian distributed connectivity [48] (Section 3.1), networks with
connectivity motifs [49, 38, 58, 27, 26] (Section 3.3), and random Excitation-Inhibition (EI) net-
works (Section 3.5). Random connectivity has been a fundamental model in theoretical studies
of neuronal network dynamics[31, 48, 28]. It can be motivated as a minimal model to capture
the highly complex, disordered connections observed in many neuronal circuits, such as in the
cortex. Some aspects of these covariance spectra might be distinct from those under ordered,
deterministic connectivity (Section 4.1).

The dynamics considered here is simple where the activity fluctuations around the steady-
state are described by a linear response [30, 52]. Despite the simple dynamics and minimal
connectivity model, we find the resulting spectrum has a continuous bulk of nontrivial shape
exhibiting interesting features such as a power-law long tail of large eigenvalues (Section 3.2),
and strong effects due to the non-normality of the connectivity matrix (Section S5.2). These
covariance spectra highlight interesting population-level structures of neuronal co-fluctuations
shaped by recurrent interactions that were previously unexplored.

Using the theory of the covariance spectrum, we derive closed-form expressions for the effec-
tive dimensionality (previously known for the simple random iid Gaussian connectivity [11]) We
show that the continuous bulk spectrum has the advantage over low-order statistics such as the
dimensionality thanks to its robustness to low rank perturbations (Sections 3.3 to 3.5 and 3.8).

Our analytically derived eigenvalue distributions can be readily compared to real activity
data of recurrent neural circuits or simulations of more sophisticated computational models. We
provide ready-to-use code to facilitate such applications (Section 5.7). An example of such an
application for a whole-brain calcium imaging data is presented in Section 3.8.

2 Model

2.1 Neuronal networks with random recurrent connectivity

We consider a recurrent network of linear rate neurons driven by noise

τ ẋi(t) = −xi(t) +
N∑
j=1

Jijxj(t) + ξi(t), i = 1, . . . , N. (1)

Here xi(t) is the firing rate of neuron i. Jij describes the recurrent interaction from neuron j
to i. τ is a time constant describing how quickly the firing rates changes in response to inputs.
The network is driven by independent Gaussian white noise ξi(t) with variance σ2, that is, the
expectation 〈ξi(t)ξj(t+ τ)〉 = σ2δijδ(τ).

We focus on the structure of long time scale co-fluctuations in the network, which are de-
scribed by the long time window covariance Cij = lim∆T→∞

1
∆T Cij,∆T . Cij,∆T is the co-

variance of the summed activity over a window of ∆T : Cij,∆T = 〈∆si(t)∆sj(t)〉, ∆si(t) =∫ t+∆T

t
∆xi(t

′)dt′. For biophysical neurons, Cij,∆T typically settles to its limiting value when
∆T > 50ms [5]. It can be shown [16] that the long time window covariance C (also the zero-
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frequency covariance, see Section 3.6) is

C = σ2(I − J)−1(I − J)−T . (2)

Here I is the identity matrix, and A−1, AT are the matrix inverse and transpose (A−T =
(A−1)T ). For simplicity we will set σ2 = 1 unless stated otherwise. The covariance matrix C
can also be estimated from experimental data consisting of simultaneously recorded neurons
(Methods). We consider generalizations beyond the long time window covariance in Section 3.6.

Our analysis and results start from the covariance-connectivity relation Eq. (2), which also
describes, or closely approximates, the network dynamics in other models (Section 5.2) including
networks of integrate-and-fire or inhomogeneous Poisson neurons [22, 23, 39, 52], fixed point
activity averaged over whitened inputs, and structural equation modeling in statistics [1].

For many biological neural networks, such as cortical local circuits, the recurrent connectiv-
ity is complex and disordered. Random connectivity is a widely used minimal model to gain
theoretical insights on the dynamics of neuronal networks [48, 55]. We first consider a random
connectivity where

Jij ∼ N (0, g2/N) (3)

are drawn as independent and identically distributed (iid) Gaussian variables with zero mean and
variance g2/N (referred subsequently as the iid Gaussian connectivity). The covariance spec-
trum follows directly from results in random matrices [4, 47]. We then show how to generalize
to other types of random connectivity, including: those with connectivity motifs (Section 3.3),
Erdős-Rényi random connectivity, networks with excitation and inhibition (Section 3.5). The
theory we derived assumes the network is large and is exact as N → ∞, and we verify their
applicability to finite-size networks numerically.

2.2 Covariance eigenvalues and dimensionality

Principal Component Analysis (PCA) is a widely used analysis of population dynamics, where
the activity is decomposed along orthogonal patterns or Principal Components (PCs). The PCs
are the eigenvectors of the covariance matrix C (Eq. (36)), and the associated eigenvalues λi
are positive and show the amount of activity or variance distributed along the modes. In this
work, we focus on the distribution of these covariance eigenvalues, described by the (empirical)

probability density function (pdf) pC(x) which is defined through the equality
∫ b
a
pC(x)(x)dx =

1
N#{λi ∈ (a, b]} for all a, b. We also refer to pC(x) as the spectrum (which should not be
confused with the frequency spectrum in Fourier transform). We will derive the limit of pC(x)
as N →∞ and study how it depends on the connectivity parameters such as g = Nvar(Jij).

The shape of pC(x) can provide important theoretical insights on interpreting PCA. For
example, it can be used to separate outlying eigenvalues corresponding to low dimensional
externally driven signals from small eigenvalues corresponding to fluctuations amplified by re-
current connectivity interactions [17] (Section 3.8). the spectrum is also closely related to the
effective dimension of the population activity. In many cases, the linear span of the activity
fluctuations is full rank, N . Nevertheless, most of the variability is embedded in a much lower
dimensional subspace. A useful measure of the effective dimension, known as the participation
ratio [31, 42] is given by

D ≡
(
∑N
i=1 λi)

2∑N
i=1 λ

2
i

. (4)

which can be calculated from the first two moments pC(x). We will also derive explicit expres-
sions for D in random connectivity models.
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3 Results

3.1 Continuous bulk spectrum with finite support

For networks with iid Gaussian connectivity (Section 2.1), there is one parameter g describing
the overall connection strength. For stability of the fixed point and the validity of the linear
response theory around it, g is required to be less than 1 [48]. The parameter σ in Eq. (2)
just scales all λi and thus is hereafter set to 1 for simplicity. Our main theoretical result is the
following expression for the probability density function (pdf) of the covariance eigenvalues in
the large N limit (Supplementary Materials),

pC(x) =
3

1
6

2πg2x2

 ∑
ξ=1,−1

ξ

(
(1 +

g2

2
)x− 1

9
+ ξ

√
(1− g2)3x(x+ − x)(x− x−)

3

) 1
3

 , x− ≤ x ≤ x+.

