bioRxiv preprint doi: https://doi.org/10.1101/2020.04.17.047233; this version posted December 18, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Metabolism modulates network synchrony
in the aging brain

Corey Weistuch®®, Lilianne R Mujica-Parodi®®%¢f Anar Amgalan®®e,
Ken A Dill>®&-*

¢ Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony
Brook, USA
b Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook,
USA
¢ Department of Biomedical Engineering, Stony Brook University, Stony Brook, USA
4 Program in Neuroscience, Stony Brook University, Stony Brook, USA
¢ Department of Physics and Astronomy, Stony Brook University, Stony Brook, USA
fAthinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital
and Harvard Medical School, Boston, USA
9 Department of Chemistry, Stony Brook University, Stony Brook, USA

Abstract

Brain aging is associated with hypometabolism and associated global changes
in functional connectivity. Using fMRI, we show that network synchrony, a
collective property of brain activity, decreases with age. Applying quantitative
methods from statistical physics, we provide a generative (Ising) model for these
changes as a function of the average communication strength between brain re-
gions. In particular, we find healthy brains to be poised at a critical point of this
communication strength, enabling a balance between segregated (to functional
domains) and integrated (between domains) patterns of synchrony. However,
one characteristic of criticality is a high sensitivity to small changes. Thus,
minute weakening of pairwise communication between regions, as seen in the
aging brain, gives rise to qualitatively abrupt changes in synchrony. Finally,
by experimentally modulating metabolic activity in younger adults, we show
how metabolism alone-independent of other changes associated with aging—can

provide a mechanism for global changes in synchrony.
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1 1. Significance Statement

2 The brain is a biological machine that utilizes chemical energy to process
s information. However, the mechanism by which the brain adapts to resource
+ constraints is poorly understood. This is particularly relevant in the aging
s brain, for which the ability of neurons to utilize their primary energy source,
s glucose, is diminished. Here, we provide a data-driven quantitative model for
7 how brain-wide activity patterns are controlled by resource availability. This
s model shows that the brain is poised at a critical point, past which even minute
o changes in glucose utilization cause communication across the brain to markedly
10 re-configure. Together, our results suggest that the clinical trajectory of cog-
u  nitive changes associated with aging is discontinuous and can be mediated by

12 metabolism.

13 2. Introduction

1 One of the most fundamental questions in neuroscience is how the famil-
15 lar patterns of collective, brain-wide activity arise from the properties of the
16 constituent neurons and their networks. Here, we study how the brain’s global
v activity patterns change with age, and how those changes might arise from the
18 reduced metabolic activity of the constituent regions.

19 We draw on two types of experimental evidence. First, as established us-
20 ing positron emission tomography (PET), older brains show reduced glucose
2 metabolism [1, 2, 3]. Second,as established by functional magnetic resonance
» imaging (fMRI), aging is associated with weakened functional connectivity (FC),
x  4.e. reduced communication (on average) between brain regions [4, 5, 6]. Com-
2 bining both observations suggests that impaired glucose metabolism may un-
»s derlie changes in FC [1, 7]. Further supporting this link are studies showing
2 disruptions similar to those seen with aging in Type 2 diabetic subjects [8, 9].
27 In healthy brains, resting-state brain activity (states during which subjects
s are not engaged in any explicit task) alternates between segregating computa-

2 tions to localized functional domains and integrating this information across
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» these domains [7, 10, 11, 12, 13]. The metabolic cost of these activities increase
a1 in proportion to the number and length of functional connections between pairs
» of brain regions [14], making highly-connected (integrated) networks more ener-
53 getically costly [10]. Moreover, connections with the highest cost are the first to
»  weaken with age [6, 7, 15]. Thus, it has been hypothesized that declining glucose
55 metabolism in older brains drives the loss of high-cost (integrated) functional
s activities [14]. Yet the relationship in aging brains, between energetic constraint
57 at the level of individual brain regions and the apparent re-organization of the
;s functional connectome, is still not well understood.

