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Abstract 17 
Complex cognitive functions such as working memory and decision-making require information 18 
maintenance over many timescales, from transient sensory stimuli to long-term contextual cues. 19 
While theoretical accounts predict the emergence of a corresponding hierarchy of neuronal 20 
timescales, direct electrophysiological evidence across the human cortex is lacking. Here, we 21 
infer neuronal timescales from invasive intracranial recordings. Timescales increase along the 22 
principal sensorimotor-to-association axis across the entire human cortex, and scale with single-23 
unit timescales within macaques. Cortex-wide transcriptomic analysis shows direct alignment 24 
between timescales and expression of excitation- and inhibition-related genes, as well as genes 25 
specific to voltage-gated transmembrane ion transporters. Finally, neuronal timescales are 26 
functionally dynamic: prefrontal cortex timescales expand during working memory maintenance 27 
and predict individual performance, while cortex-wide timescales compress with aging. Thus, 28 
neuronal timescales follow cytoarchitectonic gradients across the human cortex, and are 29 
relevant for cognition in both short- and long-terms, bridging microcircuit physiology with 30 
macroscale dynamics and behavior.  31 
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Introduction 32 
Human brain regions are broadly specialized for different aspects of behavior and cognition. For 33 
example, primary sensory neurons are tightly coupled to changes in the environment, firing 34 
rapidly to the onset and removal of a stimulus, and showing characteristically short intrinsic 35 
timescales (Ogawa and Komatsu, 2010; Runyan et al., 2017). In contrast, neurons in cortical 36 
association (or transmodal) regions, such as the prefrontal cortex (PFC), can sustain their 37 
activity for many seconds when a person is engaged in working memory (Zylberberg and 38 
Strowbridge, 2017), decision-making (Gold and Shadlen, 2007), and hierarchical reasoning 39 
(Sarafyazd and Jazayeri, 2019). This persistent activity in the absence of immediate sensory 40 
stimuli reflects longer neuronal timescales, which is thought to result from neural attractor states 41 
(Wang, 2002; Wimmer et al., 2014) shaped by NMDA-mediated recurrent excitation and fast 42 
feedback inhibition (Wang, 1999, 2008), with contributions from other synaptic and cell-intrinsic 43 
properties (Duarte and Morrison, 2019; Gjorgjieva et al., 2016). 44 
 45 
Recent studies have shown that variations in many such microarchitectural features follow 46 
continuous and coinciding gradients along a sensory-to-association axis across the cortex, 47 
including cortical thickness, cell density, and distribution of excitatory and inhibitory neurons 48 
(Hilgetag and Goulas, 2020; Huntenburg et al., 2018; Wang, 2020). In particular, grey matter 49 
myelination (Glasser and Van Essen, 2011), which indexes anatomical hierarchy, varies with 50 
the expression of numerous genes related to microcircuit function, such as NMDA receptor and 51 
inhibitory cell-type marker genes (Burt et al., 2018). Functionally, specialization of the human 52 
cortex, as well as structural and functional connectivity (Margulies et al., 2016), also follow 53 
similar macroscopic gradients. In addition to the broad differentiation between sensory and 54 
association cortices, there is evidence for a finer hierarchical organization within the frontal 55 
cortex (Sarafyazd and Jazayeri, 2019). For example, the anterior-most parts of the PFC are 56 
responsible for long timescale goal-planning behavior (Badre and D’Esposito, 2009; Voytek et 57 
al., 2015a), while healthy aging is associated with a shift in these gradients such that older 58 
adults become more reliant on higher-level association regions to compensate for altered lower-59 
level cortical functioning (Davis et al., 2008). 60 
 61 
Despite convergent observations of continuous cortical gradients in structural features and 62 
cognitive specialization, there is no direct evidence for a similar gradient of neuronal timescales 63 
across the human cortex. Such a gradient of neuronal dynamics is predicted to be a natural 64 
consequence of macroscopic variations in synaptic connectivity and microarchitectural features 65 
(Chaudhuri et al., 2015; Duarte et al., 2017; Huntenburg et al., 2018; Wang, 2020), and would 66 
be a primary candidate for how functional specialization emerges as a result of hierarchical 67 
temporal processing (Kiebel et al., 2008). Single-unit recordings in rodents and non-human 68 
primates hint at a hierarchy of timescales that increase, or expand, progressively along a 69 
posterior-to-anterior axis (Murray et al., 2014; Runyan et al., 2017; Wasmuht et al., 2018), while 70 
intracranial recordings and functional neuroimaging data collected during perceptual and 71 
cognitive tasks suggest likewise in humans (Baldassano et al., 2017; Honey et al., 2012; Lerner 72 
et al., 2011; Watanabe et al., 2019). However, these data are either sparsely sampled across 73 
the cortex or do not measure neuronal activity at the cellular and synaptic level directly, 74 
prohibiting the full construction of an electrophysiological timescale gradient across the human 75 
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cortex. As a result, while whole-cortex data of transcriptomic and anatomical variations exist, we 76 
cannot take advantage of them to dissect the contributions of synaptic, cellular, and circuit 77 
connectivity in shaping fast neuronal timescales, nor ask whether regional timescales are 78 
dynamic and relevant for human cognition (Fig. 1A).  79 
  80 
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 81 
Fig. 1. Schematic of study and timescale inference technique. (A) in this study, we infer 82 
neuronal timescales from intracranial field potential recordings, which reflect integrated synaptic 83 
and transmembrane current fluctuations over large neural populations(Buzsáki et al., 2012). 84 
Combining multiple open-access datasets (Table S1), we link timescales to known human 85 
anatomical hierarchy, dissect its cellular and physiological basis via transcriptomic analysis, and 86 
demonstrate its functional modulation during behavior and through aging. (B) simulated time 87 
series, and their (C) autocorrelation functions (ACF), with increasing timescales (decay time 88 
constant). (D) example ECoG power spectral density (PSD) showing that in frequency domain, 89 
timescale is equivalent to the frequency of aperiodic power drop-off (𝑓!, triangle; insets: time 90 
series and ACF). (E) accurate extraction of timescale parameters from PSDs of simulated time 91 
series in (B). 92 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.05.25.115378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.115378
http://creativecommons.org/licenses/by-nc/4.0/


 

 5 

 93 
Results 94 
 95 
Neuronal timescale can be inferred from frequency domain 96 
To overcome these limitations, we develop a novel computational method for inferring the 97 
timescale of neuronal transmembrane current fluctuations from human intracranial 98 
electrocorticography (ECoG) recordings (Fig. 1A, box). Neural time series exhibit variable 99 
temporal autocorrelation, or timescales, where future values are partially predictable from past 100 
values, and predictability decreases with increasing time lags. To demonstrate the effect of 101 
varying autocorrelation, we simulate the aperiodic (non-rhythmic) component of neural field 102 
potential recordings by convolving Poisson population spikes with exponentially-decaying 103 
synaptic kernels (Fig. 1B). Consistent with previous studies, “neuronal timescale” here is 104 
defined as the exponential decay time constant (τ) of the autocorrelation function (ACF) (Murray 105 
et al., 2014)—the time it takes for the ACF to decrease by a factor of e (Fig. 1C). Equivalently, 106 
we can estimate neuronal timescale from the “characteristic frequency” (fk) of the power spectral 107 
density (PSD), especially when the presence of variable 1/f (χ) and oscillatory components can 108 
bias timescale inference from the ACF in time-domain (Fig. 1D). In this study, we apply spectral 109 
parameterization (Haller et al., 2018) to extract timescales from intracranial recordings, which 110 
decomposes neural PSDs into a combination of oscillatory and aperiodic components, where 111 
timescale is inferred from the latter. We validate this approach on PSDs computed from 112 
simulated neural time series and show that the model-fitted timescales closely match their 113 
ground-truth values (Fig. 1E). 114 
 115 
Timescales follow anatomical hierarchy and are 10x faster than spiking timescales 116 
Applying this technique, we infer a continuous gradient of neuronal timescales across the human 117 
cortex and examine its relationship with anatomical hierarchy. We analyze a large dataset of 118 
human intracranial (ECoG) recordings of task-free brain activity from 106 epilepsy patients (MNI-119 
iEEG (Frauscher et al., 2018a), see Fig. S1 for electrode coverage), and compare the ECoG-120 
derived timescale gradient to the average T1w/T2w map from the Human Connectome Project, 121 
which captures grey matter myelination and indexes the proportion of feedforward vs. feedback 122 
connections between cortical regions, defining an anatomical hierarchy (Burt et al., 2018; Glasser 123 
and Van Essen, 2011).  124 
 125 
Across the human cortex, timescales of fast electrophysiological dynamics (~10-50 ms) 126 
predominantly follow a rostrocaudal gradient (Fig. 2A). Consistent with numerous accounts of a 127 
principal cortical axis spanning from primary sensory to association regions (Hilgetag and Goulas, 128 
2020; Margulies et al., 2016; Wang, 2020), timescales are shorter in sensorimotor and early visual 129 
areas, and longer in association regions, especially posterior parietal, ventral/medial frontal, and 130 
medial temporal cortex. Cortical timescales are negatively correlated with T1w/T2w (Fig. 2B, ρ = 131 
-0.47, p < 0.001; adjusted for spatial autocorrelation, see Materials and Methods and Fig. S2), 132 
such that timescales are shorter in more heavily myelinated (lower-level) cortical regions. 133 
 134 
While surface ECoG recordings offer much broader spatial coverage than extracellular single-unit 135 
recordings, they are fundamentally different signals: ECoG and field potentials largely reflect 136 
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integrated synaptic and other transmembrane currents across many neuronal and glial cells, 137 
rather than putative action potentials from single neurons (Buzsáki et al., 2012) (Fig. 1A, box). 138 
Considering this, we ask whether timescales measured from ECoG are related to single-unit 139 
spiking timescales along the cortical hierarchy. To test this, we extract neuronal timescales from 140 
task-free ECoG recordings in macaques and compare them to a separate dataset of single-unit 141 
spiking timescales (Murray et al., 2014) (Fig. 2C, inset; see Fig. S3 for electrode locations). 142 
Consistent with spiking timescale estimates (Murray et al., 2014; Wasmuht et al., 2018), ECoG 143 
timescales also increase along the macaque cortical hierarchy. While there is a strong 144 
correspondence between spiking and ECoG timescales (Fig. 2C; ρ = 0.96, p < 0.001)—measured 145 
from independent datasets—across the macaque cortex, ECoG-derived timescales are 10 times 146 
faster than single-unit timescales and are conserved across individual sessions (Fig. 2D). This 147 
suggests that neuronal spiking and transmembrane currents have distinct but related timescales 148 
of fluctuations, and that both are hierarchically organized along the primate cortex. 149 

