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Abstract 15 

The solution to address global human Zn deficiency is Zn biofortification of staple food crops, aimed 16 
at high grain Zn concentration as well as high yield. However, the desired high grain Zn 17 
concentration above 40 mg kg-1 is rarely observed for high-yield wheat on worldwide calcareous 18 
soils, due to inadequate Zn uptake or Zn distribution to grain. The present study aims to investigate 19 
how much Zn uptake or distribution is adequate to achieve the Zn.t of high-yield wheat on calcareous 20 
soils with low available Zn (~ 0.5 mg kg-1). Of the 123 cultivars tested in a three-year field 21 
experiment, 19 high-yield cultivars were identified with similar yields around 7.0 t ha-1 and various 22 
grain Zn concentrations from 9.3 to 26.7 mg kg-1. The adequate Zn distribution to grain was defined 23 
from the view of Zn biofortification, as the situation where the Zn distribution to grain (Zn harvest 24 
index) increased to the observed maximum of ~ 91.0% and the Zn concentration of vegetative parts 25 
(straw Zn concentration) decreased to the observed minimum of ~ 1.5 mg kg-1 (Zn.m). Under the 26 
assumed condition of adequate Zn distribution to grain (~ 91.0%), all the extra Zn above Zn.m was 27 
remobilized from straw to grain and the grain Zn concentration would be increased to its highest 28 
attainable level, which was 14.5 ~ 31.3 mg kg-1 for the 19 high-yield cultivars but still lower than 40 29 
mg kg-1. Thus, even with the adequate Zn distribution to grain, the current Zn uptake is still not 30 
adequate and needs to be increased to 308 g ha-1 or higher to achieve Zn.t for high-yield wheat (7.0 t 31 
ha-1) on low-Zn calcareous soils. Besides, the established method here can also provide the priority 32 
measures and quantitative guidelines to achieve Zn biofortification in other wheat production 33 
regions. 34 

1 Introduction 35 
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Although over 50 years have passed since the first case of human zinc (Zn) deficiency (Prasad, 36 
2013), now this problem is still afflicting over 16% of the world population, mostly in Africa and 37 
South Asia (Kumssa et al., 2015). In these areas, residents cannot get sufficient Zn intake from daily 38 
diets which are mainly low-Zn cereals like wheat, maize, and rice (Wessells and Brown, 2012). 39 
Increasing the Zn concentration of cereal grains, known as Zn biofortification, is the main solution to 40 
alleviate human Zn deficiency, and the target of Zn fortified wheat grain is 40-50 mg kg-1 (Cakmak 41 
2018), much higher than the current worldwide grain Zn concentration of 20-30 mg kg-1 (Liu et al., 42 
2014; Chen et al., 2017). To close the gap between the current and target level, it is necessary to fully 43 
understand the factors affecting grain Zn concentration. 44 

Grain yield, as an indicator of sink capacity, has essential influence on grain Zn concentration. For 45 
instance, 45% decrease in yield of field-grown wheat generated 60% increase in grain Zn 46 
concentration (Zhang et al., 2012). The negative correlation between grain Zn concentration and 47 
yield has been widely reported in different locations (Liu et al., 2014) and wheat germplasms 48 
(Guttieri et al., 2015), and the lowered grain Zn concentration in modern cultivars is mainly caused 49 
by the wide adoption of high-yield cultivars after the Green Revolution (Fan et al., 2008; Velu et al., 50 
2017). To feed 9.7 billion population by 2050, the staple crop production has to increase by 60% 51 
(FAO, 2014), and thus crop Zn biofortification should increase yield and grain Zn concentration 52 
simultaneously (Bouis and Welch, 2010). To achieve high yield and high grain Zn concentration for 53 
wheat, it is necessary to enhance both shoot Zn uptake and its distribution to grain (Wang et al., 54 
2018), which are the two sources of Zn accumulated in grain (Kutman et al., 2012; Xue et al., 2012). 55 
For example, wheat grain Zn concentration was increased by enhanced nitrogen (N) supply (Kutman 56 
et al., 2011; Hui et al., 2017) or ectopic-expressed rice NICOTIANAMINE SYNTHASE 2 gene (Singh 57 
et al., 2017b), because abundant N-containing ligands like nicotianamine (NA) in the phloem 58 
enhanced the Zn transportation to grain (Barunawati et al., 2013). Also, the enhanced root Zn uptake 59 
increased wheat grain Zn concentration by enlarged root contact area with soil (Ercoli et al., 2017; 60 
Singh et al., 2017a), external Zn fertilization (Saha et al., 2017; Liu et al., 2017) or the mobilization 61 
of soil intrinsic Zn (Wang et al., 2017). However, most of existing Zn biofortification studies pay 62 
much less attention to grain yield, and thus cannot fully achieve the target of Zn biofortification. 63 

