

Quantify the Requirements to Achieve Grain Zn Biofortification of High-yield Wheat on Calcareous Soils

1 **Sen Wang^{1,2,3}, Zhaohui Wang^{1,2*}, Shasha Li^{1,2}, Chaopeng Diao^{1,2}, Lu Liu^{1,2}, Ning Huang^{1,2},**
2 **Ming Huang^{1,2}, Xiaoli Hui^{1,2}, Laichao Luo^{1,2}, Gang He^{1,2}, Hanbing Cao^{1,2}**

3 ¹State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling,
4 Shaanxi, China

5 ²Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of
6 Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F
7 University, Yangling, Shaanxi, China

8 ³Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis
9 Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at
10 Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China

11 *** Correspondence:**
12 Zhaohui Wang
13 w-zhaohui@263.net

14 **Keywords:** wheat, grain Zn biofortification, Zn distribution, Zn uptake, quantification.

15 **Abstract**

16 The solution to address global human Zn deficiency is Zn biofortification of staple food crops, aimed
17 at high grain Zn concentration as well as high yield. However, the desired high grain Zn
18 concentration above 40 mg kg⁻¹ is rarely observed for high-yield wheat on worldwide calcareous
19 soils, due to inadequate Zn uptake or Zn distribution to grain. The present study aims to investigate
20 how much Zn uptake or distribution is adequate to achieve the Zn.t of high-yield wheat on calcareous
21 soils with low available Zn (~ 0.5 mg kg⁻¹). Of the 123 cultivars tested in a three-year field
22 experiment, 19 high-yield cultivars were identified with similar yields around 7.0 t ha⁻¹ and various
23 grain Zn concentrations from 9.3 to 26.7 mg kg⁻¹. The adequate Zn distribution to grain was defined
24 from the view of Zn biofortification, as the situation where the Zn distribution to grain (Zn harvest
25 index) increased to the observed maximum of ~ 91.0% and the Zn concentration of vegetative parts
26 (straw Zn concentration) decreased to the observed minimum of ~ 1.5 mg kg⁻¹ (Zn.m). Under the
27 assumed condition of adequate Zn distribution to grain (~ 91.0%), all the extra Zn above Zn.m was
28 remobilized from straw to grain and the grain Zn concentration would be increased to its highest
29 attainable level, which was 14.5 ~ 31.3 mg kg⁻¹ for the 19 high-yield cultivars but still lower than 40
30 mg kg⁻¹. Thus, even with the adequate Zn distribution to grain, the current Zn uptake is still not
31 adequate and needs to be increased to 308 g ha⁻¹ or higher to achieve Zn.t for high-yield wheat (7.0 t
32 ha⁻¹) on low-Zn calcareous soils. Besides, the established method here can also provide the priority
33 measures and quantitative guidelines to achieve Zn biofortification in other wheat production
34 regions.

35 **1 Introduction**

36 Although over 50 years have passed since the first case of human zinc (Zn) deficiency (Prasad,
37 now this problem is still afflicting over 16% of the world population, mostly in Africa and
38 South Asia (Kumssa et al., 2015). In these areas, residents cannot get sufficient Zn intake from daily
39 diets which are mainly low-Zn cereals like wheat, maize, and rice (Wessells and Brown, 2012).
40 Increasing the Zn concentration of cereal grains, known as Zn biofortification, is the main solution to
41 alleviate human Zn deficiency, and the target of Zn fortified wheat grain is 40-50 mg kg⁻¹ (Cakmak
42 2018), much higher than the current worldwide grain Zn concentration of 20-30 mg kg⁻¹ (Liu et al.,
43 2014; Chen et al., 2017). To close the gap between the current and target level, it is necessary to fully
44 understand the factors affecting grain Zn concentration.

45 Grain yield, as an indicator of sink capacity, has essential influence on grain Zn concentration. For
46 instance, 45% decrease in yield of field-grown wheat generated 60% increase in grain Zn
47 concentration (Zhang et al., 2012). The negative correlation between grain Zn concentration and
48 yield has been widely reported in different locations (Liu et al., 2014) and wheat germplasms
49 (Guttieri et al., 2015), and the lowered grain Zn concentration in modern cultivars is mainly caused
50 by the wide adoption of high-yield cultivars after the Green Revolution (Fan et al., 2008; Velu et al.,
51 2017). To feed 9.7 billion population by 2050, the staple crop production has to increase by 60%
52 (FAO, 2014), and thus crop Zn biofortification should increase yield and grain Zn concentration
53 simultaneously (Bouis and Welch, 2010). To achieve high yield and high grain Zn concentration for
54 wheat, it is necessary to enhance both shoot Zn uptake and its distribution to grain (Wang et al.,
55 2018), which are the two sources of Zn accumulated in grain (Kutman et al., 2012; Xue et al., 2012).
56 For example, wheat grain Zn concentration was increased by enhanced nitrogen (N) supply (Kutman
57 et al., 2011; Hui et al., 2017) or ectopic-expressed rice *NICOTIANAMINE SYNTHASE 2* gene (Singh
58 et al., 2017b), because abundant N-containing ligands like nicotianamine (NA) in the phloem
59 enhanced the Zn transportation to grain (Barunawati et al., 2013). Also, the enhanced root Zn uptake
60 increased wheat grain Zn concentration by enlarged root contact area with soil (Ercoli et al., 2017;
61 Singh et al., 2017a), external Zn fertilization (Saha et al., 2017; Liu et al., 2017) or the mobilization
62 of soil intrinsic Zn (Wang et al., 2017). However, most of existing Zn biofortification studies pay
63 much less attention to grain yield, and thus cannot fully achieve the target of Zn biofortification.

64 The most cost-effective approach to realize crop Zn biofortification is developing cultivars with high
65 yield and high grain Zn concentration (Gregory et al., 2017). For example, a few breeding lines or
66 cultivars of spring wheat exhibited high grain Zn concentration ~ 40 mg kg⁻¹ and high yield ~ 4 t ha⁻¹,
67 under soil available Zn of 1.9 mg kg⁻¹ in Canada, India, Pakistan, and Mexico (Gao et al., 2011; Velu
68 et al., 2012). Similarly, under soil available Zn of 1.2 mg kg⁻¹ in Iran, several bread wheat genotypes
69 showed high grain Zn concentration > 50 mg kg⁻¹ and high yield > 6 t ha⁻¹ (Amiri et al., 2015). Thus,
70 under relatively high soil available Zn > 1.0 mg kg⁻¹, breeding new wheat cultivars can achieve high
71 grain Zn concentration and high yield simultaneously. But on calcareous soils with low available Zn
72 ~ 0.5 mg kg⁻¹, the success of Zn biofortification of high-yield wheat is rarely achieved. For instance,
73 the highest grain Zn concentration of spring wheat and bread wheat lines was only 25 mg kg⁻¹ under
74 soil available Zn of 0.3 ~ 0.6 mg kg⁻¹ in Portugal and Iran (Gomez-Coronado et al., 2016;
75 Khoshgoftarmanesh et al., 2013). In the present study on calcareous soils with available Zn of 0.4 mg
76 kg⁻¹ in northwest China, the grain Zn concentrations of 123 wheat cultivars were all below 30 mg kg⁻¹.
77 Does this mean that high grain Zn concentration of 40 mg kg⁻¹ cannot be achieved by breeding for
78 high-yield wheat on calcareous soils?

