

1 **Title:** Holistic Characterization of Single Hepatocyte Transcriptome Responses to High Fat Diet

2 **Authors:** Sung Rye Park^{1,2}, Chun-Seok Cho¹, Jingyue Xi², Hyun Min Kang² and Jun Hee Lee¹

3 **Affiliations:** ¹Department of Molecular and Integrative Physiology and Institute for Gerontology,
4 University of Michigan Medical School, Ann Arbor, MI 48109, USA

5 ²Department of Biostatistics and Center for Statistical Genetics, University of Michigan School
6 of Public Health, Ann Arbor, MI 48109, USA.

7 **Running Head:** Single hepatocyte responses to high fat diet

8 **Correspondence:** H. M. Kang (hmkang@umich.edu) and J. H. Lee (leedu@umich.edu).

9 **Keywords:** scRNA-seq, hepatocytes, obesity, NAFLD, HFD

10 **Abstract**

11 During nutritional overload and obesity, hepatocyte function is grossly altered, and a
12 subset of hepatocytes begins to accumulate fat droplets, leading to non-alcoholic fatty liver
13 disease (NAFLD). Recent single cell studies revealed how non-parenchymal cells, such as
14 macrophages, hepatic stellate cells, and endothelial cells, heterogeneously respond to NAFLD.
15 However, it remains to be characterized how hepatocytes, the major constituents of the liver,
16 respond to nutritional overload in NAFLD. Here, using droplet-based single cell RNA-
17 sequencing (Drop-seq), we characterized how the transcriptomic landscape of individual
18 hepatocytes is altered in response to high-fat diet (HFD) and NAFLD. We showed that the entire
19 hepatocytes population undergoes substantial transcriptome changes upon HFD, although the
20 patterns of alteration were highly heterogeneous with zonation-dependent and -independent
21 effects. Periportal (zone 1) hepatocytes downregulated many zone 1-specific marker genes, while
22 a small number of genes mediating gluconeogenesis were upregulated. Pericentral (zone 3)
23 hepatocytes also downregulated many zone 3-specific genes; however, they upregulated several
24 genes that promote HFD-induced fat droplet formation, consistent with findings that zone 3
25 hepatocytes accumulate more lipid droplets. Zone 3 hepatocytes also upregulated ketogenic
26 pathways as an adaptive mechanism to HFD. Interestingly, many of the top HFD-induced genes,
27 which encode proteins regulating lipid metabolism, were strongly co-expressed with each other
28 in a subset of hepatocytes, producing a variegated pattern of spatial co-localization that is
29 independent of metabolic zonation. In conclusion, our dataset provides a useful resource for
30 understanding hepatocellular alteration during NAFLD at single cell level.

31 **Introduction**

32 The liver is a vital organ that performs essential digestive and metabolic functions within
33 the body, such as glucose and fat metabolism, serum protein production, bile secretion, and
34 chemical detoxification. Most of these functions are mediated by hepatocytes, which constitute
35 the major cell type of the liver, and comprise of 70-85% of the liver's mass.

36 With the prevalence of obesity in the modern society, the incidence of non-alcoholic fatty
37 liver disease (NAFLD) is increasing at an alarming rate (25). During obesity, over-nutrition and
38 sedentary lifestyle lead to a chronic calorie surplus, resulting in the storage of excessive nutrients
39 in the form of fat. In this condition, the liver also accumulates large fat droplets, which does not
40 typically occur in healthy liver. NAFLD can precipitate further advanced liver diseases such as
41 steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma (HCC, liver cancer) (30).

42 Recently, pathological NAFLD responses of non-parenchymal cell types, such as
43 inflammatory cells and hepatic stellate cells, were characterized at single cell level through
44 scRNA-seq (52). It was reported that, during NAFLD, some macrophages and hepatic stellate
45 cells still retain their normal transcriptome that is almost indistinguishable from those in healthy
46 liver. However, new cell types, which have activated inflammatory signaling (NASH-associated
47 macrophages) or fibrogenic responses (activated hepatic stellate cells), emerged from the normal
48 population and occupied a substantial portion of cells in the diseased liver. Similar observations
49 were made from fibrotic responses of hepatic stellate cells to carbon tetrachloride treatment (7,
50 24) or human liver cirrhosis (34), indicating the presence of both resting and activated hepatic
51 stellate cell population in fibrotic liver. Another recent study indicated that liver endothelial cells
52 also show similar bipartite response to NASH with responsive and unresponsive populations (16).
53 These findings suggested that at least some non-parenchymal liver cells maintain unaltered

54 transcriptome phenotypes to mediate homeostatic function, while other cells alter their
55 transcriptome or migrate from other places to play either adaptive or maladaptive pathological
56 roles during NASH or NAFLD.

57 Although hepatocytes are often considered functionally homogeneous, studies actually
58 indicate that individual hepatocytes are exposed to different physiological environments, receive
59 different developmental cues, express different sets of genes, and thereby play specialized
60 metabolic functions according to their histological niche (4, 18-20). Recent single cell RNA-seq
61 (scRNA-seq) studies on normal mouse and human liver samples confirmed the presence of such
62 heterogeneity in mammalian liver (1, 28). Furthermore, histological studies revealed that a subset
63 of hepatocytes in a specific region is more prone to fat accumulation (NAFLD) (5, 14, 15),
64 fibrotic disease progression (NASH) (10), liver damage, and hepatocarcinogenesis (HCC) (40,
65 43, 48). Therefore, although transcriptomic analyses of bulk liver mRNAs have revealed that
66 lipogenic, glucogenic, and inflammatory gene transcription levels substantially change upon the
67 development of NAFLD and NASH (3), it is unknown how individual hepatocytes alter their
68 gene expression during liver pathogenesis.

69 Here we performed droplet-based single cell RNA-sequencing (Drop-seq) (27) on
70 hepatocytes freshly isolated from lean and high fat diet (HFD)-fed obese mice and characterized
71 their single cell transcriptome. Our analyses indicate that, unlike non-parenchymal cell types that
72 have both non-responsive and responsive populations, all hepatocytes altered their transcriptome
73 upon HFD, and each of their single cell transcriptome was distinct from the ones isolated from
74 lean mice. However, the patterns of transcriptome alteration were highly heterogeneous across
75 the metabolic zones, and there are also HFD response heterogeneity that is independent of the
76 zonation profile. Some of these interesting single cell gene expression features were observed at

77 the protein level through immunohistochemistry of liver sections. Collectively, our work reveals
78 how HFD alters the transcriptomic landscape of single hepatocytes across the whole population.

79 **Materials and Methods**

80

81 *Data Availability.* The scRNA-seq dataset generated from this study is available at the
82 Gene Expression Omnibus database (GEO Accession number: GSE157281). The data can also
83 be accessed through an interactive online resource (<https://lee.lab.medicine.umich.edu/hfd>),
84 which has an intuitive graphical user interface for exploring our scRNA-seq dataset.

85 *Mice and Diets.* 8-week-old C57BL/6J littermate male mice were separated into two
86 groups and were fed on a regular chow diet (LFD group; Lab Diet, 5L0D) or high fat diet (HFD
87 group; Bio-Serv, S3282). After 12 weeks of dietary modulation, mice whose body weight
88 reached between 48 and 52 g (HFD group) or between 35 and 38 g (LFD group) were euthanized
89 and subjected to single hepatocyte isolation and Drop-seq. We complied with all relevant ethical
90 regulations for animal testing and research. All experiments were approved by the University of
91 Michigan Institutional Animal Care & Use Committee (PRO00007710 and PRO00009630).

92 *Hepatocyte isolation.* For hepatocyte isolations, the liver was first perfused with calcium-
93 free Hank's Balanced Salt Solution (HBSS; 14175-095, Gibco) containing 0.2 mg/mL EDTA
94 (51201, AccuGENE) and sodium bicarbonates (7.5%; 25080-094, Gibco) and then sequentially
95 perfused with 0.2% collagenase type II (LS004196, Worthington) in Hank's Balanced Salt
96 Solution (HBSS; 14025-092, Gibco) with Calcium Chloride (2.5M; C7902-500G, Sigma). The
97 collagenase-treated liver was extracted from the body and further incubated at 37°C for 20 min.
98 Liver cells were diluted in DMEM (11965, Gibco) containing 10% serum and centrifuged at 50 g
99 for 5 min to enrich hepatocytes and passed through a 100-micron nylon cell strainer (10199-659,
100 VWR) multiple times. To remove non-hepatocytes, the gradient precipitation using a 30%

101 percoll solution (17-5445-02, GE Healthcare) was performed, and the resulting hepatocytes were
102 resuspended in 0.5% BSA (A8806, Sigma) in PBS (11965-092, Gibco) for the further analysis of
103 viability and subsequent Drop-Seq experiment.

104 *Drop-seq library preparation.* Drop-seq experiments were performed through a
105 previously described method (27). Hepatocyte preparations were diluted in 2 ml PBS-BSA to a
106 final concentration of 240,000~300,000 cells. Diluted hepatocytes suspension, barcoded beads
107 (MACOSKO-2011-10, Chemgenes) in lysis buffer (400 mM Tris pH7.5, 40 mM EDTA, 12%
108 Ficoll PM-400, 0.4% Sarkosyl and 100mM DTT; 100,000 beads/ml), and droplet generation oil
109 (184006, Bio-rad) were injected into a microfluidics device (FJISUM-QO-180221, FlowJEM)
110 through three separate inlets. The flow rates for the cell and bead suspensions were set as 2,000
111 μ l/hr, and the flow rate for the droplet oil was set to 7,500 μ l/hr. Resulting droplets were
112 sequentially collected in 50 ml falcon tubes, and the total collection time was between 25 and 30
113 mins. Droplets were broken by vigorous shaking to release the beads into the solution, and the
114 beads were collected by centrifugation. Beads were washed multiple times in 6X SSC (diluted
115 from 20X SSC; 15557044, Invitrogen). Excess bead primers were removed by the treatment of
116 Exonuclease I (NEBM0293S, NEB), cDNA synthesis was performed using Template Switch
117 Oligo (TSO), and DNA was amplified using PCR, according to the original Drop-seq protocol
118 (27). The resultant PCR product was purified by AMPure XP beads (A63881, Beckman Coulter).
119 The products of the multiple PCR reactions were used for the secondary PCR to construct a full-
120 length cDNA library, which was processed into the sequencing library using the Nextera XT
121 DNA Library Preparation Kit (FC-131-1096, Illumina) with unique barcode sequences for each
122 set. The quality of the libraries was inspected by agarose gel electrophoresis for their average
123 size and concentration before pooling for the sequencing. A total of 5 sets of cDNA libraries

124 from Drop-seq runs, two from LFD liver, and three from HFD liver, were analyzed. The pooled
125 libraries were sequenced using Illumina HiSeq-4000 High-Output at the UM Sequencing Core
126 and AdmeraHealth Inc. after an additional quality control process through Agilent BioAnalyzer.

