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Abstract

Learning and generalization in spatial domains is often thought to rely on a
hippocampal-entorhinal “cognitive map”, representing relationships between spatial
locations. Recent research suggests that this same neural machinery is also recruited for
reasoning about more abstract, conceptual forms of knowledge. Yet, to what extent do
spatial and conceptual reasoning share common computational principles, and what are
the implications for behavior? Using a within-subject design we studied how
participants used spatial or conceptual distances to generalize and search for correlated
rewards in successive multi-armed bandit tasks. Participant behavior indicated
sensitivity to both spatial and conceptual distance, and was best captured using a
Bayesian model of generalization that formalized distance-dependent generalization and
uncertainty-guided exploration as a Gaussian Process regression with a radial basis
function kernel. The same Gaussian Process model best captured human search
decisions and judgments in both domains, and could simulate realistic learning curves,
where we found equivalent levels of generalization in spatial and conceptual tasks. At
the same time, we also find characteristic differences between domains. Relative to the
spatial domain, participants showed reduced levels of uncertainty-directed exploration
and increased levels of random exploration in the conceptual domain. Participants also
displayed a one-directional transfer effect, where experience in the spatial task boosted
performance in the conceptual task, but not vice versa. While confidence judgments
indicated that participants were sensitive to the uncertainty of their knowledge in both
tasks, they did not or could not leverage their estimates of uncertainty to guide
exploration in the conceptual task. These results support the notion that value-guided
learning and generalization recruit cognitive-map dependent computational mechanisms
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in spatial and conceptual domains. Yet both behavioral and model-based analyses
suggest domain specific differences in how these representations map onto actions.

Author summary

There is a resurgence of interest in “cognitive maps” based on recent evidence that the
hippocampal-entorhinal system encodes both spatial and non-spatial relational
information, with far-reaching implications for human behavior. Yet little is known
about the commonalities and differences in the computational principles underlying
human learning and decision making in spatial and non-spatial domains. We use a
within-subject design to examine how humans search for either spatially or conceptually
correlated rewards. Using a Bayesian learning model, we find evidence for the same
computational mechanisms of generalization across domains. While participants were
sensitive to expected rewards and uncertainty in both tasks, how they leveraged this
knowledge to guide exploration was different: participants displayed less
uncertainty-directed and more random exploration in the conceptual domain. Moreover,
experience with the spatial task improved conceptual performance, but not vice versa.
These results provide important insights about the degree of overlap between spatial
and conceptual cognition.

Introduction 1

Thinking spatially is intuitive. We remember things in terms of places [1–3], describe 2

the world using spatial metaphors [4, 5], and commonly use concepts like “space” or 3

“distance” in mathematical descriptions of abstract phenomena. In line with these 4

observations, previous theories have argued that reasoning about abstract conceptual 5

information follows the same computational principles as spatial reasoning [6–8]. This 6

has recently gained new support from neuroscientific evidence suggesting that common 7

neural substrates are the basis for knowledge representation across domains [9–13]. 8

One important implication of these accounts is that reinforcement learning [14] in 9

non-spatial domains may rely on a map-like organization of information, supported by 10

the computation of distances or similarities between experiences. These representations 11

of distance facilitate generalization, allowing for predictions about novel stimuli based 12

on their similarity to previous experiences. Here, we ask to what extent does the search 13

for rewards depend on the same distance-dependent generalization across domains, 14

despite potential differences in how spatial and non-spatial stimuli and their similarities 15

may be processed? 16

We formalize a computational model that incorporates distance-dependent 17

generalization and test it in a within-subject experiment, where either spatial features or 18

abstract conceptual features are predictive of rewards. This allows us to study learning, 19

decision making, and exploration in spatial versus conceptual domains, in order to gain 20

insights into the organizational structure of cognitive representations in both domains. 21

Whereas early psychological theories described reinforcement learning as merely 22

developing an association between stimuli, responses, and rewards [15–17], more recent 23

studies have recognized that the structure of representations plays an important role in 24

making value-based decisions [11,18] and is particularly important for knowing how to 25

generalize from limited data to novel situations [19,20]. This idea dates back to Tolman, 26

who famously argued that both rats and humans extract a “cognitive map” of the 27

environment [21]. This cognitive map encodes relationships between experiences or 28

options, such as the distances between locations in space [22], and — crucially — 29

facilitates flexible planning and generalization. While cognitive maps were first 30
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identified as representations of physical spaces, Tolman hypothesized that similar 31

principles may underlie the organization of knowledge in broader and more complex 32

cognitive domains [21]. 33

As was the case with Tolman, neuroscientific evidence for a cognitive map was 34

initially found in the spatial domain, in particular, with the discovery of spatially 35

selective place cells in the hippocampus [23,24] and entorhinal grid cells that fire along 36

a spatial hexagonal lattice [25]. Together with a variety of other specialized cell types 37

that encode spatial orientation [26, 27], boundaries [28, 29], and distances to objects [30], 38

this hippocampal-entorhinal machinery is often considered to provide a cognitive map 39

facilitating navigation and self-location. Yet more recent evidence has shown that the 40

same neural mechanisms are also active when reasoning about more abstract, 41

conceptual relationships [31–36], characterized by arbitrary feature dimensions [37] or 42

temporal relationships [38,39]. For example, using a technique developed to detect 43

spatial hexagonal grid-like codes in fMRI signals [40], Constantinescu et al. found that 44

human participants displayed a pattern of activity in the entorhinal cortex consistent 45

with mental travel through a 2D coordinate system defined by the length of a bird’s legs 46

and neck [9]. Similarly, the same entorhinal-hippocampal system has also been found to 47

reflect the graph structure underlying sequences of stimuli [10] or the structure of social 48

networks [41], and even to replay non-spatial representations in the sequential order that 49

characterized a previous decision-making task [42]. At the same time, much evidence 50

indicates that cognitive map-related representations are not limited to medial temporal 51

areas, but also include ventral and orbital medial prefrontal areas [9, 11,40,43–45]. 52

Based on these findings, we asked whether learning and searching for rewards in 53

spatial and conceptual domains is governed by similar computational principles. Using a 54

within-subject design comparing spatial and non-spatial reward learning, we tested 55

whether participants used perceptual similarities in the same way as spatial distances to 56

generalize from previous experiences and inform the exploration of novel options. To 57

ensure commensurate stimuli discriminability between domains, participants completed 58

a training phase where they were required to reach the same level of proficiency in 59

correctly matching a series of target stimuli (see Methods; Fig. 1c). In both domains, 60

rewards were correlated (see Fig. S2), such that nearby or similar options tended to 61

yield similar rewards. To model how participants generalize and explore using either 62

perceptual similarities or spatial distances,we used Gaussian Process (GP) 63

regression [46,47] as a Bayesian model of generalization based on the principle of 64

function learning. The Bayesian predictions of the GP model generalize about novel 65

options using a common notion of similarity across domains, and provide estimates of 66

expected reward and uncertainty. We tested out-of-sample predictions of the GP model 67

against a Bayesian learner that incorporates uncertainty-guided exploration but without 68

generalization, and investigated differences in parameters governing value-based decision 69

making and uncertainty-directed exploration [48–50]. 70

Participant performance was correlated across tasks and was best captured by the 71

GP model in both domains. We were also able to reliably predict participant judgments 72

about unobserved options based on parameters estimated from the bandit task. Whereas 73

the model parameters indicated similar levels of generalization in both domains, we 74

found lower levels of directed exploration in the conceptual domain, where participants 75

instead showed increased levels of random exploration. Moreover, we also observed an 76

asymmetric task order effect, where performing the spatial task first boosted 77

performance on the conceptual task but not vice versa. These findings provide a clearer 78

picture of both the commonalities and differences in how people reason about and 79

represent both spatial and abstract phenomena in complex reinforcement learning tasks. 80
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Results 81
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Fig 1. Experiment design. a) In the spatial task, options were defined as a highlighted
square in a 8× 8 grid, where the arrow keys were used to move the highlighted location.
b) In the conceptual task, each option was represented as a Gabor patch, where the
arrow keys changed the tilt and the number of stripes (Fig S1). Both tasks
corresponded to correlated reward distributions, where choices in similar locations or
having similar Gabor features predicted similar rewards (Fig S2). c) The same design
was used in both tasks. Participants first completed a training phase where they were
asked to match a series of target stimuli. This used the same inputs and stimuli as the
main task, where the arrow keys modified either the spatial or conceptual features, and
the spacebar was used to make a selection. After reaching the learning criterion of at
least 32 training trials and a run of 9 out of 10 correct, participants were shown
instructions for the main task and asked to complete a comprehension check. The main
task was 10 rounds long, where participants were given 20 selections in each round to
maximize their cumulative reward (shown in panels a and b). The 10th round was a
“bonus round” where after 15 selections participants were asked to make 10 judgments
about the expected reward and associated uncertainty for unobserved stimuli from that
round. After judgments were made, participants selected one of the options, observed
the reward, and continued the round as usual.
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129 participants searched for rewards in two successive multi-armed bandit tasks 82