3 Here, we develop a generative model that describes how the probability
w0 distribution of FC patterns transforms with changes in global variables (such as
a age and metabolic activity)[16]. The approach of choice to understand how these
2 changes arise is statistical physics, which interprets the collective properties of
3 complex systems in terms of individual interactions between the underlying
w parts [17]. In particular, we employ an Ising model [18, 19, 20] to describe
s how pairwise interactions between brain regions give rise to specific profiles of
s network synchrony, a time-dependent average of the activity over the entire
w  brain [21, 22, 23]

a8 While the Ising model provides a general tool for describing the collective
2 properties of complex systems, we adapt it to examine the specific relationship
so between brain aging and metabolic activity. To achieve this, we re-analyzed
si  two fMRI datasets. The first is the lifespan Cam-CAN 3T fMRI resting state
2 dataset of 636 individuals, ranging over ages 18-88 [24]. The second, in which
53 we hold age constant in order to isolate the effects of metabolic activity alone,
s« is the PAgB 7T fMRI within-subject experiment of 12 healthy young adults
s scanned while on glycolytic and ketogenic diets [25]. Ketone bodies decrease
s the relative free energy of ATP production by 27% as compared to glucose [26].
57 This additional efficiency of ketone bodies as a metabolite, observed even in
s healthy subjects, has been shown to increase both cardiac efficiency [26] as well
s as brain activity [25].

60 The significance of this work is three-fold. First, in contrast to the tools


https://doi.org/10.1101/2020.04.17.047233
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.17.047233; this version posted December 18, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

e commonly used to study fMRI networks, our approach provides a predictive
¢ mechanism for how FC patterns change, in qualitatively significant ways, as
s a function of the average interaction between brain regions [16]. Second, we
e establish a direct link between network synchrony and the relative frequencies of
s integrated (high-cost) and segregated (low-cost) brain activities [10, 14]. Finally,
e we illustrate a precise relationship between differences in FC over the lifespan

e as well as in response to changes in the brain’s access to energy.

¢ 3. Methods
oo 3.1. Lifespan and metabolic neuroimaging datasets

70 To identify how the collective features of fMRI change across the lifespan, we
n analyzed a large-scale 3T fMRI dataset: the Cambridge Centre for Ageing and
22 Neuroscience stage IT (Cam-CAN: ages 18-88, N = 636) [24]. The Cam-CAN
7z study was designed to identify neural correlates of normal aging and provides
7 a roughly uniform coverage of age groups, allowing comparison between groups
s as well as a wide array of behavioral measures. While the functional MRI imag-
7 ing of Cam-CAN stage II included both task and resting state data, we used
77 only resting state data, for which most regions of the brain have roughly similar
75 statistical properties (see Supplementary Fig. 2). To relate these changes to en-
7 ergy in the brain, we additionally analyzed 7T fMRI data from the Protecting
9 the Aging Brain (PAgB) database [25]. In a within-subjects experiment, young
s healthy adults (N = 12, pgge = 28+ 6.73 years; 4 female) were scanned at
2 resting state under two conditions: (1) glycolytic, following their standard diet,
&3 without fasting; and (2) ketogenic, following a high-fat, moderate-protein, low-
s« carbohydrate (< 50 g/day) diet for one week, by which point all participants
s were in ketosis (> 0.6 mmol/L ketone blood concentration). For details on the
s glycolytic and ketogenic dietary regimes, as well as validation of their blood
&7 values and neurobiological effects as comparable to calorie-matched administra-
s tion of glucose and D-B-hydroxybuterate, see previous work [25]. Studies were
s approved by the Institutional Review Boards of Cambridge University and Mas-

o sachusetts General Hospital /Partners Healthcare, respectively; all participants
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o1 provided informed consent.

