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Abstract 

 

Recent advancements in portable computer devices have opened new avenues in the 

study of human cognition outside research laboratories. This flexibility in methodology has led 

to the publication of several Electroencephalography (EEG) studies recording brain responses in 

real world scenarios such as cycling and walking outside. In the present study, we tested the 

classic auditory oddball task while participants moved around an indoor running track using an 

electric skateboard. This novel approach allows for the study of attention in motion while 

virtually removing body movement. Using the skateboard auditory oddball paradigm, we found 

reliable and expected standard-target differences in the P3 and MMN/N2b event-related 

potentials (ERPs). We also recorded baseline EEG activity and found that, compared to this 

baseline, alpha power is attenuated in frontal and parietal regions during skateboarding. In order 

to explore the influence of motor interference in cognitive resources during skateboarding 

we compared participants’ preferred riding stance (baseline level of riding difficulty) vs 

their non-preferred stance (increased level of riding difficulty). We found that an increase 

in riding difficulty did not modulate the P3 and tonic alpha amplitude during skateboard 

motion.  
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  Introduction 

         For decades, the study of cognitive electrophysiology using Electroencephalography 

(EEG) has taken place inside highly controlled research facilities as EEG signals are easily 

contaminated by a myriad of environmental factors (Luck, 2014). EEG research has informed 

our understanding of human attention, yet, this knowledge generally comes from paradigms that 

isolate participants in faraday cages to avoid electromagnetic fields and other sources of noise 

that can compromise data quality (Puce & Hämäläinen, 2017). Over recent years, developments 

in mini computers such as the Raspberry pi and mobile phones have allowed such studies to 

move outside the lab and into the real world, resulting in a growth of mobile EEG studies within 

ecologically rich environments (Askamp & van Putten, 2014; Kontson et al., 2015; Cruz-Garza 

et al., 2017; Kuziek et al., 2018).   

Mobile EEG research allows us to further understand attention and brain function by 

exploring cognitive functions using classic paradigms in real world scenarios. For example, an 

oddball task in which participants respond to rare stimuli and ignore frequent distractors has 

classically been used to study attentional allocation. The ERP (event-related potential) known as 

the P3, a positive voltage increase associated with stimulus novelty in the oddball task (Polich 

et al., 2003), has been widely reported in EEG studies for decades since its amplitude is 

modulated by increases in task effort (Luck, 2014). This robust ERP is ideal to explore brain 

responses in more complex real-world environments due to its large signal-to-noise ratio and 

replicability in the oddball task (Zamrini et al., 1991). Furthermore, the oddball paradigm allows 

for a dual-task approach where a primary task is presented concurrently with the oddball stimuli. 

These paradigms assume that  resources needed to perform a primary task increase with task 

difficulty, and compete with cognitive resources simultaneously devoted to the oddball task, 
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leading to measurable reductions in P3 amplitude (Kok, 2001). There is a long history of using 

the P3 as a measure of resource allocation in realistic tasks such as studies of pilots (Sirevaag et 

al., 1993), as well as video game training studies showing that P3 magnitude to a secondary task 

increases as a function of training in a difficult primary task (Maclin et al., 2011, Mathewson et 

al., 2012).  

In paradigms involving motion (walking etc.), resource allocation has been 

investigated via cognitive motor interference (CMI). CMI refers to the costs in cognitive 

and/or motor performance during dual tasking due to the allocation of limited brain 

resources (Leone et al., 2017). CMI paradigms allow to measure the markers of cognitive 

resource allocation or motor performance during increased dual task demands. One 

important assumption in dual tasks paradigms is the potential involvement of common 

neural processes in cognitive and motor function (De Sanctis et al., 2014). PET studies have 

shown that activation of the lateral and superior parietal cortices, as well as prefrontal 

regions, is associated with the executive processes of updating, shifting, and inhibition that 

facilitate dual tasking (Collette et al., 2005). Changes in the motor domain have been 

previously associated with increased dual task demands during walking. Gait speed, a 

general index of functional performance, has been shown to decrease during dual task 

interference and such a decrease is considered an adaptation mechanism to maintain dual 

task performance (Al-Yahya et al., 2011). For instance, De Sanctis et al. (2014) showed that 

increases in task load are accompanied by increases in stride length. The authors argued 

that this adjustment in motor performance can be seen as a strategic mechanism to slow 

down walking while participants are engaged in a concurrent task. With recent 

advancements in wearable technology researchers can design specialized experimental 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.06.08.136960doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.08.136960
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

EEG in motion 

 

paradigms to explore the relationship between the cognitive and motor domains during 

increased task load.  

The past decade has seen an increased interest in Mobile brain/body imaging (MoBI) 

studies linking brain activity to naturalistic behaviors in 3D spaces (Makeig et al., 2009; 

Gramann et al., 2014; Jungnickel et al., 2016). This integrative approach collects EEG, motor 

behavior, and environmental events to study action and participant/environment interactions 

(Ojeda, et al., 2014). This is critical for cognitive neuroscience given the views that human 

cognition has evolved to maximize behavioral success within our complex environments 

(Makeig et al., 2009). Furthermore, researchers have recognized that even though 

traditional stationary studies have advanced our knowledge about cognitive processes, that 

approach itself is reductionist as it takes place in artificial settings (Ladouce et al., 2017). 

More critically, evidence from single cell recording studies in animals suggests that there 

are differences in information processing during motion as opposed to a static or resting 

state (Gramann et al., 2011). MoBI studies involving naturalistic behaviors such as walking 

and running often use high density recordings while applying independent component analysis 

(ICA) to systematically separate the sources of movement artifacts from the EEG signal (Gwin et 

al., 2010). Having mobile flexibility in EEG research design allows for higher ecological 

validity than traditional laboratory studies. This opens new avenues to study cognition 

under naturalistic settings where participant experience matches everyday situations more 

than an isolated and highly controlled environment.  

Previous studies from our research group have successfully recorded ERP components 

during active physical performance and in real-world scenarios. For example, using an auditory 

oddball paradigm, Scanlon et al., (2017) reliably recorded the P3 and MMN/N2b components, as 
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well as a frontal alpha peak, during stationary cycling. Furthermore, it has been shown that 

differences in the experimental environment influence the morphology of the ERP 

component being recorded: In a follow-up study where participants completed the oddball task 

while cycling outdoors, Scanlon et al., (2019) showed that the P3 and MMN/N2b are present 

during outside cycling. Crucially, it was found that relative to indoor cycling, there is a more 

negative ERP amplitude in the oddball P3 and P2 components, and a decrease of spectral 

power in the alpha range when cycling outside. This difference in P3 amplitude at electrode 

Pz was interpreted as an increase in cognitive processing due to being outdoors, where 

participants are continuously processing complex, external auditory and visual stimuli that 

compete with resources devoted to the oddball task while focusing on bicycle riding and 

direction. Additionally, relative to indoors, cycling outside was associated with an increase of 

N1 amplitude for standard and target tones over mid frontal and parietal regions. The authors 

concluded that such an increase in N1 amplitude could reflect an increase in auditory filtering 

required to complete the oddball task in the noisier outdoor environment. These cycling studies 

suggest that certain ERP components show a different morphology outdoors, likely due to the 

influence of external stimuli bombarding the brain while being outside. Other studies comparing 

indoor vs outdoor cycling have also found a more negative P3 peak while participants cycle 

outside compared to indoors (Zink et al., 2016). In the context of dual task interference the 

decrease in P3 amplitude over parietal regions reported in these studies reflects the 

cognitive costs related to resource allocation during performance previously established in 

the literature (Nenna et al., 2020).  