79 The increase of grain Zn concentration for high-yield wheat relies on both high Zn uptake and high
80 Zn distribution to grain (Wang et al., 2018). In the present work, the Zn harvest index varied from
81 45.5% to 94.0% and the straw Zn concentration at maturity varied from 1.2 to 10.5 mg kg⁻¹, while the

82 minimum Zn concentration in wheat vegetative parts was $\sim 5.0 \text{ mg kg}^{-1}$ in hydroponics (Kutman et
83 al. 2012), indicating that some Zn in straw might be still transported to grain. Accordingly,
84 inadequate Zn distribution to grain can be the reason for the low grain Zn concentration observed for
85 high-yield wheat. Then, from the view of Zn biofortification, how much Zn distribution to grain is
86 adequate for field-grown high-yield wheat? With adequate Zn distribution, whether the Zn uptake is
87 adequate to achieve high grain Zn concentration ($> 40 \text{ mg kg}^{-1}$) for high-yield wheat? To test these
88 hypotheses, the Zn concentration, uptake, and distribution of 123 wheat cultivars over three years
89 were analyzed in the present study.

90 **2 Materials and methods**

91 **2.1 Plant materials and field experiment**

92 The field experiment was conducted in Yongshou (108°12'E, 34°44'N) located on the southern Loess
93 Plateau, where the climate is the temperate continental monsoon climate and over half of the annual
94 precipitation ($\sim 550 \text{ mm}$) occurs in the summer fallow period from July to September. The top 20 cm
95 soil properties were determined according to Bao (2000) as follows: pH 8.4 (CO₂-free water), cation
96 exchange capacity 20.3 cmol kg⁻¹, soil organic matter 12.9 g kg⁻¹, total N 0.9 g kg⁻¹, mineral N 26.6
97 mg kg⁻¹, available phosphorus (P) 16.9 mg kg⁻¹, available potassium (K) 123.4 mg kg⁻¹, available iron
98 (Fe) 7.5 mg kg⁻¹, available manganese (Mn) 18.1 mg kg⁻¹, available copper (Cu) 1.3 mg kg⁻¹, and
99 available Zn 0.4 mg kg⁻¹.

100 One hundred and twenty-three wheat cultivars were collected (Supp Table 1) and tested in the three-
101 year field experiment with a randomized complete block design. Each cultivar had four replications
102 and each plot consisted of four 200 cm long rows with 2.5 cm seed spacing and 20 cm row spacing,
103 under the nutrient supply of 150 kg N ha⁻¹ and 100 kg P₂O₅ ha⁻¹. All cultivars were sown during 28th
104 to 30th September in 2013, 2nd to 3rd October in 2014, and 26th to 28th September in 2015, and
105 harvested during 14th to 17th June in 2014, 18th to 20th June in 2015, and 18th to 20th June in 2016.
106 The rainfalls during summer fallow periods and growing seasons were 271 and 267 mm in 2013-
107 2014, 317 and 314 mm in 2014-2015, and 228 and 186 mm in 2015-2016, respectively. Throughout
108 the experimental period, no irrigation was conducted, and herbicide and pesticide were used when
109 necessary.

110 **2.2 Sampling and chemical analyses**

111 At maturity, the plants of 30 ears were randomly sampled from the central two rows of each cultivar
112 plot, and the roots were cut off at the stem-root joint part. Then, the shoots were air-dried and
113 separated into stems, glumes, and grains, which were washed with deionized water and oven-dried at
114 65°C to determine dry weight. After that, the oven-dried samples were ground by a ball mill (Retsch
115 MM400, Germany) for chemical analyses. The remaining ears in the central two rows of each plot
116 were also harvested and weighted, plus the above grain weight, to estimate the grain yield, glume
117 biomass, and stem biomass in oven-dried weight.

118 Plant Zn concentration was determined as Ozbek and Akman (2016) with some modifications.
119 Briefly, 0.2 g sample was mixed with 5.0 ml HNO₃ (65%) in a 50 ml Teflon tube and predigested at
120 120°C for 0.5 h, and then 1.0 ml H₂O₂ (30%) was added before microwave digestion (MW Pro,
121 Anton Paar, Austria). Each sample was digested in two technical duplicates and the standard wheat
122 flour (GBW10011 GSB-2) was used for quality control. The digestion solution was diluted with
123 ultrapure water (18.25 MΩ cm⁻¹), and Zn concentration was determined by ICP-MS (iCAP Qc,

124 Thermo Fisher Scientific, USA). The measured Zn isotope was ^{66}Zn , and ^{73}Ge was added as internal
125 standard to calibrate the signal fluctuation.

126 **2.3 Quantification of the potential increase of grain Zn concentration by adequate Zn
127 distribution**

128 From the perspective of Zn biofortification, the adequate Zn distribution to grain refers to the
129 situation where nearly all the mobilizable Zn in shoot vegetative parts was transported or remobilized
130 to grain, and correspondingly, the ratio of grain Zn uptake to shoot Zn uptake (Zn harvest index)
131 increased to the maximum and the Zn concentration of vegetative parts (straw Zn concentration,
132 Zn.s) decreased to the minimum. To determine the adequate Zn distribution to grain for high-yield
133 wheat, we selected the cultivars with yields higher than the corresponding median of all cultivars in
134 each year, calculated the Zn uptake and Zn harvest index, and combined stem and glume Zn
135 concentrations into Zn.s by the weighted mean method. In each year, the observed maximum Zn
136 harvest index or minimum straw Zn concentration (Zn.m) was used to indicate the level of adequate
137 Zn distribution to grain. Since Zn concentration was easier to measure than Zn harvest index, we
138 used Zn.m to calculate the potential increase of grain Zn concentration (Zn.p) caused by the extra Zn
139 remobilized from straw to grain under the condition of adequate Zn distribution to grain.

$$\text{Zn uptake (g ha}^{-1}\text{)} = \frac{\text{Zn concentration (mg kg}^{-1}\text{)} \times \text{yield or biomass(kg ha}^{-1}\text{)}}{1000}$$

$$\text{Zn. s (mg kg}^{-1}\text{)} = \frac{\text{stem Zn uptake(g ha}^{-1}\text{)} + \text{glume Zn uptake(g ha}^{-1}\text{)}}{\text{stem biomass(kg ha}^{-1}\text{)} + \text{glume biomass(kg ha}^{-1}\text{)}} \times 1000$$

$$\text{Zn. p (mg kg}^{-1}\text{)} = \frac{[\text{Zn. s (mg kg}^{-1}\text{)} - \text{Zn. m (mg kg}^{-1}\text{)}] \times \text{Bm.s (kg ha}^{-1}\text{)}}{\text{GrY (kg ha}^{-1}\text{)}}$$

140 Here Bm.s and GrY refer to straw biomass and grain yield. The sum of Zn.p and the current grain Zn
141 concentration (Zn.c) was defined as the attainable grain Zn concentration (Zn.a).

