

1 **Title:** Neuronal timescales are functionally dynamic and shaped by cortical microarchitecture

2

3 **Authors:** Richard Gao^{1*}, Ruud L. van den Brink⁵, Thomas Pfeffer⁶, Bradley Voytek¹⁻⁴

4

5 **Affiliations:**

6 ¹Department of Cognitive Science,

7 ²Halıcıoğlu Data Science Institute,

8 ³Neurosciences Graduate Program,

9 ⁴Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA 92093

10 ⁵Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

11 ⁶Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain.

12

13 * Correspondence: r.dg.gao@gmail.com

14

15 **Abstract**

16 Complex cognitive functions such as working memory and decision-making require information
17 maintenance over many timescales, from transient sensory stimuli to long-term contextual cues.
18 While theoretical accounts predict the emergence of a corresponding hierarchy of neuronal
19 timescales, direct electrophysiological evidence across the human cortex is lacking. Here, we
20 infer neuronal timescales from invasive intracranial recordings. Timescales increase along the
21 principal sensorimotor-to-association axis across the entire human cortex, and scale with single-
22 unit timescales within macaques. Cortex-wide transcriptomic analysis shows direct alignment
23 between timescales and expression of excitation- and inhibition-related genes, as well as genes
24 specific to voltage-gated transmembrane ion transporters. Finally, neuronal timescales are
25 functionally dynamic: prefrontal cortex timescales expand during working memory maintenance
26 and predict individual performance, while cortex-wide timescales compress with aging. Thus,
27 neuronal timescales follow cytoarchitectonic gradients across the human cortex, and are
28 relevant for cognition in both short- and long-terms, bridging microcircuit physiology with
29 macroscale dynamics and behavior.

32 **Introduction**

33 Human brain regions are broadly specialized for different aspects of behavior and cognition. For
34 example, primary sensory neurons are tightly coupled to changes in the environment, firing
35 rapidly to the onset and removal of a stimulus, and showing characteristically short intrinsic
36 timescales (Ogawa and Komatsu, 2010; Runyan et al., 2017). In contrast, neurons in cortical
37 association (or transmodal) regions, such as the prefrontal cortex (PFC), can sustain their
38 activity for many seconds when a person is engaged in working memory (Zylberberg and
39 Strowbridge, 2017), decision-making (Gold and Shadlen, 2007), and hierarchical reasoning
40 (Sarafyazd and Jazayeri, 2019). This persistent activity in the absence of immediate sensory
41 stimuli reflects longer neuronal timescales, which is thought to result from neural attractor states
42 (Wang, 2002; Wimmer et al., 2014) shaped by NMDA-mediated recurrent excitation and fast
43 feedback inhibition (Wang, 1999, 2008), with contributions from other synaptic and cell-intrinsic
44 properties (Duarte and Morrison, 2019; Gjorgjieva et al., 2016).

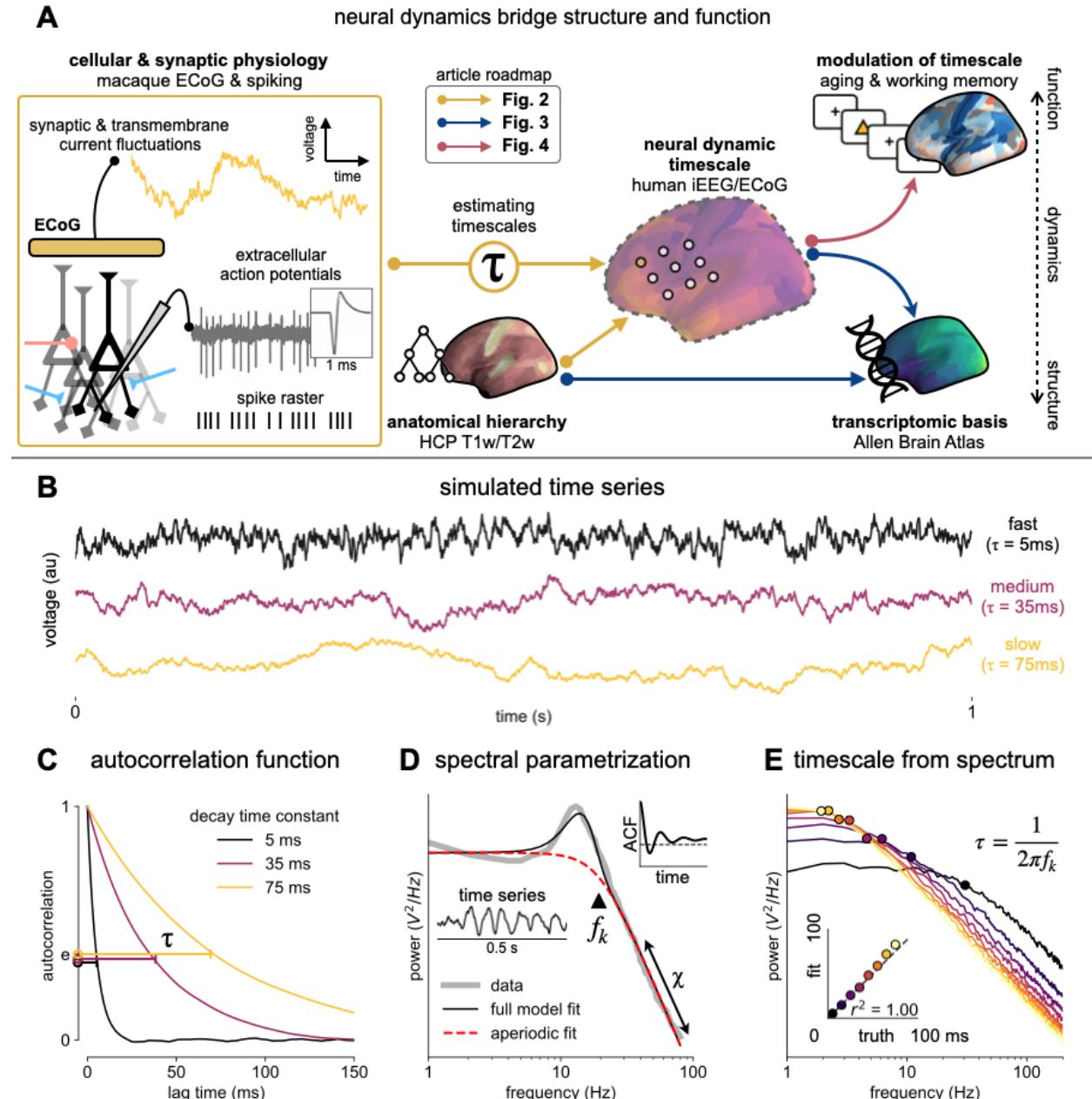
45

46 Recent studies have shown that variations in many such microarchitectural features follow
47 continuous and coinciding gradients along a sensory-to-association axis across the cortex,
48 including cortical thickness, cell density, and distribution of excitatory and inhibitory neurons
49 (Hilgetag and Goulas, 2020; Huntenburg et al., 2018; Wang, 2020). In particular, grey matter
50 myelination (Glasser and Van Essen, 2011), which indexes anatomical hierarchy, varies with
51 the expression of numerous genes related to microcircuit function, such as NMDA receptor and
52 inhibitory cell-type marker genes (Burt et al., 2018). Functionally, specialization of the human
53 cortex, as well as structural and functional connectivity (Margulies et al., 2016), also follow
54 similar macroscopic gradients. In addition to the broad differentiation between sensory and
55 association cortices, there is evidence for a finer hierarchical organization within the frontal
56 cortex (Sarafyazd and Jazayeri, 2019). For example, the anterior-most parts of the PFC are
57 responsible for long timescale goal-planning behavior (Badre and D'Esposito, 2009; Voytek et
58 al., 2015a), while healthy aging is associated with a shift in these gradients such that older
59 adults become more reliant on higher-level association regions to compensate for altered lower-
60 level cortical functioning (Davis et al., 2008).

61

62 Despite convergent observations of continuous cortical gradients in structural features and
63 cognitive specialization, there is no direct evidence for a similar gradient of neuronal timescales
64 across the human cortex. Such a gradient of neuronal dynamics is predicted to be a natural
65 consequence of macroscopic variations in synaptic connectivity and microarchitectural features
66 (Chaudhuri et al., 2015; Duarte et al., 2017; Huntenburg et al., 2018; Wang, 2020), and would
67 be a primary candidate for how functional specialization emerges as a result of hierarchical
68 temporal processing (Kiebel et al., 2008). Single-unit recordings in rodents and non-human
69 primates hint at a hierarchy of timescales that increase, or expand, progressively along a
70 posterior-to-anterior axis (Murray et al., 2014; Runyan et al., 2017; Wasmuht et al., 2018), while
71 intracranial recordings and functional neuroimaging data collected during perceptual and
72 cognitive tasks suggest likewise in humans (Baldassano et al., 2017; Honey et al., 2012; Lerner
73 et al., 2011; Watanabe et al., 2019). However, these data are either sparsely sampled across
74 the cortex or do not measure neuronal activity at the cellular and synaptic level directly,
75 prohibiting the full construction of an electrophysiological timescale gradient across the human

76 cortex. As a result, while whole-cortex data of transcriptomic and anatomical variations exist, we
77 cannot take advantage of them to dissect the contributions of synaptic, cellular, and circuit
78 connectivity in shaping fast neuronal timescales, nor ask whether regional timescales are
79 dynamic and relevant for human cognition (Fig. 1A).
80



81
82 **Fig. 1. Schematic of study and timescale inference technique.** (A) in this study, we infer
83 neuronal timescales from intracranial field potential recordings, which reflect integrated synaptic
84 and transmembrane current fluctuations over large neural populations(Buzsáki et al., 2012).
85 Combining multiple open-access datasets (Table S1), we link timescales to known human
86 anatomical hierarchy, dissect its cellular and physiological basis via transcriptomic analysis, and
87 demonstrate its functional modulation during behavior and through aging. (B) simulated time
88 series, and their (C) autocorrelation functions (ACF), with increasing timescales (decay time
89 constant). (D) example ECoG power spectral density (PSD) showing that in frequency domain,
90 timescale is equivalent to the frequency of aperiodic power drop-off (f_k , triangle; insets: time
91 series and ACF). (E) accurate extraction of timescale parameters from PSDs of simulated time
92 series in (B).

93

94 Results

95

96 **Neuronal timescale can be inferred from frequency domain**

97 To overcome these limitations, we develop a novel computational method for inferring the
98 timescale of neuronal transmembrane current fluctuations from human intracranial
99 electrocorticography (ECoG) recordings (Fig. 1A, box). Neural time series exhibit variable
100 temporal autocorrelation, or timescales, where future values are partially predictable from past
101 values, and predictability decreases with increasing time lags. To demonstrate the effect of
102 varying autocorrelation, we simulate the aperiodic (non-rhythmic) component of neural field
103 potential recordings by convolving Poisson population spikes with exponentially-decaying
104 synaptic kernels (Fig. 1B). Consistent with previous studies, “neuronal timescale” here is
105 defined as the exponential decay time constant (τ) of the autocorrelation function (ACF) (Murray
106 et al., 2014)—the time it takes for the ACF to decrease by a factor of e (Fig. 1C). Equivalently,
107 we can estimate neuronal timescale from the “characteristic frequency” (f_k) of the power spectral
108 density (PSD), especially when the presence of variable $1/f$ (x) and oscillatory components can
109 bias timescale inference from the ACF in time-domain (Fig. 1D). In this study, we apply spectral
110 parameterization (Haller et al., 2018) to extract timescales from intracranial recordings, which
111 decomposes neural PSDs into a combination of oscillatory and aperiodic components, where
112 timescale is inferred from the latter. We validate this approach on PSDs computed from
113 simulated neural time series and show that the model-fitted timescales closely match their
114 ground-truth values (Fig. 1E).

115

116 **Timescales follow anatomical hierarchy and are 10x faster than spiking timescales**

117 Applying this technique, we infer a continuous gradient of neuronal timescales across the human
118 cortex and examine its relationship with anatomical hierarchy. We analyze a large dataset of
119 human intracranial (ECoG) recordings of task-free brain activity from 106 epilepsy patients (MNI-
120 iEEG (Frauscher et al., 2018a), see Fig. S1 for electrode coverage), and compare the ECoG-
121 derived timescale gradient to the average T1w/T2w map from the Human Connectome Project,
122 which captures grey matter myelination and indexes the proportion of feedforward vs. feedback
123 connections between cortical regions, defining an anatomical hierarchy (Burt et al., 2018; Glasser
124 and Van Essen, 2011).

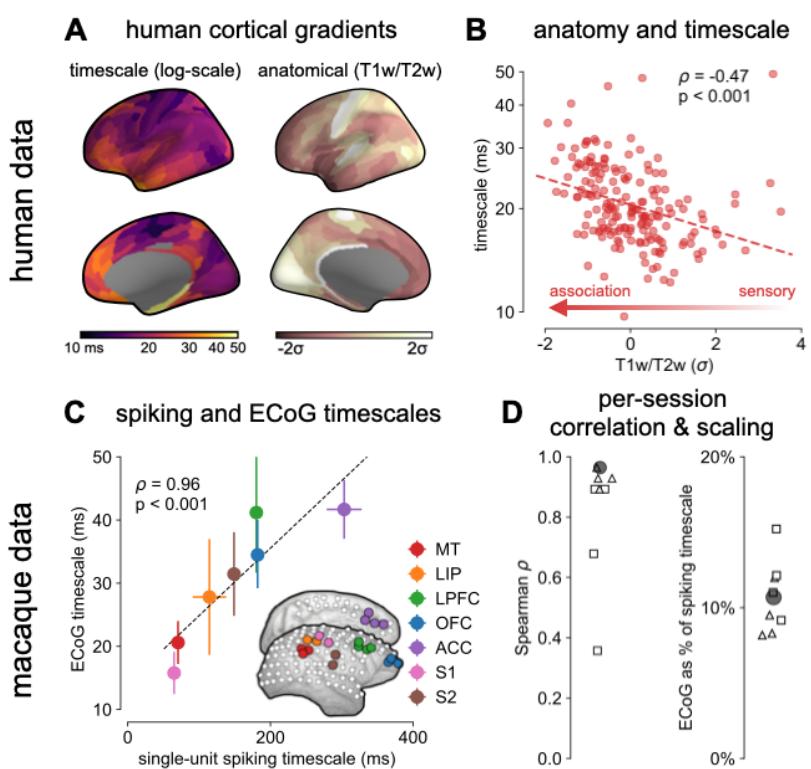
125

126 Across the human cortex, timescales of fast electrophysiological dynamics (~10-50 ms)
127 predominantly follow a rostrocaudal gradient (Fig. 2A). Consistent with numerous accounts of a
128 principal cortical axis spanning from primary sensory to association regions (Hilgetag and Goulas,
129 2020; Margulies et al., 2016; Wang, 2020), timescales are shorter in sensorimotor and early visual
130 areas, and longer in association regions, especially posterior parietal, ventral/medial frontal, and
131 medial temporal cortex. Cortical timescales are negatively correlated with T1w/T2w (Fig. 2B, $\rho =$
132 -0.47, $p < 0.001$; adjusted for spatial autocorrelation, see Materials and Methods and Fig. S2),
133 such that timescales are shorter in more heavily myelinated (lower-level) cortical regions.

