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Abstract

Learning and generalization in spatial domains is often thought to rely on a
hippocampal-entorhinal “cognitive map”, representing relationships between spatial
locations. Recent research suggests that this same neural machinery is also recruited for
reasoning about more abstract, conceptual forms of knowledge. Yet, to what extent do
spatial and conceptual reasoning share common computational principles, and what are
the implications for behavior? Using a within-subject design we studied how
participants used spatial or conceptual distances to generalize and search for correlated
rewards in successive multi-armed bandit tasks. Participant behavior indicated
sensitivity to both spatial and conceptual distance, and was best captured using a
Bayesian model of generalization that formalized distance-dependent generalization and
uncertainty-guided exploration as a Gaussian Process regression with a radial basis
function kernel. The same Gaussian Process model best captured human search
decisions and judgments in both domains, and could simulate realistic learning curves,
where we found equivalent levels of generalization in spatial and conceptual tasks. At
the same time, we also find characteristic differences between domains. Relative to the
spatial domain, participants showed reduced levels of uncertainty-directed exploration
and increased levels of random exploration in the conceptual domain. Participants also
displayed a one-directional transfer effect, where experience in the spatial task boosted
performance in the conceptual task, but not vice versa. While confidence judgments
indicated that participants were sensitive to the uncertainty of their knowledge in both
tasks, they did not or could not leverage their estimates of uncertainty to guide
exploration in the conceptual task. These results support the notion that value-guided
learning and generalization recruit cognitive-map dependent computational mechanisms
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in spatial and conceptual domains. Yet both behavioral and model-based analyses
suggest domain specific differences in how these representations map onto actions.

Author summary

There is a resurgence of interest in “cognitive maps” based on recent evidence that the
hippocampal-entorhinal system encodes both spatial and non-spatial relational
information, with far-reaching implications for human behavior. Yet little is known
about the commonalities and differences in the computational principles underlying
human learning and decision making in spatial and non-spatial domains. We use a
within-subject design to examine how humans search for either spatially or conceptually
correlated rewards. Using a Bayesian learning model, we find evidence for the same
computational mechanisms of generalization across domains. While participants were
sensitive to expected rewards and uncertainty in both tasks, how they leveraged this
knowledge to guide exploration was different: participants displayed less
uncertainty-directed and more random exploration in the conceptual domain. Moreover,
experience with the spatial task improved conceptual performance, but not vice versa.
These results provide important insights about the degree of overlap between spatial
and conceptual cognition.

Introduction

Thinking spatially is intuitive. We remember things in terms of places [1-3], describe
the world using spatial metaphors [4,5], and commonly use concepts like “space” or
“distance” in mathematical descriptions of abstract phenomena. In line with these
observations, previous theories have argued that reasoning about abstract conceptual
information follows the same computational principles as spatial reasoning [6-8]. This
has recently gained new support from neuroscientific evidence suggesting that common
neural substrates are the basis for knowledge representation across domains [9-13].

One important implication of these accounts is that reinforcement learning [14] in
non-spatial domains may rely on a map-like organization of information, supported by
the computation of distances or similarities between experiences. These representations
of distance facilitate generalization, allowing for predictions about novel stimuli based
on their similarity to previous experiences. Here, we ask to what extent does the search
for rewards depend on the same distance-dependent generalization across domains,
despite potential differences in how spatial and non-spatial stimuli and their similarities
may be processed?

We formalize a computational model that incorporates distance-dependent
generalization and test it in a within-subject experiment, where either spatial features or
abstract conceptual features are predictive of rewards. This allows us to study learning,
decision making, and exploration in spatial versus conceptual domains, in order to gain
insights into the organizational structure of cognitive representations in both domains.

Whereas early psychological theories described reinforcement learning as merely
developing an association between stimuli, responses, and rewards [15-17], more recent
studies have recognized that the structure of representations plays an important role in
making value-based decisions [11,18] and is particularly important for knowing how to
generalize from limited data to novel situations [19,20]. This idea dates back to Tolman,
who famously argued that both rats and humans extract a “cognitive map” of the
environment [21]. This cognitive map encodes relationships between experiences or
options, such as the distances between locations in space [22], and — crucially —
facilitates flexible planning and generalization. While cognitive maps were first
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identified as representations of physical spaces, Tolman hypothesized that similar
principles may underlie the organization of knowledge in broader and more complex
cognitive domains [21].

As was the case with Tolman, neuroscientific evidence for a cognitive map was
initially found in the spatial domain, in particular, with the discovery of spatially
selective place cells in the hippocampus [23,24] and entorhinal grid cells that fire along
a spatial hexagonal lattice [25]. Together with a variety of other specialized cell types
that encode spatial orientation [26,27], boundaries [28,29], and distances to objects [30],
this hippocampal-entorhinal machinery is often considered to provide a cognitive map
facilitating navigation and self-location. Yet more recent evidence has shown that the
same neural mechanisms are also active when reasoning about more abstract,
conceptual relationships [31-36], characterized by arbitrary feature dimensions [37] or
temporal relationships [38,39]. For example, using a technique developed to detect
spatial hexagonal grid-like codes in fMRI signals [40], Constantinescu et al. found that
human participants displayed a pattern of activity in the entorhinal cortex consistent
with mental travel through a 2D coordinate system defined by the length of a bird’s legs
and neck [9]. Similarly, the same entorhinal-hippocampal system has also been found to
reflect the graph structure underlying sequences of stimuli [10] or the structure of social
networks [41], and even to replay non-spatial representations in the sequential order that
characterized a previous decision-making task [42]. At the same time, much evidence
indicates that cognitive map-related representations are not limited to medial temporal
areas, but also include ventral and orbital medial prefrontal areas [9,11,40,43-45].

Based on these findings, we asked whether learning and searching for rewards in
spatial and conceptual domains is governed by similar computational principles. Using a
within-subject design comparing spatial and non-spatial reward learning, we tested
whether participants used perceptual similarities in the same way as spatial distances to
generalize from previous experiences and inform the exploration of novel options. To
ensure commensurate stimuli discriminability between domains, participants completed
a training phase where they were required to reach the same level of proficiency in
correctly matching a series of target stimuli (see Methods; Fig. 1¢). In both domains,
rewards were correlated (see Fig. S2), such that nearby or similar options tended to
yield similar rewards. To model how participants generalize and explore using either
perceptual similarities or spatial distances,we used Gaussian Process (GP)
regression [46,47] as a Bayesian model of generalization based on the principle of
function learning. The Bayesian predictions of the GP model generalize about novel
options using a common notion of similarity across domains, and provide estimates of
expected reward and uncertainty. We tested out-of-sample predictions of the GP model
against a Bayesian learner that incorporates uncertainty-guided exploration but without
generalization, and investigated differences in parameters governing value-based decision
making and uncertainty-directed exploration [48-50].

Participant performance was correlated across tasks and was best captured by the
GP model in both domains. We were also able to reliably predict participant judgments
about unobserved options based on parameters estimated from the bandit task. Whereas
the model parameters indicated similar levels of generalization in both domains, we
found lower levels of directed exploration in the conceptual domain, where participants
instead showed increased levels of random exploration. Moreover, we also observed an
asymmetric task order effect, where performing the spatial task first boosted
performance on the conceptual task but not vice versa. These findings provide a clearer
picture of both the commonalities and differences in how people reason about and

represent both spatial and abstract phenomena in complex reinforcement learning tasks.
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Fig 1. Experiment design. a) In the spatial task, options were defined as a highlighted
square in a 8 x 8 grid, where the arrow keys were used to move the highlighted location.
b) In the conceptual task, each option was represented as a Gabor patch, where the
arrow keys changed the tilt and the number of stripes (Fig S1). Both tasks
corresponded to correlated reward distributions, where choices in similar locations or
having similar Gabor features predicted similar rewards (Fig S2). ¢) The same design
was used in both tasks. Participants first completed a training phase where they were
asked to match a series of target stimuli. This used the same inputs and stimuli as the
main task, where the arrow keys modified either the spatial or conceptual features, and
the spacebar was used to make a selection. After reaching the learning criterion of at
least 32 training trials and a run of 9 out of 10 correct, participants were shown
instructions for the main task and asked to complete a comprehension check. The main
task was 10 rounds long, where participants were given 20 selections in each round to
maximize their cumulative reward (shown in panels a and b). The 10th round was a
“bonus round” where after 15 selections participants were asked to make 10 judgments
about the expected reward and associated uncertainty for unobserved stimuli from that
round. After judgments were made, participants selected one of the options, observed
the reward, and continued the round as usual.
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129 participants searched for rewards in two successive multi-armed bandit tasks
(Fig 1). The spatial task was represented as an 8 x 8 grid, where participants used the
arrow keys to move a highlighted square to one of the 64 locations, with each location
representing one option (i.e., arm of the bandit). The conceptual task was represented
using Gabor patches, where a single patch was displayed on the screen and the arrow
keys changed the tilt and stripe frequency (each having 8 discrete values; see Fig. S1),
providing a non-spatial domain where similarities are relatively well defined. Each of
the 64 options in both tasks produced normally distributed rewards, where the means of
each option were correlated, such that similar locations or Gabor patches with similar
stripes and tilts yielded similar rewards (Fig. S2), thus providing traction for
similarity-guided generalization and search. The strength of reward correlations were
manipulated between subjects, with one half assigned to smooth environments (with
higher reward correlations) and the other assigned to rough environments (with lower
reward correlations). Importantly, both classes of environments had the same
expectation of rewards across options.