142 Shoot Zn uptake and Zn harvest index (ZnHI) were calculated as described by Kutman et al. (2011)
143 and Xue et al. (2012).

$$\text{Shoot Zn uptake} = \text{grain Zn uptake} + \text{glume Zn uptake} + \text{stem Zn uptake}$$

$$\text{Zn harvest index (\%)} = \frac{\text{Grain Zn uptake (g ha}^{-1}\text{)}}{\text{Shoot Zn uptake (g ha}^{-1}\text{)}} \times 100$$

144 **2.4 Statistical analyses and graphing**

145 Analysis of variance (ANOVA) was used to test the effects of year, cultivar, and year \times cultivar
146 interaction on yield or biomass, Zn concentrations, and Zn uptakes. The relationships of grain Zn
147 concentration with other traits were tested by Pearson correlation or linear regression. All the
148 statistical analyses were completed by PROC GLM, PROC CORR or PROC REG in SAS v 8.01,
149 with 0.05 set as the significance level. Scatter and bar plots were created by SigmaPlot 12.5, and the
150 concept chart illustrating Zn biofortification guidelines was created in Adobe Illustrator CC.

151 **3 Results**

152 **3.1 Relationship of grain Zn concentration with other traits for high-yield wheat**

153 Of the 123 tested wheat cultivars ordered by yield from low to high, 19 cultivars consistently
154 exhibited higher yields than the median in each year, and were identified as high-yield cultivars
155 (Figure 1). Although yield and biomasses showed significant differences among three years, the 19
156 high-yield cultivars exhibited similar yields ($\sim 7 \text{ t ha}^{-1}$) and varied greatly in grain Zn concentration,
157 from 14.7 to 26.7 mg kg⁻¹ in 2014, 9.3 to 22.2 mg kg⁻¹ in 2015, and 13.5 to 17.0 mg kg⁻¹ in 2016
158 (Supp Table 2 and Figure 2A). Besides, grain Zn concentration showed no relation with yield, the
159 biomass and Zn concentration of stem and glume (Figure 2A and Supp Figure 1). However, shoot Zn
160 uptake was positively correlated with grain Zn concentration in each year and Zn harvest index was
161 positively correlated with grain Zn concentration in 2015 (Figure 2C and 2D).

162 **3.2 Minimum straw Zn concentration and maximum Zn harvest index**

163 Shoot Zn uptake and Zn harvest index showed large variations among the 19 high-yield cultivars or
164 three experimental years (Supp Table 2, Figure 3A and 3B). The observed maximum Zn harvest
165 index was 91.8% in 2014, 87.7% in 2015, and 94.0% in 2016 (Figure 3B), while the observed
166 minimum straw Zn concentration (Zn.m) was 1.3 mg kg⁻¹ in 2014, 1.9 mg kg⁻¹ in 2015, and 1.2 mg
167 kg⁻¹ in 2016 (Figure 3C). With Zn.m used to indicate the level of adequate Zn distribution to grain,
168 the gap between current straw Zn concentration and Zn.m was used to calculate the amount of extra
169 Zn which could be remobilized into grain.

170 **3.3 Potential increase of grain Zn concentration and attainable grain Zn concentration**

171 The potential increase of grain Zn concentration (Zn.p) due to extra Zn remobilized from straw to
172 grain of the 19 high-yield cultivars ranged from 2.1 to 5.5 mg kg⁻¹ in 2014, 3.0 to 6.5 mg kg⁻¹ in
173 2015, and 3.5 to 7.5 mg kg⁻¹ in 2016 (Figure 4). When Zn.p was added to the current grain Zn
174 concentration (Zn.c), the attainable grain Zn concentration (Zn.a) varied from 17.0 to 31.3 mg kg⁻¹ in
175 2014, 14.5 to 27.5 mg kg⁻¹ in 2015, and 17.6 to 22.8 mg kg⁻¹ in 2016 (Figure 4), lower than the Zn
176 biofortification target (Zn.t) of 40 mg kg⁻¹. Thus, even with the adequate Zn distribution to grain, the
177 current shoot Zn uptake was not adequate to achieve Zn.t of high-yield wheat. For an assumed high-
178 yield ($\sim 7 \text{ t ha}^{-1}$) wheat cultivar with adequate Zn distribution to grain ($\sim 91.0\%$), the required shoot
179 Zn uptake should be at least 308 g ha⁻¹ to achieve the Zn.t.

180 **4 Discussion**

181 **4.1 Using the minimum straw Zn concentration to estimate the adequate Zn distribution to
182 grain**

183 In the present work, the adequate Zn distribution to grain is defined from the view of Zn
184 biofortification, and it refers to the situation where all the mobilizable Zn in shoot vegetative parts
185 was transported or remobilized to grain, meaning that Zn harvest index increased to its maximum and
186 straw Zn concentration decreased to its minimum (Zn.m). Then, the gap between current straw Zn
187 concentration and Zn.m can be used to calculate the amount of extra remobilized Zn from straw to
188 grain, which results in the potential increase and the attainable highest grain Zn concentration under
189 specific conditions. For high-yield bread wheat grown on low-Zn calcareous soils, the observed
190 minimum straw Zn concentration is used as Zn.m which is $\sim 1.5 \text{ mg kg}^{-1}$ and lower than the reported
191 5.0 mg kg⁻¹ for durum wheat in hydroponics (Kutman et al., 2012). Presumably, the senescent
192 vegetative parts of field-grown wheat need less Zn to constitute structural components and more Zn
193 can be remobilized into grain. Under uniform environmental conditions, straw Zn concentration and
194 Zn.m can be used to determine whether the Zn distribution to grain is adequate or not to promote Zn

195 biofortification. Since the Zn biofortification of high-yield wheat needs both high Zn uptake and high
196 Zn distribution to grain (Wang et al., 2018), the Zn concentration of vegetative parts, which is easier
197 to measure than the Zn harvest index, deserves to be considered in future studies on wheat Zn
198 biofortification.