134

135 While surface ECoG recordings offer much broader spatial coverage than extracellular single-unit
136 recordings, they are fundamentally different signals: ECoG and field potentials largely reflect

137 integrated synaptic and other transmembrane currents across many neuronal and glial cells,
138 rather than putative action potentials from single neurons (Buzsáki et al., 2012) (Fig. 1A, box).
139 Considering this, we ask whether timescales measured from ECoG are related to single-unit
140 spiking timescales along the cortical hierarchy. To test this, we extract neuronal timescales from
141 task-free ECoG recordings in macaques and compare them to a separate dataset of single-unit
142 spiking timescales (Murray et al., 2014) (Fig. 2C, inset; see Fig. S3 for electrode locations).
143 Consistent with spiking timescale estimates (Murray et al., 2014; Wasmuht et al., 2018), ECoG
144 timescales also increase along the macaque cortical hierarchy. While there is a strong
145 correspondence between spiking and ECoG timescales (Fig. 2C; $\rho = 0.96$, $p < 0.001$)—measured
146 from independent datasets—across the macaque cortex, ECoG-derived timescales are 10 times
147 faster than single-unit timescales and are conserved across individual sessions (Fig. 2D). This
148 suggests that neuronal spiking and transmembrane currents have distinct but related timescales
149 of fluctuations, and that both are hierarchically organized along the primate cortex.
150



151
152 **Fig. 2. Timescale increases along the anatomical hierarchy in humans and macaques.** (A)
153 human cortical timescale gradient (left) falls predominantly along the rostrocaudal axis, similar to
154 T1w/T2w ratio (right). (B) neuronal timescales are negatively correlated with cortical T1w/T2w,
155 thus increasing along the anatomical hierarchy from sensory to association regions (p -value
156 adjusted for spatial autocorrelation). (C) macaque ECoG timescales track published single-unit
157 spiking timescales (Murray et al., 2014) in corresponding regions (mean \pm s.e.m from $n=8$
158 sessions); inset: ECoG electrode map of one animal. (D) ECoG-derived timescales are
159 consistently correlated to (left), and an order of magnitude faster than (right), single-unit
160 timescales across individual sessions. Hollow markers: individual sessions; shapes: animals;
161 solid circles: grand average from (C).

162
163

164 **Synaptic and ion channel genes shape timescales of neuronal dynamics**

165 Next, we identify cellular and synaptic mechanisms underlying timescale variations across the
166 human cortex. Theoretical accounts posit that NMDA-mediated recurrent excitation coupled with
167 fast inhibition (Chaudhuri et al., 2015; Wang, 1999, 2008), as well as cell-intrinsic properties
168 (Duarte and Morrison, 2019; Gjorgjieva et al., 2016; Koch et al., 1996), are crucial for shaping
169 neuronal timescales. While *in vitro* and *in vivo* studies in model organisms (van Vugt et al.,
170 2020; Wang et al., 2013) can test these hypotheses at the single-neuron level, causal
171 manipulation and large-scale recording of neuronal networks embedded in the human brain is
172 severely limited. Here, we apply an approach analogous to multimodal single-cell profiling
173 (Bomkamp et al., 2019) and examine the transcriptomic basis of neuronal dynamics at the
174 macroscale.

175

176 Leveraging cortex-wide bulk mRNA expression variations (Hawrylycz et al., 2012), we find that
177 the neuronal timescale gradient overlaps with the dominant axis of gene expression across the
178 human cortex ($\rho = -0.60$, $p < 0.001$; Fig. 3A and Fig. S4). Consistent with theoretical predictions
179 (Fig. 3B), timescales significantly correlate with the expression of genes encoding for NMDA
180 (GRIN2B) and GABA-A (GABRA3) receptor subunits, voltage-gated sodium (SCN1A) and
181 potassium (KCNA3) ion channel subunits, as well as inhibitory cell-type markers (parvalbumin,
182 PVALB), and genes previously identified to be associated with single-neuron membrane time
183 constants (PRR5) (Bomkamp et al., 2019).

184

185 More specifically, *in vitro* electrophysiological studies have shown that, for example, increased
186 expression of receptor subunit 2B extends the NMDA current time course (Flint et al., 1997), while
187 2A expression shortens it (Monyer et al., 1994). Similarly, the GABA-A receptor time constant
188 lengthens with increasing a3:a1 subunit ratio (Eyre et al., 2012). We show that these relationships
189 are recapitulated at the macroscale, where neuronal timescales positively correlate with GRIN2B
190 and GABRA3 expression, and negatively correlate with GRIN2A and GABRA1. These results
191 demonstrate that timescales of neural dynamics depend on specific receptor subunit
192 combinations with different (de)activation timescales (Duarte et al., 2017; Gjorgjieva et al., 2016),
193 in addition to broad excitation-inhibition interactions (Gao et al., 2017; Wang, 2002, 2020).
194 Notably, almost all genes related to voltage-gated sodium and potassium ion channel alpha-
195 subunits—the main functional subunits—are correlated with timescale, while all inhibitory cell-
196 type markers except parvalbumin have strong positive associations with timescale (Fig. 3C and
197 Fig. S5).

198

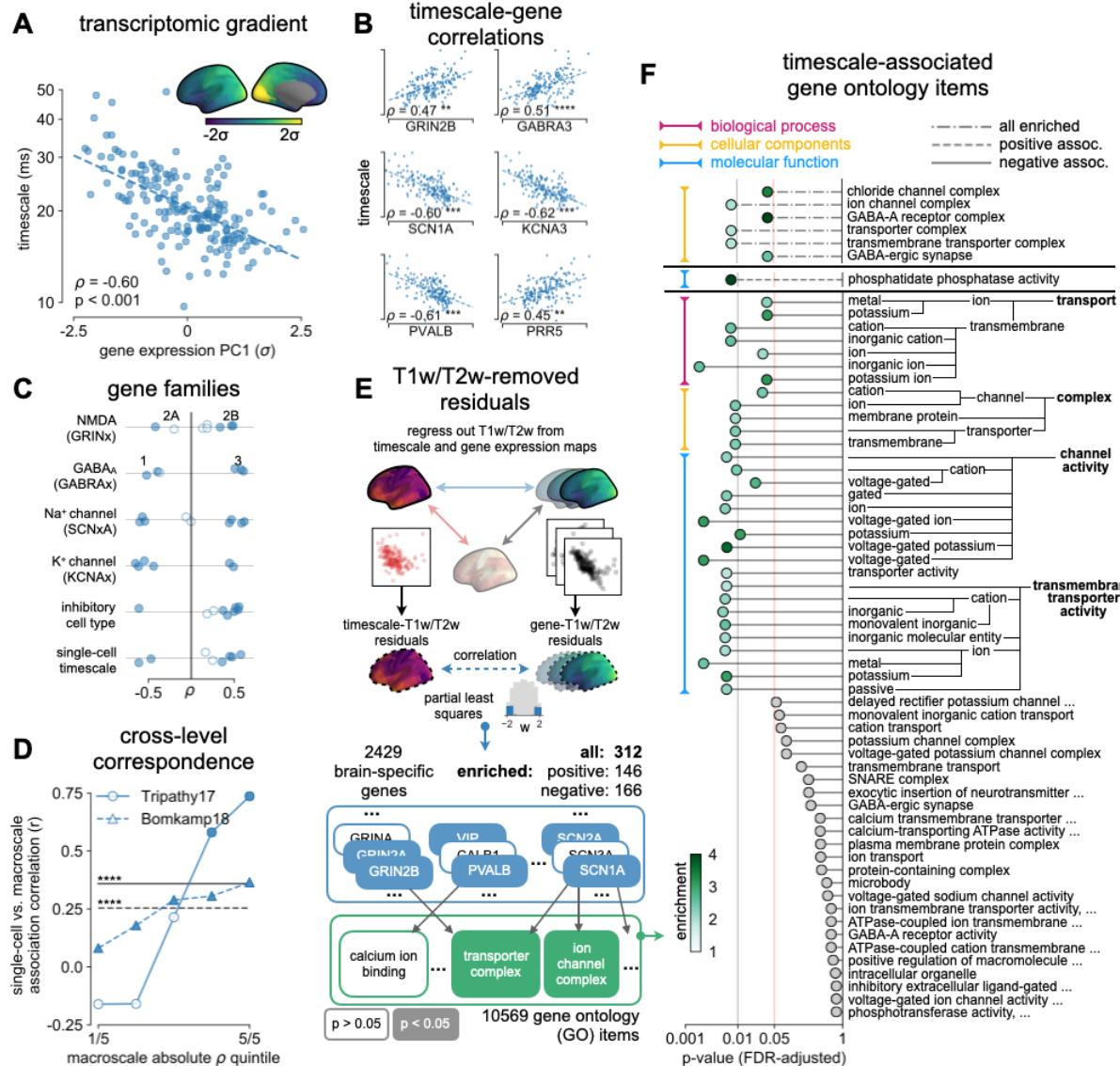
199 We further test whether single-cell timescale-transcriptomic associations are captured at the
200 macroscale as follows: for a given gene, we can measure how strongly its expression correlates
201 with membrane time constant parameters at the single-cell level using patch-clamp and RNA
202 sequencing (scRNASeq) data (Bomkamp et al., 2019; Tripathy et al., 2017). Analogously, we can
203 measure its macroscopic transcriptomic-timescale correlation using the cortical gradients above.
204 Comparing across these two levels for all previously-identified timescale-related genes
205 (Bomkamp et al., 2019; Tripathy et al., 2017), we find a significant correlation between the

206 strength of association at the single-cell and macroscale levels (Fig. 3D, horizontal lines; $\rho = 0.36$
207 and 0.25 , $p < 0.001$). Furthermore, genes with stronger associations to timescale tend to conserve
208 this relationship across single-cell and macroscale levels (Fig. 3D, separated by macroscale
209 correlation magnitude). Thus, the association between cellular variations in gene expression and
210 cell-intrinsic temporal dynamics is captured at the macroscale, even though scRNAseq and
211 microarray data represent entirely different measurements of gene expression.

212 While we have shown associations between cortical timescales and genes suspected to influence
213 neuronal dynamics, these data present an opportunity to discover additional novel genes that are
214 functionally related to timescales through a data-driven approach. However, since transcriptomic
215 variation and anatomical hierarchy overlap along a shared macroscopic gradient (Burt et al., 2018;
216 Huntenburg et al., 2018; Margulies et al., 2016), we cannot specify the role certain genes play
217 based on their level of association with timescale alone: gene expression differences across the
218 cortex first result in cell-type and connectivity differences, sculpting the hierarchical organization
219 of cortical anatomy. Consequently, anatomy and cell-intrinsic properties jointly shape neuronal
220 dynamics through connectivity differences (Chaudhuri et al., 2015; Demirtaş et al., 2019) and
221 expression of ion transport proteins with variable activation timescales, respectively. Therefore,
222 we ask whether variation in gene expression still accounts for variation in timescale beyond the
223 principal structural gradient, and if associated genes have known functional roles in biological
224 processes (schematic in Fig. 4E). To do this, we first remove the contribution of anatomical
225 hierarchy by regressing out the T1w/T2w gradient from both timescale and individual gene
226 expression gradients. We then fit partial least squares (PLS) models to simultaneously estimate
227 regression weights for all genes (Whitaker et al., 2016), submitting those with significant
228 associations for gene ontology enrichment analysis (GOEA) (Klopfenstein et al., 2018).

229 We find that genes highly associated with neuronal timescales are preferentially related to
230 transmembrane ion transporter complexes, as well as GABAergic synapses and chloride
231 channels (Fig. 4F, Table S3 and S4). When restricted to positively-associated genes only
232 (expression increases with timescales), one functional group related to phosphatidate
233 phosphatase activity is uncovered, including the gene PLPPR1, which has been linked to
234 neuronal plasticity (Savaskan et al., 2004). Conversely, genes that are negatively associated with
235 timescale are related to numerous groups involved in the construction and functioning of
236 transmembrane transporters and voltage-gated ion channels, especially potassium and other
237 inorganic cation transporters. The discovery of these gene ontology items suggests that inhibition
238 (Telenczuk et al., 2017)—mediated by GABA and chloride channels—and voltage-gated
239 potassium channels have prominent roles in shaping neuronal timescale dynamics at the
240 macroscale level, beyond what's expected based on the anatomical hierarchy alone.

241



242

243 **Fig. 3. Timescale gradient is linked to expression of genes related to synaptic receptors**
 244 **and transmembrane ion channels across the human cortex. (A)** timescale gradient follows
 245 the dominant axis of gene expression variation across the cortex (PC1, arbitrary direction). **(B)**
 246 timescale gradient is significantly correlated with expression of genes known to alter synaptic and
 247 neuronal membrane time constants, as well as inhibitory cell-type markers, but **(C)** members
 248 within a gene family (e.g., NMDA receptor subunits) can be both positively and negatively
 249 associated with timescales. **(D)** macroscale timescale-transcriptomic correlation captures
 250 association between RNA-sequenced expression of the same genes and single-cell timescale
 251 properties fit to patch clamp data (Bomkamp et al., 2019; Tripathy et al., 2017), and the
 252 correspondence improves for genes (separated by quintiles) that are more strongly correlated
 253 with timescale (horizontal lines: correlation across all genes from (Bomkamp et al., 2019; Tripathy
 254 et al., 2017), $p = 0.36$ and 0.25). **(E)** T1w/T2w gradient is regressed out from timescale and gene
 255 expression gradients, and a partial least squares (PLS) model is fit to the residual maps. Genes
 256 with significant PLS weights are submitted for gene ontology enrichment analysis. **(F)** enriched

257 genes are primarily linked to transmembrane transporters and GABA-ergic synapses; genes
258 specifically with strong negative associations further over-represent transmembrane ion
259 exchange mechanisms, especially voltage-gated potassium and cation transporters. Spatial
260 correlation p-values in **(A-C)** are adjusted for spatial autocorrelation (see Materials and Methods;
261 asterisks in **(B,D)** indicate $p < 0.05$, 0.01, 0.005, and 0.001 respectively; filled circles in **(C,D)**
262 indicate $p < 0.05$).

263
264

265 **Timescales lengthen in working memory and shorten in aging**

266 Finally, we investigate whether timescales are functionally dynamic and relevant for human
267 cognition. While previous studies have shown hierarchical segregation of task-relevant
268 information corresponding to intrinsic timescales of different cortical regions (Baldassano et al.,
269 2017; Chien and Honey, 2020; Honey et al., 2012; Runyan et al., 2017; Sarafyazd and Jazayeri,
270 2019; Wasmuht et al., 2018), as well as optimal adaptation of behavioral timescales to match the
271 environment (Ganupuru et al., 2019; Ossmy et al., 2013), evidence for functionally relevant
272 changes in regional neuronal timescales is lacking. Here, we examine whether timescales
273 undergo short- and long-term shifts during working memory maintenance and aging, respectively.