The spatial and conceptual tasks were performed in counter-balanced order, with
each task consisting of an initial training phase (see Methods) and then 10 rounds of
bandits. Each round had a different reward distribution (drawn without replacement
from the assigned class of environments), and participants were given 20 choices to
acquire as many points as possible (later converted to monetary rewards). The search
horizon was much smaller than the total number of options and therefore induced an
explore-exploit dilemma and motivated the need for generalization and efficient
exploration. The last round of each task was a “bonus round”, where after 15 choices,
participants were shown 10 unobserved options (selected at random) and asked to make
judgments about the expected reward and their level of confidence (i.e., uncertainty
about the expected rewards). These judgments were used to validate the internal belief
representations of our models. All data and code, including interactive notebooks
containing all analyses in the paper, is publicly available at
https://github.com/charleywu/cognitivemaps.

Computational Models of Learning, Generalization, and Search

Multi-armed bandit problems [51,52] are a prominent framework for studying learning,
where various reinforcement learning (RL) models [14] are used to model the learning of
reward valuations and to predict behavior. A common element of most RL models is
some form of prediction-error learning [53,54], where model predictions are updated
based on the difference between the predicted and experienced outcome. One classic
example of learning from prediction errors is the Rescorla-Wagner [54] model, in which
the expected reward V(-) of each bandit is described as a linear combination of weights
w; and a one-hot stimuli vector x; representing the current state s;:

Vixe) =w/x (1)

Wil = Wi 4 10Xy (2)

Learning occurs by updating the weights w as a function of the prediction error
d: = ry — V(x¢), where r; is the observed reward, V(x;) is the reward expectation, and
0 < n <1 is the learning rate parameter. In our task, we used a Bayesian Mean Tracker
(BMT) as a Bayesian variant of the Rescorla-Wagner model [54,55]. Rather than
making point estimates of reward, the BMT makes independent and normally
distributed predictions V' (s;¢) ~ N (m;¢,v; ) for each state s;;, which are
characterized by a mean m and variance v and updated on each trial ¢ via the delta rule
(see Methods for details).
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Generalization using Gaussian process regression

Yet, an essential aspect of human cognition is the ability to generalize from limited
experiences to novel options. Rather than learning independent reward representations
for each state, we adopt a function learning approach to generalization [19,56], where
continuous functions represent candidate hypotheses about the world, mapping the
space of possible options to some outcome value. For example, a function can map how
pressure on the gas pedal is related to the acceleration of a car, or how different
amounts of water and fertilizer influence the growth rate of a plant. Crucially, the
learned mapping provides estimates even for outcomes that have not been observed, by
interpolating or extrapolating from previous experiences.

While the literature on how humans explicitly learn functions extends back to the
1960s [57], more recent approaches have proposed Gaussian Process (GP) regression [46]
as a candidate model of human function learning [58-60]. GPs unite previous proposals
of rule-based [61, i.e., learning the weights of a particular parametric function] and
exemplar-based theories [62, i.e., neural networks predicting similar inputs will produce
similar outputs], while also predicting the perceived difficulty of learning different
functions [63] and explaining biases in how people extrapolate from limited data [58].

Formally, a GP defines a multivariate-normal distribution P(f) over possible value
functions f(s) that map inputs s to output y = f(s).

P(f) ~GP (m(s),k(s,s)) 3)

The GP is fully defined by the mean function m(s), which is frequently set to 0 for
convenience without loss of generality [46], and kernel function k(s, s’) encoding prior
assumptions (or inductive biases) about the underlying function. Here we use the radial
basis function (RBF) kernel:

ks, 8) = exp (_W) (4)

encoding similarity as a smoothly decaying function of the squared Euclidean distance
between stimuli s and s’, measured either in spatial or conceptual distance. The
length-scale parameter A\ encodes the rate of decay, where larger values correspond to
broader generalization over larger distances.

Given a set of observations D; = [s, y:] about previously observed states and
associated rewards, the GP makes normally distributed posterior predictions for any
novel stimuli s*, defined in terms of a posterior mean and variance:

* * -1
m(s ‘ID[») = K(S 7S,g) [K(St,st) + O'?I] Yt (5)
v(s*|Dy) = k(s*, s*) — K(s*,8¢) [K(se,8¢) + 0621]_1 K(st, s™) (6)
The posterior mean corresponds to the expected value of s* while the posterior variance

captures the underlying uncertainty in the prediction. Note that the posterior mean can
also be rewritten as a similarity-weighted sum:

m(s*|Dy) = Zwik(s*,si) (7)
i=1

where each s; is a previously observed input in s; and the weights are collected in the
vector w = [K(st, st) + JSI] ! y:. Intuitively, this means that GP regression is
equivalent to a linearly weighted sum, but uses basis functions k(-, ) that project the
inputs into a feature space, instead of the discrete state vectors. To generate new
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predictions, every observed reward y; in y; is weighted by the similarity of the
associated state s; to the candidate state s* based on the kernel similarity. This
similarity-weighted sum (Eq 7) is equivalent to a RBF network [64], which has featured
prominently in machine learning approaches to value function approximation [14] and as
a theory of the neural architecture of human generalization [65] in vision and motor
control.

Uncertainty-directed exploration

In order to transform the Bayesian reward predictions of the BMT and GP models into
predictions about participant choices, we use upper confidence bound (UCB) sampling
together with a softmax choice rule as a combined model of both directed and random
exploration [19,49,50].

UCB sampling uses a simple weighted sum of expected reward and uncertainty:

QUCB(S) = m(s) + 6\/ U(S) (8)

to compute a value ¢ for each option s, where the exploration bonus 8 determines how

to trade off exploring highly uncertain options against exploiting high expected rewards.

This simple heuristic—although myopic—produces highly efficient learning by
preferentially guiding exploration towards uncertain yet promising options, making it
one of the only algorithms with known performance bounds in Bayesian
optimization [66]. Recent studies have provided converging evidence for directed
exploration in human behavior across a number of domains [19,49,67-69].

The UCB values are then put into a softmax choice rule:

L e/
) = 5 esp o)/ Y

where the temperature parameter 7 controls the amount of random exploration. Higher
temperature sampling leads to more random choice predictions, with 7 — oo converging
on uniform sampling. Lower temperature values make more precise predictions, where
7 — 0 converges on an arg max choice rule. Taken together, the exploration bonus 3
and temperature 7 parameters estimated on participant data allow us to assess the
relative contributions of directed and undirected exploration, respectively.

Behavioral Results

After pre-training participants were highly proficient in discriminating the stimuli,
achieving at least 90% accuracy in both domains (see Fig. S3). Participants were also
successful in both bandit tasks, achieving much higher rewards than chance in both
conceptual (one-sample t-test: ¢(128) = 24.6, p < .001, d = 2.2, BF > 100) and spatial
tasks (#(128) = 34.6, p < .001, d = 3.0, BF > 100; Fig. 2a)’. In addition, participants
could also leverage environmental structure in both domains. Using a two-way mixed
ANOVA, we found that both environment (smooth vs. rough: F(1,127) = 9.4, p = .003,
n? = .05, BF = 13) and task (spatial vs. conceptual: F(1,127) = 35.8, p < .001,
n? = .06, BF > 100) influenced performance. The stronger reward correlations present
in smooth environments facilitated higher performance (two sample ¢-test: ¢(127) = 3.1,
p =.003, d = 0.5, BF = 12), even though both environments had the same expected
reward.