 150 

 151 
Fig. 2. Timescale increases along the anatomical hierarchy in humans and macaques. (A) 152 
human cortical timescale gradient (left) falls predominantly along the rostrocaudal axis, similar to 153 
T1w/T2w ratio (right). (B) neuronal timescales are negatively correlated with cortical T1w/T2w, 154 
thus increasing along the anatomical hierarchy from sensory to association regions (p-value 155 
adjusted for spatial autocorrelation). (C) macaque ECoG timescales track published single-unit 156 
spiking timescales (Murray et al., 2014) in corresponding regions (mean±s.e.m from n=8 157 
sessions); inset: ECoG electrode map of one animal. (D) ECoG-derived timescales are 158 
consistently correlated to (left), and an order of magnitude faster than (right), single-unit 159 
timescales across individual sessions. Hollow markers: individual sessions; shapes: animals; 160 
solid circles: grand average from (C). 161 
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 162 
 163 
Synaptic and ion channel genes shape timescales of neuronal dynamics 164 
Next, we identify cellular and synaptic mechanisms underlying timescale variations across the 165 
human cortex. Theoretical accounts posit that NMDA-mediated recurrent excitation coupled with 166 
fast inhibition (Chaudhuri et al., 2015; Wang, 1999, 2008), as well as cell-intrinsic properties 167 
(Duarte and Morrison, 2019; Gjorgjieva et al., 2016; Koch et al., 1996), are crucial for shaping 168 
neuronal timescales. While in vitro and in vivo studies in model organisms (van Vugt et al., 169 
2020; Wang et al., 2013) can test these hypotheses at the single-neuron level, causal 170 
manipulation and large-scale recording of neuronal networks embedded in the human brain is 171 
severely limited. Here, we apply an approach analogous to multimodal single-cell profiling 172 
(Bomkamp et al., 2019) and examine the transcriptomic basis of neuronal dynamics at the 173 
macroscale. 174 
 175 
Leveraging cortex-wide bulk mRNA expression variations (Hawrylycz et al., 2012), we find that 176 
the neuronal timescale gradient overlaps with the dominant axis of gene expression across the 177 
human cortex (ρ = -0.60, p < 0.001; Fig. 3A and Fig. S4). Consistent with theoretical predictions 178 
(Fig. 3B), timescales significantly correlate with the expression of genes encoding for NMDA 179 
(GRIN2B) and GABA-A (GABRA3) receptor subunits, voltage-gated sodium (SCN1A) and 180 
potassium (KCNA3) ion channel subunits, as well as inhibitory cell-type markers (parvalbumin, 181 
PVALB), and genes previously identified to be associated with single-neuron membrane time 182 
constants (PRR5) (Bomkamp et al., 2019). 183 
 184 
More specifically, in vitro electrophysiological studies have shown that, for example, increased 185 
expression of receptor subunit 2B extends the NMDA current time course (Flint et al., 1997), while 186 
2A expression shortens it (Monyer et al., 1994). Similarly, the GABA-A receptor time constant 187 
lengthens with increasing a3:a1 subunit ratio (Eyre et al., 2012). We show that these relationships 188 
are recapitulated at the macroscale, where neuronal timescales positively correlate with GRIN2B 189 
and GABRA3 expression, and negatively correlate with GRIN2A and GABRA1. These results 190 
demonstrate that timescales of neural dynamics depend on specific receptor subunit 191 
combinations with different (de)activation timescales (Duarte et al., 2017; Gjorgjieva et al., 2016), 192 
in addition to broad excitation-inhibition interactions (Gao et al., 2017; Wang, 2002, 2020). 193 
Notably, almost all genes related to voltage-gated sodium and potassium ion channel alpha-194 
subunits—the main functional subunits—are correlated with timescale, while all inhibitory cell-195 
type markers except parvalbumin have strong positive associations with timescale (Fig. 3C and 196 
Fig. S5). 197 
 198 
We further test whether single-cell timescale-transcriptomic associations are captured at the 199 
macroscale as follows: for a given gene, we can measure how strongly its expression correlates 200 
with membrane time constant parameters at the single-cell level using patch-clamp and RNA 201 
sequencing (scRNASeq) data (Bomkamp et al., 2019; Tripathy et al., 2017). Analogously, we can 202 
measure its macroscopic transcriptomic-timescale correlation using the cortical gradients above. 203 
Comparing across these two levels for all previously-identified timescale-related genes 204 
(Bomkamp et al., 2019; Tripathy et al., 2017), we find a significant correlation between the 205 
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strength of association at the single-cell and macroscale levels (Fig. 3D, horizontal lines; ρ = 0.36 206 
and 0.25, p < 0.001). Furthermore, genes with stronger associations to timescale tend to conserve 207 
this relationship across single-cell and macroscale levels (Fig. 3D, separated by macroscale 208 
correlation magnitude). Thus, the association between cellular variations in gene expression and 209 
cell-intrinsic temporal dynamics is captured at the macroscale, even though scRNAseq and 210 
microarray data represent entirely different measurements of gene expression. 211 

While we have shown associations between cortical timescales and genes suspected to influence 212 
neuronal dynamics, these data present an opportunity to discover additional novel genes that are 213 
functionally related to timescales through a data-driven approach. However, since transcriptomic 214 
variation and anatomical hierarchy overlap along a shared macroscopic gradient (Burt et al., 2018; 215 
Huntenburg et al., 2018; Margulies et al., 2016), we cannot specify the role certain genes play 216 
based on their level of association with timescale alone: gene expression differences across the 217 
cortex first result in cell-type and connectivity differences, sculpting the hierarchical organization 218 
of cortical anatomy. Consequently, anatomy and cell-intrinsic properties jointly shape neuronal 219 
dynamics through connectivity differences (Chaudhuri et al., 2015; Demirtaş et al., 2019) and 220 
expression of ion transport proteins with variable activation timescales, respectively. Therefore, 221 
we ask whether variation in gene expression still accounts for variation in timescale beyond the 222 
principal structural gradient, and if associated genes have known functional roles in biological 223 
processes (schematic in Fig. 4E). To do this, we first remove the contribution of anatomical 224 
hierarchy by regressing out the T1w/T2w gradient from both timescale and individual gene 225 
expression gradients. We then fit partial least squares (PLS) models to simultaneously estimate 226 
regression weights for all genes (Whitaker et al., 2016), submitting those with significant 227 
associations for gene ontology enrichment analysis (GOEA) (Klopfenstein et al., 2018). 228 