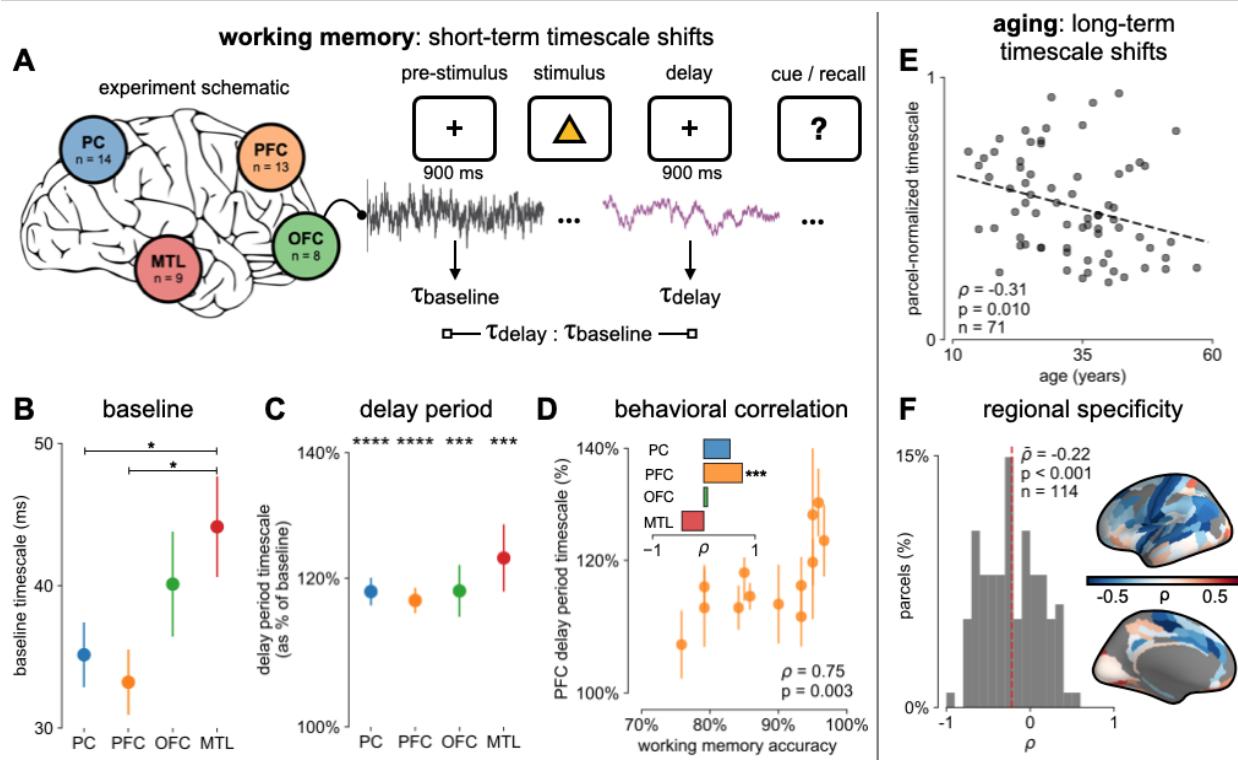
274

275 We first analyze human ECoG recordings where participants performed a visuospatial working
276 memory task that requires a delayed cued response (Fig. 4A) (Johnson et al., 2018a). Neuronal
277 timescales were extracted for pre-stimulus baseline and memory maintenance delay periods (900
278 ms, both stimulus-free). Replicating our previous result, we observe that baseline neuronal
279 timescales follow a hierarchical progression across association regions (Fig. 4B). If neuronal
280 timescales track the temporal persistence of information in a functional manner, then they should
281 expand during delay periods. Consistent with our prediction, timescales in all regions are $\sim 20\%$
282 longer during delay periods (Fig. 4C; $p < 0.005$ for all regions). Moreover, timescale changes in
283 the PFC are significantly correlated with behavior across participants, where longer delay-period
284 timescales relative to baseline are associated with better working memory performance (Fig. 4D,
285 $\rho = 0.75$, $p = 0.003$). No other spectral features in the recorded brain regions experience
286 consistent changes from baseline to delay periods while also significantly correlating with
287 individual performance, including the 1/f-like spectral exponent, narrowband theta (3-8 Hz), and
288 high-frequency (high gamma; 70-100 Hz) activity power (Fig. S6).

289

290 In the long-term, aging is associated with a broad range of functional and structural changes,
291 such as working memory impairments (Voytek et al., 2015b; Wang et al., 2011), as well as
292 changes in neuronal dynamics (Voytek and Knight, 2015; Voytek et al., 2015b; Wang et al.,
293 2011) and cortical structure (Pegasiou et al., 2020; de Villers-Sidani et al., 2010), such as the
294 loss of slow-deactivating NMDA receptor subunits (Pegasiou et al., 2020). Since neuronal
295 timescales support working memory maintenance, we specifically predict that timescales
296 shorten across the lifespan, in agreement with the observed cognitive and structural
297 deteriorations. To this end, we leverage the wide age range in the MNI-iEEG dataset (13-62
298 years old) and probe cortical timescales for each participant as a function of age. We observe
299 that older adults have faster neuronal timescales ($\rho = -0.31$, $p = 0.010$; Fig. 4E and Fig. S7; see
300 Materials and Methods), and that timescales shorten with age in most areas across the cortex (t

301 = -7.04, $p < 0.001$). This timescale compression is especially prominent in sensorimotor,
 302 temporal, and medial frontal regions (Fig. 4F and Fig. S7). These results support our hypothesis
 303 that neuronal timescales, estimated from transmembrane current fluctuations, can rapidly shift
 304 in a functionally relevant manner, as well as slowly—over decades—in healthy aging.
 305



306
 307 **Fig. 4. Timescales expand during working memory maintenance while tracking**
 308 **performance, and task-free average timescales compress in older adults. (A)** 14 participants
 309 with overlapping intracranial coverage performed a visuospatial working memory task, with
 310 baseline (pre-stimulus) and delay period data analyzed (PC: parietal, PFC: prefrontal, OFC:
 311 orbitofrontal, MTL: medial temporal; n denotes number of subjects). **(B)** baseline timescales follow
 312 hierarchical organization within association regions (*: $p < 0.05$; mean \pm s.e.m. across participants).
 313 **(C)** all regions show significant timescale increase during delay period compared to baseline (***:
 314 $p < 0.005$, ****: $p < 0.001$, one-sample t-test). **(D)** PFC timescale expansion during delay periods
 315 predicts working memory accuracy across participants (mean \pm s.e.m. across PFC electrodes);
 316 inset: correlation between working memory accuracy and timescale change across regions. **(E)**
 317 in the MNI-iEEG dataset, participant-average cortical timescales decrease (become faster) with
 318 age. **(F)** most cortical parcels show a negative relationship between timescales and age, with the
 319 exception of parts of the visual cortex and the temporal poles (one-sample t-test, $t = -7.04$).

320
 321 **Discussion**
 322 Theoretical accounts and converging empirical evidence predict a graded variation of neuronal
 323 timescales across the human cortex (Chaudhuri et al., 2015; Huntenburg et al., 2018; Wang,
 324 2020), which reflects functional specialization and implements hierarchical temporal processing
 325 crucial for complex cognition (Kiebel et al., 2008). This timescale gradient is thought to emerge

327 as a consequence of cortical variations in cytoarchitecture and microcircuit connectivity, thus
328 linking brain structure to function. In this work, we infer the timescale of non-rhythmic
329 transmembrane current fluctuations from invasive human intracranial recordings and test those
330 predictions explicitly.
331
332 We find that neuronal timescales vary continuously across the human cortex and coincide with
333 the anatomical hierarchy, with timescales increasing from primary sensory and motor to
334 association regions. Timescales inferred from macaque ECoG scale with single-unit spiking
335 timescales, corroborating the fact that field potential signals mainly reflect fast transmembrane
336 and synaptic currents (Buzsáki et al., 2012), whose timescales are related to, but distinct from,
337 single-unit timescales measured in previous studies (Murray et al., 2014; Ogawa and Komatsu,
338 2010; Wasmuht et al., 2018). Because field potential fluctuations are driven by currents from
339 both locally generated and distal inputs, our results raise questions on how and when these
340 timescales interact to shape downstream spiking dynamics.
341
342 Furthermore, transcriptomic analysis demonstrates the specific roles that transmembrane ion
343 transporters and synaptic receptors play in establishing the cortical gradient of neuronal
344 timescales, over and above the degree predicted by the principal structural gradient alone. The
345 expression of voltage-gated potassium channel, chloride channel, and GABAergic receptor
346 genes, in particular, are strongly associated with the spatial variation of neuronal timescale.
347 Remarkably, we find that electrophysiology/transcriptomic relationships discovered at the single-
348 cell level, through patch-clamp recordings and single-cell RNA sequencing, are recapitulated at
349 the macroscale between bulk gene expression and timescales inferred from ECoG. Our findings
350 motivate further studies for investigating the precise roles voltage-gated ion channels and
351 synaptic inhibition play in shaping functional neuronal timescales through causal manipulations,
352 complementary to existing lines of research focusing on NMDA activation and recurrent circuit
353 motifs.
354
355 Finally, we show that neuronal timescales are not static, but can change both in the short- and
356 long-term. Transmembrane current timescales across multiple association regions, including
357 parietal, frontal, and medial temporal cortices, increase during the delay period of a working
358 memory task, consistent with the emergence of persistent spiking during working memory delay.
359 Working memory performance across individuals, however, is predicted by the extent of
360 timescale increase in the PFC only. This further suggests that behavior-relevant neural activity
361 may be localized despite widespread task-related modulation (Pinto et al., 2019), even at the
362 level of neuronal membrane fluctuations. In the long-term, we find that neuronal timescale
363 shortens with age in most cortical regions, linking age-related synaptic, cellular, and connectivity
364 changes—particularly those that influence neuronal integration timescale—to the compensatory
365 posterior-to-anterior shift of functional specialization in healthy aging (Davis et al., 2008).
366
367 Overall, we identify consistent and converging patterns between transcriptomics, anatomy,
368 dynamics, and function across multiple datasets of different modalities from different individuals
369 and multiple species. As a result, evidence for these relationships can be supplemented by
370 more targeted approaches such as imaging of receptor metabolism. Furthermore, the

371 introduction and validation of a novel method for inferring timescales from macroscale
372 electrophysiological recordings potentially allows for the non-invasive estimation of neuronal
373 timescales, using widely accessible tools such as EEG and MEG (Demirtaş et al., 2019). These
374 results open up many avenues of research for discovering potential relationships between
375 microscale gene expression and anatomy with the dynamics of neuronal population activity at
376 the macroscale in humans.

377

378 **References**

379 Alexander-Bloch, A.F., Shou, H., Liu, S., Satterthwaite, T.D., Glahn, D.C., Shinohara, R.T.,
380 Vandekar, S.N., and Raznahan, A. (2018). On testing for spatial correspondence between maps
381 of human brain structure and function. *Neuroimage* 178, 540–551.

382 Badre, D., and D'Esposito, M. (2009). Is the rostro-caudal axis of the frontal lobe hierarchical?
383 *Nat. Rev. Neurosci.* 10, 659–669.

384 Baldassano, C., Chen, J., Zadbood, A., Pillow, J.W., Hasson, U., and Norman, K.A. (2017).
385 Discovering Event Structure in Continuous Narrative Perception and Memory. *Neuron* 95, 709–
386 721.e5.

387 Bauer, S. (2017). Gene-Category Analysis. In *The Gene Ontology Handbook*, C. Dessimoz, and
388 N. Škunca, eds. (New York, NY: Springer New York), pp. 175–188.

389 Bomkamp, C., Tripathy, S.J., Bengtsson Gonzales, C., Hjerling-Leffler, J., Craig, A.M., and
390 Pavlidis, P. (2019). Transcriptomic correlates of electrophysiological and morphological diversity
391 within and across excitatory and inhibitory neuron classes. *PLoS Comput. Biol.* 15, e1007113.

392 Brett, M., Markiewicz, C.J., Hanke, M., Côté, M.-A., Cipollini, B., McCarthy, P., Jarecka, D.,
393 Cheng, C.P., Halchenko, Y.O., Cottaar, M., et al. (2020). nipy/nibabel: 3.1.0.

394 Burt, J.B., Demirtaş, M., Eckner, W.J., Navejar, N.M., Ji, J.L., Martin, W.J., Bernacchia, A.,
395 Anticevic, A., and Murray, J.D. (2018). Hierarchy of transcriptomic specialization across human
396 cortex captured by structural neuroimaging topography. *Nat. Neurosci.* 21, 1251–1259.

397 Burt, J.B., Helmer, M., Shinn, M., Anticevic, A., and Murray, J.D. (2020). Generative modeling of
398 brain maps with spatial autocorrelation.

399 Buzsáki, G., Anastassiou, C.A., and Koch, C. (2012). The origin of extracellular fields and
400 currents--EEG, ECoG, LFP and spikes. *Nat. Rev. Neurosci.* 13, 407–420.

401 Chaudhuri, R., Knoblauch, K., Gariel, M.-A., Kennedy, H., and Wang, X.-J. (2015). A Large-
402 Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex. *Neuron*
403 88, 419–431.

404 Chien, H.-Y.S., and Honey, C.J. (2020). Constructing and Forgetting Temporal Context in the
405 Human Cerebral Cortex. *Neuron*.

406 Cole, S., Donoghue, T., Gao, R., and Voytek, B. (2019). NeuroDSP: a package for neural digital
407 signal processing. *Journal of Open Source Software* 4, 1272.

408 Davis, S.W., Dennis, N.A., Daselaar, S.M., Fleck, M.S., and Cabeza, R. (2008). Que PASA?

409 The posterior–anterior shift in aging. *Cereb. Cortex* 18, 1201–1209.

410 Demirtaş, M., Burt, J.B., Helmer, M., Ji, J.L., Adkinson, B.D., Glasser, M.F., Van Essen, D.C.,
411 Sotiropoulos, S.N., Anticevic, A., and Murray, J.D. (2019). Hierarchical Heterogeneity across
412 Human Cortex Shapes Large-Scale Neural Dynamics. *Neuron* 101, 1181–1194.e13.

413 Duarte, R., and Morrison, A. (2019). Leveraging heterogeneity for neural computation with
414 fading memory in layer 2/3 cortical microcircuits. *PLoS Comput. Biol.* 15, e1006781.

415 Duarte, R., Seeholzer, A., Zilles, K., and Morrison, A. (2017). Synaptic patterning and the
416 timescales of cortical dynamics. *Curr. Opin. Neurobiol.* 43, 156–165.

417 Eyre, M.D., Renzi, M., Farrant, M., and Nusser, Z. (2012). Setting the time course of inhibitory
418 synaptic currents by mixing multiple GABA(A) receptor α subunit isoforms. *J. Neurosci.* 32,
419 5853–5867.

420 Fagerberg, L., Hallström, B.M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka,
421 M., Tahmasebpoor, S., Danielsson, A., Edlund, K., et al. (2014). Analysis of the human tissue-
422 specific expression by genome-wide integration of transcriptomics and antibody-based
423 proteomics. *Mol. Cell. Proteomics* 13, 397–406.

424 Flint, A.C., Maisch, U.S., Weishaupt, J.H., Kriegstein, A.R., and Monyer, H. (1997). NR2A
425 subunit expression shortens NMDA receptor synaptic currents in developing neocortex. *J.*
426 *Neurosci.* 17, 2469–2476.

427 Frauscher, B., von Ellenrieder, N., Zelmann, R., Doležalová, I., Minotti, L., Olivier, A., Hall, J.,
428 Hoffmann, D., Nguyen, D.K., Kahane, P., et al. (2018a). Atlas of the normal intracranial
429 electroencephalogram: neurophysiological awake activity in different cortical areas. *Brain* 141,
430 1130–1144.

431 Frauscher, B., von Ellenrieder, N., Zelmann, R., Rogers, C., Nguyen, D.K., Kahane, P., Dubeau,
432 F., and Gotman, J. (2018b). High-Frequency Oscillations in the Normal Human Brain. *Ann.*
433 *Neurol.* 84, 374–385.

434 Ganupuru, P., Goldring, A.B., Harun, R., and Hanks, T.D. (2019). Flexibility of Timescales of
435 Evidence Evaluation for Decision Making. *Curr. Biol.* 29, 2091–2097.e4.

436 Gao, R., Peterson, E.J., and Voytek, B. (2017). Inferring synaptic excitation/inhibition balance
437 from field potentials. *Neuroimage* 158, 70–78.