The most cost-effective approach to realize crop Zn biofortification is developing cultivars with high 64 
yield and high grain Zn concentration (Gregory et al., 2017). For example, a few breeding lines or 65 
cultivars of spring wheat exhibited high grain Zn concentration ~ 40 mg kg-1 and high yield ~ 4 t ha-1, 66 
under soil available Zn of 1.9 mg kg-1 in Canada, India, Pakistan, and Mexico (Gao et al., 2011; Velu 67 
et al., 2012). Similarly, under soil available Zn of 1.2 mg kg-1 in Iran, several bread wheat genotypes 68 
showed high grain Zn concentration > 50 mg kg-1 and high yield > 6 t ha-1 (Amiri et al., 2015). Thus, 69 
under relatively high soil available Zn > 1.0 mg kg-1, breeding new wheat cultivars can achieve high 70 
grain Zn concentration and high yield simultaneously. But on calcareous soils with low available Zn 71 
~ 0.5 mg kg-1, the success of Zn biofortification of high-yield wheat is rarely achieved. For instance, 72 
the highest grain Zn concentration of spring wheat and bread wheat lines was only 25 mg kg-1 under 73 
soil available Zn of 0.3 ~ 0.6 mg kg-1 in Portugal and Iran (Gomez-Coronado et al., 2016; 74 
Khoshgoftarmanesh et al., 2013). In the present study on calcareous soils with available Zn of 0.4 mg 75 
kg-1 in northwest China, the grain Zn concentrations of 123 wheat cultivars were all below 30 mg kg-76 
1. Does this mean that high grain Zn concentration of 40 mg kg-1 cannot be achieved by breeding for 77 
high-yield wheat on calcareous soils? 78 

The increase of grain Zn concentration for high-yield wheat relies on both high Zn uptake and high 79 
Zn distribution to grain (Wang et al., 2018). In the present work, the Zn harvest index varied from 80 
45.5% to 94.0% and the straw Zn concentration at maturity varied from 1.2 to 10.5 mg kg-1, while the 81 
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minimum Zn concentration in wheat vegetative parts was ~ 5.0 mg kg-1 in hydroponics (Kutman et 82 
al. 2012), indicating that some Zn in straw might be still transported to grain. Accordingly, 83 
inadequate Zn distribution to grain can be the reason for the low grain Zn concentration observed for 84 
high-yield wheat. Then, from the view of Zn biofortification, how much Zn distribution to grain is 85 
adequate for field-grown high-yield wheat? With adequate Zn distribution, whether the Zn uptake is 86 
adequate to achieve high grain Zn concentration (> 40 mg kg-1) for high-yield wheat? To test these 87 
hypotheses, the Zn concentration, uptake, and distribution of 123 wheat cultivars over three years 88 
were analyzed in the present study. 89 

