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Abstract

Complex cognitive functions such as working memory and decision-making require information
maintenance over many timescales, from transient sensory stimuli to long-term contextual cues.
While theoretical accounts predict the emergence of a corresponding hierarchy of neuronal
timescales, direct electrophysiological evidence across the human cortex is lacking. Here, we
infer neuronal timescales from invasive intracranial recordings. Timescales increase along the
principal sensorimotor-to-association axis across the entire human cortex, and scale with single-
unit timescales within macaques. Cortex-wide transcriptomic analysis shows direct alignment
between timescales and expression of excitation- and inhibition-related genes, as well as genes
specific to voltage-gated transmembrane ion transporters. Finally, neuronal timescales are
functionally dynamic: prefrontal cortex timescales expand during working memory maintenance
and predict individual performance, while cortex-wide timescales compress with aging. Thus,
neuronal timescales follow cytoarchitectonic gradients across the human cortex, and are
relevant for cognition in both short- and long-terms, bridging microcircuit physiology with
macroscale dynamics and behavior.
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Introduction

Human brain regions are broadly specialized for different aspects of behavior and cognition. For
example, primary sensory neurons are tightly coupled to changes in the environment, firing
rapidly to the onset and removal of a stimulus, and showing characteristically short intrinsic
timescales (Ogawa and Komatsu, 2010; Runyan et al., 2017). In contrast, neurons in cortical
association (or transmodal) regions, such as the prefrontal cortex (PFC), can sustain their
activity for many seconds when a person is engaged in working memory (Zylberberg and
Strowbridge, 2017), decision-making (Gold and Shadlen, 2007), and hierarchical reasoning
(Sarafyazd and Jazayeri, 2019). This persistent activity in the absence of immediate sensory
stimuli reflects longer neuronal timescales, which is thought to result from neural attractor states
(Wang, 2002; Wimmer et al., 2014) shaped by NMDA-mediated recurrent excitation and fast
feedback inhibition (Wang, 1999, 2008), with contributions from other synaptic and cell-intrinsic
properties (Duarte and Morrison, 2019; Gjorgjieva et al., 2016).

Recent studies have shown that variations in many such microarchitectural features follow
continuous and coinciding gradients along a sensory-to-association axis across the cortex,
including cortical thickness, cell density, and distribution of excitatory and inhibitory neurons
(Hilgetag and Goulas, 2020; Huntenburg et al., 2018; Wang, 2020). In particular, grey matter
myelination (Glasser and Van Essen, 2011), which indexes anatomical hierarchy, varies with
the expression of numerous genes related to microcircuit function, such as NMDA receptor and
inhibitory cell-type marker genes (Burt et al., 2018). Functionally, specialization of the human
cortex, as well as structural and functional connectivity (Margulies et al., 2016), also follow
similar macroscopic gradients. In addition to the broad differentiation between sensory and
association cortices, there is evidence for a finer hierarchical organization within the frontal
cortex (Sarafyazd and Jazayeri, 2019). For example, the anterior-most parts of the PFC are
responsible for long timescale goal-planning behavior (Badre and D’Esposito, 2009; Voytek et
al., 2015a), while healthy aging is associated with a shift in these gradients such that older
adults become more reliant on higher-level association regions to compensate for altered lower-
level cortical functioning (Davis et al., 2008).

Despite convergent observations of continuous cortical gradients in structural features and
cognitive specialization, there is no direct evidence for a similar gradient of neuronal timescales
across the human cortex. Such a gradient of neuronal dynamics is predicted to be a natural
consequence of macroscopic variations in synaptic connectivity and microarchitectural features
(Chaudhuri et al., 2015; Duarte et al., 2017; Huntenburg et al., 2018; Wang, 2020), and would
be a primary candidate for how functional specialization emerges as a result of hierarchical
temporal processing (Kiebel et al., 2008). Single-unit recordings in rodents and non-human
primates hint at a hierarchy of timescales that increase, or expand, progressively along a
posterior-to-anterior axis (Murray et al., 2014; Runyan et al., 2017; Wasmuht et al., 2018), while
intracranial recordings and functional neuroimaging data collected during perceptual and
cognitive tasks suggest likewise in humans (Baldassano et al., 2017; Honey et al., 2012; Lerner
et al., 2011; Watanabe et al., 2019). However, these data are either sparsely sampled across
the cortex or do not measure neuronal activity at the cellular and synaptic level directly,
prohibiting the full construction of an electrophysiological timescale gradient across the human
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cortex. As a result, while whole-cortex data of transcriptomic and anatomical variations exist, we
cannot take advantage of them to dissect the contributions of synaptic, cellular, and circuit
connectivity in shaping fast neuronal timescales, nor ask whether regional timescales are
dynamic and relevant for human cognition (Fig. 1A).
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Fig. 1. Schematic of study and timescale inference technique. (A) in this study, we infer
neuronal timescales from intracranial field potential recordings, which reflect integrated synaptic
and transmembrane current fluctuations over large neural populations(Buzsaki et al., 2012).
Combining multiple open-access datasets (Table S1), we link timescales to known human
anatomical hierarchy, dissect its cellular and physiological basis via transcriptomic analysis, and
demonstrate its functional modulation during behavior and through aging. (B) simulated time
series, and their (C) autocorrelation functions (ACF), with increasing timescales (decay time
constant). (D) example ECoG power spectral density (PSD) showing that in frequency domain,
timescale is equivalent to the frequency of aperiodic power drop-off (fi, triangle; insets: time
series and ACF). (E) accurate extraction of timescale parameters from PSDs of simulated time
series in (B).
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Results

Neuronal timescale can be inferred from frequency domain

To overcome these limitations, we develop a novel computational method for inferring the
timescale of neuronal transmembrane current fluctuations from human intracranial
electrocorticography (ECoG) recordings (Fig. 1A, box). Neural time series exhibit variable
temporal autocorrelation, or timescales, where future values are partially predictable from past
values, and predictability decreases with increasing time lags. To demonstrate the effect of
varying autocorrelation, we simulate the aperiodic (non-rhythmic) component of neural field
potential recordings by convolving Poisson population spikes with exponentially-decaying
synaptic kernels (Fig. 1B). Consistent with previous studies, “neuronal timescale” here is
defined as the exponential decay time constant (1) of the autocorrelation function (ACF) (Murray
et al., 2014)—the time it takes for the ACF to decrease by a factor of e (Fig. 1C). Equivalently,
we can estimate neuronal timescale from the “characteristic frequency” (f) of the power spectral
density (PSD), especially when the presence of variable 1/f (x) and oscillatory components can
bias timescale inference from the ACF in time-domain (Fig. 1D). In this study, we apply spectral
parameterization (Haller et al., 2018) to extract timescales from intracranial recordings, which
decomposes neural PSDs into a combination of oscillatory and aperiodic components, where
timescale is inferred from the latter. We validate this approach on PSDs computed from
simulated neural time series and show that the model-fitted timescales closely match their
ground-truth values (Fig. 1E).

Timescales follow anatomical hierarchy and are 10x faster than spiking timescales
Applying this technique, we infer a continuous gradient of neuronal timescales across the human
cortex and examine its relationship with anatomical hierarchy. We analyze a large dataset of
human intracranial (ECoG) recordings of task-free brain activity from 106 epilepsy patients (MNI-
iEEG (Frauscher et al., 2018a), see Fig. S1 for electrode coverage), and compare the ECoG-
derived timescale gradient to the average T1w/T2w map from the Human Connectome Project,
which captures grey matter myelination and indexes the proportion of feedforward vs. feedback
connections between cortical regions, defining an anatomical hierarchy (Burt et al., 2018; Glasser
and Van Essen, 2011).

Across the human cortex, timescales of fast electrophysiological dynamics (~10-50 ms)
predominantly follow a rostrocaudal gradient (Fig. 2A). Consistent with numerous accounts of a
principal cortical axis spanning from primary sensory to association regions (Hilgetag and Goulas,
2020; Margulies et al., 2016; Wang, 2020), timescales are shorter in sensorimotor and early visual
areas, and longer in association regions, especially posterior parietal, ventral/medial frontal, and
medial temporal cortex. Cortical timescales are negatively correlated with T1w/T2w (Fig. 2B, p =
-0.47, p < 0.001; adjusted for spatial autocorrelation, see Materials and Methods and Fig. S2),
such that timescales are shorter in more heavily myelinated (lower-level) cortical regions.

While surface ECoG recordings offer much broader spatial coverage than extracellular single-unit
recordings, they are fundamentally different signals: ECoG and field potentials largely reflect
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integrated synaptic and other transmembrane currents across many neuronal and glial cells,
rather than putative action potentials from single neurons (Buzsaki et al., 2012) (Fig. 1A, box).
Considering this, we ask whether timescales measured from ECoG are related to single-unit
spiking timescales along the cortical hierarchy. To test this, we extract neuronal timescales from
task-free ECoG recordings in macaques and compare them to a separate dataset of single-unit
spiking timescales (Murray et al., 2014) (Fig. 2C, inset; see Fig. S3 for electrode locations).
Consistent with spiking timescale estimates (Murray et al., 2014; Wasmuht et al., 2018), ECoG
timescales also increase along the macaque cortical hierarchy. While there is a strong
correspondence between spiking and ECoG timescales (Fig. 2C; p = 0.96, p < 0.001)—measured
from independent datasets—across the macaque cortex, ECoG-derived timescales are 10 times
faster than single-unit timescales and are conserved across individual sessions (Fig. 2D). This
suggests that neuronal spiking and transmembrane currents have distinct but related timescales
of fluctuations, and that both are hierarchically organized along the primate cortex.
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Fig. 2. Timescale increases along the anatomical hierarchy in humans and macaques. (A)
human cortical timescale gradient (left) falls predominantly along the rostrocaudal axis, similar to
T1w/T2w ratio (right). (B) neuronal timescales are negatively correlated with cortical T1w/T2w,
thus increasing along the anatomical hierarchy from sensory to association regions (p-value
adjusted for spatial autocorrelation). (C) macaque ECoG timescales track published single-unit
spiking timescales (Murray et al.,, 2014) in corresponding regions (meanzs.e.m from n=8
sessions); inset: ECoG electrode map of one animal. (D) ECoG-derived timescales are
consistently correlated to (left), and an order of magnitude faster than (right), single-unit
timescales across individual sessions. Hollow markers: individual sessions; shapes: animals;
solid circles: grand average from (C).
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Synaptic and ion channel genes shape timescales of neuronal dynamics

Next, we identify cellular and synaptic mechanisms underlying timescale variations across the
human cortex. Theoretical accounts posit that NMDA-mediated recurrent excitation coupled with
fast inhibition (Chaudhuri et al., 2015; Wang, 1999, 2008), as well as cell-intrinsic properties
(Duarte and Morrison, 2019; Gjorgjieva et al., 2016; Koch et al., 1996), are crucial for shaping
neuronal timescales. While in vitro and in vivo studies in model organisms (van Vugt et al.,
2020; Wang et al., 2013) can test these hypotheses at the single-neuron level, causal
manipulation and large-scale recording of neuronal networks embedded in the human brain is
severely limited. Here, we apply an approach analogous to multimodal single-cell profiling
(Bomkamp et al., 2019) and examine the transcriptomic basis of neuronal dynamics at the
macroscale.