127 *Drop-seq data processing.* We processed raw reads following the instructions described
128 in the Drop-seq Laboratory Protocol v3 (27) using DropSeqTools (v1.13). Reads were aligned to
129 the mm10 mouse genome using STAR (v.2.6.0a) (8) following the default DropSeqTools
130 pipeline. The aligned reads were further processed using a *popsicle* software tool
131 (<https://github.com/statgen/popsicle>) to produce the digital expression matrix. We used a unique
132 molecular identifier (UMI) count 400 as an initial cutoff to filter 44,245 droplets to consider for
133 more stringent filtering. Because hepatocytes are extremely fragile (38, 42), ambient RNAs
134 (soup) released from dead hepatocytes could be easily captured by the majority of droplets that
135 do not have actual single cells. Indeed, preliminary analysis of Drop-seq results revealed several
136 droplet clusters that were suspected of having been formed from soup, not from a single cell. To
137 identify these soup droplets from our dataset, a shuffled (Shf) dataset was generated by random
138 shuffling of transcriptome information in the original (Org) dataset. We assumed that soup
139 droplets in the Org dataset would exhibit characteristics similar to the droplets in the Shf dataset.
140 To test this, Org and Shf dataset were plotted on the t-SNE manifold. Indeed, the results indicate
141 that many of the Org droplets from the Drop-seq experiments have a characteristic similar to
142 droplets of the Shf dataset, as they overlap in the t-SNE manifold (Fig. S1A). From the t-SNE
143 manifold, we identified four small clusters (Fig. S1A) that are unique to the Org dataset. Among
144 these, one cluster (cluster AA in Fig. S1A and S1B) contained higher levels of mitochondrial
145 transcripts while another cluster (cluster BB in Fig. S1A and S1C) contained very low levels of
146 UMI. The other two clusters (clusters CC and DD in Fig. S1A-S1D) had relatively higher UMI

147 numbers and relatively lower mitochondrial transcript content; therefore, we focused on isolating
148 these two clusters from the dataset. Therefore, through a series of multi-dimensional clustering
149 and subtraction of irrelevant droplets with soup-like profiles (Shf-enriched clusters), higher
150 mitochondrial contents (cutoff: 30%) and lower UMI counts (cutoff: 1000), we isolated a total of
151 454 droplets that represent 216 cells from two LFD liver samples and 238 cells from three HFD
152 liver samples (Fig. S1D).

153 *Cell clustering and data visualization.* The digital expression matrix was processed to
154 Seurat v3 (41) following the “standard processing workflow” in the tutorial. 2-dimensional t-
155 SNE (45) and UMAP (2) manifolds were used to visualize gene expression data across different
156 clusters of single cells. Clustering was performed using the shared nearest neighbor modularity
157 optimization implemented in Seurat’s *FindClusters* function using a resolution parameter as 0.2.
158 We observed that batch effects are minimal, and all HFD droplets across three independent
159 batches fell into the cluster corresponding to HFD cells, while most of the LFD droplets (97%)
160 across two independent batches fell into the other cluster corresponding to LFD cells.

161 *Imputation of single cell expression.* We performed the imputation of the data using
162 *magic* package (47) or using *saver* package (17). Default parameters were used for the
163 imputation work. The scatterplots and feature plots of imputed data were visualized using
164 customized R scripts with *ggplot2*.

165 *Construction of hepatocyte zonation profiles.* *Arg1* and *Cyp2e1* are established markers
166 for zone 1 and 3 hepatocytes, respectively (1, 12), and expression levels of these genes were
167 comparable between LFD and HFD livers in our dataset. Accordingly, imputed gene expression
168 levels for *Arg1* and *Cyp2e1* were used for estimating hepatocyte zonation. Zonation score was
169 calculated as the difference between the *magic*-imputed levels of *Arg1* and *Cyp2e1* expression.

170 According to the zonation score, hepatocytes were divided into five bins of cells, among which
171 the top 3 bins were grouped together as zone 1 hepatocytes, and the bottom two bins were
172 grouped as zone 2 and 3 hepatocytes, respectively. The resultant hepatocyte groups appropriately
173 reflect the biological characteristics of zone 1-3 hepatocytes, as supported through independent
174 visualizations using PCA, t-SNE and UMAP manifolds, as well as gene expression analyses of
175 the other established zone-specific markers (see Results and Discussion for details).

176 *Pathway enrichment analysis.* Differentially expressed genes (based on fold-enrichment)
177 were identified between LFD and HFD hepatocytes, and between Zone 1 and Zone 3 hepatocytes
178 from the LFD set of hepatocytes, using *FindAllMarkers* function in Seurat. Networks of GO
179 terms were constructed using ShinyGO v0.61 (11), using only the top 20 significant terms. The
180 pathway enrichment analysis was also performed using *enrichGO* and *enrichKEGG* functions in
181 the clusterProfiler version 3.6 (53).

182 *Immunohistochemistry.* For immunohistochemistry, liver tissues were fixed in 10%
183 buffered formalin and embedded in paraffin and subjected to immunohistochemical staining, as
184 previously described (6). In brief, paraffin-embedded liver sections were incubated with primary
185 antibodies obtained from Santa Cruz Biotechnology (Apoa4, sc-374543; Elov15, sc-374138;
186 Fabp1, sc-271591; Cyp2f2, sc-374540; Cyp1a2, sc-53241) at 1:100, followed by incubation with
187 biotin-conjugated secondary antibodies (Vector Lab, BA-9200; 1:200) and horseradish
188 peroxidase (HRP)-conjugated streptavidin (BD Biosciences, 554066; 1:300). The HRP activity
189 was visualized with diaminobenzidine staining, and nuclei were visualized by Haematoxylin
190 counterstaining. For fluorescence staining of lipid droplets and Cyp2f2, livers were harvested
191 from 4 month-old mice, which had been either LFD or HFD for two months. Frozen liver
192 sections were fixed with 2% paraformaldehyde, blocked with 1X Western Blocking Reagent

193 (Roche), and incubated with anti-Cyp2f2 primary antibody (sc-374540; Santa Cruz
194 Biotechnology), followed by Alexa 594-conjugated secondary antibody, DAPI and BODIPY
195 493/503 (Invitrogen).

196 **Results and Discussion**

197 *Drop-seq successfully captures single hepatocyte transcriptome profile.* To characterize
198 the effect of HFD on single cell transcriptome of hepatocytes, we performed Drop-seq in five
199 independent experiments with freshly isolated hepatocytes from two normal chow (low fat diet;
200 LFD)-fed lean mice and three HFD-fed obese mice. A total of 216 high-quality hepatocytes were
201 identified from the livers of LFD mice, while 238 were identified from those of HFD mice (see
202 Materials and Methods for details). All of these droplets expressed robust levels of *Alb* (>0.9%
203 of total transcriptome; Fig. S2A), an authentic hepatocyte marker encoding albumin protein,
204 confirming that these droplets indeed represent hepatocyte transcriptome.

205 In contrast, most macrophage markers, such as *Emr1*, *Itgam* and *Cd14*, as well as many
206 inflammatory cytokines, such as *Tnf*, *Il6* and *Ccl2*, were undetectable from our single cell
207 transcriptome dataset (Fig. S2B and S2C), indicating that our Drop-seq preparations did not have
208 contaminating fractions of Kupffer cells, the liver-resident macrophages. Many markers for
209 hepatic stellate cells and fibroblasts, such as *Acta2*, *Col3a1*, *Pecam1*, and *Mmp2*, were also not
210 detected (Fig. S2D). Major adipocyte markers, such as *Fabp4* and *Adipoq*, were also
211 undetectable (Fig. S2E), indicating that, although HFD and fatty liver can render hepatocytes to
212 accumulate lipid droplets (32), they do not alter the tissue identity of hepatocytes to exhibit
213 adipocyte characteristics.

214 *HFD alters single cell transcriptome profile of entire hepatocyte population in liver.* To
215 explore and understand the single hepatocyte transcriptome data, we first performed the principal
216 component (PC) analysis to determine the signatures of the largest variance in our dataset. PC1,
217 which represents the largest variance, did not characterize significant differences between LFD
218 and HFD samples (Fig. 1A, left). However, PC2 and PC3, the orthogonal axes representing the

219 second and third largest variance, respectively, were highly effective in separating LFD and HFD
220 transcriptome profiles (Fig. 1A, center and right). Correspondingly, PC2 and PC3 were sufficient
221 to discriminate LFD and HFD hepatocytes without any additional information (Fig. 1B). The
222 effect of HFD was robust across independent batches of the experiment (Fig. 1C).

223 Similar trends were observed from the nonlinear manifolds generated by t-SNE and
224 UMAP dimension reduction methods (2, 46), which segregated LFD and HFD groups of
225 hepatocytes (Fig. 1D) but robust against batch effects (Fig. 1E). High-dimensional clustering
226 analysis also clearly differentiated the LFD and HFD groups; all cells from HFD mice fell into
227 the cluster corresponding to HFD group (group 0 in Fig. 1F), while 213 out of 216 cells (98%)
228 from LFD mice fell into the LFD group (group 1 in Fig. 1F). These results indicate that the entire
229 hepatocyte population in mouse liver responded to the HFD challenge by altering their
230 transcriptome profiles.

231 *Metabolic zonation of hepatocytes was captured in both HFD and LFD livers.* We were
232 curious about the nature of the PC1 axis, which represents the largest variance of transcriptomic
233 profiles across all hepatocyte populations, yet does not strongly represent the diet effect (Fig.
234 1A). We observed that the hepatocyte marker *Alb* expression exhibited a substantial negative
235 correlation with PC1 in both HFD and LFD groups (Fig. S2F; $r = -0.54$, $P < 2.2\text{e-}16$). *Alb*
236 expression is known to be relatively higher in periportal zone 1 hepatocytes and relatively lower
237 in pericentral zone 3 hepatocytes (9); therefore, we suspected that the PC1 axis might represent
238 the metabolic zonation of individual hepatocytes. To further substantiate this conjecture, we
239 examined the expressions of well-characterized periportal marker *Arg1* and pericentral marker
240 *Cyp2e1* (1, 12) to understand the zonation structure of our dataset. Both scaled and imputed
241 expression levels of *Arg1* showed negative correlation with the PC1 (Fig. S3A, upper; $r = -0.26$

242 and -0.84, respectively; $P < 2.5\text{e-}8$) while expression levels of *Cyp2e1* showed positive
243 correlation with the PC1 (Fig. S3A, lower; $r = 0.56$ and 0.89 ; $P < 2.2\text{e-}16$), indicating that PC1
244 indeed represents the metabolic zonation structure of hepatocytes.

245 Interestingly, in single cells, imputed levels of *Arg1* and *Cyp2e1* expression showed a
246 clear negative correlation (Fig. 2A; $r = -0.93$), consistent with their opposed expression patterns
247 in the liver (1, 12). Based on these levels of *Arg1* and *Cyp2e1* expression, we partitioned the liver
248 with three zones: zone 1 with periportal characteristics, zone 2 with intermediate characteristics,
249 and zone 3 with pericentral characteristics (Fig. 2A, right).

250 Previous studies isolated a long list of zone 1-specific markers, such as *Alb*, *Ass1*, *Arg1*,
251 *Cyp2f2*, *Cps1*, *Gls2*, *Pck1* and *Sult5a1*, and zone 3-specific markers, such as *Glul*, *Oat*, *Slc1a2*,
252 *Lect2*, *Ldhd*, *Por*, *Cyp1a2*, *Cyp2e1*, *Ahr*, and *Gstm2*, 3 and 6, through various methodologies
253 including differential isolation, immunohistochemistry or RNA *in situ* hybridization analyses (1,
254 12, 44). All of these genes appear to have corresponding patterns of expression in our dataset
255 (Fig. S4). Furthermore, *Hamp* and *Igfbp1*, genes whose expression is elevated in the intermediate
256 region of the liver (1), showed zone 2-specific expression from our dataset (Fig. 2B). These
257 results confirm the validity of our zonation method.