2 Materials and methods 90 

2.1 Plant materials and field experiment 91 

The field experiment was conducted in Yongshou (108°12′E, 34°44′N) located on the southern Loess 92 
Plateau, where the climate is the temperate continental monsoon climate and over half of the annual 93 
precipitation (~ 550 mm) occurs in the summer fallow period from July to September. The top 20 cm 94 
soil properties were determined according to Bao (2000) as follows: pH 8.4 (CO2-free water), cation 95 
exchange capacity 20.3 cmol kg-1, soil organic matter 12.9 g kg-1, total N 0.9 g kg-1, mineral N 26.6 96 
mg kg-1, available phosphorus (P) 16.9 mg kg-1, available potassium (K) 123.4 mg kg-1, available iron 97 
(Fe) 7.5 mg kg-1, available manganese (Mn) 18.1 mg kg-1, available copper (Cu) 1.3 mg kg-1, and 98 
available Zn 0.4 mg kg-1. 99 

One hundred and twenty-three wheat cultivars were collected (Supp Table 1) and tested in the three-100 
year field experiment with a randomized complete block design. Each cultivar had four replications 101 
and each plot consisted of four 200 cm long rows with 2.5 cm seed spacing and 20 cm row spacing, 102 
under the nutrient supply of 150 kg N ha-1 and 100 kg P2O5 ha-1. All cultivars were sown during 28th 103 
to 30th September in 2013, 2nd to 3rd October in 2014, and 26th to 28th September in 2015, and 104 
harvested during 14th to 17th June in 2014, 18th to 20th June in 2015, and 18th to 20th June in 2016. 105 
The rainfalls during summer fallow periods and growing seasons were 271 and 267 mm in 2013-106 
2014, 317 and 314 mm in 2014-2015, and 228 and 186 mm in 2015-2016, respectively. Throughout 107 
the experimental period, no irrigation was conducted, and herbicide and pesticide were used when 108 
necessary. 109 

2.2 Sampling and chemical analyses 110 

At maturity, the plants of 30 ears were randomly sampled from the central two rows of each cultivar 111 
plot, and the roots were cut off at the stem-root joint part. Then, the shoots were air-dried and 112 
separated into stems, glumes, and grains, which were washed with deionized water and oven-dried at 113 

65℃ to determine dry weight. After that, the oven-dried samples were ground by a ball mill (Retsch 114 
MM400, Germany) for chemical analyses. The remaining ears in the central two rows of each plot 115 
were also harvested and weighted, plus the above grain weight, to estimate the grain yield, glume 116 
biomass, and stem biomass in oven-dried weight. 117 

Plant Zn concentration was determined as Ozbek and Akman (2016) with some modifications. 118 
Briefly, 0.2 g sample was mixed with 5.0 ml HNO3 (65%) in a 50 ml Teflon tube and predigested at 119 

120℃ for 0.5 h, and then 1.0 ml H2O2 (30%) was added before microwave digestion (MW Pro, 120 
Anton Paar, Austria). Each sample was digested in two technical duplicates and the standard wheat 121 
flour (GBW10011 GSB-2) was used for quality control. The digestion solution was diluted with 122 
ultrapure water (18.25 MΩ cm-1), and Zn concentration was determined by ICP-MS (iCAP Qc, 123 
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Thermo Fisher Scientific, USA). The measured Zn isotope was 66Zn, and 73Ge was added as internal 124 
standard to calibrate the signal fluctuation. 125 

2.3 Quantification of the potential increase of grain Zn concentration by adequate Zn 126 
distribution 127 

From the perspective of Zn biofortification, the adequate Zn distribution to grain refers to the 128 
situation where nearly all the mobilizable Zn in shoot vegetative parts was transported or remobilized 129 
to grain, and correspondingly, the ratio of grain Zn uptake to shoot Zn uptake (Zn harvest index) 130 
increased to the maximum and the Zn concentration of vegetative parts (straw Zn concentration, 131 
Zn.s) decreased to the minimum. To determine the adequate Zn distribution to grain for high-yield 132 
wheat, we selected the cultivars with yields higher than the corresponding median of all cultivars in 133 
each year, calculated the Zn uptake and Zn harvest index, and combined stem and glume Zn 134 
concentrations into Zn.s by the weighted mean method. In each year, the observed maximum Zn 135 
harvest index or minimum straw Zn concentration (Zn.m) was used to indicate the level of adequate 136 
Zn distribution to grain. Since Zn concentration was easier to measure than Zn harvest index, we 137 
used Zn.m to calculate the potential increase of grain Zn concentration (Zn.p) caused by the extra Zn 138 
remobilized from straw to grain under the condition of adequate Zn distribution to grain. 139 