Leveraging cortex-wide bulk mRNA expression variations (Hawrylycz et al., 2012), we find that
the neuronal timescale gradient overlaps with the dominant axis of gene expression across the
human cortex (p = -0.60, p < 0.001; Fig. 3A and Fig. S4). Consistent with theoretical predictions
(Fig. 3B), timescales significantly correlate with the expression of genes encoding for NMDA
(GRIN2B) and GABA-A (GABRAZ3) receptor subunits, voltage-gated sodium (SCN1A) and
potassium (KCNA3) ion channel subunits, as well as inhibitory cell-type markers (parvalbumin,
PVALB), and genes previously identified to be associated with single-neuron membrane time
constants (PRR5) (Bomkamp et al., 2019).

More specifically, in vitro electrophysiological studies have shown that, for example, increased
expression of receptor subunit 2B extends the NMDA current time course (Flint et al., 1997), while
2A expression shortens it (Monyer et al., 1994). Similarly, the GABA-A receptor time constant
lengthens with increasing a3:a1 subunit ratio (Eyre et al., 2012). We show that these relationships
are recapitulated at the macroscale, where neuronal timescales positively correlate with GRIN2B
and GABRAS expression, and negatively correlate with GRIN2A and GABRA1. These results
demonstrate that timescales of neural dynamics depend on specific receptor subunit
combinations with different (de)activation timescales (Duarte et al., 2017; Gjorgjieva et al., 2016),
in addition to broad excitation-inhibition interactions (Gao et al., 2017; Wang, 2002, 2020).
Notably, almost all genes related to voltage-gated sodium and potassium ion channel alpha-
subunits—the main functional subunits—are correlated with timescale, while all inhibitory cell-
type markers except parvalbumin have strong positive associations with timescale (Fig. 3C and
Fig. S5).

We further test whether single-cell timescale-transcriptomic associations are captured at the
macroscale as follows: for a given gene, we can measure how strongly its expression correlates
with membrane time constant parameters at the single-cell level using patch-clamp and RNA
sequencing (scRNASeq) data (Bomkamp et al., 2019; Tripathy et al., 2017). Analogously, we can
measure its macroscopic transcriptomic-timescale correlation using the cortical gradients above.
Comparing across these two levels for all previously-identified timescale-related genes
(Bomkamp et al., 2019; Tripathy et al., 2017), we find a significant correlation between the
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206  strength of association at the single-cell and macroscale levels (Fig. 3D, horizontal lines; p = 0.36
207 and0.25, p<0.001). Furthermore, genes with stronger associations to timescale tend to conserve
208 this relationship across single-cell and macroscale levels (Fig. 3D, separated by macroscale
209 correlation magnitude). Thus, the association between cellular variations in gene expression and
210  cell-intrinsic temporal dynamics is captured at the macroscale, even though scRNAseq and
211 microarray data represent entirely different measurements of gene expression.

212 While we have shown associations between cortical timescales and genes suspected to influence
213  neuronal dynamics, these data present an opportunity to discover additional novel genes that are
214  functionally related to timescales through a data-driven approach. However, since transcriptomic
215  variation and anatomical hierarchy overlap along a shared macroscopic gradient (Burt et al., 2018;
216  Huntenburg et al., 2018; Margulies et al., 2016), we cannot specify the role certain genes play
217  based on their level of association with timescale alone: gene expression differences across the
218  cortex first result in cell-type and connectivity differences, sculpting the hierarchical organization
219  of cortical anatomy. Consequently, anatomy and cell-intrinsic properties jointly shape neuronal
220 dynamics through connectivity differences (Chaudhuri et al., 2015; Demirtas et al., 2019) and
221 expression of ion transport proteins with variable activation timescales, respectively. Therefore,
222  we ask whether variation in gene expression still accounts for variation in timescale beyond the
223  principal structural gradient, and if associated genes have known functional roles in biological
224  processes (schematic in Fig. 4E). To do this, we first remove the contribution of anatomical
225  hierarchy by regressing out the T1w/T2w gradient from both timescale and individual gene
226  expression gradients. We then fit partial least squares (PLS) models to simultaneously estimate
227  regression weights for all genes (Whitaker et al., 2016), submitting those with significant
228  associations for gene ontology enrichment analysis (GOEA) (Klopfenstein et al., 2018).

229 We find that genes highly associated with neuronal timescales are preferentially related to
230 transmembrane ion transporter complexes, as well as GABAergic synapses and chloride
231 channels (Fig. 4F, Table S3 and S4). When restricted to positively-associated genes only
232  (expression increases with timescales), one functional group related to phosphatidate
233  phosphatase activity is uncovered, including the gene PLPPR1, which has been linked to
234  neuronal plasticity(Savaskan et al., 2004). Conversely, genes that are negatively associated with
235 timescale are related to numerous groups involved in the construction and functioning of
236 transmembrane transporters and voltage-gated ion channels, especially potassium and other
237 inorganic cation transporters. The discovery of these gene ontology items suggests that inhibition
238 (Telenczuk et al., 2017)—mediated by GABA and chloride channels—and voltage-gated
239 potassium channels have prominent roles in shaping neuronal timescale dynamics at the
240 macroscale level, beyond what’s expected based on the anatomical hierarchy alone.

241
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243  Fig. 3. Timescale gradient is linked to expression of genes related to synaptic receptors
244  and transmembrane ion channels across the human cortex. (A) timescale gradient follows
245 the dominant axis of gene expression variation across the cortex (PC1, arbitrary direction). (B)
246  timescale gradient is significantly correlated with expression of genes known to alter synaptic and
247  neuronal membrane time constants, as well as inhibitory cell-type markers, but (C) members
248  within a gene family (e.g., NMDA receptor subunits) can be both positively and negatively
249  associated with timescales. (D) macroscale timescale-transcriptomic correlation captures
250 association between RNA-sequenced expression of the same genes and single-cell timescale
251 properties fit to patch clamp data (Bomkamp et al., 2019; Tripathy et al., 2017), and the
252  correspondence improves for genes (separated by quintiles) that are more strongly correlated
253  with timescale (horizontal lines: correlation across all genes from (Bomkamp et al., 2019; Tripathy
254  etal, 2017), p = 0.36 and 0.25). (E) T1w/T2w gradient is regressed out from timescale and gene
255  expression gradients, and a partial least squares (PLS) model is fit to the residual maps. Genes
256  with significant PLS weights are submitted for gene ontology enrichment analysis. (F) enriched
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257 genes are primarily linked to transmembrane transporters and GABA-ergic synapses; genes
258  specifically with strong negative associations further over-represent transmembrane ion
259 exchange mechanisms, especially voltage-gated potassium and cation transporters. Spatial
260 correlation p-values in (A-C) are adjusted for spatial autocorrelation (see Materials and Methods;
261  asterisks in (B,D) indicate p < 0.05, 0.01, 0.005, and 0.001 respectively; filled circles in (C,D)
262 indicate p < 0.05).

263

264

265 Timescales lengthen in working memory and shorten in aging

266 Finally, we investigate whether timescales are functionally dynamic and relevant for human
267  cognition. While previous studies have shown hierarchical segregation of task-relevant
268 information corresponding to intrinsic timescales of different cortical regions (Baldassano et al.,
269  2017; Chien and Honey, 2020; Honey et al., 2012; Runyan et al., 2017; Sarafyazd and Jazayeri,
270  2019; Wasmuht et al., 2018), as well as optimal adaptation of behavioral timescales to match the
271  environment (Ganupuru et al., 2019; Ossmy et al., 2013), evidence for functionally relevant
272  changes in regional neuronal timescales is lacking. Here, we examine whether timescales
273  undergo short- and long-term shifts during working memory maintenance and aging, respectively.
274

275  We first analyze human ECoG recordings where participants performed a visuospatial working
276  memory task that requires a delayed cued response (Fig. 4A) (Johnson et al., 2018a). Neuronal
277  timescales were extracted for pre-stimulus baseline and memory maintenance delay periods (900
278 ms, both stimulus-free). Replicating our previous result, we observe that baseline neuronal
279 timescales follow a hierarchical progression across association regions (Fig. 4B). If neuronal
280 timescales track the temporal persistence of information in a functional manner, then they should
281 expand during delay periods. Consistent with our prediction, timescales in all regions are ~20%
282  longer during delay periods (Fig. 4C; p < 0.005 for all regions). Moreover, timescale changes in
283 the PFC are significantly correlated with behavior across participants, where longer delay-period
284  timescales relative to baseline are associated with better working memory performance (Fig. 4D,
285 p = 0.75, p = 0.003). No other spectral features in the recorded brain regions experience
286 consistent changes from baseline to delay periods while also significantly correlating with
287 individual performance, including the 1/f-like spectral exponent, narrowband theta (3-8 Hz), and
288  high-frequency (high gamma; 70-100 Hz) activity power (Fig. S6).

289

290 Inthe long-term, aging is associated with a broad range of functional and structural changes,
291  such as working memory impairments (Voytek et al., 2015b; Wang et al., 2011), as well as

292  changes in neuronal dynamics (Voytek and Knight, 2015; Voytek et al., 2015b; Wang et al.,

293  2011) and cortical structure (Pegasiou et al., 2020; de Villers-Sidani et al., 2010), such as the
294  loss of slow-deactivating NMDA receptor subunits (Pegasiou et al., 2020). Since neuronal

295 timescales support working memory maintenance, we specifically predict that timescales

296  shorten across the lifespan, in agreement with the observed cognitive and structural

297  deteriorations. To this end, we leverage the wide age range in the MNI-IEEG dataset (13-62

298 years old) and probe cortical timescales for each participant as a function of age. We observe
299 that older adults have faster neuronal timescales (o = -0.31, p = 0.010; Fig. 4E and Fig. S7; see
300 Materials and Methods), and that timescales shorten with age in most areas across the cortex (¢
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=-7.04, p < 0.001). This timescale compression is especially prominent in sensorimotor,
temporal, and medial frontal regions (Fig. 4F and Fig. S7). These results support our hypothesis
that neuronal timescales, estimated from transmembrane current fluctuations, can rapidly shift
in a functionally relevant manner, as well as slowly—over decades—in healthy aging.
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Fig. 4. Timescales expand during working memory maintenance while tracking
performance, and task-free average timescales compress in older adults. (A) 14 participants
with overlapping intracranial coverage performed a visuospatial working memory task, with
baseline (pre-stimulus) and delay period data analyzed (PC: parietal, PFC: prefrontal, OFC:
orbitofrontal, MTL: medial temporal; n denotes number of subjects). (B) baseline timescales follow
hierarchical organization within association regions (*: p < 0.05; meants.e.m. across participants).

(C) all regions show significant timescale increase during delay period compared to baseline

(***.

p < 0.005, ****: p < 0.001, one-sample t-test). (D) PFC timescale expansion during delay periods
predicts working memory accuracy across participants (meants.e.m. across PFC electrodes);
inset: correlation between working memory accuracy and timescale change across regions. (E)
in the MNI-IEEG dataset, participant-average cortical timescales decrease (become faster) with
age. (F) most cortical parcels show a negative relationship between timescales and age, with the
exception of parts of the visual cortex and the temporal poles (one-sample t-test, t = -7.04).

Discussion
Theoretical accounts and converging empirical evidence predict a graded variation of neuronal
timescales across the human cortex (Chaudhuri et al., 2015; Huntenburg et al., 2018; Wang,

2020), which reflects functional specialization and implements hierarchical temporal processing
crucial for complex cognition (Kiebel et al., 2008). This timescale gradient is thought to emerge
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327  as a consequence of cortical variations in cytoarchitecture and microcircuit connectivity, thus
328 linking brain structure to function. In this work, we infer the timescale of non-rhythmic

329 transmembrane current fluctuations from invasive human intracranial recordings and test those
330 predictions explicitly.