(5)
where

x± =
2 + 5g2 − g4

4 ±
1
4g(8 + g2)

3
2

2(1− g2)3
, (6)

and pC(x) = 0 for x > x+ and x < x−. The distribution has a smooth, unimodal shape and

is skewed towards the left (Fig. 1C). Near both support edges, the density scales as |x − x±|
1
2

(Supplementary Materials).
The above result for the distribution pC(x) follows from the derivation of the circular law

distribution of the eigenvalues of the random matrix J [19, 4, 47, 21]. However, to the best of our
knowledge, this is the first exposition of the explicit expression for the spectrum of C, (Eq. (5),
which is essential for fitting to empirical data Section 3.8) and for the study of network dynamics.
We emphasize that pC(x) does not have a simple relation to the spectrum of J because J is
a non-normal matrix (i.e., JTJ 6= JJT ). This point is further elaborated in Section 3.3.2.
Although the above result is derived in the large N limit, it matches pretty well the spectrum of
C in networks of sizes of several hundred, as demonstrated in our numerical results, Fig. 1AB.
In PCA and other analyses, the covariance eigenvalues are plotted in descending order vs. their
rank [50, 35]. We can use the theoretical pdf Eq. (5) to predict this rank plot by numerically
solving the inverse cumulative distribution function (cdf), i.e., quantile function, at probability
N− 1

2

N ,
N−1− 1

2

N , . . . ,
1
2

N . The closed form pdf (Eq. (5)) allows for using the highly efficient Newton’s
method to compute the quantiles. Figure 1EF shows a good agreement between the theory
Eq. (5) and a single realization of a N = 100 random network.

Interestingly, as we will show, the shape of the derived pdf is qualitatively different from
that of the well known Marchenko–Pastur law ([32], Eq. (34) in Methods) which describes the
spectrum arises from finite samples of iid Gaussian noise. This highlights that the nontrivial
correlations generated by the recurrent dynamics is a distinct factor in shaping the covariance
spectrum.

3.2 Long tail of large eigenvalues near the critical coupling

As g approaches the critical value of 1, the upper limit of the support x+ diverges as (1− g2)−3

(Section 5.3 in Methods). This corresponds to an activity PC with diverging variance and is
consistent with the stability requirement of g < 1. Note that the lower edge x− is always
bounded away from 0 and has a limit of 4

27 as g → 1. Analyzing the shape of pC(x) for large
x in the critical regime g → 1 yields a long tail of large eigenvalues, following a power law
(Fig. 2AB, Methods)

pC(x) ≈
√

3

2π
x−

5
3 . (7)

To better elucidate the range of validity of the above power law, we consider the regime
where 1− g2 � 1 and x� 1. Define z =

√
1− x/x+ where x+ ∝ (1− g2)−3 is the upper edge
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Figure 1: Covariance spectrum under random Gaussian connectivity. A. Compare theory (Eq. (5))
with finite-size network covariance using Eq. (2) at N = 100, g = 0.5. The histogram of eigenvalues is
a single realization of the random connectivity. B. Same as A. at N = 400. C. Covariance eigenvalue
distribution at various value of g. As g increases the distribution develops a long tail of large eigenvalues.
D. Dimension (normalized by network size) vs g. The dots and error bars are mean and sd over repeated
trials from finite-size networks (Eq. (2) and use Eq. (4)). Note some error bars are smaller than the dots E.
Covariance eigenvalues vs. their rank (in descending order). The circles are covariance eigenvalues from a
single realization of the random connectivity with N = 100 (Eq. (2)). The crosses are predictions based on
the theoretical pdf (Eq. (5)). F. Same as E. but for g = 0.9 and on the log-log scale. The red dashed line is
the power law with exponent −3/2 derived from Eq. (5), see Section 3.2

of the support of pC(x). Then,

pC(x) ≈
√

3

2π
x−

5
3 2−

1
3F (z) (8)

where F (z) = (1 + z)1/3 − (1 − z)1/3. Thus, far from the spectrum upper edge, z → 1 and we

obtain Eq. (7), whereas near the upper edge z → 0 and pC(x) ≈ 3− 1
2 2− 1

3

π x
− 5

3
+

√
1− x/x+, which

is the expected square-root singularity near the edge.
The power-law approximation of the probability density function Eq. (5) translates to an

approximation for the cumulative distribution function FC(x) ≈ 1 − 3
√

3
4π x

− 5
3 +1 = 1 − c0x−

2
3 .

This also means a power law in the rank plot with exponent of −3/2 when connection strength
g is close to the critical value (Fig. 1F), providing an alternative mechanism based on recurrent
circuits for the experimental observations in [50, 35].

Because the probability density is small in the power-law tail, large eigenvalues can appear to
be sparsely located (Fig. 1A) and potentially mistaken for statistical outliers. This underscores
the importance of knowing the exact distribution and support edges for interpreting PCA results
of population activity, topics which we revisit later (Fig. 8). Note that a long tail in the spectrum
is a distinct feature of correlations arising from the recurrent network dynamics. For example,
for the Marchenko–Pastur law that is often used for modeling empirical covariance spectra, the
upper edge of its support relative to the mean is bounded by 4 (Methods). In contrast, the same
ratio for pC(x) (Eq. (5)) can be arbitrarily large as O((1− g2)−2) (see below for calculating the
mean). This highlights the difference between covariance generated by finite samples of noise
and correlations generated by the recurrent dynamics.

The long tail of the eigenvalue distribution is also reflected by a low effective dimension
(Eq. (4)). In (Supplementary Materials) we show that the mean and second moment of the
eigenvalue distribution above, are given by

E (λ) = (1− g2)−1, E
(
λ2
)

= (1− g2)−4. (9)
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which yields for the dimension
D = N(1− g2)2. (10)

In particular, the relative dimension with respect to the network size D/N vanishes as g ap-
proaches 1 (Fig. 1D). In comparison, D/N for the Marchenko–Pastur law (Eq. (34)) is at least
1
2 .

While these low-order moments can be derived from previous methods (see e.g., [11] and
Supplementary Materials), our method allows for the derivation of higher-order moments, such
as,

E
(
λ3
)

= (1− g2)−7(1 + 2g2), E
(
λ4
)

= (1− g2)−10(1 + g2)(1 + 5g2). (11)

and in general,
E (λn) ∝ (1− g)−3(n−1)−1, as g → 1− (12)

Figure 2: Approximate power-law tail. A. The exact pdf (solid line) of the covariance spectrum compared
with the power-law approximation (dashed line, Eq. (7)) at g = 0.7. Inset shows the log-log scale. B. Same
as A. for g = 0.8. The approximation improves as g approaches the critical value 1. C. The log error between
the exact pdf and approximation | log(p(x))− log(p̂(x))| as a function of g and “distance” from the support
edges. We quantify this “distance” as the minimum ratio of x/x− and

√
x+/x (more details and motivations

in Supplementary Materials). The plot shows the log error is small when this ratio is large, which means
x being far away from the edges. The dashed line shows the attainable region of the ratio which increases
with g.