199 4.2 Quantify the requirements to achieve wheat Zn biofortification in different environments

200 Based on the adequate Zn distribution to grain (~ 91.0%) as indicated by Zn.m, we can get the
201 attainable highest grain Zn concentration (Zn.a) and compare it with the grain Zn biofortification
202 target (Zn.t, 40 mg kg⁻¹), which can tell us whether the current Zn uptake is adequate to achieve Zn.t
203 for high-yield wheat (~ 7 t ha⁻¹). Besides, the established quantitative analysis method here are also
204 suitable for other wheat production regions with the aim of increasing the current grain Zn
205 concentration (Zn.c) and grain yield. The priority measures to achieve the Zn.t of high-yield wheat
206 are different under different conditions (Figure 5). In wheat planting areas where Zn.a is close to or
207 higher than Zn.t and the soil available Zn is often relatively high (> 1.0 mg kg⁻¹), the priority to
208 realize Zn.t is to adopt or develop the cultivars with high Zn distribution to grain. For example, in
209 North China Plains with soil available Zn of 3.4 mg kg⁻¹, optimal N application generated high yield
210 of 7.5 t ha⁻¹ and shoot Zn uptake of 370 g ha⁻¹ (Xue et al., 2014), and the Zn.a would be 44.9 mg kg⁻¹
211 and higher than Zn.t, indicating the necessity to introduce high-Zn-distribution wheat cultivars. In
212 wheat production regions where Zn.a is lower than Zn.t and higher than Zn.c and the soil available
213 Zn is often relatively low (< 0.5 mg kg⁻¹), developing high-Zn-distribution cultivars should be
214 combined with agronomic measures like Zn fertilization to promote Zn uptake. For instance, in Iran
215 rainfed drylands with soil available Zn of 0.2 mg kg⁻¹ (Norouzi et al., 2014), the tested wheat
216 cultivars exhibited high yield of 6.6 t ha⁻¹ and shoot Zn uptake of 174 g ha⁻¹. Even if the Zn.c of 17.0
217 mg kg⁻¹ was increased to the Zn.a of 26.4 mg kg⁻¹ by introducing new cultivars, there was still a large
218 gap to Zn.t which needed to be closed by increasing Zn uptake. In wheat production regions where
219 Zn.a is close to Zn.c and lower than Zn.t, the Zn distribution to grain has reached its maximum and
220 the priority measure of Zn biofortification is to increase Zn uptake by agronomic practices. However,
221 this case is rarely observed up to now because researchers have not paid enough attention to the Zn in
222 vegetative parts in wheat Zn biofortification studies.

223 On calcareous soils with low available Zn < 0.5 mg kg⁻¹, the current wheat grain Zn concentration is
224 around 20 mg kg⁻¹, as reported in China, Kazakhstan, Mexico, Turkey, and Zambia, etc. (Zou et al.,
225 2012; Liu et al., 2014). In the present study on calcareous soils with available Zn of 0.4 mg kg⁻¹, the
226 wheat cultivar Zhengmai 7698 had the highest Zn.a of 31.3 mg kg⁻¹ and the yield of 6.6 t ha⁻¹ in
227 2014, which was still lower than the Zn.t. To achieve high grain Zn concentration of 40 mg kg⁻¹ and
228 high yield of 7.0 t ha⁻¹ simultaneously, the current shoot Zn uptake should be increased to at least 308
229 g ha⁻¹ by agronomic measures like soil Zn fertilization with the wheat cultivars with high Zn
230 distribution to grain (~ 91%). These guidelines deserve to be tested in field studies on Zn
231 biofortification.

232 5 Conclusion

233 From the view of crop Zn biofortification, the adequate Zn distribution to grain can be defined as the
234 case where Zn harvest index increased to its maximum and straw Zn concentration decreased to its
235 minimum. For the high-yield (~ 7 t ha⁻¹) wheat grown on low-Zn (~ 0.5 mg kg⁻¹) calcareous soils, the
236 maximum Zn harvest index was ~ 91.0% and the minimum straw Zn concentration was ~ 1.5 mg kg⁻¹.
237 Under the condition of adequate Zn distribution to grain, the gap between straw Zn concentration and
238 its minimum could be used to determine the extra Zn remobilized to grain and the highest attainable

239 grain Zn concentration, which was $14.5 \sim 31.3 \text{ mg kg}^{-1}$ for the high-yield wheat cultivars and lower
240 than the grain Zn biofortification target (Zn.t) of 40 mg kg^{-1} . Therefore, even with the adequate Zn
241 distribution to grain ($\sim 91\%$), the current shoot Zn uptake is still not adequate to achieve the Zn.t of
242 high-yield wheat grown on low-Zn calcareous soil, and the priority measure of Zn biofortification is
243 to increase Zn uptake to 308 g ha^{-1} or higher by agronomic practices like Zn fertilization. The
244 established method here can also provide the most suitable guidelines and quantitative requirements
245 to achieve grain Zn biofortification in other wheat production regions.

246 6 Abbreviations

247 Zn.s, straw Zn concentration; Zn.m, minimum straw Zn concentration; Zn.p, potential increase of
248 grain Zn concentration; Zn.c, current grain Zn concentration; Zn.a, attainable grain Zn concentration;
249 ZnHI, Zn harvest index; Zn.t, grain Zn biofortification target.

250 7 Conflict of Interest

251 The authors declare that the research was conducted in the absence of any commercial or financial
252 relationships that could be construed as a potential conflict of interest.

253 8 Author Contributions

254 SW, ZHW, SSL, CPD, and LL contributed conception and design of the study. SW, SSL, CPD, LL,
255 NH, MH, XLH, LCL, GH, and HBC conducted experiment, sampling, chemical and statistical
256 analyses. SW wrote the first draft of the manuscript and ZHW, MH, XLH, LCL, GH, and HBC read
257 and revised the manuscript. All authors contributed to manuscript revision, read and approved the
258 submitted version.

259 9 Funding

260 The authors thank for the financial supports from the China Agricultural Research System (CARS-3),
261 the Special Fund for Agro-scientific Research in the Public Interest under Grant (201303104), the
262 Agricultural Scientific Research Talent and Team Program, the National Natural Science Foundation
263 of China (NSFC) (41571282, 41401330), and the China Postdoctoral Science Foundation
264 (2019M650919).

265 10 Acknowledgments

266 During the wheat germplasm collection, we thank for the selfless help from the staff in different
267 research laboratories and experimental stations of the China Agricultural Research System. We also
268 thank the professors and doctors of the Soil Fertility and Plant Nutrition Team of Northwest A&F
269 University, for their critical comments and constructive suggestions.

270 11 References

271 Amiri, R., Bahraminejad, S., Sasani, S., Jalali-Honarmand, S., and Fakhri, R. (2015). Bread wheat
272 genetic variation for grain's protein, iron and zinc concentrations as uptake by their genetic ability.
273 *Eur. J. Agron.* 67, 20-26. doi: 10.1016/j.eja.2015.03.004.

274 Bao, S. D. (2000). *Soil and agricultural chemistry analysis (in Chinese)*. Beijing: China Agriculture
275 Press.

276 Barunawati, N., Giehl, R. F. H., Bauer, B., and von Wieren, N. (2013). The influence of inorganic
277 nitrogen fertilizer forms on micronutrient retranslocation and accumulation in grains of winter wheat.
278 *Front. Plant Sci.* 4, 320. doi: 10.3389/fpls.2013.00320.