331

332  We find that neuronal timescales vary continuously across the human cortex and coincide with
333  the anatomical hierarchy, with timescales increasing from primary sensory and motor to

334  association regions. Timescales inferred from macaque ECoG scale with single-unit spiking
335 timescales, corroborating the fact that field potential signals mainly reflect fast transmembrane
336  and synaptic currents (Buzsaki et al., 2012), whose timescales are related to, but distinct from,
337  single-unit timescales measured in previous studies (Murray et al., 2014; Ogawa and Komatsu,
338  2010; Wasmuht et al., 2018). Because field potential fluctuations are driven by currents from
339  both locally generated and distal inputs, our results raise questions on how and when these
340 timescales interact to shape downstream spiking dynamics.

341

342  Furthermore, transcriptomic analysis demonstrates the specific roles that transmembrane ion
343 transporters and synaptic receptors play in establishing the cortical gradient of neuronal

344  timescales, over and above the degree predicted by the principal structural gradient alone. The
345  expression of voltage-gated potassium channel, chloride channel, and GABAergic receptor

346  genes, in particular, are strongly associated with the spatial variation of neuronal timescale.

347  Remarkably, we find that electrophysiology/transcriptomic relationships discovered at the single-
348  cell level, through patch-clamp recordings and single-cell RNA sequencing, are recapitulated at
349  the macroscale between bulk gene expression and timescales inferred from ECoG. Our findings
350 motivate further studies for investigating the precise roles voltage-gated ion channels and

351  synaptic inhibition play in shaping functional neuronal timescales through causal manipulations,
352  complementary to existing lines of research focusing on NMDA activation and recurrent circuit
353  motifs.

354

355  Finally, we show that neuronal timescales are not static, but can change both in the short- and
356 long-term. Transmembrane current timescales across multiple association regions, including
357 parietal, frontal, and medial temporal cortices, increase during the delay period of a working
358 memory task, consistent with the emergence of persistent spiking during working memory delay.
359  Working memory performance across individuals, however, is predicted by the extent of

360 timescale increase in the PFC only. This further suggests that behavior-relevant neural activity
361  may be localized despite widespread task-related modulation (Pinto et al., 2019), even at the
362 level of neuronal membrane fluctuations. In the long-term, we find that neuronal timescale

363  shortens with age in most cortical regions, linking age-related synaptic, cellular, and connectivity
364  changes—particularly those that influence neuronal integration timescale—to the compensatory
365  posterior-to-anterior shift of functional specialization in healthy aging (Davis et al., 2008).

366

367  Overall, we identify consistent and converging patterns between transcriptomics, anatomy,

368 dynamics, and function across multiple datasets of different modalities from different individuals
369 and multiple species. As a result, evidence for these relationships can be supplemented by

370  more targeted approaches such as imaging of receptor metabolism. Furthermore, the
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371 introduction and validation of a novel method for inferring timescales from macroscale

372  electrophysiological recordings potentially allows for the non-invasive estimation of neuronal
373 timescales, using widely accessible tools such as EEG and MEG (Demirtas et al., 2019). These
374  results open up many avenues of research for discovering potential relationships between

375  microscale gene expression and anatomy with the dynamics of neuronal population activity at
376  the macroscale in humans.

377

378 References

379 Alexander-Bloch, A.F., Shou, H., Liu, S., Satterthwaite, T.D., Glahn, D.C., Shinohara, R.T.,
380 Vandekar, S.N., and Raznahan, A. (2018). On testing for spatial correspondence between maps
381 of human brain structure and function. Neuroimage 7178, 540-551.

382 Badre, D., and D’Esposito, M. (2009). Is the rostro-caudal axis of the frontal lobe hierarchical?
383  Nat. Rev. Neurosci. 10, 659-669.

384  Baldassano, C., Chen, J., Zadbood, A., Pillow, J.W., Hasson, U., and Norman, K.A. (2017).
385  Discovering Event Structure in Continuous Narrative Perception and Memory. Neuron 95, 709—
386  721.e5.

387  Bauer, S. (2017). Gene-Category Analysis. In The Gene Ontology Handbook, C. Dessimoz, and
388 N. Skunca, eds. (New York, NY: Springer New York), pp. 175-188.

389 Bomkamp, C., Tripathy, S.J., Bengtsson Gonzales, C., Hjerling-Leffler, J., Craig, A.M., and
390 Pavlidis, P. (2019). Transcriptomic correlates of electrophysiological and morphological diversity
391  within and across excitatory and inhibitory neuron classes. PLoS Comput. Biol. 15, e1007113.

392 Brett, M., Markiewicz, C.J., Hanke, M., C6té, M.-A., Cipollini, B., McCarthy, P., Jarecka, D.,
393 Cheng, C.P., Halchenko, Y.O., Cottaar, M., et al. (2020). nipy/nibabel: 3.1.0.

394 Burt, J.B., Demirtas, M., Eckner, W.J., Navejar, N.M., Ji, J.L., Martin, W.J., Bernacchia, A.,
395  Anticevic, A., and Murray, J.D. (2018). Hierarchy of transcriptomic specialization across human
396 cortex captured by structural neuroimaging topography. Nat. Neurosci. 27, 1251-1259.

397  Burt, J.B., Helmer, M., Shinn, M., Anticevic, A., and Murray, J.D. (2020). Generative modeling of
398  brain maps with spatial autocorrelation.

399  Buzséki, G., Anastassiou, C.A., and Koch, C. (2012). The origin of extracellular fields and
400 currents--EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407—420.

401  Chaudhuri, R., Knoblauch, K., Gariel, M.-A., Kennedy, H., and Wang, X.-J. (2015). A Large-
402  Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex. Neuron
403  88,419-431.

404  Chien, H.-Y.S., and Honey, C.J. (2020). Constructing and Forgetting Temporal Context in the
405 Human Cerebral Cortex. Neuron.

406 Cole, S., Donoghue, T., Gao, R., and Voytek, B. (2019). NeuroDSP: a package for neural digital
407  signal processing. Journal of Open Source Software 4, 1272.

408 Davis, S.W., Dennis, N.A., Daselaar, S.M., Fleck, M.S., and Cabeza, R. (2008). Que PASA?

13


https://doi.org/10.1101/2020.05.25.115378
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.115378; this version posted July 16, 2020. The copyright holder for this preprint (which

409

410
411
412

413
414

415
416

417
418
419

420
421
422
423

424
425
426

427
428
429
430

431
432
433

434
435

436
437

438
439
440

441
442
443

444
445

446
447

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

The posterior--anterior shift in aging. Cereb. Cortex 18, 1201-1209.

Demirtas, M., Burt, J.B., Helmer, M., Ji, J.L., Adkinson, B.D., Glasser, M.F., Van Essen, D.C.,
Sotiropoulos, S.N., Anticevic, A., and Murray, J.D. (2019). Hierarchical Heterogeneity across
Human Cortex Shapes Large-Scale Neural Dynamics. Neuron 707, 1181-1194.e13.

Duarte, R., and Morrison, A. (2019). Leveraging heterogeneity for neural computation with
fading memory in layer 2/3 cortical microcircuits. PLoS Comput. Biol. 75, e1006781.

Duarte, R., Seeholzer, A, Zilles, K., and Morrison, A. (2017). Synaptic patterning and the
timescales of cortical dynamics. Curr. Opin. Neurobiol. 43, 156—165.

Eyre, M.D., Renzi, M., Farrant, M., and Nusser, Z. (2012). Setting the time course of inhibitory
synaptic currents by mixing multiple GABA(A) receptor a subunit isoforms. J. Neurosci. 32,
5853-5867.

Fagerberg, L., Hallstrom, B.M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka,
M., Tahmasebpoor, S., Danielsson, A., Edlund, K., et al. (2014). Analysis of the human tissue-
specific expression by genome-wide integration of transcriptomics and antibody-based
proteomics. Mol. Cell. Proteomics 13, 397—406.

Flint, A.C., Maisch, U.S., Weishaupt, J.H., Kriegstein, A.R., and Monyer, H. (1997). NR2A
subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J.
Neurosci. 17, 2469-2476.

Frauscher, B., von Ellenrieder, N., Zelmann, R., Dolezalova, |., Minotti, L., Olivier, A., Hall, J.,
Hoffmann, D., Nguyen, D.K., Kahane, P., et al. (2018a). Atlas of the normal intracranial
electroencephalogram: neurophysiological awake activity in different cortical areas. Brain 141,
1130-1144.

Frauscher, B., von Ellenrieder, N., Zelmann, R., Rogers, C., Nguyen, D.K., Kahane, P., Dubeau,
F., and Gotman, J. (2018b). High-Frequency Oscillations in the Normal Human Brain. Ann.
Neurol. 84, 374-385.

Ganupuru, P., Goldring, A.B., Harun, R., and Hanks, T.D. (2019). Flexibility of Timescales of
Evidence Evaluation for Decision Making. Curr. Biol. 29, 2091-2097 .e4.

Gao, R., Peterson, E.J., and Voytek, B. (2017). Inferring synaptic excitation/inhibition balance
from field potentials. Neuroimage 158, 70-78.

Genovese, G., Fromer, M., Stahl, E.A., Ruderfer, D.M., Chambert, K., Landén, M., Moran, J.L.,
Purcell, S.M., Sklar, P., Sullivan, P.F., et al. (2016). Increased burden of ultra-rare protein-
altering variants among 4,877 individuals with schizophrenia. Nat. Neurosci. 19, 1433-1441.

Gjorgjieva, J., Drion, G., and Marder, E. (2016). Computational implications of biophysical
diversity and multiple timescales in neurons and synapses for circuit performance. Curr. Opin.
Neurobiol. 37, 44-52.

Glasser, M.F., and Van Essen, D.C. (2011). Mapping human cortical areas in vivo based on
myelin content as revealed by T1- and T2-weighted MRI. J. Neurosci. 31, 11597-11616.

Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., Ugurbil, K.,
Andersson, J., Beckmann, C.F., Jenkinson, M., et al. (2016). A multi-modal parcellation of

14


https://doi.org/10.1101/2020.05.25.115378
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.115378; this version posted July 16, 2020. The copyright holder for this preprint (which

448

449
450

451
452
453
454

455
456

457
458
459

460
461
462

463
464

465
466
467

468
469

470
471

472
473
474

475
476

477
478
479

480
481
482

483
484

485

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

human cerebral cortex. Nature 536, 171-178.

Gold, J.I., and Shadlen, M.N. (2007). The neural basis of decision making. Annu. Rev. Neurosci.
30, 535-574.

Gryglewski, G., Seiger, R., James, G.M., Godbersen, G.M., Komorowski, A., Unterholzner, J.,
Michenthaler, P., Hahn, A., Wadsak, W., Mitterhauser, M., et al. (2018). Spatial analysis and
high resolution mapping of the human whole-brain transcriptome for integrative analysis in
neuroimaging. Neuroimage 176, 259-267.

Haller, M., Donoghue, T., Peterson, E., Varma, P., Sebastian, P., Gao, R., Noto, T., Knight,
R.T., Shestyuk, A., and Voytek, B. (2018). Parameterizing neural power spectra.