3.3 Impact of the asymmetry in connectivity

We next consider generalizations of random connectivity beyond the iid Gaussian model (Sec-
tion 2.1). An important feature of biological neural networks is the presence of motif structures
[49, 38], which correspond to overabundance of certain subgraphs, relative to their frequency
in an edge-shuffled network (i.e., an iid random graph with matching connection probability).
Certain motifs (e.g., diverging, converging, and chain [25]) can be shown to emerge from low
rank perturbations of a random J hence, as explained in Section 3.4, they do not affect the bulk
spectrum of C (see example in Fig. 5BD and Supplementary Materials).

Here we study motifs in the form of correlations between reciprocal components of J , which
is equivalent to varying the degree of asymmetry of J [47]. In this case, each component of J is
Jij ∼ N (0, g2/N) but Jij and Jji are correlated,

κ = ρ(Jij , Jji), (13)

with −1 ≤ κ ≤ 1. All other correlations are zero.
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3.3.1 Symmetric and anti-symmetric random networks

First, we consider two extreme cases for the reciprocal motifs: κ = 1 corresponding to Jij = Jji,
and κ = −1 corresponding to anti-symmetric matrix (or skew-symmetric Jij = −Jji). These
cases are much simpler to analyze, because J is a normal matrix so pC(x) can be derived from
the well known eigenvalue distribution of J ([47]). For symmetric random connectivity,

pC,g,κ=1(x) =

√
(4g2 − 1)x− 1 + 2

√
x

4πg2x2
, x ∈ (x−, x+), x± = (1∓ 2g)−2. (14)

Here stability requires that g < 1
2 . For anti-symmetric random connectivity,

pC,g,κ=−1(x) =

√
(4g2 + 1)x− 1

2πg2x2
√

1− x
, x ∈ ((1 + 4g2)−1, 1). (15)

Here the network is stable for all g. The derivations are given in the Supplementary Materials.
From the above equations, we see that pC(x) of the symmetric random network (Fig. 3A)

has a power-law tail analogous to Eq. (7) as g → 1/2 (i.e., large x) but with a different exponent
from the iid case (Eq. (7)),

pC,g,κ=1(x) ≈
√

2

π
x−

7
4 . (16)

The pC(x) of the anti-symmetric random network (Fig. 3B) does not have a long tail as the
upper limit of the support is always 1.

Figure 3: Covariance spectrum for the symmetric and anti-symmetric random connectivity.
A. The pdf of a covariance spectrum with random symmetric J with different g (note g < 1

2 for stability).

B. Same as A., but for random anti-symmetric Jij = −Jji. The pdf diverges at x = 1 as |1− x|− 1
2 .

3.3.2 Connectivity with general asymmetry

For the Gaussian random connectivity with κ = ρ(Jij , Jji), −1 < κ < 1, we have derived an
implicit equation for pC,g,κ(x) in the large N limit based on the results in [47] (Eq. (S60) in
Supplementary Materials). Although a closed-form expression can be derived using the root
formula for quartic equations, it seems quite cumbersome, hence we show here the numerical
solutions of this equation. For a fixed g, as κ increases, the distribution broadens on both sides
(Fig. 4C). Intuitively, these effects might be due to the change in the critical g for stability, which
is now given by gc = (1 +κ)−1 (based on the spectrum of J [47]). This motivates us to compare
the distributions pC,g,κ(x) with the same relative coupling strength gr = g/gc = g(1 + κ), which
is also the maximum real part of J ’s eigenvalues [47]. As shown in Fig. 4D, when fixing the
relative gr the distribution narrows as κ increases.
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Consistent with the above results, we have shown (Supplementary Materials) that for all
intermediate values of −1 < κ < 1, the critical covariance spectrum has an approximate power-
law tail with the same exponent as the iid random case (Eq. (7))

pC(x) ≈
√

3

2π
(1− κ)

1
3 (1 + κ)x−

5
3 , as x→∞, g → gc = (1 + κ)−1 (17)

The shape changes of pC,g,κ(x) with reciprocal motifs are also reflected by the dimension
measure, for which we derived a closed-form expression (Supplementary Materials)

D = N
µ1

√
1 + 4(g2 − θ)

(θµ1 + 1)2(g2µ1 + 1)
, µ1 =

2θ − 1 +
√

1 + 4(g2 − θ)
2(g2 − θ2)

, θ = g2(1 + κ). (18)

Here µ1 is the mean of the distribution. Comparing with Eq. (10), this shows the nontrivial
dependence of dimension on the reciprocal motif strength κ. As g → gc = (1 + κ)−1, g2 − θ2 =
g2(1 − g2

r) → 0. The numerator of µ1 is at least 2θ − 1 ≥ 2/(1 + κ) − 1 > 0. Therefore µ1

diverges as O((1 − g2
r)−1). Since 1 + 4(g2 − θ) ≥ 1 + 4(g2 − g) ≥ (1 − 2/(1 + κ))2 > 0, we

have D/N vanishes as O(µ−2
1 ) = O((1− g2

r)2). The above limits under the critical g are similar
to the κ = 0 case, Eq. (10). Consistent with the shape changes, the dimension decreases with
reciprocal motifs when fixing g and increases when fixing gr (Fig. 4B).

The general asymmetric random connectivity also provides an example of the strong effect of
J being a non-normal matrix on the covariance spectrum. By continuity, one may expect that as
κ decreases towards −1, the shape of pC,g,κ(x) will become similar to that of the anti-symmetric
network pC,g,κ=−1(x), which is bimodal for sufficiently large g (i.e., has another peak in addition
to the divergence at 1, Fig. 3B). Indeed, assuming a normal J predicts a covariance spectrum
that is bimodal with a non-smooth peak in a large region of −1 < κ < 0 and g (Supplementary
Materials). Intriguingly, the actual spectrum pC,g,κ(x) is unimodal for all but a minuscule region
of (κ, g) where κ < −0.95 (Supplementary Materials).

3.4 Adding low rank connectivity structure

An important property of the spectrum of C is the robustness of its bulk component to the
addition of low rank structured connectivity. Many connectivity structures that are important
to the dynamics and function of a recurrent neuronal network can be described by a full rank
random component plus a low rank component. [33, 44]. For example, such components may
arise from Hebbian learning [2]. A simple case is where we add a rank k structured matrix that is
deterministic or independent to the random component [51, 24]. As shown in the Supplementary
Materials, in large networks, the bulk covariance spectrum remains unchanged, but the low rank
component may give rise to at most 2k outlying eigenvalues. This is illustrated by the example
of rank-1 perturbation to J with iid Gaussian entries in Fig. 5CD, where the expected location of
the outliers in the covariance spectrum can be predicted analytically (Fig. 5EF, Supplementary
Materials). This is in contrast to the spectrum of J , where the same perturbations can lead
to an unbounded number of randomly located eigenvalues [41, 51] (Fig. 5AB). In sum, the
bulk spectrum of covariance is robust against low rank perturbations to the connectivity. Note,
however, the relevance of the bulk spectrum for the network dynamics depends on the location
of outliers. Outliers to the right of the bulk spectrum may indicate potential instability of the
dynamics even for g < 1, as discussed in the example below.

