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Abstract 
Motor cortex generates descending output necessary for executing a wide range of limb 

movements. Although movement-related activity has been described throughout motor cortex, 

the spatiotemporal organization of movement-specific signaling in deep layers remains largely 

unknown. Here, we recorded layer 5B population dynamics in the caudal forelimb area of 

motor cortex while mice performed a forelimb push/pull task and found that most neurons 

show movement-invariant responses, with a minority displaying movement specificity. Cell-

type-specific imaging identified that movement-invariant responses dominated pyramidal tract 

(PT) neuron activity, with a small subpopulation representing movement type, whereas a 

larger proportion of intratelencephalic (IT) neurons displayed movement-specific signaling. 

The proportion of IT neurons decoding movement-type peaked prior to movement initiation, 

while for PT neurons this occurred during movement execution. Our data suggest that layer 

5B population dynamics largely reflect movement-invariant signaling, with information related 

to movement-type being differentially routed through relatively small, distributed 

subpopulations of projection neurons.   

 

Introduction 
In mammals, descending cortical output is necessary for the learning and execution of 

voluntary movements (Guo et al., 2015; Hwang et al., 2019; Hwang et al., 2021; Kawai et al., 

2015; Lawrence and Kuypers, 1968; Martin and Ghez, 1991). Deep layer projections from 

primary motor cortex form multiple descending pathways innervating cortical, subcortical, 

brainstem and spinal cord circuits necessary for triggering and controlling movement (for 

review, see Lemon, 2008; Ruder and Arber, 2019; Shepherd, 2013). Individual layer 5 

projection neurons display complex firing patterns that correlate with various aspects of limb 

trajectories, such as joint angle, direction, and speed (Georgopoulos et al., 1982; Moran and 

Schwartz, 1999; Paninski et al., 2004; Thach, 1978) and during single action tasks in rodents, 

most layer 5 projection neurons (>70%) display movement-related activity in the form of 

bidirectional changes in firing rate (Dacre et al., 2021; Estebanez et al., 2017; Levy et al., 

2020; Park et al., 2021; Sauerbrei et al., 2019; Wang et al., 2017), suggesting widespread 

encoding of movement. However, in non-human primates the largest components of motor 

cortex population responses during a delayed-multi-direction reach task have been shown to 

be “condition-invariant”, meaning the population response magnitude and time course were 

similar irrespective of reach direction (Kaufman et al., 2016). Condition-invariant responses 

are tightly linked to the onset of movement likely reflecting movement timing rather than 

movement type, similar to condition-invariant population transitions observed in recurrent 

neural networks trained to recapitulate complex muscle patterns in reaching primates (Sussillo 

et al., 2015). Deciphering how condition-invariant (which we term “movement-invariant”) and 
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movement-specific signaling is spatiotemporally organized in the output layers of motor cortex 

and how they map onto specific projection classes would provide an important step towards 

understanding descending cortical control of movement.  

 

In rodents, descending information from the main output layer of motor cortex, layer 5B, is 

routed via two molecularly and anatomically defined projection pathways: pyramidal tract (PT) 

neurons innervate multiple targets including thalamus, subthalamic nucleus, superior 

colliculus, ipsilateral striatum, brainstem and spinal cord, but not cortex or contralateral 

striatum (Economo et al., 2018; Kita and Kita, 2012; Muñoz-Castañeda et al., 2021; Ueta et 

al., 2014; Winnubst et al., 2019); while intratelencephalic (IT) neurons target bilateral striatum 

and cortex, but not other subcortical targets (Levesque et al., 1996; Muñoz-Castañeda et al., 

2021; Wilson, 1987; Winnubst et al., 2019). Although layer 5B neurons are reciprocally 

connected (Kiritani et al., 2012; Morishima and Kawaguchi, 2006; Morishima et al., 2011), 

connectivity is essentially unidirectional from IT to PT neurons (Kiritani et al., 2012). This form 

of asymmetric across-projection class connectivity appears to be a common cortical motif 

necessary for sensorimotor processing (Brown and Hestrin, 2009; Kiritani et al., 2012; 

Molyneaux et al., 2007; Reiner et al., 2010). From a descending control perspective, 

asymmetric connectivity coupled with differential PT and IT intrinsic excitability, sensitivity to 

neuromodulation and local- and long-range inputs (for review, see Baker et al., 2018; 

Shepherd, 2013) provides a mechanism for flexible routing of information via distinct output 

channels depending on behavioral state and task requirements. Accumulating evidence 

suggests that PT neurons provide an essential source of descending control signals for the 

execution of voluntary limb movements (Economo et al., 2018; Nelson et al., 2021; Peters et 

al., 2017; Soma et al., 2017; Wang et al., 2017), while IT neurons provide input to cortical and 

striatal circuits contributing to movement preparation and specification (Panigrahi et al., 2015; 

Park et al., 2021; Yttri and Dudman, 2016), but how movement-specific information is 

spatiotemporally organized across the two output channels remains unclear. 

 

Here, we performed 2-photon calcium imaging in deep layers of the caudal forelimb area 

(CFA) of mice trained to perform two diametrically opposing forelimb movements (i.e., an 

alternating push / pull lever task). By combining population imaging with neural classifiers and 

dimensionality reduction, we show that the majority of layer 5B neurons display movement-

invariant signaling, correlated with movement timing rather than movement type, while small 

subpopulations of PT and IT neurons convey movement-specific information. Decoding of 

movement type was most prevalent prior to movement initiation in IT neurons, and during 

movement execution in PT neurons, with high decoding accuracy neurons from both projection 

classes being temporally uncorrelated and distributed across layer 5B. These findings provide 
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evidence that movement-invariant signaling dominates layer 5B activity, while movement-

specific information is spatially and temporally distributed across molecularly and anatomically 

defined projection neuron classes. 

 

Results 
 
CFA is required for execution of a cued push / pull lever task for mice 
To explore how layer 5B signaling relates to the execution of different movements, we first 

developed a cued linear push / pull lever task for mice. The task design required mice to push 

or pull a horizontal lever during presentation of a 2 second 6 kHz auditory cue in order to 

receive a water reward. After a 4-6 s inter-trial interval (ITI), mice had to push the lever 4 mm 

forward from an initial starting position, the lever would then be locked, and a servo-controlled 

lick spout would deliver a 5 µl reward following a 1s delay. The lever was then unlocked and 

a second ITI commenced where mice would then be expected to pull the lever backwards 4 

mm to the original starting position after presentation of the same 6 kHz auditory cue. Miss 

trials or spontaneous movements during the ITI resulted in a lever reset and restarting of the 

ITI (Figure 1A). Individual mice displayed idiosyncratic strategies to engage with the lever but 

displayed reproducible trial-to-trial forelimb trajectories (Figure 1B). In general, mice 

reoriented their forelimb and paw upon cue presentation (lift and rotate backwards for pushes, 

lift and rotate forwards for pulls) during movement initiation (Video S1). Mice rapidly learned 

the task (mean 10.5 days, [4] inter-quartile range (IQR), N = 24 mice), displaying fast reaction 

times and movement durations that reflect the combination of paw reorientation and lever 

manipulation (Figure 1C). ‘Expert’ mice completed 44.5 [9.5] IQR successful push and 45.0 

[8.5] IQR successful pull trials during each 30-minute behavioral session equating to ~71 % 

task success (push median 68.0 % [35.9] interquartile range (IQR); pull median 74.5 % [43.4] 

IQR; N = 24 mice) (Figure 1D-1E).  

 

To confirm that the caudal forelimb area (CFA) of motor cortex is required for the execution of 

both push and pull movements, we focally injected the GABAA receptor agonist muscimol (1.6 

mm lateral, 0.6 mm rostral of bregma, see Methods) (Dacre et al., 2021; Schiemann et al., 

2015). By applying muscimol during behavioral engagement, we could assess the immediate 

effects of CFA inactivation within the first 10 mins following drug injection (Figure 1F), where 

drug diffusion remained within the targeted region (Figure S1A-S1C). Muscimol rapidly 

blocked initiation of both actions, reducing the number of successful trials in the first 10 

minutes by ~65% (push Pre 13.9 [11.1 17.1] 95% CI trials, push Post 5.0 [3.3 6.8] 95% CI 

trials, N = 10 mice; pull Pre 14.0 [10.9 17.2] 95% CI trials, pull Post 5.3 [3.2 7.4] 95% CI trials, 

N = 10 mice) (Figure 1G). Sham injections of saline into CFA or muscimol injections into 
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hindlimb motor cortex had no effect (Figure S1D-1G). Blocking activity in CFA resulted in both 

an inability to initiate push or pull movements, and monoparesis of the contralateral forelimb 

(i.e., localized weakness without complete loss of function), as evidenced by the significant 

reduction in paw position accuracy (i.e., the forepaw was not positioned on the lever at cue 

presentation) (Figure 1H, Figure S1H-1J and Video S2). The effect of muscimol inactivation 

was most pronounced in mice that displayed the highest number of successful trials, 

confirming that task execution is CFA-dependent even in expert mice (Hwang et al., 2019; 

Hwang et al., 2021; Kawai et al., 2015) (Figure S1K).  