MoBI studies exploring CMI have also identified the P3 as one neural mechanism 

involved in resource allocation during task completion (Nenna et al., 2020). For example, 
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Liebherr et al. (2018) demonstrated that increases in both motor task and cognitive difficulty lead 

to a more negative amplitude in the  P3 time window in a cognitive task with a maximal 

difference over centro-parietal regions. The increase in motor difficulty was manipulated by 

having participants stand on one leg while completing the task. In accordance with these results, 

Reiser et al. (2019) employed an oddball paradigm outdoors to measure the influence of 

movement complexity in P3 amplitude. They showed that movement complexity was associated 

with increases in cognitive load followed by a more negative voltage over the P3 time window 

to the target tones over parietal regions. Likewise, Ladouce et al. (2019) used an oddball task to 

show that, relative to standing, walking is associated with a more negative P3 voltage over 

occipital areas to target tones. Critically, the P3 amplitude reduction in the walking 

condition was found to be due to visual and inertial processing during the task, and not the 

act of walking per-se. Authors concluded that resource allocation during motion is 

independently modulated by inertial and visual processing. The observed modulations of 

P3 amplitude in these studies further shows that mobile paradigms can be suitable for the 

study of resource allocation while in action. Taken together, these studies demonstrate that 

the mechanism of CMI can be successfully captured using mobile designs. In the current 

study, we introduce the novel electric-skateboarding (e-skateboarding; operating a self-

propelling skateboard with a wireless Bluetooth handheld controller) EEG approach to test 

for cognitive interference in an attempt to expand the previous findings beyond the walking 

and cycling domains.  

In addition to ERPs, oscillatory electrical brain activity has also been shown to vary 

with resource allocation and cognitive engagement in experimental tasks. For example, power in 

the alpha range (8-12 Hz) has been measured in studies of active visuospatial biasing and 
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suppression (Kelly et al., 2009), selective inhibition, and other anticipatory mechanisms (Foxe et 

al., 1998; Rihs et al., 2007). Previous studies involving motor behaviors, such as walking and 

cycling, have found differences in alpha power based on attentional demands in these movement 

tasks. For example, Storzer et al., (2016) found that walking is associated with a stronger alpha 

decrease than stationary cycling due to an increase in sensory processing and motor planning in 

the walking condition. Wagner et al., (2014) have found decreases in alpha power in walking 

when motor planning and intention is required. Cycling was associated with decreases in alpha 

power when participants completed an oddball task riding a bicycle relative to a sitting position 

indoors (Scanlon et al., 2019). This decrease in power was attributed to increased stimulus 

processing from doing the task in an outdoor environment.  

The results from the mobile EEG studies reviewed so far highlight the importance of 

outdoor paradigms for several reasons. First, replicating classic findings under less controlled 

scenarios (e.g., a busy road) is important for the field of cognitive electrophysiology since, 

ultimately, we want to understand, predict, and control brain functioning in everyday 

situations outside laboratories. Second, it allows for exploratory and novel paradigms to be 

developed for research questions about complex naturalistic behaviors while maintaining 

higher ecological validity than stationary studies. This offers new and exciting avenues for 

mobile research that could validate the findings from stationary/laboratory studies 

(Ladouce et al., 2017). Third, mobile EEG is a promising tool that can offer affordable and 

flexible medical diagnosis (Krigolson et al., 2017), and can offer flexibility in measuring 

cognitive performance (e.g., fatigue/cognitive load) in real life tasks (Darari et al., 2017).  

In the current experiment we used an active task of e-skateboarding on an indoor 200-

meter track as a primary task while participants simultaneously completed an auditory oddball 
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task and had their EEG recorded. We adopted a skateboard paradigm because it allows 

participants to be in active interaction with the environment while greatly minimizing body 

movements that lower signal-to-noise ratio in EEG recordings (Oliveira et al., 2016). We 

employed the portable EEG methodology previously used by our research group in cycling 

paradigms (see Scanlon et al., 2019) where participants could freely move while wearing the 

EEG system in a backpack (Figure 1). Using skateboarding as the primary task, our focus was to 

use an auditory oddball paradigm to test whether we could record a reliable P3 and MMN effect 

between standard and target tones. Furthermore, we wanted to investigate whether an increase in 

primary task difficulty (an increase in skateboarding difficulty) would produce measurable 

changes in P3 amplitude. E-skateboarding difficulty can be increased by manipulating stance 

preference: since skateboarding requires individuals to move laterally, it is common for learners 

to develop a stance preference while learning the task. Preference is reflected in which foot goes 

forward on the board or which shoulder they look over while riding. Right handed skateboarders 

generally ride with their left leg forward, however, some right handed skaters generally prefer to 

ride with their right foot forward. The former riding style is generally called “regular” whereas 

the latter is referred to as “goofy”. Due to the stability and safety of the e-skateboard, participants 

can be asked to switch their stance preference in order to increase riding difficulty without 

turning the task into a falling hazard. In this context, riding in the non-preferred stance implies an 

increase in primary task difficulty, which has been previously associated with a decrease in P3 

amplitude in the secondary oddball task (Kramer & Strayer, 1988; Kida et al., 2012). We tested 

the robustness of the oddball P3 effect while participants rode a skateboard on a running track in 

four different conditions (preferred stance clockwise direction, preferred stance counterclockwise 

direction, non-preferred stance clockwise direction, and non-preferred stance counterclockwise 
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direction). For the ERP analysis, since dual task processes modulate P3 amplitude, we predicted 

a decrease in P3 amplitude in the non-preferred stance due to increases in riding difficulty while 

completing the task.  

Using the skateboard paradigm, we tested whether an increase in task difficulty (by 

having participants e-skateboard in their non-preferred stance) would be reflected in tonic alpha 

power decreases during completion of the oddball task in the non-preferred condition. We also 

recorded participant’s resting state EEG with their eyes both open and closed to test whether 

we could measure a typical alpha peak (an increase of spectra power in the 8-12 Hz range) right 

by the running track prior to completing the skateboard task. Decreases in resting state alpha 

peak are associated with increased cognitive arousal (Barry, Clarke & Johnstone, 2011). Since 

the experiment was taking place in a busy environment, we were motivated to assess resting 

alpha levels prior to the start of the task. Additionally, we computed the averaged alpha power 

between the left and right electrodes to conduct an exploratory analysis on alpha lateralization 

during skateboarding. Spatial attention paradigms (Sauseng et al., 2005; Ikkai et al., 2016; Kelly 

et al., 2006) demonstrated that alpha power increases over areas to be ignored. Such a shift in 

alpha power, with enhanced power in the hemisphere contralateral to the distractors, has been 

identified as a mechanism of sensory inhibition (Mathewson et al., 2011).   