(Fig 1). The spatial task was represented as an 8× 8 grid, where participants used the 83

arrow keys to move a highlighted square to one of the 64 locations, with each location 84

representing one option (i.e., arm of the bandit). The conceptual task was represented 85

using Gabor patches, where a single patch was displayed on the screen and the arrow 86

keys changed the tilt and stripe frequency (each having 8 discrete values; see Fig. S1), 87

providing a non-spatial domain where similarities are relatively well defined. Each of 88

the 64 options in both tasks produced normally distributed rewards, where the means of 89

each option were correlated, such that similar locations or Gabor patches with similar 90

stripes and tilts yielded similar rewards (Fig. S2), thus providing traction for 91

similarity-guided generalization and search. The strength of reward correlations were 92

manipulated between subjects, with one half assigned to smooth environments (with 93

higher reward correlations) and the other assigned to rough environments (with lower 94

reward correlations). Importantly, both classes of environments had the same 95

expectation of rewards across options. 96

The spatial and conceptual tasks were performed in counter-balanced order, with 97

each task consisting of an initial training phase (see Methods) and then 10 rounds of 98

bandits. Each round had a different reward distribution (drawn without replacement 99

from the assigned class of environments), and participants were given 20 choices to 100

acquire as many points as possible (later converted to monetary rewards). The search 101

horizon was much smaller than the total number of options and therefore induced an 102

explore-exploit dilemma and motivated the need for generalization and efficient 103

exploration. The last round of each task was a “bonus round”, where after 15 choices, 104

participants were shown 10 unobserved options (selected at random) and asked to make 105

judgments about the expected reward and their level of confidence (i.e., uncertainty 106

about the expected rewards). These judgments were used to validate the internal belief 107

representations of our models. All data and code, including interactive notebooks 108

containing all analyses in the paper, is publicly available at 109

https://github.com/charleywu/cognitivemaps. 110

Computational Models of Learning, Generalization, and Search 111

Multi-armed bandit problems [51,52] are a prominent framework for studying learning, 112

where various reinforcement learning (RL) models [14] are used to model the learning of 113

reward valuations and to predict behavior. A common element of most RL models is 114

some form of prediction-error learning [53,54], where model predictions are updated 115

based on the difference between the predicted and experienced outcome. One classic 116

example of learning from prediction errors is the Rescorla-Wagner [54] model, in which 117

the expected reward V (·) of each bandit is described as a linear combination of weights 118

wt and a one-hot stimuli vector xt representing the current state st: 119

V (xt) = w>t xt (1)

wt+1 = wt + ηδtxt (2)

Learning occurs by updating the weights w as a function of the prediction error 120

δt = rt − V (xt), where rt is the observed reward, V (xt) is the reward expectation, and 121

0 < η ≤ 1 is the learning rate parameter. In our task, we used a Bayesian Mean Tracker 122

(BMT) as a Bayesian variant of the Rescorla-Wagner model [54,55]. Rather than 123

making point estimates of reward, the BMT makes independent and normally 124

distributed predictions V (si,t) ∼ N (mi,t, vi,t) for each state si,t, which are 125

characterized by a mean m and variance v and updated on each trial t via the delta rule 126

(see Methods for details). 127
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Generalization using Gaussian process regression 128

Yet, an essential aspect of human cognition is the ability to generalize from limited 129

experiences to novel options. Rather than learning independent reward representations 130

for each state, we adopt a function learning approach to generalization [19,56], where 131

continuous functions represent candidate hypotheses about the world, mapping the 132

space of possible options to some outcome value. For example, a function can map how 133

pressure on the gas pedal is related to the acceleration of a car, or how different 134

amounts of water and fertilizer influence the growth rate of a plant. Crucially, the 135

learned mapping provides estimates even for outcomes that have not been observed, by 136

interpolating or extrapolating from previous experiences. 137

While the literature on how humans explicitly learn functions extends back to the 138

1960s [57], more recent approaches have proposed Gaussian Process (GP) regression [46] 139

as a candidate model of human function learning [58–60]. GPs unite previous proposals 140

of rule-based [61, i.e., learning the weights of a particular parametric function] and 141

exemplar-based theories [62, i.e., neural networks predicting similar inputs will produce 142

similar outputs], while also predicting the perceived difficulty of learning different 143

functions [63] and explaining biases in how people extrapolate from limited data [58]. 144

Formally, a GP defines a multivariate-normal distribution P (f) over possible value 145

functions f(s) that map inputs s to output y = f(s). 146

P (f) ∼ GP (m(s), k(s, s′)) (3)

The GP is fully defined by the mean function m(s), which is frequently set to 0 for 147

convenience without loss of generality [46], and kernel function k(s, s′) encoding prior 148

assumptions (or inductive biases) about the underlying function. Here we use the radial 149

basis function (RBF) kernel: 150

k(s, s′) = exp

(
−||s− s

′||2

2λ2

)
(4)

encoding similarity as a smoothly decaying function of the squared Euclidean distance 151

between stimuli s and s′, measured either in spatial or conceptual distance. The 152

length-scale parameter λ encodes the rate of decay, where larger values correspond to 153

broader generalization over larger distances. 154

Given a set of observations Dt = [st,yt] about previously observed states and
associated rewards, the GP makes normally distributed posterior predictions for any
novel stimuli s?, defined in terms of a posterior mean and variance:

m(s?|Dt) = K(s?, st)
[
K(st, st) + σ2

ε I
]−1

yt (5)

v(s?|Dt) = k(s?, s?)−K(s?, st)
[
K(st, st) + σ2

ε I
]−1

K(st, s
?) (6)

The posterior mean corresponds to the expected value of s? while the posterior variance 155

captures the underlying uncertainty in the prediction. Note that the posterior mean can 156

also be rewritten as a similarity-weighted sum: 157

m(s?|Dt) =
t∑
i=1

wik(s?, si) (7)

where each si is a previously observed input in st and the weights are collected in the 158

vector w =
[
K(st, st) + σ2

ε I
]−1

yt. Intuitively, this means that GP regression is 159

equivalent to a linearly weighted sum, but uses basis functions k(·, ·) that project the 160

inputs into a feature space, instead of the discrete state vectors. To generate new 161
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predictions, every observed reward yi in yt is weighted by the similarity of the 162

associated state si to the candidate state s? based on the kernel similarity. This 163

similarity-weighted sum (Eq 7) is equivalent to a RBF network [64], which has featured 164

prominently in machine learning approaches to value function approximation [14] and as 165

a theory of the neural architecture of human generalization [65] in vision and motor 166

control. 167

Uncertainty-directed exploration 168

In order to transform the Bayesian reward predictions of the BMT and GP models into 169

predictions about participant choices, we use upper confidence bound (UCB) sampling 170

together with a softmax choice rule as a combined model of both directed and random 171

exploration [19,49,50]. 172

UCB sampling uses a simple weighted sum of expected reward and uncertainty:

qUCB(s) = m(s) + β
√
v(s) (8)

to compute a value q for each option s, where the exploration bonus β determines how 173

to trade off exploring highly uncertain options against exploiting high expected rewards. 174

This simple heuristic—although myopic—produces highly efficient learning by 175

preferentially guiding exploration towards uncertain yet promising options, making it 176

one of the only algorithms with known performance bounds in Bayesian 177

optimization [66]. Recent studies have provided converging evidence for directed 178

exploration in human behavior across a number of domains [19,49,67–69]. 179

The UCB values are then put into a softmax choice rule: 180

P (si) =
exp (q(si)/τ)∑
j exp (q(sj)/τ)

(9)

where the temperature parameter τ controls the amount of random exploration. Higher 181

temperature sampling leads to more random choice predictions, with τ →∞ converging 182

on uniform sampling. Lower temperature values make more precise predictions, where 183

τ → 0 converges on an arg max choice rule. Taken together, the exploration bonus β 184

and temperature τ parameters estimated on participant data allow us to assess the 185

relative contributions of directed and undirected exploration, respectively. 186

Behavioral Results 187

After pre-training participants were highly proficient in discriminating the stimuli, 188

achieving at least 90% accuracy in both domains (see Fig. S3). Participants were also 189

successful in both bandit tasks, achieving much higher rewards than chance in both 190

conceptual (one-sample t-test: t(128) = 24.6, p < .001, d = 2.2, BF > 100) and spatial 191

tasks (t(128) = 34.6, p < .001, d = 3.0, BF > 100; Fig. 2a)1. In addition, participants 192

could also leverage environmental structure in both domains. Using a two-way mixed 193