 

Movement-invariant signaling dominates layer 5B activity patterns 
To examine how output from CFA relates to the execution of push and pull movements, we 

restricted imaging of behavior-related population activity to cortical depths corresponding to 
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Figure 1 - Caudal forelimb area is necessary for executing cued push and pull movements.

(A) Top, cued alternating push / pull task for head restrained mice. Bottom, behavioral task structure: ITI, inter-trial interval; SM, spontaneous movement.
(B) Paw and lever movement trajectories from 3 mice presented relative to position at movement initiation. Single trial (dashed lines) and mean paw trajectories (solid lines) during
push (left; blue) and pull (right; green) trials are shown alongside the average movement vector of the lever (black arrow). Red dot, depict approximate tracked position on the paw
at movement initiation.
(C) Violin plots showing median, interquartile range and range of reaction times (left) and movement durations (right) during push (blue) and pull (green) trials. Circles represent
data from individual mice (N = 24 mice).
(D) Number of successful trials per 30 minute training session (small symbols, data from individual mice; large symbols, mean ± 95% CI; N = 24 mice).
(E) Box-and-whisker plots showing median, interquartile range and range of task success across mice (N = 24 mice).
(F) Focal muscimol inactivation of CFA, centred on 0.6 mm anterior, 1.6 mm medial of bregma. Red cross denotes bregma.
(G) Number of successful push (blue) and pull (green) trials in a 10 min period before (Pre) and after (Post) injection of muscimol (N = 10 mice), paired t test. Colored lines,
individual mice. Symbols, population means ± 95% CI.
(H) Paw position accuracy at the point of cue presentation before (Pre) and 10 mins after (Post) muscimol injection into CFA (N = 10 mice), paired t test. Colored lines, individual
mice. Symbols, population means ± 95% CI.
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layer 5B, the upper boundary of which was identified by the presence of pyramidal tract 

neurons in separate tracing experiments (boundary ≥ 500 µm from the pial surface at the 

center of CFA) (Schiemann et al., 2015) (Figure 2A-2B and Figure S2A). Cell density 

estimates suggested that we imaged the majority of layer 5B neurons at depths up to 650 µm 

from the pial surface (Figure S2A-C). A large proportion of layer 5B neurons displayed 

movement-related activity (468/653 neurons, mean = 73.5% [54.7 81.8] 95% CI per field-of-

view (FOV) (n = 12 FOVs, N = 6 mice), where ∆F/F0 changes occurred within a peri-movement 

window spanning 150 ms prior to movement initiation to 40 ms after median movement 

completion. The remaining neurons were classified as either non-responsive, or ‘reward-

related’ if changes in ∆F/F0 occurred after the peri-movement window (Figure 2C-2D). The 

trial-to-trial similarity in population responses of movement-related neurons strongly correlated 

with the similarity in forelimb movement magnitude (i.e., motion index) during both push and 

pull movements, suggesting ∆F/F0 changes reflected movement of the forelimb (Figure 2E). 

By comparing push and pull trials, we found that most layer 5B neurons displayed movement-

related activity that was indistinguishable between trial type (median = 59.8 % [31.4] IQR, N = 

6), termed ‘movement-invariant’ signaling, manifest as either increased (85 %) or decreased 

(15 %) activity correlating with the onset of movement. Movement-invariant neurons appeared 

to reflect the timing of movement (i.e., transition from resting posture to push/pull) rather than 

movement type and were spatially distributed across each FOV (Figure 2F-2H). In contrast, 

only a small fraction of neurons displayed movement-specific signaling, where ∆F/F0 changes 

were significantly different between push and pull trials (termed movement bias, push bias - 

median = 14.3 % [15.9] IQR; pull bias - median = 11.8 % [19.5] IQR, N = 6 mice) (Figure 2M). 

Responses of movement bias neurons were classified into four different types including both 

positive and negative changes in ∆F/F0, consistent with bidirectional movement-specific tuning 

of neural activity (Georgopoulos et al., 1982). Most movement-bias neurons were classified 

as Type 1 (136 / 181 neurons, 75.1 %), showing increased ∆F/F0 during both push and pull 

trials, while smaller proportions of Type 2 (25 / 181 neurons, 13.8 %) and Type 3 (15 / 181 

neurons, 8.3 %) neurons displayed movement selectivity (i.e., significant change in ∆F/F0 for 

one movement, with no response during the opposing movement). Finally, a small minority of 

cells displayed reduced activity during both push and pull trials classified as Type 4 neurons 

(5 / 181 neurons, 2.8 %, N = 6 mice) (Figure 2I-2J). In terms of spatial organization, movement 

bias neurons were found in all FOVs and were spatially intermingled with movement-invariant 

neurons (Figure 2H and 2K). Although there was a high degree of variability in ∆F/F0 changes 

trial-to-trial, no consistent differences in mean pairwise trial-to-trial ∆F/F0 correlations were 

found between movement-invariant and movement-bias neurons across trial types (Figure 

2L). A small proportion of bias neurons displayed differences in baseline ∆F/F0 between push 

and pull trials, which could reflect postural differences (i.e., different start positions for push 
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and pull trials) or differential preparatory activity (Li et al., 2015) (Figure S2D-S2F). However, 

baseline differences were on average smaller than those observed during the peri-movement 

epoch (data not shown), thus unlikely to be the main driver of movement-specific signaling. 

Given that ∆F/F0 changes provide an indirect readout of neural activity, we sought to confirm 

the proportions of movement-invariant and movement-bias neurons in layer 5B using high-

density silicone probe recordings. Putative layer 5B projection neurons were identified using 

spike-width thresholding and electrode depth profiling based on retrograde labeling from the 

pons (Figure S2G-S2I). We found similar proportions of movement-invariant (no bias) and 
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Figure 2. Movement-invariant and movement-specific signaling in layer 5B of CFA

(A) Depth profile of pyramidal tract (PT) neurons in CFA: Left, Retrobead labeling of PT neurons following injection into the pons; Right, normalized fluorescence ± s.e.m as a
function of depth from the pial surface (N = 3 mice). Black line indicates the upper and lower boundary of layer 5B across mice.
(B) Representative 2-photon imaging fields-of-view (FOVs) from layer 5B in CFA (N = 4 mice). Cyan circles depict regions of interest.
(C) ∆F/F0 traces from four example layer 5B neurons during task execution (gray vertical bars). Black traces depict neurons with movement-related activity; gray trace depicts a
neuron with reward-related activity.
(D) Proportion of non-responsive, movement-related, or reward-related neurons per FOV (n = 12 FOVs, N = 6 mice). Black dots represent individual FOVs, bars represent mean
± 95% CI.
(E) Pairwise trial-to-trial correlation of population ∆F/F0 during push (blue) or pull (green) trials as a function of the pairwise trial-to-trial correlation of corresponding motion index
(n = 12 FOVs, N = 6 mice).
(F) Activity of two example movement-invariant neurons. Top, raster showing normalized ∆F/F0 across successive push (blue) or pull (green) trials; Bottom, mean ∆F/F0 ± 95% CI
for push and pull trials. Dashed lines, movement initiation (MI).
(G) Summary of movement-invariant and movement-bias neuron classification in layer 5B CFA (n = 468 neurons, N = 6 mice).
(H) 2 overlapping FOVs from a single mouse showing movement-invariant (dark gray), movement-bias (light gray) and non-responsive neurons (white).
(I) Activity of movement bias neurons split by type. Top, example Type 1 neurons with push (left) or pull (right) bias; Bottom left, example Type 2 neuron with push bias; Bottom
right, example Type 3 neuron with pull bias. Dashed lines, movement initiation (MI).
(J) Summary of movement bias classification in layer 5B CFA (n = 181 neurons, N = 6 mice). Insets, model examples of Type 1-4 ∆F/F0 changes.
(K) 2 overlapping FOVs from a single mouse showing neurons with push (blue) or pull (green) bias. Gray, movement-invariant, non-responsive or reward phase neurons.
(L) Mean pairwise trial-to-trial ∆F/F0 correlation for push (blue) and pull (green) trials in invariant, push- and pull-biased neurons (n = 468 neurons from 12 FOVs, N = 6 mice). Black
dots represent individual mice.
(M) Proportion of invariant, push- and pull-biased neurons per mouse (n = 468 neurons from 12 FOVs, N = 6 mice). Black dots represent individual mice. Red cross marks identified
outlier.
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push- / pull-bias neurons when comparing both recording methods (Figure 2M and Figure 

S2J-S2L), confirming that movement-invariant signaling dominated layer 5B responses, while 

a small proportion of neurons conveyed movement-specific information. 