In the current paradigm, participants ride an e-skateboard around a running track 

clockwise and counterclockwise. This allows us to spatially separate the source of incoming 

distractors based on the direction participants ride. In the clockwise condition (regardless of 

riding preference) the largest source of distractors (joggers, walkers, and track users) come from 

the right side of space while in the counterclockwise condition the source of distraction is always 

located on the left visual field of the participant. This is because participants were set to only ride 
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in the outermost track during the task. We conducted exploratory analyses to test whether we 

could get an increase of alpha power over the parieto-occipital region contralateral to the source 

of distractors in the clockwise and counterclockwise riding directions. 

Methods 

Participants  

         A total of 29 individuals from the university community completed the study (mean age 

= 20.96, age range = 18-27, goofy-footed proportion: 41.37%, right-handed proportion: 87.5% 

female proportion = 37.93%). Participants received either an honorarium of $20 or credits 

towards Research Participation in an undergraduate psychology class. All participants had 

normal or corrected-to-normal vision and did not have neurological antecedents. Each participant 

was comfortable with basic skateboarding in both preferred and non-preferred stances. This 

study was approved by the Internal Research Ethics Board at the University of Alberta 

(Pro00050069) and participants gave informed consent before completing the study. This study 

conforms with the World Medical Association Declaration of Helsinki.  

Materials and Procedure 

         The experiment was completed in the Universiade Pavilion (aka Butterdome) on a 200-

meter indoor track at the University of Alberta during drop in hours (pavilion users were 

performing leisure sports around the track during sessions). Participants first completed two, 

three-minute, resting-state tasks (beginning with either eyes closed or eyes open) to measure a 

baseline level of resting spectral activity while they were seated in the bleachers of the track. 

Participants were instructed to breathe calmly and either keep their eyes closed, or to fixate on a 

nearby object. Following both baseline tasks, participants were given a basic tutorial on using the 

Boosted V3 Stealth Electric Board (Palo Alto, California, United States; 
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https://boostedboards.com/ca/) before starting the main skateboard experiment. The Boosted 

skateboard is a two-motor electric skateboard controlled by a joystick held in the right hand, with 

throttle and clutch controls on the thumb and trigger finger respectively. The joystick was held in 

the right hand while a response button was held in the left hand. Participants began the task by 

standing on the skateboard and pressing the response button, starting a 10-second countdown. 

Participants were expected to be in motion around the Universiade Pavilion track when the 

countdown finished. To ensure clean data, participants were instructed to remain as still as 

possible, blink only when necessary, and keep their gaze directed forward. A sound cue was used 

to instruct the participants when the task was completed. Participants rode the skateboard using a 

limited acceleration mode with a maximum speed of 17 kph. Participants were trained to ride at a 

speed in which they felt most comfortable around the track for safety purposes. On average, 

total participation time was 1 hour and 50 minutes. The average riding distance was 

approximately 1.92 km.  

         Based on the participant’s preferred skateboarding stance and the direction the participant 

travelled around the Pavilion track, four conditions were generated: ‘preferred clockwise’, 

‘preferred counterclockwise’, ‘non-preferred clockwise’, and ‘non-preferred counterclockwise’. 

Condition order was randomly determined and counter-balanced. In each condition, participants 

completed an auditory oddball task where two tones were consistently presented through 

headphones (either a 1000 Hz or 1500 Hz tone played at 65 dB). Participants were instructed to 

press the response button each time the 1500 Hz tone was played (target tone) and to withhold a 

response following the 1000 Hz tone (standard tone). There were no reports of issues with the 

task volume from any of the participants. A delay, randomly selected from a distribution 

between 1000 and 1500 ms, followed each tone. Response times were collected during this delay 
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period. In all, 20% of trials contained a target tone and 80% contained a standard tone, with 250 

trials in each condition. Each condition was approximately six minutes long. Between 

conditions, the participant returned to the starting position, the computers were reset, and the 

participant was given a small break.  

The tones and response button task were programmed and administered using a 

Raspberry Pi 2 model B computer (Raspberry Pi Foundation, Cambridge, UK) running version 9 

of the Raspbian Stretch operating system and version 2.7.13 of Python. The Raspberry Pi 2 was 

powered via a micro-USB cable connected to a Microsoft Surface Pro 3 laptop. Audio output 

was via Sony earbuds connected to the 3.5mm audio connector on the Raspberry Pi 2. 

Coincident in time with tone onset, 8-bit TTL pulses were sent to the EEG amplifier via a cable 

connected to the GPIO pins of the Raspberry Pi 2. These TTL pulses were used to mark the EEG 

data for ERP averaging. EEG data was collected from participants using active, wet, low-

impedance electrodes (actiCAP active electrodes kept below 5 kΩ). Inter-electrode impedances 

were measured at the start of the experiment. The following 15 electrode locations were used, 

arranged in the typical 10-20 electrode positions (F3, F4, T7, T8, C3, C4, P7, P8, P3, P4, O1, O2, 

Fz, Cz, Pz). A ground electrode was used, positioned at AFz. Ag/AgCl disk electrodes with 

SuperVisc electrolyte gel and mild abrasion with a blunted syringe tip were used to lower 

impedances. EEG data was recorded online, referenced to an electrode attached to the left 

mastoid. Offline, the data were re-referenced to the arithmetically derived average of the left and 

right mastoid electrodes.  

EEG data was recorded with a Brain Products V-Amp 16-channel amplifier (Brain 

Products GmbH), connected to the same Microsoft Surface Pro 3 laptop powering the Raspberry 

Pi, running BrainVision Recorder software (Brain Products GmbH, Gilching, Germany). In 
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addition to the 15 EEG sensors, two reference electrodes, and the ground electrode, vertical and 

horizontal bipolar EOG was recorded from passive Ag/AgCl easycap disks using Bip2Aux 

adapters connected to the auxiliary ports of the amplifier. EOG electrodes were affixed vertically 

above and below the left eye and affixed horizontally 1 cm lateral from the outer canthus of each 

eye. The participant’s skin was cleaned using Nuprep (an exfoliating cleansing gel) (Weaver & 

Co, Aurora, Colorado USA) before the placement of the electrodes, electrolyte gel was used to 

lower the impedance of these electrodes to under 5 kΩ in the same manner as previously 

mentioned. Data were digitized at 1000 Hz with a resolution of 24 bits and hardware filtered 

online between 0.1 Hz and 30 Hz, with a time constant of 1.5155 s and a notch filter at 60 Hz. 

All aforementioned equipment was held within a 2-pocket backpack worn by the participant, as 

shown in Figure 1. The total weight of the backpack containing the Raspberry Pi, V-vamp, and 

laptop was 4.55 lbs.  