3.5 Sparse Excitatory–Inhibitory networks

The Gaussian random connectivity has a non-zero connection weight for all pairs of neurons
with probability 1, where many biological networks are sparsely connected. In addition, each
neuron has both excitatory (positive) and inhibitory (negative) weights, in contrast to many
neuronal networks that obey Dale’s Law, namely all neurons are either excitatory (with all
outgoing weights positive) or inhibitory (with negative outgoing weights). We consider here a
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Figure 4: Impact of reciprocal motifs. A. Compare theoretical covariance spectrum for random connec-
tivity with reciprocal motifs and a finite-size network covariance using Eq. (2)(g = 0.4, κ = 0.4, N = 400).
B. The impact of reciprocal motifs on dimension for various gr = g/gc (Eq. (18)). For small gr, the dimension
increases sharply with κ. C. The spectra at various κ while fixing g = 0.4. The black dashed line is the
iid random connectivity (κ = 0). D. Same as C. but fixing relative gr = 0.4 to control the main effect (see
text). The changes in shape are now smaller and the support narrows with increasing κ.

simple model of E-I network, consisting of N/2 excitatory and N/2 inhibitory neurons. The
probability of each connection Jij to be nonzero, which may depend on the types of neurons
i and j, is Kαβ/N , α, β = E, I. Thus, the mean number of inputs to a neuron of type α
from a population of type β is Kαβ/2. All excitatory non-zero connections are of strength
w0/

√
Kαβ and the inhibitory connections are −w0/

√
Kαβ . We assume that Kαβ = kαβK

where kαβ = O(1) and K � N .
To map this architecture on to the one studied above, we adopt the framework of [28] and

consider the equivalent Gaussian connectivity with matching variance for each Jij which is w2
0/N

(to the leading order for N � 1). Hence we can define the effective synaptic gain as g2 = w2
0

for all neurons. The mean of the connections between a presynaptic neuron of type β and
postsynaptic α is E (Jij) =

√
Kαβwβ/N where wE = w0 and wI = −w0. Thus, we can write

Jij as a zero-mean iid Gaussian matrix with uniform variance w2
0/N and a rank-2 matrix of the

means. As stated in Section 3.4, in such a case the bulk spectrum of the neurons’ covariance
matrix is the same as Eq. (5). In addition there are at most 4 outlier eigenvalues. For K � 1,
from the analysis of [28], the stability of the recurrent dynamics of a linear network with the
above connectivity amounts to the requirement that all eigenvalues of the 2× 2 matrix Mαβ =√
kαβwβ have negative real parts. Fulfilling this condition by choosing appropriate values for

kαβ (see example in Fig. 6A and Supplementary Materials) guarantees that the outlier(s) due to
the nonzero means are to the left of the bulk covariance spectrum so that the largest eigenvalue
is x+(g), Eq. (6). For K = O(1), the results in [51] show that the above condition is sufficient
but not necessary for stability. For example, when all kαβ are equal to k, which corresponds
to a balance of excitation and inhibition [41], all eigenvalues of M are 0 and the dynamics is
stable for g < 1 for large N . At the same time, there can be two outlying eigenvalues on the
two sides of the bulk covariance spectrum (Fig. 6B), whose expected location can be predicted
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Figure 5: Robustness of the covariance spectrum to low rank perturbations of the connectivity.
A. Eigenvalues of a Gaussian random connectivity J (Eq. (3)), g = 0.4, N = 400. As N →∞, the limiting
distribution of eigenvalues is uniform in the circle with radius g ([19] red solid line). The black dashed
line is the 0.995 quantile of the eigenvalue radius calculated from 1000 realizations. B. Same as A. but for
the rank-1 perturbed J + xuvT . u = (1, 1, . . . , 1)T /

√
N , vi ∼ iid N (0, 1/N) and x = 4.03. This example

also corresponds to adding diverging motifs (Section 3.3, Supplementary Materials). C. The histogram of
covariance eigenvalues (Eq. (2)) under the J in A. D. The bulk histogram of eigenvalues with J + xuvT has
little change and remains well described by the Gaussian connectivity theory (red line, Eq. (5)). Besides the
bulk, there are two outlier eigenvalues to the left and right (inset, arrows) E,F, Analytical predictions (solid
and dashed lines) of the outlier locations given g and |x| when u, v are (asymptotically) orthogonal unit
vectors that are independent of J (see other cases in Supplementary Materials). The y-axis is the outlier
location subtracting the corresponding edge x±, Eq. (6), so it is zero for small |x| before the outlier emerges
(dashed line). The dots are the mean of the smallest (for the left outlier) or largest (right outlier) eigenvalues
averaged across 100 realizations of the random J , N = 4000. The errorbars are the standard error of the
mean (SEM, many are smaller than the dots).

(Section 3.4 and Supplementary Materials). Several additional examples including all inhibitory
networks are considered in the Supplementary Materials.

3.6 Frequency dependent covariance

We have so far focused on the long time window covariance matrix. This would be especially
suitable for neural activity recordings with limited temporal resolution such as calcium imaging
[53]. Temporal structures of correlation beyond the slow time scale can be described by the
frequency covariance matrix (or coherence matrix)

Cij(ω) = lim
∆T→∞

〈∆si(ω)∆s†j(ω)〉, (19)

where ∆si(ω) = 1√
∆T

∫∆T

0
∆e−iωxi(t)dt is the Fourier transform of the neural activity and z† is

the complex conjugate. Cij(ω) can also be calculated by the Fourier transform of the time-lagged
cross-correlation functions Cij(τ) = 〈xi(t)xj(t− τ)〉 (Wiener-Khinchin theorem). Analogous to
Eq. (2) C(ω) obeys [16],

C(ω) = σ2|a(ω)|2 (I − a(ω)J)
−1 (

I − a†(ω)J
)−T

. (20)

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2021. ; https://doi.org/10.1101/2020.08.31.274936doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.274936
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: EI networks. A. One realization of the covariance eigenvalues by Eq. (2) with an EI network
satisfying the stability condition (see text). The bulk spectrum is well described by the Gaussian random
connectivity theory (solid line, Eq. (5)). There is one small outlier to the left of the bulk (arrow). The
parameters are g = w0 = 0.4,

√
kee = 0.5,

√
kei = 1.5,

√
kie = 1,

√
kii = 2, K = 60, N = 1000.

To improve the accuracy of the theory to finite K,N , here we use a slightly modified connection weight,
w0/

√
Kαβ(1−Kαβ/N), for all excitatory non-zero connections, and similarly −w0/

√
Kαβ(1−Kαβ/N) for

inhibitory connections. B. Similar as A but for balanced EI network (see text) with kαβ = k = 1, g = 0.4,
K = 40, N = 400. Note there are two outliers on both sides of the bulk.

Here z† is the complex conjugate and |z| is the norm for a complex z. The transfer function
a(ω) = (1 + iτω)−1 summarizes the dynamics of single neurons in the network and corresponds
to a response filter of e−t/τ/τ , t > 0 for the model of Eq. (1) (see also Section 5.2). The long
time window covariance we have studied corresponds to C(ω = 0) (Wiener-Khinchin theorem).