o  3.2. MRI acquisition

03 The Cam-CAN lifespan dataset includes multiple imaging modalities (T1
o and T2-weighted images, diffusion-weighted images, BOLD EPI images during
s  tasks of three varying levels of cognitive demand, MEG images during two sep-
o arate cognitive loads and magnetisation-transfer images). Of these, the resting
o state BOLD EPI fMRI was the focus of our analysis (full dataset documentation
e at [24]). The Cam-CAN functional imaging was done at 3T field strength over 8
oo min 40 s. The neuroimaging experiments of Cam-CAN study were conducted in
wo  Cambridge, UK at the Medical Research Council Cognition and Brain Sciences
1 Unit (MRC-CBSU). Specifics of the BOLD EPI imaging protocol included: TR,
1w = 1970 ms, TE = 30 ms, flip angle = 78°, voxel size = 3 x 3 x 4.44 mm, slices =
03 32, number of measurements = 261. The PAgB metabolic dataset was acquired
s at ultra-high-field (7T) field strength at the Athinoula A. Martinos Center for
s Biomedical Imaging. Imaging included whole brain BOLD, field map, and T1-
s weighted structural (MEMPRAGE) images. BOLD images were acquired using
w7 a protocol quantitatively optimized, using a dynamic phantom, for detection-
s sensitivity to resting state networks [27]: SMS slice acceleration factor = 5, R
w = 2 acceleration in the primary phase encoding direction (48 reference lines)
o and online GRAPPA image reconstruction, TR = 802 ms, TE = 20 ms, flip
m  angle = 33°, voxel size = 2 X 2 x 1.5 mm, slices = 85, number of measurements
2 = 740 in each resting state session, for a total acquisition time of 10 minutes.
uz  Field map images were acquired using the following parameters: TR = 723 ms,
us TE1 = 4.60 ms, TE2 = 5.62 ms, flip angle = 36°, voxel size = 1.7 x 1.7 x 1.5
us  mm, slices = 89, for a total acquisition time of 3 min 14 s. The whole-brain
ne T1-weighted structural volumes were acquired using a conventional multi-echo
w7 MPRAGE (MEMPRAGE) sequence with 1 mm isotropic voxel size and four
us echoes with the following protocol parameters: TE1 = 1.61 ms, TE2 = 3.47
w  ms, TE3 = 5.33 ms, TE4 = 7.19 ms, TR = 2530 ms, flip angle = 7°, with R =

o 2 acceleration in the primary phase encoding direction (32 reference lines) and
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1 online GRAPPA image reconstruction, for a total volume acquisition time of 6

122 min 3 s.

3 3.3. MRI pre-processing

124 Lifespan dataset pre-processing was conducted in the FMRIB Software Li-
s brary (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and FreeSurfer

s (https://surfer.nmr.mgh.harvard.edu/): anatomical images were skull-stripped
7 using FreeSurfer and co-registered to Montreal Neurological Institute (MNT)
125 templates and mean functional images using FLIRT (part of FSL). Functional
1o images were motion and fieldmap-corrected (using MCFLIRT and epidewarp),
1w brain-extracted (using BET), and co-registered to MNI templates using trans-
w1 formations learned through the anatomical image. Motion parameter as well as
12 tissue segmentation-extracted white-matter and CSF confounds (using FAST)
133 were regressed out at ROI-level time series extraction stage using nilearn package
w (https://nilearn.github.io) [28]. Metabolic dataset pre-processing used Statisti-
135 cal Parametric Mapping 12

e (SPM12; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) was used as in
1w our previous studies conducted at the same acquisition parameters [29], [25].
s Anatomical images (MEMPRAGE) were normalized to MNI templates using
19 unified segmentation and registration. Images of each individual participant
o were realigned to account for head movements, and fieldmap-corrected (using
w1 epidewarp.fsl) for geometric distortions caused by the magnetic field inhomo-
12 geneity. Following normalization, structural images were probabilistically seg-
w3 mented into three tissues: grey matter, white matter, and cerebral spinal fluid.
s We did not apply spatial smoothing or global signal regression to pre-processing
us of either dataset. For all datasets, voxelwise data were parceled into the Willard
s 498 functional regions of interest (ROI) [30] corresponding entirely to grey mat-

ur  ter voxels.

us  3.4. Ising model

149 Here we use the principle of maximum entropy [18, 20, 23] to build the

s minimally biased probability distribution of N binary (+1 or —1) node weights,
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s {0;} satisfying fixed constraints on the mean (0) and variance, Var(s) of the