Hawrylycz, M., Miller, J.A., Menon, V., Feng, D., Dolbeare, T., Guillozet-Bongaarts, A.L., Jegga,
A.G., Aronow, B.J., Lee, C.-K., Bernard, A., et al. (2015). Canonical genetic signatures of the
adult human brain. Nat. Neurosci. 18, 1832—1844.

Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., Shen, E.H., Ng, L., Miller, J.A., van de
Lagemaat, L.N., Smith, K.A., Ebbert, A., Riley, Z.L., et al. (2012). An anatomically
comprehensive atlas of the adult human brain transcriptome. Nature 489, 391-399.

Hilgetag, C.C., and Goulas, A. (2020). “Hierarchy” in the organization of brain networks. Philos.
Trans. R. Soc. Lond. B Biol. Sci. 375, 20190319.

Honey, C.J., Thesen, T., Donner, T.H., Silbert, L.J., Carlson, C.E., Devinsky, O., Doyle, W.K.,
Rubin, N., Heeger, D.J., and Hasson, U. (2012). Slow cortical dynamics and the accumulation of
information over long timescales. Neuron 76, 423—-434.

Huntenburg, J.M., Bazin, P.-L., and Margulies, D.S. (2018). Large-Scale Gradients in Human
Cortical Organization. Trends Cogn. Sci. 22, 21-31.

Izhikevich, L., Gao, R., Peterson, E., and Voytek, B. (2018). Measuring the average power of
neural oscillations.

Johnson, E. (2018). Intracranial EEG recordings of medial temporal, lateral frontal, and
orbitofrontal regions in 10 human adults performing a visuospatial working memory task
(CRCNS.org).

Johnson, E. (2019). Intracranial EEG recordings of lateral frontal and parietal regions in 7
human adults performing a visuospatial working memory task (CRCNS.org).

Johnson, E.L., Adams, J.N., Solbakk, A.-K., Endestad, T., Larsson, P.G., Ivanovic, J., Meling,
T.R., Lin, J.J., and Knight, R.T. (2018a). Dynamic frontotemporal systems process space and
time in working memory. PLoS Biol. 16, e2004274.

Johnson, E.L., King-Stephens, D., Weber, P.B., Laxer, K.D., Lin, J.J., and Knight, R.T. (2018b).
Spectral Imprints of Working Memory for Everyday Associations in the Frontoparietal Network.
Front. Syst. Neurosci. 12, 65.

Kiebel, S.J., Daunizeau, J., and Friston, K.J. (2008). A hierarchy of time-scales and the brain.
PLoS Comput. Biol. 4, e1000209.

Klopfenstein, D.V., Zhang, L., Pedersen, B.S., Ramirez, F., Warwick Vesztrocy, A., Naldi, A.,

15


https://doi.org/10.1101/2020.05.25.115378
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.115378; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

486  Mungall, C.J., Yunes, J.M., Botvinnik, O., Weigel, M., et al. (2018). GOATOOLS: A Python
487 library for Gene Ontology analyses. Sci. Rep. 8, 10872.

488 Koch, C., Rapp, M., and Segev, I. (1996). A brief history of time (constants). Cereb. Cortex 6,
489  93-101.

490 Lerner, Y., Honey, C.J., Silbert, L.J., and Hasson, U. (2011). Topographic mapping of a
491 hierarchy of temporal receptive windows using a narrated story. J. Neurosci. 31, 2906-2915.

492  Margulies, D.S., Ghosh, S.S., Goulas, A., Falkiewicz, M., Huntenburg, J.M., Langs, G., Bezgin,
493 G, Eickhoff, S.B., Castellanos, F.X., Petrides, M., et al. (2016). Situating the default-mode
494  network along a principal gradient of macroscale cortical organization. Proc. Natl. Acad. Sci. U.
495 S.A. 113, 12574-12579.

496  Miller, K.J., Sorensen, L.B., Ojemann, J.G., and den Nijs, M. (2009). Power-law scaling in the
497  brain surface electric potential. PLoS Comput. Biol. 5, e1000609.

498 Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B., and Seeburg, P.H. (1994).
499  Developmental and regional expression in the rat brain and functional properties of four NMDA
500 receptors. Neuron 12, 529-540.

501 Mukamel, R., Gelbard, H., Arieli, A., Hasson, U., Fried, I., and Malach, R. (2005). Coupling
502  between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 309, 951-
503 954.

504  Murray, J.D., Bernacchia, A., Freedman, D.J., Romo, R., Wallis, J.D., Cai, X., Padoa-Schioppa,
505 C., Pasternak, T., Seo, H., Lee, D., et al. (2014). A hierarchy of intrinsic timescales across
506  primate cortex. Nat. Neurosci. 17, 1661-1663.

507 Nagasaka, Y., Shimoda, K., and Fujii, N. (2011). Multidimensional recording (MDR) and data
508 sharing: an ecological open research and educational platform for neuroscience. PLoS One 6,
509 e22561.

510 Ogawa, T., and Komatsu, H. (2010). Differential temporal storage capacity in the baseline
511  activity of neurons in macaque frontal eye field and area V4. J. Neurophysiol. 7103, 2433-2445.

512  Ossmy, O., Moran, R., Pfeffer, T., Tsetsos, K., Usher, M., and Donner, T.H. (2013). The
513 timescale of perceptual evidence integration can be adapted to the environment. Curr. Biol. 23,
514  981-986.

515  Pedregosa, F. (2011). Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825
516  2830.

517 Pegasiou, C.M., Zolnourian, A., Gomez-Nicola, D., Deinhardt, K., Nicoll, J.A.R., Ahmed, A.l.,
518  Vajramani, G., Grundy, P., Verhoog, M.B., Mansvelder, H.D., et al. (2020). Age-Dependent
519  Changes in Synaptic NMDA Receptor Composition in Adult Human Cortical Neurons. Cereb.
520 Cortex.

521 Pinto, L., Rajan, K., DePasquale, B., Thiberge, S.Y., Tank, D.W., and Brody, C.D. (2019). Task-
522  Dependent Changes in the Large-Scale Dynamics and Necessity of Cortical Regions. Neuron
523 104, 810-824.e9.

524  Podvalny, E., Noy, N., Harel, M., Bickel, S., Chechik, G., Schroeder, C.E., Mehta, A.D.,

16


https://doi.org/10.1101/2020.05.25.115378
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.115378; this version posted July 16, 2020. The copyright holder for this preprint (which

525
526

527
528

529
530

531
532
533

534
535
536

537
538
539

540
541
542
543

544
545
546

547
548
549

550
551
552

553
554

555
556
557

558
559
560

561
562
563

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Tsodyks, M., and Malach, R. (2015). A unifying principle underlying the extracellular field
potential spectral responses in the human cortex. J. Neurophysiol. 7174, 505-519.

Runyan, C.A., Piasini, E., Panzeri, S., and Harvey, C.D. (2017). Distinct timescales of
population coding across cortex. Nature 548, 92—96.

Sarafyazd, M., and Jazayeri, M. (2019). Hierarchical reasoning by neural circuits in the frontal
cortex. Science 364.

Savaskan, N.E., Brauer, A.U., and Nitsch, R. (2004). Molecular cloning and expression
regulation of PRG-3, a new member of the plasticity-related gene family. Eur. J. Neurosci. 19,
212-220.

Telenczuk, B., Dehghani, N., Le Van Quyen, M., Cash, S.S., Halgren, E., Hatsopoulos, N.G.,
and Destexhe, A. (2017). Local field potentials primarily reflect inhibitory neuron activity in
human and monkey cortex. Sci. Rep. 7.

Tripathy, S.J., Toker, L., Li, B., Crichlow, C.-L., Tebaykin, D., Mancarci, B.O., and Pavlidis, P.
(2017). Transcriptomic correlates of neuron electrophysiological diversity. PLoS Comput. Biol.
13, €1005814.

Vértes, P.E., Rittman, T., Whitaker, K.J., Romero-Garcia, R., Vasa, F., Kitzbichler, M.G.,
Wagstyl, K., Fonagy, P., Dolan, R.J., Jones, P.B., et al. (2016). Gene transcription profiles
associated with inter-modular hubs and connection distance in human functional magnetic
resonance imaging networks. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371.

de Villers-Sidani, E., Alzghoul, L., Zhou, X., Simpson, K.L., Lin, R.C.S., and Merzenich, M.M.
(2010). Recovery of functional and structural age-related changes in the rat primary auditory
cortex with operant training. Proc. Natl. Acad. Sci. U. S. A. 107, 13900-13905.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski,
E., Peterson, P., Weckesser, W., Bright, J., et al. (2020). SciPy 1.0: fundamental algorithms for
scientific computing in Python. Nat. Methods 17, 261-272.

Vos de Wael, R., Benkarim, O., Paquola, C., Lariviere, S., Royer, J., Tavakol, S., Xu, T., Hong,
S.-J., Langs, G., Valk, S., et al. (2020). BrainSpace: a toolbox for the analysis of macroscale
gradients in neuroimaging and connectomics datasets. Commun Biol 3, 103.

Voytek, B., and Knight, R.T. (2015). Dynamic network communication as a unifying neural basis
for cognition, development, aging, and disease. Biol. Psychiatry 77, 1089-1097.

Voytek, B., Kayser, A.S., Badre, D., Fegen, D., Chang, E.F., Crone, N.E., Parvizi, J., Knight,
R.T., and D’Esposito, M. (2015a). Oscillatory dynamics coordinating human frontal networks in
support of goal maintenance. Nat. Neurosci. 18, 1318-1324.

Voytek, B., Kramer, M.A., Case, J., Lepage, K.Q., Tempesta, Z.R., Knight, R.T., and Gazzaley,
A. (2015b). Age-Related Changes in 1/f Neural Electrophysiological Noise. J. Neurosci. 35,
13257-13265.

van Vugt, B., van Kerkoerle, T., Vartak, D., and Roelfsema, P.R. (2020). The Contribution of
AMPA and NMDA Receptors to Persistent Firing in the Dorsolateral Prefrontal Cortex in
Working Memory. J. Neurosci. 40, 2458-2470.

17


https://doi.org/10.1101/2020.05.25.115378
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.115378; this version posted July 16, 2020. The copyright holder for this preprint (which

564
565

566
567

568
569

570

571
572

573
574
575

576
577
578

579
580
581

582
583

584
585
586
587

588
589
590

591
592

593
594

595
596

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Wagner, H.H., and Dray, S. (2015). Generating spatially constrained null models for irregularly
spaced data using M oran spectral randomization methods. Methods Ecol. Evol. 6, 1169-1178.

Wang, X.J. (1999). Synaptic basis of cortical persistent activity: the importance of NMDA
receptors to working memory. J. Neurosci. 19, 9587-9603.

Wang, X.-J. (2002). Probabilistic decision making by slow reverberation in cortical circuits.
Neuron 36, 955-968.

Wang, X.-J. (2008). Decision making in recurrent neuronal circuits. Neuron 60, 215-234.

Wang, X.-J. (2020). Macroscopic gradients of synaptic excitation and inhibition in the neocortex.
Nat. Rev. Neurosci.

Wang, M., Gamo, N.J., Yang, Y., Jin, L.E., Wang, X.-J., Laubach, M., Mazer, J.A., Lee, D., and
Arnsten, A.F.T. (2011). Neuronal basis of age-related working memory decline. Nature 476,
210-213.