258 Diet and zonation effects can also be jointly visualized in 3-dimensional PC1/PC2/PC3
259 space, where PC2 and PC3 axes separate LFD and HFD hepatocytes (Fig. 2C, left), and the PC1
260 axis visualizes the portal-to-central histological zonation structure (Fig. 2C, right; Fig. 2D and
261 S3B). Indeed, PC1 values were the highest in zone 3 and the lowest in zone 1 hepatocytes,
262 according to our hepatocyte zonation groups (Fig. 2E). Diet and zonation effects were also
263 robustly observed in UMAP and t-SNE (Fig. 2F-2H) manifolds. These results indicate that (i) the
264 structure of metabolic zonation is maintained in HFD liver, (ii) HFD produced transcriptome-

265 altering effects on hepatocyte population across entire zonation niches, and (iii) zonation effect
266 and diet effect are the two major sources of variation in single hepatocyte transcriptomes
267 observed from our dataset.

268 *HFD alters the expression of genes controlling lipid metabolism.* Using the diet and
269 zonation information of individual hepatocytes, we identified a list of genes whose expression
270 patterns are modulated by HFD or dependent on their zonation. 91 genes were significantly
271 upregulated in the HFD group, while 226 genes were significantly upregulated in the LFD group
272 (FDR<0.01; Table S1, first to third tabs). Partially overlapping with this list (Fig. 3A), 74 genes
273 were found to be specific to zone 1 hepatocytes, while 320 genes were specific to zone 3
274 hepatocytes (FDR<0.01; Table S1, first, fourth and fifth tabs). Heat map analysis of the diet-
275 specific (Fig. 3B) and zone-specific genes (Fig. 3C) confirmed that these gene groups show
276 contrasted gene expression patterns across different populations of hepatocytes.

277 Gene ontology analysis of HFD-upregulated and -downregulated (LFD-upregulated)
278 genes showed that, consistent with previous bulk gene expression studies (22, 37, 39), genes
279 controlling lipid and fatty acid metabolism are upregulated in HFD, while genes controlling
280 amino acid and drug catabolism are downregulated (Fig. 3D-3G; FDR<0.05 for all presented
281 pathways). However, genes mediating inflammation and fibrosis were not included here (Fig.
282 3D-3G; Table S1), since our dataset was exclusive to hepatocytes and did not include hepatic
283 stellate cells or inflammatory cells (Fig. S1). Pathway enrichment analysis using the Kyoto
284 Encyclopedia of Genes and Genomes (KEGG) database identified the metabolic pathways as the
285 top enriched pathway for both HFD-upregulated and -downregulated gene lists (Fig. 3E; FDR =
286 1.6e-10 and 2.2e-29, respectively), consistent with the central role of the liver in metabolism.
287 Interestingly, among various biological pathways, the PPAR pathway was represented in both

288 HFD-upregulated and HFD-downregulated gene lists (Fig. 3E-3G), consistent with the former
289 studies indicating that the pathway is among the major pathways altering hepatocellular
290 transcriptome during HFD (33, 49).

291 *HFD alters expression patterns of a subset of zone-specific genes.* Next, we focused on
292 the genes that exhibit both diet- and zone-specific expression patterns (Fig. 3A; Table S1, first
293 tab). We found that many markers for zone 1 hepatocytes, such as *Cyp2f2*, *Mup1*, *Gstp1* and *Hpx*,
294 were strongly downregulated upon HFD feeding (Fig. 4A-4D). Only a very small number of
295 zone 1-specific genes, such as *Aldob*, *Fbp1* and *Mup21*, were upregulated (Fig. 4E and 4F).
296 Many zone 3 hepatocyte markers, such as *Cyp1a2*, *Mup17*, *Gstm1* and *Cyp2a5*, were also
297 downregulated (Fig. 4A-4D). However, several zone 3-specific genes, including *Cyp4a14*,
298 *Aldh3a2*, and *Cсад*, were substantially upregulated in response to HFD (Fig. 4E and 4G).
299 Therefore, the HFD effect on zone-specific gene expression could be variable across individual
300 genes.

301 We assessed whether mRNA expression changes observed from our Drop-seq analysis
302 could lead to alterations of the protein level by examining *Cyp2f2* and *Cyp1a2* genes, which are
303 among the genes that show the strongest zonation patterns in our dataset and previous datasets
304 (1). In our dataset, the expression of these genes in their corresponding metabolic zones was
305 strongly reduced after HFD (Fig. 4B). These observations were reproduced through
306 immunohistochemical staining of *Cyp2f2* and *Cyp1a2* proteins in liver sections; the areas
307 expressing these two proteins were dramatically shrunken (Fig. 4H). Correspondingly, although
308 the regions expressing *Cyp2f2* and *Cyp1a2* substantially overlapped in LFD liver, they hardly
309 overlapped in HFD, creating the gap area where none of these proteins were expressed (Fig. 4H).
310 Similar patterns were also observed in Drop-seq data, where many zone 2 hepatocytes reduced

311 expression of both *Cyp2f2* and *Cyp1a2* upon HFD (cells in orange circles of Fig. 4I). These data
312 exemplify the relevance of our Drop-seq dataset for understanding single cell gene expression of
313 hepatocytes in LFD and HFD mouse liver.

314 *Zonation-independent heterogeneity in single hepatocyte responses to HFD.* *Elov15*,
315 *Apoa4*, and *Fabp1* are among the genes that show the strongest upregulation of gene expression
316 after HFD (Table S1, third tab). Although the HFD induction of these genes was very robust in
317 both the Drop-seq dataset (Fig. 5A and 5B) and immunohistochemical staining of liver sections
318 (Fig. S5), they did not show strong zone-specific expression patterns (Fig. 5A, 5B and S5).
319 Interestingly, in liver immunohistochemistry, *Elov15*, *Apoa4*, and *Fabp1* proteins exhibited
320 variegated expression patterns across the hepatocytes (Fig. S5A), indicating that their induction
321 after HFD is highly heterogeneous between different hepatocytes, independent of metabolic
322 zonation.

323 Given the spatially-restricted patterns of *Elov15*, *Apoa4*, and *Fabp1* protein expression in
324 liver sections (Fig. S5A), we became curious about whether the patterns between these genes are
325 correlated with each other. To assess this, we stained each of these proteins in a serial section of
326 the same histological block. Interestingly, it was found that the regions of high *Elov15*, *Apoa4*
327 and *Fabp1* expression were substantially overlapping with each other, indicating that protein
328 products of these genes are expressed in a positive correlation with each other (Fig. 5C).

329 We then examined whether the positive correlation between *Elov15*, *Apoa4*, and *Fabp1*
330 expression could be observed from the Drop-seq dataset. Query of the most significantly
331 correlated gene for *Elov15* expression resulted in *Apoa4*, *Cyp4a14*, and *Fabp1* as the top 3 genes,
332 among which both *Apoa4* and *Fabp1* are included. Correlation scatterplot between *Elov15* and
333 these two genes showed the trend of positive correlation in scaled data (Fig. 5D; $r = 0.22$ and

334 0.21, respectively; $P < 1.5e-6$); however, due to the sparsity of the specific mRNA observation
335 and subsequent technical noise, the observed correlation may not be as strong as the true
336 correlation. After applying two independent imputation methods correcting for the technical
337 noise effect, *saver* (17) (Fig. 5E) and *magic* (47) (Fig. 5F), we were able to detect more robust
338 correlation between gene expression profiles of *Elovl5* and *Apoa4* ($r = 0.90$ (*magic*) and 0.50
339 (*saver*)), and between *Elovl5* and *Fabp1* ($r = 0.97$ (*magic*) and 0.41 (*saver*)) (Fig. 5E and 5F).
340 Importantly, these patterns of correlation were independent of the zonation (Fig. 5D-5F, zonation
341 panels), batches (Fig. 5F, sample panels), or mRNA reads (Fig. 5F, nCount_RNA/level panels).
342 Therefore, these results suggest the presence of zonation-independent heterogeneity in
343 hepatocyte responses to HFD.

344 *Elovl5-high and -low hepatocytes accumulate similar levels of fat droplets.* In HFD mice,
345 hepatocytes expressing high levels of *Elovl5*, *Apoa4*, and *Fabp1* were not morphologically
346 different from other hepatocytes in terms of lipid droplet accumulation (Fig. 5C and 5G).
347 Quantification of the lipid droplet size did not reveal any obvious differences in lipid droplet size
348 (Fig. 5H, upper) or area (Fig. 5H, lower) between *Elovl5-high* and *-low* hepatocyte populations.
349 Therefore, the levels of HFD-induced *Elovl5*, *Apoa4*, and *Fabp1* does not seem to substantially
350 alter the steady-state level of fat accumulation in the hepatocytes.

351 Considering that *Fabp1*, *Elovl5* and *Apoa4* are all involved in fatty acid metabolism, it
352 could be inferred that hepatocytes expressing high levels of these genes might be more active in
353 lipid processes. Since the histological analysis indicates that the expression of these genes does
354 not substantially alter the intracellular amounts of fat droplets (Fig. 5G and 5H), the biological
355 relevance of this heterogeneous gene expression pattern is unclear in the context of HFD feeding.
356 It is possible that active processes in lipid metabolism, mediated by these genes, alter the flux of

357 lipid metabolites without affecting the steady-state fat levels. It is also possible that heterogeneity
358 in expression of these genes is temporarily generated; therefore, over time, other hepatocytes
359 might also express high levels of these proteins, producing similar metabolic profiles.

360 *HFD induces stronger fat accumulation in zone 3 hepatocytes.* It was well documented
361 that obesity and hepatosteatosis disparately affect individual hepatocytes across their histological
362 zonation. Some hepatocytes, especially the ones in zone 3, which are deprived of nutrients and
363 oxygen, are more prone to accumulate lipid droplets while the ones in zone 1, a nutrient- and
364 oxygen-rich environment, are less susceptible to steatotic progression (14, 15). Consistent with
365 these former studies, we observed from the histology results that Cyp1a2-positive zone 3
366 hepatocytes contain more and bigger lipid droplets when compared to Cyp2f2-positive zone 1
367 hepatocytes (Fig. 6A and 6B). The observation of zone 3-specific fat accumulation was
368 reproduced when we directly stained lipid droplets in freshly frozen tissue sections from LFD
369 and HFD livers (Fig. 6C), again supporting that HFD-induced fat accumulation is more
370 pronounced in zone 3.

371 *Zone 3 hepatocytes robustly express genes mediating fat accumulation during HFD.* We
372 then tried to identify the features of single hepatocyte transcriptome that may explain the
373 preferential accumulation of lipid droplets in zone 3 hepatocytes. For this, we surveyed the
374 function of all genes that show either HFD- or zone 3-specific expression patterns (Table S1,
375 third and fifth tabs) through literature search. We found that there are at least four genes, *Plin2*,
376 *G0s2*, *Cyp4a14*, and *Cd36*, which are known to play a mechanistic role in fat accumulation (23,
377 26, 31, 50, 54-56), and at the same time, strongly induced by HFD in zone 3 hepatocytes (Fig.
378 6D).