279 Bouis, H. E., and Welch, R. M. (2010). Biofortification-A Sustainable Agricultural Strategy for
280 Reducing Micronutrient Malnutrition in the Global South. *Crop Sci.* 50(2), S20-S32. doi:
281 10.2135/cropsci2009.09.0531.

282 Cakmak, I., and Kutman, U.B. (2018). Agronomic biofortification of cereals with zinc: a review.
283 *Eur. J. Soil Sci.* 69(1), 172-180. doi: doi:10.1111/ejss.12437.

284 Chen, X. P., Zhang, Y. Q., Tong, Y. P., Xue, Y. F., Liu, D. Y., Zhang, W., et al. (2017). Harvesting
285 more grain zinc of wheat for human health. *Sci. Rep.* 7(1), 7016. doi: 10.1038/s41598-017-07484-2.

286 Ercoli, L., Schüßler, A., Arduini, I., and Pellegrino, E. (2017). Strong increase of durum wheat iron
287 and zinc content by field-inoculation with arbuscular mycorrhizal fungi at different soil nitrogen
288 availabilities. *Plant Soil* 419(1), 153-167. doi: 10.1007/s11104-017-3319-5.

289 Fan, M. S., Zhao, F. J., Fairweather-Tait, S. J., Poulton, P. R., Dunham, S. J., and McGrath, S. P.
290 (2008). Evidence of decreasing mineral density in wheat grain over the last 160 years. *J. Trace Elem.
291 Med. Bio.* 22(4), 315–324. doi: 10.1016/j.jtemb.2008.07.002.

292 FAO (2014). "Building a common vision for sustainable food and agriculture: principles and
293 approaches". (Rome: FAO).

294 Gao, X., Mohr, R. M., McLaren, D. L., and Grant, C. A. (2011). Grain cadmium and zinc
295 concentrations in wheat as affected by genotypic variation and potassium chloride fertilization. *Field
296 Crop Res.* 122(2), 95-103. doi: 10.1016/j.fcr.2011.03.005.

297 Gomez-Coronado, F., Poblaciones, M. J., Almeida, A. S., and Cakmak, I. (2016). Zinc (Zn)
298 concentration of bread wheat grown under Mediterranean conditions as affected by genotype and
299 soil/foliar Zn application. *Plant Soil* 401(1), 331-346. doi: 10.1007/s11104-015-2758-0.

300 Gregory, P. J., Wahbi, A., Adu-Gyamfi, J., Heiling, M., Gruber, R., Joy, E. J. M., et al. (2017).
301 Approaches to reduce zinc and iron deficits in food systems. *Glob. Food Secur.* 15, 1-10. doi:
302 10.1016/j.gfs.2017.03.003.

303 Guttieri, M. J., Baenziger, P. S., Frels, K., Carver, B., Arnall, B., and Waters, B. M. (2015). Variation
304 for Grain Mineral Concentration in a Diversity Panel of Current and Historical Great Plains Hard
305 Winter Wheat Germplasm. *Crop Sci.* 55(3), 1035-1052. doi: 10.2135/cropsci2014.07.0506.

306 Hui, X. L., Wang, Z. H., Luo, L. C., Ma, Q. X., Wang, S., Dai, J., et al. (2017). Winter Wheat Grain
307 Yield and Zn Concentration Affected by Long-Term N and P Application in Dryland (in Chinese).
308 *Sci. Agric. Sin.* 50(16), 3175-3185. doi: 10.3864/j.issn.0578-1752.2017.16.012.

309 Khoshgoftarmash, A. H., SanaeiOstovar, A., Sadrarhami, A., and Chaney, R. (2013). Effect of tire
310 rubber ash and zinc sulfate on yield and grain zinc and cadmium concentrations of different zinc-
311 deficiency tolerance wheat cultivars under field conditions. *Eur. J. Agron.* 49, 42-49. doi:
312 10.1016/j.eja.2013.02.013.

313 Kumssa, D. B., Joy, E. J., Ander, E. L., Watts, M. J., Young, S. D., Walker, S., et al. (2015). Dietary
314 calcium and zinc deficiency risks are decreasing but remain prevalent. *Sci. Rep.* 5, 10974. doi:
315 10.1038/srep10974.

316 Kutman, U. B., Kutman, B.Y., Ceylan, Y., Ova, E. A., and Cakmak, I. (2012). Contributions of root
317 uptake and remobilization to grain zinc accumulation in wheat depending on post-anthesis zinc
318 availability and nitrogen nutrition. *Plant Soil* 361(1-2), 177-187. doi: 10.1007/s11104-012-1300-x.

319 Kutman, U. B., Yildiz, B., and Cakmak, I. (2011). Effect of nitrogen on uptake, remobilization and
320 partitioning of zinc and iron throughout the development of durum wheat. *Plant Soil* 342(1-2), 149-
321 164. doi: 10.1007/s11104-010-0679-5.

322 Liu, D. Y., Zhang, W., Pang, L. L., Zhang, Y. Q., Wang, X. Z., Liu, Y. M., et al. (2017). Effects of
323 zinc application rate and zinc distribution relative to root distribution on grain yield and grain Zn
324 concentration in wheat. *Plant Soil* 411(1), 167-178. doi: 10.1007/s11104-016-2953-7.

325 Liu, H., Wang, Z. H., Li, F. C., Li, K. Y., Yang, N., Yang, Y. E., et al. (2014). Grain iron and zinc
326 concentrations of wheat and their relationships to yield in major wheat production areas in China.
327 *Field Crop Res.* 156, 151-160. doi: 10.1016/j.fcr.2013.11.011.

328 Norouzi, M., Khoshgoftarmanesh, A. H., and Afyuni, M. (2014). Zinc fractions in soil and uptake by
329 wheat as affected by different preceding crops. *Soil Sci. Plant Nutr.* 60(5), 670-678. doi:
330 10.1080/00380768.2014.937674.

331 Ozbek, N., and Akman, S. (2016). Method development for the determination of calcium, copper,
332 magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by
333 microwave induced plasma-atomic emission spectrometry. *Food Chem.* 200, 245-248. doi:
334 10.1016/j.foodchem.2016.01.043.

335 Prasad, A. S. (2013). Discovery of Human Zinc Deficiency: Its Impact on Human Health and
336 Disease. *Adv. Nutr.* 4(2), 176-190. doi: 10.3945/an.112.003210.

337 Saha, S., Chakraborty, M., Sarkar, D., Batabyal, K., Mandal, B., Murmu, S., et al. (2017).
338 Rescheduling zinc fertilization and cultivar choice improve zinc sequestration and its bioavailability
339 in wheat grains and flour. *Field Crop Res.* 200, 10-17. doi: 10.1016/j.fcr.2016.09.006.

340 Singh, D., Rajawat, M. V. S., Kaushik, R., Prasanna, R., and Saxena, A. K. (2017a). Beneficial role
341 of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown
342 in soils sufficient and deficient in Zn. *Plant Soil* 416(1), 107-116. doi: 10.1007/s11104-017-3189-x.