438 Genovese, G., Fromer, M., Stahl, E.A., Ruderfer, D.M., Chambert, K., Landén, M., Moran, J.L.,
439 Purcell, S.M., Sklar, P., Sullivan, P.F., et al. (2016). Increased burden of ultra-rare protein-
440 altering variants among 4,877 individuals with schizophrenia. *Nat. Neurosci.* 19, 1433–1441.

441 Gjorgjieva, J., Drion, G., and Marder, E. (2016). Computational implications of biophysical
442 diversity and multiple timescales in neurons and synapses for circuit performance. *Curr. Opin.*
443 *Neurobiol.* 37, 44–52.

444 Glasser, M.F., and Van Essen, D.C. (2011). Mapping human cortical areas in vivo based on
445 myelin content as revealed by T1- and T2-weighted MRI. *J. Neurosci.* 31, 11597–11616.

446 Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., Ugurbil, K.,
447 Andersson, J., Beckmann, C.F., Jenkinson, M., et al. (2016). A multi-modal parcellation of

448 human cerebral cortex. *Nature* 536, 171–178.

449 Gold, J.I., and Shadlen, M.N. (2007). The neural basis of decision making. *Annu. Rev. Neurosci.*
450 30, 535–574.

451 Gryglewski, G., Seiger, R., James, G.M., Godbersen, G.M., Komorowski, A., Unterholzner, J.,
452 Michenthaler, P., Hahn, A., Wadsak, W., Mitterhauser, M., et al. (2018). Spatial analysis and
453 high resolution mapping of the human whole-brain transcriptome for integrative analysis in
454 neuroimaging. *Neuroimage* 176, 259–267.

455 Haller, M., Donoghue, T., Peterson, E., Varma, P., Sebastian, P., Gao, R., Noto, T., Knight,
456 R.T., Shestyuk, A., and Voytek, B. (2018). Parameterizing neural power spectra.

457 Hawrylycz, M., Miller, J.A., Menon, V., Feng, D., Dolbeare, T., Guillozet-Bongaarts, A.L., Jegga,
458 A.G., Aronow, B.J., Lee, C.-K., Bernard, A., et al. (2015). Canonical genetic signatures of the
459 adult human brain. *Nat. Neurosci.* 18, 1832–1844.

460 Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., Shen, E.H., Ng, L., Miller, J.A., van de
461 Lagemaat, L.N., Smith, K.A., Ebbert, A., Riley, Z.L., et al. (2012). An anatomically
462 comprehensive atlas of the adult human brain transcriptome. *Nature* 489, 391–399.

463 Hilgetag, C.C., and Goulas, A. (2020). “Hierarchy” in the organization of brain networks. *Philos.
464 Trans. R. Soc. Lond. B Biol. Sci.* 375, 20190319.

465 Honey, C.J., Thesen, T., Donner, T.H., Silbert, L.J., Carlson, C.E., Devinsky, O., Doyle, W.K.,
466 Rubin, N., Heeger, D.J., and Hasson, U. (2012). Slow cortical dynamics and the accumulation of
467 information over long timescales. *Neuron* 76, 423–434.

468 Huntenburg, J.M., Bazin, P.-L., and Margulies, D.S. (2018). Large-Scale Gradients in Human
469 Cortical Organization. *Trends Cogn. Sci.* 22, 21–31.

470 Izhikevich, L., Gao, R., Peterson, E., and Voytek, B. (2018). Measuring the average power of
471 neural oscillations.

472 Johnson, E. (2018). Intracranial EEG recordings of medial temporal, lateral frontal, and
473 orbitofrontal regions in 10 human adults performing a visuospatial working memory task
474 (CRCNS.org).

475 Johnson, E. (2019). Intracranial EEG recordings of lateral frontal and parietal regions in 7
476 human adults performing a visuospatial working memory task (CRCNS.org).

477 Johnson, E.L., Adams, J.N., Solbakk, A.-K., Endestad, T., Larsson, P.G., Ivanovic, J., Meling,
478 T.R., Lin, J.J., and Knight, R.T. (2018a). Dynamic frontotemporal systems process space and
479 time in working memory. *PLoS Biol.* 16, e2004274.

480 Johnson, E.L., King-Stephens, D., Weber, P.B., Laxer, K.D., Lin, J.J., and Knight, R.T. (2018b).
481 Spectral Imprints of Working Memory for Everyday Associations in the Frontoparietal Network.
482 *Front. Syst. Neurosci.* 12, 65.

483 Kiebel, S.J., Daunizeau, J., and Friston, K.J. (2008). A hierarchy of time-scales and the brain.
484 *PLoS Comput. Biol.* 4, e1000209.

485 Klopfenstein, D.V., Zhang, L., Pedersen, B.S., Ramírez, F., Warwick Vesztrocy, A., Naldi, A.,

486 Mungall, C.J., Yunes, J.M., Botvinnik, O., Weigel, M., et al. (2018). GOATOOLS: A Python
487 library for Gene Ontology analyses. *Sci. Rep.* 8, 10872.

488 Koch, C., Rapp, M., and Segev, I. (1996). A brief history of time (constants). *Cereb. Cortex* 6,
489 93–101.

490 Lerner, Y., Honey, C.J., Silbert, L.J., and Hasson, U. (2011). Topographic mapping of a
491 hierarchy of temporal receptive windows using a narrated story. *J. Neurosci.* 31, 2906–2915.

492 Margulies, D.S., Ghosh, S.S., Goulas, A., Falkiewicz, M., Huntenburg, J.M., Langs, G., Bezgin,
493 G., Eickhoff, S.B., Castellanos, F.X., Petrides, M., et al. (2016). Situating the default-mode
494 network along a principal gradient of macroscale cortical organization. *Proc. Natl. Acad. Sci. U.*
495 *S. A.* 113, 12574–12579.

496 Miller, K.J., Sorensen, L.B., Ojemann, J.G., and den Nijs, M. (2009). Power-law scaling in the
497 brain surface electric potential. *PLoS Comput. Biol.* 5, e1000609.

498 Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B., and Seeburg, P.H. (1994).
499 Developmental and regional expression in the rat brain and functional properties of four NMDA
500 receptors. *Neuron* 12, 529–540.

501 Mukamel, R., Gelbard, H., Arieli, A., Hasson, U., Fried, I., and Malach, R. (2005). Coupling
502 between neuronal firing, field potentials, and fMRI in human auditory cortex. *Science* 309, 951–
503 954.

504 Murray, J.D., Bernacchia, A., Freedman, D.J., Romo, R., Wallis, J.D., Cai, X., Padoa-Schioppa,
505 C., Pasternak, T., Seo, H., Lee, D., et al. (2014). A hierarchy of intrinsic timescales across
506 primate cortex. *Nat. Neurosci.* 17, 1661–1663.

507 Nagasaka, Y., Shimoda, K., and Fujii, N. (2011). Multidimensional recording (MDR) and data
508 sharing: an ecological open research and educational platform for neuroscience. *PLoS One* 6,
509 e22561.

510 Ogawa, T., and Komatsu, H. (2010). Differential temporal storage capacity in the baseline
511 activity of neurons in macaque frontal eye field and area V4. *J. Neurophysiol.* 103, 2433–2445.

512 Ossmy, O., Moran, R., Pfeffer, T., Tsetsos, K., Usher, M., and Donner, T.H. (2013). The
513 timescale of perceptual evidence integration can be adapted to the environment. *Curr. Biol.* 23,
514 981–986.

515 Pedregosa, F. (2011). Scikit-learn: Machine Learning in Python. *J. Mach. Learn. Res.* 12, 2825–
516 2830.

517 Pegasiou, C.M., Zolnourian, A., Gomez-Nicola, D., Deinhardt, K., Nicoll, J.A.R., Ahmed, A.I.,
518 Vajramani, G., Grundy, P., Verhoog, M.B., Mansvelder, H.D., et al. (2020). Age-Dependent
519 Changes in Synaptic NMDA Receptor Composition in Adult Human Cortical Neurons. *Cereb.*
520 *Cortex*.

521 Pinto, L., Rajan, K., DePasquale, B., Thibierge, S.Y., Tank, D.W., and Brody, C.D. (2019). Task-
522 Dependent Changes in the Large-Scale Dynamics and Necessity of Cortical Regions. *Neuron*
523 104, 810–824.e9.

524 Podvalny, E., Noy, N., Harel, M., Bickel, S., Chechik, G., Schroeder, C.E., Mehta, A.D.,

525 Tsodyks, M., and Malach, R. (2015). A unifying principle underlying the extracellular field
526 potential spectral responses in the human cortex. *J. Neurophysiol.* **114**, 505–519.

527 Runyan, C.A., Piasini, E., Panzeri, S., and Harvey, C.D. (2017). Distinct timescales of
528 population coding across cortex. *Nature* **548**, 92–96.

529 Sarafyazd, M., and Jazayeri, M. (2019). Hierarchical reasoning by neural circuits in the frontal
530 cortex. *Science* **364**.

531 Savaskan, N.E., Bräuer, A.U., and Nitsch, R. (2004). Molecular cloning and expression
532 regulation of PRG-3, a new member of the plasticity-related gene family. *Eur. J. Neurosci.* **19**,
533 212–220.

534 Telenczuk, B., Dehghani, N., Le Van Quyen, M., Cash, S.S., Halgren, E., Hatsopoulos, N.G.,
535 and Destexhe, A. (2017). Local field potentials primarily reflect inhibitory neuron activity in
536 human and monkey cortex. *Sci. Rep.* **7**.

537 Tripathy, S.J., Toker, L., Li, B., Crichlow, C.-L., Tebaykin, D., Mancarci, B.O., and Pavlidis, P.
538 (2017). Transcriptomic correlates of neuron electrophysiological diversity. *PLoS Comput. Biol.*
539 **13**, e1005814.

540 Vértes, P.E., Rittman, T., Whitaker, K.J., Romero-Garcia, R., Váša, F., Kitzbichler, M.G.,
541 Wagstyl, K., Fonagy, P., Dolan, R.J., Jones, P.B., et al. (2016). Gene transcription profiles
542 associated with inter-modular hubs and connection distance in human functional magnetic
543 resonance imaging networks. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **371**.

544 de Villers-Sidani, E., Alzghoul, L., Zhou, X., Simpson, K.L., Lin, R.C.S., and Merzenich, M.M.
545 (2010). Recovery of functional and structural age-related changes in the rat primary auditory
546 cortex with operant training. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 13900–13905.

547 Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski,
548 E., Peterson, P., Weckesser, W., Bright, J., et al. (2020). SciPy 1.0: fundamental algorithms for
549 scientific computing in Python. *Nat. Methods* **17**, 261–272.

550 Vos de Wael, R., Benkarim, O., Paquola, C., Lariviere, S., Royer, J., Tavakol, S., Xu, T., Hong,
551 S.-J., Langs, G., Valk, S., et al. (2020). BrainSpace: a toolbox for the analysis of macroscale
552 gradients in neuroimaging and connectomics datasets. *Commun Biol* **3**, 103.

553 Voytek, B., and Knight, R.T. (2015). Dynamic network communication as a unifying neural basis
554 for cognition, development, aging, and disease. *Biol. Psychiatry* **77**, 1089–1097.

555 Voytek, B., Kayser, A.S., Badre, D., Fegen, D., Chang, E.F., Crone, N.E., Parvizi, J., Knight,
556 R.T., and D'Esposito, M. (2015a). Oscillatory dynamics coordinating human frontal networks in
557 support of goal maintenance. *Nat. Neurosci.* **18**, 1318–1324.

558 Voytek, B., Kramer, M.A., Case, J., Lepage, K.Q., Tempesta, Z.R., Knight, R.T., and Gazzaley,
559 A. (2015b). Age-Related Changes in 1/f Neural Electrophysiological Noise. *J. Neurosci.* **35**,
560 13257–13265.

561 van Vugt, B., van Kerkoerle, T., Vartak, D., and Roelfsema, P.R. (2020). The Contribution of
562 AMPA and NMDA Receptors to Persistent Firing in the Dorsolateral Prefrontal Cortex in
563 Working Memory. *J. Neurosci.* **40**, 2458–2470.

564 Wagner, H.H., and Dray, S. (2015). Generating spatially constrained null models for irregularly
565 spaced data using Moran spectral randomization methods. *Methods Ecol. Evol.* 6, 1169–1178.

566 Wang, X.J. (1999). Synaptic basis of cortical persistent activity: the importance of NMDA
567 receptors to working memory. *J. Neurosci.* 19, 9587–9603.

568 Wang, X.-J. (2002). Probabilistic decision making by slow reverberation in cortical circuits.
569 *Neuron* 36, 955–968.

570 Wang, X.-J. (2008). Decision making in recurrent neuronal circuits. *Neuron* 60, 215–234.

571 Wang, X.-J. (2020). Macroscopic gradients of synaptic excitation and inhibition in the neocortex.
572 *Nat. Rev. Neurosci.*

573 Wang, M., Gamo, N.J., Yang, Y., Jin, L.E., Wang, X.-J., Laubach, M., Mazer, J.A., Lee, D., and
574 Arnsten, A.F.T. (2011). Neuronal basis of age-related working memory decline. *Nature* 476,
575 210–213.

576 Wang, M., Yang, Y., Wang, C.-J., Gamo, N.J., Jin, L.E., Mazer, J.A., Morrison, J.H., Wang, X.-
577 J., and Arnsten, A.F.T. (2013). NMDA receptors subserve persistent neuronal firing during
578 working memory in dorsolateral prefrontal cortex. *Neuron* 77, 736–749.

579 Wasmuht, D.F., Spaak, E., Buschman, T.J., Miller, E.K., and Stokes, M.G. (2018). Intrinsic
580 neuronal dynamics predict distinct functional roles during working memory. *Nat. Commun.* 9,
581 3499.

582 Watanabe, T., Rees, G., and Masuda, N. (2019). Atypical intrinsic neural timescale in autism.
583 *Elife* 8.

584 Whitaker, K.J., Vértes, P.E., Romero-Garcia, R., Váša, F., Moutoussis, M., Prabhu, G.,
585 Weiskopf, N., Callaghan, M.F., Wagstyl, K., Rittman, T., et al. (2016). Adolescence is
586 associated with genetically patterned consolidation of the hubs of the human brain
587 connectome. *Proc. Natl. Acad. Sci. U. S. A.* 113, 9105–9110.

588 Wimmer, K., Nykamp, D.Q., Constantinidis, C., and Compte, A. (2014). Bump attractor
589 dynamics in prefrontal cortex explains behavioral precision in spatial working memory. *Nat.*
590 *Neurosci.* 17, 431–439.

591 Yanagawa, T., Chao, Z.C., Hasegawa, N., and Fujii, N. (2013). Large-scale information flow in
592 conscious and unconscious states: an ECoG study in monkeys. *PLoS One* 8, e80845.

593 Zylberberg, J., and Strowbridge, B.W. (2017). Mechanisms of Persistent Activity in Cortical
594 Circuits: Possible Neural Substrates for Working Memory. *Annu. Rev. Neurosci.* 40, 603–627.

595

596

597 **Acknowledgements**

598 **Funding:** Natural Sciences and Engineering Research Council of Canada (NSERC PGS-D)
599 and Katzin Prize (to R.G.). Alexander Von Humboldt Foundation fellowship for post-doctoral
600 researchers (to R.L.v.d.B). Deutsche Forschungsgemeinschaft (DFG) SFB936/A7/Z3 (to Tobias
601 H. Donner). Sloan Research Fellowship (FG-2015-66057), the Whitehall Foundation (2017-12-
602 73), the National Science Foundation under grant BCS-1736028, the NIH National Institute of
603 General Medical Sciences grant R01GM134363-01, a UC San Diego, Shiley-Marcos
604 Alzheimer's Disease Research Center (ADRC): Research Training in Alzheimer's Disease
605 grant, and a Halıcıoğlu Data Science Institute Fellowship (to B.V.).