12 global property, s({0;}) = N~! Zi\il 0; (synchrony). This is given by [23]:
P({:}) = 271N ) M)

153 where Z is the partition function and normalizes the distribution. A represents
154 the average node-to-node interaction strength and is the basic mechanistic quan-
155 tity of our model (Fig. 1a, left). Small values of A describe networks in which
156 interactions between nodes are weak and in which the node weights are inde-
157 pendent of each other. In contrast, large values of A describe networks in which
153 interactions between nodes are strong and node activities are highly correlated
s (Fig. 1a, right). A given value of synchrony s may be obtained in many
wo different ways; i.e., it is degenerate (Fig. 1b). In other words, since there
161 are (N(li\r]s)/2) different ways to have s = N='3" 4;, we find that the total
162 probability P(s) of different synchronies is:

P =27 (L g o) ®)
s Therefore, when A is small, P(s) is determined by the degeneracy and low syn-
6« chrony is most probable. Conversely, when A is large, P(s) is determined by the
165 interactions between nodes and high synchrony is most probable. In particular,
16 as A\ is varied, the relative importance of each of these terms changes. As can be
7 seen in Fig. 1c, this causes P(s) to change from a bimodal (left) to a unimodal
s (right) distribution. The critical point, A, is the value of A where this shift
o happens (i.e. when these two contributions are balanced). Using the standard

wo approximation of the binomial coefficients, P(s) becomes:

P(s) ~ 27! < N%)a ~rle” (3)

172 Conceptually, when A < A., P(s) opens downwards like a Gaussian; s = 0
w3 is most probable. However, when A > A., P(s) opens upwards and large values
s of s (both positive and negative) are probable. When N = 498 (the number of
s regions), we find that this critical point is A, = ﬁ = 1.004 x 1073, coinciding

ws  with the observed transition between unimodal and bimodal synchrony (Fig.
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Figure 1 The Ising model predicts network probabilities from interactions between its nodes.
(a) The Ising model maps binary variables onto a fully-connected network (left). Each variable
(¢ =1,2,... N) is a node with binary weight 9; (represented by the colors red and blue), and
each pair of nodes is connected by an edge with weight A\. Here we show the example of N = 3.
The value of A (> 0) describes the average interaction strength between nodes; the larger A is,
the more likely the unknown value of 93 is to be similar to its neighbors (right). (b,c) The
probability of each network is determined by its synchrony (s). (b) Multiple graphs give the
same value of synchrony. Since there are 3 ways to have 1 blue node and 2 red nodes, there
are 3 different graphs that give s = 1/3 (red minus blue divided by N = 3). This degeneracy
effectively triples the probability of s = 1/3. (c) The probability distribution of s given by the
Ising model is a function of A and degeneracy. When X (interaction) is large, the probability
that |s| = 1 is large (left). But, when X\ is small, degeneracy wins out and the probability
that |s| = 1/3 is large (right).

v 1c). To simplify our analysis, now refer to the rescaled interaction A: A =

7 (= A)/Ae.
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w 3.5, fMRI binarization

180 In order to access the time-dependent network properties of our data, we
w1 first binarize the fMRI time series. This method simplifies time series while pre-
12 serving their functional connectivity (FC) patterns. In particular, the Pearson
3 correlation p(X,Y) is widely used to estimate FC between arbitrary pairs of

e variables (X,Y):
Cov(X,Y)

VVar(X)\Var(Y)

155 Here variables (X and Y for example) are the nodes of a graph and p is the

p(X.Y) = (4)

s weight of the edge between them. However, these connection strengths often
w7 change over time [31]. Thus, we calculate p over each pair of successive time

188 points, reducing Eq. 4 to:

AXMAY(H) o
VAX))2(AY ()2 X (@)Y ()

p(X, Y t) =
BDM(X,t) = X(t) (5)

w where X and Y are the signs of the time derivatives of X and Y respectively
1o and the time-dependent correlation, p*, is their product. This procedure takes
w1 our original time series X (¢) and produces a simplified, binarized time series
w2 X (t) (Binarized Derivative Method, BDM). By computing these binarized val-
13 ues for long periods of time, we can ask questions about how the probabilities
we of different sequences (in time) and patterns (over regions) change with dif-
s ferent conditions (such as with age and diet). As validation of this method,
s we find that this simplified representation preserves fMRI FC patterns across
w7 time (Supplementary Fig. 1a) and for different subjects (Supplementary Fig.
ws  1b). This approach has two key advantages over previous methods [31, 32].
19 First, it simplifies complex, many-variable interactions in terms of dynamical
20 patterns of binary (+1 and —1) variables. Second, it is naturally compatible
21 with Ising-like models, which have been shown to be powerful tools in isolating

22 latent relationships within networks of neurons [20, 23].

10
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23 3.6. Model fitting

204 We then fit the Ising model to our data (Fig. 2). First, we took the fMRI
205 signal v;(t) for each region ¢ and time ¢ and binarized it using BDM. The model
26 assumes that all nodes have, on average, similar FC strengths. We tested this
207 assumption by computing the total (over all pairs) FC for each region, and we
28 used the subject-averaged (over all diets and ages) FC matrix as our reference
20 (Supplementary Fig. 2). From these signals, we found that most nodes are
20 primarily positively correlated, while a few nodes were primarily negatively cor-
au related with other nodes. For the latter, we flipped (0; — —0;) for these regions
2 only in order to satisfy the assumptions of our Ising model (Supplementary Fig.
a3 2). For each subject, we then computed the time-dependent synchrony s(t) (each
2e TR is a time point) using the binarized fMRI signals from all (498) regions of the
25 brain. We then took the histogram of s(t) for each subject to get a distribution
26 P(s), giving the variation in synchrony per individual. This was then used to
a7 obtain A by fitting P(s) to the Ising model Eq. 2. This fit is expressed by the
28 Bayesian posterior distribution P(A|Data), which captures the relative quality
20 of of our model. We use a uniform (unbiased) prior distribution of A; thus the
20 posterior is computed directly from the likelihood function £(A|Data) of our
a1 Ising model Eq. 2. In practice, we will summarize this posterior by its peak
22 (the maximum likelihood estimate) and its width (error bars). As fMRI signals
23 are auto-correlated, the data (s(t)) are not fully independent. To compensate

24 for this effect, we consider conservative (0.01 likelihood ratio) error bars for A.

11
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Figure 2 How we obtain the Ising model parameter A from fMRI data. [1] shows the fMRI
signal v;(t) from the ith brain region (out of 498), as a function of time ¢. [2] We binarize it,
to give 9;(t). [3] The binarized signals are then averaged over all brain regions, giving that
individual’s time-dependent synchrony s(t). [4] We then histogram into P(s) the different
s values over time [4], to express the variations in an individual’s synchrony levels. [5] We
then find the value of A that best fits P(s) for each individual. P(A|Data) expresses the
Bayesian posterior probability (with a uniform prior distribution over A) that our data P(s)
was generated from an Ising model (Eq. 2) with relative interaction strength A.

25 4. Results

226 To interpret our fMRI data, we developed a generative biophysical approach
27 based on a network Ising model [19, 20]. Widely used in physics, the Ising model
»s describes how pairwise interactions among microscopic, binary (+1) elements
2o give rise to macroscopic behaviors, including correlations ([19], Fig. 1). In
20 other words, the Ising model allows us to describe time-dependent variability
an  (probabilities) of different brain states for each subject.

23 We are particularly interested in the collective (i.e. regionally-averaged)
213 properties of brain activity. In general, collective properties can often be de-
24 scribed using mean-field models, where every component of interest is approx-
255 imated as being connected to every other component with the same strength
25 [23, 33]. Here the collective property of interest is the observed network syn-
2 chrony, s, or the average activity across the 498 Willard Atlas brain regions
23 measured in IMRI experiments [30, 23]. The probability distribution of dif-

29 ferent synchronies can then be described by a mean-field Ising model, with a

12
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20 single average interaction strength (assumed positive) between all pairs of brain
21 regions (see Supplementary Figs. 2 and 8 for further justification). To explore
22 this model, we find the value of the interaction strength, A, that best fits the
23 experimentally observed synchrony values for each subject (Fig. 2). Thus, each
a4 value of s corresponds to the degree of consensus of a particular network pro-
25 duced by the best-fitting Ising model [23]. As further validation for our model,
25  we find that the Ising model, regardless of age and diet, correctly captures the
27 kurtosis of P(s), a higher-order feature that cannot be generally predicted from
2s  correlations alone (Supplementary Fig. 3).