We find that genes highly associated with neuronal timescales are preferentially related to 229 
transmembrane ion transporter complexes, as well as GABAergic synapses and chloride 230 
channels (Fig. 4F, Table S3 and S4). When restricted to positively-associated genes only 231 
(expression increases with timescales), one functional group related to phosphatidate 232 
phosphatase activity is uncovered, including the gene PLPPR1, which has been linked to 233 
neuronal plasticity(Savaskan et al., 2004). Conversely, genes that are negatively associated with 234 
timescale are related to numerous groups involved in the construction and functioning of 235 
transmembrane transporters and voltage-gated ion channels, especially potassium and other 236 
inorganic cation transporters. The discovery of these gene ontology items suggests that inhibition 237 
(Telenczuk et al., 2017)—mediated by GABA and chloride channels—and voltage-gated 238 
potassium channels have prominent roles in shaping neuronal timescale dynamics at the 239 
macroscale level, beyond what’s expected based on the anatomical hierarchy alone. 240 
 241 
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 242 
Fig. 3. Timescale gradient is linked to expression of genes related to synaptic receptors 243 
and transmembrane ion channels across the human cortex. (A) timescale gradient follows 244 
the dominant axis of gene expression variation across the cortex (PC1, arbitrary direction). (B) 245 
timescale gradient is significantly correlated with expression of genes known to alter synaptic and 246 
neuronal membrane time constants, as well as inhibitory cell-type markers, but (C) members 247 
within a gene family (e.g., NMDA receptor subunits) can be both positively and negatively 248 
associated with timescales. (D) macroscale timescale-transcriptomic correlation captures 249 
association between RNA-sequenced expression of the same genes and single-cell timescale 250 
properties fit to patch clamp data (Bomkamp et al., 2019; Tripathy et al., 2017), and the 251 
correspondence improves for genes (separated by quintiles) that are more strongly correlated 252 
with timescale (horizontal lines: correlation across all genes from (Bomkamp et al., 2019; Tripathy 253 
et al., 2017), ρ = 0.36 and 0.25). (E) T1w/T2w gradient is regressed out from timescale and gene 254 
expression gradients, and a partial least squares (PLS) model is fit to the residual maps. Genes 255 
with significant PLS weights are submitted for gene ontology enrichment analysis. (F) enriched 256 
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genes are primarily linked to transmembrane transporters and GABA-ergic synapses; genes 257 
specifically with strong negative associations further over-represent transmembrane ion 258 
exchange mechanisms, especially voltage-gated potassium and cation transporters. Spatial 259 
correlation p-values in (A-C) are adjusted for spatial autocorrelation (see Materials and Methods; 260 
asterisks in (B,D) indicate p < 0.05, 0.01, 0.005, and 0.001 respectively; filled circles in (C,D) 261 
indicate p < 0.05). 262 

 263 
 264 
Timescales lengthen in working memory and shorten in aging 265 
Finally, we investigate whether timescales are functionally dynamic and relevant for human 266 
cognition. While previous studies have shown hierarchical segregation of task-relevant 267 
information corresponding to intrinsic timescales of different cortical regions (Baldassano et al., 268 
2017; Chien and Honey, 2020; Honey et al., 2012; Runyan et al., 2017; Sarafyazd and Jazayeri, 269 
2019; Wasmuht et al., 2018), as well as optimal adaptation of behavioral timescales to match the 270 
environment (Ganupuru et al., 2019; Ossmy et al., 2013), evidence for functionally relevant 271 
changes in regional neuronal timescales is lacking. Here, we examine whether timescales 272 
undergo short- and long-term shifts during working memory maintenance and aging, respectively.  273 
 274 
We first analyze human ECoG recordings where participants performed a visuospatial working 275 
memory task that requires a delayed cued response (Fig. 4A) (Johnson et al., 2018a). Neuronal 276 
timescales were extracted for pre-stimulus baseline and memory maintenance delay periods (900 277 
ms, both stimulus-free). Replicating our previous result, we observe that baseline neuronal 278 
timescales follow a hierarchical progression across association regions (Fig. 4B). If neuronal 279 
timescales track the temporal persistence of information in a functional manner, then they should 280 
expand during delay periods. Consistent with our prediction, timescales in all regions are ~20% 281 
longer during delay periods (Fig. 4C; p < 0.005 for all regions). Moreover, timescale changes in 282 
the PFC are significantly correlated with behavior across participants, where longer delay-period 283 
timescales relative to baseline are associated with better working memory performance (Fig. 4D, 284 
ρ = 0.75, p = 0.003). No other spectral features in the recorded brain regions experience 285 
consistent changes from baseline to delay periods while also significantly correlating with 286 
individual performance, including the 1/f-like spectral exponent, narrowband theta (3-8 Hz), and 287 
high-frequency (high gamma; 70-100 Hz) activity power (Fig. S6). 288 
 289 
In the long-term, aging is associated with a broad range of functional and structural changes, 290 
such as working memory impairments (Voytek et al., 2015b; Wang et al., 2011), as well as 291 
changes in neuronal dynamics (Voytek and Knight, 2015; Voytek et al., 2015b; Wang et al., 292 
2011) and cortical structure (Pegasiou et al., 2020; de Villers-Sidani et al., 2010), such as the 293 
loss of slow-deactivating NMDA receptor subunits (Pegasiou et al., 2020). Since neuronal 294 
timescales support working memory maintenance, we specifically predict that timescales 295 
shorten across the lifespan, in agreement with the observed cognitive and structural 296 
deteriorations. To this end, we leverage the wide age range in the MNI-iEEG dataset (13-62 297 
years old) and probe cortical timescales for each participant as a function of age. We observe 298 
that older adults have faster neuronal timescales (ρ = -0.31, p = 0.010; Fig. 4E and Fig. S7; see 299 
Materials and Methods), and that timescales shorten with age in most areas across the cortex (t 300 
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= -7.04, p < 0.001). This timescale compression is especially prominent in sensorimotor, 301 
temporal, and medial frontal regions (Fig. 4F and Fig. S7). These results support our hypothesis 302 
that neuronal timescales, estimated from transmembrane current fluctuations, can rapidly shift 303 
in a functionally relevant manner, as well as slowly—over decades—in healthy aging. 304 

 305 

 306 
Fig. 4. Timescales expand during working memory maintenance while tracking 307 
performance, and task-free average timescales compress in older adults. (A) 14 participants 308 
with overlapping intracranial coverage performed a visuospatial working memory task, with 309 
baseline (pre-stimulus) and delay period data analyzed (PC: parietal, PFC: prefrontal, OFC: 310 
orbitofrontal, MTL: medial temporal; n denotes number of subjects). (B) baseline timescales follow 311 
hierarchical organization within association regions (*: p < 0.05; mean±s.e.m. across participants). 312 
(C) all regions show significant timescale increase during delay period compared to baseline (***: 313 
p < 0.005, ****: p < 0.001, one-sample t-test). (D) PFC timescale expansion during delay periods 314 
predicts working memory accuracy across participants (mean±s.e.m. across PFC electrodes); 315 
inset: correlation between working memory accuracy and timescale change across regions. (E) 316 
in the MNI-iEEG dataset, participant-average cortical timescales decrease (become faster) with 317 
age. (F) most cortical parcels show a negative relationship between timescales and age, with the 318 
exception of parts of the visual cortex and the temporal poles (one-sample t-test, t = -7.04). 319 

 320 
 321 
Discussion 322 
Theoretical accounts and converging empirical evidence predict a graded variation of neuronal 323 
timescales across the human cortex (Chaudhuri et al., 2015; Huntenburg et al., 2018; Wang, 324 
2020), which reflects functional specialization and implements hierarchical temporal processing 325 
crucial for complex cognition (Kiebel et al., 2008). This timescale gradient is thought to emerge 326 
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as a consequence of cortical variations in cytoarchitecture and microcircuit connectivity, thus 327 
linking brain structure to function. In this work, we infer the timescale of non-rhythmic 328 
transmembrane current fluctuations from invasive human intracranial recordings and test those 329 
predictions explicitly.  330 
 331 
We find that neuronal timescales vary continuously across the human cortex and coincide with 332 
the anatomical hierarchy, with timescales increasing from primary sensory and motor to 333 
association regions. Timescales inferred from macaque ECoG scale with single-unit spiking 334 
timescales, corroborating the fact that field potential signals mainly reflect fast transmembrane 335 
and synaptic currents (Buzsáki et al., 2012), whose timescales are related to, but distinct from, 336 
single-unit timescales measured in previous studies (Murray et al., 2014; Ogawa and Komatsu, 337 
2010; Wasmuht et al., 2018). Because field potential fluctuations are driven by currents from 338 
both locally generated and distal inputs, our results raise questions on how and when these 339 
timescales interact to shape downstream spiking dynamics. 340 
 341 
Furthermore, transcriptomic analysis demonstrates the specific roles that transmembrane ion 342 
transporters and synaptic receptors play in establishing the cortical gradient of neuronal 343 
timescales, over and above the degree predicted by the principal structural gradient alone. The 344 
expression of voltage-gated potassium channel, chloride channel, and GABAergic receptor 345 
genes, in particular, are strongly associated with the spatial variation of neuronal timescale. 346 
Remarkably, we find that electrophysiology/transcriptomic relationships discovered at the single-347 
cell level, through patch-clamp recordings and single-cell RNA sequencing, are recapitulated at 348 
the macroscale between bulk gene expression and timescales inferred from ECoG. Our findings 349 
motivate further studies for investigating the precise roles voltage-gated ion channels and 350 
synaptic inhibition play in shaping functional neuronal timescales through causal manipulations, 351 
complementary to existing lines of research focusing on NMDA activation and recurrent circuit 352 
motifs. 353 
 354 
Finally, we show that neuronal timescales are not static, but can change both in the short- and 355 
long-term. Transmembrane current timescales across multiple association regions, including 356 
parietal, frontal, and medial temporal cortices, increase during the delay period of a working 357 
memory task, consistent with the emergence of persistent spiking during working memory delay. 358 
Working memory performance across individuals, however, is predicted by the extent of 359 
timescale increase in the PFC only. This further suggests that behavior-relevant neural activity 360 
may be localized despite widespread task-related modulation (Pinto et al., 2019), even at the 361 
level of neuronal membrane fluctuations. In the long-term, we find that neuronal timescale 362 
shortens with age in most cortical regions, linking age-related synaptic, cellular, and connectivity 363 
changes—particularly those that influence neuronal integration timescale—to the compensatory 364 
posterior-to-anterior shift of functional specialization in healthy aging (Davis et al., 2008).  365 
 366 
Overall, we identify consistent and converging patterns between transcriptomics, anatomy, 367 
dynamics, and function across multiple datasets of different modalities from different individuals 368 
and multiple species. As a result, evidence for these relationships can be supplemented by 369 
more targeted approaches such as imaging of receptor metabolism. Furthermore, the 370 
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introduction and validation of a novel method for inferring timescales from macroscale 371 
electrophysiological recordings potentially allows for the non-invasive estimation of neuronal 372 
timescales, using widely accessible tools such as EEG and MEG (Demirtaş et al., 2019). These 373 
results open up many avenues of research for discovering potential relationships between 374 
microscale gene expression and anatomy with the dynamics of neuronal population activity at 375 
the macroscale in humans. 376 
 377 
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Methods 622 
 623 
Inferring timescale from autocorrelation and power spectral density 624 
Consistent with previous studies, we define “neuronal timescale” as the exponential decay time 625 
constant (τ) of the empirical autocorrelation function (ACF), or lagged correlation (Honey et al., 626 
2012; Murray et al., 2014). τ can be naively estimated to be the time it takes for the ACF to 627 
decrease by a factor of e when there are no additional long-term, scale-free, or oscillatory 628 