While performance was strongly correlated between the spatial and conceptual tasks
(Pearson’s r = .53, p < .001, BF' > 100; Fig. 2b), participants performed systematically

1Bayes Factors (BF') accompany each frequentist test to indicate the evidence against a specified
null hypothesis. See Methods for further details.
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Fig 2. Behavioral results. a) Mean reward in each task, where each dot is a participant
and lines connect the same participant across tasks. Tukey boxplots show median
(horizontal line) and 1.5x IQR, while diamonds indicate the group mean. The dashed
line indicates chance performance. Bayes Factors (BF') indicate the evidence against a
specified null hypothesis for either two sample (rough vs. smooth) or paired (conceptual
vs. spatial) t-tests (see Methods). b) Correspondence between tasks, where each dot

represents the average reward of a single participant and the dotted line indicates y = .

c) Task order effect, where experience with spatial search boosted performance on
conceptual search, but not vice versa. Bayes factors correspond to paired t-tests. d)
Average learning curves over trials, showing the mean (line) and standard error (ribbon)
aggregated across rounds and participants. The dashed line indicates chance
performance. e) The Manhattan distance between selections compared to a random
baseline (black line). f) Distance between selections as a function of the previous
observed reward value, showing the aggregate means (points) and the group-level
predictions of a mixed-effects regression (Table S1), where the ribbons indicate the 95%
CIL.

better in the spatial version (paired t-test: ¢(128) = 6.0, p < .001, d = 0.5, BF' > 100).
This difference in task performance can largely be explained by a one-directional transfer
effect (Fig. 2c). Participants performed better on the conceptual task after having
experienced the spatial task (¢(127) = 2.8, p = .006, d = 0.5, BF = 6.4). This was not
the case for the spatial task, where performance did not differ whether performed first
or second (¢(127) = —1.7, p = .096, d = 0.3, BF' = .67). Thus, experience with spatial
search boosted performance on conceptual search, but not vice versa.

Participants learned effectively within each round and obtained higher rewards with
each successive choice (Pearson correlation between reward and trial: r = .88, p < .001,
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BF > 100; Fig 2d). We also found evidence for learning across rounds in the spatial
task (Pearson correlation between reward and round: r = .91, p < .001, BF = 15), but
not in the conceptual task (r = .58, p =.104, BF = 1.5).

Patterns of search also differed across domains. Comparing the average Manhattan
distance between consecutive choices in a two-way mixed ANOVA showed an influence
of task (within: F(1,127) = 13.8, p < .001, n? = .02, BF = 67) but not environment
(between: F(1,127) = 0.12, p = .73, n® = .001, BF = 0.25, Fig. 2e). This reflected that
participants searched in smaller step sizes in the spatial task (¢(128) = —3.7, p < .001,
d = 0.3, BF = 59), corresponding to a more local search strategy, but did not adapt
their search distance to the environment. Note that each trial began with a randomly
sampled initial stimuli, such that participants did not begin near the previous selection
(see Methods). The bias towards local search (one-sample t-test comparing search
distance against chance: $(128) = —16.3, p < .001, d = 1.4, BF > 100) is therefore not
a side effect of the task characteristics, but both purposeful and effortful (see Fig S4 for
additional analysis of search trajectories).

Participants also adapted their search patterns based on reward values (Fig. 2f),
where lower rewards predicted a larger search distance on the next trial (correlation
between previous reward and search distance: r = —.66, p < .001, BF > 100). We
analyzed this relationship using a Bayesian mixed-effects regression, where we found
previous reward value to be a reliable predictor of search distance (bprevReward = —0.06,
95% HPD: [—0.06, —0.06]; see Table S1), while treating participants as random effects.
This provides initial evidence for generalization-like behavior, where participants
actively avoided areas with poor rewards and stayed near areas with rich rewards.

In summary, we find correlated performance across tasks, but also differences in both
performance and patterns of search. Participants were boosted by a one-directional
transfer effect, where experience with the spatial task improved performance on the
conceptual task, but not the other way around. In addition, participants made larger
jumps between choices in the conceptual task and searched more locally in the spatial
task. However, participants adapted these patterns in both domains in response to
reward values, where lower rewards predicted a larger jump to the next choice.

Modeling Results

To better understand how participants navigated the spatial and conceptual tasks, we
used computational models to predict participant choices and judgments. Both GP and
BMT models implement directed and undirected exploration using the UCB exploration
bonus S and softmax temperature 7 as free parameters. The models differed in terms of
learning, where the GP generalized about novel options using the length-scale parameter
A to modulate the extent of generalization over spatial or conceptual distances, while
the BMT learns the rewards of each option independently (see Methods).

Both models were estimated using leave-one-round-out cross validation, where we
compare goodness of fit using out-of-sample prediction accuracy, described using a
pseudo-R? (Fig 3a). The differences between models were reliable and meaningful, with
the GP model making better predictions than the BMT in both the conceptual
(t(128) = 3.9, p < .001, d = 0.06, BF' > 100) and spatial tasks (¢£(128) = 4.3, p < .001,
d=0.1, BF > 100). In total, the GP model best predicted 85 participants in the
conceptual task and 93 participants in the spatial task (out of 129 in total). Comparing
this same out-of-sample prediction accuracy using a Bayesian model selection
framework [70,71] confirmed that the GP had the highest posterior probability
(corrected for chance) of being the best model in both tasks (protected exceedance
probability; conceptual: pzp(GP, conceptual) = .997; spatial: pxp(GP, spatial) = 1.000;
Fig 3b). The superiority of the GP model suggests that generalization about novel

May 1, 2020

9/39

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260


https://doi.org/10.1101/2020.01.21.914556
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.21.914556; this version posted May 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

a,\ Conceptual Task Spatial Task b Conceptual Task Spatial Task
‘o BF=126 BF=470 100% 1

= — —

g 0.9

)

@ 75% -

3

2 0.6 a

° 5 50%

2 0.3

£ 25% |

<

o

0.01 0% —_— —_
GP BMT GP BMT
c d
Model = Random == GP BMT Human

Task I:l Conceptual . Spatial

Conceptual Task Spatial Task Zg — |
90 —_— 2
80 -3 3 40
Bl 0
= X o

ybnoy
ybnoy

Average Reward
©
o

o~
[sfeNala)
iy
yoows
Averal
N A O
o o o
yloows

5 10 15 20 5 10 15 20 Random  GP BMT  Human
Trial Model
e Generalization Exploration Bonus Temperature
—| I |— I |—.-.-. oo —| I |—. oo
. , .
i L g
L] ’
s . ,,’A 0.3 // 0.15 A,', .
< . @ A e - .
3 oy 5 0o |4 . S o010 A
= . A b= - . = A A Rough
g A, g |Za A g W AL o
ol % a4, X D o A A Smooth
. ’ N
I\ y 4 A
/,, H ,/
01.s 0.0 A AA 0.004,%
0 1 2 0.0 0.1 0.2 0.3 0.00 0.05 0.10 0.15
Conceptual A Conceptual B Conceptual T

Fig 3. Modeling results. a) Predictive accuracy of each model, where 1 is a perfect
model and 0 is equivalent to chance. Each dot is a single participant, with lines
indicating the difference between models. Tukey boxplot shows the median (line) and
1.5 IQR, with the group mean indicated as a diamond. b) Protected Exceedence
Probability (pxp), which provides a hierarchical estimate of model prevalence in the
population (corrected for chance). ¢) Simulated learning curves. Each line is the
averaged performance over 10,000 replications, where we sampled participant parameter
estimates and simulated behavior on the task. The pink line is the group mean of our
human participants, while the black line provides a random baseline. d) Simulation
results from panel ¢ aggregated over trials, where the height of the bar indicates average
reward. e) GP parameter estimates from the conceptual (x-axis) and spatial (y-axis)
tasks. Each point is the mean estimate for a single participant and the dotted line
indicates y = x. For readability, the x- and y-axis limits are set to Tukey’s upper fence

(Q3 4+ 1.5xIQR) for the larger of the two dimensions, but all statistics are performed on
the full data.

options via the use of structural information played a guiding role in how participants
searched for rewards (see Fig S6 for additional analyses).