Zn uptake 
g ha��
 �  
Zn concentration 
mg kg��
 � yield or biomass
kg ha��


1000
 

Zn. s 
mg kg��
 �  
stem Zn uptake
g ha��
 � glume Zn uptake
g ha��


stem biomass
kg ha��
 � glume biomass
kg ha��

� 1000 

Zn. p 
mg kg��
 �
�Zn. s 
mg kg��
 �  Zn. m 
mg kg��
 � Bm. s 
kg ha��


GrY 
kg ha��

 

Here Bm.s and GrY refer to straw biomass and grain yield. The sum of Zn.p and the current grain Zn 140 
concentration (Zn.c) was defined as the attainable grain Zn concentration (Zn.a). 141 

Shoot Zn uptake and Zn harvest index (ZnHI) were calculated as described by Kutman et al. (2011) 142 
and Xue et al. (2012). 143 

Shoot Zn uptake � grain Zn uptake � glume Zn uptake � stem Zn uptake 

Zn harvest index 
%
 �  
Grain Zn uptake 
g ha��


Shoot Zn uptake 
g ha��

� 100 

2.4 Statistical analyses and graphing 144 

Analysis of variance (ANOVA) was used to test the effects of year, cultivar, and year × cultivar 145 
interaction on yield or biomass, Zn concentrations, and Zn uptakes. The relationships of grain Zn 146 
concentration with other traits were tested by Pearson correlation or linear regression. All the 147 
statistical analyses were completed by PROC GLM, PROC CORR or PROC REG in SAS v 8.01, 148 
with 0.05 set as the significance level. Scatter and bar plots were created by Sigmaplot 12.5, and the 149 
concept chart illustrating Zn biofortification guidelines was created in Adobe Illustrator CC. 150 

3 Results 151 
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3.1 Relationship of grain Zn concentration with other traits for high-yield wheat 152 

Of the 123 tested wheat cultivars ordered by yield from low to high, 19 cultivars consistently 153 
exhibited higher yields than the median in each year, and were identified as high-yield cultivars 154 
(Figure 1). Although yield and biomasses showed significant differences among three years, the 19 155 
high-yield cultivars exhibited similar yields (~ 7 t ha-1) and varied greatly in grain Zn concentration, 156 
from 14.7 to 26.7 mg kg-1 in 2014, 9.3 to 22.2 mg kg-1 in 2015, and 13.5 to 17.0 mg kg-1 in 2016 157 
(Supp Table 2 and Figure 2A). Besides, grain Zn concentration showed no relation with yield, the 158 
biomass and Zn concentration of stem and glume (Figure 2A and Supp Figure 1). However, shoot Zn 159 
uptake was positively correlated with grain Zn concentration in each year and Zn harvest index was 160 
positively correlated with grain Zn concentration in 2015 (Figure 2C and 2D). 161 

3.2 Minimum straw Zn concentration and maximum Zn harvest index  162 

Shoot Zn uptake and Zn harvest index showed large variations among the 19 high-yield cultivars or 163 
three experimental years (Supp Table 2, Figure 3A and 3B). The observed maximum Zn harvest 164 
index was 91.8% in 2014, 87.7% in 2015, and 94.0% in 2016 (Figure 3B), while the observed 165 
minimum straw Zn concentration (Zn.m) was 1.3 mg kg-1 in 2014, 1.9 mg kg-1 in 2015, and 1.2 mg 166 
kg-1 in 2016 (Figure 3C). With Zn.m used to indicate the level of adequate Zn distribution to grain, 167 
the gap between current straw Zn concentration and Zn.m was used to calculate the amount of extra 168 
Zn which could be remobilized into grain. 169 