processes, or by fitting a function of the form 𝑓(𝑡) 	= 	 𝑒"
!
" and extracting the parameter τ. 629 

Equivalently, the power spectral density (PSD) is the Fourier Transform of the ACF via Wiener-630 
Khinchin theorem, and follows a Lorentzian function of the form 𝐿(𝑓) 	= #

!$%#
	for approximately 631 

exponential-decay processes, with 𝜒 = 2 exactly when the ACF is solely composed of an 632 
exponential decay term, though it is often variable and in the range between 2-6 for neural time 633 
series (Haller et al., 2018; Miller et al., 2009; Podvalny et al., 2015; Voytek et al., 2015b). 634 
Timescale can be computed from the parameter k as 𝜏 = 	 &

'(%$
, where 𝑓! 	≈ 	 𝑘&/*	is approximated 635 

to be the frequency at which a bend or knee in the power spectrum occurs and equality holds 636 
when 𝜒 = 2.  637 
 638 
Computing power spectral density (PSD) 639 
PSDs are estimated using a modified Welch’s method, where short-time windowed Fourier 640 
transforms (STFT) are computed from the time series, but the median is taken across time instead 641 
of the mean (in conventional Welch’s method) to minimize the effect of high-amplitude transients 642 
and artifacts (Izhikevich et al., 2018). Custom functions for this can be found in NeuroDSP (Cole 643 
et al., 2019), a published and open-source digital signal processing toolbox for neural time series 644 
(neurodsp.spectral.compute_spectrum). For simulated data, Neurotycho macaque ECoG, and 645 
MNI-iEEG datasets, we use 1-second long Hamming windows with 0.5-s overlap. To estimate 646 
single-trial PSDs for the working memory ECoG dataset (Johnson-ECoG (Johnson et al., 2018a, 647 
2018b)), we simply apply Hamming window to 900-ms long epoched time series and compute the 648 
squared magnitude of the windowed-Fourier transform. 649 
 650 
Spectral parametrization - Fitting Oscillations and 1/f (FOOOF) 651 
We apply spectral parameterization (Haller et al., 2018) to extract timescales from PSDs. Briefly, 652 
we decompose log-power spectra into a summation of narrowband periodic components—653 
modeled as Gaussians—and an aperiodic component—modeled as a generalized Lorentzian 654 
function centered at 0 Hz (𝐿(𝑓) above). For inferring decay timescale, this formalism can be 655 
practically advantageous when a strong oscillatory or variable power-law (χ) component is 656 
present, as is often the case for neural signals. While oscillatory and power-law components can 657 
corrupt naive measurements of τ as time for the ACF to reach 1/e, they can be easily accounted 658 
for and ignored in the frequency domain as narrowband peaks and 1/f-exponent fit. We discard 659 
the periodic components and infer timescale from the aperiodic component of the PSD. For a 660 
complete mathematical description of the model, see (Haller et al., 2018). 661 
 662 
 663 
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Simulation and validation 664 
We simulate the aperiodic background component of neural field potential recordings as 665 
autocorrelated stochastic processes by convolving Poisson population spikes with exponentially-666 
decaying synaptic kernels with predefined decay time constants 667 
(neurodsp.sim.sim_synaptic_current). PSDs of the simulated data are computed and 668 
parameterized as described above, and we compare the fitted timescales with their ground-truth 669 
values. 670 
 671 
Macaque ECoG and single unit timescales data 672 
Macaque single-unit timescales are taken directly from values reported in Fig. 1c of (Murray et 673 
al., 2014). Whole-brain surface ECoG data (1000Hz sampling rate) is taken from the Neurotycho 674 
repository(Nagasaka et al., 2011; Yanagawa et al., 2013), with 8 sessions of 128-channel 675 
recordings from two animals (George and Chibi, 4 sessions each). Results reported in Fig. 2 are 676 
from ~10 minutes eyes-open resting periods to match the pre-stimulus baseline condition of 677 
single-unit experiments. Timescales for individual ECoG channels are extracted and averaged 678 
over regions corresponding to single-unit recording areas from(Murray et al., 2014) (Fig. 2C inset 679 
and Fig. S3), which are selected visually based on the overlapping cortical map and landmark 680 
sulci/gyri. Each region included between 2-4 electrodes (see Fig. S3C for selected ECoG channel 681 
indices for each region). 682 
 683 
Statistical analysis for macaque ECoG and spiking timescale 684 
For each individual recording session, as well as the grand average, Spearman rank correlation 685 
was computed between spiking and ECoG timescales. Linear regression models were fit using 686 
the python package scipy (Virtanen et al., 2020) (scipy.stats.linregress) and the linear slope was 687 
used to compute the scaling coefficient between spiking and ECoG timescales.  688 
 689 
Variations in neuronal timescale, T1/T2 ratio, and mRNA expression across human cortex 690 
The following sections describe procedures for generating the average cortical gradient maps for 691 
neuronal timescale, MR-derived T1w/T2w ratio, and gene expression from the respective raw 692 
datasets. All maps were projected onto the 180 left hemisphere parcels of Human Connectome 693 
Project’s Multimodal Parcellation (Glasser et al., 2016) (HCP-MMP1.0) for comparison, described 694 
in the individual sections. All spatial correlations are computed as Spearman rank correlations 695 
between maps. Procedure for computing statistical significance while accounting for spatial 696 
autocorrelation is described in detail below under the sections spatial statistics and spatial 697 
autocorrelation modeling. 698 
 699 
Neuronal timescale map 700 
The MNI Open iEEG dataset consists of 1 minute of resting state data across 1772 channels from 701 
106 epilepsy patients (13-62 years old, 58 males and 48 females), recorded using either surface 702 
strip/grid or stereoEEG electrodes, and cleaned of visible artifacts (Frauscher et al., 2018a, 703 
2018b). Neuronal timescales were extracted from PSDs of individual channels, and projected 704 
from MNI voxel coordinates onto HCP-MMP1.0 surface parcellation as follows: 705 
 706 
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For each patient, timescale estimated from each electrode was extrapolated to the rest of the 707 
cortex in MNI coordinates using a Gaussian weighting function (confidence mask), 𝑤(𝑟) 	=708 
	𝑒"(,%/-%), where r is the Euclidean distance between the electrode and a voxel, and α is the 709 
distance scaling constant, chosen here such that a voxel 4mm away has 50% weight (or, 710 
confidence). Timescale at each voxel is computed as a weighted spatial average of timescales 711 
from all electrodes (i) of that patient,  712 

i.e., 𝜏/0123 	= 	
∑& 5(,&) 6&
∑& 5(,&)