EEG Analysis 

Analyses were computed in MATLAB R2018a (Mathworks, Natick, Massachusetts, 

USA) using EEGLAB (Delorme & Makeig, 2004) and custom scripts 

(https://github.com/kylemath/MathewsonMatlabTools). Statistical analyses were computed on 

JASP (JASP Team, Amsterdam, Netherlands). The EEG markers were used to construct 1200 ms 

epochs (200 ms pre-stimulus baseline + 1000 ms post-stimulus) time locked to the onset of 

standard and target tones, with the average voltage in the first 200 ms baseline period subtracted 

from the data for each electrode and trial. To remove artifacts due to amplifier blocking and 

other non-physiological factors, any trials with a voltage difference from baseline larger than +/- 

1000 µV on any channel (including eyes) were removed from further analysis. At this time, a 

regression-based eye-movement correction procedure was used to estimate and remove the 
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artifact-based variance in the EEG due to blinks as well as horizontal and vertical eye 

movements (Gratton et al., 1983). After identifying blinks with a template-based approach, this 

technique computes propagation factors as regression coefficients predicting the vertical and 

horizontal eye channel data from the signals at each electrode. The eye channel data is then 

subtracted from each channel, weighted by these propagation factors, removing any variance in 

the EEG predicted by eye movements. Artifact rejection was again performed, using a voltage 

threshold of +/- 500µV. These artifact rejection thresholds were chosen to be relatively lenient, 

similar to other mobile EEG studies we have done (see Scanlon et al., 2017; Scanlon et al., 2019; 

Scanlon et al., 2020), in order to quantify how much noise (electrical, muscle, or otherwise) was 

present in the ERP data and to ensure an adequate number of trials were available for analysis. 

Baseline correction was performed again following the second artifact rejection. Table 1 shows 

the mean trial count for target and standard tones used for each condition after artifact rejection. 

The rejected number of trials for targets and standards respectively was similar for all 

conditions(F(3,112) = 0.84, p = 0.48). 

ERP analysis 

Appropriate time window cut-offs for the MMN/N2b and P3 waveforms were determined 

by creating grand-average ERP waveforms, averaged across all participants and conditions, to 

create a single ERP waveform for electrodes Fz and Pz (Figure 2). We selected the peak within 

the grand average waveform as the center of the component of interest and used a window 

of 150 ms for the P3 analysis and a window of 100 ms for the MMN/N2b. These grand-

average waveforms were used to avoid biasing the selected time windows towards any one 

condition. The negative deflection between 195-295 ms for electrode Fz was used for the 

MMN/N2b time window while the large positive deflection between 375-525 ms for electrode 
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Pz was used for the P3 time window. Trial-averaged ERPs were derived in each of the four 

conditions (‘preferred clockwise’, ‘preferred counterclockwise’, ‘non-preferred clockwise’, and 

‘non-preferred counterclockwise’) and waveforms were compared. A 2x2x2 ANOVA was run to 

compare tone type (standard and target), stance preference (preferred and non-preferred), and 

clock orientation (clockwise and counterclockwise) during the MMN/N2b and P3 time windows, 

at electrodes Fz and Pz respectively. Two-way repeated measures ANOVAs were also conducted 

on the difference waveforms for the MMN/N2b and P3 time windows at electrode Fz and Pz 

respectively. Stance preference and clock orientation were the factors used for these analyses. 

These waveforms were derived by subtracting the standard ERP waveforms from the target ERP 

waveforms for both the preferred/non-preferred, and clockwise-counterclockwise conditions, 

with α set to 0.05 for all analyses.  

Spectral Analysis 

 Average frequency spectra across the baseline and oddball epochs was also computed 

using the wavelet routine from the Better Oscillation Method (BOSC; Whitten et al., 2011) with 

a 6-cycle wavelet transform across a frequency range of 0.1 Hz to 30 Hz, increasing in 0.5 Hz 

steps. We chose this wavelet cycle parameter because we were interested in the overall sustained 

alpha power instead of the differences in power between target and standard tones. Spectral data 

was further analyzed using the “Fitting Oscillations & One Over F” (FOOOF) algorithm (Haller 

et al., 2018) to represent the data as two distinct components; the aperiodic background 1/f and 

periodic oscillations which may contain greater spectral power than the aperiodic component. 

This analysis was performed using version 0.1.1 of the FOOOF Matlab wrapper with the 

following settings: peak width limits = [0.5,12]; max number of peaks = Inf; minimum peak 

amplitude = 0.0; peak threshold = 2.0; background mode = fixed; verbose = true; frequency 
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range = 0.5-30 Hz. The background 1/f spectra was then subtracted from the periodic component 

to better compare changes in spectral power between 0.5 Hz and 30 Hz across our conditions. All 

spectral analyses were done using this calculated FOOOF spectral data (Figure 6 C-D).  

For the baseline task, spectra were computed for each participant by first dividing the 

data into 3000 ms segments. Spectra were calculated for each chunk, which were then averaged 

across the 3000 ms duration for each chunk. Then each averaged-chunk was combined together 

within each participant, and finally averaged across participants to generate grand-averaged 

spectra for both eyes open and eyes closed conditions. For the oddball task, we generated 3000 

ms epochs around the onset of each standard trial (1000 ms pre and 2000 ms post standard onset) 

for each participant. Spectra were calculated for each epoch, then averaged across time and 

number of standard trials to generate spectra for each participant. These spectra were then 

averaged across participants to create grand-average spectra for each condition in the oddball 

task. Spectra were calculated using electrodes Fz and Pz. Resting state EEG was not recorded 

from two participants and therefore their data was excluded from this main spectral analysis. 

Furthermore, in order to explore the role of left-right visual field distractors in hemispheric 

alpha, power was computed by combining the following parieto-occipital electrodes: left 

hemisphere (P7, P3, O1), right hemisphere (P8, P4, O2).   

Results 

Behavioral Results  

Figure 3A shows the mean accuracy in response to target tones across all four task 

conditions and by global stance preference (collapsed over direction of travel). Results from a 

two-way repeated measures ANOVA on behavioral accuracy show no significant main effect for 

either preference, (F(1, 28) = 0.74, p = 0.40, η2
p = 0.03), or clock orientation (F(1, 28) = 0.85, p 
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= 0.36, η2
p = 0.03) and no significant interaction (F(1, 28) = 0.01, p = 0.91, η2

p = 4.61e-4). 

Figure 3B shows mean reaction times in milliseconds for all four task conditions and by global 

stance preference. A two-way repeated measures ANOVA on reaction times show no significant 

main effect for either preference, (F(1, 28) = 2.56e-4, p = .99, η2
p = 9.15e-6), or clock orientation 

(F(1, 28) = .03, p = 0.87, η2
p = 9.29e-4), and no significant interaction (F(1, 28) = 0.27, p = 0.61, 

η2
p = 0.01). 