Wang, M., Yang, Y., Wang, C.-J., Gamo, N.J., Jin, L.E., Mazer, J.A., Morrison, J.H., Wang, X.-
J., and Arnsten, A.F.T. (2013). NMDA receptors subserve persistent neuronal firing during
working memory in dorsolateral prefrontal cortex. Neuron 77, 736-749.

Wasmuht, D.F., Spaak, E., Buschman, T.J., Miller, E.K., and Stokes, M.G. (2018). Intrinsic
neuronal dynamics predict distinct functional roles during working memory. Nat. Commun. 9,
3499.

Watanabe, T., Rees, G., and Masuda, N. (2019). Atypical intrinsic neural timescale in autism.
Elife 8.

Whitaker, K.J., Vértes, P.E., Romero-Garcia, R., Vasa, F., Moutoussis, M., Prabhu, G.,
Weiskopf, N., Callaghan, M.F., Wagstyl, K., Rittman, T., et al. (2016). Adolescence is
associated with genomically patterned consolidation of the hubs of the human brain
connectome. Proc. Natl. Acad. Sci. U. S. A. 113, 9105-9110.

Wimmer, K., Nykamp, D.Q., Constantinidis, C., and Compte, A. (2014). Bump attractor
dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nat.
Neurosci. 17, 431-439.

Yanagawa, T., Chao, Z.C., Hasegawa, N., and Fuijii, N. (2013). Large-scale information flow in
conscious and unconscious states: an ECoG study in monkeys. PLoS One 8, e80845.

Zylberberg, J., and Strowbridge, B.W. (2017). Mechanisms of Persistent Activity in Cortical
Circuits: Possible Neural Substrates for Working Memory. Annu. Rev. Neurosci. 40, 603—627.

18


https://doi.org/10.1101/2020.05.25.115378
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.115378; this version posted July 16, 2020. The copyright holder for this preprint (which

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620

621

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Acknowledgements

Funding: Natural Sciences and Engineering Research Council of Canada (NSERC PGS-D)
and Katzin Prize (to R.G.). Alexander Von Humboldt Foundation fellowship for post-doctoral
researchers (to R.L.v.d.B). Deutsche Forschungsgemeinschaft (DFG) SFB936/A7/Z3 (to Tobias
H. Donner). Sloan Research Fellowship (FG-2015-66057), the Whitehall Foundation (2017-12-
73), the National Science Foundation under grant BCS-1736028, the NIH National Institute of
General Medical Sciences grant R0O1GM134363-01, a UC San Diego, Shiley-Marcos
Alzheimer’s Disease Research Center (ADRC): Research Training in Alzheimer’s Disease
grant, and a Halicioglu Data Science Institute Fellowship (to B.V.).

Author contributions: R.G. and B.V. conception and electrophysiological data analysis. R.G.
simulations, anatomical, and gene expression analysis. R.v.d.B and T.P. data preprocessing
and conception of anatomical and gene expression analysis. R.G. wrote the manuscript with
B.V. All authors edited the manuscript.

Competing interests: the authors declare no competing interests.

Data and materials availability: all data analyzed in this manuscript are from open data
sources. All code used for all analyses and plots are publicly available on GitHub at
https://github.com/rdgao/field-echos and https://github.com/rudyvdbrink/surface projection. See
Table S1 and S2.

19


https://doi.org/10.1101/2020.05.25.115378
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.115378; this version posted July 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

622 Methods

623

624 Inferring timescale from autocorrelation and power spectral density

625  Consistent with previous studies, we define “neuronal timescale” as the exponential decay time
626  constant (1) of the empirical autocorrelation function (ACF), or lagged correlation (Honey et al.,
627  2012; Murray et al., 2014). 1 can be naively estimated to be the time it takes for the ACF to
628 decrease by a factor of e when there are no additional long-term, scale-free, or oscillatory

t
629 processes, or by fitting a function of the form f(t) = e = and extracting the parameter r.

630 Equivalently, the power spectral density (PSD) is the Fourier Transform of the ACF via Wiener-

631  Khinchin theorem, and follows a Lorentzian function of the form L(f) = k:lfx for approximately

632  exponential-decay processes, with y = 2 exactly when the ACF is solely composed of an
633  exponential decay term, though it is often variable and in the range between 2-6 for neural time
634  series (Haller et al., 2018; Miller et al., 2009; Podvalny et al., 2015; Voytek et al., 2015b).
1
Ey
636 to be the frequency at which a bend or knee in the power spectrum occurs and equality holds
637 when y = 2.
638
639 Computing power spectral density (PSD)
640 PSDs are estimated using a modified Welch’'s method, where short-time windowed Fourier
641  transforms (STFT) are computed from the time series, but the median is taken across time instead
642  of the mean (in conventional Welch’s method) to minimize the effect of high-amplitude transients
643 and artifacts (Izhikevich et al., 2018). Custom functions for this can be found in NeuroDSP (Cole
644 etal., 2019), a published and open-source digital signal processing toolbox for neural time series
645  (neurodsp.spectral.compute_spectrum). For simulated data, Neurotycho macaque ECoG, and
646  MNI-IEEG datasets, we use 1-second long Hamming windows with 0.5-s overlap. To estimate
647  single-trial PSDs for the working memory ECoG dataset (Johnson-ECoG (Johnson et al., 2018a,
648  2018b)), we simply apply Hamming window to 900-ms long epoched time series and compute the
649  squared magnitude of the windowed-Fourier transform.
650
651  Spectral parametrization - Fitting Oscillations and 1/f (FOOOF)
652  We apply spectral parameterization (Haller et al., 2018) to extract timescales from PSDs. Briefly,
653 we decompose log-power spectra into a summation of narrowband periodic components—
654 modeled as Gaussians—and an aperiodic component—modeled as a generalized Lorentzian
655  function centered at 0 Hz (L(f) above). For inferring decay timescale, this formalism can be
656  practically advantageous when a strong oscillatory or variable power-law (x) component is
657  present, as is often the case for neural signals. While oscillatory and power-law components can
658  corrupt naive measurements of r as time for the ACF to reach 1/e, they can be easily accounted
659 for and ignored in the frequency domain as narrowband peaks and 1/f-exponent fit. We discard
660 the periodic components and infer timescale from the aperiodic component of the PSD. For a
661  complete mathematical description of the model, see (Haller et al., 2018).
662
663

635  Timescale can be computed from the parameter kas t = where f, ~ k/X is approximated
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664  Simulation and validation

665 We simulate the aperiodic background component of neural field potential recordings as
666  autocorrelated stochastic processes by convolving Poisson population spikes with exponentially-
667  decaying synaptic kernels with predefined decay time constants
668  (neurodsp.sim.sim_synaptic_current). PSDs of the simulated data are computed and
669  parameterized as described above, and we compare the fitted timescales with their ground-truth
670 values.

671

672 Macaque ECoG and single unit timescales data

673  Macaque single-unit timescales are taken directly from values reported in Fig. 1c of (Murray et
674  al., 2014). Whole-brain surface ECoG data (1000Hz sampling rate) is taken from the Neurotycho
675 repository(Nagasaka et al., 2011; Yanagawa et al.,, 2013), with 8 sessions of 128-channel
676 recordings from two animals (George and Chibi, 4 sessions each). Results reported in Fig. 2 are
677 from ~10 minutes eyes-open resting periods to match the pre-stimulus baseline condition of
678  single-unit experiments. Timescales for individual ECoG channels are extracted and averaged
679  over regions corresponding to single-unit recording areas from(Murray et al., 2014) (Fig. 2C inset
680 and Fig. S3), which are selected visually based on the overlapping cortical map and landmark
681  sulci/gyri. Each region included between 2-4 electrodes (see Fig. S3C for selected ECoG channel
682 indices for each region).

683

684  Statistical analysis for macaque ECoG and spiking timescale

685  For each individual recording session, as well as the grand average, Spearman rank correlation
686  was computed between spiking and ECoG timescales. Linear regression models were fit using
687  the python package scipy (Virtanen et al., 2020) (scipy.stats.linregress) and the linear slope was
688  used to compute the scaling coefficient between spiking and ECoG timescales.

689

690 Variations in neuronal timescale, T1/T2 ratio, and mRNA expression across human cortex
691  The following sections describe procedures for generating the average cortical gradient maps for
692  neuronal timescale, MR-derived T1w/T2w ratio, and gene expression from the respective raw
693 datasets. All maps were projected onto the 180 left hemisphere parcels of Human Connectome
694  Project’'s Multimodal Parcellation (Glasser et al., 2016) (HCP-MMP1.0) for comparison, described
695 in the individual sections. All spatial correlations are computed as Spearman rank correlations
696 between maps. Procedure for computing statistical significance while accounting for spatial
697  autocorrelation is described in detail below under the sections spatial statistics and spatial
698 autocorrelation modeling.

699

700  Neuronal timescale map

701 The MNI Open iEEG dataset consists of 1 minute of resting state data across 1772 channels from
702 106 epilepsy patients (13-62 years old, 58 males and 48 females), recorded using either surface
703  strip/grid or stereoEEG electrodes, and cleaned of visible artifacts (Frauscher et al., 2018a,
704  2018b). Neuronal timescales were extracted from PSDs of individual channels, and projected
705  from MNI voxel coordinates onto HCP-MMP1.0 surface parcellation as follows:

706
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707  For each patient, timescale estimated from each electrode was extrapolated to the rest of the
708  cortex in MNI coordinates using a Gaussian weighting function (confidence mask), w(r) =

709  e~(*/@®) where r is the Euclidean distance between the electrode and a voxel, and a is the
710 distance scaling constant, chosen here such that a voxel 4mm away has 50% weight (or,
711 confidence). Timescale at each voxel is computed as a weighted spatial average of timescales
712 from all electrodes (i) of that patient,

_ X owr) T

713 i.€., Tyoxer = ¥ w(ry)

714 Similarly, each voxel is assigned a confidence rating that is the maximum of weights over all
715  electrodes (Wyoxei(Tmin), Of the closest electrode), i.e., a voxel right under an electrode has a
716  confidence of 1, while a voxel 4mm away from the closest electrode has a confidence of 0.5, etc.
717

718  Timescales for each HCP-MMP parcel were then computed as the confidence-weighted
719  arithmetic mean across all voxels that fall within the boundaries of that parcel. HCP-MMP
720  boundary map is loaded and used for projection using NiBabel (Brett et al., 2020). This results in
721 a 180 parcels-by-106 patients timescale matrix. A per-parcel confidence matrix of the same
722  dimensions was computed by taking the maximum confidence over all voxels for each parcel (Fig.
723  S1A). The average cortical timescale map (gradient) is computed by taking the confidence-
724  weighted average at each parcel across all participants. Note that this procedure for locally
725  thresholded and weighted average is different from projection procedures used for the mRNA and
726  T1w/T2w data due to region-constrained and heterogeneous ECoG electrode sites across
727  participants. While coverage is sparse and idiosyncratic in individual participants, it does not vary
728  as a function of age, and when pooling across the entire population, 178 of 180 parcels have at
729 least one patient with an electrode within 4mm, with the best coverage in later sensorimotor,
730  temporal, and frontal regions (Fig. S1).