.  713 

Similarly, each voxel is assigned a confidence rating that is the maximum of weights over all 714 
electrodes (𝑤/0123(𝑟789), of the closest electrode), i.e., a voxel right under an electrode has a 715 
confidence of 1, while a voxel 4mm away from the closest electrode has a confidence of 0.5, etc.  716 
  717 
Timescales for each HCP-MMP parcel were then computed as the confidence-weighted 718 
arithmetic mean across all voxels that fall within the boundaries of that parcel. HCP-MMP 719 
boundary map is loaded and used for projection using NiBabel (Brett et al., 2020). This results in 720 
a 180 parcels-by-106 patients timescale matrix. A per-parcel confidence matrix of the same 721 
dimensions was computed by taking the maximum confidence over all voxels for each parcel (Fig. 722 
S1A). The average cortical timescale map (gradient) is computed by taking the confidence-723 
weighted average at each parcel across all participants. Note that this procedure for locally 724 
thresholded and weighted average is different from projection procedures used for the mRNA and 725 
T1w/T2w data due to region-constrained and heterogeneous ECoG electrode sites across 726 
participants. While coverage is sparse and idiosyncratic in individual participants, it does not vary 727 
as a function of age, and when pooling across the entire population, 178 of 180 parcels have at 728 
least one patient with an electrode within 4mm, with the best coverage in later sensorimotor, 729 
temporal, and frontal regions (Fig. S1). 730 
 731 
T1w/T2w ratio map 732 
As a measure of structural cortical hierarchy, we used the ratio between T1- and T2-weighted 733 
structural MRI, referred to as T1w/T2w map in main text, or the myelin map (Burt et al., 2018; 734 
Glasser and Van Essen, 2011). Since there is little variation in the myelin map across individuals, 735 
we used the group average myelin map of the WU-Minn HCP S1200 release (N = 1096, March 736 
1, 2017 release) provided in HCP-MMP1.0 surface space. For correlation with other variables, we 737 
computed the median value per parcel, identical to the procedure for mRNA expression below. 738 
 739 
mRNA expression maps 740 
We used the Allen Human Brain Atlas (AHBA) gene expression dataset (Hawrylycz et al., 2015, 741 
2012) that comprised postmortem samples of 6 donors (1 female, 5 male) that underwent 742 
microarray transcriptional profiling. Spatial maps of mRNA expression were available in 743 
volumetric 2 mm isotropic MNI space, following improved nonlinear registration and whole-brain 744 
prediction using variogram modeling as implemented by (Gryglewski et al., 2018). We used 745 
whole-brain maps available from (Gryglewski et al., 2018) rather than the native sample-wise 746 
values in the AHBA database to prevent bias that could occur due to spatial inhomogeneity of the 747 
sampled locations. In total, 18114 genes were included for analyses that related to the dominant 748 
axis of expression across the genome. 749 
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 750 
We projected the volumetric mRNA expression data onto the HCP-MMP cortical surface using 751 
the HCP workbench software (v1.3.1 running on Windows OS 10) with the “enclosing” method, 752 
and custom MATLAB code (github.com/rudyvdbrink/surface_projection). The enclosing method 753 
extracts for all vertices on the surface the value from enclosing voxels in the volumetric data. 754 
Alternative projection methods such as trilinear 3D linear interpolation of surrounding voxels, or 755 
ribbon mapping that constructs a polyhedron from each vertex's neighbors on the surface to 756 
compute a weighted mean for the respective vertices, yielded comparable values, but less 757 
complete cortical coverage. Moreover, the enclosing method ensured that no transformation of 758 
the data (non-linear or otherwise) occurred during the projection process and thus the original 759 
values in the volumetric data were preserved. 760 
 761 
Next, for each parcel of the left hemisphere in HCP-MMP, we extracted the median vertex-wise 762 
value. We used the median rather than the mean because it reduced the contribution of outliers 763 
in expression values within parcels. Vertices that were not enclosed by voxels that contained data 764 
in volumetric space were not included in the parcel-wise median. This was the case for 539 765 
vertices (1.81% of total vertices). Linear interpolation across empty vertices prior to computing 766 
median parcel-wise values yielded near-identical results (r = 0.95 for reconstructed surfaces). 767 
Lastly, expression values were mean and variance normalized across parcels to facilitate 768 
visualization. Normalization had no effect on spatial correlation between gene expression and 769 
other variables since the spatial distribution of gene expression was left unaltered.  770 
 771 
Spatial statistics 772 
All correlations between spatial maps (timescale, T1w/T2w, gene principal component, and 773 
individual gene expressions) were computed using Spearman rank correlation. As noted in (Burt 774 
et al., 2018, 2020; Vos de Wael et al., 2020), neural variables vary smoothly and continuously 775 
across the cortical surface, violating the assumption of independent samples. As a result, when 776 
correlating two variables each with non-trivial spatial autocorrelation, the naive p-value is 777 
artificially lowered since it is compared against an inappropriate null hypothesis, i.e., randomly 778 
distributed or shuffled values across space. Instead, a more appropriate null hypothesis 779 
introduces spatial autocorrelation-preserving null maps, which destroys any potential correlation 780 
between two maps while respecting their spatial autocorrelations. For all spatial correlation 781 
analyses, we generated N = 1000 null maps of one variable (timescale map unless otherwise 782 
noted), and the test statistic, Spearman correlation (ρ), is computed against the other variable of 783 
interest to build the null distribution. Two-tailed significance is then computed as the proportion of 784 
the null distribution that is less extreme than the empirical correlation value. All regression lines 785 
were computed by fitting a linear regression to log-timescale and the structural feature maps. 786 
 787 
 788 
Spatial autocorrelation modeling 789 
To generate spatial autocorrelation-preserving null maps, we used Moran’s Spectral 790 
Randomization (MSR) (Wagner and Dray, 2015) from the python package BrainSpace (Vos de 791 
Wael et al., 2020). Details of the algorithm can be found in the above references. Briefly, MSR 792 
performs eigendecomposition on a spatial weight matrix of choice, which is taken here to be the 793 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.05.25.115378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.115378
http://creativecommons.org/licenses/by-nc/4.0/


 

 24 

inverse average geodesic distance matrix between all pairs of parcels in HCP-MMP1.0. The 794 
eigenvectors of the weight matrix are then used to generate randomized null feature maps that 795 
preserves the autocorrelation of the empirical map. We used the singleton procedure for null map 796 
generation. All significance values reported (Fig. 2B, Fig. 3A-C) were adjusted using the above 797 
procedure.  798 
 799 
We also compare two other methods of generating null maps: spatial variogram fitting (Burt et al., 800 
2020) and spin permutation (Alexander-Bloch et al., 2018). Null maps were generated for 801 
timescale using spatial variogram fitting, while for spin permutation they were generated for 802 
vertex-wise T1w/T2w and gene PC1 maps before parcellation, so as to preserve surface locations 803 
of the parcellation itself. All methods perform similarly, producing comparable spatial 804 
autocorrelation in the null maps, assessed using spatial variogram, as well as null distribution of 805 
spatial correlation coefficients between timescale and T1w/T2w (Fig. S2). 806 
 807 
Principal Component Analysis (PCA) of gene expression 808 
We used scikit-learn (Pedregosa, 2011) PCA (sklearn.decomposition.PCA) to identify the 809 
dominant axes of gene expression variation across the entire AHBA dataset, as well as for brain-810 
specific genes. PCA was computed on the variance-normalized average gene expression maps, 811 
X, an N x P matrix where N = 18114 (or N = 2429 brain-specific) genes, and P = 180 cortical 812 
parcels. Briefly, PCA factorizes X such that 𝑋	 = 	𝑈𝑆𝑉:, where U and V are unitary matrices of 813 
dimensionality N x N and P x P, respectively. S is the same dimensionality as X and contains non-814 
negative descending eigenvalues on its main diagonal (Λ). Columns of V are defined as the 815 
principal components (PCs), and the dominant axis of gene expression is then defined as the first 816 
column of V, whose proportion of variance explained in the data is the first element of Λ divided 817 
by the sum over Λ. Results for PC1 and PC2-10 are shown in Fig. 3A and Fig. S4, respectively. 818 
 819 
Selection of brain-specific genes 820 
Similar to (Burt et al., 2018; Fagerberg et al., 2014; Genovese et al., 2016), N=2429 brain-specific 821 
genes were selected based on the criteria that expression in brain tissues were 4 times higher 822 
than the median expression across all tissue types, using Supplementary Dataset 1 of (Fagerberg 823 
et al., 2014). PC1 result shown in Fig. 3A is computed from brain-specific genes, though findings 824 
are identical when using all genes (ρ = -0.56 with timescale map, Fig. S4). 825 
 826 
Comparison of timescale-transcriptomic association with single-cell timescale genes 827 
Single-cell timescale genes were selected based on data from Table S3 and Online Table 1 of 828 
(Bomkamp et al., 2019; Tripathy et al., 2017), respectively. Using single-cell RNA sequencing 829 
data and patch-clamp recordings from transgenic mice cortical neurons, these studies identified 830 
genes whose expression significantly correlated with electrophysiological features derived from 831 
generalized linear integrate and fire (GLIF) model fits. We selected genes that were significantly 832 
correlated to membrane time constant (tau), input resistance (Rin or ri), or capacitance (Cm or 833 
cap) in the referenced data tables, and extracted the level of association between gene 834 
expression and those electrophysiological feature (correlation ‘DiscCorr’ in (Tripathy et al., 2017) 835 
and linear coefficient “beta_gene” in (Bomkamp et al., 2019)).  836 
 837 
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To compare timescale-gene expression association at the single-cell and macroscale level, we 838 
correlated the single-cell associations extracted above with the spatial correlation coefficient 839 
(macroscale ρ) between ECoG timescale and AHBA microarray expression data for those same 840 
genes, restricting to genes with p < 0.05 for macroscale correlation (results identical for non-841 
restrictive gene set). Overall association for all genes, as well as split by quintiles of their absolute 842 
macroscale correlation coefficient, are shown in Fig. 3D. Example “single-cell timescale” genes 843 
shown in Fig. 3B,C are genes showing the highest correlations with those electrophysiology 844 
features reported in Table 2 of (Bomkamp et al., 2019). 845 
 846 
T1w/T2w-removed timescale and gene expression residual maps 847 
To remove anatomical hierarchy as a potential mediating variable in timescale-gene expression 848 
relationships, we linearly regress out the T1w/T2w map from the (log) timescale map and 849 
individual gene expression maps. T1w/T2w was linearly fit to log-timescale, and the error between 850 
T1w/T2w-predicted timescale and empirical timescale was extracted (residual); this identical 851 
procedure was applied to every gene expression map to retrieve the gene residuals. Spatial 852 
autocorrelation-preserving null residual maps were similarly created using MSR. 853 
 854 
Partial least squares regression model 855 
Due to multicollinearity in the high-dimensional gene expression dataset (many more genes than 856 
parcels), we fit a partial least squares model to the timescale map with one output dimension 857 
(sklearn.cross_decomposition.PLSRegression) to estimate regression coefficient for all genes 858 
simultaneously, resulting in N=18114 (or N=2429 brain-specific) PLS weights(Vértes et al., 2016; 859 
Whitaker et al., 2016). To determine significantly associated (or, “enriched”) genes, we repeated 860 
the above PLS-fitting procedure 1000 times but replaced the empirical timescale map (or residual 861 
map) with null timescale maps (or residual maps) that preserved its spatial autocorrelation. Genes 862 
whose absolute empirical PLS weight that was greater than 95% of its null weight distribution was 863 
deemed to be enriched, and submitted for gene ontology enrichment analysis.  864 
 865 
Gene ontology enrichment analysis (GOEA) 866 
The Gene Ontology (GO) captures hierarchically structured relationships between GO items 867 
representing aspects of biological processes (BP), cellular components (CC), or molecular 868 
functions (MF). For example, "synaptic signaling”, "chemical synaptic transmission", and 869 
"glutamatergic synaptic transmission" are GO items with increasing specificity, with smaller 870 
subsets of genes associated with each function. Each GO item is annotated with a list of genes 871 
that have been linked to that particular process or function. GOEA examines the list of enriched 872 
genes from above to identify GO items that are more associated with those genes than expected 873 
by chance. We used GOATOOLS (Klopfenstein et al., 2018) to perform GOEA programmatically 874 
in python. 875 
 876 
The list of unranked genes with significant empirical PLS weights was submitted for GOEA as the 877 
“study set”, while either the full ABHA list or brain-specific gene list was used as the “reference 878 
set”. The output of GOEA is a list of GO terms with annotated genes that are enriched or purified 879 
(i.e., preferentially appearing or missing in the study list, respectively) more often than by chance, 880 
determined by Fisher’s exact test.  881 
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 882 
Enrichment ratio is defined as follows: given a reference set with N total genes, and n were found 883 
to be significantly associated with timescale (in the study set), for a single GO item with B total 884 
genes annotated to it, where b of them overlap with the study set, then 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡	 = 	 ;/9