606

607 **Author contributions:** R.G. and B.V. conception and electrophysiological data analysis. R.G.
608 simulations, anatomical, and gene expression analysis. R.v.d.B and T.P. data preprocessing
609 and conception of anatomical and gene expression analysis. R.G. wrote the manuscript with
610 B.V. All authors edited the manuscript.

611

612 **Competing interests:** the authors declare no competing interests.

613

614 **Data and materials availability:** all data analyzed in this manuscript are from open data
615 sources. All code used for all analyses and plots are publicly available on GitHub at
616 <https://github.com/rdgao/field-echos> and https://github.com/rudyvdb/brink/surface_projection. See
617 Table S1 and S2.

618

619

620

621

622 **Methods**

623

624 **Inferring timescale from autocorrelation and power spectral density**

625 Consistent with previous studies, we define “neuronal timescale” as the exponential decay time
626 constant (τ) of the empirical autocorrelation function (ACF), or lagged correlation (Honey et al.,
627 2012; Murray et al., 2014). τ can be naively estimated to be the time it takes for the ACF to
628 decrease by a factor of e when there are no additional long-term, scale-free, or oscillatory
629 processes, or by fitting a function of the form $f(t) = e^{-\frac{t}{\tau}}$ and extracting the parameter τ .
630 Equivalently, the power spectral density (PSD) is the Fourier Transform of the ACF via Wiener-
631 Khinchin theorem, and follows a Lorentzian function of the form $L(f) = \frac{A}{k+f^\chi}$ for approximately
632 exponential-decay processes, with $\chi = 2$ exactly when the ACF is solely composed of an
633 exponential decay term, though it is often variable and in the range between 2-6 for neural time
634 series (Haller et al., 2018; Miller et al., 2009; Podvalny et al., 2015; Voytek et al., 2015b).
635 Timescale can be computed from the parameter k as $\tau = \frac{1}{2\pi f_k}$, where $f_k \approx k^{1/\chi}$ is approximated
636 to be the frequency at which a bend or knee in the power spectrum occurs and equality holds
637 when $\chi = 2$.

638

639 **Computing power spectral density (PSD)**

640 PSDs are estimated using a modified Welch’s method, where short-time windowed Fourier
641 transforms (STFT) are computed from the time series, but the median is taken across time instead
642 of the mean (in conventional Welch’s method) to minimize the effect of high-amplitude transients
643 and artifacts (Izhikevich et al., 2018). Custom functions for this can be found in NeuroDSP (Cole
644 et al., 2019), a published and open-source digital signal processing toolbox for neural time series
645 (neurodsp.spectral.compute_spectrum). For simulated data, Neurotycho macaque ECoG, and
646 MNI-iEEG datasets, we use 1-second long Hamming windows with 0.5-s overlap. To estimate
647 single-trial PSDs for the working memory ECoG dataset (Johnson-ECoG (Johnson et al., 2018a,
648 2018b)), we simply apply Hamming window to 900-ms long epoched time series and compute the
649 squared magnitude of the windowed-Fourier transform.

650

651 **Spectral parametrization - Fitting Oscillations and 1/f (FOOOF)**

652 We apply spectral parameterization (Haller et al., 2018) to extract timescales from PSDs. Briefly,
653 we decompose log-power spectra into a summation of narrowband periodic components—
654 modeled as Gaussians—and an aperiodic component—modeled as a generalized Lorentzian
655 function centered at 0 Hz ($L(f)$ above). For inferring decay timescale, this formalism can be
656 practically advantageous when a strong oscillatory or variable power-law (χ) component is
657 present, as is often the case for neural signals. While oscillatory and power-law components can
658 corrupt naive measurements of τ as time for the ACF to reach 1/e, they can be easily accounted
659 for and ignored in the frequency domain as narrowband peaks and 1/f-exponent fit. We discard
660 the periodic components and infer timescale from the aperiodic component of the PSD. For a
661 complete mathematical description of the model, see (Haller et al., 2018).

662

663

664 **Simulation and validation**

665 We simulate the aperiodic background component of neural field potential recordings as
666 autocorrelated stochastic processes by convolving Poisson population spikes with exponentially-
667 decaying synaptic kernels with predefined decay time constants
668 (neurodsp.sim.sim_synaptic_current). PSDs of the simulated data are computed and
669 parameterized as described above, and we compare the fitted timescales with their ground-truth
670 values.

671

672 **Macaque ECoG and single unit timescales data**

673 Macaque single-unit timescales are taken directly from values reported in Fig. 1c of (Murray et
674 al., 2014). Whole-brain surface ECoG data (1000Hz sampling rate) is taken from the Neurotycho
675 repository(Nagasaki et al., 2011; Yanagawa et al., 2013), with 8 sessions of 128-channel
676 recordings from two animals (George and Chibi, 4 sessions each). Results reported in Fig. 2 are
677 from ~10 minutes eyes-open resting periods to match the pre-stimulus baseline condition of
678 single-unit experiments. Timescales for individual ECoG channels are extracted and averaged
679 over regions corresponding to single-unit recording areas from(Murray et al., 2014) (Fig. 2C inset
680 and Fig. S3), which are selected visually based on the overlapping cortical map and landmark
681 sulci/gyri. Each region included between 2-4 electrodes (see Fig. S3C for selected ECoG channel
682 indices for each region).

683

684 **Statistical analysis for macaque ECoG and spiking timescale**

685 For each individual recording session, as well as the grand average, Spearman rank correlation
686 was computed between spiking and ECoG timescales. Linear regression models were fit using
687 the python package scipy (Virtanen et al., 2020) (scipy.stats.linregress) and the linear slope was
688 used to compute the scaling coefficient between spiking and ECoG timescales.

689

690 **Variations in neuronal timescale, T1/T2 ratio, and mRNA expression across human cortex**

691 The following sections describe procedures for generating the average cortical gradient maps for
692 neuronal timescale, MR-derived T1w/T2w ratio, and gene expression from the respective raw
693 datasets. All maps were projected onto the 180 left hemisphere parcels of Human Connectome
694 Project's Multimodal Parcellation (Glasser et al., 2016) (HCP-MMP1.0) for comparison, described
695 in the individual sections. All spatial correlations are computed as Spearman rank correlations
696 between maps. Procedure for computing statistical significance while accounting for spatial
697 autocorrelation is described in detail below under the sections **spatial statistics** and **spatial
698 autocorrelation modeling**.

699

700 **Neuronal timescale map**

701 The MNI Open iEEG dataset consists of 1 minute of resting state data across 1772 channels from
702 106 epilepsy patients (13-62 years old, 58 males and 48 females), recorded using either surface
703 strip/grid or stereoEEG electrodes, and cleaned of visible artifacts (Frauscher et al., 2018a,
704 2018b). Neuronal timescales were extracted from PSDs of individual channels, and projected
705 from MNI voxel coordinates onto HCP-MMP1.0 surface parcellation as follows:

706

707 For each patient, timescale estimated from each electrode was extrapolated to the rest of the
708 cortex in MNI coordinates using a Gaussian weighting function (confidence mask), $w(r) =$
709 $e^{-(r^2/\alpha^2)}$, where r is the Euclidean distance between the electrode and a voxel, and α is the
710 distance scaling constant, chosen here such that a voxel 4mm away has 50% weight (or,
711 confidence). Timescale at each voxel is computed as a weighted spatial average of timescales
712 from all electrodes (i) of that patient,

713 i.e., $\tau_{voxel} = \frac{\sum_i w(r_i) \tau_i}{\sum_i w(r_i)}$.

714 Similarly, each voxel is assigned a confidence rating that is the maximum of weights over all
715 electrodes ($w_{voxel}(r_{min})$, of the closest electrode), i.e., a voxel right under an electrode has a
716 confidence of 1, while a voxel 4mm away from the closest electrode has a confidence of 0.5, etc.
717

718 Timescales for each HCP-MMP parcel were then computed as the confidence-weighted
719 arithmetic mean across all voxels that fall within the boundaries of that parcel. HCP-MMP
720 boundary map is loaded and used for projection using NiBabel (Brett et al., 2020). This results in
721 a 180 parcels-by-106 patients timescale matrix. A per-parcel confidence matrix of the same
722 dimensions was computed by taking the maximum confidence over all voxels for each parcel (Fig.
723 S1A). The average cortical timescale map (gradient) is computed by taking the confidence-
724 weighted average at each parcel across all participants. Note that this procedure for locally
725 thresholded and weighted average is different from projection procedures used for the mRNA and
726 T1w/T2w data due to region-constrained and heterogeneous ECoG electrode sites across
727 participants. While coverage is sparse and idiosyncratic in individual participants, it does not vary
728 as a function of age, and when pooling across the entire population, 178 of 180 parcels have at
729 least one patient with an electrode within 4mm, with the best coverage in later sensorimotor,
730 temporal, and frontal regions (Fig. S1).

731

732 **T1w/T2w ratio map**

733 As a measure of structural cortical hierarchy, we used the ratio between T1- and T2-weighted
734 structural MRI, referred to as T1w/T2w map in main text, or the myelin map (Burt et al., 2018;
735 Glasser and Van Essen, 2011). Since there is little variation in the myelin map across individuals,
736 we used the group average myelin map of the WU-Minn HCP S1200 release (N = 1096, March
737 1, 2017 release) provided in HCP-MMP1.0 surface space. For correlation with other variables, we
738 computed the median value per parcel, identical to the procedure for mRNA expression below.
739

740 **mRNA expression maps**

741 We used the Allen Human Brain Atlas (AHBA) gene expression dataset (Hawrylycz et al., 2015,
742 2012) that comprised postmortem samples of 6 donors (1 female, 5 male) that underwent
743 microarray transcriptional profiling. Spatial maps of mRNA expression were available in
744 volumetric 2 mm isotropic MNI space, following improved nonlinear registration and whole-brain
745 prediction using variogram modeling as implemented by (Gryglewski et al., 2018). We used
746 whole-brain maps available from (Gryglewski et al., 2018) rather than the native sample-wise
747 values in the AHBA database to prevent bias that could occur due to spatial inhomogeneity of the
748 sampled locations. In total, 18114 genes were included for analyses that related to the dominant
749 axis of expression across the genome.

750

751 We projected the volumetric mRNA expression data onto the HCP-MMP cortical surface using
752 the HCP workbench software (v1.3.1 running on Windows OS 10) with the “enclosing” method,
753 and custom MATLAB code (github.com/rudyvdbrink/surface_projection). The enclosing method
754 extracts for all vertices on the surface the value from enclosing voxels in the volumetric data.
755 Alternative projection methods such as trilinear 3D linear interpolation of surrounding voxels, or
756 ribbon mapping that constructs a polyhedron from each vertex's neighbors on the surface to
757 compute a weighted mean for the respective vertices, yielded comparable values, but less
758 complete cortical coverage. Moreover, the enclosing method ensured that no transformation of
759 the data (non-linear or otherwise) occurred during the projection process and thus the original
760 values in the volumetric data were preserved.

761

762 Next, for each parcel of the left hemisphere in HCP-MMP, we extracted the median vertex-wise
763 value. We used the median rather than the mean because it reduced the contribution of outliers
764 in expression values within parcels. Vertices that were not enclosed by voxels that contained data
765 in volumetric space were not included in the parcel-wise median. This was the case for 539
766 vertices (1.81% of total vertices). Linear interpolation across empty vertices prior to computing
767 median parcel-wise values yielded near-identical results ($r = 0.95$ for reconstructed surfaces).
768 Lastly, expression values were mean and variance normalized across parcels to facilitate
769 visualization. Normalization had no effect on spatial correlation between gene expression and
770 other variables since the spatial distribution of gene expression was left unaltered.

771

772 **Spatial statistics**

773 All correlations between spatial maps (timescale, T1w/T2w, gene principal component, and
774 individual gene expressions) were computed using Spearman rank correlation. As noted in (Burt
775 et al., 2018, 2020; Vos de Wael et al., 2020), neural variables vary smoothly and continuously
776 across the cortical surface, violating the assumption of independent samples. As a result, when
777 correlating two variables each with non-trivial spatial autocorrelation, the naive p-value is
778 artificially lowered since it is compared against an inappropriate null hypothesis, i.e., randomly
779 distributed or shuffled values across space. Instead, a more appropriate null hypothesis
780 introduces spatial autocorrelation-preserving null maps, which destroys any potential correlation
781 between two maps while respecting their spatial autocorrelations. For all spatial correlation
782 analyses, we generated $N = 1000$ null maps of one variable (timescale map unless otherwise
783 noted), and the test statistic, Spearman correlation (ρ), is computed against the other variable of
784 interest to build the null distribution. Two-tailed significance is then computed as the proportion of
785 the null distribution that is less extreme than the empirical correlation value. All regression lines
786 were computed by fitting a linear regression to log-timescale and the structural feature maps.

787

788

789 **Spatial autocorrelation modeling**

790 To generate spatial autocorrelation-preserving null maps, we used Moran's Spectral
791 Randomization (MSR) (Wagner and Dray, 2015) from the python package BrainSpace (Vos de
792 Wael et al., 2020). Details of the algorithm can be found in the above references. Briefly, MSR
793 performs eigendecomposition on a spatial weight matrix of choice, which is taken here to be the

794 inverse average geodesic distance matrix between all pairs of parcels in HCP-MMP1.0. The
795 eigenvectors of the weight matrix are then used to generate randomized null feature maps that
796 preserves the autocorrelation of the empirical map. We used the singleton procedure for null map
797 generation. All significance values reported (Fig. 2B, Fig. 3A-C) were adjusted using the above
798 procedure.

799

800 We also compare two other methods of generating null maps: spatial variogram fitting (Burt et al.,
801 2020) and spin permutation (Alexander-Bloch et al., 2018). Null maps were generated for
802 timescale using spatial variogram fitting, while for spin permutation they were generated for
803 vertex-wise T1w/T2w and gene PC1 maps before parcellation, so as to preserve surface locations
804 of the parcellation itself. All methods perform similarly, producing comparable spatial
805 autocorrelation in the null maps, assessed using spatial variogram, as well as null distribution of
806 spatial correlation coefficients between timescale and T1w/T2w (Fig. S2).

807

808 **Principal Component Analysis (PCA) of gene expression**

809 We used scikit-learn (Pedregosa, 2011) PCA (sklearn.decomposition.PCA) to identify the
810 dominant axes of gene expression variation across the entire AHBA dataset, as well as for brain-
811 specific genes. PCA was computed on the variance-normalized average gene expression maps,
812 X , an $N \times P$ matrix where $N = 18114$ (or $N = 2429$ brain-specific) genes, and $P = 180$ cortical
813 parcels. Briefly, PCA factorizes X such that $X = USV^T$, where U and V are unitary matrices of
814 dimensionality $N \times N$ and $P \times P$, respectively. S is the same dimensionality as X and contains non-
815 negative descending eigenvalues on its main diagonal (Λ). Columns of V are defined as the
816 principal components (PCs), and the dominant axis of gene expression is then defined as the first
817 column of V , whose proportion of variance explained in the data is the first element of Λ divided
818 by the sum over Λ . Results for PC1 and PC2-10 are shown in Fig. 3A and Fig. S4, respectively.

819

820 **Selection of brain-specific genes**

821 Similar to (Burt et al., 2018; Fagerberg et al., 2014; Genovese et al., 2016), $N=2429$ brain-specific
822 genes were selected based on the criteria that expression in brain tissues were 4 times higher
823 than the median expression across all tissue types, using Supplementary Dataset 1 of (Fagerberg
824 et al., 2014). PC1 result shown in Fig. 3A is computed from brain-specific genes, though findings
825 are identical when using all genes ($\rho = -0.56$ with timescale map, Fig. S4).