731

732  T1w/T2w ratio map

733  As a measure of structural cortical hierarchy, we used the ratio between T1- and T2-weighted
734  structural MR, referred to as T1w/T2w map in main text, or the myelin map (Burt et al., 2018;
735  Glasser and Van Essen, 2011). Since there is little variation in the myelin map across individuals,
736  we used the group average myelin map of the WU-Minn HCP S1200 release (N = 1096, March
737  1,2017 release) provided in HCP-MMP1.0 surface space. For correlation with other variables, we
738  computed the median value per parcel, identical to the procedure for mRNA expression below.
739

740 mRNA expression maps

741 We used the Allen Human Brain Atlas (AHBA) gene expression dataset (Hawrylycz et al., 2015,
742  2012) that comprised postmortem samples of 6 donors (1 female, 5 male) that underwent
743  microarray transcriptional profiling. Spatial maps of mRNA expression were available in
744  volumetric 2 mm isotropic MNI space, following improved nonlinear registration and whole-brain
745  prediction using variogram modeling as implemented by (Gryglewski et al., 2018). We used
746  whole-brain maps available from (Gryglewski et al., 2018) rather than the native sample-wise
747  values in the AHBA database to prevent bias that could occur due to spatial inhomogeneity of the
748  sampled locations. In total, 18114 genes were included for analyses that related to the dominant
749  axis of expression across the genome.
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750

751  We projected the volumetric mMRNA expression data onto the HCP-MMP cortical surface using
752  the HCP workbench software (v1.3.1 running on Windows OS 10) with the “enclosing” method,
753  and custom MATLAB code (github.com/rudyvdbrink/surface_projection). The enclosing method
754  extracts for all vertices on the surface the value from enclosing voxels in the volumetric data.
755  Alternative projection methods such as trilinear 3D linear interpolation of surrounding voxels, or
756  ribbon mapping that constructs a polyhedron from each vertex's neighbors on the surface to
757  compute a weighted mean for the respective vertices, yielded comparable values, but less
758  complete cortical coverage. Moreover, the enclosing method ensured that no transformation of
759  the data (non-linear or otherwise) occurred during the projection process and thus the original
760  values in the volumetric data were preserved.

761

762  Next, for each parcel of the left hemisphere in HCP-MMP, we extracted the median vertex-wise
763  value. We used the median rather than the mean because it reduced the contribution of outliers
764  in expression values within parcels. Vertices that were not enclosed by voxels that contained data
765  in volumetric space were not included in the parcel-wise median. This was the case for 539
766  vertices (1.81% of total vertices). Linear interpolation across empty vertices prior to computing
767  median parcel-wise values yielded near-identical results (r = 0.95 for reconstructed surfaces).
768  Lastly, expression values were mean and variance normalized across parcels to facilitate
769  visualization. Normalization had no effect on spatial correlation between gene expression and
770  other variables since the spatial distribution of gene expression was left unaltered.

771

772  Spatial statistics

773  All correlations between spatial maps (timescale, T1w/T2w, gene principal component, and
774  individual gene expressions) were computed using Spearman rank correlation. As noted in (Burt
775 etal., 2018, 2020; Vos de Wael et al., 2020), neural variables vary smoothly and continuously
776  across the cortical surface, violating the assumption of independent samples. As a result, when
777  correlating two variables each with non-trivial spatial autocorrelation, the naive p-value is
778  artificially lowered since it is compared against an inappropriate null hypothesis, i.e., randomly
779  distributed or shuffled values across space. Instead, a more appropriate null hypothesis
780 introduces spatial autocorrelation-preserving null maps, which destroys any potential correlation
781 between two maps while respecting their spatial autocorrelations. For all spatial correlation
782  analyses, we generated N = 1000 null maps of one variable (timescale map unless otherwise
783  noted), and the test statistic, Spearman correlation (p), is computed against the other variable of
784  interest to build the null distribution. Two-tailed significance is then computed as the proportion of
785  the null distribution that is less extreme than the empirical correlation value. All regression lines
786  were computed by fitting a linear regression to log-timescale and the structural feature maps.
787

788

789  Spatial autocorrelation modeling

790 To generate spatial autocorrelation-preserving null maps, we used Moran’s Spectral
791  Randomization (MSR) (Wagner and Dray, 2015) from the python package BrainSpace (Vos de
792  Wael et al., 2020). Details of the algorithm can be found in the above references. Briefly, MSR
793  performs eigendecomposition on a spatial weight matrix of choice, which is taken here to be the
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794  inverse average geodesic distance matrix between all pairs of parcels in HCP-MMP1.0. The
795  eigenvectors of the weight matrix are then used to generate randomized null feature maps that
796  preserves the autocorrelation of the empirical map. We used the singleton procedure for null map
797  generation. All significance values reported (Fig. 2B, Fig. 3A-C) were adjusted using the above
798  procedure.

799

800  We also compare two other methods of generating null maps: spatial variogram fitting (Burt et al.,
801  2020) and spin permutation (Alexander-Bloch et al., 2018). Null maps were generated for
802 timescale using spatial variogram fitting, while for spin permutation they were generated for
803 vertex-wise T1w/T2w and gene PC1 maps before parcellation, so as to preserve surface locations
804 of the parcellation itself. All methods perform similarly, producing comparable spatial
805  autocorrelation in the null maps, assessed using spatial variogram, as well as null distribution of
806  spatial correlation coefficients between timescale and T1w/T2w (Fig. S2).

807

808 Principal Component Analysis (PCA) of gene expression

809 We used scikit-learn (Pedregosa, 2011) PCA (sklearn.decomposition.PCA) to identify the
810  dominant axes of gene expression variation across the entire AHBA dataset, as well as for brain-
811  specific genes. PCA was computed on the variance-normalized average gene expression maps,
812 X, an N x P matrix where N = 18114 (or N = 2429 brain-specific) genes, and P = 180 cortical
813  parcels. Briefly, PCA factorizes X such that X = USVT, where U and V are unitary matrices of
814  dimensionality N x N and P x P, respectively. S is the same dimensionality as X and contains non-
815  negative descending eigenvalues on its main diagonal (A). Columns of V are defined as the
816  principal components (PCs), and the dominant axis of gene expression is then defined as the first
817  column of V, whose proportion of variance explained in the data is the first element of A divided
818 by the sum over A. Results for PC1 and PC2-10 are shown in Fig. 3A and Fig. S4, respectively.
819

820  Selection of brain-specific genes

821  Similar to (Burt et al., 2018; Fagerberg et al., 2014; Genovese et al., 2016), N=2429 brain-specific
822  genes were selected based on the criteria that expression in brain tissues were 4 times higher
823  than the median expression across all tissue types, using Supplementary Dataset 1 of (Fagerberg
824  etal., 2014). PC1 result shown in Fig. 3A is computed from brain-specific genes, though findings
825 are identical when using all genes (p = -0.56 with timescale map, Fig. S4).

826

827 Comparison of timescale-transcriptomic association with single-cell timescale genes

828  Single-cell timescale genes were selected based on data from Table S3 and Online Table 1 of
829 (Bomkamp et al., 2019; Tripathy et al., 2017), respectively. Using single-cell RNA sequencing
830 data and patch-clamp recordings from transgenic mice cortical neurons, these studies identified
831  genes whose expression significantly correlated with electrophysiological features derived from
832  generalized linear integrate and fire (GLIF) model fits. We selected genes that were significantly
833  correlated to membrane time constant (tau), input resistance (Rin or ri), or capacitance (Cm or
834 cap) in the referenced data tables, and extracted the level of association between gene
835 expression and those electrophysiological feature (correlation ‘DiscCorr’ in (Tripathy et al., 2017)
836  and linear coefficient “beta_gene” in (Bomkamp et al., 2019)).

837
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838 To compare timescale-gene expression association at the single-cell and macroscale level, we
839 correlated the single-cell associations extracted above with the spatial correlation coefficient
840 (macroscale p) between ECoG timescale and AHBA microarray expression data for those same
841 genes, restricting to genes with p < 0.05 for macroscale correlation (results identical for non-
842  restrictive gene set). Overall association for all genes, as well as split by quintiles of their absolute
843  macroscale correlation coefficient, are shown in Fig. 3D. Example “single-cell timescale” genes
844  shown in Fig. 3B,C are genes showing the highest correlations with those electrophysiology
845  features reported in Table 2 of (Bomkamp et al., 2019).

846

847 T1w/T2w-removed timescale and gene expression residual maps

848  To remove anatomical hierarchy as a potential mediating variable in timescale-gene expression
849  relationships, we linearly regress out the T1w/T2w map from the (log) timescale map and
850 individual gene expression maps. T1w/T2w was linearly fit to log-timescale, and the error between
851  T1w/T2w-predicted timescale and empirical timescale was extracted (residual); this identical
852  procedure was applied to every gene expression map to retrieve the gene residuals. Spatial
853  autocorrelation-preserving null residual maps were similarly created using MSR.

854

855  Partial least squares regression model

856  Due to multicollinearity in the high-dimensional gene expression dataset (many more genes than
857  parcels), we fit a partial least squares model to the timescale map with one output dimension
858  (sklearn.cross_decomposition.PLSRegression) to estimate regression coefficient for all genes
859  simultaneously, resulting in N=18114 (or N=2429 brain-specific) PLS weights(Vértes et al., 2016;
860  Whitaker et al., 2016). To determine significantly associated (or, “enriched”) genes, we repeated
861  the above PLS-fitting procedure 1000 times but replaced the empirical timescale map (or residual
862  map) with null timescale maps (or residual maps) that preserved its spatial autocorrelation. Genes
863  whose absolute empirical PLS weight that was greater than 95% of its null weight distribution was
864  deemed to be enriched, and submitted for gene ontology enrichment analysis.

865

866 Gene ontology enrichment analysis (GOEA)

867 The Gene Ontology (GO) captures hierarchically structured relationships between GO items
868 representing aspects of biological processes (BP), cellular components (CC), or molecular
869 functions (MF). For example, "synaptic signaling”, "chemical synaptic transmission", and
870  "glutamatergic synaptic transmission" are GO items with increasing specificity, with smaller
871  subsets of genes associated with each function. Each GO item is annotated with a list of genes
872  that have been linked to that particular process or function. GOEA examines the list of enriched
873  genes from above to identify GO items that are more associated with those genes than expected
874 by chance. We used GOATOOLS (Klopfenstein et al., 2018) to perform GOEA programmatically
875 in python.

876

877  The list of unranked genes with significant empirical PLS weights was submitted for GOEA as the
878  “study set”, while either the full ABHA list or brain-specific gene list was used as the “reference
879  set”. The output of GOEA is a list of GO terms with annotated genes that are enriched or purified
880 (i.e., preferentially appearing or missing in the study list, respectively) more often than by chance,
881  determined by Fisher’s exact test.
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882
883  Enrichment ratio is defined as follows: given a reference set with N total genes, and n were found

884  to be significantly associated with timescale (in the study set), for a single GO item with B total
885 genes annotated to it, where b of them overlap with the study set, then enrichment = ;/L;.
886  Statistical significance is adjusted for multiple comparisons following Benjamini-Hochberg
887  procedure (false discovery rate g-value reported in Fig. 3F), and all significant GO items (q < 0.05)
888  arereported in Fig. 3F, in addition to some example items that did not pass significance threshold.
889  For a detailed exposition, see (Bauer, 2017). Fig. 3F shows results using brain-specific genes.
890 The GO items that are significantly associated are similar when using the full gene set, but
891  typically with larger g-values (Tables S3 and S4) due to a mucher larger set of (non-brain-specific)
892  genes.