3.3 Potential increase of grain Zn concentration and attainable grain Zn concentration 170 

The potential increase of grain Zn concentration (Zn.p) due to extra Zn remobilized from straw to 171 
grain of the 19 high-yield cultivars ranged from 2.1 to 5.5 mg kg-1 in 2014, 3.0 to 6.5 mg kg-1 in 172 
2015, and 3.5 to 7.5 mg kg-1 in 2016 (Figure 4). When Zn.p was added to the current grain Zn 173 
concentration (Zn.c), the attainable grain Zn concentration (Zn.a) varied from 17.0 to 31.3 mg kg-1 in 174 
2014, 14.5 to 27.5 mg kg-1 in 2015, and 17.6 to 22.8 mg kg-1 in 2016 (Figure 4), lower than the Zn 175 
biofortification target (Zn.t) of 40 mg kg-1. Thus, even with the adequate Zn distribution to grain, the 176 
current shoot Zn uptake was not adequate to ahieve Zn.t of high-yield wheat. For an assumed high-177 
yield (~ 7 t ha-1) wheat cultivar with adequate Zn distribution to grain (~ 91.0%), the required shoot 178 
Zn uptake should be at least 308 g ha-1 to achieve the Zn.t. 179 

4 Discussion 180 

4.1 Using the minimum straw Zn concentration to estimate the adequate Zn distribution to 181 
grain 182 

In the present work, the adequate Zn distribution to grain is defined from the view of Zn 183 
biofortification, and it refers to the situation where all the mobilizable Zn in shoot vegetative parts 184 
was transported or remobilized to grain, meaning that Zn harvest index increased to its maximum and 185 
straw Zn concentration decreased to its minimum (Zn.m). Then, the gap between current straw Zn 186 
concentration and Zn.m can be used to calculate the amount of extra remobilized Zn from straw to 187 
grain, which results in the potential increase and the attainable highest grain Zn concentration under 188 
specific conditions. For high-yield bread wheat grown on low-Zn calcareous soils, the observed 189 
minimum straw Zn concentration is used as Zn.m which is ~ 1.5 mg kg-1 and lower than the reported 190 
5.0 mg kg-1 for durum wheat in hydroponics (Kutman et al., 2012). Presumably, the senescent 191 
vegetative parts of field-grown wheat need less Zn to constitute structural components and more Zn 192 
can be remobilized into grain. Under uniform environmental conditions, straw Zn concentration and 193 
Zn.m can be used to determine whether the Zn distribution to grain is adequate or not to promote Zn 194 
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biofortification. Since the Zn biofortification of high-yield wheat needs both high Zn uptake and high 195 
Zn distribution to grain (Wang et al., 2018), the Zn concentration of vegetative parts, which is easier 196 
to measure than the Zn harvest index, deserves to be considered in future studies on wheat Zn 197 
biofortification. 198 