ERP Morphology and Topography  

Figure 4A shows the grand average ERPs for target and standard tones at electrode Fz for 

all study conditions. Target tones are depicted in colored lines while standard tones are depicted 

in black lines. Standard errors at each time point are depicted by the shaded regions. Compared 

to standard tones, there is an increase in negative voltage for the MMN/N2 time window between 

195 and 295 ms following target tones. Figure 4C shows the grand average ERP at electrode Pz 

for all conditions, showing a clear positive increase in voltage in the P3 window (350 and 550 

ms) following target tone onset. Additionally, topographies of the target-standard difference 

were computed for the MMN/N2b and P3 time windows across conditions to show the overall 

scalp activation distribution for both time windows. Based on the time window chosen for these 

topographies, one can observe a more anterior distribution for the MMN/N2b time window and a 

more posterior distribution for the P3 time window. We conducted a 2x2x2 repeated measures 

ANOVA in order to understand the relationship between target/standard tones in all four 

conditions and whether the MMN/N2b and P3 are influenced by riding condition. For the 

MMN/N2b time window at electrode Fz, there was a significant main effect for tone type (F(1, 

28) = 87.72, p < .001, η2
p = 0.76). There was no significant effect of preference type (F(1, 28) = 

0.63, p = 0.43 , η2
p = 0.02) or orientation (F(1, 28) = 2.78, p = 0.11, η2

p = 0.09), and there were 
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no significant interactions: tone type*preference (F(1, 28) = 2.04, p = 0.17, η2
p = 0.07), tone 

type*orientation (F(1, 28) = 0.92, p = 0.35, η2
p = 0.03), preference*orientation (F(1, 28) = 1.87, 

p = 0.18, η2
p = 0.06), tone type*preference*orientation (F(1, 28) = 0.01, p = 0.91, η2

p = 4.77e-4). 

Table 2 shows the significant pairwise comparisons where it can be seen that the target-standard 

difference at the MMN/N2b window was reliable in all four conditions. All p-values for the 

pairwise comparisons were adjusted for multiple comparisons using Bonferroni correction. 

For the P3 window at electrode Pz, there was a significant main effect for tone type (F(1, 

28) = 50.86, p < .001, η2
p = 0.65), no significant effect of preference type (F(1, 28) = 0.08, p = 

0.78 , η2
p = 3e-3) or orientation (F(1, 28) = 0.11, p = 0.74, η2

p = 4e-3), and there were no 

significant interactions: tone type*preference (F(1, 28) = 0.41, p = 0.53, η2
p = 0.01), tone 

type*orientation (F(1, 28) = 1.42, p = 0.24, η2
p = 0.05), preference*orientation (F(1, 28) = 0.17, 

p = 0.68, η2
p = 6e-3), tone type*preference*orientation (F(1, 28) = 0.83, p = 0.37, η2

p = 0.03). 

Table 2 shows the pairwise comparisons at electrode Pz where, across all conditions, the oddball 

P3 difference between targets and standards was highly reliable across all combinations of 

orientation and preference. 

We also analyzed the difference waveforms of our ERPs across the preference and 

orientation conditions. These waveforms were calculated by subtracting standard trial ERPs from 

target trial ERPs, allowing us to better understand the differences in evoked activity between our 

two tone types. Figure 5A shows the difference-wave ERP for the preferred and non-preferred 

stance in the MMN/N2b time window. Figure 5B shows the difference-wave ERP for the 

clockwise and counterclockwise conditions in the MMN/N2b time window. A 2x2 repeated 

measures ANOVA was calculated for electrodes Fz and Pz and their respective time windows, as 

described previously. Our results at electrode Fz show no significant effect of preference (F(1, 
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28) = 2.04, p = 0.17, η2
p = 0.07) or orientation (F(1, 28) = 0.92, p = 0.35, η2

p = 0.03), and no 

significant interaction (F(1, 28) = 0.01, p = 0.91, η2
p = 4.78e-4).  

Figure 5C shows the difference-wave ERP by preference conditions  at electrode Pz for 

the P3 time window. Figure 5D shows the difference-wave ERP for the clockwise and 

counterclockwise conditions in the P3 time window. Similar results also occur for electrode Pz, 

with no significant effect of preference (F(1, 28) = 0.41, p = 0.53, η2
p = 0.02), or orientation 

(F(1, 28) = 1.42, p = 0.24, η2
p = 0.05), and no significant interaction (F(1, 28) = 0.83, p = 0.37, 

η2
p = 0.03). 

Spectral Results  

 Figure 6A shows the power spectra plots for all four conditions for frequency range 1-30 

Hz at electrode Fz. Resting state baseline spectra for eyes open-close conditions is also depicted. 

These resting-state power spectra show a predominant peak within the alpha frequency range (8-

12 Hz) which is larger during the eyes closed condition. Power topographies for the preferred 

and non-preferred clockwise conditions (upper region) and preferred and non-preferred 

counterclockwise conditions (lower region) were generated for the alpha frequency range. 

Topographies show higher power distribution across central parietal-occipital regions 

particularly in the non-preferred conditions. Figure 6B shows the power spectra for all conditions 

and baseline at electrode Pz. Figures 6C-D depict the FOOOF- background EEG spectra used for 

statistical analysis. This spectra plot shows a clear peak in the alpha frequency in the resting state 

condition that is more predominant in the eyes closed condition. These spectra plots also reveal 

an increase in the Beta activity (13-30 Hz) in all the riding conditions relative to the eyes open 

spectra at electrodes Fz and Pz likely due to muscle activity. Relative to the resting state, there is 

a general decrease of alpha power in the riding conditions. A one-way repeated measures 
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ANOVA was conducted in order to assess the differences in alpha peak for all conditions at 

electrodes Fz and Pz. A Greenhouse-Geisser correction of spercity was applied to the analysis 

(εFz = 0.38, εPz = 0.44). Significant effects of condition type were observed for electrode Fz 

(F(1.91, 49.66) = 84.84, p < 0.001, η2
p = 0.76) and electrode Pz (F(2.12, 57.50) = 58.01, p < 

0.001, η2
p = 0.69). Table 3 shows the significant pairwise comparisons. All p-values were 

adjusted for multiple comparisons using Bonferroni correction. This analysis shows that both 

resting state conditions (eyes open and eyes closed) are significantly different from all 

skateboard conditions at electrode Pz and marginally significant at electrode Fz. There are no 

further significant differences between conditions. We conducted a two-way repeated measures 

ANOVA using preference and clock orientation as factors at electrode Fz and Pz. We did not 

find a main effect for either riding preference (F(1, 26) = 0.38, p = 0.57, η2
p = 0.01) or  riding 

orientation (F(1, 26) = 3.46, p = 0.07,  η2
p = 0.009). No significant main effects were found at 

electrode Pz for preference (F(1, 26) = 1.65, p = 0.20,  η2
p = 0.060) or riding orientation (F(1, 

26) = 0.2, p = 0.603, η2
p  = 0.01). 

Left-Right Hemispheric Alpha by Preference and Riding Orientation  

We conducted an additional exploratory analysis to measure whether peripheral 

distractors influence alpha lateralization (due to the role of alpha synchronization in suppressing 

irrelevant areas of the visual field), we compared the left minus right hemisphere difference in 

alpha band power based on riding orientation (clockwise vs counterclockwise).  