ANOVA, we found that both environment (smooth vs. rough: F (1, 127) = 9.4, p = .003, 194

η2 = .05, BF = 13) and task (spatial vs. conceptual: F (1, 127) = 35.8, p < .001, 195

η2 = .06, BF > 100) influenced performance. The stronger reward correlations present 196

in smooth environments facilitated higher performance (two sample t-test: t(127) = 3.1, 197

p = .003, d = 0.5, BF = 12), even though both environments had the same expected 198

reward. 199

While performance was strongly correlated between the spatial and conceptual tasks 200

(Pearson’s r = .53, p < .001, BF > 100; Fig. 2b), participants performed systematically 201

1Bayes Factors (BF ) accompany each frequentist test to indicate the evidence against a specified
null hypothesis. See Methods for further details.
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Fig 2. Behavioral results. a) Mean reward in each task, where each dot is a participant
and lines connect the same participant across tasks. Tukey boxplots show median
(horizontal line) and 1.5x IQR, while diamonds indicate the group mean. The dashed
line indicates chance performance. Bayes Factors (BF ) indicate the evidence against a
specified null hypothesis for either two sample (rough vs. smooth) or paired (conceptual
vs. spatial) t-tests (see Methods). b) Correspondence between tasks, where each dot
represents the average reward of a single participant and the dotted line indicates y = x.
c) Task order effect, where experience with spatial search boosted performance on
conceptual search, but not vice versa. Bayes factors correspond to paired t-tests. d)
Average learning curves over trials, showing the mean (line) and standard error (ribbon)
aggregated across rounds and participants. The dashed line indicates chance
performance. e) The Manhattan distance between selections compared to a random
baseline (black line). f) Distance between selections as a function of the previous
observed reward value, showing the aggregate means (points) and the group-level
predictions of a mixed-effects regression (Table S1), where the ribbons indicate the 95%
CI.

better in the spatial version (paired t-test: t(128) = 6.0, p < .001, d = 0.5, BF > 100). 202

This difference in task performance can largely be explained by a one-directional transfer 203

effect (Fig. 2c). Participants performed better on the conceptual task after having 204

experienced the spatial task (t(127) = 2.8, p = .006, d = 0.5, BF = 6.4). This was not 205

the case for the spatial task, where performance did not differ whether performed first 206

or second (t(127) = −1.7, p = .096, d = 0.3, BF = .67). Thus, experience with spatial 207

search boosted performance on conceptual search, but not vice versa. 208

Participants learned effectively within each round and obtained higher rewards with 209

each successive choice (Pearson correlation between reward and trial: r = .88, p < .001, 210
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BF > 100; Fig 2d). We also found evidence for learning across rounds in the spatial 211

task (Pearson correlation between reward and round: r = .91, p < .001, BF = 15), but 212

not in the conceptual task (r = .58, p = .104, BF = 1.5). 213

Patterns of search also differed across domains. Comparing the average Manhattan 214

distance between consecutive choices in a two-way mixed ANOVA showed an influence 215

of task (within: F (1, 127) = 13.8, p < .001, η2 = .02, BF = 67) but not environment 216

(between: F (1, 127) = 0.12, p = .73, η2 = .001, BF = 0.25, Fig. 2e). This reflected that 217

participants searched in smaller step sizes in the spatial task (t(128) = −3.7, p < .001, 218

d = 0.3, BF = 59), corresponding to a more local search strategy, but did not adapt 219

their search distance to the environment. Note that each trial began with a randomly 220

sampled initial stimuli, such that participants did not begin near the previous selection 221

(see Methods). The bias towards local search (one-sample t-test comparing search 222

distance against chance: t(128) = −16.3, p < .001, d = 1.4, BF > 100) is therefore not 223

a side effect of the task characteristics, but both purposeful and effortful (see Fig S4 for 224

additional analysis of search trajectories). 225

Participants also adapted their search patterns based on reward values (Fig. 2f), 226

where lower rewards predicted a larger search distance on the next trial (correlation 227

between previous reward and search distance: r = −.66, p < .001, BF > 100). We 228

analyzed this relationship using a Bayesian mixed-effects regression, where we found 229

previous reward value to be a reliable predictor of search distance (bprevReward = −0.06, 230

95% HPD: [−0.06,−0.06]; see Table S1), while treating participants as random effects. 231

This provides initial evidence for generalization-like behavior, where participants 232

actively avoided areas with poor rewards and stayed near areas with rich rewards. 233

In summary, we find correlated performance across tasks, but also differences in both 234

performance and patterns of search. Participants were boosted by a one-directional 235

transfer effect, where experience with the spatial task improved performance on the 236

conceptual task, but not the other way around. In addition, participants made larger 237

jumps between choices in the conceptual task and searched more locally in the spatial 238

task. However, participants adapted these patterns in both domains in response to 239

reward values, where lower rewards predicted a larger jump to the next choice. 240

Modeling Results 241

To better understand how participants navigated the spatial and conceptual tasks, we 242

used computational models to predict participant choices and judgments. Both GP and 243

BMT models implement directed and undirected exploration using the UCB exploration 244

bonus β and softmax temperature τ as free parameters. The models differed in terms of 245

learning, where the GP generalized about novel options using the length-scale parameter 246

λ to modulate the extent of generalization over spatial or conceptual distances, while 247

the BMT learns the rewards of each option independently (see Methods). 248

Both models were estimated using leave-one-round-out cross validation, where we 249

compare goodness of fit using out-of-sample prediction accuracy, described using a 250

pseudo-R2 (Fig 3a). The differences between models were reliable and meaningful, with 251

the GP model making better predictions than the BMT in both the conceptual 252

(t(128) = 3.9, p < .001, d = 0.06, BF > 100) and spatial tasks (t(128) = 4.3, p < .001, 253

d = 0.1, BF > 100). In total, the GP model best predicted 85 participants in the 254

conceptual task and 93 participants in the spatial task (out of 129 in total). Comparing 255

this same out-of-sample prediction accuracy using a Bayesian model selection 256

framework [70,71] confirmed that the GP had the highest posterior probability 257

(corrected for chance) of being the best model in both tasks (protected exceedance 258

probability; conceptual: pxp(GP, conceptual) = .997; spatial: pxp(GP, spatial) = 1.000; 259

Fig 3b). The superiority of the GP model suggests that generalization about novel 260
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Fig 3. Modeling results. a) Predictive accuracy of each model, where 1 is a perfect
model and 0 is equivalent to chance. Each dot is a single participant, with lines
indicating the difference between models. Tukey boxplot shows the median (line) and
1.5 IQR, with the group mean indicated as a diamond. b) Protected Exceedence
Probability (pxp), which provides a hierarchical estimate of model prevalence in the
population (corrected for chance). c) Simulated learning curves. Each line is the
averaged performance over 10,000 replications, where we sampled participant parameter
estimates and simulated behavior on the task. The pink line is the group mean of our
human participants, while the black line provides a random baseline. d) Simulation
results from panel c aggregated over trials, where the height of the bar indicates average
reward. e) GP parameter estimates from the conceptual (x-axis) and spatial (y-axis)
tasks. Each point is the mean estimate for a single participant and the dotted line
indicates y = x. For readability, the x- and y-axis limits are set to Tukey’s upper fence
(Q3 + 1.5×IQR) for the larger of the two dimensions, but all statistics are performed on
the full data.

options via the use of structural information played a guiding role in how participants 261

searched for rewards (see Fig S6 for additional analyses). 262

Learning Curves 263

To confirm that the GP model indeed captured learning behavior better in both tasks, 264

we simulated learning curves from each model using participant parameter estimates 265

(Fig. 3c; see Methods). The GP model achieved human-like performance in all tasks 266
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and environments (comparing aggregate GP and human learning curves: conceptual 267

MSE=17.7; spatial MSE=16.6), whereas BMT learning curves were substantially less 268

similar (conceptual MSE=150.6; spatial MSE=330.7). In addition, the GP captured the 269

same qualitative difference between domains and environments as our human 270

participants (Fig. 3d), with better performance in conceptual vs. spatial, and smooth vs. 271

rough. These patterns were not present in the BMT or random simulations. 272

Parameter Estimates 273

To understand how generalization and exploration differed between domains, Fig. 3e 274

compares the estimated model parameters from the conceptual and spatial tasks. The 275