Learning Curves

To confirm that the GP model indeed captured learning behavior better in both tasks,
we simulated learning curves from each model using participant parameter estimates
(Fig. 3c; see Methods). The GP model achieved human-like performance in all tasks
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and environments (comparing aggregate GP and human learning curves: conceptual
MSE=17.7; spatial MSE=16.6), whereas BMT learning curves were substantially less
similar (conceptual MSE=150.6; spatial MSE=330.7). In addition, the GP captured the
same qualitative difference between domains and environments as our human

participants (Fig. 3d), with better performance in conceptual vs. spatial, and smooth vs.

rough. These patterns were not present in the BMT or random simulations.

Parameter Estimates

To understand how generalization and exploration differed between domains, Fig. 3e
compares the estimated model parameters from the conceptual and spatial tasks. The
GP model had three free parameters: the extent of generalization () of the RBF kernel,
the exploration bonus (3) of UCB sampling, and the temperature (7) of the softmax
choice rule (see Fig. S9 for BMT parameters). Note that the exploration bonus captures
exploration directed towards uncertainty, whereas temperature captures random,
undirected exploration, which have been shown to be distinct and recoverable
parameters [19,69].

We do not find reliable differences in A estimates across tasks (Wilcoxon signed-rank
test: Z = —1.2, p=.115, r = —.11, BF = .13). In all cases, we observed lower levels of
generalization relative to the true generative model of the underlying reward
distributions (Arough = 2, Asmooth = 4; min-BF = 1456), replicating previous
findings [19] that found undergeneralization to be largely beneficial in similar settings.
Generalization was anecdotally correlated across tasks (Kendall rank correlation:
rr = .13, p=.028, BF = 1.3), providing weak evidence that participants tended to
generalize similarly across domains.

Whereas generalization was similar between tasks, there were intriguing differences
in exploration. We found substantially lower exploration bonuses (8) in the conceptual
task (Z = —5.0, p < .001, r = —.44, BF > 100), indicating a large reduction of directed
exploration, relative to the spatial task. At the same time, there was an increase in
temperature (7) in the conceptual task (Z = 6.9, p < .001, »r = —.61, BF > 100),
corresponding to an increase in random, undirected exploration. Despite these
differences, we find some evidence of correlations across tasks for directed exploration
(rr = .18, p=.002, BF = 13) and substantial evidence for correlations between random
exploration across domains (r, = .43, p < .001, BF > 100).

Thus, participants displayed similar and somewhat correlated levels of generalization
in both tasks, but with markedly different patterns of exploration. Whereas participants
engaged in typical levels of directed exploration in the spatial domain (replicating
previous studies [19,69]), they displayed reduced levels of directed exploration in the
conceptual task, substituting instead an increase in undirected exploration. Again, this
is not due to a lack of effort, because participants made longer search trajectories in the
conceptual domain (see Fig S4a). Rather, this indicates a fundamental difference in how
people represent or reason about spatial and conceptual domains in order to decide
which are the most promising options to explore.

Bonus Round

In order to further validate our behavioral and modeling results, we analyzed
participants’ judgments of expected rewards and perceived confidence for 10 unobserved
options they were shown during the final “bonus” round of each task (see Methods and
Fig. 1c). Participants made equally accurate judgments in both tasks (comparing mean
absolute error: ¢(128) = —0.2, p = .827, d = 0.02, BF = .10; Fig. 4a), which were far
better than chance (conceptual: ¢(128) = —9.2, p < .001, d = 0.8, BF > 100; spatial:
t(128) = —8.4, p < .001, d = 0.7, BF > 100) and correlated between tasks (r = .27,
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Fig 4. Bonus Round. a) Mean absolute error (MAE) of judgments in the bonus round,
where each dot is a single participant and lines connect performance across tasks. Tukey
boxplot show median and 1.5x IQR, with the diamonds indicating group mean and the
dashed line providing a comparison to chance. Bayes factor indicates the evidence
against the null hypothesis for a paired ¢-test. b) Average confidence ratings (Likert
scale: [0,10]). ¢) Comparison between participant judgments and model predictions
(based on the parameters estimated from the search task). Each point is a single
participant judgment, with colored lines representing the predicted group-level effect of
a mixed effect regression (Table S2 and ribbons showing the 95% CI (undefined for the
BMT model, which makes identical predictions for all unobserved options). d)
Correspondence between participant confidence ratings and GP uncertainty, where both
are rank-ordered at the individual level. Black dots show aggregate means and 95% CI,
while the colored line is a linear regression.

p = .002, BF = 20). Judgment errors were also correlated with performance in the
bandit task (r = —.45, p < .001, BF > 100), such that participants who earned higher
rewards also made more accurate judgments.

Participants were equally confident in both domains (¢(128) = —0.8, p = .452,
d =0.04, BF = .13; Fig. 4b), with correlated confidence across tasks (r = .79, p < .001,
BF > 100), suggesting some participants were consistently more confident than others.
Ironically, more confident participants also had larger judgment errors (r = .31, p < .001,
BF = 91) and performed worse in the bandit task (r = —.28, p = .001, BF = 28).

Using parameters estimates from the search task (excluding the entire bonus round),
we computed model predictions for each of the bonus round judgments as an out-of-task
prediction analysis. Whereas the BMT invariably made the same predictions for all
unobserved options since it does not generalize (Fig. 4c), the GP predictions were
correlated with participant judgments in both conceptual (mean individual correlation:
7 = .35; single sample t-test of z-transformed correlation coefficients against yu = 0:
t(128) = 11.0, p < .001, d = 1.0, BF > 100) and spatial tasks (# = .43; ¢(128) = 11.0,
p < .001, d = 1.0, BF > 100). This correspondence between human judgments and
model predictions was also confirmed using a Bayesian mixed effects model, where we
again treated participants as random effects (bparticipantjudgment = -82, 95% HPD: [0.75,
0.89]; see Table S2 for details).

Not only was the GP able to predict judgments about expected reward, but it also
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captured confidence ratings. Fig 4d shows how the highest confidence ratings
corresponded to the lowest uncertainty estimates made by the GP model. This effect
was also found in the raw data, where we again used a Bayesian mixed effects model to
regress confidence judgments onto the GP uncertainty predictions

(bparticipantJudgment = —0.02, 95% HPD: [-0.02, -0.01]; see Table S2).

Thus, participant search behavior was consistent with our GP model and we were
also able to make accurate out-of-task predictions about both expected reward and
confidence judgments using parameters estimated from the search task. These
predictions validate the internal learning model of the GP, since reward predictions
depend only on the generalization parameter \. All together, our results suggest domain
differences were not due to differences in how participants computed or represented
expected reward and uncertainty, since they were equally good judging at their
uncertainty in the bonus rounds for both domains. Rather, these diverging patterns of
search arose from differences in exploration, where participants substantially reduced
their level of exploration directed towards uncertain options in the conceptual domain.

Discussion

Previous theories of cognitive maps [21,32-34] have argued that reasoning in abstract
domains follows similar computational principles as in spatial domains, for instance,
sharing a common approach to computing similarities between experiences. These
accounts imply that the shared notion of similarity should influence how people
generalize from past outcomes, and also how they balance between sampling new and
informative options as opposed to known options with high expected rewards.

Here, we investigated to what extent learning and searching for rewards are governed
by similar computational principles in spatial and conceptual domains. Using a
within-subject design, we studied participant behavior in both spatially and
conceptually correlated reward environments. Comparing different computational
models of learning and exploration, we found that a Gaussian Process (GP) model that
incorporated distance-based generalization, and hence a cognitive map of similarities,
best predicted participants behavior in both domains. In both domains, our parameter
estimates indicated equivalent levels of generalization. Using these parameters, our
model was able to simulate human-like learning curves and make accurate out-of-task
predictions about participant reward estimations and confidence ratings in a final bonus
round. This model-based evidence for similar distance-based decision making in both
domains was also in line with our behavioral results. Performance was correlated across
domains and benefited from higher outcome correlations between similar bandit options
(i.e., smooth vs. rough). Subsequent choices tended to be more local than expected by
chance, and similar options where more likely to be chosen after a high reward than a
low reward outcome.