 

A small proportion of layer 5B neurons decode movement type 
Next, we investigated how reliably movement-type could be decoded from single neuron and 

population changes in ∆F/F0 using a Gaussian Naïve Bayes classifier and logistic regression, 

respectively (see Methods). Approximately 37 % of neurons (172 / 468 neurons) displayed 

decoding accuracy scores above chance (Figure 3A), similar to, but slightly higher than the 

combined proportion of identified push and pull bias neurons (see Figure 2M), likely reflecting 

subtle differences in the sensitivity of both approaches. Given the trial-to-trial variability in 

∆F/F0 and resultant moderate decoding scores (see Figure 2I and Figure 3A), we reasoned 

that population responses could provide a more robust movement-related signal that would 

enhance decoding of movement type. By applying logistic regression, population decoding 

was found to be consistently more accurate when compared to single neuron decoding (single 

cell median decoding accuracy = 0.61, [0.07] IQR; population median decoding accuracy 0.75, 

[0.16] IQR, N = 6 mice, P = 2.8x10-2, Wilcoxon signed rank test) (Figure 3B). However, this 

increase was driven almost entirely by a small proportion of high decoding accuracy neurons. 

Removing the top ~20% of neurons ordered by decoding accuracy score abolished 

movement-type classification (median prop. removed = 0.21, [0.50] IQR, N = 6 mice) (Figure 

3D-3E), whereas sequential removal of randomly selected neurons resulted in a significantly 
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Figure 3. Population decoding relies on a small proportion of high decoding accuracy neurons.

(A) Maximum decoding accuracy during peri-movement epochs generated using a Gaussian naïve Bayes classifier. Circles represent individual neurons; black horizontal lines
indicate significance threshold. HDA, high decoding accuracy (orange); LDA, low decoding accuracy (gray).
(B) Box-and-whisker plots showing median, interquartile range and range of single cell (naïve Bayes classifier, orange) and population (logistic regression, brown) decoding
accuracy (n = 12 fields-of-view (FOVs), N = 6 mice, P = 2.8x10-2, Wilcoxon Signed-rank test). Black dots represent individual mice.
(C) Mean population decoding accuracy for all neurons from a representative FOV or after removal of 10-50% neurons in order from high to low single cell decoding accuracy
(Figure 3A). Red shaded line depicts the 95% CI based on shuffled data. Dashed line, movement initiation (MI).
(D) Change in population decoding accuracy for an example FOV after the sequential removal of neurons in order from high (orange) to low (gray) single cell decoding accuracy
(Figure 3A). Line, mean ± 95% CI. Red line, 95% CI based on shuffled data.
(E) Change in population decoding accuracy for an example FOV after the random removal of individual neurons. Line, mean ± 95% CI. Red line, 95% CI based on shuffled data.
(F) Box-and-whisker plots showing the median, interquartile range and range for ordered (high-to-low decoding accuracy) versus random removal of neurons (n = 12 FOVs, N =
6 mice, P = 2.8x10-2, Wilcoxon Signed-rank test). Black dots represent individual mice.
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larger proportion of neurons having to be removed before decoding accuracy reduced to 

chance (median prop. removed = 0.64, [0.57] IQR, N = 6 mice, P = 2.8x10-2, Wilcoxon signed 

rank test) (Figure 3F). This dependency on high decoding accuracy neurons suggests that 

movement-specific information is routed through a selected subset of layer 5B neurons. 

 

To further explore the underlying structure of layer 5B population activity, we employed 

principal component analysis (Churchland et al., 2012; Churchland et al., 2010; Cunningham 

and Yu, 2014; Kaufman et al., 2014; Stopfer et al., 2003). For the leading 16 principal 

components, we compared the difference between push and pull trials to compute a 

discrimination index (d’) (Figure S3A). Leading principal components tended to be more similar 

across actions, while action type was often better represented by higher components (Figure 

S3B). Despite correlating with population decoding scores, high d’ values were not 

preferentially associated with the leading principal components of the population activity 

(Figure S3D-3F), suggesting movement-type is not a dominant signal in the population 

response (Kaufman et al., 2016).  

 

IT and PT neurons display temporal differences in the encoding of movement type 
Layer 5B contains two broad classes of projection neurons: intratelencephalic (IT) neurons 

form striatal and cortico-cortical connections (Levesque et al., 1996; Muñoz-Castañeda et al., 

2021; Wilson, 1987; Winnubst et al., 2019); while pyramidal tract (PT) neurons target multiple 

subcortical, brainstem and spinal cord areas (Economo et al., 2018; Kita and Kita, 2012; 

Muñoz-Castañeda et al., 2021; Ueta et al., 2014; Winnubst et al., 2019) (Figure 4A). We next 

sought to understand whether movement-invariant and movement-specific signaling was 

dependent on projection class identity. To perform population imaging from identified cell 

types, we used an intersectional retrograde viral approach targeting ipsilateral brainstem 

(pons, PT) and contralateral CFA (IT) using a retrograde virus (r-AAV-retro cre) and 

conditional expression of GCaMP6s in ipsilateral CFA (Figure 4B-4C). Using a bicistronic viral 

vector expressing both GCaMP6s (flex) and mRuby, we confirmed that we recorded the 

majority of PT and IT neurons at depths up to 700 µm from the pial surface (Figure S4), 

consistent with our previous estimates (see Figure S2A-2C). Comparing push and pull trials, 

most PT neurons displayed movement-invariant activity (75.0 % [21.1] IQR), with a small 

number of neurons displaying push or pull bias (push bias = 10.3 % [19.9] IQR, pull bias = 

13.8 % [11.3] IQR, N = 5 mice), mainly consisting of Type 1 (78.2 %) and Type 2 neurons 

(16.9 %) (Figure 4D-4E). In contrast, similar proportions of IT neurons displayed movement-

invariant and movement specific signaling (movement-invariant = 51.2 % [11.6] IQR, 

movement-bias = 48.8 % [11.6] IQR), with Type 1 and Type 2 neurons again being the most 

abundant (Figure 4F-4G). Single cell decoding accuracy scores were highly consistent across 
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mice and, as expected, population decoding accuracy increased when averaging the activity 

of all high decoding accuracy neurons per FOV (Figure 4H-4I). Although trial type could be 

decoded in approximately one third of projection neurons during the peri-movement window, 

the proportion of IT neurons with decoding accuracy above chance was highest prior to 

movement initiation, while for PT neurons this occurred during movement execution (IT peak 

proportion of neurons, 0.19 at -192 ms; PT peak proportion of neurons, 0.21 at +544 ms, N = 

6 and 5 FOVs from 5 and 4 mice, respectively), suggesting differential roles for IT and PT 

neurons in movement initiation and execution, respectively. Importantly, at no time during the 

peri-movement window was the proportion of high decoding accuracy neurons above 21 % 

Figure 4. Movement-invariant and movement-specific signaling in identified layer 5B projection neurons.