GP model had three free parameters: the extent of generalization (λ) of the RBF kernel, 276

the exploration bonus (β) of UCB sampling, and the temperature (τ) of the softmax 277

choice rule (see Fig. S9 for BMT parameters). Note that the exploration bonus captures 278

exploration directed towards uncertainty, whereas temperature captures random, 279

undirected exploration, which have been shown to be distinct and recoverable 280

parameters [19,69]. 281

We do not find reliable differences in λ estimates across tasks (Wilcoxon signed-rank 282

test: Z = −1.2, p = .115, r = −.11, BF = .13). In all cases, we observed lower levels of 283

generalization relative to the true generative model of the underlying reward 284

distributions (λrough = 2, λsmooth = 4; min-BF = 1456), replicating previous 285

findings [19] that found undergeneralization to be largely beneficial in similar settings. 286

Generalization was anecdotally correlated across tasks (Kendall rank correlation: 287

rτ = .13, p = .028, BF = 1.3), providing weak evidence that participants tended to 288

generalize similarly across domains. 289

Whereas generalization was similar between tasks, there were intriguing differences 290

in exploration. We found substantially lower exploration bonuses (β) in the conceptual 291

task (Z = −5.0, p < .001, r = −.44, BF > 100), indicating a large reduction of directed 292

exploration, relative to the spatial task. At the same time, there was an increase in 293

temperature (τ) in the conceptual task (Z = 6.9, p < .001, r = −.61, BF > 100), 294

corresponding to an increase in random, undirected exploration. Despite these 295

differences, we find some evidence of correlations across tasks for directed exploration 296

(rτ = .18, p = .002, BF = 13) and substantial evidence for correlations between random 297

exploration across domains (rτ = .43, p < .001, BF > 100). 298

Thus, participants displayed similar and somewhat correlated levels of generalization 299

in both tasks, but with markedly different patterns of exploration. Whereas participants 300

engaged in typical levels of directed exploration in the spatial domain (replicating 301

previous studies [19,69]), they displayed reduced levels of directed exploration in the 302

conceptual task, substituting instead an increase in undirected exploration. Again, this 303

is not due to a lack of effort, because participants made longer search trajectories in the 304

conceptual domain (see Fig S4a). Rather, this indicates a fundamental difference in how 305

people represent or reason about spatial and conceptual domains in order to decide 306

which are the most promising options to explore. 307

Bonus Round 308

In order to further validate our behavioral and modeling results, we analyzed 309

participants’ judgments of expected rewards and perceived confidence for 10 unobserved 310

options they were shown during the final “bonus” round of each task (see Methods and 311

Fig. 1c). Participants made equally accurate judgments in both tasks (comparing mean 312

absolute error: t(128) = −0.2, p = .827, d = 0.02, BF = .10; Fig. 4a), which were far 313

better than chance (conceptual: t(128) = −9.2, p < .001, d = 0.8, BF > 100; spatial: 314

t(128) = −8.4, p < .001, d = 0.7, BF > 100) and correlated between tasks (r = .27, 315

May 1, 2020 11/39

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 2, 2020. ; https://doi.org/10.1101/2020.01.21.914556doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.21.914556
http://creativecommons.org/licenses/by-nc-nd/4.0/


BF=0.10

0

20

40

60

Conceptual
Task

Spatial
Task

P
ar

tic
ip

an
t E

rr
or

 (
M

A
E

)

a BF=0.13

3

6

9

Conceptual
Task

Spatial
Task

C
on

fid
en

ce

b

Conceptual Task Spatial Task

0 25 50 75 100 0 25 50 75 100

0

25

50

75

100

Participant Estimate

M
od

el
 E

st
im

at
e

GP

BMT

c Conceptual Task Spatial Task

2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0

3

4

5

6

7

Participant Confidence (rank order)

G
P

 U
nc

er
ta

in
ty

 (
ra

nk
 o

rd
er

) GP

d

Fig 4. Bonus Round. a) Mean absolute error (MAE) of judgments in the bonus round,
where each dot is a single participant and lines connect performance across tasks. Tukey
boxplot show median and 1.5× IQR, with the diamonds indicating group mean and the
dashed line providing a comparison to chance. Bayes factor indicates the evidence
against the null hypothesis for a paired t-test. b) Average confidence ratings (Likert
scale: [0,10]). c) Comparison between participant judgments and model predictions
(based on the parameters estimated from the search task). Each point is a single
participant judgment, with colored lines representing the predicted group-level effect of
a mixed effect regression (Table S2 and ribbons showing the 95% CI (undefined for the
BMT model, which makes identical predictions for all unobserved options). d)
Correspondence between participant confidence ratings and GP uncertainty, where both
are rank-ordered at the individual level. Black dots show aggregate means and 95% CI,
while the colored line is a linear regression.

p = .002, BF = 20). Judgment errors were also correlated with performance in the 316

bandit task (r = −.45, p < .001, BF > 100), such that participants who earned higher 317

rewards also made more accurate judgments. 318

Participants were equally confident in both domains (t(128) = −0.8, p = .452, 319

d = 0.04, BF = .13; Fig. 4b), with correlated confidence across tasks (r = .79, p < .001, 320

BF > 100), suggesting some participants were consistently more confident than others. 321

Ironically, more confident participants also had larger judgment errors (r = .31, p < .001, 322

BF = 91) and performed worse in the bandit task (r = −.28, p = .001, BF = 28). 323

Using parameters estimates from the search task (excluding the entire bonus round), 324

we computed model predictions for each of the bonus round judgments as an out-of-task 325

prediction analysis. Whereas the BMT invariably made the same predictions for all 326

unobserved options since it does not generalize (Fig. 4c), the GP predictions were 327

correlated with participant judgments in both conceptual (mean individual correlation: 328

r̂ = .35; single sample t-test of z-transformed correlation coefficients against µ = 0: 329

t(128) = 11.0, p < .001, d = 1.0, BF > 100) and spatial tasks (r̂ = .43; t(128) = 11.0, 330

p < .001, d = 1.0, BF > 100). This correspondence between human judgments and 331

model predictions was also confirmed using a Bayesian mixed effects model, where we 332

again treated participants as random effects (bparticipantJudgment = .82, 95% HPD: [0.75, 333

0.89]; see Table S2 for details). 334

Not only was the GP able to predict judgments about expected reward, but it also 335
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captured confidence ratings. Fig 4d shows how the highest confidence ratings 336

corresponded to the lowest uncertainty estimates made by the GP model. This effect 337

was also found in the raw data, where we again used a Bayesian mixed effects model to 338

regress confidence judgments onto the GP uncertainty predictions 339

(bparticipantJudgment = −0.02, 95% HPD: [-0.02, -0.01]; see Table S2). 340

Thus, participant search behavior was consistent with our GP model and we were 341

also able to make accurate out-of-task predictions about both expected reward and 342

confidence judgments using parameters estimated from the search task. These 343

predictions validate the internal learning model of the GP, since reward predictions 344

depend only on the generalization parameter λ. All together, our results suggest domain 345

differences were not due to differences in how participants computed or represented 346

expected reward and uncertainty, since they were equally good judging at their 347

uncertainty in the bonus rounds for both domains. Rather, these diverging patterns of 348

search arose from differences in exploration, where participants substantially reduced 349

their level of exploration directed towards uncertain options in the conceptual domain. 350

Discussion 351

Previous theories of cognitive maps [21,32–34] have argued that reasoning in abstract 352

domains follows similar computational principles as in spatial domains, for instance, 353

sharing a common approach to computing similarities between experiences. These 354

accounts imply that the shared notion of similarity should influence how people 355

generalize from past outcomes, and also how they balance between sampling new and 356

informative options as opposed to known options with high expected rewards. 357

Here, we investigated to what extent learning and searching for rewards are governed 358

by similar computational principles in spatial and conceptual domains. Using a 359

within-subject design, we studied participant behavior in both spatially and 360

conceptually correlated reward environments. Comparing different computational 361

models of learning and exploration, we found that a Gaussian Process (GP) model that 362

incorporated distance-based generalization, and hence a cognitive map of similarities, 363

best predicted participants behavior in both domains. In both domains, our parameter 364

estimates indicated equivalent levels of generalization. Using these parameters, our 365

model was able to simulate human-like learning curves and make accurate out-of-task 366

predictions about participant reward estimations and confidence ratings in a final bonus 367

round. This model-based evidence for similar distance-based decision making in both 368

domains was also in line with our behavioral results. Performance was correlated across 369

domains and benefited from higher outcome correlations between similar bandit options 370