Figure 7 shows the left and right parieto-occipital alpha power by riding direction in the 

clockwise (left side panel) and counterclockwise (right panel) conditions. We conducted a t-test 

of the power difference between left-right hemispheres in the clockwise and counterclockwise 
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conditions. Such t-test revealed no differences in hemispheric alpha power between conditions 

(t(28) = 0.12, p = .90 d = 0.02).  

Discussion 

The present study employed a mobile EEG paradigm to successfully record ERP 

components and oscillatory activity from participants moving on an e-skateboard. Participants 

responded to an auditory oddball task while riding around a complex scenario in their preferred 

and non-preferred stances. We introduced a higher degree of motor interference in the non-

preferred condition to evaluate whether there was a change in resource allocation 

measured by the posterior P3 amplitude. To our knowledge, this is the first portable EEG 

experiment using skateboarding. We chose to use a skateboarding paradigm for several reasons: 

We wanted to deploy the mobile EEG methodology previously developed by our research 

group (Kuziek et al, 2017; Scanlon et al, 2017) to a novel scenario using a new task, as it is 

important to demonstrate that this mobile EEG methodology can help researchers design and test 

attentional paradigms away from the laboratory. Our study further demonstrates the robustness 

of the oddball-P3 effect under a novel skateboard task, providing further evidence that classic 

attentional paradigms can be replicated under less controlled environments and complementing 

a long history of laboratory research using this task (Kok, 2001). The implementation of the 

e-skateboards (and e-scooters) offers a simple solution to the problem of excessive motion 

artifacts during EEG data collection while allowing participants to freely move in space. 

Considerable efforts have been made to ensure that the contribution of motion artifacts in the 

EEG data is managed effectively, such as the integration of portable EEG in experiments 

involving movement and action. For example, the MoBI approach  (see Makeig et al., 2009; 

Gramann et al., 2010; Gwin et al,.2010) simultaneously records EEG, muscle movements and 
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environmental events in order to study cognitive processes away from the traditional EEG 

approach that requires substantial restrictions in human behavior. The groundbreaking 

MoBI approach has adopted multi-data streaming that includes electromyographic sensors 

and relies on advanced decomposition techniques to achieve the ultimate goal of exploring 

human cognition under natural and unconstrained behavior. According to Gramann 

(2014) “new techniques are now required for studying cognition under a more general 

range of conditions that include natural motor behavior.” The present skateboarding 

approach is a simple but highly effective tool that can help mobile researchers accomplish 

that goal of conducting research while subjects can perform unconstrained natigation. As it 

was pointed out by Nenna and colleagues (2020), many MoBI studies have used artificial 

setups (e.g.,  treadmills in walking studies) where motor behaviors are not captured as they 

would occur in everyday fashion. We deployed the skateboard setting to a running track 

but future studies can make use of different environments (parks, roads, etc.) to achieve 

great ecological validity while exploring cognition. Given that balance during e-

skateboarding can be easily accomplished by maintaining a proper center of gravity (e.g., 

keeping one’s legs spread well enough), this new paradigm can be a great tool for mobile 

EEG researchers who want to adopt a naturalistic task that does not introduce excessive 

motion artifacts during recording.  

Behavioral Results  

 

In the current study, participants responded to target tones by pressing a button with their 

left hand. We calculated response accuracy and reaction time based on the four experimental 

conditions (preferred-clockwise, preferred-counterclockwise, non-preferred-clockwise, and non-

preferred-counterclockwise) and by the grand averaged preferred and non-preferred conditions. 
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We found no significant differences in accuracy or reaction time across conditions, even though 

accuracy was marginally higher in the preferred stance condition. Additionally, there was larger 

standard deviation in the non-preferred condition for both accuracy and reaction time, suggesting 

that participants performed more uniformly in the preferred stance. These results contrast 

previous findings, such as Reiser et al. (2019), where increases in motor task difficulty in an 

oddball paradigm were associated with poorer task performance. It is possible that behavioral 

effects could not be achieved by our oddball task due to a ceiling effect since mean accuracy was 

quite high in all conditions.  

P3 & MMN/N2b Results  

 

We hypothesized that the target-related P3 would be larger in the preferred stance 

condition due to differences in riding difficulty. Previous research shows that an increase in task 

difficulty (i.e., riding in one’s least comfortable stance) should be reflected in a more negative 

amplitude voltage in the P3 time window (Kok, 2001; De Sanctis et al., 2014). While we were 

able to measure significant, and expected, differences between ERPs following standard and 

target tones (we were able to detect a P3 response following rare stimuli as shown in Figure 2B 

and Table 2) we found no significant P3 differences between our conditions. Previous mobile 

EEG studies in naturalistic environments have shown a P3 amplitude decrease during increased 

task load in walking (Ladouce et al., 2019) and cycling (Zink et al., 2016; Scanlon et at., 2019; 

Scanlon et al., 2020). We expected that the increase in difficulty in the non-preferred riding 

condition was going to be marked by a more negative voltage within the P3 time window. 

However, we failed to find differences in our current paradigm. Similar results were reported by 

Gramann et al. (2010), where they show no differences in P3 amplitude based on increases in 

motor demands in a visual oddball task. Interestingly,  previous findings from Ladouce and 
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colleagues (2019) show that the P3 amplitude reduction seen during cognitive interference 

is not modulated by motor demands from the act of walking itself. These results go against 

the view that increases in task load in the motor domain lead to a reduction of cognitive 

resources (Leone et al., 2017). Additionally, Ladouce has shown that resource allocation 

during movement is modulated by both inertial and visual stimulation at the sensory level. 

It could be possible the similarity in visual and inertial stimulation during the preferred 

and non-preferred conditions might have modulated the parietal P3 amplitude in the same 

magnitude regardless of riding difficulty. If this is the case, one can expect a similar level of 

reduction in P3 amplitude during e-skateboarding regardless of a possible increase in 

riding difficulty. Considering that no behavioral differences in accuracy and reaction time were 

found by increasing riding difficulty, it is possible that the change in stance preference did not 

interfere with the cognitive resources employed by the oddball task. Future paradigms should 

consider increasing the oddball task difficulty (e.g., manipulating tone frequency), or the non-

preferred task difficulty (e.g. wobbly skateboards).  