379 Plin2 is a protein directly associated with hepatic lipid droplets (26). Plin2 surrounds the
380 lipid droplet and assists the storage of neutral lipids within the lipid droplets. Consistent with
381 increased lipid droplet accumulation in zone 3 hepatocytes, *Plin2* expression is more strongly
382 upregulated in zone 3 during HFD (Fig. 6D). The *Plin2* induction could be critical for zone 3-
383 specific accumulation of lipid droplets because hepatic deletion of *Plin2* is known to attenuate
384 hepatic fat accumulation (26, 31).

385 *G0s2*, whose product is a well-established inhibitor of lipase activity in hepatocytes (54),
386 was also strongly upregulated upon HFD, specifically in zone 3 hepatocytes (Fig. 6D).
387 Considering that *G0s2* is important for the accumulation of triglycerides in hepatocytes by
388 inhibiting lipase activities, it is likely that the pericentral expression of *G0s2* is responsible for
389 lipid droplet accumulation in zone 3. Indeed, in a recent study, *G0s2* knockout mice and liver-
390 specific knockdown mice did not show hepatosteatosis upon HFD, while *G0s2* overexpression
391 sufficed to induce hepatosteatosis (56).

392 *Cyp4a14* is another gene that is induced upon HFD and critical for generating HFD-
393 induced hepatosteatosis (55). HFD-induced *Cyp4a14* expression is also much more pronounced
394 in zone 3, compared to the other zones (Fig. 6D).

395 *Cyp4a14* was suggested to promote hepatosteatosis, partly thorough inducing *Cd36/FAT*,
396 whose products play a role in importing fatty acids into hepatocytes (55). *Cd36/FAT* was also
397 highly induced in zone 3 hepatocytes of HFD-fed mouse liver (Fig. 6D). Notably, prior studies
398 showed that hepatic *Cd36* overexpression was sufficient to provoke hepatosteatosis even without
399 HFD challenges (23), while liver-specific *Cd36* disruption was sufficient to attenuate fatty liver
400 in HFD mice (50).

401 Collectively, these observations, combined with former genetic studies performed on
402 these genes (23, 26, 31, 50, 54-56), suggest that zone 3-specific upregulation of *Plin2*, *G0s2*,
403 *Cyp4a14*, and *Cd36* plays an important role for producing zone 3-specific steatosis phenotype in
404 response to HFD challenges.

405 ***Zone 3 hepatocytes upregulate genes mediating ketogenic pathway.*** In addition to the
406 genes responsible for producing lipid droplet accumulation, we also observed that HFD-induced
407 expression of ketogenic genes, such as *Acat1*, *Hmgcs2*, *Hmgcl* and *Bdh1*, were relatively higher
408 in zone 3 hepatocytes (Fig. 6E). *Sirt3*, whose product deacetylates and activates *Hmgcs2*, was
409 also more strongly expressed in zone 3 hepatocytes of HFD liver (Fig. 6F). These results suggest
410 that the HFD-induced ketogenesis pathway (Fig. 6G) is preferentially activated in zone 3
411 hepatocytes of mouse liver. Activation of ketogenesis in zone 3 hepatocytes might be critical for
412 distributing the energy to peripheral tissues and generating metabolic adaptation to HFD-induced
413 hypernutrition (36).

414 ***Zone 1 hepatocytes also transcriptionally respond to HFD.*** In contrast to zone 3
415 hepatocytes, zone 1 hepatocytes strongly downregulated many zone 1-specific transcripts that
416 mediate various metabolic processes, including drug and amino acid catabolism and redox
417 metabolism (Fig. 6H). Reduction of these functions may be critical for HFD adaptation by
418 accommodating an increased need for lipid metabolism. Although many of zone 1-specific genes
419 were downregulated (Fig. 4A), *Aldob* and *Fbp1*, two genes that are involved in gluconeogenesis,
420 were strongly upregulated in zone 1 hepatocytes after HFD (Fig. 4E and 4F). This is consistent
421 with the previous findings indicating that gluconeogenesis activity is the most active in zone 1
422 hepatocytes (15). This zone 1-specific regulation of *Aldob* and *Fbp1* might be contributing to
423 decreased glucose tolerance during HFD-induced obesity (51). In addition, stress-induced AP1

424 transcription factors, *Jun* and *Fos*, were also specifically upregulated in zone 1 hepatocytes upon
425 HFD stimulation (Fig. 6I). These results indicate that, although zone 1 hepatocytes are relatively
426 resistant to fat droplet accumulation, they also respond transcriptionally to HFD challenges and
427 contribute to physiological HFD responses in a substantial way.

428 ***PPAR pathway is implicated in HFD modulation of single hepatocyte transcriptome.*** It
429 is interesting to note that many HFD-induced genes reviewed above are targets of the PPAR-
430 family transcription factors; genes with a variegated co-expression pattern (*Elovl5*, *Apoa4*,
431 and *Fabp1*), as well as genes that show zone 3-specific pattern and mediate fat droplet
432 accumulation (*G0s2*, *Plin2*, *Cyp4a14*, and *Cd36*) and ketogenesis upregulation (*Acat1*, *Hmgcs2*,
433 *Hmgcl* and *Bdh1*), are all targets or PPAR α (21, 29, 49) (Fig. 7). As observed above (Fig. 3E-G),
434 the PPAR pathway is the only transcription factor-targeted group that is enriched in both HFD-
435 upregulated and HFD-downregulated gene lists. Importantly, PPAR is known to be activated
436 upon stimulation with fatty acids, as they are direct ligands for transcriptional activation of
437 PPAR (21, 29). Former bulk analysis of fatty liver transcriptome also revealed that various
438 targets of PPAR, as represented in our dataset, are strongly upregulated upon HFD challenges
439 (22, 33, 37, 39). Notably, many of these genes did not show such diet-dependent modulations in
440 *Ppara*-deleted knockout mutant strains (33, 49). Therefore, many transcriptome features
441 observed from our dataset could be at least partly mediated by PPAR activation by excessive
442 fatty acids from dietary sources.

443 ***Limitations of the current study.*** Our Drop-seq dataset contains a large number of
444 droplets containing ambient RNA (Fig. S1, see Materials and Methods for details), indicating
445 that a considerable number of single hepatocytes were damaged during isolation and
446 microfluidics. It is possible that the single hepatocyte data presented in the current study is

447 biased towards the hepatocyte population that is resistant to physical damage. In addition,
448 although our method of partitioning single hepatocyte transcriptome profiles into three zones is
449 robust and consistent with previous studies, it is possible that this is an oversimplification of the
450 complex histological architecture of the liver. These issues could be potentially addressed in
451 future studies by utilizing microfluidics-free methods for sorting single cells (1, 13) or spatial
452 profiling of liver transcriptome through tissue sections (35).

453 *Summary.* Recent single cell transcriptome studies revealed that hepatocyte gene
454 expression and function are highly heterogeneous across their metabolic zonation, revealing
455 global division of metabolic labor of the liver (1, 28). Building on these previous findings, our
456 study provides the first snapshot of how single hepatocyte transcriptome landscape is altered in
457 response to HFD and subsequent development of NAFLD. Through this dataset, we were able to
458 find that HFD makes an impact on the transcriptome of the entire hepatocyte population. We also
459 found that HFD responses of hepatocytes can be heterogeneous with zonation-dependent and -
460 independent effects. Our observations detailed above systematically characterize HFD-induced
461 changes in hepatocellular transcriptome and their relationship to NAFLD pathogenesis.
462 Furthermore, we made our dataset available in an interactive web tool
463 (<https://lee.lab.medicine.umich.edu/hfd>), where individual investigators can reproduce our
464 analyses and test their hypothesis using our publically available dataset. We believe that this
465 resource will be greatly useful for future NAFLD studies.

466 **Acknowledgment**

467 We thank Drs. Jiandie Lin, Yatrik Shah, and Lei Yin labs for their help in hepatocyte
468 isolation and scRNA-seq optimization. We thank Dr. Myungjin Kim for advice, Dr. Steve Norris
469 for editing, Bondong Gu and Boyoung Kim for assistance, and Santa Cruz Biotechnology for
470 antibodies.

471

472 **Grants**

473 This work was supported by the NIH (R01DK102850 and R01DK114131 to J.H.L.,
474 U01HL137182 to H.M.K., T32AG000114 to C.S.C. and P30AG024824, P30DK034933,
475 P30DK089503, and P30CA046592), the Chan Zuckerberg Initiative (to H.M.K.), the MCubed
476 initiative (to J.H.L. and H.M.K.), and the AASLD Pilot Research Award (to J.H.L. and H.M.K.).

477

478 **Disclosures**

479 No conflicts of interest, financial or otherwise, are declared by the authors.

480

481 **Author Contributions**

482 S.R.P. performed Drop-seq experiments. C.S.C. performed histology experiments. J.X.
483 helped with computational analysis. H.M.K. and J.H.L. conceived and directed the project.
484 S.R.P., H.M.K., and J.H.L. designed experiments, analyzed data, and wrote the manuscript. All
485 authors approved the final version.

486 **References**

487

488 1. **Bahar Halpern K, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D, Golan M, Massasa EE, Baydatch S, Landen S, Moor AE, Brandis A, Giladi A, Stokar-Avihail A, David E, Amit I, and Itzkovitz S.** Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. *Nature* 542: 352-356, 2017.

492 2. **Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, Ginhoux F, and Newell EW.** Dimensionality reduction for visualizing single-cell data using UMAP. *Nat Biotechnol* 37: 38-44, 2019.

495 3. **Berlanga A, Guiu-Jurado E, Porras JA, and Auguet T.** Molecular pathways in non-alcoholic fatty liver disease. *Clin Exp Gastroenterol* 7: 221-239, 2014.

497 4. **Birchmeier W.** Orchestrating Wnt signalling for metabolic liver zonation. *Nat Cell Biol* 18: 463-465, 2016.

499 5. **Chalasani N, Wilson L, Kleiner DE, Cummings OW, Brunt EM, Unalp A, and Network NCR.** Relationship of steatosis grade and zonal location to histological features of 501 steatohepatitis in adult patients with non-alcoholic fatty liver disease. *J Hepatol* 48: 829-834, 502 2008.

503 6. **Cho CS, Park HW, Ho A, Semple IA, Kim B, Jang I, Park H, Reilly S, Saltiel AR, and Lee JH.** Lipotoxicity induces hepatic protein inclusions through TANK binding kinase 1-mediated p62/sequestosome 1 phosphorylation. *Hepatology* 68: 1331-1346, 2018.

506 7. **Dobie R, Wilson-Kanamori JR, Henderson BEP, Smith JR, Matchett KP, Portman**
507 **JR, Wallenborg K, Picelli S, Zagorska A, Pendem SV, Hudson TE, Wu MM, Budas GR,**
508 **Breckenridge DG, Harrison EM, Mole DJ, Wigmore SJ, Ramachandran P, Ponting CP,**
509 **Teichmann SA, Marioni JC, and Henderson NC.** Single-Cell Transcriptomics Uncovers
510 Zonation of Function in the Mesenchyme during Liver Fibrosis. *Cell Rep* 29: 1832-1847 e1838,
511 2019.

512 8. **Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson**
513 **M, and Gingeras TR.** STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29: 15-21,
514 2013.

515 9. **Evarts RP, Nagy P, Marsden E, and Thorgeirsson SS.** In situ hybridization studies on
516 expression of albumin and alpha-fetoprotein during the early stage of neoplastic transformation
517 in rat liver. *Cancer Res* 47: 5469-5475, 1987.