(i.e., smooth vs. rough). Subsequent choices tended to be more local than expected by 371

chance, and similar options where more likely to be chosen after a high reward than a 372

low reward outcome. 373

In addition to revealing similarities, our modelling and behavioral analyses provided 374

a diagnostic lens into differences between spatial and conceptual domains. Whereas we 375

found similar levels of generalization in both tasks, patterns of exploration were 376

substantially different. Although participants showed clear signs of directed exploration 377

(i.e., seeking out more uncertain options) in the spatial domain, this was notably 378

reduced in the conceptual task. However, as if in compensation, participants increased 379

their random exploration in the conceptual task. This implies a reliable shift in 380

sampling strategies but not in generalization. Thus, even though the computational 381

principles underpinning reasoning in both domains are indeed similar, how these 382

computations are mapped onto actions can vary substantially. Moreover, participants 383

obtained more rewards and sampled more locally in the spatial domain. We also find a 384

one-directional transfer effect, where experience with the spatial task boosted 385
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performance on the conceptual task, but not vice versa. These findings shed new light 386

onto the computational mechanisms of generalization and decision making, suggesting a 387

universality of generalization and a situation-specific adaptation of decision making 388

policies. 389

Related work 390

Our findings also contribute to a number of other cognitive models and theories. 391

According to the successor representation (SR; [18]) framework, hippocampal cognitive 392

maps reflect predictions of expected future state occupancy [72–74]. This provides a 393

similarity metric based on transition dynamics, where an analytic method for 394

computing the SR in closed form is to assume random transitions through the state 395

space. This assumption of a random policy produces a nearly identical similarity metric 396

as the RBF kernel [75], with exact equivalencies in certain cases [76]. 397

However, the SR can also be learned online using the Temporal-Difference learning 398

algorithm, leading to asymmetric representations of distance that are skewed by the 399

distance of travel [72,77]. Recent work building on Kohonen maps has also suggested 400

that the distribution of the experienced stimuli in feature space will have implications 401

for the activation profiles of grid cells and the resulting cognitive map [78]. 402

In our current study, we have focused on the simplifying case of a cognitive map 403

learned through a random policy. This context was induced by having stimuli uniformly 404

distributed over the search space and using a training phase involving extensive and 405

random trajectories over the search space (i.e., matching random targets from random 406

starting points). While this assumption is not always met in real life domains, it 407

provides a useful starting point and allows us to reciprocally compare behavior in 408

spatial and conceptual domains. 409

Previous work has also investigated transfer across domains [79], where inferences 410

about the transition structure in one task can be generalized to other tasks. Whereas 411

we used identical transition structures in both tasks, we nevertheless found asymmetric 412

transfer between domains. A key question underlying the nature of transfer is the 413

remapping of representations [80,81], which can be framed as a hidden state-space 414

inference problem. Different levels of prior experience with the spatial and conceptual 415

stimuli could give rise to different preferences for reuse of task structure as opposed to 416

learning a novel structure. This may be a potential source of the asymmetric transfer 417

we measured in task performance. 418

Additionally, clustering methods (e.g., [78]) can also provide local approximations of 419

GP inference by making predictions about novel options based on the mean of a local 420

cluster. For instance, a related reward-learning task on graph structures [75] found that 421

a k-nearest neighbors model provided a surprisingly effective heuristics for capturing 422

aspects of human judgments and decisions. However, a crucial limitation of any 423

clustering models is it would be incapable of learning and extrapolating upon any 424

directional trends, which is a crucial feature of human function learning [58,59]. 425

Alternatively, clustering could also play a role in approximate GP inference [82], by 426

breaking up the inference problem into smaller chunks or by considering only a subset of 427

inputs. Future work should explore the question of how human inference scales with the 428

complexity of the data. 429

Lastly, the question of “how the cognitive map is learned” is distinct from the 430

question of “how the cognitive map is used”. Here, we have focused on the latter, and 431

used the RBF kernel to provide a map based on the assumption of random transitions, 432

similar to a random-policy implementation of the SR. While both the SR and GP 433

provide a theory of how people utilize a cognitive map for performing predictive 434

inferences, only the GP provides a theory about representations of uncertainty via 435

Bayesian predictions of reward. These representations of uncertainty are a key feature 436
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that sets the GP apart from the SR. Psychologically, GP uncertainty estimates 437

systematically capture participant confidence judgments and provide the basis for 438

uncertainty-directed exploration. This distinction may also be central to the different 439

patterns of search we observed in spatial and non-spatial domains, where a reduction in 440

uncertainty-directed exploration may also reflect computational differences in the 441

structure of inference. However, the exact nature of these representations remains an 442

open question for future neuroimaging research. 443

Future directions 444

Several questions about the link between cognitive maps across domains remain 445

unanswered by our current study and are open for future investigations. Why did we 446

find differences in exploration across domains, even though the tasks were designed to 447

be as equivalent as possible, including requiring commensurate stimuli discriminability 448

during the pre-task training phase? Currently, our model can capture but not fully 449

explain these differences in search behavior, since it treats both domains as equivalent 450

generalization and exploration problems. 451

One possible explanation is a different representation of spatial and non-spatial 452

information, or different computations acting on those representations. Recent 453

experimental work has demonstrated that representations of spatial and non-spatial 454

domains may be processed within the same neural systems [9, 12], suggesting 455

representational similarities. But in our study it remains possible that different patterns 456

of exploration could instead result from a different visual presentation of information in 457

the spatial and the non-spatial task. It is, for example, conceivable that exploration in a 458

(spatially or non-spatially) structured environment depends on the transparency of the 459

structure in the stimulus material, or the alignment of the input modality. In our case 460

the spatial structure was embedded in the stimulus itself, whereas the conceptual 461

structure was not. Additionally, the arrow key inputs may have been more intuitive for 462

manipulating the spatial stimuli. While generalization could be observed in both 463

situations, directed exploration might require more explicitly accessible information 464

about structural relationships or be facilitated by more intuitively mappable inputs. 465

Previous work used a task where both spatial and conceptual features were 466

simultaneously presented [83, i.e., conceptual stimuli were shuffled and arranged on a 467

grid], yet only spatial or only conceptual features predicted rewards. However, 468

differences in the saliency of spatial and conceptual features meant participants were 469

highly influenced by spatial features, even when they were irrelevant. This present 470

study was designed to overcome these issues by presenting only task-specific features, 471

yet future work should address the computational features that allow humans to 472

leverage structured knowledge of the environment to guide exploration. 473

Our model also does not account for attentional mechanisms [84] or working memory 474

constraints [85,86], which may play a crucial role in influencing how people integrate 475

information differently across domains [87]. To ask whether feature integration is 476

different between domains, we implemented a variant of our GP model using a Shepard 477

kernel [64], which used an additional free parameter estimating the level of integration 478

between the two feature dimensions (Fig. S10). This model did not reveal strong 479

differences in feature integration, yet replicated our main findings with respect to 480

changes in exploration. Additional analyses showed asymmetries in attention to 481

different feature dimensions, which was an effect modulated by task order (Fig. S4d-f). 482

Task order also modulated performance differences between domains, which only 483

appeared when the conceptual task was performed before the spatial task (Fig. 2c). 484

Experience with the spatial task version may have facilitated a more homogenous 485

mapping of the conceptual stimuli into a 2D similarity space, which in turn facilitated 486

performance. This asymmetric transfer may support the argument that spatial 487
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representations have been “exapted” to other more abstract domains [6–8]. For example, 488

experience of different resource distributions in a spatial search task was found to 489

influence behavior in a word generation task, where participants exposed to sparser 490

rewards in space generated sparser semantic clusters of words [88]. Thus, while both 491

spatial and conceptual knowledge are capable of being organized into a common 492

map-like representation, there may be something special or central about spatial 493

encoding [89], producing domain differences in terms of the ease of learning such a map 494

and asymmetries in the transfer of knowledge. Future research should investigate this 495

phenomenon with alternative models that make stronger assumptions about 496

representational differences across domains. 497

We also found no differences in predictions and uncertainty estimates about unseen 498

options in the bonus round. This means that participants generalized and managed to 499

track the uncertainties of unobserved options similarly in both domains, yet did not or 500

could not leverage their representations of uncertainty for performing directed 501

exploration as effectively in the conceptual task. Alternatively, differences in random 502

exploration could also arise from limited computational precision during the learning of 503

action values [90]. Thus, the change in random exploration we observed may be due to 504

different computational demands across domains. Similar shifts increases to random 505

exploration have also been observed under direct cognitive load manipulations, such as 506

by adding working memory load [91] or by limiting the available decision time [92]. 507