We also found a MMN/N2b difference between target-standard tones in all our 

experimental conditions. These results replicate previous EEG findings from other cycling 

studies by our research group (Scanlon et al., 2017; Scanlon et al., 2019). This ERP component 

is elicited by sudden changes or deviations following the repeated presentation of a stimulus, 

such as the change from target to standard tones (Patel & Azzam, 2005). While the standard-

target amplitude difference is present in all our conditions, we did not find differences in this 

component based on riding preference. The lack of differences in MMN/N2b amplitude is likely 

due to the environmental noise being the same in all task conditions for participants, reflected in 

similar ERP amplitudes across conditions.  
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Spectral Results 

We recorded each participant’s eyes open/close baseline spectra prior to completing the 

oddball task. We found an expected and significant increase in power within the alpha range (8-

12 Hz) at electrodes Fz and Pz for the eyes-closed condition compared to eyes-open, as shown in 

Table 3. Additionally, we found a complete attenuation of alpha power during the skateboard 

task relative to both baseline conditions at electrode Pz. At electrode Fz, this general reduction of 

alpha power between resting state and riding was found to be overall marginally significant at 

electrode Fz (table 3). These results support the findings of previous studies showing a decrease 

in alpha during complex behaviors such as walking (Beurskens et al., 2016; Storzer et al., 2016) 

and bicycle riding (Zink et al., 2016; Scanlon et al., 2020). However, it is important to note that 

this reduction in alpha power should not be taken as evidence that the experimental manipulation 

leads to quantifiable reductions in alpha since participants did not complete the oddball task 

during the resting conditions. One of the goals of the present study was to assess whether 

increases in riding difficulty would be reflected in reduction in the alpha band, based on our 

understanding that alpha power is modulated by increases in task demand (Foxe, et al., 2011). 

However, there were no significant differences in alpha power based on riding preference. Since 

we found an overall decrease in power during the task relative to their resting state power, it is 

possible that the desynchronization in alpha power we found is likely due to an overload of 

incoming stimuli from the task and environment that would induce a general state of cortical 

excitability (Klimesch et al., 2011). We found an unexpected increase of power in the beta band 

(13-30 Hz) in the skateboarding conditions relative to the resting spectra (Figure 6). We attribute 

this increase of power to increased muscle movements. Similar results were reported by Scanlon 

et al., (2019), showing an overall increase in beta power during outdoor cycling. This beta 
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increase during the riding conditions contradicts previous findings linking beta 

desynchronization to  active movements (Jain et al., 2013). 

An exploratory goal in the present study was to measure the potential influence of 

peripheral distractors in alpha lateralization suppression. Generally speaking, participants 

consistently experienced a higher number of distractors in the inner tracks of the running 

pavilion due to joggers and track users present while participants completed the experimental 

task. Based on previous findings showing shifts in hemispheric alpha based on the location of 

spatial distractors (Sauseng et al., 2005; Kelly et al, 2006; Ikkai et al., 2016), we were motivated 

to compare parieto-occipital alpha power across hemispheres to measure whether we could get 

an effect in overall lateralization without systematically manipulating distractor location. We 

found  no significant differences in  mean alpha power in parieto-occipital regions. In a study by 

Malcolm et al., (2018) exposure to optic flow was found to attenuate parietal alpha power 

during walking. It might be possible that the state of motion experienced by the 

skateboarders led to a consistent suppression of induced alpha power between conditions. 

We did not find any reliable effects in terms of alpha lateralization, but more suitable cueing 

paradigms that fully isolate distractor location could help in answering whether alpha 

lateralization to visual distractors during active motion occurs.  

ERSP plans 

We should acknowledge that we did not look at task evoked activity in this, or in 

any previous study from our research group. This is an important avenue for future mobile 

studies interested in exploring short term changes in cortical excitability evoked by the task 

events. Changes in evoked power within certain frequencies (eg., decreases in 
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alpha/increases in beta) following periods of interest reflect the allocation of attentional 

resources that facilitate task performance (Mathewson et al., 2011).  

Limitations to Generalizability 

While this research was able to successfully elicit the expected effects related to the ERP 

and spectral differences for the oddball and baseline tasks respectively, there are still several 

limitations of this study that must be further discussed. One such limitation is that we failed to 

quantify the participants’ perceived riding difficulty between the preferred and non-preferred 

conditions. This could have informed us about the degree of riding interference experienced by 

participants in the non-preferred condition and the relationship between subjective riding 

difficulty and overall ERP amplitude. Interestingly, Nenna et al. (2020) reported that even 

when participants do not experience subjective mental load in dual tasks, when compared 

to a single task, it is still possible to obtain differences in neural responses. It could be 

possible that the expected increase in difficulty between the preferred and non-preferred 

conditions is being nullified by the electric skateboard in a way that participants can easily adapt 

to riding in their non-preferred stance since the board is self-propelling and very stable. We also 

did not measure torso muscle activity and acceleration on the body. Skateboarding has little overt 

movement but relies on balance using the torso and proximal muscles of the legs and arms. 

Further research could correlate changes in these muscle groups during different riding 

conditions with brain activity and sensory input in order to objectively quantify muscle 

involvement and motor task interference. More critically, by failing to record the acceleration 

between preferred and non-preferred conditions we could not record whether a 

hypothetical increase in task difficulty led to motor adjustments (e.g., slowing down) as a 

mechanism to enhance task performance (see Al-Yahya et al., 2011; De Sanctis et al., 2014). 
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Additionally, while this skateboard paradigm offers the opportunity to greatly minimize covert 

movements (in comparison to walking or bicycle riding paradigms), it does not eliminate muscle 

movements methodically. Another limitation in the present study is the lack of an experimental 

condition where participants complete the oddball task while not moving. Our initial motivation 

to conduct this study was to test whether a change in riding difficulty leads to measurable 

changes in the ERP and oscillatory domains. While the inclusion of a non riding oddball 

condition would have improved the present results, we believe that the preferred vs non-

preferred comparison is suitable for the present research question.  

The auditory oddball task used did not result in significant behavioral, ERP, or spectral 

alpha power differences between conditions, contrary to our expectations. Given that the field of 

mobile EEG is developing, obtaining behavioral effects in line with ERP results is an important 

step in understanding brain processes in real-life scenarios. This limitation may be attributable 

to our sample size; however, given that we are able to measure the expected oddball and 

spectral alpha differences, with large effect sizes, we believe the lack of difference between 

our skateboarding conditions could be due to other limitations. The auditory oddball task we 

used may be too easy, with any behavioral or electrophysiological changes hitting a ceiling 

regardless of condition. A possible solution would be to utilise a more difficult auditory oddball 

task where the stimuli are more similar or introduce distractor stimuli throughout the task. Given 

that participants are on a constantly moving skateboard, with a constantly changing visual 

environment, a visual oddball task may be more appropriate and attentionally demanding.  

Conclusion 

In the current study we developed a skateboard EEG paradigm and replicated the classic 

oddball P3 effect while participants freely skated through a busy running track. While we found 
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consistent target-standard tone differences in the P3 and MMN/N2b in frontal and parietal 

regions, we did not observe a reduction in P3 amplitude following increases in riding difficulty. 

We also present evidence that the classic peak in resting state alpha completely diminishes while 

skateboarding, and this overall desynchronization is the result of an increased load of incoming 

stimuli from the environment and task. The results in the current study support the notion that 

EEG paradigms are suitable for the study of human cognition under high ecological validity.  

Acknowledgements  

This research was supported by start-up funds from the faculty of science and an NSERC 

Discovery grant (#RES0024267) awarded to Kyle Elliot Mathewson. The authors thank Pat 

Makhacheva for assistance in data collection, and Sarah Sheldon for analysis feedback. 