343 Singh, S. P., Keller, B., Gruisse, W., and Bhullar, N. K. (2017b). Rice NICOTIANAMINE
344 SYNTHASE 2 expression improves dietary iron and zinc levels in wheat. *Theor. Appl. Genet.*
345 130(2), 283-292. doi: 10.1007/s00122-016-2808-x.

346 Velu, G., Singh, R. P., Huerta-Espino, J., Peña, R.J., Arun, B., Mahendru-Singh, A., et al. (2012).
347 Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron
348 concentrations. *Field Crop Res.* 137, 261-267. doi: 10.1016/j.fcr.2012.07.018.

349 Velu, G., Singh, R. P., Huerta, J., and Guzmán, C. (2017). Genetic impact of Rht dwarfing genes on
350 grain micronutrients concentration in wheat. *Field Crop Res.* 214(Supplement C), 373-377. doi:
351 10.1016/j.fcr.2017.09.030.

352 Wang, S., Wang, Z. H., Gao, Y. J., Liu, L., Yu, R., Jin, J. J., et al. (2017). EDTA alone enhanced soil
353 zinc availability and winter wheat grain Zn concentration on calcareous soil. *Environ. Exp. Bot.* 141,
354 19-27. doi: 10.1016/j.envexpbot.2017.06.008.

355 Wang S., Wang Z. H., Li S. S., Diao C. P., Liu L., Hui X. L., et al. (2018). Identification of high-
356 yield and high-Zn wheat cultivars for overcoming “yield dilution” in dryland cultivation. *Eur. J.
357 Agron.* 101, 57-62. doi: 10.1016/j.eja.2018.08.008.

358 Wessells, K. R., and Brown, K. H. (2012). Estimating the Global Prevalence of Zinc Deficiency:
359 Results Based on Zinc Availability in National Food Supplies and the Prevalence of Stunting. *Plos
360 One* 7(11), e50568-e50568. doi: 10.1371/journal.pone.0050568.

361 Xue, Y. F., Yue, S. C., Zhang, Y. Q., Cui, Z. L., Chen, X. P., Yang, F. C., et al. (2012). Grain and
362 shoot zinc accumulation in winter wheat affected by nitrogen management. *Plant Soil* 361(1-2), 153-
363 163. doi: 10.1007/s11104-012-1510-2.

364 Xue, Y. F., Zhang, W., Liu, D. Y., Yue, S. C., Cui, Z. L., Chen, X. P., et al. (2014). Effects of
365 nitrogen management on root morphology and zinc translocation from root to shoot of winter wheat
366 in the field. *Field Crop Res.* 161(0), 38-45. doi: 10.1016/j.fcr.2014.01.009.

367 Zhang, Y. H., Zhang, Y. P., Liu, N., Su, D., Xue, Q. W., Stewart, B. A., et al. (2012). Effect of
368 source-sink manipulation on accumulation of micronutrients and protein in wheat grains. *J. Plant
369 Nutr. Soil Sci.* 175(4), 622-629. doi: 10.1002/jpln.201100224.

370 Zou, C. Q., Zhang, Y. Q., Rashid, A., Ram, H., Savasli, E., Arisoy, R. Z., et al. (2012).
371 Biofortification of wheat with zinc through zinc fertilization in seven countries. *Plant Soil* 361(1-2),
372 119-130. doi: 10.1007/s11104-012-1369-2.

373 12 Figure Legends

374 **Figure 1.** Yield variations of the 123 tested wheat cultivars in 2014 (A), 2015 (B), and 2016 (C). The
375 19 high-yield cultivars (red bar, ‘H’) were identified with their yields consistently higher than the
376 corresponding median of all cultivars in each year.

377 **Figure 2.** Relationships of grain Zn concentration to grain yield (A), straw Zn concentration (C),
378 shoot Zn uptake (B), and Zn harvest index (D) for the high-yield wheat cultivars over three
379 experimental years. Determination coefficients (*P*-values) indicate the relationships of grain Zn
380 concentration to these traits, and the significant regressions at *P* < 0.05 are shown by solid lines.

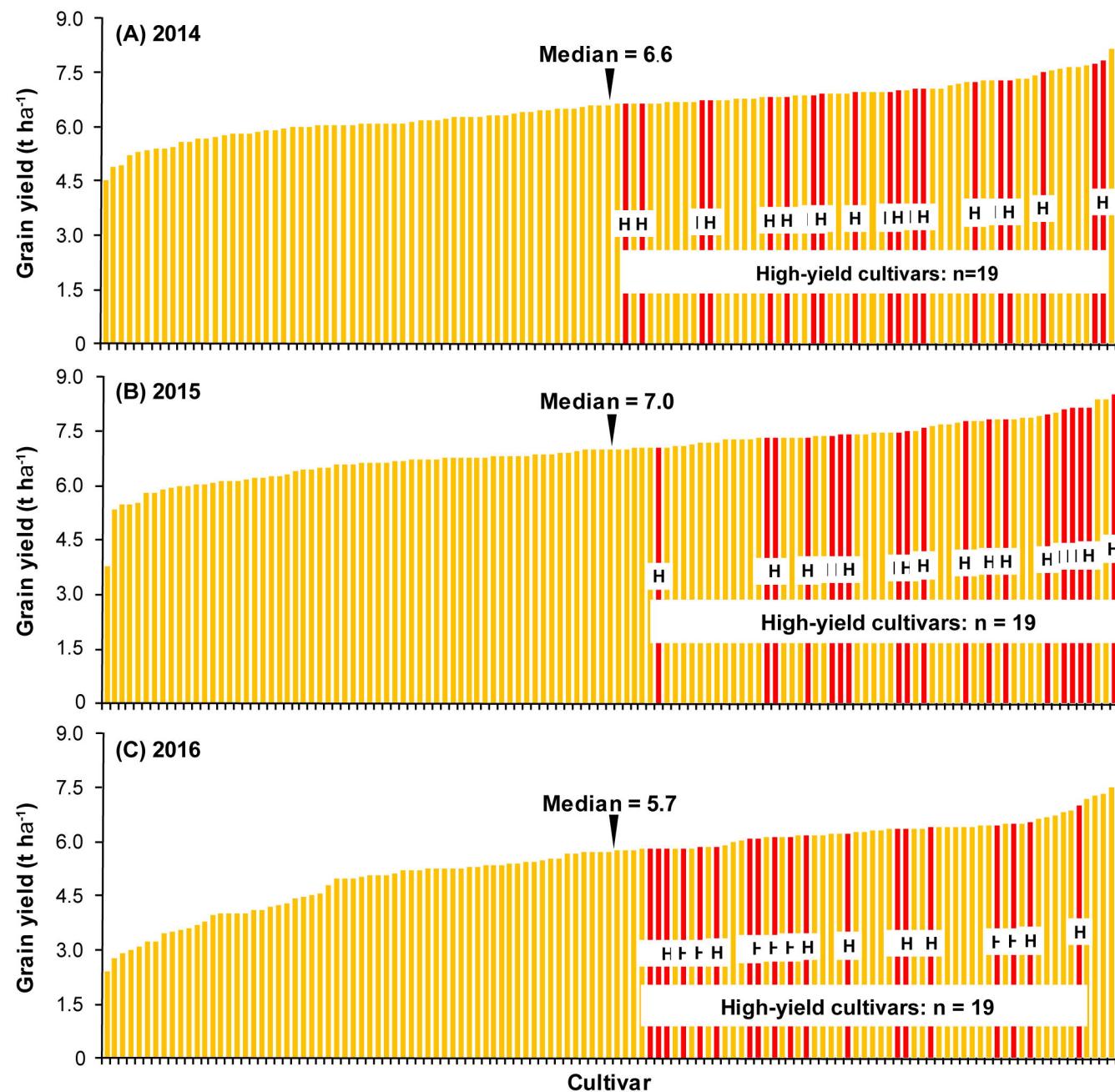
381 **Figure 3.** Variations of shoot Zn uptake (A), Zn harvest index (B), and straw Zn concentration (C) of
382 the high-yield cultivars over three experimental years. For each box plot, like the straw Zn
383 concentration in 2014, the five values from top to bottom are the number of original observations (19
384 cultivars × four replications = 76), the maximum (10.01), the median (4.41, dashed line), the average
385 (3.97, solid line) and the minimum (1.33), respectively.