518 10. **Font-Burgada J, Shalapour S, Ramaswamy S, Hsueh B, Rossell D, Umemura A,**
519 **Taniguchi K, Nakagawa H, Valasek MA, Ye L, Kopp JL, Sander M, Carter H, Deisseroth**
520 **K, Verma IM, and Karin M.** Hybrid Periportal Hepatocytes Regenerate the Injured Liver
521 without Giving Rise to Cancer. *Cell* 162: 766-779, 2015.

522 11. **Ge SX, Jung D, and Yao R.** ShinyGO: a graphical enrichment tool for animals and
523 plants. *Bioinformatics* btz931: <https://doi.org/10.1093/bioinformatics/btz1931>, 2019.

524 12. **Ghafoory S, Breitkopf-Heinlein K, Li Q, Scholl C, Dooley S, and Wolf S.** Zonation
525 of nitrogen and glucose metabolism gene expression upon acute liver damage in mouse. *PLoS*
526 *One* 8: e78262, 2013.

527 13. **Gierahn TM, Wadsworth MH, 2nd, Hughes TK, Bryson BD, Butler A, Satija R,**
528 **Fortune S, Love JC, and Shalek AK.** Seq-Well: portable, low-cost RNA sequencing of single
529 cells at high throughput. *Nat Methods* 14: 395-398, 2017.

530 14. **Hall Z, Bond NJ, Ashmore T, Sanders F, Ament Z, Wang X, Murray AJ, Bellafante**
531 **E, Virtue S, Vidal-Puig A, Allison M, Davies SE, Koulman A, Vacca M, and Griffin JL.**
532 Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. *Hepatology* 65:
533 1165-1180, 2017.

534 15. **Hijmans BS, Grefhorst A, Oosterveer MH, and Groen AK.** Zonation of glucose and
535 fatty acid metabolism in the liver: mechanism and metabolic consequences. *Biochimie* 96: 121-
536 129, 2014.

537 16. **HM AE, Veidal SS, Feigh M, Hallenborg P, Puglia M, Pers TH, Vrang N, Jelsing J,**
538 **Kornum BR, Blagoev B, and Rigbolt KTG.** Multi-omics characterization of a diet-induced
539 obese model of non-alcoholic steatohepatitis. *Sci Rep* 10: 1148, 2020.

540 17. **Huang M, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, Murray JI, Raj A, Li**
541 **M, and Zhang NR.** SAVER: gene expression recovery for single-cell RNA sequencing. *Nat*
542 *Methods* 15: 539-542, 2018.

543 18. **Jungermann K and Katz N.** Functional hepatocellular heterogeneity. *Hepatology* 2:
544 385-395, 1982.

545 19. **Jungermann K and Katz N.** Functional specialization of different hepatocyte
546 populations. *Physiol Rev* 69: 708-764, 1989.

547 20. **Katz NR.** Metabolic heterogeneity of hepatocytes across the liver acinus. *J Nutr* 122:
548 843-849, 1992.

549 21. **Kersten S.** Integrated physiology and systems biology of PPARalpha. *Mol Metab* 3: 354-
550 371, 2014.

551 22. **Kim S, Sohn I, Ahn JI, Lee KH, Lee YS, and Lee YS.** Hepatic gene expression profiles
552 in a long-term high-fat diet-induced obesity mouse model. *Gene* 340: 99-109, 2004.

553 23. **Koonen DP, Jacobs RL, Febbraio M, Young ME, Soltys CL, Ong H, Vance DE, and**
554 **Dyck JR.** Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-
555 induced obesity. *Diabetes* 56: 2863-2871, 2007.

556 24. **Krenkel O, Hundertmark J, Ritz TP, Weiskirchen R, and Tacke F.** Single Cell RNA
557 Sequencing Identifies Subsets of Hepatic Stellate Cells and Myofibroblasts in Liver Fibrosis.
558 *Cells* 8, 2019.

559 25. **Lazo M, Hernaez R, Eberhardt MS, Bonekamp S, Kamel I, Guallar E, Koteish A,**
560 **Brancati FL, and Clark JM.** Prevalence of nonalcoholic fatty liver disease in the United States:
561 the Third National Health and Nutrition Examination Survey, 1988-1994. *Am J Epidemiol* 178:
562 38-45, 2013.

563 26. **Libby AE, Bales E, Orlicky DJ, and McManaman JL.** Perilipin-2 Deletion Impairs
564 Hepatic Lipid Accumulation by Interfering with Sterol Regulatory Element-binding Protein
565 (SREBP) Activation and Altering the Hepatic Lipidome. *J Biol Chem* 291: 24231-24246, 2016.

566 27. **Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas**
567 **AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev**
568 **A, and McCarroll SA.** Highly Parallel Genome-wide Expression Profiling of Individual Cells
569 Using Nanoliter Droplets. *Cell* 161: 1202-1214, 2015.

570 28. **MacParland SA, Liu JC, Ma XZ, Innes BT, Bartczak AM, Gage BK, Manuel J,**
571 **Khuu N, Echeverri J, Linares I, Gupta R, Cheng ML, Liu LY, Camat D, Chung SW, Seliga**
572 **RK, Shao Z, Lee E, Ogawa S, Ogawa M, Wilson MD, Fish JE, Selzner M, Ghanekar A,**
573 **Grant D, Greig P, Sapisochin G, Selzner N, Winegarden N, Adeyi O, Keller G, Bader GD,**
574 **and McGilvray ID.** Single cell RNA sequencing of human liver reveals distinct intrahepatic
575 macrophage populations. *Nat Commun* 9: 4383, 2018.

576 29. **McMullen PD, Bhattacharya S, Woods CG, Sun B, Yarborough K, Ross SM, Miller**
577 **ME, McBride MT, LeCluyse EL, Clewell RA, and Andersen ME.** A map of the PPARalpha
578 transcription regulatory network for primary human hepatocytes. *Chem Biol Interact* 209: 14-24,
579 2014.

580 30. **Michelotti GA, Machado MV, and Diehl AM.** NAFLD, NASH and liver cancer. *Nat*
581 *Rev Gastroenterol Hepatol* 10: 656-665, 2013.

582 31. **Najt CP, Senthivinayagam S, Aljazi MB, Fader KA, Olenic SD, Brock JR, Lydic TA,**
583 **Jones AD, and Atshaves BP.** Liver-specific loss of Perilipin 2 alleviates diet-induced hepatic
584 steatosis, inflammation, and fibrosis. *Am J Physiol Gastrointest Liver Physiol* 310: G726-738,
585 2016.

586 32. **Pan X, Wang P, Luo J, Wang Z, Song Y, Ye J, and Hou X.** Adipogenic changes of
587 hepatocytes in a high-fat diet-induced fatty liver mice model and non-alcoholic fatty liver disease
588 patients. *Endocrine* 48: 834-847, 2015.

589 33. **Patsouris D, Reddy JK, Muller M, and Kersten S.** Peroxisome proliferator-activated
590 receptor alpha mediates the effects of high-fat diet on hepatic gene expression. *Endocrinology*
591 147: 1508-1516, 2006.

592 34. **Ramachandran P, Dobie R, Wilson-Kanamori JR, Dora EF, Henderson BEP, Luu
593 NT, Portman JR, Matchett KP, Brice M, Marwick JA, Taylor RS, Efremova M, Vento-
594 Tormo R, Carragher NO, Kendall TJ, Fallowfield JA, Harrison EM, Mole DJ, Wigmore SJ,
595 Newsome PN, Weston CJ, Iredale JP, Tacke F, Pollard JW, Ponting CP, Marioni JC,
596 Teichmann SA, and Henderson NC.** Resolving the fibrotic niche of human liver cirrhosis at
597 single-cell level. *Nature* 575: 512-518, 2019.

598 35. **Saviano A, Henderson NC, and Baumert TF.** Single-cell genomics and spatial
599 transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and
600 disease biology. *J Hepatol*, 2020.

601 36. **Schleicher J, Tokarski C, Marbach E, Matz-Soja M, Zellmer S, Gebhardt R, and
602 Schuster S.** Zonation of hepatic fatty acid metabolism - The diversity of its regulation and the
603 benefit of modeling. *Biochim Biophys Acta* 1851: 641-656, 2015.

604 37. **Siersbaek M, Varticovski L, Yang S, Baek S, Nielsen R, Mandrup S, Hager GL,
605 Chung JH, and Grontved L.** High fat diet-induced changes of mouse hepatic transcription and
606 enhancer activity can be reversed by subsequent weight loss. *Sci Rep* 7: 40220, 2017.

607 38. **Smets FN, Chen Y, Wang LJ, and Soriano HE.** Loss of cell anchorage triggers
608 apoptosis (anoikis) in primary mouse hepatocytes. *Mol Genet Metab* 75: 344-352, 2002.

609 39. **Soltis AR, Kennedy NJ, Xin X, Zhou F, Ficarro SB, Yap YS, Matthews BJ,**
610 **Lauffenburger DA, White FM, Marto JA, Davis RJ, and Fraenkel E.** Hepatic Dysfunction
611 Caused by Consumption of a High-Fat Diet. *Cell Rep* 21: 3317-3328, 2017.

612 40. **Stanger BZ.** Probing hepatocyte heterogeneity. *Cell Res* 25: 1181-1182, 2015.

613 41. **Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, 3rd, Hao Y,**
614 **Stoeckius M, Smibert P, and Satija R.** Comprehensive Integration of Single-Cell Data. *Cell*
615 177: 1888-1902 e1821, 2019.

616 42. **Sufiandi S, Obara H, Enosawa S, Hsu HC, Matsuno N, and Mizunuma H.**
617 Improvement of Infusion Process in Cell Transplantation: Effect of Shear Stress on Hepatocyte
618 Viability Under Horizontal and Vertical Syringe Orientation. *Cell Med* 7: 59-66, 2015.

619 43. **Takahashi Y and Fukusato T.** Histopathology of nonalcoholic fatty liver
620 disease/nonalcoholic steatohepatitis. *World J Gastroenterol* 20: 15539-15548, 2014.

621 44. **Torre C, Perret C, and Colnot S.** Transcription dynamics in a physiological process:
622 beta-catenin signaling directs liver metabolic zonation. *Int J Biochem Cell Biol* 43: 271-278,
623 2011.

624 45. **van der Maaten L and Hinton G.** Visualizing Data using t-SNE. *Journal of Machine*
625 *Learning Research* 9: 2579-2605, 2008.

626 46. **van der Maaten LJP and Hinton GE.** Visualizing High-Dimensional Data Using t-
627 SNE. *. Journal of Machine Learning Research* 9: 2579-2605, 2008.

628 47. **van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, Burdziak C, Moon KR,**
629 **Chaffer CL, Pattabiraman D, Bierie B, Mazutis L, Wolf G, Krishnaswamy S, and Pe'er D.**
630 Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. *Cell* 174: 716-729
631 e727, 2018.

632 48. **Wang B, Zhao L, Fish M, Logan CY, and Nusse R.** Self-renewing diploid Axin2(+)
633 cells fuel homeostatic renewal of the liver. *Nature* 524: 180-185, 2015.

634 49. **Wang Y, Botolin D, Xu J, Christian B, Mitchell E, Jayaprakasam B, Nair MG,**
635 **Peters JM, Busik JV, Olson LK, and Jump DB.** Regulation of hepatic fatty acid elongase and
636 desaturase expression in diabetes and obesity. *J Lipid Res* 47: 2028-2041, 2006.