893

894  Working memory ECoG data and analysis

895 The CRCNS fcx-2 and fcx-3 datasets include 17 intracranial ECoG recordings in total from
896  epilepsy patients (10 and 7, respectively) performing the same visuospatial working memory task
897  (Johnson, 2018, 2019; Johnson et al., 2018a, 2018b). Subject 3 (s3) from fcx-2 was discarded
898  due to poor data quality upon examination of trial-averaged PSDs (high noise floor near 20 Hz),
899  while s5 and s7 from fcx-3 correspond to s5 and s8 in fcx-2 and were thus combined. Together,
900 data from 14 unique participants (22-50 years old, 5 female) were analyzed, with variable and
901  overlapping coverage in parietal cortex (PC, n=14), prefrontal cortex (PFC, n=13), orbitofrontal
902 cortex (OFC, n=8), and medial temporal lobe (MTL, n=9). Each channel was annotated as
903 belonging to one of the above macro regions.

904

905 Experimental setup is described in (Johnson, 2018, 2019; Johnson et al., 2018a, 2018b) in detail.
906  Briefly, following a 1-second pre-trial fixation period (baseline), subjects were instructed to focus
907 on one of two stimulus contexts (“‘identity” or “relation” information). Then two shapes were
908 presented in sequence for 200 ms each. After a 900 or 1150 ms jittered precue delay (delay1),
909 the test cue appeared for 800 ms, followed by another post-cue delay period of the same length
910 (delay2). Finally, the response period required participants to perform a 2-alternative forced
911  choice test based on the test cue, which varied based on trial condition. For our analysis, we
912  collapsed across the stimulus context conditions and compared neuronal timescales during the
913 last 900 ms of baseline and delay periods from the epoched data, which were free of visual stimuli,
914  in order to avoid stimulus-related event-related potential effects. Behavioral accuracy for each
915  experimental condition was reported for each participant, and we average across both stimulus
916  context conditions to produce a single working memory accuracy per participant.

917

918  Single-trial power spectra were computed for each channel as the squared magnitude of the
919  Hamming-windowed Fourier Transform. We used 900 ms of data in all 3 periods (pre-trial, delay1,
920 and delay2). Timescales were estimated by applying spectral parameterization as above, and the
921 two delay-period estimates were averaged to produce a single delay period value. For
922  comparison, we computed single-trial theta (3-8 Hz) and high-frequency activity (high gamma
923  (Mukamel et al., 2005), 70-100 Hz) powers as the mean log-power within those frequency bins,
924  as well as spectral exponent (). Single-trial timescale difference between delay and baseline was
925 calculated as the difference of the log timescales due to the non-normal distribution of single-trial
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926 timescale estimates. All other neural features were computed by subtracting baseline from the
927  delay period.

928

929  All neural features were then averaged across channels within the same regions, then trials, for
930 each participant, to produce per-participant region-wise estimates, and finally averaged across all
931  participants for the regional average in Fig. 4B,C. One-sample two-sided t-tests were used to
932  determine the statistical significance of timescale change in each region (Fig. 4C), where the null
933  hypothesis was no change between baseline and delay periods (i.e., delay is 100% of baseline).
934  Spearman rank correlation was used to determine the relationship between neural activity
935 (timescale; theta; high-frequency; x) change and working memory accuracy across participants
936  (Fig. 4D, Fig. S6).

937

938 Per-subject average cortical timescale across age

939  Since electrode coverage in the MNI-IEEG dataset is sparse and non-uniform across participants
940 (Fig. S1), simply averaging across parcels within individuals to estimate an average cortical
941 timescale per participant confounds the effect of age with the spatial effect of cortical hierarchy.
942  Therefore, we instead first normalize each parcel by its max value across all participants before
943  averaging within participants, excluding those with fewer than 10 valid parcels (71 of 106 subjects
944  remaining; results hold for a range of threshold values; Fig. S7B). Spearman rank correlation was
945  used to compute the association between age and average cortical timescale.

946

947  Age-timescale association for individual parcels

948  Each cortical parcel had a variable number of participants with valid timescale estimates above
949  the consistency threshold, so we compute Spearman correlation between age and timescale for
950 each parcel, but including only those with at least 5 participants (114 of 180 parcels, result holds
951  for a range of threshold values; Fig. S7C). Spatial effect of age-timescale variation is plotted in
952  Fig. 4F, where parcels that did not meet the threshold criteria are greyed out. Mean age-timescale
953  correlation from individual parcels was significantly negative under one-sample t-test.

954
955

956
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957  Supplemental Information

958
A parcel confidence B parcel max confidence C coverage by age
1.0
1.0 Vo A S W NI NY 2SN 50 . . p=-0.07
) - . « a0 . . p=0475
o : .
: 08 508- . N % 40 . N
a 5 . £ : .
=N . b= . - b
oy 06 a . 5301 . " .
5 S 0.6+ g I .
n [} L4 o . . . ae *
~ B D . ) Y .
= 04 D §201 v L . .
2B 204 PHA1 e . AR
S x g A
S 02 £ # 10 - wd . .
a e 07 e e e o . .
: 02 TGv A S
TSI W ) 0 . . .
parcel ' parcel 20 40 60
participant age
parcel coverage map parcel-average age map
# of pamcnpants average age (years)
0 10 20 25 30 35 40
F age distribution per parcel
60 1
50‘.“;: S R
v
8 40
>
Q
® 304
201
0 180
959 parcels

960 Fig. S1. MNI-iEEG dataset coverage. (A), per-parcel Gaussian-weighted mask values showing
961 how close the nearest electrode was to a given HCP-MMP1.0 parcel for each participant.

962  Brighter means closer, 0.5 corresponds to the nearest electrode being 4 mm away. (B)

963 maximum weight for each parcel across all participants. Most parcels have electrodes very
964 close by across the entire participant pool. (C) the number of HCP-MMP parcels each

965 participant has above the confidence threshold of 0.5 is uncorrelated with age. (D) number of
966  participants with confidence above threshold at each parcel. Sensorimotor, frontal, and lateral
967 temporal regions have the highest coverage. (E) average age of participants with confidence
968  above threshold at each parcel. (F) age distribution of participants with confidence above

969 threshold at each parcel. Average age per parcel (red line) is relatively stable while age

970  distribution varies from parcel to parcel.
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Fig. S2. Comparison of spatial autocorrelation-preserving null map generation methods.
(A) distributions of Spearman correlation values between empirical T1w/T2w map and 1000
spatial-autocorrelation preserving null timescale maps generated using Moran Spectral
Randomization (MSR), spatial variogram fitting (VF), and spin permutation. Red dashed line
denotes correlation between empirical timescale and T1w/T2w maps, p-values indicate two-
tailed significance, i.e., proportion of distribution with values more extreme than empirical
correlation. (B) spatial variogram for empirical timescale map (black) and 10 null maps (blue)
generated using MSR and VF. Inset shows distribution of distances between pairs of HCP-MMP
parcels. (C) distribution of Spearman correlations between empirical and 1000 null timescale
maps generated using MSR (green) and VF (red), showing similar levels of correlation between
empirical and null maps for both methods.
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A macaque ECoG electrode locations B macaque single-unit locations
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984
985 Fig. S3. Macaque ECoG and single-unit coverage. (A) locations of 180-electrode ECoG grid

986 from 2 animals in the Neurotycho dataset, colors correspond to locations used for comparison
987  with single-unit timescales. (B) single-unit recording locations from Fig. 1a of (Murray et al.,
988  2014). (C) electrode indices of the sampled areas from the two animals, corresponding to those
989  colored in (A).

990
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992  Fig. S4. Transcriptomic PCA results. (A) proportion of variance explained by the top 10
993  principal components (PCs) of brain-specific genes (top) and all AHBA genes (bottom). (B)
994  absolute Spearman correlation between timescale map and top 10 PCs from brain-specific or
995 full gene dataset. Asterisks indicate resampled significance while accounting for spatial

996  autocorrelation, **** indicate p < 0.001.
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1000 Fig. S5. Individual gene correlations from Fig. 3C with gene symbols labeled, and
1001  grouped into functional families.
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Fig. S6. Spectral correlates of working memory performance. (A) difference between delay
and baseline periods for 1/f-exponent, timescale (same as main Fig. 4C but absolute units on y-
axis, instead of percentage), theta power, and high-frequency power. (B) Spearman correlation
between spectral feature difference and working memory accuracy across participants, same
features as in (A). * p < 0.05, ** p < 0.01, *** p < 0.005 in (A, B). (C) scatter plot of other
significantly correlated spectral features from (B).
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Fig. S7. Parameter sensitivity for timescale-aging analysis. (A) cortex-averaged timescale is
independent of parcel coverage across participants. (B) sensitivity analysis for the number of
valid parcels a participant must have in order to be included in analysis for main Fig. 4E (red).
As threshold increases (more stringent), fewer participants satisfy the criteria (right) but
correlation between participant age and timescale remains robust (left). (C) sensitivity analysis
for the number of valid participants a parcel must have in order to be included in analysis for
main Fig. 4F. As threshold increases (more stringent), fewer parcels satisfy the criteria (right)
but average correlation across all parcels remains robust (left, error bars denote s.e.m of

distribution as in Fig. 4F).
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Table S1. Summary of open-access datasets used

Data Ref. Specific Source/ Relevant Figures
Format Used
MNI Open iEEG Atlas (Frauscher et al., 2018a, Fig. 2A,B,
2018b) Fig. 3,
Fig. 4
Tw1/T2w map (Glasser and Van Essen, | Release S1200, Fig. 2A,B,
Human Connectome 2011; Glasser et al., March 1, 2017 Fig. 3D-F
Project 2016)
Neurotycho macaque (Nagasaka et al., 2011; Anesthesia datasets, | Fig. 2C,D
ECoG Yanagawa et al., 2013) propofol and
ketamine (Chibi and
Geroge)
Macaque single-unit (Murray et al., 2014) Fig. 1 of reference Fig. 2C,D
timescales
Whole-cortex interpolated | (Gryglewski et al., 2018; Interpolated maps Fig. 3
Allen Brain Atlas human Hawrylycz et al., 2012) downloadable from
gene expression http://www.meduniwi
en.ac.at/neuroimagin
a/mRNA.html
Single-cell timescale- (Bomkamp et al., 2019; Table S3 from Fig. 3C,D
related genes Tripathy et al., 2017) (Tripathy et al.,
2017), Online Table
1 from (Bomkamp et
al., 2019)
Human working memory | (Johnson, 2018, 2019; | CRCNS fcx-2 and Fig. 4A-D
ECoG Johnson et al., 2018a, | fcx-3
2018b)
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1024 Table S2. Reproducing figures from code repository

All IPython notebooks: https://github.com/rdgao/field-echos/tree/master/notebooks

Notebook Results

2a_sim_method_schematic.ipynb simulations: Fig. 1B-E, Fig. S3

2b_viz_NeuroTycho-SU.ipynb macaque timescales: Fig. 2C,D

3_viz_human_structural.ipynb human timescales vs. T1w/T2w and gene expression:
Fig. 2A,B, Fig. 3, Fig. S1, S4, S5; Table. S3

4b_viz_human_wm.ipynb human working memory: Fig. 4A-D, Fig. S6
4a_viz_human_aging.ipynb human aging: Fig. 4E,F, Fig. S7
supp_spatialautocorr.ipynb spatial autocorrelation-preserving nulls: Fig. S2

Projection of T1w/T2w and gene expression maps from MNI volumetric coordinates to HCP-
MMP1.0 can be found:_https://github.com/rudyvdbrink/Surface projection