4.2 Quantify the requirements to achieve wheat Zn biofortification in different environments 199 

Based on the adequate Zn distribution to grain (~ 91.0%) as indicated by Zn.m, we can get the 200 
attainable highest grain Zn concentration (Zn.a) and compare it with the grain Zn biofortification 201 
target (Zn.t, 40 mg kg-1), which can tell us whether the current Zn uptake is adequate to achieve Zn.t 202 
for high-yield wheat (~ 7 t ha-1). Besides, the established quantitative analysis method here are also 203 
suitable for other wheat production regions with the aim of increasing the current grain Zn 204 
concentration (Zn.c) and grain yield. The priority measures to achieve the Zn.t of high-yield wheat 205 
are different under different conditions (Figure 5). In wheat planting areas where Zn.a is close to or 206 
higher than Zn.t and the soil available Zn is often relatively high (> 1.0 mg kg-1), the priority to 207 
realize Zn.t is to adopt or develop the cultivars with high Zn distribution to grain. For example, in 208 
North China Plains with soil available Zn of 3.4 mg kg-1, optimal N application generated high yield 209 
of 7.5 t ha-1 and shoot Zn uptake of 370 g ha-1 (Xue et al., 2014), and the Zn.a would be 44.9 mg kg-1 210 
and higher than Zn.t, indicating the necessity to introduce high-Zn-distribution wheat cultivars. In 211 
wheat production regions where Zn.a is lower than Zn.t and higher than Zn.c and the soil available 212 
Zn is often relatively low (< 0.5 mg kg-1), developing high-Zn-distribution cultivars should be 213 
combined with agronomic measures like Zn fertilization to promote Zn uptake. For instance, in Iran 214 
rainfed drylands with soil available Zn of 0.2 mg kg-1 (Norouzi et al., 2014), the tested wheat 215 
cultivars exhibited high yield of 6.6 t ha-1 and shoot Zn uptake of 174 g ha-1. Even if the Zn.c of 17.0 216 
mg kg-1 was increased to the Zn.a of 26.4 mg kg-1 by introducing new cultivars, there was still a large 217 
gap to Zn.t which needed to be closed by increasing Zn uptake. In wheat production regions where 218 
Zn.a is close to Zn.c and lower than Zn.t, the Zn distribution to grain has reached its maximum and 219 
the priority measure of Zn biofortification is to increase Zn uptake by agronomic practices. However, 220 
this case is rarely observed up to now because researchers have not paid enough attention to the Zn in 221 
vegetative parts in wheat Zn biofortification studies. 222 

On calcareous soils with low available Zn < 0.5 mg kg-1, the current wheat grain Zn concentration is 223 
around 20 mg kg-1, as reported in China, Kazakhstan, Mexico, Turkey, and Zambia, etc. (Zou et al., 224 
2012; Liu et al., 2014). In the present study on calcareous soils with available Zn of 0.4 mg kg-1, the 225 
wheat cultivar Zhengmai 7698 had the highest Zn.a of 31.3 mg kg-1 and the yield of 6.6 t ha-1 in 226 
2014, which was still lower than the Zn.t. To achieve high grain Zn concentration of 40 mg kg-1 and 227 
high yield of 7.0 t ha-1 simultaneously, the current shoot Zn uptake should be increased to at least 308 228 
g ha-1 by agronomic measures like soil Zn fertilization with the wheat cultivars with high Zn 229 
distribution to grain (~ 91%). These guidelines deserve to be tested in field studies on Zn 230 
biofortification. 231 

5 Conclusion 232 

From the view of crop Zn biofortification, the adequate Zn distribution to grain can be defined as the 233 
case where Zn harvest index increased to its maximum and straw Zn concentration decreased to its 234 
minimum. For the high-yield (~ 7 t ha-1) wheat grown on low-Zn (~ 0.5 mg kg-1) calcareous soils, the 235 
maximum Zn harvest index was ~ 91.0% and the minimum straw Zn concentration was ~ 1.5 mg kg-1. 236 
Under the condition of adequate Zn distribution to grain, the gap between straw Zn concentration and 237 
its minimum could be used to determine the extra Zn remobilized to grain and the highest attainable 238 
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grain Zn concentration, which was 14.5 ~ 31.3 mg kg-1 for the high-yield wheat cultivars and lower 239 
than the grain Zn biofortification target (Zn.t) of 40 mg kg-1. Therefore, even with the adequate Zn 240 
distribution to grain (~ 91%), the current shoot Zn uptake is still not adequate to achieve the Zn.t of 241 
high-yield wheat grown on low-Zn calcareous soil, and the priority measure of Zn biofortification is 242 
to increase Zn uptake to 308 g ha-1 or higher by agronomic practices like Zn fertilization. The 243 
established method here can also provide the most suitable guidelines and quantitative requirements 244 
to achieve grain Zn biofortification in other wheat production regions. 245 

6 Abbreviations 246 

Zn.s, straw Zn concentration; Zn.m, minimum straw Zn concentration; Zn.p, potential increase of 247 
grain Zn concentration; Zn.c, current grain Zn concentration; Zn.a, attainable grain Zn concentration; 248 
ZnHI, Zn harvest index; Zn.t, grain Zn biofortification target. 249 
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12 Figure Legends 373 