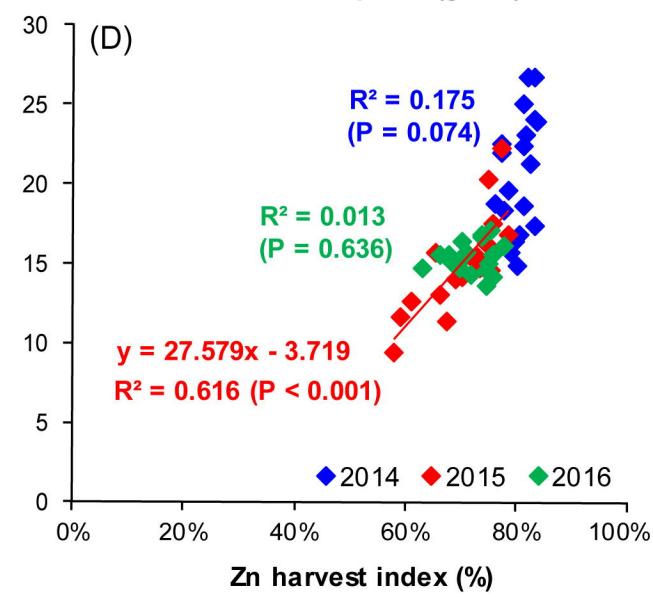
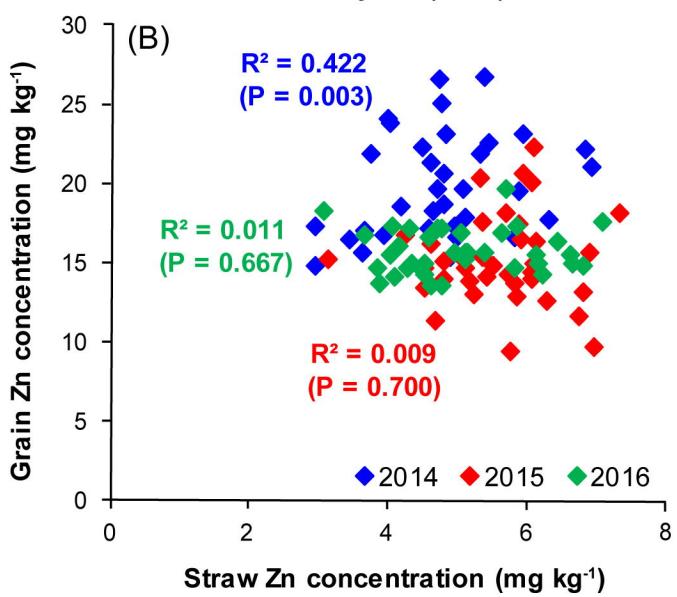
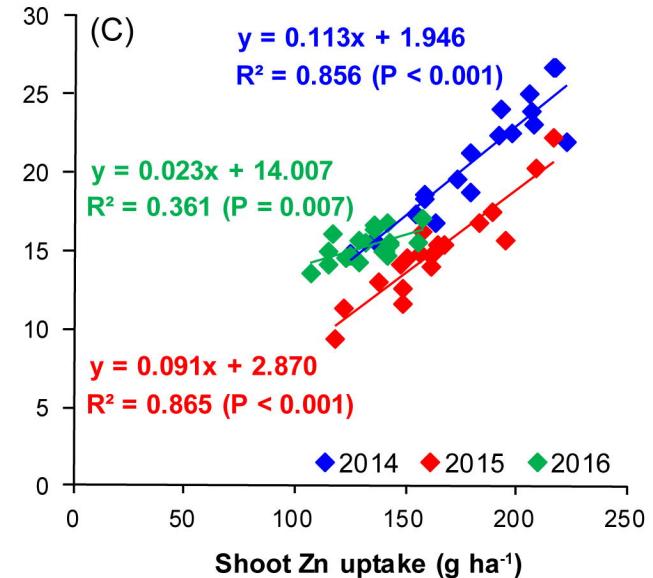
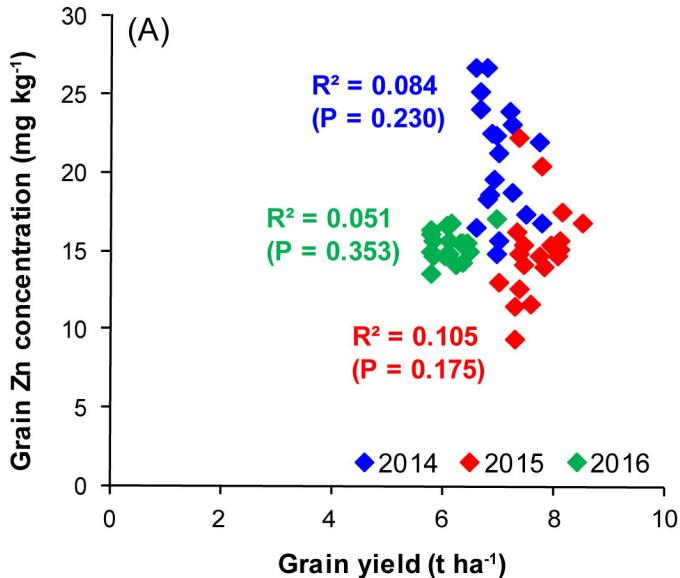
386 **Figure 4.** Grain Zn concentration (Zn.c, orange bar) and its biofortification potential (Zn.p, green bar)
387 of the 19 high-yield wheat cultivars in 2014 (A), 2015 (B), and 2016 (C). Error bars stand for
388 standard error (n=4).