826

827 **Comparison of timescale-transcriptomic association with single-cell timescale genes**

828 Single-cell timescale genes were selected based on data from Table S3 and Online Table 1 of
829 (Bomkamp et al., 2019; Tripathy et al., 2017), respectively. Using single-cell RNA sequencing
830 data and patch-clamp recordings from transgenic mice cortical neurons, these studies identified
831 genes whose expression significantly correlated with electrophysiological features derived from
832 generalized linear integrate and fire (GLIF) model fits. We selected genes that were significantly
833 correlated to membrane time constant (τ), input resistance (R_{in} or r_i), or capacitance (C_m or
834 cap) in the referenced data tables, and extracted the level of association between gene
835 expression and those electrophysiological feature (correlation 'DiscCorr' in (Tripathy et al., 2017)
836 and linear coefficient "beta_gene" in (Bomkamp et al., 2019)).

837

838 To compare timescale-gene expression association at the single-cell and macroscale level, we
839 correlated the single-cell associations extracted above with the spatial correlation coefficient
840 (macroscale ρ) between ECoG timescale and AHBA microarray expression data for those same
841 genes, restricting to genes with $p < 0.05$ for macroscale correlation (results identical for non-
842 restrictive gene set). Overall association for all genes, as well as split by quintiles of their absolute
843 macroscale correlation coefficient, are shown in Fig. 3D. Example “single-cell timescale” genes
844 shown in Fig. 3B,C are genes showing the highest correlations with those electrophysiology
845 features reported in Table 2 of (Bomkamp et al., 2019).

846

847 **T1w/T2w-removed timescale and gene expression residual maps**

848 To remove anatomical hierarchy as a potential mediating variable in timescale-gene expression
849 relationships, we linearly regress out the T1w/T2w map from the (log) timescale map and
850 individual gene expression maps. T1w/T2w was linearly fit to log-timescale, and the error between
851 T1w/T2w-predicted timescale and empirical timescale was extracted (residual); this identical
852 procedure was applied to every gene expression map to retrieve the gene residuals. Spatial
853 autocorrelation-preserving null residual maps were similarly created using MSR.

854

855 **Partial least squares regression model**

856 Due to multicollinearity in the high-dimensional gene expression dataset (many more genes than
857 parcels), we fit a partial least squares model to the timescale map with one output dimension
858 (sklearn.cross_decomposition.PLSRegression) to estimate regression coefficient for all genes
859 simultaneously, resulting in $N=18114$ (or $N=2429$ brain-specific) PLS weights (Vértes et al., 2016;
860 Whitaker et al., 2016). To determine significantly associated (or, “enriched”) genes, we repeated
861 the above PLS-fitting procedure 1000 times but replaced the empirical timescale map (or residual
862 map) with null timescale maps (or residual maps) that preserved its spatial autocorrelation. Genes
863 whose absolute empirical PLS weight that was greater than 95% of its null weight distribution was
864 deemed to be enriched, and submitted for gene ontology enrichment analysis.

865

866 **Gene ontology enrichment analysis (GOEA)**

867 The Gene Ontology (GO) captures hierarchically structured relationships between GO items
868 representing aspects of biological processes (BP), cellular components (CC), or molecular
869 functions (MF). For example, “synaptic signaling”, “chemical synaptic transmission”, and
870 “glutamatergic synaptic transmission” are GO items with increasing specificity, with smaller
871 subsets of genes associated with each function. Each GO item is annotated with a list of genes
872 that have been linked to that particular process or function. GOEA examines the list of enriched
873 genes from above to identify GO items that are more associated with those genes than expected
874 by chance. We used GOATOOLS (Klopfenstein et al., 2018) to perform GOEA programmatically
875 in python.

876

877 The list of unranked genes with significant empirical PLS weights was submitted for GOEA as the
878 “study set”, while either the full ABHA list or brain-specific gene list was used as the “reference
879 set”. The output of GOEA is a list of GO terms with annotated genes that are enriched or purified
880 (i.e., preferentially appearing or missing in the study list, respectively) more often than by chance,
881 determined by Fisher’s exact test.

882
883 Enrichment ratio is defined as follows: given a reference set with N total genes, and n were found
884 to be significantly associated with timescale (in the study set), for a single GO item with B total
885 genes annotated to it, where b of them overlap with the study set, then $enrichment = \frac{b/n}{B/N}$.
886 Statistical significance is adjusted for multiple comparisons following Benjamini-Hochberg
887 procedure (false discovery rate q-value reported in Fig. 3F), and all significant GO items ($q < 0.05$)
888 are reported in Fig. 3F, in addition to some example items that did not pass significance threshold.
889 For a detailed exposition, see (Bauer, 2017). Fig. 3F shows results using brain-specific genes.
890 The GO items that are significantly associated are similar when using the full gene set, but
891 typically with larger q-values (Tables S3 and S4) due to a much larger set of (non-brain-specific)
892 genes.
893

894 **Working memory ECoG data and analysis**

895 The CRCNS fcx-2 and fcx-3 datasets include 17 intracranial ECoG recordings in total from
896 epilepsy patients (10 and 7, respectively) performing the same visuospatial working memory task
897 (Johnson, 2018, 2019; Johnson et al., 2018a, 2018b). Subject 3 (s3) from fcx-2 was discarded
898 due to poor data quality upon examination of trial-averaged PSDs (high noise floor near 20 Hz),
899 while s5 and s7 from fcx-3 correspond to s5 and s8 in fcx-2 and were thus combined. Together,
900 data from 14 unique participants (22-50 years old, 5 female) were analyzed, with variable and
901 overlapping coverage in parietal cortex (PC, $n=14$), prefrontal cortex (PFC, $n=13$), orbitofrontal
902 cortex (OFC, $n=8$), and medial temporal lobe (MTL, $n=9$). Each channel was annotated as
903 belonging to one of the above macro regions.
904

905 Experimental setup is described in (Johnson, 2018, 2019; Johnson et al., 2018a, 2018b) in detail.
906 Briefly, following a 1-second pre-trial fixation period (baseline), subjects were instructed to focus
907 on one of two stimulus contexts (“identity” or “relation” information). Then two shapes were
908 presented in sequence for 200 ms each. After a 900 or 1150 ms jittered precue delay (delay1),
909 the test cue appeared for 800 ms, followed by another post-cue delay period of the same length
910 (delay2). Finally, the response period required participants to perform a 2-alternative forced
911 choice test based on the test cue, which varied based on trial condition. For our analysis, we
912 collapsed across the stimulus context conditions and compared neuronal timescales during the
913 last 900 ms of baseline and delay periods from the epoch data, which were free of visual stimuli,
914 in order to avoid stimulus-related event-related potential effects. Behavioral accuracy for each
915 experimental condition was reported for each participant, and we average across both stimulus
916 context conditions to produce a single working memory accuracy per participant.
917

918 Single-trial power spectra were computed for each channel as the squared magnitude of the
919 Hamming-windowed Fourier Transform. We used 900 ms of data in all 3 periods (pre-trial, delay1,
920 and delay2). Timescales were estimated by applying spectral parameterization as above, and the
921 two delay-period estimates were averaged to produce a single delay period value. For
922 comparison, we computed single-trial theta (3-8 Hz) and high-frequency activity (high gamma
923 (Mukamel et al., 2005), 70-100 Hz) powers as the mean log-power within those frequency bins,
924 as well as spectral exponent (χ). Single-trial timescale difference between delay and baseline was
925 calculated as the difference of the log timescales due to the non-normal distribution of single-trial

926 timescale estimates. All other neural features were computed by subtracting baseline from the
927 delay period.

928

929 All neural features were then averaged across channels within the same regions, then trials, for
930 each participant, to produce per-participant region-wise estimates, and finally averaged across all
931 participants for the regional average in Fig. 4B,C. One-sample two-sided t-tests were used to
932 determine the statistical significance of timescale change in each region (Fig. 4C), where the null
933 hypothesis was no change between baseline and delay periods (i.e., delay is 100% of baseline).
934 Spearman rank correlation was used to determine the relationship between neural activity
935 (timescale; theta; high-frequency; χ) change and working memory accuracy across participants
936 (Fig. 4D, Fig. S6).

937

938 **Per-subject average cortical timescale across age**

939 Since electrode coverage in the MNI-iEEG dataset is sparse and non-uniform across participants
940 (Fig. S1), simply averaging across parcels within individuals to estimate an average cortical
941 timescale per participant confounds the effect of age with the spatial effect of cortical hierarchy.
942 Therefore, we instead first normalize each parcel by its max value across all participants before
943 averaging within participants, excluding those with fewer than 10 valid parcels (71 of 106 subjects
944 remaining; results hold for a range of threshold values; Fig. S7B). Spearman rank correlation was
945 used to compute the association between age and average cortical timescale.

946

947 **Age-timescale association for individual parcels**

948 Each cortical parcel had a variable number of participants with valid timescale estimates above
949 the consistency threshold, so we compute Spearman correlation between age and timescale for
950 each parcel, but including only those with at least 5 participants (114 of 180 parcels, result holds
951 for a range of threshold values; Fig. S7C). Spatial effect of age-timescale variation is plotted in
952 Fig. 4F, where parcels that did not meet the threshold criteria are greyed out. Mean age-timescale
953 correlation from individual parcels was significantly negative under one-sample t-test.

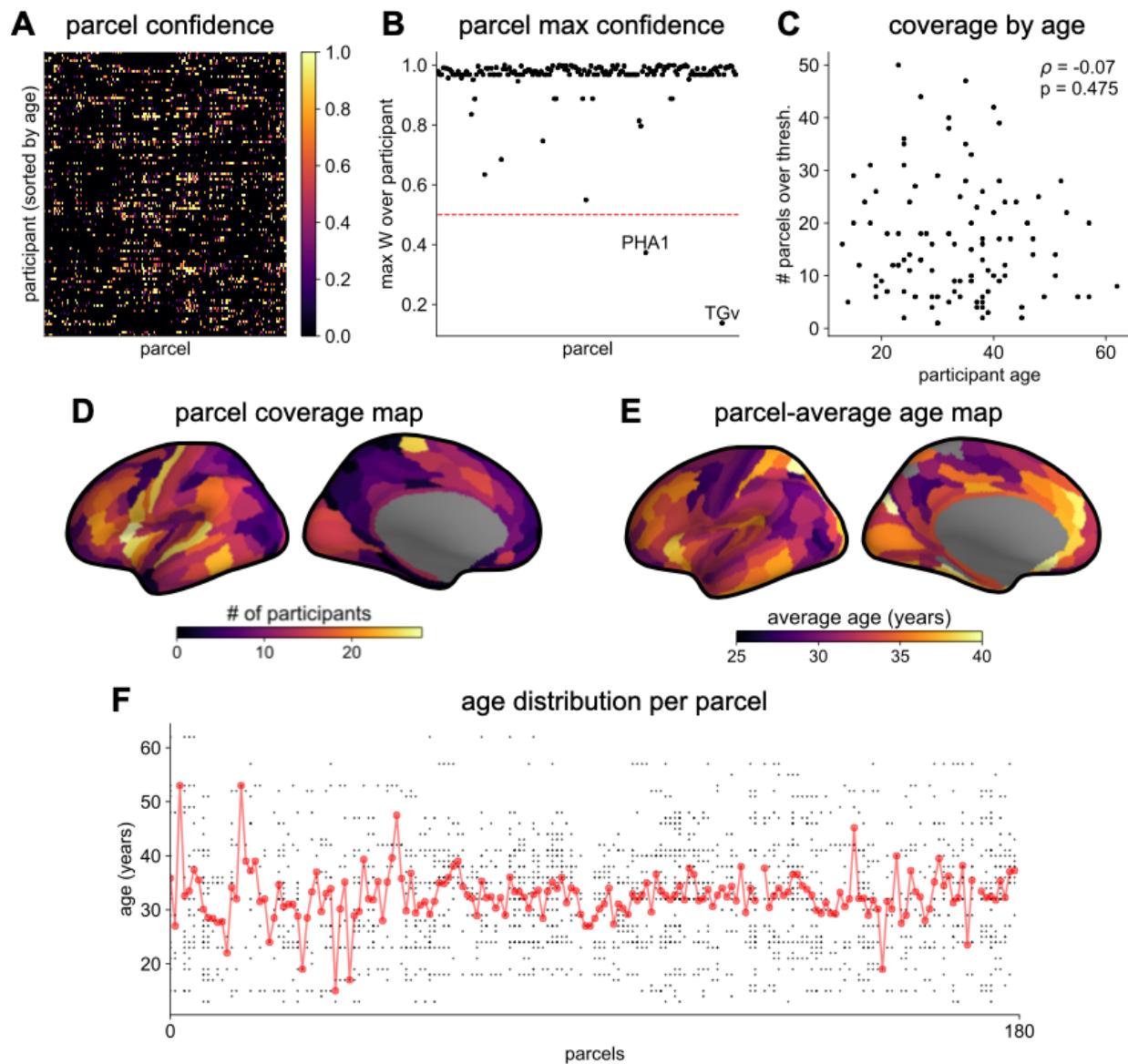
954

955

956

957 **Supplemental Information**

958

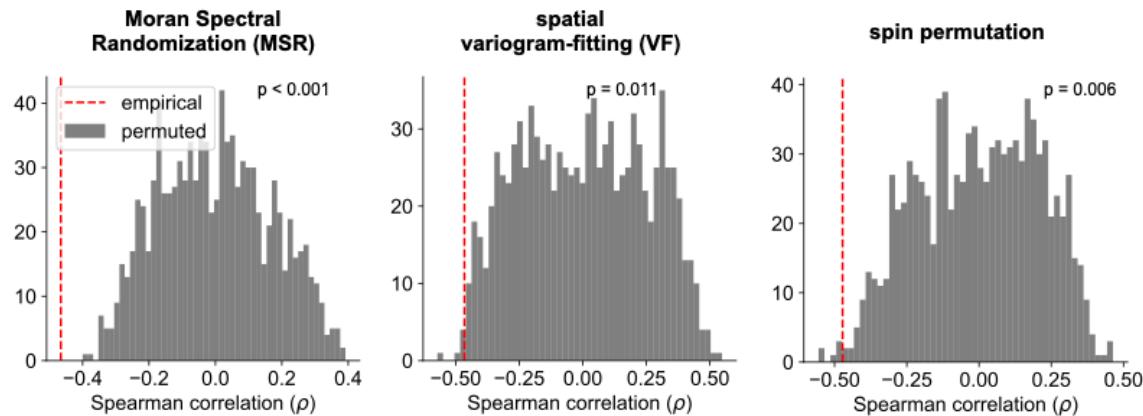


959

960 **Fig. S1. MNI-iEEG dataset coverage.** (A), per-parcel Gaussian-weighted mask values showing
961 how close the nearest electrode was to a given HCP-MMP1.0 parcel for each participant.
962 Brighter means closer, 0.5 corresponds to the nearest electrode being 4 mm away. (B)
963 maximum weight for each parcel across all participants. Most parcels have electrodes very
964 close by across the entire participant pool. (C) the number of HCP-MMP parcels each
965 participant has above the confidence threshold of 0.5 is uncorrelated with age. (D) number of
966 participants with confidence above threshold at each parcel. Sensorimotor, frontal, and lateral
967 temporal regions have the highest coverage. (E) average age of participants with confidence
968 above threshold at each parcel. (F) age distribution of participants with confidence above
969 threshold at each parcel. Average age per parcel (red line) is relatively stable while age
970 distribution varies from parcel to parcel.