1025
1026
1027
1028
1029
1030
1031
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1032 Table S3. Significant items from brain-specific GOEA (Fig. 3F)

gene enrichment p-value
association ID elp | ontology name ratio (FDR-adjusted)
all G0:0034702 | e CcC ion channel complex 1.959 0.008
all G0:1902495 | e CcC transmembrane transporter complex 1.91 0.008
all G0:1990351 | e CcC transporter complex 1.91 0.008
all G0:0098982 | e cC GABA-ergic synapse 2.497 0.038
all G0:1902711 | e CcC GABA-A receptor complex 4.541 0.038
all G0:0034707 | e CcC chloride channel complex 3.385 0.038
pos GO0:0008195 | e MF phosphatidate phosphatase activity 13.864 0.007
neg G0:0098660 | e BP inorganic ion transmembrane transport 2.515 0.002
inorganic cation transmembrane
neg G0:0098662 | e BP transport 2.529 0.007
neg G0:0098655 | e BP cation transmembrane transport 2.439 0.007
neg G0:0034220 | e BP ion transmembrane transport 2.057 0.03
neg GO0:0030001 | e BP metal ion transport 2.239 0.036
neg G0:0071805 | e BP potassium ion transmembrane transport 3.122 0.036
neg G0:0006813 | e BP potassium ion transport 3.081 0.037
neg G0:1902495 | e CcC transmembrane transporter complex 2.334 0.009
neg G0:1990351 | e CcC transporter complex 2.334 0.009
neg G0:0034702 | e CcC ion channel complex 2.36 0.009
neg G0:0098796 | e CcC membrane protein complex 2.063 0.009
neg G0:0034703 | e CcC cation channel complex 2.379 0.03
neg G0:0005244 | e MF voltage-gated ion channel activity 3.081 0.002
neg G0:0022832 | e MF voltage-gated channel activity 3.081 0.002
metal ion transmembrane transporter
neg G0:0046873 | e MF activity 2.453 0.002
inorganic cation transmembrane
neg G0:0022890 | e MF transporter activity 2.24 0.005
neg G0:0005216 | e MF ion channel activity 2.289 0.006
cation transmembrane transporter
neg G0:0008324 | e MF activity 2173 0.006
inorganic molecular entity
neg GO0:0015318 | e MF transmembrane transporter activity 2.04 0.006
monovalent inorganic cation
neg G0:0015077 | e MF transmembrane transporter activity 2.535 0.006
neg G0:0015075 | e MF ion transmembrane transporter activity 2.024 0.006
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potassium ion transmembrane

neg G0:0015079 | e MF transporter activity 3.041 0.006
neg G0:0005215 | e MF transporter activity 1.883 0.006
neg G0:0022857 | e MF transmembrane transporter activity 1.906 0.006
neg G0:0022836 | e MF gated channel activity 2.301 0.006
neg G0:0015267 | e MF channel activity 2.191 0.006
passive transmembrane transporter
neg G0:0022803 | e MF activity 2.191 0.006
voltage-gated potassium channel
neg G0:0005249 | e MF activity 3.658 0.006
neg G0:0005261 | e MF cation channel activity 2.353 0.009
neg G0:0005267 | e MF potassium channel activity 3.058 0.011
neg G0:0022843 | e MF voltage-gated cation channel activity 2.744 0.022

1033  e/p: enriched or purified; BP: biological process; CC: cellular components; MF: molecular
1034  function
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1035 Table S4. Significant items from all-gene GOEA

gene enrichment p-value
association ID elp | ontology name ratio (FDR-adjusted)
all G0:0034702 | e CcC ion channel complex 1.83 0.008
all G0:1990351 | e CcC transporter complex 1.774 0.008
all G0:1902495 | e CcC transmembrane transporter complex 1.79 0.008
all G0:0034703 | e CcC cation channel complex 1.952 0.009
all G0:0098982 | e cC GABA-ergic synapse 2.468 0.048
all G0:1902711 | e CcC GABA-A receptor complex 5.035 0.048
pos G0:0050866 | e BP negative regulation of cell activation 3.596 0
pos G0:0002376 | e BP immune system process 1.629 0
pos G0:0006955 | e BP immune response 1.992 0
negative regulation of leukocyte
pos G0:0002695 | e BP activation 3.343 0.001
pos G0:0045087 | e BP innate immune response 2.297 0.005
pos G0:0050865 | e BP regulation of cell activation 2.099 0.005
pos G0:0045321 | e BP leukocyte activation 1.834 0.006
pos G0:0007165 | e BP signal transduction 1.301 0.006
negative regulation of lymphocyte
pos G0:0051250 | e BP activation 3.305 0.007
pos G0:0070663 | e BP regulation of leukocyte proliferation 2.82 0.007
pos G0:0002252 | e BP immune effector process 1.778 0.009
pos GO0:0050670 | e BP regulation of lymphocyte proliferation 2.823 0.009
regulation of mononuclear cell
pos G0:0032944 | e BP proliferation 2.807 0.009
pos G0:0050776 | e BP regulation of immune response 1.787 0.011
pos G0:0002682 | e BP regulation of immune system process 1.571 0.015
pos G0:0046634 | e BP regulation of alpha-beta T cell activation 3.772 0.016
pos GO0:0001775 | e BP cell activation 1.709 0.016
regulation of actin cytoskeleton
pos G0:0032956 | e BP organization 2.229 0.016
pos G0:0003150 | e BP muscular septum morphogenesis 17.672 0.016
negative regulation of mononuclear cell
pos G0:0032945 | e BP proliferation 4.208 0.016
negative regulation of lymphocyte
pos G0:0050672 | e BP proliferation 4.208 0.016
pos G0:0006952 | e BP defense response 1.686 0.016
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pos G0:0002694 | e BP regulation of leukocyte activation 2.013 0.016

pos G0:0002253 | e BP activation of immune response 2.183 0.016
regulation of actin filament

pos G0:0030833 | e BP polymerization 2.832 0.016
regulation of actin filament-based

pos G0:0032970 | e BP process 2.136 0.017
positive regulation of immune system

pos G0:0002684 | e BP process 1.708 0.017
regulation of alpha-beta T cell

pos G0:0046640 | e BP proliferation 6.094 0.017

pos G0:0050868 | e BP negative regulation of T cell activation 3.381 0.017

pos G0:0002274 | e BP myeloid leukocyte activation 1.926 0.017
regulation of actin polymerization or

pos G0:0008064 | e BP depolymerization 2.697 0.017

pos G0:0030832 | e BP regulation of actin filament length 2.681 0.017

pos G0:0006334 | e BP nucleosome assembly 3.053 0.018

negative regulation of leukocyte
pos G0:0070664 | e BP proliferation 3.956 0.018

Fc-gamma receptor signaling pathway
pos GO0:0038096 | e BP involved in phagocytosis 3.787 0.026

immune response-regulating cell
surface receptor signaling pathway

pos G0:0002433 | e BP involved in phagocytosis 3.787 0.026
pos G0:0098883 | e BP synapse pruning 10.041 0.027
pos G0:0038094 | e BP Fc-gamma receptor signaling pathway 3.734 0.029
pos GO0:0051249 | e BP regulation of lymphocyte activation 2.035 0.029
Fc receptor mediated stimulatory
pos G0:0002431 | e BP signaling pathway 3.682 0.03
pos G0:0042116 | e BP macrophage activation 4.734 0.03
pos GO:0110053 | e BP regulation of actin filament organization 2.279 0.03
pos G0:0150064 | e BP vertebrate eye-specific patterning 22.09 0.03
negative regulation of immune system
pos G0:0002683 | e BP process 2.008 0.03
pos GO:0051049 | e BP regulation of transport 1.428 0.03
pos G0:0098542 | e BP defense response to other organism 1.811 0.033
pos GO0:0150146 | e BP cell junction disassembly 9.204 0.033
pos G0:0016322 | e BP neuron remodeling 9.204 0.033

negative regulation of leukocyte cell-cell
pos G0:1903038 | e BP adhesion 3.04 0.033
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pos G0:0007166 | e BP cell surface receptor signaling pathway 1.391 0.034

pos G0:0034728 | e BP nucleosome organization 2.591 0.037

pos G0:0036336 | e BP dendritic cell migration 6.976 0.037
positive regulation of response to

pos G0:0048584 | e BP stimulus 1.379 0.039

pos GO0:0001774 | e BP microglial cell activation 5.727 0.039
leukocyte activation involved in

pos G0:0002269 | e BP inflammatory response 5.727 0.039

pos G0:0050778 | e BP positive regulation of immune response 1.82 0.039
regulation of cellular macromolecule

pos G0:2000112 | p BP biosynthetic process 0.718 0.017

pos G0:0051252 | p BP regulation of RNA metabolic process 0.718 0.019
cellular nitrogen compound biosynthetic

pos G0:0044271 | p BP process 0.554 0.029
regulation of nucleobase-containing

pos G0:0019219 | p BP compound metabolic process 0.737 0.029

pos G0:0090304 | p BP nucleic acid metabolic process 0.654 0.037

pos G0:0032993 | e CcC protein-DNA complex 2.829 0.016

pos G0:0000786 | e CcC nucleosome 3.488 0.016
integral component of plasma

pos G0:0005887 | e CcC membrane 1.555 0.016
intrinsic component of plasma

pos G0:0031226 | e CcC membrane 1.536 0.016

pos G0:0044815 | e CcC DNA packaging complex 3.217 0.023

pos G0:0030666 | e CcC endocytic vesicle membrane 2.705 0.034

pos G0:0031514 | e CcC motile cilium 2.897 0.034

pos G0:0043235 | e CcC receptor complex 1.981 0.04

pos G0:0000839 | e CcC Hrd1p ubiquitin ligase ERAD-L complex 11.045 0.047

pos G0:0016021 | e CcC integral component of membrane 1.232 0.047

pos G0:0005634 | p CcC nucleus 0.79 0.04

pos G0:0003676 | p MF nucleic acid binding 0.694 0.012

neg G0:0006813 | e BP potassium ion transport 2.911 0.004

neg G0:0071805 | e BP potassium ion transmembrane transport 2.868 0.008
potassium ion transmembrane

neg G0:0015079 | e MF transporter activity 2.888 0.001

neg G0:0015075 | e MF ion transmembrane transporter activity 1.726 0.001

neg G0:0022857 | e MF transmembrane transporter activity 1.649 0.001
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metal ion transmembrane transporter

neg GO0:0046873 | e MF activity 2.068 0.001

neg G0:0005215 | e MF transporter activity 1.587 0.002

neg G0:0022832 | e MF voltage-gated channel activity 2.468 0.006

neg G0:0005244 | e MF voltage-gated ion channel activity 2.468 0.006
inorganic molecular entity

neg GO0:0015318 | e MF transmembrane transporter activity 1.662 0.008
DNA-binding transcription repressor

neg G0:0001227 | e MF activity, RNA polymerase ll-specific 2.227 0.011
DNA-binding transcription repressor

neg G0:0001217 | e MF activity 2.218 0.011

neg G0:0022836 | e MF gated channel activity 2.007 0.015
voltage-gated potassium channel

neg G0:0005249 | e MF activity 3.126 0.015
monovalent inorganic cation

neg G0:0015077 | e MF transmembrane transporter activity 1.916 0.022

neg G0:0005267 | e MF potassium channel activity 2.703 0.022

inorganic cation transmembrane
neg G0:0022890 | e MF transporter activity 1.701 0.033

1036  e/p: enriched or purified; BP: biological process; CC: cellular components; MF: molecular
1037  function
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