Finally, our current experiment only looked at similarities between spatial and 508

conceptual domains if the underlying structure was the same in both tasks. Future 509

studies could expand this approach across different domains such as logical 510

rule-learning, numerical comparisons, or semantic similarities. Additionally, structure 511

learned in one domain could be transferable to structures encountered in either the 512

same domain with slightly changed structures or even to totally different domains with 513

different structures. A truly all-encompassing model of generalization should capture 514

transfer across domains and structural changes. Even though several recent studies have 515

advanced our understanding of how people transfer knowledge across graph 516

structures [79], state similarities in multi-task reinforcement learning [93], and target 517

hypotheses supporting generalization [87], whether or not all of these recruit the same 518

computational principles and neural machinery remains to be seen. 519

Conclusion 520

We used a rich experimental paradigm to study how people generalize and explore both 521

spatially and conceptually correlated reward environments. While people employed 522

similar principles of generalization in both domains, we found a substantial shift in 523

exploration, from more uncertainty-directed exploration in the spatial task to more 524

random exploration in the conceptual domain. These results enrich our understanding 525

of the principles connecting generalization and search across different domains and pave 526

the way for future cognitive and neuroscientific investigations into principles of 527

generalization and search across domains. 528

Methods 529

Participants and Design 530

140 participants were recruited through Amazon Mechanical Turk (requiring a 95% 531

approval rate and 100 previously approved HITs) for a two part experiment, where only 532

those who had completed part one were invited back for part two. In total 129 533

participants completed both parts and were included in the analyses (55 female; mean 534
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age=35, SD=9.5). Participants were paid $4.00 for each part of the experiment, with 535

those completing both parts being paid an additional performance-contingent bonus of 536

up to $10.00. Participants earned $15.6 ± 1.0 and spent 54 ± 19 minutes completing 537

both parts. There was an average gap of 18 ± 8.5 hours between the two parts of the 538

experiment. The study was approved by the ethics committee of the Max Planck 539

Institute for Human Development and all participants gave written informed consent. 540

We varied the task order between subjects, with participants completing the spatial 541

and conceptual task in counterbalanced order in separate sessions. We also varied 542

between subjects the extent of reward correlations in the search space by randomly 543

assigning participants to one of two different classes of environments (smooth vs. rough), 544

with smooth environments corresponding to stronger correlations, and the same 545

environment class used for both tasks (see below). 546

Materials and Procedure 547

Each session consisted of a training phase, the main search task, and a bonus round. At 548

the beginning of each session participants were required to complete a training task to 549

familiarize themselves with the stimuli (spatial or conceptual), the inputs (arrow keys 550

and spacebar), and the search space (8× 8 feature space). Participants were shown a 551

series of randomly selected targets and were instructed to use the arrow keys to modify 552

a single selected stimuli (i.e., adjusting the stripe frequency and angle of a Gabor patch 553

or moving the location of a spatial selector, Fig. 1c) in order to match a target stimuli 554

displayed below. The target stayed visible during the trial and did not have to be held 555

in memory. The space bar was used to make a selection and feedback was provided for 556

800ms (correct or incorrect). Participants were required to complete at least 32 training 557

trials and were allowed to proceed to the main task once they had achieved at least 90% 558

accuracy on a run of 10 trials (i.e., 9 out of 10). See Fig S3 for analysis of the training 559

data. 560

After completing the training, participants were shown instructions for the main 561

search task and had to complete three comprehension questions (Figs S11-S12) to 562

ensure full understanding of the task. Specifically, the questions were designed to ensure 563

participants understood that the spatial or conceptual features predicted reward. Each 564

search task comprised 10 rounds of 20 trials each, with a different reward function 565

sampled without replacement from the set of assigned environments. The reward 566

function specified how rewards mapped onto either the spatial or conceptual features, 567

where participants were told that options with either similar spatial features (Spatial 568

task) [19,94] or similar conceptual features (Conceptual task) [20,56] would yield similar 569

rewards. Participants were instructed to accumulate as many points as possible, which 570

were later converted into monetary payoffs. 571

The tenth round of each sessions was a “bonus round”, with additional instructions 572

shown at the beginning of the round. The round began as usual, but after 15 choices, 573

participants were asked to make judgments about the expected rewards (input range: 574

[1,100]) and their level of confidence (Likert scale from least to most confident: [0,10]) 575

for 10 unrevealed targets. These targets were uniformly sampled from the set of 576

unselected options during the current round. After the 10 judgments, participants were 577

asked to make a forced choice between the 10 options. The reward for the selected 578

option was displayed and the round continued as normal. All behavioral and 579

computational modeling analyses exclude the last round, except for the analysis of the 580

bonus round judgments. 581
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Spatial and Conceptual Search Tasks 582

Participants used the arrow keys to either move a highlighted selector in the spatial task 583

or change the features (tilt and stripe frequency) of the Gabor stimuli in the conceptual 584

task (Fig S1). On each round, participants were given 20 trials to acquire as many 585

cumulative rewards as possible. A selection was made by pressing the space bar, and 586

then participants were given feedback about the reward for 800 ms, with the chosen 587

option and reward value added to the history at the bottom of the screen. At the 588

beginning of each trial, the starting position of the spatial selector or the displayed 589

conceptual stimulus was randomly sampled from a uniform distribution. Each reward 590

observation included normally distributed noise, ε ∼ N (0, 1), where the rewards for 591

each round were scaled to a uniformly sampled maximum value in the range of 80 to 95, 592

so that the value of the global optima in each round could not be easily guessed. 593

Participants were given feedback about their performance at the end of each round 594

in terms of the ratio of their average reward to the global maximum, expressed as a 595

percentage (e.g., “You have earned 80% of the maximum reward you could have earned 596

on this round”). The performance bonus (up to $10.00) was calculated based on the 597

cumulative performance of each round and across both tasks. 598

Bonus Round Judgments 599

In both tasks the last round was a “bonus round”, which solicited judgments about the 600

expected reward and their level of confidence for 10 unrevealed options. Participants 601

were informed that the goal of the task remained the same (maximize cumulative 602

rewards), but that after 15 selections, they would be asked to provide judgments about 603

10 randomly selected options, which had not yet been explored. Judgments about 604

expected rewards were elicited using a slider from 1 to 100 (in increments of 1), while 605

judgments about confidence were elicited using a slider from 0 to 10 (in increments of 606

1), with the endpoints labeled ‘Least confident’ and ‘Most confident’. After providing 607

the 10 judgments, participants were asked to select one of the options they just rated, 608

and subsequently completed the round like all others. 609

Environments 610

All environments were sampled from a GP prior parameterized with a radial basis 611

function (RBF) kernel (Eq 4), where the length-scale parameter (λ) determines the rate 612

at which the correlations of rewards decay over (spatial or conceptual) distance. Higher 613

λ-values correspond to stronger correlations. We generated 40 samples of each type of 614

environments, using λrough = 2 and λsmooth = 4, which were sampled without 615

replacement and used as the underlying reward function in each task (Fig S2). 616

Environment type was manipulated between subjects, with the same environment type 617

used in both conceptual and spatial tasks. 618

Models 619

Bayesian Mean Tracker 620

The Bayesian Mean Tracker (BMT) is a simple but widely-applied associative learning 621

model [68,95,96], which is a special case of the Kalman Filter with time-invariant 622

reward distributions. The BMT can also be interpreted as a Bayesian variant of the 623

Rescorla-Wagner model [55], making predictions about the rewards of each option j in 624

the form of a normally distributed posterior: 625

P (µj,t|Dt) = N (mj,t, vj,t) (10)
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The posterior mean mj,t and variance vj,t are updated iteratively using a delta-rule
update based on the observed reward yt when option j is selected at trial t:

mj,t = mj,t−1 + δj,tGj,t [yt −mj,t−1] (11)

vj,t = [1− δj,tGj,t] vj,t−1 (12)

where δj,t = 1 if option j was chosen on trial t, and 0 otherwise. Rather than having a
fixed learning rate, the BMT scales updates based on the Kalman Gain Gj,t, which is
defined as:

Gj,t =
vj,t−1

vj,t−1 + θ2ε
(13)

where θ2ε is the error variance, which is estimated as a free parameter. Intuitively, the 626

estimated mean of the chosen option mj,t is updated based on the prediction error 627

yt −mj,t−1 and scaled by the Kalman Gain Gj,t (Eq 11). At the same time, the 628

estimated variance vj,t is reduced by a factor of 1−Gj,t, which is in the range [0, 1] 629

(Eq 12). The error variance θ2ε can be interpreted as an inverse sensitivity, where smaller 630

values result in more substantial updates to the mean mj,t, and larger reductions of 631

uncertainty vj,t. 632

Model Cross-validation 633

As with the behavioral analyses, we omit the 10th “bonus round” in our model 634

cross-validation. For each of the other nine rounds, we use cross validation to iteratively 635

hold out a single round as a test set, and compute the maximum likelihood estimate 636

using differential evolution [97] on the remaining eight rounds. Model comparisons use 637

the summed out-of-sample prediction error on the test set, defined in terms of log loss 638