(A) Schematic showing brain-wide projections of layer 5B PT (purple) and IT (red) neurons. Contra- and ipsilateral relates to to the site of 2-photon imaging.
(B) Histology from two imaged mice showing retrograde cell type-specific labeling of PT (left) and IT (right) neurons in CFA.
(C) Example field-of-view (FOV) showing PT neurons with push (blue) or pull (green) bias. Gray, movement-invariant; white, non-responsive neurons.
(D) Activity of two example PT neurons - movement-invariant (left) and movement-bias, Type 1 (right). Top, raster showing normalized ∆F/F0 across successive push (blue) or
pull (green) trials; Bottom, mean ∆F/F0 ± 95% CI for push and pull trials. Dashed lines, movement initiation (MI).
(E) Left, summary of movement-invariant and movement-bias PT neuron classification (n = 125 vs 46 neurons, N = 5 mice); Middle, summary of movement-bias classification in
layer 5B CFA (n = 46 neurons, N = 5 mice). Right, proportion of invariant, push- and pull-biased neurons per mouse (n = 171 neurons from 6 FOVs, N = 5 mice). Black dots
represent individual mice. Below, model examples of ∆F/F0 changes classified as Type 1-4.
(F) Activity of two example IT neurons - movement-invariant (left) and movement-bias, Type 1 (right). Top, raster showing normalized ∆F/F0 across successive push (blue) or pull
(green) trials; Bottom, mean ∆F/F0 ± 95% CI for push and pull trials. Dashed lines, movement initiation (MI).
(G) Left, summary of movement-invariant and movement-bias IT neuron classification (n = 56 vs 54 neurons, N = 4 mice); Middle, summary of movement-bias classification in
layer 5B CFA (n = 54 neurons, N = 5 mice). Right, proportion of invariant, push- and pull-biased neurons per mouse (n = 110 neurons from 5 FOVs, N = 4 mice). Black dots
represent individual mice. Below, model examples of ∆F/F0 changes classified as Type 1-4.
(H) Example FOV showing high (orange) and low (gray) decoding accuracy, and non-responsive (white) PT neurons.
(I) Box-and-whisker plots showing median, interquartile range and range of single cell (naïve Bayes classifier, orange) and population (logistic regression, brown) decoding
accuracy of PT (left) and IT (right) neurons. Comparisons made with two sample t-test. Black dots represent individual mice.
(J) Proportion of neurons with decoding accuracy above chance (i.e., high decoding accuracy, HDA) across time. PT, purple; n = 58 / 171 neurons from 6 FOVs, N = 5 mice and
IT, red; n = 43 / 110 neurons from 5 FOVs, N = 4 mice. Dashed line, movement initiation (MI).
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for either cell type (Figure 4J), consistent with a small proportion of projection neurons 

conveying time-dependent movement-specific information.  

 

Movement-specific signaling is distributed across layer 5B  
To explore whether high decoding accuracy PT and IT neurons form functional clusters within 

CFA, we first detected the onset of movement-related ∆F/F0 changes. Within each FOV, 

activity changes occurred ~300 ms prior to movement, consistent with a role in preparation / 

initiation (Dacre et al., 2021; Estebanez et al., 2017; Isomura et al., 2009; Li et al., 2015), and 

tiled the peri-movement window up to reward delivery. Neurons displaying a range of ∆F/F0 

onsets were spatially distributed across each FOV (Figure 5A-5B). To explore correlations in 

peri-movement activity patterns, we split PT and IT neurons based on their decoding accuracy 

scores (high, low and all) and compared pairwise activity during push and pull trials. We found 

Figure 5. Cell type-specific spatiotemporal organization of high decoding accuracy neurons in layer 5B.

(A) Example fields-of-view (FOVs) showing spatial distribution of ∆F/F0 onsets for high decoding accuracy PT (left) and IT (right) neurons during push trials. MI, movement initiation.
Colors represent 200 ms bins tiling the peri-movement epoch: -300 ms (light orange) to +700 ms (dark brown).
(B) Histograms of ∆F/F0 onsets for high decoding accuracy (orange) and low decoding accuracy (gray) PT (left) and IT (right) neurons during push (top) and pull (bottom) trials (n
= 6 & 5 FOVs, N = 5 and 4 mice, respectively).
(C) Modelled functional networks depicting high (orange) and low (gray) decoding accuracy neurons with correlated (left) or uncorrelated (right) activity. Each node, represented
by a circle, corresponds to a neuron, while the connections represent the strength of activity correlation between neurons.
(D) Left top & bottom, functional networks constructed from the pairwise activity correlations from a representative PT (top) and IT (bottom) FOV. Line color (light to dark) and width
correspond to increasing values of Pearson’s r. Neurons are plotted as nodes in Euclidean space with color and size relating to increasing decoding accuracy. Right top & bottom,
box-and-whisker plots showing the median, interquartile range and range of correlation coefficients across mice for high decoding accuracy (HDA, orange), low decoding accuracy
(LDA, gray) and all (brown) PT (top) and IT (bottom) neurons. Black dots represent individual mice.
(E) Median pairwise correlation coefficient with 95% CI as a function of pairwise distance for high decoding accuracy (orange) and low decoding accuracy (gray) PT (left) and IT
(right) neurons. Horizontal lines denote linear regression model fit, with shaded regions representing the bootstrapped 95% CI (PT: P = 0.87 (HDA) , P = 1.0 (LDA), n = 3024
observations, N = 5 mice; IT: P = 0.6 (HDA), P = 1.0 (LDA), n = 1562 observations, N = 4 mice).
(F) Modelled functional networks depicting clustered (left) and non-clustered (right) high decoding accuracy neurons. Each node, represented by a circle, corresponds to a neuron,
while the connections represent the pairwise distances between neurons.
(G) Left top & bottom, functional networks constructed from the pairwise distances between neurons in a representative PT (top) and IT (bottom) FOV. Right top & bottom, box-and-
whisker plots showing the median, interquartile range and range of median pairwise distances across mice for high decoding accuracy (HDA, orange), low decoding accuracy
(LDA, gray) and all (brown) PT (top) and IT (bottom) neurons. Black dots represent pairwise distances for individual mice, red crosses mark identified outliers.
(H) Models depicting cell type- and movement-specific layer 5B movement signaling in caudal forelimb motor cortex (CFA). Colored circles represent movement-invariant (cyan),
push biased (blue) and pull biased (green) neurons.
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weak correlations within and across groups irrespective of cell-type identity (Figure 5C-5D and 

Figure S5). Moreover, comparing the activities of PT and IT neurons as a function of their 

pairwise distance, suggested that neighboring neurons did not show correlated activity or 

spatiotemporal clustering (Figure 5E-5G). Thus, our data suggest a model whereby 

movement-specific information is routed through small, distributed subpopulations of layer 5B 

projection neurons, while most neurons convey movement-invariant information related to the 

timing of movement execution (Figure 5H).    

 

Discussion 
Here, we show that the majority of layer 5B neuron signaling in mice was movement-invariant, 

where similar activity patterns were generated during the execution of two diametrically 

opposing movements. Changes in activity were tightly locked to the peri-movement period, 

indicative of a generic motor signal relating to movement timing, but not to movement type. 

Movement- or condition-invariant signaling also dominates in primate motor cortex, thought to 

trigger state-dependent switching from stable neural dynamics during rest towards oscillatory 

dynamics underpinning movement execution (Churchland et al., 2012; Churchland et al., 

2010; Kaufman et al., 2014; Kaufman et al., 2016; Kurtzer et al., 2005) and is an emergent 

property of recurrent neural networks trained to recapitulate complex muscle patterns during 

reaching (Sussillo et al., 2015). In contrast to primate motor cortex, we found widespread 

movement-invariant responses at the single neuron level (Kaufman et al., 2016). This is 

unlikely to reflect differences in recording sensitivity, given that our imaging and 

electrophysiology approaches identified similar proportions of movement-invariant neurons 

across layer 5B (Wei et al., 2020; Zhou and Tin, 2021), or the limited number of movements 

in our task as movement-invariant responses have been shown in relatively simple tasks 

requiring few actions (Evarts, 1968; Hocherman and Wise, 1991; Messier and Kalaska, 2000; 

Riehle et al., 1994; Weinrich et al., 1984). Instead, this might reflect evolutionary differences 

in how motor cortex recruits and controls muscle activation during the transition from rest to 

movement execution. Cell-type-specific imaging identified that movement-invariant signaling 

dominated PT neuron activity, suggesting a large proportion of the output conveyed to 

subcortical, brainstem and spinal cord areas relates to the execution of movement without 

necessarily specifying movement type, whereas equal proportions of IT neurons displayed 

movement-invariant versus movement-specific signaling. If movement-invariant signaling 

relates to the execution of movement and dominates deep layer motor cortex activity, what 

drives the change in neural activity and what purpose might it serve? Long-range inputs from 

basal ganglia, secondary motor cortex and cerebellum are possible sources (Hooks et al., 

2013; Hooks et al., 2018; Nelson et al., 2021), providing an external trigger to transform motor 

cortical dynamics necessary for postural maintenance at rest to a neural state required for 
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movement execution. This switch in neural dynamics would signify the intention to move, but 

not which movement will be executed (Elsayed et al., 2016; Kaufman et al., 2016). An 

important next step will be to develop methods to identify and selectively manipulate neurons 

displaying movement-invariant signaling to demonstrate their causal contribution to postural 

control and timing of movement initiation.  