637 50. **Wilson CG, Tran JL, Erion DM, Vera NB, Febbraio M, and Weiss EJ.** Hepatocyte-
638 Specific Disruption of CD36 Attenuates Fatty Liver and Improves Insulin Sensitivity in HFD-
639 Fed Mice. *Endocrinology* 157: 570-585, 2016.

640 51. **Winzell MS and Ahren B.** The high-fat diet-fed mouse: a model for studying
641 mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. *Diabetes* 53 Suppl
642 3: S215-219, 2004.

643 52. **Xiong X, Kuang H, Ansari S, Liu T, Gong J, Wang S, Zhao XY, Ji Y, Li C, Guo L,**
644 **Zhou L, Chen Z, Leon-Mimila P, Chung MT, Kurabayashi K, Opp J, Campos-Perez F,**
645 **Villamil-Ramirez H, Canizales-Quinteros S, Lyons R, Lumeng CN, Zhou B, Qi L, Huertas-**
646 **Vazquez A, Lusis AJ, Xu XZS, Li S, Yu Y, Li JZ, and Lin JD.** Landscape of Intercellular

647 Crosstalk in Healthy and NASH Liver Revealed by Single-Cell Secretome Gene Analysis. *Mol*

648 *Cell* 75: 644-660 e645, 2019.

649 53. **Yu G, Wang LG, Han Y, and He QY.** clusterProfiler: an R package for comparing

650 biological themes among gene clusters. *OMICS* 16: 284-287, 2012.

651 54. **Zhang X, Heckmann BL, Campbell LE, and Liu J.** G0S2: A small giant controller of

652 lipolysis and adipose-liver fatty acid flux. *Biochim Biophys Acta Mol Cell Biol Lipids* 1862:

653 1146-1154, 2017.

654 55. **Zhang X, Li S, Zhou Y, Su W, Ruan X, Wang B, Zheng F, Warner M, Gustafsson**

655 **JA, and Guan Y.** Ablation of cytochrome P450 omega-hydroxylase 4A14 gene attenuates

656 hepatic steatosis and fibrosis. *Proc Natl Acad Sci U S A* 114: 3181-3185, 2017.

657 56. **Zhang X, Xie X, Heckmann BL, Saarinen AM, Czyzyk TA, and Liu J.** Targeted

658 disruption of G0/G1 switch gene 2 enhances adipose lipolysis, alters hepatic energy balance, and

659 alleviates high-fat diet-induced liver steatosis. *Diabetes* 63: 934-946, 2014.

660

661 **Figure Legends**

662 **Fig. 1.** HFD alters single cell transcriptome of the entire hepatocyte population.

663 8-week-old C57BL/6J male littermate mice were separated into two groups and were fed on a
664 regular chow diet (LFD group) or high fat diet (HFD group). Drop-seq of hepatocytes was
665 performed after 12 weeks of dietary modulation. (A-F) Principal component analysis (PCA; A-
666 C), t-SNE, and UMAP (D-F) manifolds, colored with diet (A, B and D), sample (C and E), or the
667 result from multi-dimensional clustering (F). Individual dots represent single cell transcriptome.
668 In each manifold, the distance between individual dots represents the difference between the
669 single cell transcriptome. Approximate boundaries of the area for LFD and HFD samples were
670 indicated as dotted outline (F).

671 **Fig. 2.** Zonation patterns of single hepatocyte transcriptome is preserved after HFD.

672 (A) Inverse correlation between imputed expression levels of *Arg1* and *Cyp2e1* (*magic*-imputed
673 expression values). Individual dots represent single cell transcriptome, colored with diet (left)
674 and zone assignment (right).
675 (B) Analysis of single cell gene expression in hepatocytes of each zone, expressed as mean \pm SEM
676 (scaled expression values). Data from LFD and HFD livers were analyzed separately.
677 (C and D) 3-dimensional PCA manifolds depicting the effect of diet (C, left), zonation (C, right),
678 and expression levels of indicated genes (D). Individual dots represent single cell transcriptome.
679 The size of dots represent the number of RNA features captured in the droplet. PC1 is composed
680 of genes showing zone-specific expression patterns. PC2 and PC3 are composed of genes
681 showing diet-regulated expression patterns. LFD and HFD area, as well as the directionality of
682 metabolic zonation (from portal to central), are indicated in each manifold.
683 (E) Analysis of single cell PC1 values in hepatocytes of each zone, expressed as mean \pm SEM

684 (raw component scores). Data from LFD and HFD livers were analyzed separately.
685 (F-H) UMAP (top) and t-SNE (bottom) manifolds depicting the effect of diet (F, left), zonation
686 (F, right), and scaled (G) and imputed (H) expression levels of indicated genes. LFD and HFD
687 area (F, right), as well as the directionality of metabolic zonation (from portal to central; F, left),
688 are indicated.

689 **Fig. 3.** Isolation of genes showing diet- and zone-specific expression patterns.
690 (A) Area-proportional Venn diagram depicting the relationship between diet-regulated genes and
691 zone-specific genes.
692 (B and C) Heat map analysis depicting gene expression across single cell population. Single cells
693 were clustered into six groups (thick columns) according to diet and zone. Diet-regulated genes
694 (B) and zone-specific genes (C) were analyzed.
695 (D and E) Network analysis of gene ontology-biological pathway (GO-BP; D) and Kyoto
696 Encyclopedia of Genes and Genomes (KEGG; E) pathway enrichment terms, using ShinyGO
697 (11). Pathways whose enrichment is significant (FDR < 0.05; top 20 terms) were presented as
698 nodes. Two nodes are connected if they share 20% or more genes. Darker nodes are more
699 significantly enriched gene sets. Bigger nodes represent larger gene sets. Thicker edges represent
700 more overlapped genes.
701 (F and G) Enrichment analysis of HFD-upregulated (left) and downregulated (right) genes, using
702 clusterProfiler (53) with GO-BP, GO-molecular function (GO-MF) and KEGG databases. Color
703 of bars indicates significance (P values) while length of bars indicates gene count. Color of
704 circles indicate GO terms related to lipid metabolism (yellow), glucose metabolism (green),
705 amino acid metabolism (blue), drug metabolism (purple) and PPAR pathway (black).

706

707 **Fig. 4.** Isolation of genes that are substantially influenced by both diet and zonation.

708 (A and E) Heat map analysis depicting gene expression across single cell population. Cells were
709 clustered into six groups according to diet and zone. HFD-downregulated (A) and upregulated (E)
710 genes that show periportal (zone 1-high; left in each panel) or pericentral (zone 3-high; right in
711 each panel) patterns of expression were analyzed.

712 (B-D, F and G) Analysis of single cell gene expression in hepatocytes of each zone, expressed as
713 mean \pm SEM (scaled expression values). Data from LFD and HFD livers were analyzed separately.

714 * $P<0.05$, ** $P<0.01$, *** $P<0.001$, **** $P<0.0001$ in Sidak's multiple comparison test.

715 (H) Cyp2f2 and Cyp1a2 protein expression was visualized through immunohistochemistry from
716 serial sections of LFD and HFD mouse liver (left). Cyp2f2 and Cyp1a2 staining signals were
717 artificially colored with red (first row) and green (second row), respectively, to produce merged
718 images (third row) of the serial liver sections. Cyp2f2- and Cyp1a2-positive areas were
719 quantified (right). Scale bars: 200 μ m.

720 (I) 3-dimensional PCA manifold depicting the single cell expression levels of indicated genes.

721 Individual dots represent single cell transcriptome. The size of dots represent the number of RNA
722 features captured in the droplet. LFD and HFD area, as well as the directionality of metabolic
723 zonation (from portal to central), are indicated in each manifold. Orange circles indicate the
724 approximate position of zone 2 hepatocytes.

725 **Fig. 5.** Spatial co-expression pattern of HFD-induced genes regulating lipid metabolism.

726 (A) 3-dimensional PCA manifold depicting the single cell expression levels of indicated genes.

727 Individual dots represent single cell transcriptome. The size of dots represent the number of RNA
728 features captured in the droplet. LFD and HFD area, as well as the directionality of metabolic
729 zonation (from portal to central), are indicated in each manifold.

730 (B) Analysis of single cell gene expression in hepatocytes of each zone, expressed as mean \pm SEM
731 (scaled expression values). Data from LFD and HFD livers were analyzed separately. ** $P<0.01$,
732 *** $P<0.001$, **** $P<0.0001$ in Sidak's multiple comparison test.

733 (C, G and H) *Elovl5*, *Apoa4*, and *Fabp1* protein expression was visualized through
734 immunohistochemistry from serial sections of HFD mouse liver (C). Green arrows indicate areas
735 of positive staining that is congruently observed across all three staining images. *Elovl5*-high (+)
736 and low (-) areas (dotted boxes) were magnified in (G). Lipid droplet (LD) size (H, upper; n \geq 479)
737 and area (H, lower; n=7) in *Elovl5*-high and -low areas were quantified. Data are expressed as a
738 box plot (top; AU, arbitrary unit) or mean \pm SEM (bottom; % area) with individual data points.
739 Student's t-tests failed to detect a significant difference between the two groups (ns). Scale bars:
740 100 μ m.

741 (D-F) Correlation between expression levels of *Elovl5*, *Apoa4*, and *Fabp1* genes from scaled (D),
742 *saver*-imputed (E), and *magic*-imputed (F) Drop-seq dataset. Individual dots represent single cell
743 expression levels, colored by diet, zone, sample information, and level of total RNA counts
744 (nCount_RNA).

745 **Fig. 6.** HFD induces zone 3 hepatocytes to express genes promoting lipid droplet accumulation.
746 (A and B) Serial sections of HFD mouse liver were stained with zone 1 marker *Cyp2f2* (A, upper)
747 and zone 2 marker *Cyp1a2* (A, lower). Boxed areas were magnified in the right (A). LD size (B,
748 left; n \geq 535) and area (B, right; n=7) in each compartment was quantified. Data are expressed as
749 box plot (left; AU, arbitrary unit) or mean \pm SEM (right; % area) with individual data points.
750 Student's t-tests were used to examine significant difference between the two groups (** $P<0.01$).
751 Scale bars: 100 μ m.

752 (C) Fresh frozen sections from LFD and HFD mouse liver were immunostained to visualize

753 Cyp2f2 (red), lipid droplets (green, stained by BODIPY 493/503) and DNA (blue, by DAPI).

754 (D-F and I) Analysis of single cell gene expression in hepatocytes of each zone, expressed as

755 mean \pm SEM (scaled expression values). Data from LFD and HFD livers were analyzed separately.

756 * $P<0.05$, ** $P<0.01$, *** $P<0.001$, **** $P<0.0001$ in Sidak's multiple comparison test.

757 (G) Ketogenic genes induced by HFD in zone 3 hepatocytes are presented in a pathway diagram.