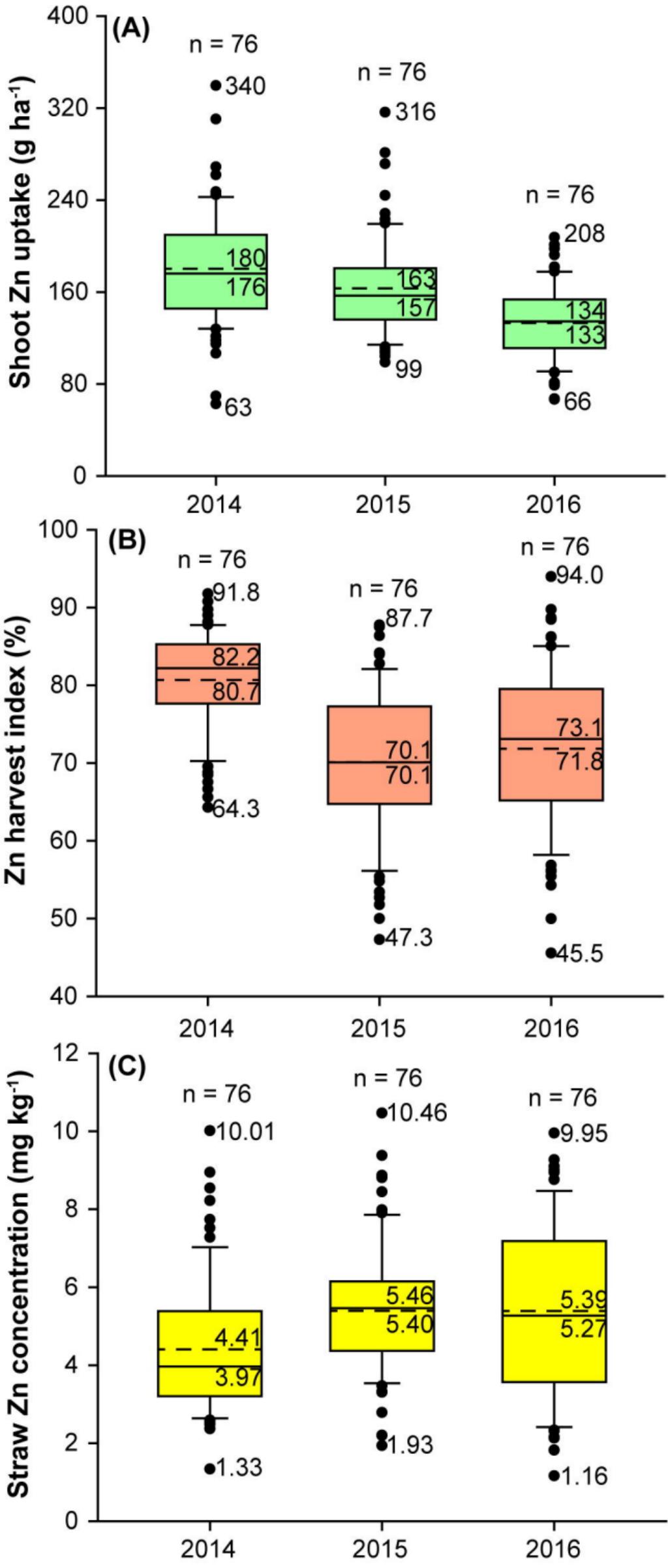
389 **Figure 5.** The most suitable Zn biofortification measures in different scenarios of the current grain
390 Zn concentration (Zn.c), attainable grain Zn concentration (Zn.a), and Zn biofortification target level
391 (Zn.t). This is proposed as a guiding workflow to realize grain Zn biofortification target for high-
392 yield wheat.

393 **13 Supplementary Material**

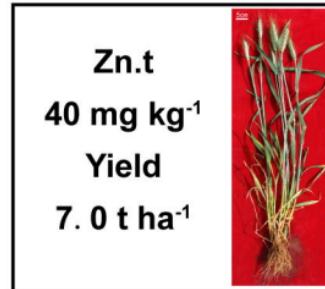
394 **Supplementary Figure 1.** Relationships of wheat grain Zn concentration to the biomasses of glume
395 (A) and stem (B) and Zn concentrations of glume (C) and stem (D) for the 19 high-yield cultivars
396 over the three experimental years. Determination coefficients (*P*-value) indicate the relationship of
397 grain Zn concentration to each variable.


398 **Supplementary Table 2.** Tested wheat cultivars in the three-year field experiment, with the
399 identified 19 high-yield ones in red color.





400 **Supplementary Table 2.** Analysis of variance (ANOVA) for the effects of year, cultivar, and year ×
401 cultivar interaction on the different traits of high-yield cultivars.


402


Traits	High-yield group		
	Year	Cultivar	Year × Cultivar
Grain yield	20.18 (P = 0.002)	0.97 (P = 0.507)	0.72 (P = 0.865)
Glume biomass	19.7 (P = 0.002)	4.41 (P < 0.001)	0.83 (P = 0.734)
Stem biomass	21.07 (P = 0.002)	1.54 (P = 0.114)	0.86 (P = 0.694)
Straw biomass	26.13 (P = 0.001)	1.33 (P = 0.207)	0.82 (P = 0.749)
Glume Zn concentration	0.47 (P = 0.646)	1.70 (P = 0.069)	0.90 (P = 0.628)
Stem Zn concentration	1.93 (P = 0.226)	1.32 (P = 0.216)	0.77 (P = 0.812)
Straw Zn concentration	1.51 (P = 0.294)	1.27 (P = 0.242)	0.72 (P = 0.864)
Shoot Zn uptake	13.9 (P = 0.006)	2.33 (P = 0.009)	1.49 (P = 0.059)
Zn harvest index	5.94 (P = 0.038)	1.07 (P = 0.406)	1.43 (P = 0.084)
Grain Zn concentration (Zn.c)	29.63 (P = 0.001)	3.02 (P = 0.001)	2.89 (P < 0.001)
Grain Zn biofortification potential (Zn.p)	1.49 (P = 0.297)	1.45 (P = 0.148)	0.73 (P = 0.864)
Attainable grain Zn concentration (Zn.a)	12.06 (P = 0.008)	3.47 (P < 0.001)	1.85 (P = 0.008)


403

Scenario A:
Zn.t < Zn.a
Zn.c < Zn.t

Scenario C:
Zn.t > Zn.a
Zn.a ≈ Zn.c

High soil available Zn

Breeding high-Zn-distribution cultivars

Medium Soil available Zn

Breeding high-Zn-distribution cultivars

+

Agronomic measures to promote Zn uptake

Low soil available Zn

Agronomic measures to promote Zn uptake