For the iid Gaussian random connectivity J , we can show that the spectrum of C(ω) is
given by the same Eq. (5) for C(0) (up to a constant scaling) by replacing g with a frequency
dependent g(ω) (compare with Eq. (3))

g(ω) = |a(ω)|
√
Nvar(Jij) =

g√
1 + τ2ω2

. (21)

We can use Eq. (21) to study the scaling of frequency as g approach the critical value of 1. In
many cases, we can expect that the neuronal and synaptic dynamics lead to a smooth effective
low-pass filtering of the recurrent input, such that for small frequency g(0) − g(ω) ∝ ω2. For
the specific g(ω) in Eq. (21), this can be directly verified. The low-pass filtering implies that

the frequencies showing a critical covariance spectrum are those with |ω| = o((1− g)
1
2 ).

Note, however, the simple replacement by an effective g may not apply to a connectivity
matrix that does not have iid entries. For example, for networks with non-zero reciprocal motifs,
the covariance spectrum changes qualitatively with frequency (Supplementary Materials).

3.7 Sampling in time and space

The theoretical spectra we have discussed are based on the exact covariance matrix (Eq. (2)).
For neural data, this is equivalent to the limit of the sample covariance Ĉ (Eq. (36)) when
the number of time samples M is much larger than the number of neurons N . Note that if
the activity data is first averaged or summed over a time window/bin (∆T in Eq. (36)) before
calculating the sample covariance, then M is the number of bins. However, many large-scale
neural recordings are in the so-called high dimensional regime, where N and M are comparable,
that is, the ratio α = N/M remains finite or even greater than 1 for large N,M . It is thus
important to study this effect of temporal sampling on the covariance eigenvalues to better
relate to experimental data [34].

We refer to Ĉ and pĈ(x) as the time-sampled covariance and spectrum. The relation between
the original spectrum pC(x) and the time-sampled spectrum pĈ(x) for a finite α ≥ 0 has been
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studied in [9]. The authors derived a general relation between the generating function of the
eigenvalue distribution W (z) =

∑∞
n=1 z

nµn, where µn is the n-th moments of the eigenvalue

distribution, and the counterpart Ŵ (z) for the sampled distribution,

Ŵ (z · (1 + αW (z))) = W (z), and conversely W

(
z

1 + αŴ (z)

)
= Ŵ (z). (22)

We give an alternative derivation of this result using free probability [54, 36] (Supplementary
Materials), which allows us to also generalize to the spatial sampling case (see below). For
simplicity, here we describe the results for 0 ≤ α ≤ 1. For α > 1 where time samples are
severely limited, the spectrum of the N −M nonzero eigenvalues can be calculated with small
modifications (Supplementary Materials).

One corollary of Eq. (22) is a simple formula for how the (relative) dimension changes under
time sampling

D(Ĉ) = D(C)
N

N + αD(C)
, D̂(Ĉ) =

D̂(C)

1 + αD̂(C)
. (23)

These formulas show that both D and D̂ = D/N decrease with α (fewer time samples).
The relations Eqs. (22) and (23) apply to any covariance matrix spectrum. For example, it

reproduces the time-sampled dimension derived in [34] for a different model of covariance C.
We now apply Eq. (22) to the case of iid Gaussian connectivity to derive specific results of the
time-sampled spectrum pĈ(x) =: pg,α(x). Here Eq. (22) becomes a cubic equation and can be
solved analytically (Supplementary Materials). Consistent with the dimension, when α increases
from 0 to 1, the support of the time-sampled distribution expands from both sides (Fig. 7A). In
particular, for any fixed α < 1 (so Ĉ is positive definite), the left edge of the support x− decreases

with g but is always bounded away from 0 even as g → 1, where x− → 2
27

(
(1 + 3α)

3
2 + 1− 9α)

)
(see also figure in Supplementary Materials). Interestingly, the approximate power law of pC(x)
(Eq. (7)) still holds under time sampling for any fixed α as g → 1 (Supplementary Materials).

Figure 7: Effects of sampling in time and space on the covariance spectrum. A. For the iid
Gaussian random connectivity, how different levels of time samples α change the spectrum (Eq. (22)). The
non-sampled case corresponds to α = 0. g is fixed at 0.4. B. Same as A. but for the spatial subsampling
(Eq. (S104)), at g = 0.5. The non-sampled case corresponds to f = 0.

Another challenge for fitting to neural data is that often only a subset of neurons are observed
instead of the entire local recurrent network. The unobserved neurons have an impact on
the dynamics and affect the eigenvalues of the observed covariance matrix. We study this
by considering randomly selecting Ns = fN , 0 < f ≤ 1 neurons and define their covariance
C̃ as the space-sampled covariance. Using the free probability approach, we derive similar
results as Eqs. (22) and (23) (Supplementary Materials) and apply them to derive the spectrum
and dimension for the iid Gaussian connectivity under spatial sampling. In particular, the
relative dimension D̂(C̃) = D(C̃)/(fN) increases with spatial sampling (i.e., decrease f) which
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is consistent with the shape of the spectrum where its support narrows in (Fig. 7). Lastly, the
power-law feature is also preserved under spatial sampling. For any fixed 0 < f ≤ 1, we show
that as g → 1 and x→∞ (see example figure with g close to 1 in Supplementary Materials)

pg,f (x) ≈
√

3

2π
f−

1
3x−

5
3 . (24)

3.8 Fitting the theoretical spectrum to data

Our theory for the bulk covariance spectrum can be fitted to neural activity whenever the
covariance eigenvalues can be calculated. The best-fitting theoretical spectrum can be found by
minimizing the L2 or L∞ error between the empirical and theoretical cumulative distributions
(Methods) with respect to parameters such as g. We note that the availability of closed-form
or analytic solutions of the theoretical distributions makes this optimization highly efficient.

In many settings, the value of the baseline neuronal variance σ2 in Eq. (2) is not known. But
this can be easily addressed by scaling both the observed and the predicted eigenvalues to have
a mean equal to 1. After fitting the connectivity parameter g for the normalized eigenvalues, σ2

can then be estimated using the original means of data and theory. For our theoretical spectra,
the mean µ of covariance eigenvalues is available in closed-form (Eqs. (9) and (18)), and the
scaled pdf is easily found as pR(x) = µpC(µx).

Furthermore, the recorded neural activity is sometimes normalized for each neuron (e.g., by
converting activity to z-scores). In this case, we need to analyze the eigenvalues of a correlation
matrix whose entries are normalized as Cij/

√
CiiCjj . Interestingly, we found that the correla-

tion eigenvalue distribution for our random connectivity models in the large N limit is the same
as the rescaled pR(x) above. This is because the diagonal entries of C become uniform (thus
converge to µ) for large N (Supplementary Materials).

The fitting of the spectrum is also robust to outliers in the covariance eigenvalues (Sec-
tion 3.4). In Supplementary Materials we demonstrate an example where a rank-2 component is
added to the covariance C. Since in practice the rank of the perturbation is unknown a priori,
we use all eigenvalues in the fitting, and the fitted g is highly accurate despite the presence of
outliers. We can also use the fitted g to help identify the outliers by separating them out based
on the upper edge of pC(x) support [40, 17].