(i.e., negative log likelihood). 639

Predictive accuracy 640

As an intuitive statistic for goodness of fit, we report predictive accuracy as a pseudo-R2: 641

R2 = 1− logL(Mk)

logL(Mrand)
(14)

comparing the out-of-sample log loss of a given model Mk against a random model 642

Mrand. R
2 = 0 indicates chance performance, while R2 = 1 is a theoretically perfect 643

model. 644

Protected exceedance probability 645

The protected exceedance probability (pxp) is defined in terms of a Bayesian model 646

selection framework for group studies [70,71]. Intuitively, it can be described as a 647

random-effect analysis, where models are treated as random effects and are allowed to 648

differ between subjects. Inspired by a Polya’s urn model, we can imagine a population 649

containing K different types of models (i.e., people best described by each model), much 650

like an urn containing different colored marbles. If we assume that there is a fixed but 651

unknown distribution of models in the population, what is the probability of each model 652

being more frequent in the population than all other models in consideration? 653

This is modelled hierarchically, using variational Bayes to estimate the parameters of 654

a Dirichlet distribution describing the posterior probabilities of each model P (mk|y) 655

given the data y. The exceedance probability is thus defined as the posterior probability 656
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that the frequency of a model rmk
is larger than all other models rmk′ 6=k

under 657

consideration: 658

xp(mk) = p(rmk
> rmk′ 6=k

|y) (15)

[71] extends this approach by correcting for chance, based on the Bayesian Omnibus 659

Risk (BOR), which is the posterior probability that all model frequencies are equal: 660

pxp(mk) = xp(mk)(1−BOR) +
BOR

K
(16)

This produces the protected exceedance probability (pxp) reported throughout this 661

chapter, and is implemented using 662

https://github.com/sjgershm/mfit/blob/master/bms.m. 663

Simulated learning curves 664

We simulated each model by sampling (with replacement) from the set of 665

cross-validated participant parameter estimates, and performing search on a simulated 666

bandit task. We performed 10,000 simulations for each combination of model, 667

environment, and domain (spatial vs. conceptual). 668

Bonus round predictions 669

Bonus round predictions used each participant’s estimated parameters to predict their 670

judgments about expected reward and confidence. Because rewards in each round were 671

randomly scaled to a different global maximum, we also rescaled the model predictions 672

in order to align model predictions with the observed rewards and participant 673

judgments. 674

Statistical tests 675

Comparisons 676

We report both frequentist and Bayesian statistics. Frequentist tests are reported as 677

Student’s t-tests (specified as either paired or independent) for parametric comparisons, 678

while the Mann-Whitney-U test or Wilcoxon signed-rank test are used for 679

non-parametric comparisons (for independent samples or paired samples, respectively). 680

Each of these tests are accompanied by a Bayes factors (BF ) to quantify the relative 681

evidence the data provide in favor of the alternative hypothesis (HA) over the null (H0), 682

which we interpret following [98]. 683

Parametric comparison are tested using the default two-sided Bayesian t-test for 684

either independent or dependent samples, where both use a Jeffreys-Zellner-Siow prior 685

with its scale set to
√

2/2, as suggested by [99]. All statistical tests are non-directional 686

as defined by a symmetric prior (unless otherwise indicated). 687

Non-parametric comparisons are tested using either the frequentist 688

Mann-Whitney-U test for independent samples, or the Wilcoxon signed-rank test for 689

paired samples. In both cases, the Bayesian test is based on performing posterior 690

inference over the test statistics (Kendall’s rτ for the Mann-Whitney-U test and 691

standardized effect size r = Z√
N

for the Wilcoxon signed-rank test) and assigning a prior 692

using parametric yoking [100]. This leads to a posterior distribution for Kendall’s rτ or 693

the standardized effect size r, which yields an interpretable Bayes factor via the 694

Savage-Dickey density ratio test. The null hypothesis posits that parameters do not 695

differ between the two groups, while the alternative hypothesis posits an effect and 696

assigns an effect size using a Cauchy distribution with the scale parameter set to 1/
√

2. 697
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Correlations 698

For testing linear correlations with Pearson’s r, the Bayesian test is based on 699

Jeffrey’s [101] test for linear correlation and assumes a shifted, scaled beta prior 700

distribution B( 1
k ,

1
k ) for r, where the scale parameter is set to k = 1

3 [102]. 701

For testing rank correlations with Kendall’s tau, the Bayesian test is based on 702

parametric yoking to define a prior over the test statistic [103], and performing Bayesian 703

inference to arrive at a posterior distribution for rτ . The Savage-Dickey density ratio 704

test is used to produce an interpretable Bayes Factor. 705

ANOVA 706

We use a two-way mixed-design analysis of variance (ANOVA) to compare the means of 707

both a fixed effects factor (smooth vs. rough environments) as a between-subjects 708

variable and a random effects factor (conceptual vs. spatial) as a within-subjects 709

variable. To compute the Bayes Factor, we assume independent g-priors [104] for each 710

effect size θ1 ∼ N (0, g1σ
2), · · · , θp ∼ N (0, gpσ

2), where each g-value is drawn from an 711

inverse chi-square prior with a single degree of freedom gi
i.i.d∼ inverse-χ2(1), and 712

assuming a Jeffreys prior on the aggregate mean and scale factor. Following [105], we 713

compute the Bayes factor by integrating the likelihoods with respect to the prior on 714

parameters, where Monte Carlo sampling was used to approximate the g-priors. The 715

Bayes factor reported in the text can be interpreted as the log-odds of the model 716

relative to an intercept-only null model. 717

Mixed Effects Regression 718

Mixed effects regressions are performed in a Bayesian framework with brms [106] using
MCMC methods (No-U-Turn sampling [107] with the proposal acceptance probability
set to .99). In all models, we use a maximal random effects structure [108], and treat
participants as a random intercept. Following [109] we use the following generic weakly
informative priors:

b0 ∼ N (0, 1) (17)

bi ∼ N (0, 1) (18)

σ ∼ Half-N (0, 1) (19)

All models were estimated over four chains of 4000 iterations, with a burn-in period of 719

1000 samples. 720
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Supporting information 1003