Conflicts of Interest  

No conflicts of interests have been declared by author(s).  

Author contribution  

Robles: design, data acquisition, analysis/interpretation, drafting 

Kuziek: design, data acquisition, analysis/interpretation, drafting 

Wlasitz: design, data acquisition, drafting 

Bartlett: study conception, design, data acquisition 

Hurd: study conception, design, critical revisions 

Mathewson: design, analysis/interpretation, drafting, critical revisions 

Data Accessibility Statement 

This study’s supporting data and analysis material is open to access using the following link: 

https://github.com/APPLabUofA/Skateboard 

Abbreviations  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.06.08.136960doi: bioRxiv preprint 

https://github.com/APPLabUofA/Skateboard
https://doi.org/10.1101/2020.06.08.136960
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

EEG in motion 

 

ERP: Event-Related Potential, EEG: Electroencephalography  
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Tables 

 

Table 1: Trial count information for targets and standards in each condition. 

Condition Stimulus 

Type 

Mean Trial 

Count 

Standard 

Deviation 

Trial Count Range 

(Minimum:Maximum) 

Preferred Clockwise Targets 46.90 4.87 29:50 

Standards 185.83 21.61 104:200 

Preferred CounterClockwise Targets 47.79 5.06 26:50 

Standards 191.52 17.35 115:200 

Non-preferred Clockwise Targets 47.90 4.47 30:50 

Standards 190.34 17.59 131:200 

Non-preferred  

CounterClockwise 

Targets 47.76 4.56 29:50 

Standards 189.79 20.75 92:200 

 

Table 2:  Pairwise results comparing target and standard ERP waveforms in each condition. 

Comparison  Electrode/ 

Time 

Window   

Mean Voltages 

(µV) 

(Targets:Standards

) 

t(28) 

 

p  Confidence 

Interval  

Effect Size  

(Cohen’s d) 

Preferred 

Clockwise 

Fz/MMN-N2b -3.23:-0.58 -5.43 <0.001 -4.23:-1.09 -1.23 

Pz/P3 4.71:-0.47 5.98 <0.001 2.36:8.01 1.32 

Preferred 

CounterClockwise 

Fz/MMN-N2b -2.86:-0.72 -4.37 <0.001 -3.71:-0.57 -0.90 

Pz/P3 4.35:-0.54 5.64 <0.001 2.07:7.71 0.94 

Non-preferred 

Clockwise 

Fz/MMN-N2b -3.96:-0.75 -6.56 <0.001 -4.78:-1.64 -0.97 

Pz/P3 4.59:-0.78 6.20 <0.001 2.55:8.20 1.18 

Non-preferred 

CounterClockwise 

Fz/MMN-N2b -3.10:-0.30 -5.71 <0.001 -4.37:-1.23 -1.10 

Pz/P3 3.95:-0.05 4.61 <0.001 1.17:6.82 0.82 
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Table 3:  Pairwise results comparing A) Baseline Eyes Closed and B) Baseline Eyes Open 
spectra to each of the other five conditions. 
 
A 

Comparison  Electrode Mean Spectra 

Difference 

(µV
2
) 

t(26) p  Confidence 

Interval  

Effect Size  

(Cohen’s d) 

Baseline 

Eyes Open 

Fz -0.51 -13.46 <0.001 -0.62:-0.39 2.59 

Pz -0.50 -9.79 <0.001 -0.22:-0.32 1.88 

Preferred 

Clockwise 

Fz 0.62 16.39 <0.001 0.50:0.73 3.15 

Pz 0.67 13.20 <0.001 0.52:0.83 2.54 

Preferred 

CounterClockwise 

Fz 0.61 16.39 <0.001 0.50:0.73 3.13 

Pz 0.68 13.23 <0.001 0.52:0.83 2.54 

Non-preferred 

Clockwise 

Fz 0.61 16.26 <0.001 0.50:0.73 3.12 

Pz 0.70 13.72 <0.001 0.55:0.85 2.64 

Non-preferred 

CounterClockwise 

Fz 0.61 16.16 <0.001 0.50:0.72 3.11 

Pz 0.69 13.52 <0.001 0.54:0.84 2.60 

       

 

 

      

B 

Comparison  Electrode Mean Spectra 

Difference 

(µV
2
) 

 

t(26) p  Confidence 

Interval  
Effect Size  

(Cohen’s d) 

Baseline 

Eyes Closed 

Fz -0.51 -13.46 <0.001 -0.62:-0.39 -2.59 

Pz -0.50 -9.79 <0.001 -0.65:-0.35 -1.88 

Preferred 

Clockwise 

Fz 0.11 2.93 0.060 -0.002:0.22 0.56 

Pz 0.17 3.41 0.013 0.02:0.32 0.65 

Preferred 

CounterClockwise 

Fz 0.10 2.82 0.083 -0.006:0.22 0.54 

Pz 0.17 3.90 0.012 0.02:0.33 0.66 

Non-preferred 

Clockwise 

Fz 0.10 2.80 0.088 -0.007:0.22 0.53 

Pz 0.20 3.93 0.002 0.04:0.35 0.75 

Non-preferred 

CounterClockwise 

Fz 0.10 2.70 0.11 -0.011:0.21 0.52 

Pz 0.19 3.72 0.004 0.03:0.34 0.71 

 

 

Figure Captions 
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EEG in motion 

 

Figure 1. Setup task and location. A: Mobile EEG setup. B: Task diagram. C: Experiment 

location 

 

Figure 2. Grand-averaged ERP across conditions used to select time windows for analyses.   

 

Figure 3. Behavioral task results. A: Mean target accuracy. B: Median target reaction time. C: 

Target accuracy by grand preference. Target reaction time by grand preference  

 

Figure 4: A: ERPs at electrode Fz. Conditions (left to right): Preferred clockwise, preferred 

counterclockwise, non-preferred clockwise, non-preferred counterclockwise. Target tones: 

colored lines. Standard tones: black lines. Shaded regions represent standard errors. 

Topographies for MMN/N2 window. B: ERPs at Electrode Pz. and topographies for P3 time 

windows. 

 

Figure 5. Difference-wave ERPs by A: grand preference for the  MMN/N2b time window at 

electrode Fz. B: grand clock orientation for the MMN/N2b time window at electrode Fz. C: 

grand preference for the P3 time window at electrode Pz. D: grand clock orientation for the  P3 

time window at electrode Pz. 

 

Figure 6. A: Power spectra at electrode Fz for all conditions plus resting state baseline (eyes 

opened/closed). Shaded regions represent standard errors for all conditions. Power topographies 

for alpha band range (8-12Hz) for preferred clockwise and counterclockwise conditions (upper 

region) and non-preferred clockwise and counterclockwise conditions (lower region). B: Power 

spectra at electrode Pz for all conditions. C: FOOOF- background data used for statistical 

analysis at electrode Fz. D: FOOOF- background data use for statistical analysis at electrode Pz.  

 

Figure 7.Power spectra for left and right parieto-occipital hemispheres for clockwise direction 

(left) and counterclockwise direction (right).  
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