</=
. 885 

Statistical significance is adjusted for multiple comparisons following Benjamini-Hochberg 886 
procedure (false discovery rate q-value reported in Fig. 3F), and all significant GO items (q < 0.05) 887 
are reported in Fig. 3F, in addition to some example items that did not pass significance threshold. 888 
For a detailed exposition, see (Bauer, 2017). Fig. 3F shows results using brain-specific genes. 889 
The GO items that are significantly associated are similar when using the full gene set, but 890 
typically with larger q-values (Tables S3 and S4) due to a mucher larger set of (non-brain-specific) 891 
genes. 892 
 893 
Working memory ECoG data and analysis 894 
The CRCNS fcx-2 and fcx-3 datasets include 17 intracranial ECoG recordings in total from 895 
epilepsy patients (10 and 7, respectively) performing the same visuospatial working memory task 896 
(Johnson, 2018, 2019; Johnson et al., 2018a, 2018b). Subject 3 (s3) from fcx-2 was discarded 897 
due to poor data quality upon examination of trial-averaged PSDs (high noise floor near 20 Hz), 898 
while s5 and s7 from fcx-3 correspond to s5 and s8 in fcx-2 and were thus combined. Together, 899 
data from 14 unique participants (22-50 years old, 5 female) were analyzed, with variable and 900 
overlapping coverage in parietal cortex (PC, n=14), prefrontal cortex (PFC, n=13), orbitofrontal 901 
cortex (OFC, n=8), and medial temporal lobe (MTL, n=9). Each channel was annotated as 902 
belonging to one of the above macro regions.  903 
 904 
Experimental setup is described in (Johnson, 2018, 2019; Johnson et al., 2018a, 2018b) in detail. 905 
Briefly, following a 1-second pre-trial fixation period (baseline), subjects were instructed to focus 906 
on one of two stimulus contexts (“identity” or “relation” information). Then two shapes were 907 
presented in sequence for 200 ms each. After a 900 or 1150 ms jittered precue delay (delay1), 908 
the test cue appeared for 800 ms, followed by another post-cue delay period of the same length 909 
(delay2). Finally, the response period required participants to perform a 2-alternative forced 910 
choice test based on the test cue, which varied based on trial condition. For our analysis, we 911 
collapsed across the stimulus context conditions and compared neuronal timescales during the 912 
last 900 ms of baseline and delay periods from the epoched data, which were free of visual stimuli, 913 
in order to avoid stimulus-related event-related potential effects. Behavioral accuracy for each 914 
experimental condition was reported for each participant, and we average across both stimulus 915 
context conditions to produce a single working memory accuracy per participant. 916 
 917 
Single-trial power spectra were computed for each channel as the squared magnitude of the 918 
Hamming-windowed Fourier Transform. We used 900 ms of data in all 3 periods (pre-trial, delay1, 919 
and delay2). Timescales were estimated by applying spectral parameterization as above, and the 920 
two delay-period estimates were averaged to produce a single delay period value. For 921 
comparison, we computed single-trial theta (3-8 Hz) and high-frequency activity (high gamma 922 
(Mukamel et al., 2005), 70-100 Hz) powers as the mean log-power within those frequency bins, 923 
as well as spectral exponent (χ). Single-trial timescale difference between delay and baseline was 924 
calculated as the difference of the log timescales due to the non-normal distribution of single-trial 925 
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timescale estimates. All other neural features were computed by subtracting baseline from the 926 
delay period.  927 
 928 
All neural features were then averaged across channels within the same regions, then trials, for 929 
each participant, to produce per-participant region-wise estimates, and finally averaged across all 930 
participants for the regional average in Fig. 4B,C. One-sample two-sided t-tests were used to 931 
determine the statistical significance of timescale change in each region (Fig. 4C), where the null 932 
hypothesis was no change between baseline and delay periods (i.e., delay is 100% of baseline). 933 
Spearman rank correlation was used to determine the relationship between neural activity 934 
(timescale; theta; high-frequency; χ) change and working memory accuracy across participants 935 
(Fig. 4D, Fig. S6). 936 
 937 
Per-subject average cortical timescale across age 938 
Since electrode coverage in the MNI-iEEG dataset is sparse and non-uniform across participants 939 
(Fig. S1), simply averaging across parcels within individuals to estimate an average cortical 940 
timescale per participant confounds the effect of age with the spatial effect of cortical hierarchy. 941 
Therefore, we instead first normalize each parcel by its max value across all participants before 942 
averaging within participants, excluding those with fewer than 10 valid parcels (71 of 106 subjects 943 
remaining; results hold for a range of threshold values; Fig. S7B). Spearman rank correlation was 944 
used to compute the association between age and average cortical timescale. 945 
 946 
Age-timescale association for individual parcels 947 
Each cortical parcel had a variable number of participants with valid timescale estimates above 948 
the consistency threshold, so we compute Spearman correlation between age and timescale for 949 
each parcel, but including only those with at least 5 participants (114 of 180 parcels, result holds 950 
for a range of threshold values; Fig. S7C). Spatial effect of age-timescale variation is plotted in 951 
Fig. 4F, where parcels that did not meet the threshold criteria are greyed out. Mean age-timescale 952 
correlation from individual parcels was significantly negative under one-sample t-test. 953 

 954 
 955 

  956 
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Supplemental Information 957 
 958 