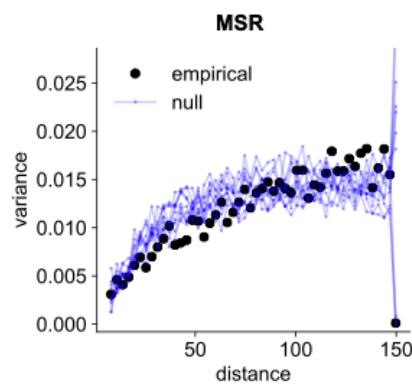
A

null distribution of timescale-T1w/T2w correlation

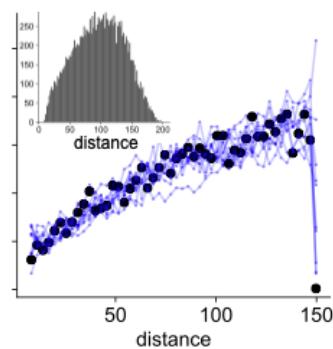


B

spatial variogram

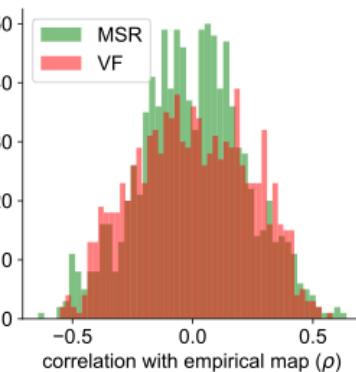


VF



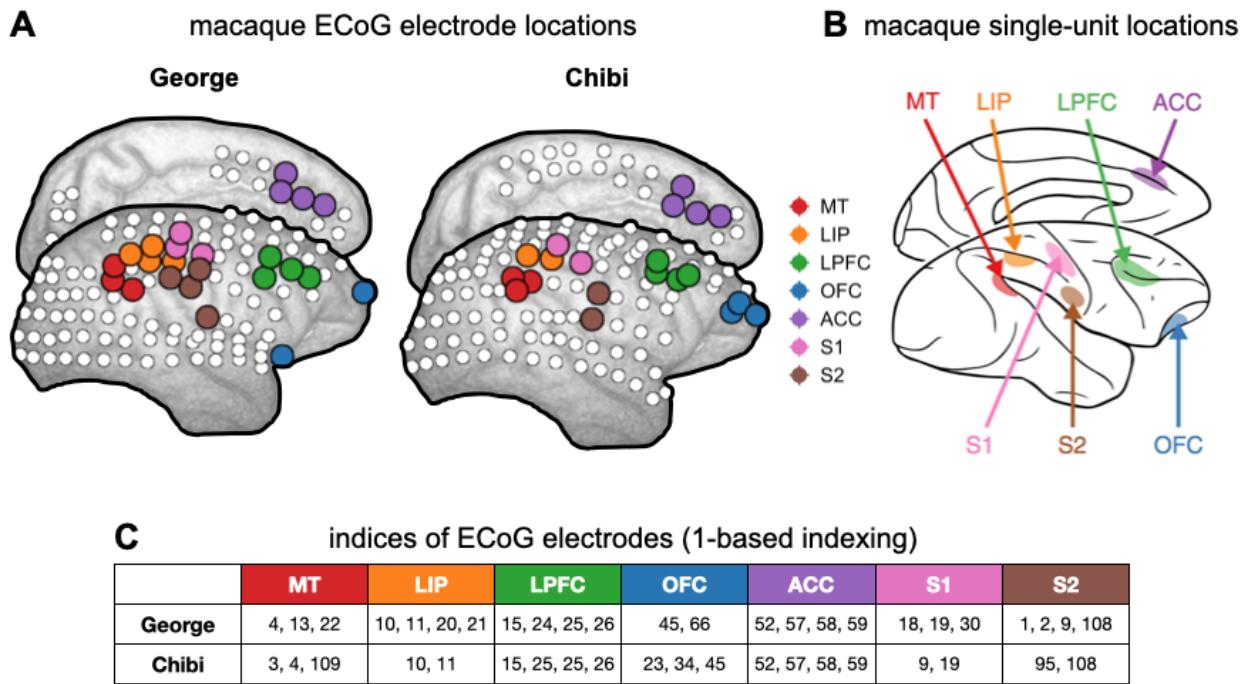
C

empirical-null map correlation



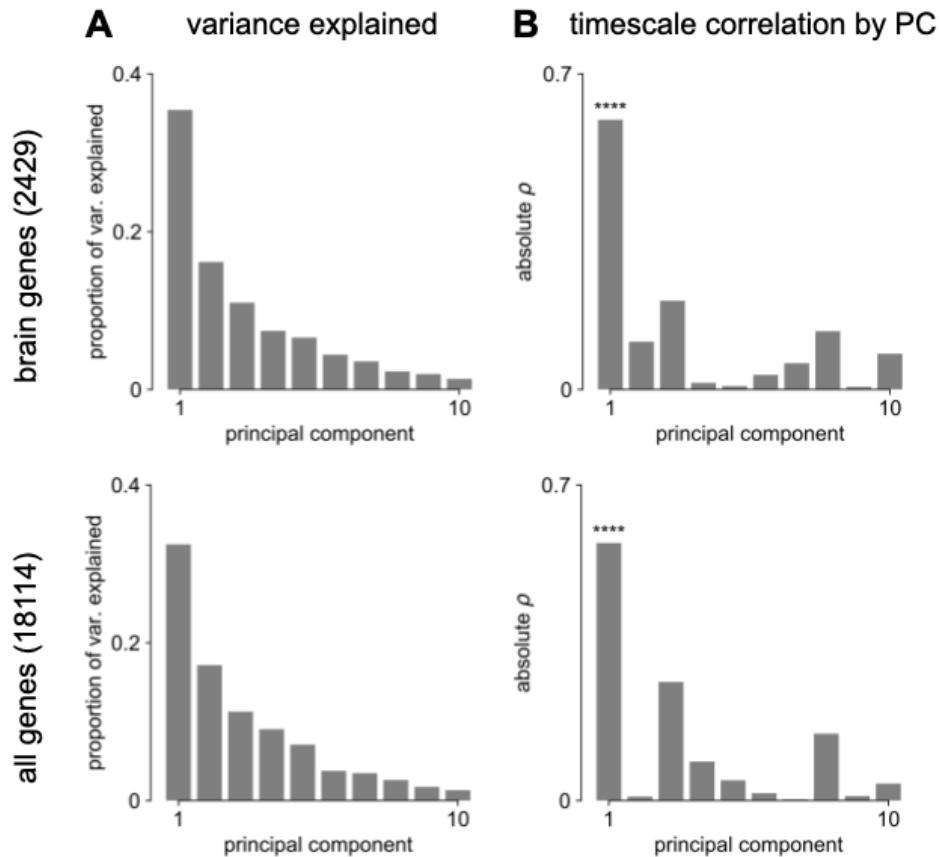
971
972
973
974
975
976
977
978
979
980
981
982
983

Fig. S2. Comparison of spatial autocorrelation-preserving null map generation methods.
(A) distributions of Spearman correlation values between empirical T1w/T2w map and 1000 spatial-autocorrelation preserving null timescale maps generated using Moran Spectral Randomization (MSR), spatial variogram fitting (VF), and spin permutation. Red dashed line denotes correlation between empirical timescale and T1w/T2w maps, p-values indicate two-tailed significance, i.e., proportion of distribution with values more extreme than empirical correlation. **(B)** spatial variogram for empirical timescale map (black) and 10 null maps (blue) generated using MSR and VF. Inset shows distribution of distances between pairs of HCP-MMP parcels. **(C)** distribution of Spearman correlations between empirical and 1000 null timescale maps generated using MSR (green) and VF (red), showing similar levels of correlation between empirical and null maps for both methods.

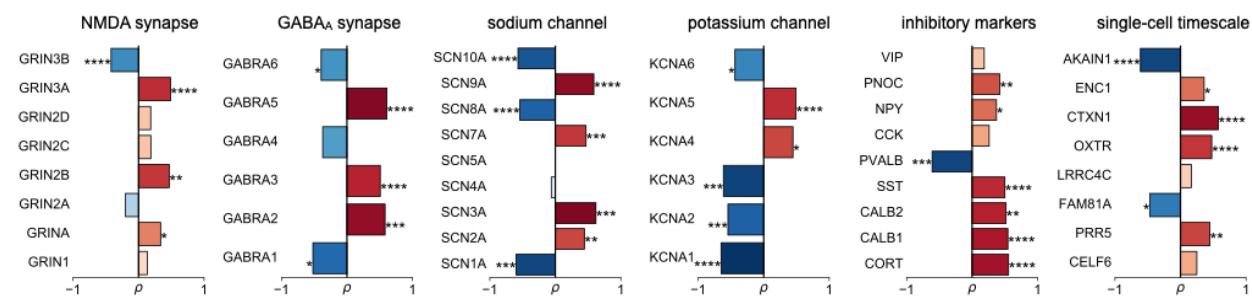


984
985
986
987
988
989
990

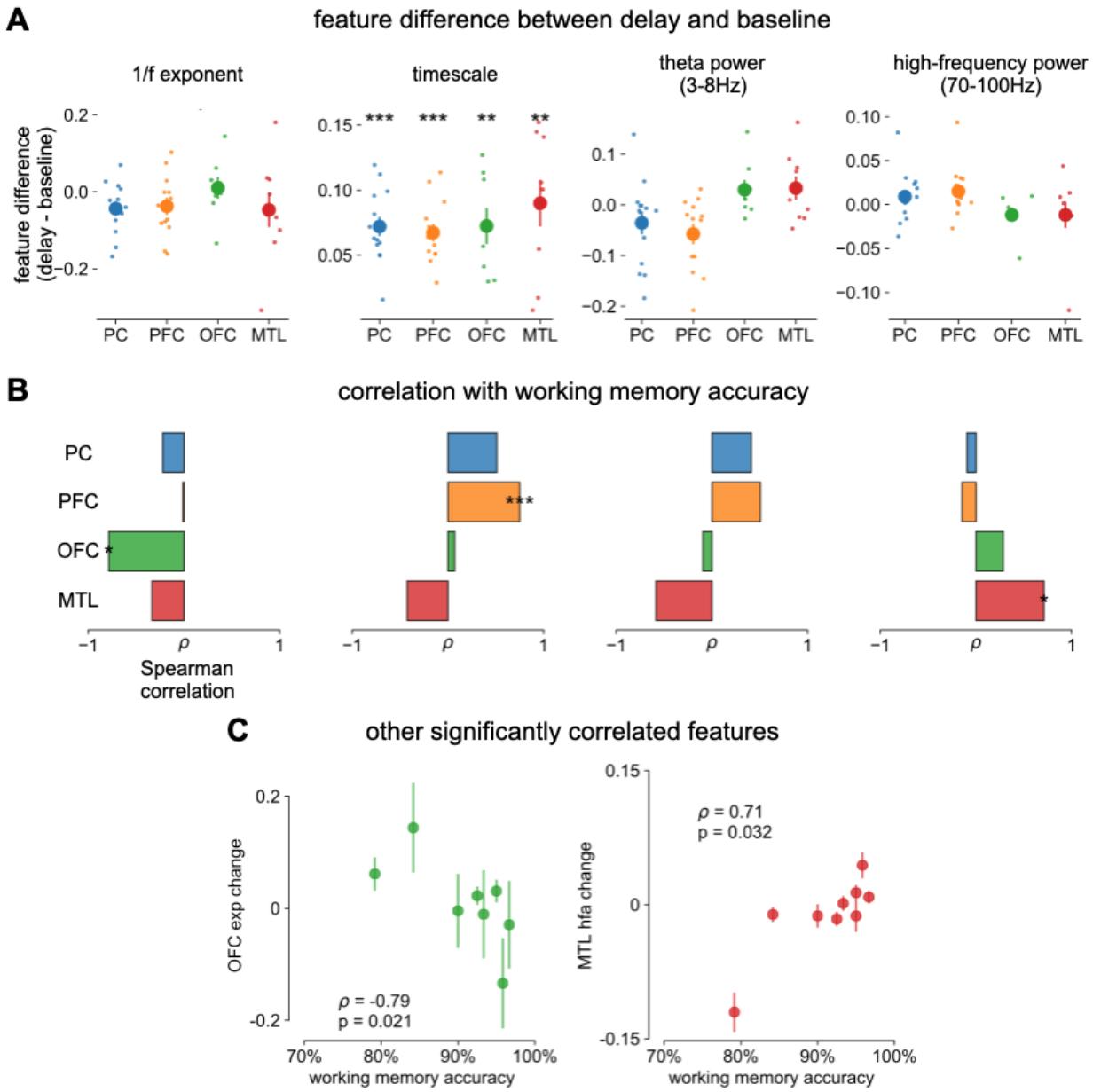
Fig. S3. Macaque ECoG and single-unit coverage. (A) locations of 180-electrode ECoG grid from 2 animals in the Neurotycho dataset, colors correspond to locations used for comparison with single-unit timescales. **(B)** single-unit recording locations from Fig. 1a of (Murray et al., 2014). **(C)** electrode indices of the sampled areas from the two animals, corresponding to those colored in **(A)**.



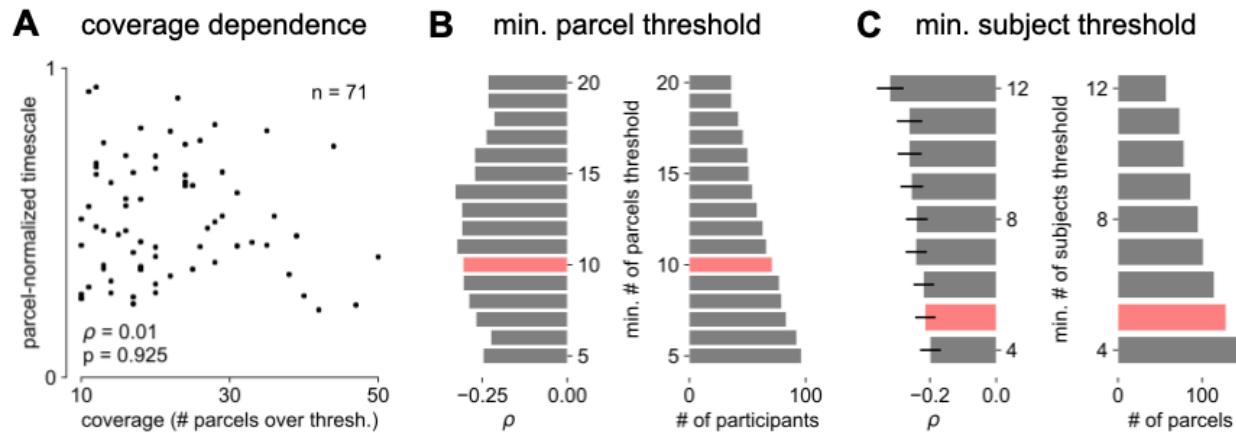
991
992 **Fig. S4. Transcriptomic PCA results.** (A) proportion of variance explained by the top 10
993 principal components (PCs) of brain-specific genes (top) and all AHBA genes (bottom). (B)
994 absolute Spearman correlation between timescale map and top 10 PCs from brain-specific or
995 full gene dataset. Asterisks indicate resampled significance while accounting for spatial
996 autocorrelation, **** indicate $p < 0.001$.
997
998



999
1000 **Fig. S5. Individual gene correlations from Fig. 3C with gene symbols labeled, and**
1001 **grouped into functional families.**



1002
1003 **Fig. S6. Spectral correlates of working memory performance.** (A) difference between delay
1004 and baseline periods for 1/f-exponent, timescale (same as main Fig. 4C but absolute units on y-
1005 axis, instead of percentage), theta power, and high-frequency power. (B) Spearman correlation
1006 between spectral feature difference and working memory accuracy across participants, same
1007 features as in (A). * $p < 0.05$, ** $p < 0.01$, *** $p < 0.005$ in (A, B). (C) scatter plot of other
1008 significantly correlated spectral features from (B).
1009



1010
1011
1012
1013
1014
1015
1016
1017
1018
1019

Fig. S7. Parameter sensitivity for timescale-aging analysis. (A) cortex-averaged timescale is independent of parcel coverage across participants. (B) sensitivity analysis for the number of valid parcels a participant must have in order to be included in analysis for main Fig. 4E (red). As threshold increases (more stringent), fewer participants satisfy the criteria (right) but correlation between participant age and timescale remains robust (left). (C) sensitivity analysis for the number of valid participants a parcel must have in order to be included in analysis for main Fig. 4F. As threshold increases (more stringent), fewer parcels satisfy the criteria (right) but average correlation across all parcels remains robust (left, error bars denote s.e.m of distribution as in Fig. 4F).