Fig S1. Gabor stimuli. Tilt varies from left to right from 105◦ to 255◦ in equally
spaced intervals, while stripe frequency increases moving upwards from 1.5 to 15 in log
intervals.
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Fig S2. Correlated reward environments. Heatmaps of the reward environments used
in both spatial and conceptual domains. The color of each tile represents the expected
reward of the bandit, where the x-axis and y-axis were mapped to the spatial location
or the tilt and stripe frequency (respectively). All environments have the same
minimum and maximum reward values, and the two classes of environments share the
same expectation of reward across options.
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Fig S3. Training Phase. a) Trials needed to reach the learning criterion (90% accuracy
over 10 trials) in the training phase, where the dotted line indicates the 32 trial
minimum. Each dot is a single participant with lines connecting the same participant.
Tukey boxplots show median (line) and 1.5x IQR, with diamonds indicating group
means. b) Average correct choices during the training phase. In the last 10 trials before
completing the training phase, participants had a mean accuracy of 95.0% on the spatial
task and 92.7% on the conceptual task (difference of 2.3%). In contrast, in the first 10
trials of training, participants had a mean accuracy of 84.1% in the spatial task and
68.8% in the conceptual (difference of 15.4%). c) Heatmaps of the accuracy of different
target stimuli, where the x and y-axes of the conceptual heatmap indicate tilt and stripe
frequency, respectively. d) The probability of error as a function of the magnitude of
error (Manhattan distance from the correct response). Thus, most errors were close to
the target, with higher magnitude errors being monotonically less likely to occur.
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Fig S4. Search Trajectories. a) Distribution of trajectory length, separated by task
and environment. The dashed vertical line indicates the median for each category.
Participants had longer trajectories in the contextual task (t(128) = −10.7, p < .001,
d = 1.0, BF > 100), but there were no differences across environments (t(127) = 1.3,
p = .213, d = 0.2, BF = .38). b) Average reward value as a function of trajectory
length. Longer trajectories were correlated with higher rewards (r = .23, p < .001,
BF > 100). Each dot is a mean with error bars showing the 95% CI. c) Distance from
the random initial starting point in each trial as a function of the previous reward value.
Each dot is the aggregate mean, while the lines show the fixed effects of a Bayesian
mixed-effects model (see Table S1), with the ribbons indicating the 95% CI. The
relationship is not quite linear, but is also found using a rank correlation (rτ = .18,
p < .001, BF > 100). The dashed line indicates random chance. d) Search trajectories
decomposed into the vertical/stripe frequency dimension vs. horizontal/tilt dimension.
Bars indicate group means and error bars show the 95% CI. We find more attention
given to the vertical/stripe frequency dimension in both tasks, with a larger effect for
the conceptual task (F (1, 127) = 26.85, p < .001, η2 = .08, BF > 100), but no difference
across environments (F (1, 127) = 1.03, p = .311, η2 = .005, BF = 0.25). e) We
compute attentional bias as ∆dim = P (vertical/stripe frequency)− P (horizontal/tilt),
where positive values indicate a stronger bias towards the vertical/stripe frequency
dimension. Attentional bias was influenced by the interaction of task order and task
(F (1, 127) = 8.1, p = .005, η2 = .02, BF > 100): participants were more biased towards
the vertical/stripe frequency dimension in the conceptual task when the conceptual task
was performed first (t(66) = −6.0, p < .001, d = 0.7, BF > 100), but these differences
disappeared when the spatial task was performed first (t(61) = −1.6, p = .118, d = 0.2,
BF = .45). f) Differences in attention and score. Each participant is represented as a
pair of dots, where the connecting line shows the change in score and ∆dim across tasks.
We found a negative correlation between score and attention for the conceptual task
only in the conceptual first order (rτ = −.31, p < .001, BF > 100), but not in the
spatial first order (rτ = −.07, p = .392, BF = .24). There were no relationships
between score and attention in the spatial task in either order (spatial first: rτ = .03,
p = .738, BF = .17; conceptual first: rτ = −.03, p = .750, BF = .17).
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Fig S5. Heatmaps of choice frequency. Heatmaps of chosen options in a) the Gabor
feature of the conceptual task and b) the spatial location of the spatial task, aggregated
over all participants. The color shows the frequency of each option centered on yellow
representing random chance (1/64), with orange and red indicating higher than chance,
while green and blue were lower than chance.
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Fig S6. Additional Modeling Results. a) The relationship between mean performance
and predictive accuracy, where in all cases, the best performing participants were also
the best described. b) The best performing participants were also the most diagnostic
between models, but not substantially skewed towards either model. Linear regression
lines strongly overlap with the dotted line at y = 0, where participants above the line
were better described by the GP model. c Model comparison split by which task was
performed first vs. second. In both cases, participants were better described on their
second task, although the superiority of the GP over the BMT remains, comparing only
task one (paired t-test: t(128) = 4.6, p < .001, d = 0.10, BF = 1685) or only task two
(t(128) = 3.5, p < .001, d = 0.08, BF = 27).
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Fig S7. GP parameters and performance. a) We do not find a consistent relationship
between λ estimates and performance, which were anectdotally correlated the spatial
task (rτ = .13, p = .030, BF = 1.2) or negatively correlated in conceptual task
(rτ = −.22, p < .001, BF > 100). b) Higher beta estimates were strongly predictive of
better performance in both conceptual (rτ = .32, p < .001, BF > 100) and spatial tasks
(rτ = .31, p < .001, BF > 100). c) On the other hand, high temperature values
predicted lower performance in both conceptual(rτ = −.59, p < .001, BF > 100) and
spatial tasks (rτ = −.58, p < .001, BF > 100).
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Fig S8. GP exploration bonus and temperature. We check here whether there exists
any inverse relationship between directed and undirected exploration, implemented
using the UCB exploration bonus β (x-axis) and the softmax temperature τ (y-axis),
respectively. Results are split into conceptual (a) and spatial tasks (b), where each dot
is a single participant and the dotted line indicates y = x. The upper axis limits are set
to the largest 1.5×IQR, for both β and τ , across both conceptual and spatial tasks.
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Fig S9. BMT parameters. Each dot is a single participant and the dotted line
indicates y = x. a) We found lower error variance (σ2

ε ) estimates in the conceptual task
(Wilcoxon signed-rank test: Z = −4.8, p < .001, r = −.42, BF > 100), suggesting
participants were more sensitive to the reward values (i.e., more substantial updates to
their means estimates). Error variance was also somewhat correlated across tasks
(rτ = .18, p = .003, BF = 10). b) As with the GP model reported in the main text, we
also found strong differences in exploration behavior in the BMT. We found lower
estimates of the exploration bonus in the conceptual task (Z = −5.9, p < .001,
r = −.52, BF > 100). The exploration bonus was also somewhat correlated between
tasks (rτ = .16, p = .006, BF = 4.8). c) Also in line with the GP results, we again find
an increase in random exploration in the conceptual task (Z = −6.9, p < .001, r = −.61,
BF > 100). Once more, temperature estimates were strongly correlated (rτ = .34,
p < .001, BF > 100).
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Fig S10. Shepard kernel parameters. We also considered an alternative form of the GP
model. Instead of modeling generalization as a function of squared-Euclidean distance
with the RBF kernel, we use the Shepard kernel described in [64], where we instead use
Minkowski distance with the free parameter ρ ∈ [0, 2]. This model is identical to the GP
model reported in the main text when ρ = 2. But when ρ < 2, the input dimensions
transition from integral to separable representations [110]. The lack of clear differences
in model parameters motivated us to only include the standard RBF kernel in the main
text. a) We find no evidence for differences in generalization between tasks (Z = −1.8,
p = .039, r = −.15, BF = .32). There is also marginal evidence of correlated estimates
(rτ = .13, p = .026, BF = 1.3). b) There is anecdotal evidence of lower ρ estimates in
the conceptual task (Z = −2.5, p = .006, r = −.22, BF = 2.0). The implication of a
lower ρ in the conceptual domain is that the Gabor features were treated more
independently, whereas the spatial dimensions were more integrated. However, the
statistics suggest this is not a very robust effect. These estimates are also not correlated
(rτ = −.02, p = .684, BF = .12). c) Consistent with all the other models, we find
systematically lower exploration bonuses in the conceptual task (Z = −5.5, p < .001,
r = −.49, BF > 100). There was weak evidence of a correlation across tasks (rτ = .14,
p = .021, BF = 1.6). d) We find clear evidence of higher temperatures in the
conceptual task (Z = −6.3, p < .001, r = −.56, BF > 100), with strong correlations
across tasks (rτ = .41, p < .001, BF > 100)
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Fig S11. Comprehension questions for the conceptual task. The correct answers are
highlighted.
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Fig S12. Comprehension questions for the spatial task. The correct answers are
highlighted.
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Table S1. Mixed Effects Regression Results: Previous Reward

Distance Between Choices Distance from Initial Position

Predictors Est. 95% HPD Est. 95% HPD

Intercept 7.04 6.77 – 7.31 4.21 4.00 – 4.41

PreviousReward -0.06 -0.06 – -0.06 0.01 0.01 – 0.01

Spatialtask 1.03 0.68 – 1.38 -0.2043 -0.67 – -0.18

PreviousReward:Spatialtask -0.01 -0.02 – -0.01 0.01 0.004 – 0.01

Random Effects

σ2 1.10 1.08

τ00 7.22 8.34

N 129 129

Observations 44118 44118

Bayesian R2 .539 .118

Note: We report the posterior median (Est.) and 95% highest posterior density (HPD)
interval. σ2 indicates the individual-level variance and τ00 indicates the variation between
individual intercepts and the average intercept. See Methods for full specification of
model structure and priors.
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Table S2. Mixed Effects Regression Results: Bonus round judgments

Model Prediction Model Uncertainty

Predictors Est. 95% HPD Est. 95% HPD

Intercept 12.42 10.45 – 14.34 0.92 0.86 – 0.98

ParticipantJudgment 0.82 0.75 – 0.89 -0.02 -0.02 – -0.01

Spatialtask 1.34 -0.33 – 3.04 0.002 -0.08 – 0.08

ParticipantJudgment:Spatialtask 0.03 -0.04 – 0.11 -0.01 -0.02 – 0.001

Random Effects

σ2 183.49 0.06

τ00 346.35 0.03

N 129 129

Observations 2580 2580

Bayesian R2 .437 .674

Note: We report the posterior median (Est.) and 95% highest posterior density (HPD)
interval. In the first model (Model Prediction), participant judgments in the range
[1,100] are used to predict the GP posterior mean, whereas the second model (Model
Uncertainty) uses confidence judgments in the range [1,11] to predict the GP posterior
variance. All GP posteriors are computed based on individual participant λ-values,
estimated from the corresponding bandit task. σ2 indicates the individual-level variance
and τ00 indicates the variation between individual intercepts and the average intercept.
See Methods for full specification of model structure and priors.
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