249 Ising models are useful in understanding how changes in smaller-scale prop-
250 erties (such as the interactions between brain regions) can give rise to abrupt
»1 - and qualitatively distinct collective phenomena at larger scales. Much like water
»2  at its boiling point, which discontinuously changes from liquid to vapor, these
3 changes occur at an intermediate value of the interaction strength, called the
s critical point. Here we use A to denote the deviation from the critical interaction
s strength (A = 0) of the Ising model. Figure 3 illustrates how the distribution
256 of synchronies (with example brain networks shown for comparison) changes as
57 a function of A, from unimodal (low synchrony, s = 0, blue) when A < 0 to
253 bimodal (high synchrony, s = +1, orange) when A > 0. While both low and
250 high synchrony networks are equally likely at the critical point (Fig. 3, red,
20 A =0), small changes in A lead to large, abrupt changes in this balance.

261

13
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Figure 3 The Ising model applied to brain synchrony. Shown is the probability distribution of
different values of synchrony (s) for different values of the dimensionless quantity A, reflecting
the distance of the actual interaction strength, A from the critical point Ac: A = (A — Ac)/Ac.
For A < 0 (weak interactions), there is a single unimodal population having a peak at s =0
(blue line). For A > 0 (strong interactions), the population is bimodal, with a peaks at s > 0
and s < 0 (orange line). Above each peak is an example network; nodes are brain regions
and colors are states (red +1, blue —1). A = 0 defines the critical point, where s = 0 changes
from a minimum to a maximum and P(s) rapidly changes (red line). At the critical point,
low and high synchrony networks are equally probable.
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262 To establish the relationship between synchrony and the occupation proba-
3 bilities of specific functional networks, we separately computed the inter-subject
x4 average FC matrices during periods of low and high synchrony. During peri-
x%s ods of low synchrony, functional connections are found to be sparse, favoring
6 connections between local (segregated) networks of regions (Fig. 4a, Seg). In
%7 contrast, high synchrony networks are typified by dense connections (integrated)
268 between multiple functional domains across the brain (Fig. 4b, Int) [10]. Con-
20 sequently, just as with synchrony (Fig. 3), different values of A change the
zo  relative time spent in segregated (Psey) and integrated (Pry;) networks (Fig.
o 4c, R? > 0.9, sigmoidal fit not shown, each colored marker is a subject), inde-
a2 pendent of age or diet. The time spent in each pattern was computed as the
o3 similarity of each subject’s FC to the extracted patterns, Int and Seg. When
o A < 0, low synchronies (i.e. segregated networks) occur more frequently, while
s the opposite holds when A > 0. In both cases, this balance rapidly shifts at the
a6 critical point, A = 0.

277
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Figure 4 A controls the balance between segregated (low s) and integrated (high s) networks.
(a,b) Inter-subject average functional connectivity (Pearson Correlation) during low (a) and
high (b) synchrony, visualized using the BrainNet Viewer showing the top 10 % of connections
[34]. (a) Low synchrony (s = 0) reflects segregation (Seg). (b) High synchrony (|s| > 1/2)
reflects integration (Int). (c¢) The fraction of time each subject (each data point and their
specific value of A) spends in integrated (Prn, orange) and segregated (Pseg, blue) networks.
Time spent was calculated from a bivariate regression of the functional connectivity (here over
all s, from each subject) with the patterns, Seg and Int. A < 0 corresponds to large Pgeg
and small Pr,; while A > 0 corresponds to the opposite. The cross-over in (c) occurs at the
critical point, A = 0.