 

We reasoned that the execution of two diametrically opposing movements should, in principle, 

generate distinct patterns of cortical output dynamics, given differences in starting posture, 

direction of movement and temporal sequence of muscle activation (Isomura et al., 2009; Miri 

et al., 2017). Although we found that the majority of layer 5B neuron signaling was movement-

invariant, a relatively small proportion of neurons displayed response bias towards either push 

or pull movements. The low prevalence of movement-specific signaling is unlikely to be due 

to masking of subtle changes in spike rate when using calcium reporters (Wei et al., 2020; 

Zhou and Tin, 2021), since we observed similar proportions of movement-specific signaling 

when performing high-density extracellular recordings of putative layer 5B projection neurons. 

The firing rates of individual neurons in motor cortex reflect a complex combination of signals 

that have been shown to correlate with joint angle, direction, and speed (Georgopoulos et al., 

1982; Moran and Schwartz, 1999; Paninski et al., 2004; Thach, 1978), while population 

dynamics reflect time-varying changes in neural state during the transition from rest to 

movement execution (Churchland et al., 2012; Churchland et al., 2010; Kaufman et al., 2014; 

Kaufman et al., 2016; Kurtzer et al., 2005; Sauerbrei et al., 2019). In mice, individual layer 5B 

neurons displayed moderate decoding accuracy scores, likely due to relatively high trial-to-

trial variability, while the population average was consistently higher across mice. We found 

that only a small proportion (~20%) of neurons contributed to high population decoding 

accuracy scores, with their combined effects accurately decoding three quarters of all trials. 

Removing only a handful of neurons per FOV was sufficient to abolish decoding, confirming 

that a minority of neurons convey the majority of information regarding movement type. This 

dependency on only a few neurons has important implications for understanding how 

movement-specific information is encoded in primary motor cortex, given that mapping neural 

dynamics during the execution of a single movement task will likely uncover widespread 

movement-invariant signaling, that relates to limb movement, but not the specific movement 

being executed. 

 

In mouse cortex, projection neurons display connectivity patterns both within and across 

classes that suggest general organizing principles (Brown and Hestrin, 2009; Kiritani et al., 

2012; Maruoka et al., 2017; Morishima et al., 2011). IT neurons in motor cortex are strongly 

recurrently connected, whereas inter-class connectivity is largely directional from IT to PT but 
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not vice versa, generating a hierarchical organization with unidirectional signaling from higher-

order to lower-order output neurons (Kiritani et al., 2012). Asymmetric projection-class 

connectivity, as well as differences in input structure and intrinsic excitability (Anderson et al., 

2010; Hooks et al., 2013; Kiritani et al., 2012; Oswald et al., 2013) provide a mechanism to 

flexibly route movement-specific information via two independent output channels depending 

on behavioral requirements. Our cell-type-specific imaging identified that only a small 

proportion of PT neurons conveyed movement-specific information. In contrast, almost half of 

IT neurons displayed movement-specificity, with similar proportions of both push and pull bias. 

Although PT and IT activity onsets occurred prior to and throughout movement, consistent 

with both pathways contributing to movement initiation and execution (Chen et al., 2017; 

Economo et al., 2018; Li et al., 2015; Park et al., 2021; Wang et al., 2017), the proportion of 

IT neurons with high decoding accuracy was highest prior to movement initiation, while for PT 

neurons this occurred during movement execution. This suggest that information relating to 

movement type is first conveyed by IT neurons, which project to bilateral striatum and cortex, 

but not other subcortical targets (Levesque et al., 1996; Muñoz-Castañeda et al., 2021; 

Wilson, 1987; Winnubst et al., 2019), before PT neurons then propagate information to 

subcortical, brainstem and spinal cord circuits necessary for online control of forelimb 

movement (Economo et al., 2018; Kita and Kita, 2012; Muñoz-Castañeda et al., 2021; Ueta 

et al., 2014; Winnubst et al., 2019). Importantly, the proportions of PT or IT neurons decoding 

movement type never exceeded 25%, consistent with movement-specific signaling being 

confined to a relatively small subpopulation of layer 5B projection neurons. What is unclear is 

the extent to which movement-specific signaling in PT and IT neurons is organized by 

projection target as seen in anterolateral motor cortex during directional licking (Chen et al., 

2017; Economo et al., 2018; Li et al., 2015). Targeting neurons based on molecular expression 

profiles and projection specificity (Muñoz-Castañeda et al., 2021; Winnubst et al., 2019) will 

provide a finer grained understanding of how movement-specific information is routed via 

molecularly distinct projection pathways. 

 

We found that PT and IT neurons displaying high decoding accuracy were distributed across 

FOVs. This lack of functional clustering differs from the proposed modular organization of 

directionally tuned cells in primate motor cortex, where neurons with similar preferred direction 

tend to cluster into vertically oriented minicolumns approximately 50 - 100 µm wide, repeated 

every 250 µm (Amirikian and Georgopoulos, 2003; Cheney et al., 1985; Georgopoulos et al., 

2007; Jones and Wise, 1977), but consistent with the distributed spatial organization of 

direction-specific layer 5B projection neurons in mouse anterolateral motor cortex during the 

execution of a whisker-based object location discrimination task (Li et al., 2015). The apparent 

lack of spatial clustering in CFA is unlikely to be due to reduced sensitivity of our analysis 
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methods as confidence intervals provide a lower bound indication of cluster size such that, if 

present, spatial clusters based on decoding accuracy would have to be less than ~50 µm. 

Similarly, we found no evidence of temporal clustering in either high (movement-specific) or 

low (movement-invariant) decoding accuracy neurons, as expected given that the onsets of 

both PT and IT neuron activity changes occurred ~300 ms prior to movement and tiled the 

peri-movement period up to reward delivery. Our work extends previous findings in superficial 

layers of motor cortex showing neurons with task-related response properties are spatially 

intermingled (Galiñanes et al., 2018; Huber et al., 2012), to support a model in which 

movement-specific signaling in layer 5B is routed via small but distinct subpopulations of 

projection neurons. The flexible routing of information through distributed descending 

projection pathways could in principle provide a mechanism for differentially controlling 

movement variables necessary for the execution of a large repertoire of limb movements.  
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1986. Surgical procedures were performed under ~1.5% isoflurane anaesthesia and each 

animal received fluid replacement therapy (0.5ml sterile Ringer’s solution), buprenorphine 

(0.05 mg/kg) and either carprofen (4 mg/kg) or dexamethasone (2 mg/kg) for pain relief and 

to reduce inflammation. At 24 and 48 hours, carprofen (4 mg/kg) was administered for post-

operative pain relief. Craniotomies were performed in a stereotactic frame (David Kopf 

Instruments, CA, USA) using a hand-held dentist drill with 0.5 mm burr. A small lightweight 

headplate (0.5 g) was implanted on the surface of the skull using cyanoacrylate glue and 

dental cement (Lang Dental, IL, USA) and mice were left for at least 48 hours to recover. 

 

Behavioral training 
After recovery from head plate surgery, mice were handled extensively before being head 

restrained and habituated to a custom forelimb lever push / pull behavioral setup. Mice were 

trained to perform two diametrically opposing movements - a 4 mm push or pull of a moveable 

lever - in response to a 6 kHz auditory cue to obtain a 5 µl water reward. Mice rested their 

right forepaw on a stationary lever while making push or pull movements with their left forepaw. 

Upon completion of a successful push or pull (determined by the status of IR beams at either 

end of the lever’s travel), the moveable lever was locked in place for the duration of the reward 

period (3 s) and the water reward was delivered by an automated spout - both locking 

mechanism and spout were controlled by micro servo motors (HXT900, HexTronik). To 

increase task engagement, mice were placed on a water control paradigm (1 ml/day) and 

weighed daily to ensure body weight remained above 85% of baseline. Mice were trained once 

per day for 30 mins and advanced through different phases of the task once they achieved > 

50 rewards in each of two consecutive sessions or > 70 rewards in a single session. Initially, 

mice were required to perform uncued push and pull movements to obtain rewards (phase 1). 

Next, an auditory cue was introduced with pseudo-random inter-trial-interval (ITI) of 4-6 s and 

a response window of 10 s (phase 2). During the ITI, mice had to hold the moveable lever still 

- spontaneous movements of the lever within the ITI triggered a reset, where the lever was 

locked in the original position for 1 s. The response window was gradually reduced to 5 (phase 

3) and then 2 s (phase 4) across training sessions. Mice were deemed “expert” after achieving 

> 70 rewards on two consecutive days of training with a response window of 2 s. During 2-

photon imaging experiments (see below), a 1 s delay between completion of a successful 

movement and reward delivery was introduced to temporally separate activity related to 

reward consumption from the forelimb movements of primary interest.   