758 (H) Network analysis of gene ontology-biological pathway (GO-BP) enrichment terms in the

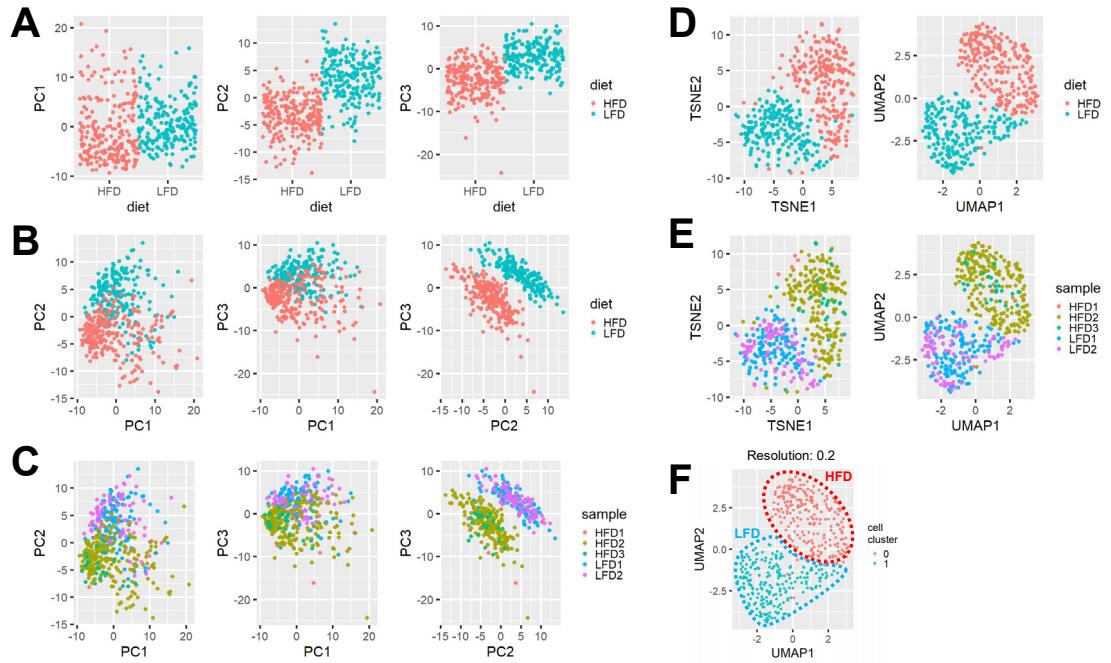
759 HFD-downregulated zone 1-specific gene list, using ShinyGO (11). Pathways whose enrichment

760 is significant (FDR < 0.05) were presented as nodes. Two nodes are connected if they share 20%

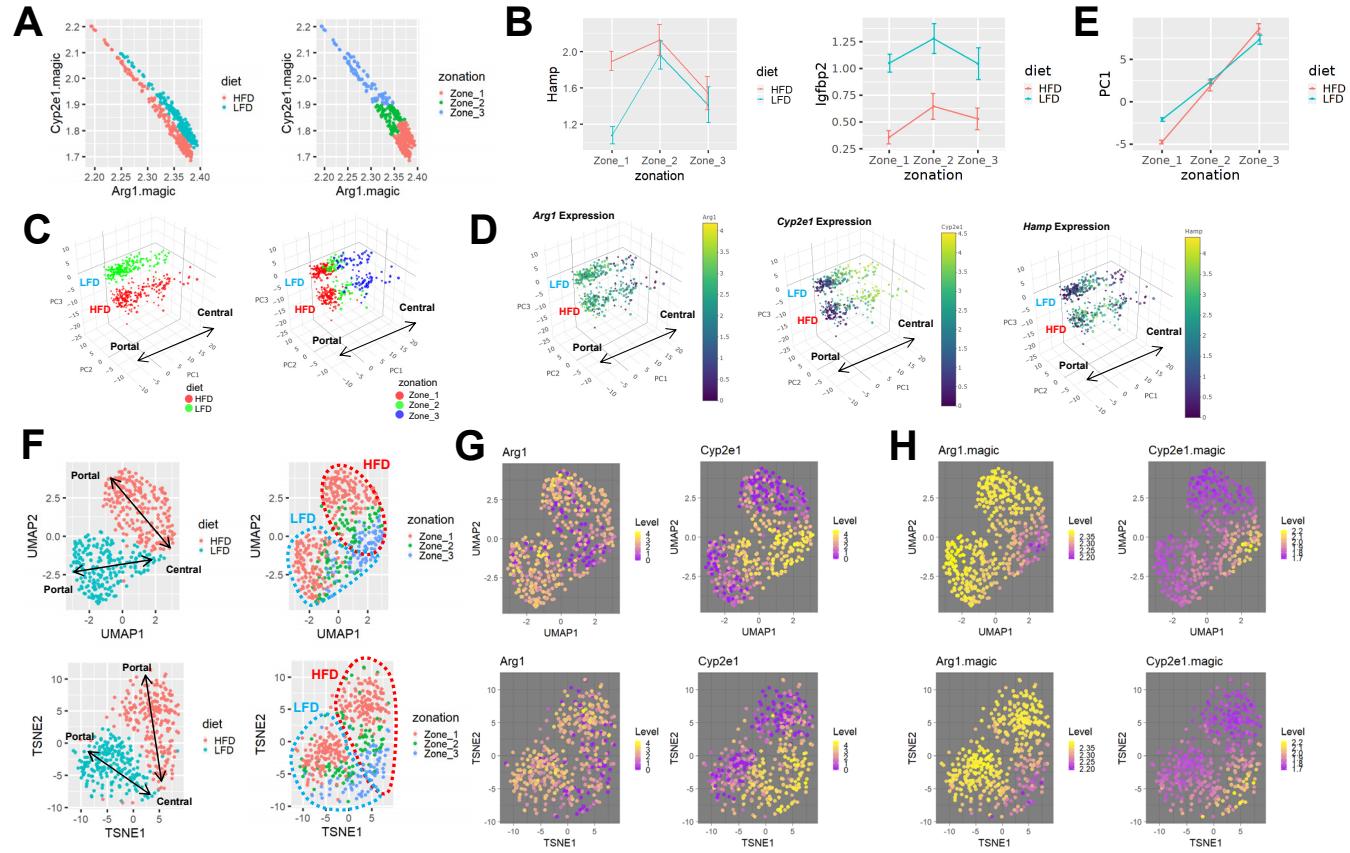
761 or more genes. Darker nodes are more significantly enriched gene sets. Bigger nodes represent

762 larger gene sets. Thicker edges represent more overlapped genes.

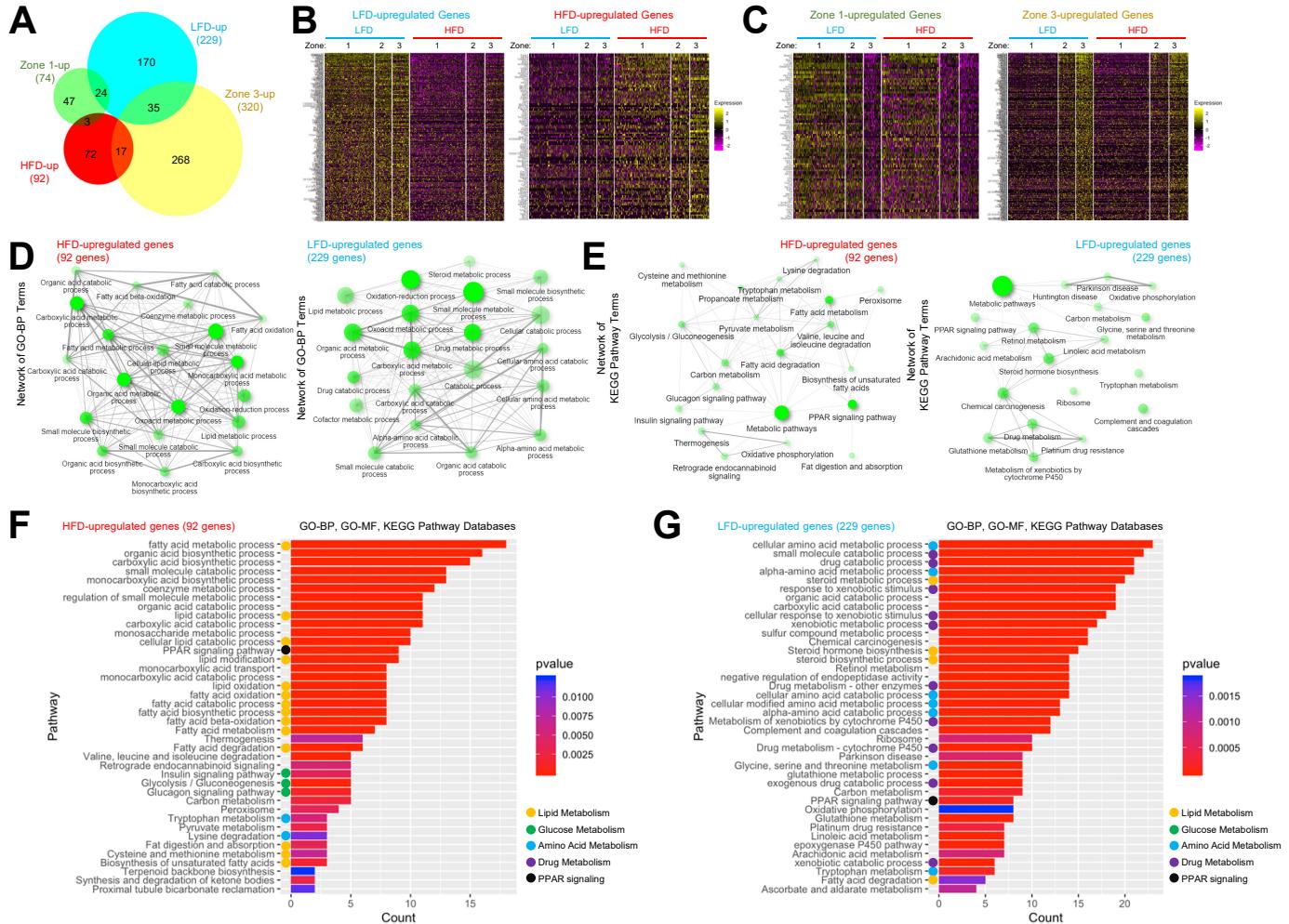
763 **Fig. 7.** Holistic understanding of heterogeneous hepatocyte responses to HFD.