278 Changes in FC with both age and diet can be described by changes in the
29 region-region interaction strength A. In particular, we find that A significantly
x0 decreases with age (p = 1.7 x 10738, N = 636, Fig. 5a), suggesting that ag-
2 ing is associated with a marked shift from integrated towards more segregated
22 network activities. But, upon switching from a lower-energy glycolytic to a
2 higher-energy ketogenic diet, A increases (p = 1.2 x 1073, N = 12, Fig. 5b)
sa by about 25% to 50% of the decrease seen over the entire lifespan. Thus, by
s toggling the relative frequencies of segregated and integrated networks, A re-
26 flects an average cost of functional activity and, as suggested by our metabolic
27 experiment, the amount of energy available to the brain. Thus one way the
28 brain may conserve energy when this amount of energy available is decreased,
29 such as through aging, is by decreasing A.

290
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p=17x10-2
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Figure 5 A significantly decreases with age (a, p = 1.7 x 10738) and increases on the higher-
energy, ketogenic diet (b, p = 1.2 x 1073). (a) Each point (as well as the orange curve
connecting them) reflects the median best-fit A values for each (of 5) equal width (14 years)
age groups. Error bars represent the upper and lower quartiles. We used a Spearman-rank
Permutation test (N = 636, p(634) = —0.48) to test significance of the nonlinear relationship
between A and age. (b) Change in A for each subject (N = 12, W = 3) when switching from
a lower-energy glucose (glycolytic, Gly) to higher-energy ketone (Ket) metabolism. Error
bars reflect a 0.01 likelihood ratio confidence interval. A Wilcoxon 1-sided signed rank test
(N = 12) was used to test if ketones significantly increased A.

201 But why would a small change in A lead to the dramatic changes in FC seen
22 in older age? Precisely because young healthy brains are poised at the critical
203 point (A = 0), very small changes in the interaction strength between regions
24 lead to a sharp transition in the ratio of integrated to segregated networks
25 [19, 20]. Figure 6 expresses this in terms of the probability distribution of
26§, now viewed from the top-down. Here younger brains (green, age 25 4 7)
207 are near the critical point (black), allowing them to access both high and low
28 synchrony networks. But as A (a proxy for energy availability, [14]) decreases,
200 such as observed in older brains (yellow, age 81 & 7), the probabilities of higher
s0  synchrony networks quickly fall to 0.

17


https://doi.org/10.1101/2020.04.17.047233
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.17.047233,; this version posted December 18, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A

— 0.1
Crit ¢

Young P> - 0.0
Oid P>

Energy
Availability
T 7 0.1
1 0 -1

Synchrony (s)

Figure 6 Younger brains are poised at a critical point; this is disrupted by decreasing energy
availability. Shown is the probability distribution of synchrony (s) vs A, viewed from the
top-down. At the critical point (A = 0, black), peak synchrony (indicated by a white line)
changes from low (s = 0) towards high (s < 0 and s > 0) values. Near this transition, such as
seen in younger brains (Age 25 + 7, N = 85, green), both low and high synchrony networks
can be accessed. Reducing energy availability causes A (through associated decreases in FC,
[14]) to decrease. Older brains (Age 81 £ 7, N = 121, yellow) have smaller A and only access

low synchrony networks. The plotted triangles correspond to the A values centered at ages 25
(Young) and 81 (Old) (Fig. 5).
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1 5. Discussion

302 Our results suggest that the principal functional changes associated with
3 aging, in terms of network synchrony, are controlled by an average interaction
3¢ strength (A) between pairs of brain regions. Crucially, unlike graph theoretic
205 features normally used to describe such data[16], A encodes how the aging brain
w6 rewires. We have also shown that A governs a trade-off between low-cost, seg-
a7 regated and high-cost, integrated activity patterns. Furthermore, as suggested
w8 by our findings, we hypothesize that A is decreased in older brains to com-
w0 pensate for glucose hypometabolism. But, because younger brains are poised
s near a critical point, this compensation results in sharp changes in functional
s connectivity.