 

Forelimb kinematic tracking 
Behavior was recorded using a high speed camera (60 fps during population calcium imaging 

of layer 2/3 or 5B - Prosilica GC780C, Allied Vision, Germany; or either 100 or 300 fps for cell-
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type specific calcium imaging or in vivo pharmacology, respectively - Mako U U-029, Allied 

Vision) and acquired using Streampix 7 (Norpix, Canada) or Mantis64 

(https://www.mantis64.com/). To measure gross forelimb movement, a region of interest (ROI) 

was manually drawn around the left forelimb and the frame-to-frame difference in pixel 

intensity was calculated using the formula: 𝑀𝐼! = ∑"#$% &𝑐!&$," − 𝑐!,")2, where cf,i is the grayscale 

level of pixel i in frame f. The resulting motion index was smoothed with a 1 s LOESS filter 

then aligned to behaviorally relevant time points (lever displacement, cue presentation etc.), 

with videos and behavior resampled to a common sampling rate. Motion index onsets were 

calculated by aligning the motion index to the lever movement and identifying the first point 

prior to movement where mean motion index was > threshold (mean upper bound of 95% 

confidence interval during baseline). Directional tracking of forelimb and lever movement was 

performed using Deep Lab Cut, a markerless video tracking toolbox (Mathis et al., 2018). 

Tracking data was aligned to cue presentation, baselined to mean xy position during the 100 

ms prior to cue and then cropped between movement initiation and movement completion. 

For presentation, trials of different durations were resampled to a fixed length to enable a 

mean trajectory to be plotted across multiple trials. 

 

In vivo pharmacology  
To assess the behavioral effects of caudal forelimb area (CFA; N = 10) or hind limb motor 

cortex (M1hl; N = 5) inactivation, mice trained to expert level in the task had a small burr hole 

opened directly above the target area (CFA: 1.6 mm lateral, 0.6 mm rostral to bregma; M1hl: 

1.25 mm lateral, 1.25 caudal to bregma) before recovering for > 90 mins. After 10 mins of 

baseline behavioral task execution, the lever was locked and a small volume of the GABAA 

receptor agonist muscimol (dissolved in external saline solution containing 150 mM NaCl, 2.5 

mM KCl, 10 mM HEPES, 1.5 mM CaCl2 and 1 mM MgCl2, adjusted to pH 7.3) was injected 

into the target area - 200 nl of 2mM muscimol was injected at each of 4 or 5 sites forming a 

0.5 mm X centered on 1.6 mm lateral, 0.6 mm rostral to bregma (CFA) or 1.25 mm lateral, 

1.25 caudal to bregma (M1hl). Each injection site was at a depth of 0.7 mm below the cortical 

surface. To confirm the anatomical location of drug injection, 1% w/v of retrobeads (red, 

Lumaflor Inc.) was included in the injected solution. In a subset of mice (N = 5 of 10), animals 

were also injected in CFA with saline (vehicle only; injection performed on a different day). In 

these experiments, mice were randomly assigned to drug or control groups (each mouse 

received one injection of muscimol and one injection of saline) and experiments performed 

blinded. After each experiment, mice were transcardially perfused and coronal (60 μm) or 

sagittal (100 μm) sections were cut with a vibratome (Leica VT1000S), mounted with 

Vectashield mounting medium (H-1000, Vector Laboratories), imaged using a fluorescence 
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microscope (Leica DMR, 5x objective) and manually referenced to the Paxinos and Franklin 

Mouse Brain Atlas (Paxinos and Franklin, 2008). Behavioral metrics were analyzed comparing 

videos of 10 mins pre and post injection - the experimenter was blinded to the experimental 

groupings. Behavioral video data for all pharmacology experiments was captured using a high-

speed camera (Mako U U-029, Allied Vision), and paw position accuracy was calculated as 

the proportion of trials in which mice were holding the moveable lever with their left forepaw 

at the onset of the auditory cue. 

 

Quantifying muscimol diffusion 
To measure muscimol diffusion, a small volume of muscimol-BODIPY TMR-X Conjugate 

(ThermoFisher Scientific; dissolved in 0.1PBS w/1% dimethyl sulfoxide) was injected into CFA 

(200 nl of 2 mM at 4 sites centered on 1.6 mm lateral, 0.6 mm rostral to bregma at a depth of 

0.7 mm below the cortical surface). To mark the center of injection, pipettes were backfilled 

with a small volume (~20 nl) of green retrobeads (Lumafluor Inc.) prior to filling with muscimol-

BODIPY. Following injection, animals were transcardially perfused and brains snap-frozen on 

dry ice 10 minutes from completion of the muscimol injection. Brains were stored on dry ice, 

coronal sections (60 μm) collected with a cryostat (Leica) at -20C and imaged with a light 

microscope (Leica DMR, 5x objective). We assumed maximum fluorescence ≈	maximum 

injected concentration and that grayscale pixel intensity was proportional to muscimol-

BODIPY concentration. Therefore, pixel values were thresho 

 

lded at the equivalent pixel value of an EC20 concentration of muscimol and fluorescence 

outlines were drawn to generate a ‘spread profile’. Green retrobeads were used to mark the 

center of each injection, and images were aligned to the injection center of gravity. From the 

aligned profiles, a modal spread profile (i.e., pixels with positive grayscale values across all 

mice) was generated and aligned to the Paxinos and Franklin Mouse Brain Atlas (Paxinos and 

Franklin, 2008). 

 

Retrograde tracing 
To selectively label pyramidal tract (PT) neurons in layer 5B of CFA, red retrobeads 

(Lumafluor, USA) were injected into the pons (4.0 mm caudal and 0.4 mm lateral to bregma 

ipsilateral to the target CFA), delivered via pulled glass pipettes (5μl, Drummond Scientific, 

PA, USA; 10-20 nl/min) using an automated injection system (Model Picospritzer iii, Parker, 

NH, USA). Injections were made at 4 sites (100 nl / site) located 200, 400, 600 and 800 µm 

dorsal from the cranial floor. After > 14 days post-injection, mice were terminally anaesthetized 

using an intraperitoneal injection of a ketamine/domitor mixture (75 mg/kg ketamine, 1 mg/kg 

domitor) and transcardially perfused with 30 ml of phosphate-buffered saline (PBS) followed 
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by 30 ml of 4% paraformaldehyde (PFA, Sigma-Aldrich, MO, USA), dissolved in PBS and 

adjusted to pH 7.4. Brains were post-fixed at 4 °C for 1-3 days in 4% PFA solution, then 

transferred to PBS solution. Individual brains were cut into coronal sections (60 µm) using a 

vibrating microtome (Leica VT1200 S, Leica Microsystems (UK) Ltd.) and mounted with 

Vectashield Antifade Mounting Medium (Vector Laboratories, CA, USA). Images were 

acquired with a Leica DM R epifluorescence microscope and image analysis was performed 

using ImageJ (Rueden et al., 2017) and MATLAB (MathWorks, MA, USA). To obtain estimates 

of the depth of layer 5B in CFA, 3 coronal sections from each brain were imaged (0.54 mm, 

0.6 mm and 0.66 mm rostral to bregma). Brightness/contrast adjustments and background 

subtraction (rolling ball, 30 pixels wide at 1.28 µm/pixel; Fiji (Schindelin et al., 2012)) functions 

were performed to reduce the contribution of background autofluorescence. Each ROI was 

then divided into 25 µm deep bins that were normalized to a value between 0 and 1, with 0 

being the darkest bin and 1 being the brightest bin and all bins were compared to baseline. In 

order to obtain a depth profile of layer 5B within CFA, the depth of the dorsal-most retrogradely 

labeled neuron was recorded at 100 µm intervals from 1.3 - 1.9 mm lateral to bregma and 

repeated in 5 sequential coronal sections from 0.36 - 0.84 mm rostral to bregma. For each 

mouse, the depth of layer 5B at the center of CFA (1.6 mm lateral, 0.6 mm rostral to bregma) 

was taken as the reference depth and the depths of other locations reported relative to this 

value.  

 

Immunohistochemistry 
Mice expressing GCaMP6s were transcardially perfused and horizontal sections (30 µm) were 

cut parallel to the surface of CFA. Sections were rinsed in PBS overnight, incubated with a 

blocking solution (PBS, with 0.5% Triton X-100 (Sigma-Aldrich) and 10% goat serum (Sigma-

Aldrich)) for 2 hrs and rinsed with PBS. Sections were incubated overnight with mouse anti-

NeuN (MAB377 Anti-NeuN Antibody, clone A60, Sigma-Aldrich) diluted 1:1500 in carrier 

solution (PBS, with 0.5% Triton X-100 and 1% goat serum), then rinsed with PBS. For 

secondary antibody binding, sections were incubated overnight with goat anti-mouse Alexa 

Fluor 568 (Invitrogen, MA, USA) diluted 1:750 in carrier solution then rinsed with PBS. 