Figure 1. Yield variations of the 123 tested wheat cultivars in 2014 (A), 2015 (B), and 2016 (C). The 374 
19 high-yield cultivars (red bar, ‘H’) were identified with their yields consistently higher than the 375 
corresponding median of all cultivars in each year. 376 

Figure 2. Relationships of grain Zn concentration to grain yield (A), straw Zn concentration (C), 377 
shoot Zn uptake (B), and Zn harvest index (D) for the high-yield wheat cultivars over three 378 
experimental years. Determination coefficients (P-values) indicate the relationships of grain Zn 379 
concentration to these traits, and the significant regressions at P < 0.05 are shown by solid lines. 380 

Figure 3. Variations of shoot Zn uptake (A), Zn harvest index (B), and straw Zn concentration (C) of 381 
the high-yield cultivars over three experimental years. For each box plot, like the straw Zn 382 
concentration in 2014, the five values from top to bottom are the number of original observations (19 383 
cultivars × four replications = 76), the maximum (10.01), the median (4.41, dashed line), the average 384 
(3.97, solid line) and the minimum (1.33), respectively. 385 
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Figure 4. Grain Zn concentration (Zn.c, orange bar) and its biofortification potential (Zn.p, green bar) 386 
of the 19 high-yield wheat cultivars in 2014 (A), 2015 (B), and 2016 (C). Error bars stand for 387 
standard error (n=4). 388 

Figure 5. The most suitable Zn biofortification measures in different scenarios of the current grain 389 
Zn concentration (Zn.c), attainable grain Zn concentration (Zn.a), and Zn biofortification target level 390 
(Zn.t). This is proposed as a guiding workflow to realize grain Zn biofortification target for high-391 
yield wheat. 392 

13 Supplementary Material 393 

Supplementary Figure 1. Relationships of wheat grain Zn concentration to the biomasses of glume 394 
(A) and stem (B) and Zn concentrations of glume (C) and stem (D) for the 19 high-yield cultivars 395 
over the three experimental years. Determination coefficients (P-value) indicate the relationship of 396 
grain Zn concentration to each variable. 397 

Supplementary Table 2. Tested wheat cultivars in the three-year field experiment, with the 398 
identified 19 high-yield ones in red color. 399 

Supplementary Table 2. Analysis of variance (ANOVA) for the effects of year, cultivar, and year × 400 
cultivar interaction on the different traits of high-yield cultivars. 401 

 402 

Traits 
High-yield group 

Year Cultivar Year × Cultivar 

Grain yield 20.18 (P = 0.002) 0.97 (P = 0.507) 0.72 (P = 0.865) 

Glume biomass 19.7 (P = 0.002) 4.41 (P < 0.001) 0.83 (P = 0.734) 

Stem biomass 21.07 (P = 0.002) 1.54 (P = 0.114) 0.86 (P = 0.694) 

Straw biomass 26.13 (P = 0.001) 1.33 (P = 0.207) 0.82 (P = 0.749) 

Glume Zn concentration 0.47 (P = 0.646) 1.70 (P = 0.069) 0.90 (P = 0.628) 

Stem Zn concentration 1.93 (P = 0.226) 1.32 (P = 0.216) 0.77 (P = 0.812) 

Straw Zn concentration 1.51 (P = 0.294) 1.27 (P = 0.242) 0.72 (P = 0.864) 

Shoot Zn uptake 13.9 (P = 0.006) 2.33 (P = 0.009) 1.49 (P = 0.059) 

Zn harvest index 5.94 (P = 0.038) 1.07 (P = 0.406) 1.43 (P = 0.084) 

Grain Zn concentration (Zn.c) 29.63 (P = 0.001) 3.02 (P = 0.001) 2.89 (P < 0.001) 

Grain Zn biofortification potential (Zn.p) 1.49 (P = 0.297) 1.45 (P = 0.148) 0.73 (P = 0.864) 

Attainable grain Zn concentration (Zn.a) 12.06 (P = 0.008) 3.47 (P < 0.001) 1.85 (P = 0.008) 

 403 
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