1020 **Table S1. Summary of open-access datasets used**

Data	Ref.	Specific Source/ Format Used	Relevant Figures
MNI Open iEEG Atlas	(Frauscher et al., 2018a, 2018b)		Fig. 2A,B, Fig. 3, Fig. 4
Tw1/T2w map Human Connectome Project	(Glasser and Van Essen, 2011; Glasser et al., 2016)	Release S1200, March 1, 2017	Fig. 2A,B, Fig. 3D-F
Neurotycho macaque ECoG	(Nagasaki et al., 2011; Yanagawa et al., 2013)	Anesthesia datasets, propofol and ketamine (Chibi and Geroge)	Fig. 2C,D
Macaque single-unit timescales	(Murray et al., 2014)	Fig. 1 of reference	Fig. 2C,D
Whole-cortex interpolated Allen Brain Atlas human gene expression	(Gryglewski et al., 2018; Hawrylycz et al., 2012)	Interpolated maps downloadable from http://www.meduniwiener.ac.at/neuroimaging/mRNA.html	Fig. 3
Single-cell timescale- related genes	(Bomkamp et al., 2019; Tripathy et al., 2017)	Table S3 from (Tripathy et al., 2017), Online Table 1 from (Bomkamp et al., 2019)	Fig. 3C,D
Human working memory ECoG	(Johnson, 2018, 2019; Johnson et al., 2018a, 2018b)	CRCNS fcx-2 and fcx-3	Fig. 4A-D

1021

1022

1023

1024 **Table S2. Reproducing figures from code repository**

All IPython notebooks: https://github.com/rdgao/field-echos/tree/master/notebooks	
Notebook	Results
2a_sim_method_schematic.ipynb	simulations: Fig. 1B-E, Fig. S3
2b_viz_NeuroTycho-SU.ipynb	macaque timescales: Fig. 2C,D
3_viz_human_structural.ipynb	human timescales vs. T1w/T2w and gene expression: Fig. 2A,B, Fig. 3, Fig. S1, S4, S5; Table. S3
4b_viz_human_wm.ipynb	human working memory: Fig. 4A-D, Fig. S6
4a_viz_human_aging.ipynb	human aging: Fig. 4E,F, Fig. S7
supp_spatialautocorr.ipynb	spatial autocorrelation-preserving nulls: Fig. S2

1025
1026
1027
1028
1029
1030
1031
Projection of T1w/T2w and gene expression maps from MNI volumetric coordinates to HCP-MMP1.0 can be found: https://github.com/rudyvdbrink/Surface_projection

1032 **Table S3. Significant items from brain-specific GOEA (Fig. 3F)**

gene association	ID	e/p	ontology	name	enrichment ratio	p-value (FDR-adjusted)
all	GO:0034702	e	CC	ion channel complex	1.959	0.008
all	GO:1902495	e	CC	transmembrane transporter complex	1.91	0.008
all	GO:1990351	e	CC	transporter complex	1.91	0.008
all	GO:0098982	e	CC	GABA-ergic synapse	2.497	0.038
all	GO:1902711	e	CC	GABA-A receptor complex	4.541	0.038
all	GO:0034707	e	CC	chloride channel complex	3.385	0.038
pos	GO:0008195	e	MF	phosphatidate phosphatase activity	13.864	0.007
neg	GO:0098660	e	BP	inorganic ion transmembrane transport	2.515	0.002
neg	GO:0098662	e	BP	inorganic cation transmembrane transport	2.529	0.007
neg	GO:0098655	e	BP	cation transmembrane transport	2.439	0.007
neg	GO:0034220	e	BP	ion transmembrane transport	2.057	0.03
neg	GO:0030001	e	BP	metal ion transport	2.239	0.036
neg	GO:0071805	e	BP	potassium ion transmembrane transport	3.122	0.036
neg	GO:0006813	e	BP	potassium ion transport	3.081	0.037
neg	GO:1902495	e	CC	transmembrane transporter complex	2.334	0.009
neg	GO:1990351	e	CC	transporter complex	2.334	0.009
neg	GO:0034702	e	CC	ion channel complex	2.36	0.009
neg	GO:0098796	e	CC	membrane protein complex	2.063	0.009
neg	GO:0034703	e	CC	cation channel complex	2.379	0.03
neg	GO:0005244	e	MF	voltage-gated ion channel activity	3.081	0.002
neg	GO:0022832	e	MF	voltage-gated channel activity	3.081	0.002
neg	GO:0046873	e	MF	metal ion transmembrane transporter activity	2.453	0.002
neg	GO:0022890	e	MF	inorganic cation transmembrane transporter activity	2.24	0.005
neg	GO:0005216	e	MF	ion channel activity	2.289	0.006
neg	GO:0008324	e	MF	cation transmembrane transporter activity	2.173	0.006
neg	GO:0015318	e	MF	inorganic molecular entity transmembrane transporter activity	2.04	0.006
neg	GO:0015077	e	MF	monovalent inorganic cation transmembrane transporter activity	2.535	0.006
neg	GO:0015075	e	MF	ion transmembrane transporter activity	2.024	0.006

neg	GO:0015079	e	MF	potassium ion transmembrane transporter activity	3.041	0.006
neg	GO:0005215	e	MF	transporter activity	1.883	0.006
neg	GO:0022857	e	MF	transmembrane transporter activity	1.906	0.006
neg	GO:0022836	e	MF	gated channel activity	2.301	0.006
neg	GO:0015267	e	MF	channel activity	2.191	0.006
neg	GO:0022803	e	MF	passive transmembrane transporter activity	2.191	0.006
neg	GO:0005249	e	MF	voltage-gated potassium channel activity	3.658	0.006
neg	GO:0005261	e	MF	cation channel activity	2.353	0.009
neg	GO:0005267	e	MF	potassium channel activity	3.058	0.011
neg	GO:0022843	e	MF	voltage-gated cation channel activity	2.744	0.022

1033 e/p: enriched or purified; BP: biological process; CC: cellular components; MF: molecular
1034 function

1035 **Table S4. Significant items from all-gene GOEA**

gene association	ID	e/p	ontology	name	enrichment ratio	p-value (FDR-adjusted)
all	GO:0034702	e	CC	ion channel complex	1.83	0.008
all	GO:1990351	e	CC	transporter complex	1.774	0.008
all	GO:1902495	e	CC	transmembrane transporter complex	1.79	0.008
all	GO:0034703	e	CC	cation channel complex	1.952	0.009
all	GO:0098982	e	CC	GABA-ergic synapse	2.468	0.048
all	GO:1902711	e	CC	GABA-A receptor complex	5.035	0.048
pos	GO:0050866	e	BP	negative regulation of cell activation	3.596	0
pos	GO:0002376	e	BP	immune system process	1.629	0
pos	GO:0006955	e	BP	immune response	1.992	0
pos	GO:0002695	e	BP	negative regulation of leukocyte activation	3.343	0.001
pos	GO:0045087	e	BP	innate immune response	2.297	0.005
pos	GO:0050865	e	BP	regulation of cell activation	2.099	0.005
pos	GO:0045321	e	BP	leukocyte activation	1.834	0.006
pos	GO:0007165	e	BP	signal transduction	1.301	0.006
pos	GO:0051250	e	BP	negative regulation of lymphocyte activation	3.305	0.007
pos	GO:0070663	e	BP	regulation of leukocyte proliferation	2.82	0.007
pos	GO:0002252	e	BP	immune effector process	1.778	0.009
pos	GO:0050670	e	BP	regulation of lymphocyte proliferation	2.823	0.009
pos	GO:0032944	e	BP	regulation of mononuclear cell proliferation	2.807	0.009
pos	GO:0050776	e	BP	regulation of immune response	1.787	0.011
pos	GO:0002682	e	BP	regulation of immune system process	1.571	0.015
pos	GO:0046634	e	BP	regulation of alpha-beta T cell activation	3.772	0.016
pos	GO:0001775	e	BP	cell activation	1.709	0.016
pos	GO:0032956	e	BP	regulation of actin cytoskeleton organization	2.229	0.016
pos	GO:0003150	e	BP	muscular septum morphogenesis	17.672	0.016
pos	GO:0032945	e	BP	negative regulation of mononuclear cell proliferation	4.208	0.016
pos	GO:0050672	e	BP	negative regulation of lymphocyte proliferation	4.208	0.016
pos	GO:0006952	e	BP	defense response	1.686	0.016

pos	GO:0002694	e	BP	regulation of leukocyte activation	2.013	0.016
pos	GO:0002253	e	BP	activation of immune response	2.183	0.016
pos	GO:0030833	e	BP	regulation of actin filament polymerization	2.832	0.016
pos	GO:0032970	e	BP	regulation of actin filament-based process	2.136	0.017
pos	GO:0002684	e	BP	positive regulation of immune system process	1.708	0.017
pos	GO:0046640	e	BP	regulation of alpha-beta T cell proliferation	6.094	0.017
pos	GO:0050868	e	BP	negative regulation of T cell activation	3.381	0.017
pos	GO:0002274	e	BP	myeloid leukocyte activation	1.926	0.017
pos	GO:0008064	e	BP	regulation of actin polymerization or depolymerization	2.697	0.017
pos	GO:0030832	e	BP	regulation of actin filament length	2.681	0.017
pos	GO:0006334	e	BP	nucleosome assembly	3.053	0.018
pos	GO:0070664	e	BP	negative regulation of leukocyte proliferation	3.956	0.018
pos	GO:0038096	e	BP	Fc-gamma receptor signaling pathway involved in phagocytosis	3.787	0.026
pos	GO:0002433	e	BP	immune response-regulating cell surface receptor signaling pathway involved in phagocytosis	3.787	0.026
pos	GO:0098883	e	BP	synapse pruning	10.041	0.027
pos	GO:0038094	e	BP	Fc-gamma receptor signaling pathway	3.734	0.029
pos	GO:0051249	e	BP	regulation of lymphocyte activation	2.035	0.029
pos	GO:0002431	e	BP	Fc receptor mediated stimulatory signaling pathway	3.682	0.03
pos	GO:0042116	e	BP	macrophage activation	4.734	0.03
pos	GO:0110053	e	BP	regulation of actin filament organization	2.279	0.03
pos	GO:0150064	e	BP	vertebrate eye-specific patterning	22.09	0.03
pos	GO:0002683	e	BP	negative regulation of immune system process	2.008	0.03
pos	GO:0051049	e	BP	regulation of transport	1.428	0.03
pos	GO:0098542	e	BP	defense response to other organism	1.811	0.033
pos	GO:0150146	e	BP	cell junction disassembly	9.204	0.033
pos	GO:0016322	e	BP	neuron remodeling	9.204	0.033
pos	GO:1903038	e	BP	negative regulation of leukocyte cell-cell adhesion	3.04	0.033

pos	GO:0007166	e	BP	cell surface receptor signaling pathway	1.391	0.034
pos	GO:0034728	e	BP	nucleosome organization	2.591	0.037
pos	GO:0036336	e	BP	dendritic cell migration	6.976	0.037
pos	GO:0048584	e	BP	positive regulation of response to stimulus	1.379	0.039
pos	GO:0001774	e	BP	microglial cell activation	5.727	0.039
pos	GO:0002269	e	BP	leukocyte activation involved in inflammatory response	5.727	0.039
pos	GO:0050778	e	BP	positive regulation of immune response	1.82	0.039
pos	GO:2000112	p	BP	regulation of cellular macromolecule biosynthetic process	0.718	0.017
pos	GO:0051252	p	BP	regulation of RNA metabolic process	0.718	0.019
pos	GO:0044271	p	BP	cellular nitrogen compound biosynthetic process	0.554	0.029
pos	GO:0019219	p	BP	regulation of nucleobase-containing compound metabolic process	0.737	0.029
pos	GO:0090304	p	BP	nucleic acid metabolic process	0.654	0.037
pos	GO:0032993	e	CC	protein-DNA complex	2.829	0.016
pos	GO:0000786	e	CC	nucleosome	3.488	0.016
pos	GO:0005887	e	CC	integral component of plasma membrane	1.555	0.016
pos	GO:0031226	e	CC	intrinsic component of plasma membrane	1.536	0.016
pos	GO:0044815	e	CC	DNA packaging complex	3.217	0.023
pos	GO:0030666	e	CC	endocytic vesicle membrane	2.705	0.034
pos	GO:0031514	e	CC	motile cilium	2.897	0.034
pos	GO:0043235	e	CC	receptor complex	1.981	0.04
pos	GO:0000839	e	CC	Hrd1p ubiquitin ligase ERAD-L complex	11.045	0.047
pos	GO:0016021	e	CC	integral component of membrane	1.232	0.047
pos	GO:0005634	p	CC	nucleus	0.79	0.04
pos	GO:0003676	p	MF	nucleic acid binding	0.694	0.012
neg	GO:0006813	e	BP	potassium ion transport	2.911	0.004
neg	GO:0071805	e	BP	potassium ion transmembrane transport	2.868	0.008
neg	GO:0015079	e	MF	potassium ion transmembrane transporter activity	2.888	0.001
neg	GO:0015075	e	MF	ion transmembrane transporter activity	1.726	0.001
neg	GO:0022857	e	MF	transmembrane transporter activity	1.649	0.001

neg	GO:0046873	e	MF	metal ion transmembrane transporter activity	2.068	0.001
neg	GO:0005215	e	MF	transporter activity	1.587	0.002
neg	GO:0022832	e	MF	voltage-gated channel activity	2.468	0.006
neg	GO:0005244	e	MF	voltage-gated ion channel activity	2.468	0.006
neg	GO:0015318	e	MF	inorganic molecular entity transmembrane transporter activity	1.662	0.008
neg	GO:0001227	e	MF	DNA-binding transcription repressor activity, RNA polymerase II-specific	2.227	0.011
neg	GO:0001217	e	MF	DNA-binding transcription repressor activity	2.218	0.011
neg	GO:0022836	e	MF	gated channel activity	2.007	0.015
neg	GO:0005249	e	MF	voltage-gated potassium channel activity	3.126	0.015
neg	GO:0015077	e	MF	monovalent inorganic cation transmembrane transporter activity	1.916	0.022
neg	GO:0005267	e	MF	potassium channel activity	2.703	0.022
neg	GO:0022890	e	MF	inorganic cation transmembrane transporter activity	1.701	0.033

1036 e/p: enriched or purified; BP: biological process; CC: cellular components; MF: molecular

1037 function