 959 
Fig. S1. MNI-iEEG dataset coverage. (A), per-parcel Gaussian-weighted mask values showing 960 
how close the nearest electrode was to a given HCP-MMP1.0 parcel for each participant. 961 
Brighter means closer, 0.5 corresponds to the nearest electrode being 4 mm away. (B) 962 
maximum weight for each parcel across all participants. Most parcels have electrodes very 963 
close by across the entire participant pool. (C) the number of HCP-MMP parcels each 964 
participant has above the confidence threshold of 0.5 is uncorrelated with age. (D) number of 965 
participants with confidence above threshold at each parcel. Sensorimotor, frontal, and lateral 966 
temporal regions have the highest coverage. (E) average age of participants with confidence 967 
above threshold at each parcel. (F) age distribution of participants with confidence above 968 
threshold at each parcel. Average age per parcel (red line) is relatively stable while age 969 
distribution varies from parcel to parcel. 970 
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 971 
Fig. S2. Comparison of spatial autocorrelation-preserving null map generation methods. 972 
(A) distributions of Spearman correlation values between empirical T1w/T2w map and 1000 973 
spatial-autocorrelation preserving null timescale maps generated using Moran Spectral 974 
Randomization (MSR), spatial variogram fitting (VF), and spin permutation. Red dashed line 975 
denotes correlation between empirical timescale and T1w/T2w maps, p-values indicate two-976 
tailed significance, i.e., proportion of distribution with values more extreme than empirical 977 
correlation. (B) spatial variogram for empirical timescale map (black) and 10 null maps (blue) 978 
generated using MSR and VF. Inset shows distribution of distances between pairs of HCP-MMP 979 
parcels. (C) distribution of Spearman correlations between empirical and 1000 null timescale 980 
maps generated using MSR (green) and VF (red), showing similar levels of correlation between 981 
empirical and null maps for both methods. 982 
  983 
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 984 
Fig. S3. Macaque ECoG and single-unit coverage. (A) locations of 180-electrode ECoG grid 985 
from 2 animals in the Neurotycho dataset, colors correspond to locations used for comparison 986 
with single-unit timescales. (B) single-unit recording locations from Fig. 1a of (Murray et al., 987 
2014). (C) electrode indices of the sampled areas from the two animals, corresponding to those 988 
colored in (A). 989 
 990 
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 991 
Fig. S4. Transcriptomic PCA results. (A) proportion of variance explained by the top 10 992 
principal components (PCs) of brain-specific genes (top) and all AHBA genes (bottom). (B) 993 
absolute Spearman correlation between timescale map and top 10 PCs from brain-specific or 994 
full gene dataset. Asterisks indicate resampled significance while accounting for spatial 995 
autocorrelation, **** indicate p < 0.001. 996 
 997 
 998 

 999 
Fig. S5. Individual gene correlations from Fig. 3C with gene symbols labeled, and 1000 
grouped into functional families.  1001 
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 1002 
Fig. S6. Spectral correlates of working memory performance. (A) difference between delay 1003 
and baseline periods for 1/f-exponent, timescale (same as main Fig. 4C but absolute units on y-1004 
axis, instead of percentage), theta power, and high-frequency power. (B) Spearman correlation 1005 
between spectral feature difference and working memory accuracy across participants, same 1006 
features as in (A). * p < 0.05, ** p < 0.01, *** p < 0.005 in (A, B). (C) scatter plot of other 1007 
significantly correlated spectral features from (B). 1008 
  1009 
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 1010 
Fig. S7. Parameter sensitivity for timescale-aging analysis. (A) cortex-averaged timescale is 1011 
independent of parcel coverage across participants. (B) sensitivity analysis for the number of 1012 
valid parcels a participant must have in order to be included in analysis for main Fig. 4E (red). 1013 
As threshold increases (more stringent), fewer participants satisfy the criteria (right) but 1014 
correlation between participant age and timescale remains robust (left). (C) sensitivity analysis 1015 
for the number of valid participants a parcel must have in order to be included in analysis for 1016 
main Fig. 4F. As threshold increases (more stringent), fewer parcels satisfy the criteria (right) 1017 
but average correlation across all parcels remains robust (left, error bars denote s.e.m of 1018 
distribution as in Fig. 4F).1019 
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Table S1. Summary of open-access datasets used 1020 

Data Ref. Specific Source/ 
Format Used 

Relevant Figures  

MNI Open iEEG Atlas (Frauscher et al., 2018a, 
2018b) 

 Fig. 2A,B,  
Fig. 3,  
Fig. 4 

Tw1/T2w map 
Human Connectome 
Project 

(Glasser and Van Essen, 
2011; Glasser et al., 
2016) 

Release S1200, 
March 1, 2017 

Fig. 2A,B,  
Fig. 3D-F 

Neurotycho macaque 
ECoG 

(Nagasaka et al., 2011; 
Yanagawa et al., 2013) 

Anesthesia datasets, 
propofol and 
ketamine (Chibi and 
Geroge) 

Fig. 2C,D 

Macaque single-unit 
timescales 

(Murray et al., 2014) Fig. 1 of reference Fig. 2C,D 

Whole-cortex interpolated 
Allen Brain Atlas human 
gene expression  

(Gryglewski et al., 2018; 
Hawrylycz et al., 2012) 

Interpolated maps 
downloadable from 
http://www.meduniwi
en.ac.at/neuroimagin
g/mRNA.html 

Fig. 3 

Single-cell timescale-
related genes 

(Bomkamp et al., 2019; 
Tripathy et al., 2017) 

Table S3 from 
(Tripathy et al., 
2017), Online Table 
1 from (Bomkamp et 
al., 2019) 

Fig. 3C,D 

Human working memory 
ECoG 

(Johnson, 2018, 2019; 
Johnson et al., 2018a, 
2018b) 

CRCNS fcx-2 and 
fcx-3 

Fig. 4A-D 

 1021 
 1022 
  1023 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.05.25.115378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.115378
http://creativecommons.org/licenses/by-nc/4.0/


 

 35 

Table S2. Reproducing figures from code repository 1024 

All IPython notebooks: https://github.com/rdgao/field-echos/tree/master/notebooks  

Notebook Results 

2a_sim_method_schematic.ipynb simulations: Fig. 1B-E, Fig. S3 

2b_viz_NeuroTycho-SU.ipynb macaque timescales: Fig. 2C,D 

3_viz_human_structural.ipynb human timescales vs. T1w/T2w and gene expression:  
Fig. 2A,B, Fig. 3, Fig. S1, S4, S5; Table. S3 

4b_viz_human_wm.ipynb human working memory: Fig. 4A-D, Fig. S6 

4a_viz_human_aging.ipynb human aging: Fig. 4E,F, Fig. S7 

supp_spatialautocorr.ipynb spatial autocorrelation-preserving nulls: Fig. S2 

Projection of T1w/T2w and gene expression maps from MNI volumetric coordinates to HCP-
MMP1.0 can be found: https://github.com/rudyvdbrink/Surface_projection 

 1025 
 1026 
 1027 
 1028 
 1029 
 1030 
  1031 
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Table S3. Significant items from brain-specific GOEA (Fig. 3F) 1032 
gene 

association ID e/p ontology name 
enrichment 

ratio 
p-value 

(FDR-adjusted) 

all GO:0034702 e CC ion channel complex 1.959 0.008 

all GO:1902495 e CC transmembrane transporter complex 1.91 0.008 

all GO:1990351 e CC transporter complex 1.91 0.008 

all GO:0098982 e CC GABA-ergic synapse 2.497 0.038 

all GO:1902711 e CC GABA-A receptor complex 4.541 0.038 

all GO:0034707 e CC chloride channel complex 3.385 0.038 

pos GO:0008195 e MF phosphatidate phosphatase activity 13.864 0.007 

neg GO:0098660 e BP inorganic ion transmembrane transport 2.515 0.002 

neg GO:0098662 e BP 
inorganic cation transmembrane 
transport 2.529 0.007 

neg GO:0098655 e BP cation transmembrane transport 2.439 0.007 

neg GO:0034220 e BP ion transmembrane transport 2.057 0.03 

neg GO:0030001 e BP metal ion transport 2.239 0.036 

neg GO:0071805 e BP potassium ion transmembrane transport 3.122 0.036 

neg GO:0006813 e BP potassium ion transport 3.081 0.037 

neg GO:1902495 e CC transmembrane transporter complex 2.334 0.009 

neg GO:1990351 e CC transporter complex 2.334 0.009 

neg GO:0034702 e CC ion channel complex 2.36 0.009 

neg GO:0098796 e CC membrane protein complex 2.063 0.009 

neg GO:0034703 e CC cation channel complex 2.379 0.03 

neg GO:0005244 e MF voltage-gated ion channel activity 3.081 0.002 

neg GO:0022832 e MF voltage-gated channel activity 3.081 0.002 

neg GO:0046873 e MF 
metal ion transmembrane transporter 
activity 2.453 0.002 

neg GO:0022890 e MF 
inorganic cation transmembrane 
transporter activity 2.24 0.005 

neg GO:0005216 e MF ion channel activity 2.289 0.006 

neg GO:0008324 e MF 
cation transmembrane transporter 
activity 2.173 0.006 

neg GO:0015318 e MF 
inorganic molecular entity 
transmembrane transporter activity 2.04 0.006 

neg GO:0015077 e MF 
monovalent inorganic cation 
transmembrane transporter activity 2.535 0.006 

neg GO:0015075 e MF ion transmembrane transporter activity 2.024 0.006 
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neg GO:0015079 e MF 
potassium ion transmembrane 
transporter activity 3.041 0.006 