In addition to revealing similarities, our modelling and behavioral analyses provided
a diagnostic lens into differences between spatial and conceptual domains. Whereas we
found similar levels of generalization in both tasks, patterns of exploration were
substantially different. Although participants showed clear signs of directed exploration
(i.e., seeking out more uncertain options) in the spatial domain, this was notably
reduced in the conceptual task. However, as if in compensation, participants increased
their random exploration in the conceptual task. This implies a reliable shift in
sampling strategies but not in generalization. Thus, even though the computational
principles underpinning reasoning in both domains are indeed similar, how these
computations are mapped onto actions can vary substantially. Moreover, participants
obtained more rewards and sampled more locally in the spatial domain. We also find a
one-directional transfer effect, where experience with the spatial task boosted
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performance on the conceptual task, but not vice versa. These findings shed new light
onto the computational mechanisms of generalization and decision making, suggesting a
universality of generalization and a situation-specific adaptation of decision making
policies.

Related work

Our findings also contribute to a number of other cognitive models and theories.
According to the successor representation (SR; [18]) framework, hippocampal cognitive
maps reflect predictions of expected future state occupancy [72-74]. This provides a
similarity metric based on transition dynamics, where an analytic method for
computing the SR in closed form is to assume random transitions through the state
space. This assumption of a random policy produces a nearly identical similarity metric
as the RBF kernel [75], with exact equivalencies in certain cases [76].

However, the SR can also be learned online using the Temporal-Difference learning
algorithm, leading to asymmetric representations of distance that are skewed by the
distance of travel [72,77]. Recent work building on Kohonen maps has also suggested
that the distribution of the experienced stimuli in feature space will have implications
for the activation profiles of grid cells and the resulting cognitive map [78].

In our current study, we have focused on the simplifying case of a cognitive map
learned through a random policy. This context was induced by having stimuli uniformly
distributed over the search space and using a training phase involving extensive and
random trajectories over the search space (i.e., matching random targets from random
starting points). While this assumption is not always met in real life domains, it
provides a useful starting point and allows us to reciprocally compare behavior in
spatial and conceptual domains.

Previous work has also investigated transfer across domains [79], where inferences
about the transition structure in one task can be generalized to other tasks. Whereas
we used identical transition structures in both tasks, we nevertheless found asymmetric
transfer between domains. A key question underlying the nature of transfer is the
remapping of representations [80,81], which can be framed as a hidden state-space
inference problem. Different levels of prior experience with the spatial and conceptual
stimuli could give rise to different preferences for reuse of task structure as opposed to
learning a novel structure. This may be a potential source of the asymmetric transfer
we measured in task performance.

Additionally, clustering methods (e.g., [78]) can also provide local approximations of
GP inference by making predictions about novel options based on the mean of a local
cluster. For instance, a related reward-learning task on graph structures [75] found that
a k-nearest neighbors model provided a surprisingly effective heuristics for capturing
aspects of human judgments and decisions. However, a crucial limitation of any
clustering models is it would be incapable of learning and extrapolating upon any
directional trends, which is a crucial feature of human function learning [58, 59].
Alternatively, clustering could also play a role in approximate GP inference [82], by
breaking up the inference problem into smaller chunks or by considering only a subset of
inputs. Future work should explore the question of how human inference scales with the
complexity of the data.

Lastly, the question of “how the cognitive map is learned” is distinct from the
question of “how the cognitive map is used”. Here, we have focused on the latter, and
used the RBF kernel to provide a map based on the assumption of random transitions,
similar to a random-policy implementation of the SR. While both the SR and GP
provide a theory of how people utilize a cognitive map for performing predictive
inferences, only the GP provides a theory about representations of uncertainty via
Bayesian predictions of reward. These representations of uncertainty are a key feature
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that sets the GP apart from the SR. Psychologically, GP uncertainty estimates
systematically capture participant confidence judgments and provide the basis for
uncertainty-directed exploration. This distinction may also be central to the different
patterns of search we observed in spatial and non-spatial domains, where a reduction in
uncertainty-directed exploration may also reflect computational differences in the
structure of inference. However, the exact nature of these representations remains an
open question for future neuroimaging research.

Future directions

Several questions about the link between cognitive maps across domains remain
unanswered by our current study and are open for future investigations. Why did we
find differences in exploration across domains, even though the tasks were designed to
be as equivalent as possible, including requiring commensurate stimuli discriminability
during the pre-task training phase? Currently, our model can capture but not fully
explain these differences in search behavior, since it treats both domains as equivalent
generalization and exploration problems.

One possible explanation is a different representation of spatial and non-spatial
information, or different computations acting on those representations. Recent
experimental work has demonstrated that representations of spatial and non-spatial
domains may be processed within the same neural systems [9,12], suggesting
representational similarities. But in our study it remains possible that different patterns
of exploration could instead result from a different visual presentation of information in
the spatial and the non-spatial task. It is, for example, conceivable that exploration in a
(spatially or non-spatially) structured environment depends on the transparency of the
structure in the stimulus material, or the alignment of the input modality. In our case
the spatial structure was embedded in the stimulus itself, whereas the conceptual
structure was not. Additionally, the arrow key inputs may have been more intuitive for
manipulating the spatial stimuli. While generalization could be observed in both
situations, directed exploration might require more explicitly accessible information
about structural relationships or be facilitated by more intuitively mappable inputs.
Previous work used a task where both spatial and conceptual features were
simultaneously presented [83, i.e., conceptual stimuli were shuffled and arranged on a
grid], yet only spatial or only conceptual features predicted rewards. However,
differences in the saliency of spatial and conceptual features meant participants were
highly influenced by spatial features, even when they were irrelevant. This present
study was designed to overcome these issues by presenting only task-specific features,
yet future work should address the computational features that allow humans to
leverage structured knowledge of the environment to guide exploration.

Our model also does not account for attentional mechanisms [84] or working memory
constraints [85,86], which may play a crucial role in influencing how people integrate
information differently across domains [87]. To ask whether feature integration is
different between domains, we implemented a variant of our GP model using a Shepard
kernel [64], which used an additional free parameter estimating the level of integration
between the two feature dimensions (Fig. S10). This model did not reveal strong
differences in feature integration, yet replicated our main findings with respect to
changes in exploration. Additional analyses showed asymmetries in attention to
different feature dimensions, which was an effect modulated by task order (Fig. S4d-f).
Task order also modulated performance differences between domains, which only
appeared when the conceptual task was performed before the spatial task (Fig. 2c).
Experience with the spatial task version may have facilitated a more homogenous
mapping of the conceptual stimuli into a 2D similarity space, which in turn facilitated
performance. This asymmetric transfer may support the argument that spatial
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representations have been “exapted” to other more abstract domains [6-8]. For example,
experience of different resource distributions in a spatial search task was found to
influence behavior in a word generation task, where participants exposed to sparser
rewards in space generated sparser semantic clusters of words [88]. Thus, while both
spatial and conceptual knowledge are capable of being organized into a common
map-like representation, there may be something special or central about spatial
encoding [89], producing domain differences in terms of the ease of learning such a map
and asymmetries in the transfer of knowledge. Future research should investigate this
phenomenon with alternative models that make stronger assumptions about
representational differences across domains.

We also found no differences in predictions and uncertainty estimates about unseen
options in the bonus round. This means that participants generalized and managed to
track the uncertainties of unobserved options similarly in both domains, yet did not or
could not leverage their representations of uncertainty for performing directed
exploration as effectively in the conceptual task. Alternatively, differences in random
exploration could also arise from limited computational precision during the learning of
action values [90]. Thus, the change in random exploration we observed may be due to
different computational demands across domains. Similar shifts increases to random
exploration have also been observed under direct cognitive load manipulations, such as
by adding working memory load [91] or by limiting the available decision time [92].

Finally, our current experiment only looked at similarities between spatial and
conceptual domains if the underlying structure was the same in both tasks. Future
studies could expand this approach across different domains such as logical
rule-learning, numerical comparisons, or semantic similarities. Additionally, structure
learned in one domain could be transferable to structures encountered in either the
same domain with slightly changed structures or even to totally different domains with
different structures. A truly all-encompassing model of generalization should capture
transfer across domains and structural changes. Even though several recent studies have
advanced our understanding of how people transfer knowledge across graph
structures [79], state similarities in multi-task reinforcement learning [93], and target
hypotheses supporting generalization [87], whether or not all of these recruit the same
computational principles and neural machinery remains to be seen.

Conclusion

We used a rich experimental paradigm to study how people generalize and explore both
spatially and conceptually correlated reward environments. While people employed
similar principles of generalization in both domains, we found a substantial shift in
exploration, from more uncertainty-directed exploration in the spatial task to more
random exploration in the conceptual domain. These results enrich our understanding
of the principles connecting generalization and search across different domains and pave
the way for future cognitive and neuroscientific investigations into principles of
generalization and search across domains.