We conclude with a preliminary application to whole-brain calcium imaging data in lar-
val zebrafish. In [10], activities of the majority of the neurons in the larval zebrafish brain
were imaged simultaneously during presentations of various visual stimuli and grouped into
functional clusters based on their response similarity. These clusters reveal potential neural
circuits and, in some cases, reveal a good match with known brain nuclei. Here we select a
few clusters that contain a large number of neurons and are anatomically localized (Fig. 8B).
For each cluster, we calculate its sample correlation matrix during the spontaneous condition
(no stimulus was presented) and then fitted the eigenvalues to the time-sampled spectrum with
iid Gaussian connectivity (Section 3.7). Despite the simplicity of the model with only one pa-
rameter to tune, the results show good agreement with data and is significantly better than
fitting using the Marchenko–Pastur law (Fig. 8C), which models spatially independent noise
(Section 5.4). Therefore, our theory provides a quantitative mechanistic explanation of how a
long tail of covariance eigenvalues or equivalently low dimensional activity occurs in recurrent
neural circuits.

4 Discussion

In this work, we studied the eigenvalue density distribution of the covariance matrix of a ran-
domly connected neuronal network, whose activity is approximated as noise driven linear fluc-
tuations around a steady state. We derived an explicit expression for eigenvalue distribution in
the large-network limit analytically in terms of the statistics of the connectivity such as cou-
pling strength and motifs. Our results also include closed-form expressions for the dimension
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Figure 8: Fitting the theoretical spectrum to data. A. The anatomical map of neurons (dots) in the
example functional clusters (different colors) across a larval zebrafish brain (scale bar is 50 µm, see text
and [10]). B. Comparing the fitting error of the time-sampled random connectivity theory (Section 3.7)
and the Marchenko–Pastur law. The errors are measured by Eq. (37). The red dashed line is the diagonal.
C-E. Comparing the fitted theoretical spectra with data (histogram). The red and yellow curves are random
connectivity theory and the Marchenko–Pastur law, respectively, both with one parameter to tune. See more
details in Methods. Fitting results for all other clusters are in Supplementary Materials.

measure generalizing known results [11]. Knowing the exact shape and support of the bulk
eigenvalue distribution can facilitate separating outlying eigenvalues corresponding to low di-
mensional structure (coming from other unmodeled effects such as external input) [40] (Fig. S11
in Supplementary Materials). The shape of the bulk spectrum reflects structured amplification
of the neuronal noise by the random recurrent interactions and is robust to low rank pertur-
bations to the connectivity or to the activity (Supplementary Materials). As the connection
strength increases towards the critical edge of stability, the spectrum exhibits a power-law tail
of large eigenvalues, with exponent −5/3 in pdf (or −3/2 in eigenvalue vs. rank plot). Intrigu-
ingly, this power law persists even when the shape of the spectrum is modified by connectivity
motifs or due to finite temporal and spatial sample size. In contrast, when we move away from
the asymmetric, random connectivity model, the exponent of the power law (if any) becomes
different: −7/4 for symmetric random connectivity (Eq. (16)), −2 for a normal connectivity
Jn with matching eigenvalue distribution as iid Gaussian J (Supplementary Materials), and
−d/4 − 1 for a d-dimensional ring network (see below). Based on these results, we conjecture
that a power-law tail, whenever present for any covariance spectrum, reflects the qualitative
nature of the connectivity and is a robust feature that will survive both temporal and spatial
sampling with the same exponent (precise statement in Section S9.3, Eq. (S108), Supplementary
Materials).

The interpretation bulk spectrum corresponds to smaller eigenvalues in the PCA analysis
of neural activity data, their meaning and relation to circuit connectivity. Unlike the large
eigenvalues [37], the interpretation of the bulk spectrum of PCA of neural activity data has
received little attention. A notable exception is a recent work [7] which studied the power law
of covariance spectrum of data near criticality based on the renormalization group method. Our
theory thus provides an important benchmark to compare with experimental data and advocates
the bulk covariance spectrum as a powerful global description of collective dynamics in neuronal
networks.

One limitation of the work is the assumed dynamic regime where fluctuations of the neuronal
activity are described by the linear response theory [30, 52] around a fixed point. Extensions
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and comparisons to highly nonlinear activity such as chaotic dynamics [48] are left for future
research. Future work could also consider more general network architectures such as multiple
populations of EI networks [28] and incorporating distant dependent connectivity patterns based
on known cortical microcircuit architectures [6, 8, 29].

4.1 Ordered vs. disorder connectivity

We have studied the covariance spectrum under random connectivity, which is used as a model
for complex recurrent networks. Here we ask whether features of these spectra are distinct
results of the connectivity being random. To address this, we briefly explored the covariance
spectra from several widely used examples of ordered connectivity for comparison.

First, consider a ring network [6] with translation invariant long-range connections, where
the connection strength between neurons depends smoothly on their distance (Fig. 9A-inset, see
Methods). In the large-network limit, the covariance spectrum becomes a delta distribution at
1 with a few discretely located large eigenvalues (Fig. 9A). Next, we consider the ring network
with short-range, in particular, Nearest-Neighbor (NN) connections. The covariance spectrum
is now continuous (no outliers) and supported on an interval, but the pdf diverges at both edges

as (∆x)−
1
2 (Fig. 9B).

To seek further examples of ordered connectivity leading to a qualitatively similar covariance
spectrum as the random connectivity, we consider the d-dimensional generalization of the NN
ring (Methods). As dimension d increases, the smoothness of the pdf within and at the edges of
the support increases, and the covariance spectrum becomes qualitatively similar to the random
case [20] (Fig. 9C-F). Interestingly, as the connection strength approaches its critical value for

stability, the covariance spectra also exhibit a power-law tail pC(x) ∝ x−
d
4−1 (Supplementary

Materials; x−
d
2−1 is also possible under other cases [56]). To match the exponent of the random

network d would be 8/3 ≈ 2.67. These comparisons suggest that the covariance spectrum’s
overall smooth density and long tail shape is a shared property in highly connected networks
with high rank connectivity matrices, including random networks and high dimensional short-
range spatially invariant networks.

5 Methods

5.1 Models of random connectivity

Here is a summary of results on various random connectivity models.

• iid Gaussian random connectivity Jij ∼ N (0, g2/N): closed-form pdf and endpoints
(Eq. (5)), including the frequency-dependent covariance spectrum (Section 3.6), and a
power-law tail approximation (Eq. (7)).

• Gaussian random connectivity with reciprocal motifs/asymmetry κ = ρ(Jij , Jji) (Sec-
tion 3.3): analytic solution and endpoints (quartic root, Supplementary Materials) and a
power-law tail approximation (Eq. (17)). For special case of symmetric and ant-symmetric
connectivity, closed-form pdf Eqs. (14) and (15), including a frequency dependent covari-
ance spectrum (Supplementary Materials).

• Erdős-Rényi and certain EI network Section 3.5: same bulk spectrum as the iid Gaussian
case.