Sections were mounted onto glass slides, briefly air-dried, covered with Vectashield Antifade 

Mounting Medium (Vector Laboratories), and sealed with a glass coverslip. Images of CFA 

were acquired using a Nikon A1R FLIM confocal microscope (20X objective lens, 0.8 NA, Plan 

Apo VC, Nikon, Europe). Three images were taken at imaging planes corresponding to layer 

5B (550 µm from the cortical surface). The number of cells in each image was manually 

counted and divided by the area to obtain a measure of neuron density. For most fields-of-

view (FOVs) recorded during calcium imaging, neurons were not visible in all portions of the 
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frame due to occlusion by blood vessels. Polygons were manually drawn around visible 

neurons in each field-of-view to provide a realistic estimate of the imaging area. 

 

2-photon imaging  
To perform population calcium imaging in layer 5B (12 FOVs, N = 6 mice) of CFA, 200 nl of 

the adeno-associated virus (AAV) AAV1-SynGCaMP6s (diluted to 2.9x1012 GC/ml, Addgene 

100844-AAV1) was injected into right motor cortex (1.6 mm lateral, 0.6 mm rostral to bregma 

and 0.6 mm from the cortical surface) via pulled glass pipettes (5 μl, Drummond Scientific; 10-

20 nl/min) using an automated injection system (Model Picospritzer iii, Parker), before sealing 

the craniotomy with silicone (Body Double; Smooth-On, PA, USA) and implanting a lightweight 

headplate. For imaging, a cranial window (a glass coverslip - #0; Menzel-Gläser, Germany - 

fixed in place with cyanoacrylate glue), was implanted above the virus injection site. 2-photon 

calcium imaging was performed using a custom-built resonant scanning 2-photon microscope 

(320 x 320 µm field-of-view; 600 x 600 pixels) with a Ti:Sapphire pulsed laser (Chameleon 

Vision-S, Coherent, CA, USA; < 75 fs pulse width, 80 MHz repetition rate) tuned to 920 nm 

wavelength. Images were acquired at 40 Hz with a 40x objective lens (0.8 NA; Nikon) with 

custom-programmed LabVIEW-based software (LotoScan).  

 

For cell type specific imaging, AAV-pkg-Cre (Addgene 24593-AAVrg; 1.7x1013 GC/ml) was 

injected into either the ipsilateral (right) pons (PT; 0.4 mm lateral, 0.4 mm rostral to lambda 

and 0.2, 0.4 and 0.6 mm dorsal from the cranial floor) or contralateral (left) CFA (IT; 4 injections 

centered on 1.6 mm lateral, 0.6 mm rostral relative to bregma and  at two depths - 0.7 and 

0.35 mm from the cortical surface) followed by an injection of  pAAV-CAG-Flex-mRuby2-GSG-

P2A-GCaMP6s-WPRE-pA (Addgene 68717-AAV1; 1.8x1013 GC/ml) into right motor cortex 

(1.6 mm lateral, 0.6 mm rostral to bregma and 0.6 mm from the cortical surface). 2-photon 

calcium imaging was performed using an 8 kHz resonant scanning microscope (HyperScope, 

Scientifica, UK; 690 x 690 µm field-of-view; 512 x 512 pixels) with a Ti:Sapphire pulsed laser 

(Chameleon Vision-S, Coherent, CA, USA; < 75 fs pulse width, 80 MHz repetition rate) tuned 

to 920 nm wavelength. Images were acquired at ~30 Hz with a 16x objective lens (0.8 NA; 

Nikon) with SciScan image software (Scientifica) and synchronized with external high speed 

videos and behavioral data using Mantis64. To facilitate reliable imaging at depths > 500 µm, 

all imaging was performed acutely following cranial window implantation - usually within 24 

hours of the surgery. Laser power was 91 – 173 mW (mean = 143 mW) across all imaging 

sessions, well below the damage thresholds of 250 – 300 mW outlined in Podgorski and 

Ranganathan (2016). The combination of low pixel dwell time and systematic blanking of field-

of-view edges, where the dwell time is higher, and the addition of room temperature artificial 
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cerebrospinal fluid on the surface of the skull further reduces the risk of thermal effects (as 

discussed in Podgorski and Ranganathan 2016).     

   

Motion artifacts in the raw fluorescence videos were corrected using discrete Fourier 2-

dimensional-based image alignment (SIMA 1.3.2; (Kaifosh et al., 2014)). ROIs were drawn 

manually in Fiji and pixel intensity within each ROI averaged to produce a raw fluorescence 

time series (F). To remove fluorescence originating from neuropil and / or neighboring 

neurons, fluorescence signals were decontaminated and extracted using nonnegative matrix 

factorization, as implemented in FISSA (Keemink et al., 2018). Normalized fluorescence was 

calculated as ∆F/F0, where F0 was calculated as the 5th percentile of the 1 Hz low-pass filtered 

raw fluorescence signal and ∆F = F-F0. All further analyses were performed in custom written 

scripts in MATLAB or Python 3 that are available via the Duguid Lab GitHub repository 

(https://github.com/DuguidLab). Prior to further analysis, data were smoothed with a 1 s 

LOESS filter, chosen as it reliably captured the overall shape and peak response of the ∆F/F0 

time series. In order to define movement-related neurons, we first defined baseline (-1.5 to -

0.5 s relative to motion index onset) and peri-movement (-0.15 s from motion index onset to 

+1.5 s after movement completion to capture all neuronal responses up to and including 

reward delivery) epochs. Movement-related neurons were identified by two independent 

methods: 1) a bootstrapped distribution (10,000 samples) of baseline-to-peak values (mean 

of the 100 ms centered on the largest deviation from baseline within the peri-movement epoch 

- mean of baseline epoch) was used to test whether  95% confidence intervals for the 

responses were different from 0; 2) bootstrapped distributions of mean ∆F/F0 in 250 ms bins 

within the peri-movement epoch were compared to bootstrapped distributions of mean ∆F/F0 

within the baseline epoch. If either method identified significant differences the neuron was 

classified as movement-related. Neurons with no differences between baseline and movement 

epochs were classified as non-responsive and excluded from further analysis. Movement-

related neurons with a median onset occurring after median movement completion (plus a 

small correction factor of 40 ms, to account for the rise time of GCaMP6s) were defined as 

‘reward phase’ neurons and also excluded from further analysis. The median onset time of 

each cell was calculated by employing a previously published onset detection algorithm using 

a slope sum function (SSF;Zong et al., 2003; Dacre et al. 2021) with the decision rule and 

window of the SSF adapted to the calcium imaging data (threshold 10% of peak, SSF window 

375 ms, smoothed with a Savitzky Golay filter across 27 frames with order 2) and reported as 

the median of 10,000 bootstrapped samples to reduce the influence of noisy individual trials. 

Prior to extracting ∆F/F0 onsets, we verified this algorithm with simulated data thereby 

accounting for any bias in the onset detection potentially introduced by filtering and/or the 

decision rule. To simulate the rising phase of the movement related calcium events in our data 
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we used linear ramps with defined onset times and a rise time of 0.5 s mimicking GCaMP6s 

kinetics. We then calibrated the onset detection algorithm on the simulated data (100 

simulated cells with 30 simulated trials per cell and artificially added noise in each trial 

matching the noise level in the imaging data) and updated it by a small correction factor. 

Neurons with movement bias were detected using the same classification criteria described 

above but across movements (i.e. significant differences in bootstrapped ∆F/F0 baseline-to-

peak or 250ms peri-movement bins). Where significant differences between push and pull 

trials were identified, the neuron was classified as biased for the movement with the larger 

response from baseline.  

 

Trial to trial correlations 
To assess the similarity of trial-to-trial activity, the average pairwise trial-to-trial correlation 

coefficients (Pearson’s r) of the peri-movement ∆F/F0, smoothed with a 1 s LOESS filter, were 

computed for each neuron. Data are presented as bootstrapped medians per animal for 

each movement preference class (10,000 repetitions, 50 samples). To investigate the 

relationship between trial-to-trial similarity of movement and population ∆F/F0, pairwise trial-

to-trial correlation coefficients (Pearson’s r) of peri-movement motion index and pairwise trial-

to-trial correlation coefficients (Pearson’s r) of the peri-movement population ∆F/F0 of the 

same trials were compared. Population ∆F/F0 was the sum of all movement-related neurons 

in each FOV. Data were binned according to the pairwise trial-to-trial correlation coefficients 

of their motion index and are presented as bootstrapped median (10,000 repetitions, 50 

samples) within each bin. 