Methods

Participants and Design

140 participants were recruited through Amazon Mechanical Turk (requiring a 95%
approval rate and 100 previously approved HITs) for a two part experiment, where only
those who had completed part one were invited back for part two. In total 129
participants completed both parts and were included in the analyses (55 female; mean
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age=35, SD=9.5). Participants were paid $4.00 for each part of the experiment, with
those completing both parts being paid an additional performance-contingent bonus of
up to $10.00. Participants earned $15.6 + 1.0 and spent 54 + 19 minutes completing
both parts. There was an average gap of 18 4+ 8.5 hours between the two parts of the
experiment. The study was approved by the ethics committee of the Max Planck
Institute for Human Development and all participants gave written informed consent.

We varied the task order between subjects, with participants completing the spatial
and conceptual task in counterbalanced order in separate sessions. We also varied
between subjects the extent of reward correlations in the search space by randomly
assigning participants to one of two different classes of environments (smooth vs. rough),
with smooth environments corresponding to stronger correlations, and the same
environment class used for both tasks (see below).

Materials and Procedure

Each session consisted of a training phase, the main search task, and a bonus round. At
the beginning of each session participants were required to complete a training task to
familiarize themselves with the stimuli (spatial or conceptual), the inputs (arrow keys
and spacebar), and the search space (8 x 8 feature space). Participants were shown a
series of randomly selected targets and were instructed to use the arrow keys to modify
a single selected stimuli (i.e., adjusting the stripe frequency and angle of a Gabor patch
or moving the location of a spatial selector, Fig. 1c) in order to match a target stimuli
displayed below. The target stayed visible during the trial and did not have to be held
in memory. The space bar was used to make a selection and feedback was provided for
800ms (correct or incorrect). Participants were required to complete at least 32 training
trials and were allowed to proceed to the main task once they had achieved at least 90%
accuracy on a run of 10 trials (i.e., 9 out of 10). See Fig S3 for analysis of the training
data.

After completing the training, participants were shown instructions for the main
search task and had to complete three comprehension questions (Figs S11-S12) to
ensure full understanding of the task. Specifically, the questions were designed to ensure
participants understood that the spatial or conceptual features predicted reward. Each
search task comprised 10 rounds of 20 trials each, with a different reward function
sampled without replacement from the set of assigned environments. The reward
function specified how rewards mapped onto either the spatial or conceptual features,
where participants were told that options with either similar spatial features (Spatial
task) [19,94] or similar conceptual features (Conceptual task) [20,56] would yield similar
rewards. Participants were instructed to accumulate as many points as possible, which
were later converted into monetary payoffs.

The tenth round of each sessions was a “bonus round”, with additional instructions
shown at the beginning of the round. The round began as usual, but after 15 choices,
participants were asked to make judgments about the expected rewards (input range:
[1,100]) and their level of confidence (Likert scale from least to most confident: [0,10])
for 10 unrevealed targets. These targets were uniformly sampled from the set of
unselected options during the current round. After the 10 judgments, participants were
asked to make a forced choice between the 10 options. The reward for the selected
option was displayed and the round continued as normal. All behavioral and
computational modeling analyses exclude the last round, except for the analysis of the
bonus round judgments.
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Spatial and Conceptual Search Tasks

Participants used the arrow keys to either move a highlighted selector in the spatial task
or change the features (tilt and stripe frequency) of the Gabor stimuli in the conceptual
task (Fig S1). On each round, participants were given 20 trials to acquire as many
cumulative rewards as possible. A selection was made by pressing the space bar, and
then participants were given feedback about the reward for 800 ms, with the chosen
option and reward value added to the history at the bottom of the screen. At the
beginning of each trial, the starting position of the spatial selector or the displayed
conceptual stimulus was randomly sampled from a uniform distribution. Each reward
observation included normally distributed noise, € ~ N (0, 1), where the rewards for
each round were scaled to a uniformly sampled maximum value in the range of 80 to 95,
so that the value of the global optima in each round could not be easily guessed.

Participants were given feedback about their performance at the end of each round
in terms of the ratio of their average reward to the global maximum, expressed as a
percentage (e.g., “You have earned 80% of the maximum reward you could have earned
on this round”). The performance bonus (up to $10.00) was calculated based on the
cumulative performance of each round and across both tasks.

Bonus Round Judgments

In both tasks the last round was a “bonus round”, which solicited judgments about the
expected reward and their level of confidence for 10 unrevealed options. Participants
were informed that the goal of the task remained the same (maximize cumulative
rewards), but that after 15 selections, they would be asked to provide judgments about
10 randomly selected options, which had not yet been explored. Judgments about
expected rewards were elicited using a slider from 1 to 100 (in increments of 1), while
judgments about confidence were elicited using a slider from 0 to 10 (in increments of
1), with the endpoints labeled ‘Least confident’ and ‘Most confident’. After providing
the 10 judgments, participants were asked to select one of the options they just rated,
and subsequently completed the round like all others.

Environments

All environments were sampled from a GP prior parameterized with a radial basis
function (RBF) kernel (Eq 4), where the length-scale parameter (\) determines the rate
at which the correlations of rewards decay over (spatial or conceptual) distance. Higher
A-values correspond to stronger correlations. We generated 40 samples of each type of
environments, using Arougn = 2 and Agmooth = 4, which were sampled without
replacement and used as the underlying reward function in each task (Fig S2).
Environment type was manipulated between subjects, with the same environment type
used in both conceptual and spatial tasks.

Models
Bayesian Mean Tracker

The Bayesian Mean Tracker (BMT) is a simple but widely-applied associative learning
model [68,95,96], which is a special case of the Kalman Filter with time-invariant
reward distributions. The BMT can also be interpreted as a Bayesian variant of the
Rescorla-Wagner model [55], making predictions about the rewards of each option j in
the form of a normally distributed posterior:

P(Mj,t

Dy) = N(my1,5,0) (10)
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The posterior mean m;; and variance v;; are updated iteratively using a delta-rule
update based on the observed reward y; when option j is selected at trial ¢:

My =m -1+ 0;:Gjt [ye —mjs—1] (11)
Ve = [1 = 6;,eGje] vj -1 (12)

where §;+ = 1 if option j was chosen on trial ¢, and 0 otherwise. Rather than having a
fixed learning rate, the BMT scales updates based on the Kalman Gain G+, which is
defined as:

Vjt—1
Gjp = —L—— 13
Jst 'Uj,tfl + 062 ( )

where 6?2 is the error variance, which is estimated as a free parameter. Intuitively, the
estimated mean of the chosen option m;; is updated based on the prediction error

y¢ —mj—1 and scaled by the Kalman Gain G;; (Eq 11). At the same time, the
estimated variance v;, is reduced by a factor of 1 — G ¢, which is in the range [0, 1]
(Eq 12). The error variance 62 can be interpreted as an inverse sensitivity, where smaller
values result in more substantial updates to the mean m;;, and larger reductions of
uncertainty vj ;.

Model Cross-validation

As with the behavioral analyses, we omit the 10th “bonus round” in our model
cross-validation. For each of the other nine rounds, we use cross validation to iteratively
hold out a single round as a test set, and compute the maximum likelihood estimate
using differential evolution [97] on the remaining eight rounds. Model comparisons use
the summed out-of-sample prediction error on the test set, defined in terms of log loss
(i.e., negative log likelihood).

Predictive accuracy

As an intuitive statistic for goodness of fit, we report predictive accuracy as a pseudo-R?:

log L(My,)

R2=1- 52k
log L(Mrand)

(14)
comparing the out-of-sample log loss of a given model M}, against a random model

M, qng. R? = 0 indicates chance performance, while R? = 1 is a theoretically perfect
model.

Protected exceedance probability

The protected exceedance probability (pzp) is defined in terms of a Bayesian model
selection framework for group studies [70,71]. Intuitively, it can be described as a
random-effect analysis, where models are treated as random effects and are allowed to
differ between subjects. Inspired by a Polya’s urn model, we can imagine a population
containing K different types of models (i.e., people best described by each model), much
like an urn containing different colored marbles. If we assume that there is a fixed but
unknown distribution of models in the population, what is the probability of each model
being more frequent in the population than all other models in consideration?