For all cases, the mean µ and the dimension D are derived in closed-form (Eqs. (9), (10) and (18).
For simplicity, we do not require Jii to be zero (i.e., no self-coupling), but allow it, for

example in the iid Gaussian model, to be distributed in the same way as other entries Jij . In

large-network limit, since individual connections are weak (e.g., O(1/
√
N)), allowing this self-

coupling or setting Jii = 0 does not affect the covariance spectrum (Supplementary Materials).
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Figure 9: Covariance spectra under some deterministic connectivity models. A. Histogram of the covariance
eigenvalues of a ring network with a long-range connection profile (inset, N = 100). Most eigenvalues are
close to 1 and the rest of eigenvalues converge to discrete locations predicted by top Fourier coefficients
(crosses) of the connection profile (Eq. (35)). B. Same as A. but for a ring network with Nearest-Neighbor
connections: Ji−1 = 0.4, Ji+1,i = 0.2. The solid line is theoretical spectrum in large N limit which has two
diverging singularities at both support edges. The effect of such singularities is also evident in the finite-
size network at N = 400 (a single realization). C-F. Higher dimensional Nearest-Neighbor ring network
(ad = 0.6, see Methods). As the dimension increases, the singularities in the pdf become milder and less
evident, and the overall shape becomes qualitatively similar to the random connectivity case (Fig. 1).

Notation Description

N number of neurons
C covariance matrix, Eq. (2)

pC(x) pdf of eigenvalues of C, Section 2.2
x± support edges of pC(x)
J matrix of connection weights Section 2.1
σ2 variance of white noise input, Section 2.1
g connection strength var(Jij) = g2/N , Eq. (3)
gc maximum g constrained by stability
gr g/gc
κ ρ(Jij , Jji) reciprocal motif cumulant, Eq. (13)

µ mean of eigenvalues 1
N

∑N
i=1 λi

D dimension, Eq. (4)
M number of time samples, Eq. (36)
α N/M , Section 3.7
Ns number of sampled neurons, Section 3.7
f Ns/N , Section 3.7

Table 1: List of notations.
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5.2 Applications to alternative neuronal models and signal covariance

Although the relation between C and J (Eq. (2)) is derived here in a linear rate neuron network
Eq. (1), it also arises in other models of networked systems.

Linearly interacting Poisson neurons This is also called a multivariate Hawkes model
[23]. This is a simple model for spiking neuron networks, but is versatile enough to capture for
example the temporal spiking correlations seen in other more sophisticated nonlinear spiking
neuron networks [39, 22]. A time-dependent Poisson firing rate is calculated as a filtered input
spike train sj(t) (sum of delta functions), and spikes are then drawn as a Poisson process given
yi(t),

yi(t) = y0 +

∫ ∞
0

A(t− τ)

∑
j

Wijsj(t− τ)

 dτ. (25)

Here we consider a homogeneous network where the baseline firing rate y0 and response filter
A(t) is the same for all neurons.

The exact long time window spike count covariance matrix of this network can be shown to
be [23]

C = (I − aW )−1C0(I − aW )−T , C0 = diag{Y1, Y2, , . . . , YN}, Y = (I − aW )−1Y 0, (26)

which is valid if the time varying yi(t) does not often become negative (for example when any
negative connections Wij are small compare to y0). Here a =

∫∞
0
A(t)dt, Y 0 and Y are vectors

of baseline and perturbed (with recurrent connections) firing rates of the neurons respectively.
If we assume that the effective connection strength aW is weak so that we can approximate Y
with Y 0, then (26) becomes

C = y0(I − aW )−1(I − aW )−T ,

the same as Eq. (2) with J = aW (note that for Poisson process var(
∫ t+∆t

t
si(u)du) =

∫ t+∆t

t
yi(u)du).

Another condition that ensures a uniform Y and does not restrict connections to be weak is
a row balance condition of W sometimes assumed in EI networks [41],

N∑
j=1

Ji1j =

N∑
j=1

Ji2j . (27)

This is not unreasonable to assume, for example, considering the homeostatic mechanisms of
neurons.

Integrate-and-Fire neurons As shown in [52, 22] using the linear response theory [30],
the covariance structure of a network of generalized integrate-and-fire (IF) neurons

τ
dVi
dt

= −(Vi − EL,i) + ψ(Vi) + Ei +
√
σ2
i τiξi(t) +

∑
j

WijFij(t) ∗ yj(t). (28)

Here Vi is the membrane potential and a spike is generated when Vi reaches a threshold. yi(t) =∑
k δ(t − ti,k) is the spike train, and y0

i (t) in Eq. (29) is the “unperturbed” spike train in
absence of recurrent connections W . Different choices of ψ(V ) realize types of IF neurons, such
as ψ(V ) = ∆T exp((V −VT )/∆T ) for the exponential IF neurons. During the asynchronous firing
of neurons (no strong synchronized firing across the network), Eq. (28) can be well approximated
by

∆yi(t) = Ai(t) ∗

 N∑
j=1

WijFij(t) ∗∆yj(t)

+ ∆y0
i (t), i = 1, 2, . . . , N. (29)
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Here a(t) ∗ b(t) = (a ∗ b)(t) =
∫ t

0
a(s)b(t − s)ds denotes convolution. W = {Wij} is the matrix

of recurrent connection weights). Ai(t) is the linear response kernel for neuron i (e.g., an
exponential decay) Fij(t) is the temporal kernel of the synapse. For simplicity, we assume that
both A and F are uniform across the network.

It it shown [52, 22] that the long time window spike count covariance matrix C (in fact also
the frequency covariance Eq. (19)) is well approximated by

C = a2〈(∆y0
i (t))2〉(I − aW )−1(I − aW )−T .

Here the scalar a =
(∫∞

0
A(t)dt

) (∫∞
0
F (t)dt

)
summarizes the cellular and synaptic dynamics.

〈(∆y0
i (t))2〉 can be thought of as the baseline neuronal variance in the absence of recurrent

connections (A = 0 in Eq. (29)). This expression of the covariance matrix again matches with
Eq. (2).

Fixed points over whitened input The covariance we considered so far describes the
structure of fluctuations of spontaneous dynamics without or under fixed external input, often
referred as noise covariance [3]. We can also consider a signal covariance in a network of firing
rate neurons

τ
dri
dt

= −ri + f

 N∑
j=1

Jijrj + ui

 , i = 1, 2, . . . , N. (30)

Here ui is the external input to neuron i. Assume the network settles to a steady state where
all neurons have a firing rate ri > 0, and approximate the nonlinearity as f(x) ≈ x, then the
fixed point firing rates are

~r = (I − J)−1~u. (31)

Now consider the network activity across an ensemble of input patterns, which has whitened
statistics [13],

var(ui) = σ2, cov(ui, uj) = 0. (32)

It is easy to see that the covariance of firing rates ~r is given by σ2(I − J)−1(I − J)−T , which is
the same as Eq.(2).

We note that Eq. (31) or equivalently ~r = J~r + ~u appears in broader contexts beyond
neuroscience and is studied in the field of linear structural equation modeling (SEM) [1].