neg GO:0005215 e MF transporter activity 1.883 0.006 

neg GO:0022857 e MF transmembrane transporter activity 1.906 0.006 

neg GO:0022836 e MF gated channel activity 2.301 0.006 

neg GO:0015267 e MF channel activity 2.191 0.006 

neg GO:0022803 e MF 
passive transmembrane transporter 
activity 2.191 0.006 

neg GO:0005249 e MF 
voltage-gated potassium channel 
activity 3.658 0.006 

neg GO:0005261 e MF cation channel activity 2.353 0.009 

neg GO:0005267 e MF potassium channel activity 3.058 0.011 

neg GO:0022843 e MF voltage-gated cation channel activity 2.744 0.022 

e/p: enriched or purified; BP: biological process; CC: cellular components; MF: molecular 1033 
function  1034 
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Table S4. Significant items from all-gene GOEA 1035 
gene 

association ID e/p ontology name 
enrichment 

ratio 
p-value 

(FDR-adjusted) 

all GO:0034702 e CC ion channel complex 1.83 0.008 

all GO:1990351 e CC transporter complex 1.774 0.008 

all GO:1902495 e CC transmembrane transporter complex 1.79 0.008 

all GO:0034703 e CC cation channel complex 1.952 0.009 

all GO:0098982 e CC GABA-ergic synapse 2.468 0.048 

all GO:1902711 e CC GABA-A receptor complex 5.035 0.048 

pos GO:0050866 e BP negative regulation of cell activation 3.596 0 

pos GO:0002376 e BP immune system process 1.629 0 

pos GO:0006955 e BP immune response 1.992 0 

pos GO:0002695 e BP 
negative regulation of leukocyte 
activation 3.343 0.001 

pos GO:0045087 e BP innate immune response 2.297 0.005 

pos GO:0050865 e BP regulation of cell activation 2.099 0.005 

pos GO:0045321 e BP leukocyte activation 1.834 0.006 

pos GO:0007165 e BP signal transduction 1.301 0.006 

pos GO:0051250 e BP 
negative regulation of lymphocyte 
activation 3.305 0.007 

pos GO:0070663 e BP regulation of leukocyte proliferation 2.82 0.007 

pos GO:0002252 e BP immune effector process 1.778 0.009 

pos GO:0050670 e BP regulation of lymphocyte proliferation 2.823 0.009 

pos GO:0032944 e BP 
regulation of mononuclear cell 
proliferation 2.807 0.009 

pos GO:0050776 e BP regulation of immune response 1.787 0.011 

pos GO:0002682 e BP regulation of immune system process 1.571 0.015 

pos GO:0046634 e BP regulation of alpha-beta T cell activation 3.772 0.016 

pos GO:0001775 e BP cell activation 1.709 0.016 

pos GO:0032956 e BP 
regulation of actin cytoskeleton 
organization 2.229 0.016 

pos GO:0003150 e BP muscular septum morphogenesis 17.672 0.016 

pos GO:0032945 e BP 
negative regulation of mononuclear cell 
proliferation 4.208 0.016 

pos GO:0050672 e BP 
negative regulation of lymphocyte 
proliferation 4.208 0.016 

pos GO:0006952 e BP defense response 1.686 0.016 
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pos GO:0002694 e BP regulation of leukocyte activation 2.013 0.016 

pos GO:0002253 e BP activation of immune response 2.183 0.016 

pos GO:0030833 e BP 
regulation of actin filament 
polymerization 2.832 0.016 

pos GO:0032970 e BP 
regulation of actin filament-based 
process 2.136 0.017 

pos GO:0002684 e BP 
positive regulation of immune system 
process 1.708 0.017 

pos GO:0046640 e BP 
regulation of alpha-beta T cell 
proliferation 6.094 0.017 

pos GO:0050868 e BP negative regulation of T cell activation 3.381 0.017 

pos GO:0002274 e BP myeloid leukocyte activation 1.926 0.017 

pos GO:0008064 e BP 
regulation of actin polymerization or 
depolymerization 2.697 0.017 

pos GO:0030832 e BP regulation of actin filament length 2.681 0.017 

pos GO:0006334 e BP nucleosome assembly 3.053 0.018 

pos GO:0070664 e BP 
negative regulation of leukocyte 
proliferation 3.956 0.018 

pos GO:0038096 e BP 
Fc-gamma receptor signaling pathway 
involved in phagocytosis 3.787 0.026 

pos GO:0002433 e BP 

immune response-regulating cell 
surface receptor signaling pathway 
involved in phagocytosis 3.787 0.026 

pos GO:0098883 e BP synapse pruning 10.041 0.027 

pos GO:0038094 e BP Fc-gamma receptor signaling pathway 3.734 0.029 

pos GO:0051249 e BP regulation of lymphocyte activation 2.035 0.029 

pos GO:0002431 e BP 
Fc receptor mediated stimulatory 
signaling pathway 3.682 0.03 

pos GO:0042116 e BP macrophage activation 4.734 0.03 

pos GO:0110053 e BP regulation of actin filament organization 2.279 0.03 

pos GO:0150064 e BP vertebrate eye-specific patterning 22.09 0.03 

pos GO:0002683 e BP 
negative regulation of immune system 
process 2.008 0.03 

pos GO:0051049 e BP regulation of transport 1.428 0.03 

pos GO:0098542 e BP defense response to other organism 1.811 0.033 

pos GO:0150146 e BP cell junction disassembly 9.204 0.033 

pos GO:0016322 e BP neuron remodeling 9.204 0.033 

pos GO:1903038 e BP 
negative regulation of leukocyte cell-cell 
adhesion 3.04 0.033 
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pos GO:0007166 e BP cell surface receptor signaling pathway 1.391 0.034 

pos GO:0034728 e BP nucleosome organization 2.591 0.037 

pos GO:0036336 e BP dendritic cell migration 6.976 0.037 

pos GO:0048584 e BP 
positive regulation of response to 
stimulus 1.379 0.039 

pos GO:0001774 e BP microglial cell activation 5.727 0.039 

pos GO:0002269 e BP 
leukocyte activation involved in 
inflammatory response 5.727 0.039 

pos GO:0050778 e BP positive regulation of immune response 1.82 0.039 

pos GO:2000112 p BP 
regulation of cellular macromolecule 
biosynthetic process 0.718 0.017 

pos GO:0051252 p BP regulation of RNA metabolic process 0.718 0.019 

pos GO:0044271 p BP 
cellular nitrogen compound biosynthetic 
process 0.554 0.029 

pos GO:0019219 p BP 
regulation of nucleobase-containing 
compound metabolic process 0.737 0.029 

pos GO:0090304 p BP nucleic acid metabolic process 0.654 0.037 

pos GO:0032993 e CC protein-DNA complex 2.829 0.016 

pos GO:0000786 e CC nucleosome 3.488 0.016 

pos GO:0005887 e CC 
integral component of plasma 
membrane 1.555 0.016 

pos GO:0031226 e CC 
intrinsic component of plasma 
membrane 1.536 0.016 

pos GO:0044815 e CC DNA packaging complex 3.217 0.023 

pos GO:0030666 e CC endocytic vesicle membrane 2.705 0.034 

pos GO:0031514 e CC motile cilium 2.897 0.034 

pos GO:0043235 e CC receptor complex 1.981 0.04 

pos GO:0000839 e CC Hrd1p ubiquitin ligase ERAD-L complex 11.045 0.047 

pos GO:0016021 e CC integral component of membrane 1.232 0.047 

pos GO:0005634 p CC nucleus 0.79 0.04 

pos GO:0003676 p MF nucleic acid binding 0.694 0.012 

neg GO:0006813 e BP potassium ion transport 2.911 0.004 

neg GO:0071805 e BP potassium ion transmembrane transport 2.868 0.008 

neg GO:0015079 e MF 
potassium ion transmembrane 
transporter activity 2.888 0.001 

neg GO:0015075 e MF ion transmembrane transporter activity 1.726 0.001 

neg GO:0022857 e MF transmembrane transporter activity 1.649 0.001 
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neg GO:0046873 e MF 
metal ion transmembrane transporter 
activity 2.068 0.001 

neg GO:0005215 e MF transporter activity 1.587 0.002 

neg GO:0022832 e MF voltage-gated channel activity 2.468 0.006 

neg GO:0005244 e MF voltage-gated ion channel activity 2.468 0.006 

neg GO:0015318 e MF 
inorganic molecular entity 
transmembrane transporter activity 1.662 0.008 

neg GO:0001227 e MF 
DNA-binding transcription repressor 
activity, RNA polymerase II-specific 2.227 0.011 

neg GO:0001217 e MF 
DNA-binding transcription repressor 
activity 2.218 0.011 

neg GO:0022836 e MF gated channel activity 2.007 0.015 

neg GO:0005249 e MF 
voltage-gated potassium channel 
activity 3.126 0.015 

neg GO:0015077 e MF 
monovalent inorganic cation 
transmembrane transporter activity 1.916 0.022 

neg GO:0005267 e MF potassium channel activity 2.703 0.022 

neg GO:0022890 e MF 
inorganic cation transmembrane 
transporter activity 1.701 0.033 

e/p: enriched or purified; BP: biological process; CC: cellular components; MF: molecular 1036 
function 1037 
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