This is modelled hierarchically, using variational Bayes to estimate the parameters of
a Dirichlet distribution describing the posterior probabilities of each model P(my|y)
given the data y. The exceedance probability is thus defined as the posterior probability

May 1, 2020

19/39

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656


https://doi.org/10.1101/2020.01.21.914556
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.21.914556; this version posted May 2, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

that the frequency of a model ry,, is larger than all other models 7,,, i under
consideration:

l‘p(mk) = p(ka > TnLk/;ék |Y) (15)

[71] extends this approach by correcting for chance, based on the Bayesian Omnibus
Risk (BOR), which is the posterior probability that all model frequencies are equal:

BOR
pap(my) = ap(mi)(1 — BOR) + —— (16)
This produces the protected exceedance probability (pxp) reported throughout this
chapter, and is implemented using
https://github.com/sjgershm/mfit/blob/master/bms.m.

Simulated learning curves

We simulated each model by sampling (with replacement) from the set of
cross-validated participant parameter estimates, and performing search on a simulated
bandit task. We performed 10,000 simulations for each combination of model,
environment, and domain (spatial vs. conceptual).

Bonus round predictions

Bonus round predictions used each participant’s estimated parameters to predict their
judgments about expected reward and confidence. Because rewards in each round were
randomly scaled to a different global maximum, we also rescaled the model predictions
in order to align model predictions with the observed rewards and participant
judgments.

Statistical tests
Comparisons

We report both frequentist and Bayesian statistics. Frequentist tests are reported as
Student’s t-tests (specified as either paired or independent) for parametric comparisons,
while the Mann-Whitney-U test or Wilcoxon signed-rank test are used for
non-parametric comparisons (for independent samples or paired samples, respectively).
Each of these tests are accompanied by a Bayes factors (BF') to quantify the relative
evidence the data provide in favor of the alternative hypothesis (H4) over the null (Hp),
which we interpret following [98].

Parametric comparison are tested using the default two-sided Bayesian ¢-test for
either independent or dependent samples, where both use a Jeffreys-Zellner-Siow prior
with its scale set to v/2/2, as suggested by [99]. All statistical tests are non-directional
as defined by a symmetric prior (unless otherwise indicated).

Non-parametric comparisons are tested using either the frequentist
Mann-Whitney-U test for independent samples, or the Wilcoxon signed-rank test for
paired samples. In both cases, the Bayesian test is based on performing posterior
inference over the test statistics (Kendall’s r; for the Mann-Whitney-U test and
standardized effect size r = \/—ZN for the Wilcoxon signed-rank test) and assigning a prior
using parametric yoking [100]. This leads to a posterior distribution for Kendall’s 7, or
the standardized effect size r, which yields an interpretable Bayes factor via the
Savage-Dickey density ratio test. The null hypothesis posits that parameters do not
differ between the two groups, while the alternative hypothesis posits an effect and
assigns an effect size using a Cauchy distribution with the scale parameter set to 1/ V2.
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Correlations

For testing linear correlations with Pearson’s r, the Bayesian test is based on
Jeffrey’s [101] test for linear correlation and assumes a shifted, scaled beta prior
distribution B(3, ) for r, where the scale parameter is set to k = £ [102].

For testing rank correlations with Kendall’s tau, the Bayesian test is based on
parametric yoking to define a prior over the test statistic [103], and performing Bayesian
inference to arrive at a posterior distribution for r.. The Savage-Dickey density ratio

test is used to produce an interpretable Bayes Factor.

ANOVA

We use a two-way mixed-design analysis of variance (ANOVA) to compare the means of
both a fixed effects factor (smooth vs. rough environments) as a between-subjects
variable and a random effects factor (conceptual vs. spatial) as a within-subjects
variable. To compute the Bayes Factor, we assume independent g-priors [104] for each
effect size 6, ~ N(0,g102),--+ ,0, ~ N(0, g,0?), where each g-value is drawn from an

inverse chi-square prior with a single degree of freedom g; id inverse-x?(1), and
assuming a Jeffreys prior on the aggregate mean and scale factor. Following [105], we
compute the Bayes factor by integrating the likelihoods with respect to the prior on
parameters, where Monte Carlo sampling was used to approximate the g-priors. The
Bayes factor reported in the text can be interpreted as the log-odds of the model
relative to an intercept-only null model.

Mixed Effects Regression

Mixed effects regressions are performed in a Bayesian framework with brms [106] using
MCMC methods (No-U-Turn sampling [107] with the proposal acceptance probability
set to .99). In all models, we use a maximal random effects structure [108], and treat
participants as a random intercept. Following [109] we use the following generic weakly
informative priors:

by ~ N(0,1) (17)
b; ~ N(0,1) (18)
o ~ Half-N(0,1) (19)

All models were estimated over four chains of 4000 iterations, with a burn-in period of
1000 samples.
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Supporting information 1003

N7/

Fig S1. Gabor stimuli. Tilt varies from left to right from 105° to 255° in equally

spaced intervals, while stripe frequency increases moving upwards from 1.5 to 15 in log
intervals.
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Fig S2. Correlated reward environments. Heatmaps of the reward environments used
in both spatial and conceptual domains. The color of each tile represents the expected
reward of the bandit, where the x-axis and y-axis were mapped to the spatial location
or the tilt and stripe frequency (respectively). All environments have the same

minimum and maximum reward values, and the two classes of environments share the
same expectation of reward across options.
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Fig S3. Training Phase. a) Trials needed to reach the learning criterion (90% accuracy
over 10 trials) in the training phase, where the dotted line indicates the 32 trial
minimum. Each dot is a single participant with lines connecting the same participant.
Tukey boxplots show median (line) and 1.5x IQR, with diamonds indicating group
means. b) Average correct choices during the training phase. In the last 10 trials before
completing the training phase, participants had a mean accuracy of 95.0% on the spatial
task and 92.7% on the conceptual task (difference of 2.3%). In contrast, in the first 10
trials of training, participants had a mean accuracy of 84.1% in the spatial task and
68.8% in the conceptual (difference of 15.4%). c¢) Heatmaps of the accuracy of different
target stimuli, where the x and y-axes of the conceptual heatmap indicate tilt and stripe
frequency, respectively. d) The probability of error as a function of the magnitude of
error (Manhattan distance from the correct response). Thus, most errors were close to
the target, with higher magnitude errors being monotonically less likely to occur.
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Fig S4. Search Trajectories. a) Distribution of trajectory length, separated by task
and environment. The dashed vertical line indicates the median for each category.
Participants had longer trajectories in the contextual task (¢(128) = —10.7, p < .001,
d =1.0, BF > 100), but there were no differences across environments (¢(127) = 1.3,
p=.213,d=0.2, BF = .38). b) Average reward value as a function of trajectory
length. Longer trajectories were correlated with higher rewards (r = .23, p < .001,

BF > 100). Each dot is a mean with error bars showing the 95% CI. ¢) Distance from
the random initial starting point in each trial as a function of the previous reward value.
Each dot is the aggregate mean, while the lines show the fixed effects of a Bayesian
mixed-effects model (see Table S1), with the ribbons indicating the 95% CI. The
relationship is not quite linear, but is also found using a rank correlation (r, = .18,