5.3 Power-law approximation of the eigenvalue distribution

The power-law property of pC(x) for iid Jij under critical g is probably known in random matrix
(private communication), by results from the equivalent distribution studied in [4], although we
do not know of a specific reference. We include a derivation based on the explicit expression of
pC(x) in the Supplementary Materials that is outlined below.

First note the limits of the support edges. As g → 1−, (1 − g2)3x+ → 27
4 . For the lower

edge, x− → 27
4 can be found by the Taylor expansion of (1−g2) or note that (1−g2)3x+x− = 1.

Consider a x that is far away from the support edges as g → 1, given the above, this means,

x→∞, x(1− g2)3 → 0. (33)

Note that since x+/x− ∼ (1 − g2)−3, there is plenty range of x to satisfy the above for strong
connections when g is close to 1. Under these limits, Eq. (5) greatly simplifies as various terms
vanish leading to (Supplementary Materials)

lim
g→1−, x−�x�x+

pC(x)/

(√
3

2π
x−

5
3

)
→ 1.

This explains the validity of the power-law approximation away from support edges. If we are
only interested in the leading-order power-law tail in the critical distribution (i.e., g → 1− and
then x → ∞), then there is a simpler alternative derivation that can we also apply to other
connectivity models (see Supplementary Materials).
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5.4 Comparison with the Marchenko–Pastur distribution

The Marchenko–Pastur distribution is widely used for modeling covariance eigenvalues arising
from noise [32, 17, 40]. It is also the limit of the time-sampled spectrum pg,α(x) (Fig. 7 and
Section 3.7) at weak connections g = 0 . The Marchenko–Pastur law has one shape parameter
α. We focus on the case when the covariance is positive definite which restricts 0 < α < 1
(otherwise there is a delta distribution at 0) and the pdf is

pMP (x) =

√
(α+ − x)(x− α−)

2παx
, α± = (1±

√
α)2, (34)

The first two moments are 1 and 1 + α, from which we know the dimension is 1/(1 + α) has a
lower limit 1/2. The upper edge α+ is bounded by 4.

5.5 Deterministic connectivity

5.5.1 Ring network with short- and long-range connections

In a ring network, neurons are equally spaced on a circle (can be physical or functional space)
and neuron i is associated with a location xi = i/N , i = 0, . . . , N − 1. The connection between
two neurons j and i only depends on the location difference xi − xj is therefore translation
invariant.

For long-range connections, the connectivity has a shape determined by a fixed smooth
periodic function f(x) on [0, 1),

Jij =
1

N
f(xi − xj) =

1

N
f

(
i− j
N

)
. (35)

In the large-network limit, the covariance eigenvalues have an approximate delta distribution at
1 except for a finite number of discretely located larger eigenvalues (Fig. 9A). A precise statement
of this result is described in Supplementary Materials. The outlying eigenvalues correspond to
the leading Fourier coefficients of f(x).

For the Nearest-Neighbor (NN) connectivity, only Ji−1,i and Ji+1,i are non-zero and remain
fixed as N →∞.

5.5.2 Multi-dimensional ring network

For a d-dimensional ring, the neurons are equally spaced on a d-dimensional lattice

x~i = (i1/N, i2/N, . . . , id/N),

which is periodic along each coordinate. We focus on the NN connectivity where each neuron
is connected to 2d neighboring neurons with strength Jkik−1,ik

and Jkik+1,ik
along direction k.

We show that the probability density function at both support edges scales as (∆x)
d
2−1 (for

comparison, the random network edges scale as (∆x)
1
2 ). This means for dimension d ≥ 2, there

is no singularity at the support edges (Fig. 9).
To characterize the shape of the covariance spectrum (Fig. 9C-F), we further simplify by

setting Jkik−1,ik
= Jkik+1,ik

= a (see also Supplementary Materials for motivations based on 1D
ring) and analytically derived pC(x) (Supplementary Materials). For small dimensions d ≤ 3,
there are distinct “inflection points” within the support. As d increases, this non-smooth feature
becomes less evident and becomes hard to identify in empirical eigenvalue distributions from a
finite-size network (not shown).
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5.6 Fitting the theoretical spectrum to data

For neural activity data, C can be calculated from a large number of time samples of binned
spike count si(t) (assuming bin size is ∆T large),

Cij =
1

∆T

1

M − 1

M−1∑
t=1

(si(t)− s̄i)(sj(t)− s̄j), s̄i =
1

M

M∑
t=1

si(t). (36)

For calcium imaging data, the fluorescence is approximately integrating the spikes over the
indicator time constant. So we can still apply Eq. (36) by plugging in the fluorescence signal in
place of si(t) to calculate the covariance C (omit the constant factor ∆T which does not affect
fitting to the theory, Section 3.8).

We fit the theoretical spectrum to empirical eigenvalues by finding the connectivity param-
eter g that minimizes the error between the cumulative distribution functions (cdf) F (x) =∫ x
−∞ p(x)dx. This avoids issues such as binning when estimating the probability density func-

tion from empirical eigenvalues. We numerically integrate the theoretical pdf (Eq. (5)) to get its
pdf. As seen below, the theoretical cdf only needs to be calculated at the empirical eigenvalues.

Motivated by methods of hypothesis testing on distributions, we measure the L2 norm cdf
error using the Cramer-von Mises statistic

D2
CvM =

∫
(F (x)− Fn(x))2dFn(x) =

1

12n2
+

1

n

n∑
i=1

(
F (xi)−

2i− 1

2n

)2

(37)

Here n is the number of samples and xi are the i-th empirical eigenvalues. Alternatively, the
error can also be measure under L∞ norm based on the Kolmogorov-Smirnov statistic

DKS = sup
x
|Fn(x)− F (x)|. (38)

where xi are samples. Our code implements both measures.
In Fig. 8B-E, we fit the time-sampled theoretical spectrum with iid Gaussian connectivity

(Section 3.7) to calcium imaging data in larval zebrafish [10]. The theoretical spectrum (once
normalized by the mean, see Section 3.8) depends on two parameters g and α, but the latter
is fixed to be N/M based on the data. Here N is the number of neurons in a cluster, and M
is the number of time frames used in calculating the sample correlation matrix (Eq. (36), the
calcium fluorescence ∆F/F traces of each neuron are normalized to z-scores [10]). g is then
optimized to minimize the Cramer-von Mises error (Eq. (37)) between the data. The largest
eigenvalue for each cluster is often much larger than the rest and is thus removed before the
fitting. For comparison, we fit the same data to the Marchenko–Pastur law (Section 5.4) whose
shape depends on the parameter α. Here we allow α to vary so that both models (random
connectivity and MP law) have one parameter to be optimized to fit data.

5.7 Code

Codes for theoretical spectra, generating covariance for finite-size networks, fitting to the em-
pirical spectrum, and making all figures are available at
https://github.com/huyu00/netw_cov_spectrum

The larval zebrafish whole-brain calcium imaging data and functional clustering code are avail-
able from [10].
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