 

Extracellular recording and spike sorting  
To compare neural activity during the task, extracellular unit recordings in CFA were 

performed using acutely implanted silicone probes (Neuropixels Phase 3B probes, IMEC). 

Data were acquired from the 384 channels closest to the probe tip (bank 0) with SpikeGLX 

software at 30 KHz, an amplifier gain of 500 for each channel and high-pass filtered with a 

cutoff frequency of 300 Hz. Spike data were synchronized with external high-speed videos 

and behavioral data (cue presentation, lever movement and reward delivery) using 

Mantis64. Spike sorting was performed using Kilosort3 to automatically cluster units from raw 

data (Pachitariu et al., 2016). The resulting spike clusters were manually curated using Phy 

(https://github.com/cortex-lab/phy), and any unit with sufficient refractory period violations, 

inconsistent waveform amplitude across the duration of the recording, or clipped amplitude 

distribution was excluded from analyses. Probe location was confirmed via DiI (Thermofisher) 

reconstruction of the recording track and compared to retrogradely labeled PT neurons - 

FastBlue (Polysciences) injected into the pons - in each animal to limit analysis to units within 
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layer 5B (upper boundary, 500-680 μm; lower boundary, 900-1080 μm; N = 5 mice). Spike 

widths were calculated as the duration from trough to following maxima of the spike waveform. 

Putative pyramidal neurons were identified as units with median spike widths greater than 0.4 

ms. 

 

To classify units as responsive to the push or pull movements, firing rates were calculated by 

convolving motion index-aligned spike times with a 50 ms Gaussian kernel and mean changes 

in firing rate were calculated by subtracting the mean firing rate during a baseline period (1 s 

period before cue presentation) from the mean firing rates in 250 ms bins tiling a response 

period extending back from 𝑚𝑎𝑥	( 𝑝𝑢𝑠ℎ𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛(
	 , 𝑝𝑢𝑙𝑙𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛(

	 )) to include motion 

index onset. Briefly, motion index onsets were calculated as the first point after cue where the 

motion index was > threshold (threshold = mean motion index in a baseline window from the 

1.5 s before cue plus 2 SD). Trials where the motion index onset came before cue presentation 

were excluded from analysis. Significant responses were identified by comparing 

bootstrapped 95% confidence intervals of these mean changes in firing rates to 0; if at least 

one bin differed from 0, that unit is considered movement-responsive. Movement-responsive 

units were classified as having a push or pull bias if the confidence intervals in the earliest 

significantly responsive bin did not overlap; in these cases the units were classified as biased 

for the movement with the larger change from baseline.  

 

Neural decoding 
To decode movement type in single neurons we employed a naïve Bayes classifier, where 

distributions of features are assumed to be Gaussian. Movement-aligned ∆F/F0 data were 

assessed within a 5 s peri-movement window to produce a time series for the decoding 

accuracy. At each time point, leaving one trial out (test trial), the likelihood of determining push 

or pull was estimated based on the remaining trials (training set). The leave-one-out procedure 

was then repeated for all trials to calculate a mean decoding accuracy time series for each 

neuron. The resulting time series were analyzed within a peri-movement epoch - the peri-

movement epoch began at -0.15 s relative to motion index onset and ended based on the 

peak ∆F/F0 response of each neuron; the position of the median peak was calculated for each 

movement type and the later of these time points used as the cut off. To identify neurons with 

decoding performance above chance, the bootstrapped distributions of decoding accuracy 

scores were compared against a threshold value for each session. Only neurons with at least 

1 bin significantly higher than threshold were defined as high decoding accuracy. The 

threshold for each session was calculated based on modeled data composed of random 

samples from a Gaussian distribution with the same number of trials as the experimental data. 

For each session, modeled data accuracy was calculated 1000 times, assuming a prior 
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probability of 50:50, and the mean + 2 SD was used as the threshold for significance. For 

population level classification of movement type, we employed logistic regression. As above, 

the decoding accuracy of time series for each population was generated via leave-one-out 

design looped over all the trials in a given session. Population decoding accuracy was defined 

as the maximum decoding accuracy in any 250 ms bin within the peri-movement epoch. 

Population decoding was also performed on subsets of the entire population. Neurons were 

removed from the population one at a time, either in order from highest to lowest decoding 

accuracy score or randomly, with the network retrained for each iteration. The process was 

repeated 25 times in the random condition and the median of all responses used as the 

representative example for comparison with the ordered removal condition. Subpopulations of 

neurons decoding significantly above chance were determined by comparing decoding scores 

with a shuffled dataset (sampled randomly from 1000 time points with the trial labels (push or 

pull) randomized for each sample). If confidence intervals from the population data did not 

overlap with those of the shuffled data, population scores were deemed to be above chance. 

In 3/12 FOVs of the layer 5 dataset with low proportions of high decoding neurons and / or low 

trial numbers, the population decoding accuracy was never significantly above chance. These 

FOVs were excluded from the comparison between ordered and random removal of neurons. 

 

Dimensionality reduction 
Raw fluorescence traces for all trials with successful movements in a 7.5 s peri-movement 

window were concatenated, filtered with a three frame (75 ms) wide boxcar kernel, whitened 

and transformed with principal component analysis. The principal components (PCs) 

corresponding to the 16 highest eigenvalues, which corresponded to an average 83% (range 

[77 94]) cumulative explained variance, were analyzed. To compute trajectories in PC space, 

PC projections for all trials were averaged (separately for push or pull) and the variance and 

95% confidence intervals for each time point estimated via 100-fold bootstrapping. The 

separability of the trajectories for push or pull was computed in each PC separately as d'(t) = 

|mpush(t) - mpull(t)| / √0.5(vpush(t) + vpull(t)), where mpush(t) and mpull(t) are the mean trajectories 

for push and pull, and vpush(t) and vpull(t) the corresponding variances, estimated from trials. 

The separability d'(t) was bootstrapped from 400 samples, and variance and 95% confidence 

intervals estimated from this sample. d'(t) was computed for all frames from movement onset 

to completion, where the latter was the longest movement duration recorded in each session. 

PCs were considered separable if the difference between d'(t) and dshuffle'(t) (obtained in the 

same way from trial-shuffled data) was within the 95% confidence interval, which was 

estimated from the sum of the relevant bootstrapped variances. For each FOV, the largest 

significant d'(t) was used; in 1/12 FOVs no PCs showed significant separability (this FOV also 

had a chance level population decoding score), and were excluded in the summary data. 
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Spatiotemporal organization 
To assess the functional (temporal) organization of simultaneously recorded populations of 

neurons, pairwise correlation coefficients (Pearson’s r) from the smoothed (1 s LOESS filter) 

and motion index-aligned ∆F/F0 within the peri-movement epoch were compared. Data were 

split based on their decoding accuracy scores and the bootstrapped median difference 

between high decoding accuracy neurons and those of the population were subtracted and a 

median difference calculated per sample. This process was repeated 10,000 times to generate 

a distribution for high decoding neurons versus the entire population and the same sampling 

procedure was used to investigate the correlations within low decoding accuracy neurons. To 

investigate spatial clustering, bootstrapped median differences between high decoding 

accuracy neurons and the population using pairwise distances (defined as the Euclidean 

distance between the centroids of manually drawn ROIs from 2-photon imaging processing) 

were compared. A Generalized Linear Mixed-Effects Model: 

𝑟	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒*+",-"./ × 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦0/120/, +𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡34*/ + 𝑎𝑛𝑖𝑚𝑎𝑙 

was used to model the pairwise correlation coefficient as a function of pairwise distance 

(continuous), decoding accuracy and movement type. Pairwise distance and decoding 

accuracy were modeled as interacting fixed terms, while movement type and animal were 

modeled as random intercepts to account for the dependency of the measurements on 

observations from the same animal and across the different movement types. The model was 

estimated using the restricted maximum likelihood, or REML, method (Bartlett and Fowler, 

1937). Model assumptions were verified by comparing residual versus fitted values for each 

covariate in the model against each covariate removed from the model.       

 

Statistics 
Data analysis was performed using custom-written scripts in MATLAB 2019a or Python 3. 

Where multiple measurements were made from a single animal, suitable weights were used 

to evaluate summary population statistics. Statistical significance was considered when p < 

0.05 unless otherwise stated. Data were tested for normality and parametric/non-parametric 

tests were used as appropriate and as detailed in the text. The GLMM was designed in Python 

using the statsmodels library (Seabold and Perktold, 2010). 
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