p < .001, BF > 100). The dashed line indicates random chance. d) Search trajectories
decomposed into the vertical/stripe frequency dimension vs. horizontal/tilt dimension.
Bars indicate group means and error bars show the 95% CI. We find more attention
given to the vertical/stripe frequency dimension in both tasks, with a larger effect for
the conceptual task (F(1,127) = 26.85, p < .001, n* = .08, BF > 100), but no difference
across environments (F(1,127) = 1.03, p = .311, n? = .005, BF = 0.25). e¢) We
compute attentional bias as Agiy, = P(vertical/stripe frequency)— P(horizontal/tilt),
where positive values indicate a stronger bias towards the vertical/stripe frequency
dimension. Attentional bias was influenced by the interaction of task order and task
(F(1,127) = 8.1, p = .005, n* = .02, BF > 100): participants were more biased towards
the vertical/stripe frequency dimension in the conceptual task when the conceptual task
was performed first (¢(66) = —6.0, p < .001, d = 0.7, BF > 100), but these differences
disappeared when the spatial task was performed first (¢(61) = —1.6, p = .118, d = 0.2,
BF = .45). f) Differences in attention and score. Each participant is represented as a
pair of dots, where the connecting line shows the change in score and Agjy, across tasks.
We found a negative correlation between score and attention for the conceptual task
only in the conceptual first order (r, = —.31, p < .001, BF > 100), but not in the
spatial first order (r, = —.07, p = .392, BF = .24). There were no relationships
between score and attention in the spatial task in either order (spatial first: r, = .03,
p = .738, BF = .17; conceptual first: r, = —.03, p = .750, BF' = .17).
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Fig S5. Heatmaps of choice frequency. Heatmaps of chosen options in a) the Gabor
feature of the conceptual task and b) the spatial location of the spatial task, aggregated
over all participants. The color shows the frequency of each option centered on yellow
representing random chance (1/64), with orange and red indicating higher than chance,
while green and blue were lower than chance.
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Fig S6. Additional Modeling Results. a) The relationship between mean performance
and predictive accuracy, where in all cases, the best performing participants were also
the best described. b) The best performing participants were also the most diagnostic
between models, but not substantially skewed towards either model. Linear regression
lines strongly overlap with the dotted line at y = 0, where participants above the line
were better described by the GP model. ¢ Model comparison split by which task was
performed first vs. second. In both cases, participants were better described on their
second task, although the superiority of the GP over the BMT remains, comparing only
task one (paired t-test: t(128) = 4.6, p < .001, d = 0.10, BF = 1685) or only task two
(t(128) = 3.5, p < .001, d = 0.08, BF = 27).
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Fig S7. GP parameters and performance. a) We do not find a consistent relationship
between A estimates and performance, which were anectdotally correlated the spatial
task (r, = .13, p = .030, BF = 1.2) or negatively correlated in conceptual task

(rr = —.22, p < .001, BF > 100). b) Higher beta estimates were strongly predictive of
better performance in both conceptual (r, = .32, p < .001, BF > 100) and spatial tasks
(rr = .31, p <.001, BF > 100). ¢) On the other hand, high temperature values

predicted lower performance in both conceptual(r, = —.59, p < .001,

spatial tasks (r, = —.58, p < .001, BF > 100).
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Fig S8. GP exploration bonus and temperature. We check here whether there exists
any inverse relationship between directed and undirected exploration, implemented
using the UCB exploration bonus 3 (x-axis) and the softmax temperature 7 (y-axis),
respectively. Results are split into conceptual (a) and spatial tasks (b), where each dot
is a single participant and the dotted line indicates y = z. The upper axis limits are set
to the largest 1.5xIQR, for both 8 and 7, across both conceptual and spatial tasks.
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Fig S9. BMT parameters. Each dot is a single participant and the dotted line
indicates y = x. a) We found lower error variance (02) estimates in the conceptual task
(Wilcoxon signed-rank test: Z = —4.8, p < .001, r = —.42, BF' > 100), suggesting
participants were more sensitive to the reward values (i.e., more substantial updates to
their means estimates). Error variance was also somewhat correlated across tasks

(rr = .18, p=.003, BF = 10). b) As with the GP model reported in the main text, we
also found strong differences in exploration behavior in the BMT. We found lower
estimates of the exploration bonus in the conceptual task (Z = —5.9, p < .001,

r = —.52, BF > 100). The exploration bonus was also somewhat correlated between
tasks (r; = .16, p = .006, BF = 4.8). c) Also in line with the GP results, we again find
an increase in random exploration in the conceptual task (Z = —6.9, p < .001, r = —.61,
BF > 100). Once more, temperature estimates were strongly correlated (r, = .34,

p < .001, BF > 100).
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Fig S10. Shepard kernel parameters. We also considered an alternative form of the GP
model. Instead of modeling generalization as a function of squared-Euclidean distance
with the RBF kernel, we use the Shepard kernel described in [64], where we instead use
Minkowski distance with the free parameter p € [0,2]. This model is identical to the GP
model reported in the main text when p = 2. But when p < 2, the input dimensions
transition from integral to separable representations [110]. The lack of clear differences
in model parameters motivated us to only include the standard RBF kernel in the main
text. a) We find no evidence for differences in generalization between tasks (Z = —1.8,
p=.039, r = —.15, BF = .32). There is also marginal evidence of correlated estimates
(rr = .13, p=.026, BF = 1.3). b) There is anecdotal evidence of lower p estimates in
the conceptual task (Z = —2.5, p = .006, »r = —.22, BF = 2.0). The implication of a
lower p in the conceptual domain is that the Gabor features were treated more
independently, whereas the spatial dimensions were more integrated. However, the
statistics suggest this is not a very robust effect. These estimates are also not correlated
(rr = —.02, p = .684, BF = .12). c) Consistent with all the other models, we find
systematically lower exploration bonuses in the conceptual task (Z = —5.5, p < .001,

r = —.49, BF > 100). There was weak evidence of a correlation across tasks (r, = .14,
p = .021, BF = 1.6). d) We find clear evidence of higher temperatures in the
conceptual task (Z = —6.3, p < .001, r = —.56, BF > 100), with strong correlations
across tasks (r, = .41, p < .001, BF > 100)
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Please answer a few questions about this study before
proceeding

What is your goal in this task?

Navigate to a target item
© Search for high-value items and maximize the total number of points earned

Learn which items are similar to each other

How do you collect points?

By selecting only new items
By selecting only previously selected items
© By selecting both new and previously selected items

Which items tend to have a high number of points?

© ltems with a similar density of stripes and a similar tilt as other high point-value items from within
the same round

ltems with a similar density of stripes and a similar tilt as other high point-value items from a
previous round

ltems that had a high number of points in a previous round
ltems with a higher density stripes or tilted more to the right

Only when you answered all the question correctly will you be able to start the study.

Check Answers

Fig S11. Comprehension questions for the conceptual task. The correct answers are
highlighted.
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Please answer a few questions about this study before
proceeding

What is the goal of the task?

To find the location with the largest point-value on each round
© To gain the most points across all rounds
To finish the task as fast as possible

What can you use to guide your search for location with high point-values?

The number of points the location earned on previous rounds
Whether it was a target during the tutorial

© The number of points that have been observed for nearby location

How many different choices will you make in each round?

5
10

0o 20
30

Only when you answered all the question correctly will you be able to start the study.

Check Answers

Fig S12. Comprehension questions for the spatial task. The correct answers are
highlighted.
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Table S1. Mixed Effects Regression Results: Previous Reward

Distance Between Choices Distance from Initial Position

Predictors Est. 95% HPD Est. 95% HPD
Intercept 7.04 6.77 — 7.31 4.21 4.00 — 4.41
PreviousReward -0.06  -0.06 —-0.06 0.01 0.01 - 0.01
Spatialtask 1.03 0.68 — 1.38 -0.2043 -0.67 —-0.18
PreviousReward:Spatialtask -0.01  -0.02 —-0.01 0.01 0.004 - 0.01

Random Effects

o? 1.10 1.08
T00 7.22 8.34
N 129 129
Observations 44118 44118
Bayesian R? .539 118

Note: We report the posterior median (Est.) and 95% highest posterior density (HPD)
interval. o2 indicates the individual-level variance and 7y indicates the variation between
individual intercepts and the average intercept. See Methods for full specification of
model structure and priors.
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Table S2. Mixed Effects Regression Results: Bonus round judgments

Model Prediction

Model Uncertainty

Predictors Est. 95% HPD Est.  95% HPD
Intercept 12.42 10.45 - 14.34 092  0.86 — 0.98
ParticipantJudgment 0.82 0.75 - 0.89 -0.02  -0.02 - -0.01
Spatialtask 1.34 -0.33 - 3.04 0.002 -0.08 - 0.08
ParticipantJudgment:Spatialtask  0.03 -0.04 - 0.11 -0.01  -0.02 - 0.001
Random Effects

o? 183.49 0.06

Too 346.35 0.03

N 129 129

Observations 2580 2580

Bayesian R? 437 674

Note: We report the posterior median (Est.) and 95% highest posterior density (HPD)
interval. In the first model (Model Prediction), participant judgments in the range
[1,100] are used to predict the GP posterior mean, whereas the second model (Model
Uncertainty) uses confidence judgments in the range [1,11] to predict the GP posterior
variance. All GP posteriors are computed based on individual participant A-values,
estimated from the corresponding bandit task. o2 indicates the individual-level variance
and 7o indicates the variation between individual intercepts and the average intercept.
See Methods for full specification of model structure and priors.
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