312 It is important to note that aging and ketosis each exerts independent sys-
sz temic effects that need to be considered in interpreting the results. For exam-
s ple, older subjects often have cardiovascular changes that affect neurovascular
as  coupling[35] and thus, by extension, the blood oxygen level dependent (BOLD)
as  response measured by fMRI. Likewise, ketosis has systemic effects, such as di-
517 uresis and thus lowered blood pressure, as well as reduced cellular need for
sis  oxygen, all of which also could theoretically affect BOLD. However, there are
310 several reasons to suspect that these alternative mechanisms are not the sole
a0 causal influence of shifts in A. First, to minimize the primary cause of neu-
s rovascular confounds, the lifespan dataset specifically excluded individuals with
2 cardiovascular disease, including cerebral ischeaemia [36]. Moreover, while the
w3 impact of arteriosclerosis in reducing the dynamic range of BOLD could reduce
24 signal/noise and therefore reduce the strength of measured connections over-
»s all, it would not discriminate between integrated versus segregated networks
26 and the transitions between them. Second, shifts in A were observed not only
;27 in the aging dataset, but also in the dietary dataset, the latter of which in-
28 cluded only younger individuals and thus eliminated systemic aging effects as
2o a variable. Third, systemic (non-metabolic) effects of ketosis, such as reduced

a0 cerebral blood pressure and reduced need for oxygen, should decrease BOLD ac-
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s tivation, while we have previously shown ketosis to increase BOLD activation,
s both in our dietary dataset as well as an independent dataset in which ketosis
33 was achieved by administering exogenous D-fS-hydroxybuterate[25]. Neverthe-
s less, dissociating metabolic from more systemic influences of aging and ketosis
355 is one important direction for our future research.

336 The metabolic cost of connectivity is known to reflect both signaling along
s axons as well as between synapses. As such, A may reflect the average synaptic
;s connectivity across the brain, as suggested by recent evidence linking global
a0 resting state fIMRI fluctuations to synaptic activity [21]. Indeed, synaptic con-
a0 nections weaken with age [37, 38] and are particularly vulnerable to metabolic
s disruptions [39, 40, 41, 42]. However, the fact that age was associated with a
s reduced probability of integrated activities (with longer connections) in favor
a3 of segregated activities (with shorter connections) suggests that the metabolic
s cost of axon conductance may also play a key role. Long-range connections
x5 are known to be disproportionately diminished not only with age [15] but also
us  epilepsy [43], the latter of which commonly shows improvement with ketosis.
347 That brains at their presumed peak of functionality should be poised so close
us  to a critical point of synchrony may reflect an evolutionary selective advantage.
s Criticality is not only a widely-observed feature of neural activity[44, 45, 46],
0 but also enables the broadest range of functional patterns while also achieving
1 maximum sensitivity to external drivers (e.g. sensory stimuli) [19, 47]. Some
s recent work suggests that signatures resembling criticality may be generic fea-
33 tures of systems with many unobserved variables [48]. However, if this were the
4 case, one would find these signatures in both younger and older brains, which
35 1s not consistent with our findings.

356 In conclusion, the Ising model provides a data-driven generative model for
7 how the brain adapts to resource constraints, such as progressive glucose hy-
s pometabolism in aging brains. By simply shifting the balance between integra-
o tion and segregation away from the critical point, the brain is able to modu-
w0 late its fuel efficiency without the need to invest in new synaptic connections

w1 [7, 14]. Thus toggling A reflects an optimal strategy for the brain, enabling
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the smoothest adaptation for the smallest energetic cost. At the same time,
the brain’s protective strategy in conserving energy may produce discontinuous
trajectories for cognitive changes associated with aging, both in terms of di-
minished sensitivity to sensory stimuli (as predicted by shifts from criticality)
as well as cognitive processing associated with flexibility in switching between

both segregated and integrated networks.
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e Data and code availability

369 Lifespan fMRI data are publicly available from Cam-CAN [24]. Metabolic
s fMRI data are located at Data Archive for the Brain Initiative (DABI:

s https://dabiloni.usc.edu/explore/project/42) in the Protecting the Aging Brain
w2 (PAgB), Project 1926781 repository. Additional details (including links to cus-
s tom MATLAB and Python codes used in the processing and analyses of data)

s can be found at http://www.lcneuro.org/software-and-instrumentation.
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