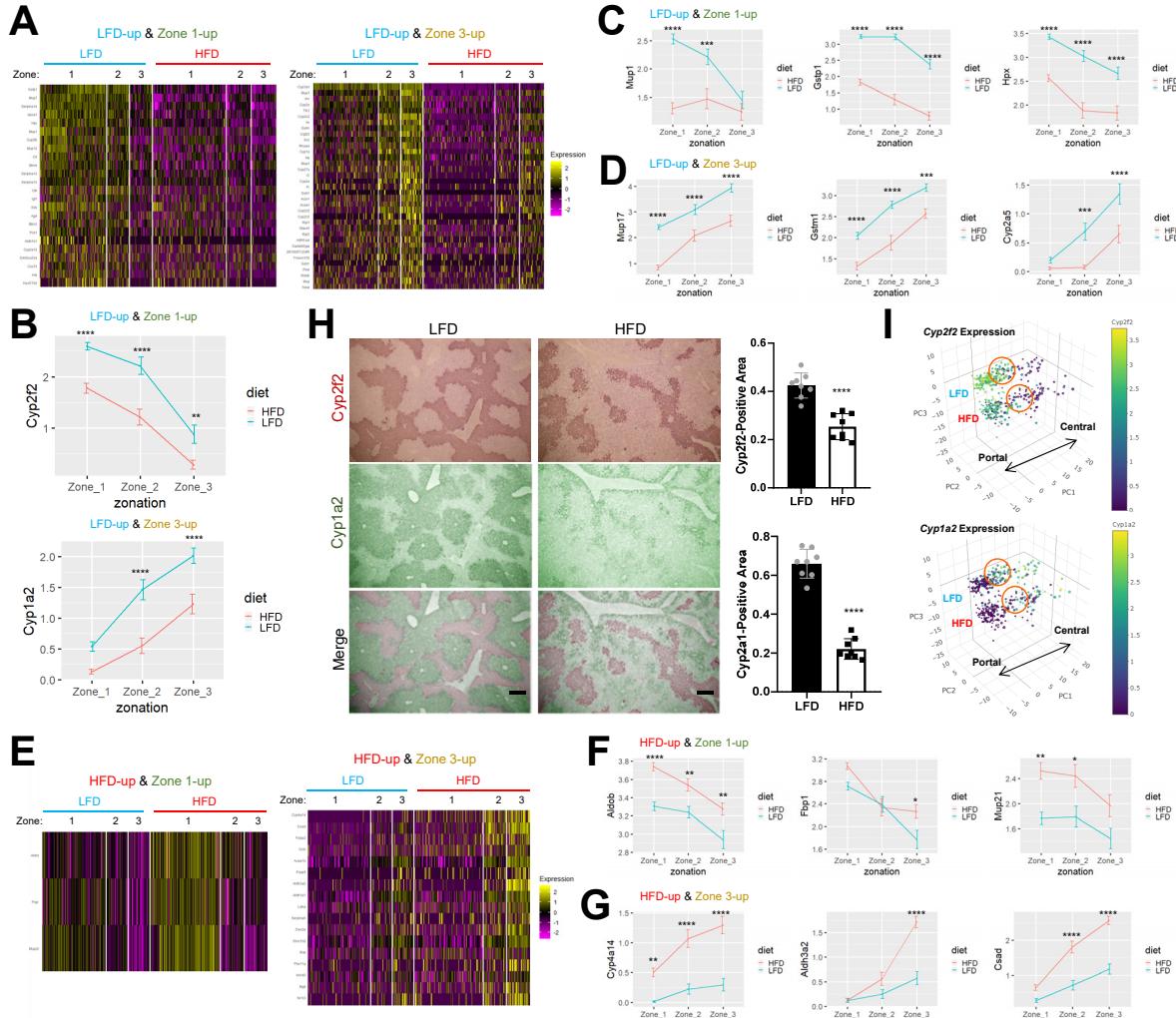

764 The schematic diagram depicts the heterogeneous effect of HFD on single hepatocellular gene

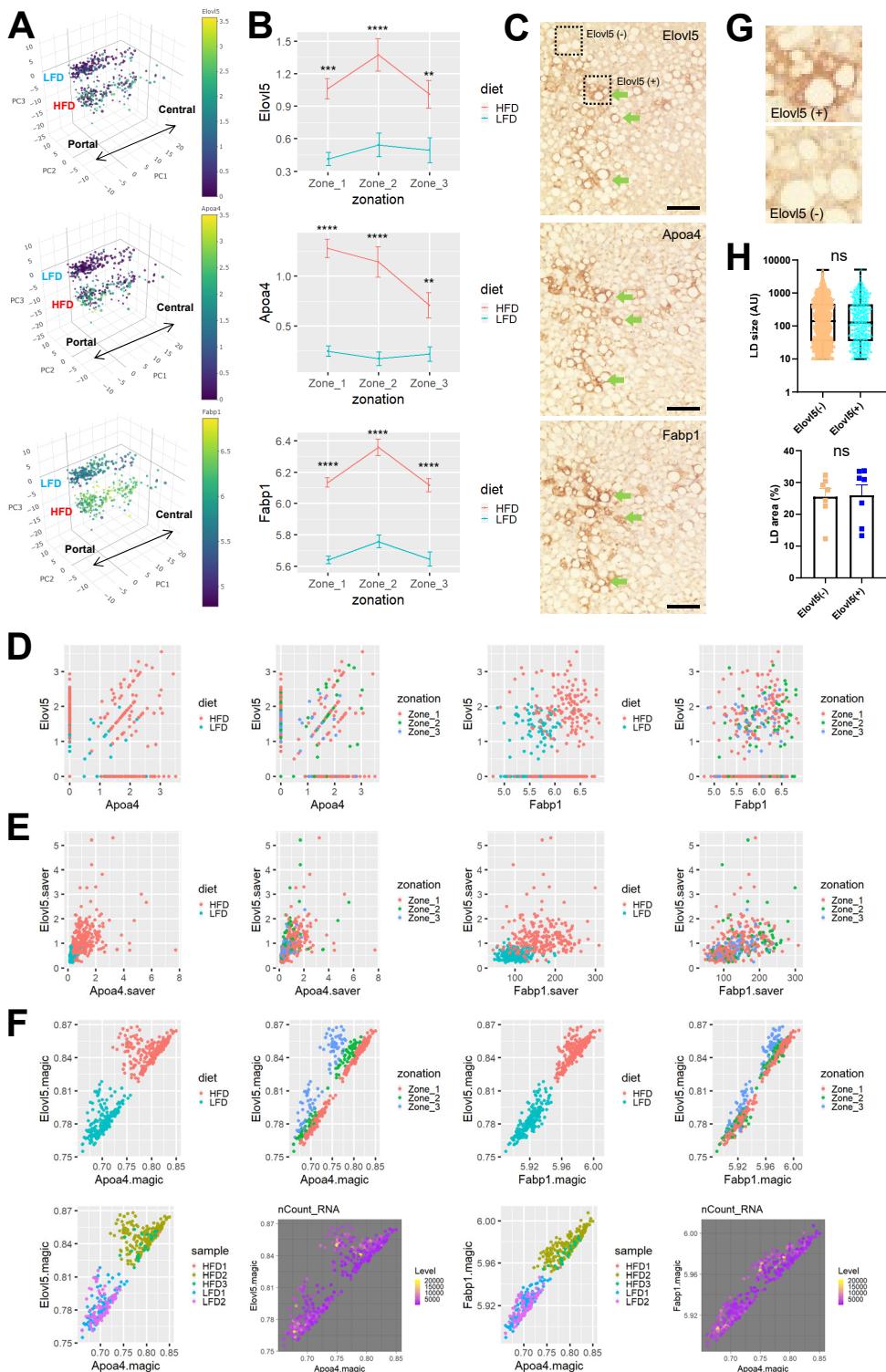
765 expression. Our dataset indicates that the entire hepatocytes population undergoes substantial

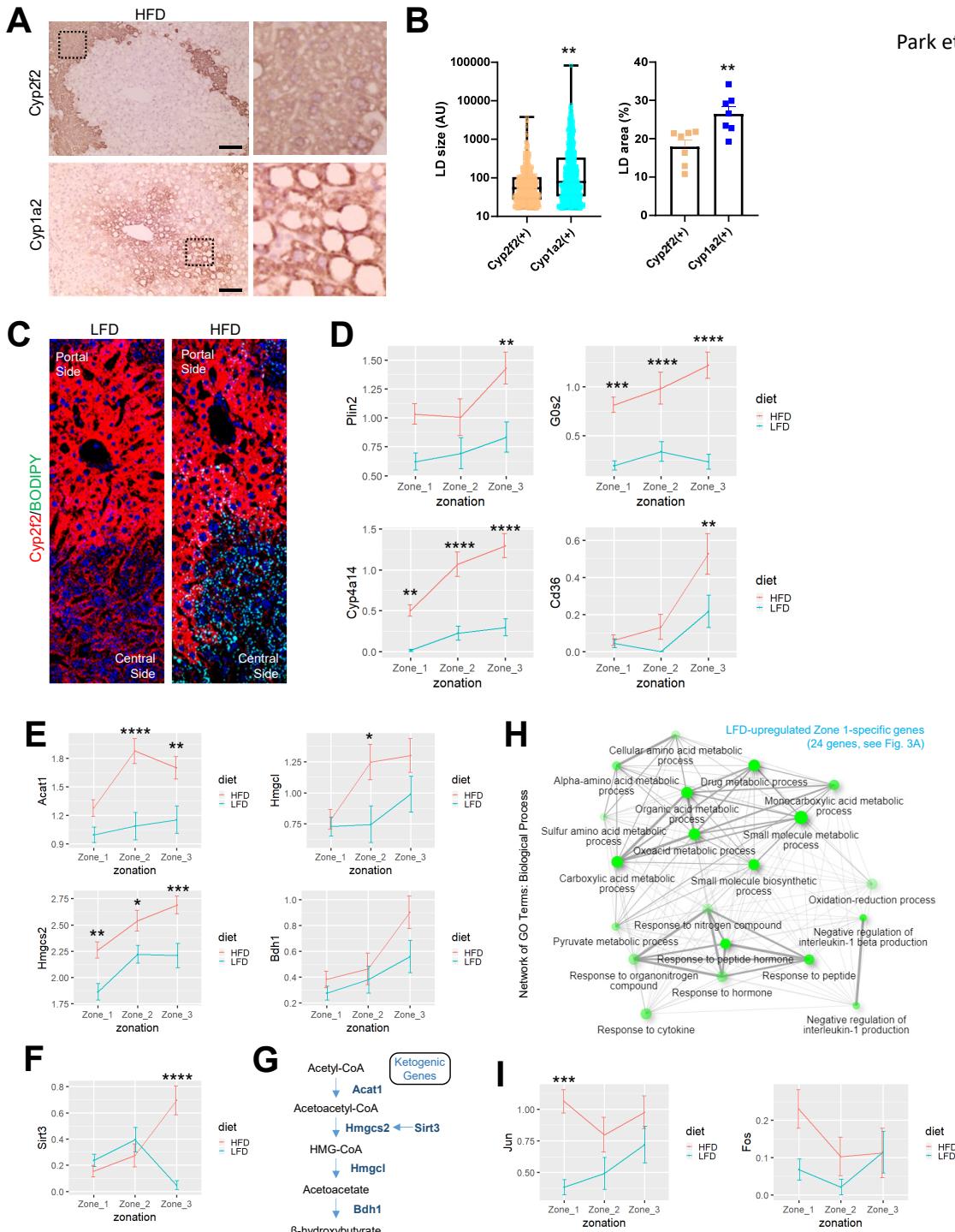

766 transcriptome changes upon HFD, and that the patterns of alteration were highly heterogeneous

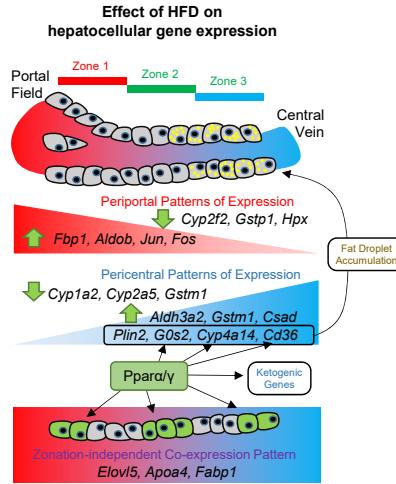
767 across the hepatocyte population with zonation-dependent and -independent effects.


Park et al. Figure 1


Park et al. Figure 2


Park et al. Figure 3


Park et al. Figure 4


Park et al. Figure 5

Park et al. Figure 6

Park et al. Figure 7

