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Tyrosine and serine/threonine kinases are essential regula-

tors of cell processes and are important targets for human

therapies. Unfortunately, very little is known about specific

kinase-substrate relationships, making it difficult to infer mean-

ing from dysregulated phosphoproteomic datasets or for re-

searchers to identify possible kinases that regulate specific or

novel phosphorylation sites. The last two decades have seen an

explosion in algorithms to extrapolate from what little is known

into the larger unknown – predicting kinase relationships with

site-specific substrates using a variety of approaches that in-

clude the sequence-specificity of kinase catalytic domains and

various other factors, such as evolutionary relationships, co-

expression, and protein-protein interaction networks. Unfortu-

nately, a number of limitations prevent researchers from easily

harnessing these resources, such as loss of resource accessibility,

limited information in publishing that results in a poor map-

ping to a human reference, and not being updated to match the

growth of the human phosphoproteome. Here, we propose a

methodological framework for publishing predictions in a uni-

fied way, which entails ensuring predictions have been run on a

current reference proteome, mapping the same substrates and

kinases across resources to a common reference, filtering for

the human phosphoproteome, and providing methods for up-

dating the resource easily in the future. We applied this frame-

work on three currently available resources, published in the

last decade, which provide kinase-specific predictions in the hu-

man proteome. Using the unified datasets, we then explore the

role of study bias, the emergent network properties of these pre-

dictive algorithms, and comparisons within and between predic-

tive algorithms. The combination of the code for unification and

analysis, as well as the unified predictions are available under

the resource we named KinPred. We believe this resource will

be useful for a wide range of applications and establishes best

practices for long-term usability and sustainability for new and

existing predictive algorithms.
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Introduction

Kinase regulation of protein phosphorylation plays impor-
tant roles in almost all cell processes, including: growth fac-
tor/cytokine signaling, cell cycle and metabolic control, and
DNA damage response. Serine/threonine phosphorylation-
driven networks are anciently conserved and found through-
out both prokaryotes and eukaryotes. Tyrosine phospho-
rylation is a more recent evolutionary mechanism, appear-

ing as a complete signaling unit around the post-metazoan
switch (1). We should also note that histidine phosphory-
lation plays essential roles in cell physiology, but experi-
mental challenges for measuring it have hindered our abil-
ity to study and discover it (2), hence we focus on ser-
ine/threonine and tyrosine phosphorylation. These types of
post-translational modifications (PTMs) are extensive in hu-
man biology and currently include roughly 40,000 tyrosine
and 200,000 serine/threonine residues known to be phospho-
rylated (3). This number of discovered phosphorylation sites
has grown dramatically in recent years (4), due to advances in
mass spectrometry-based enrichment and discovery methods
(5).

Unfortunately, our understanding of the role and regulation
of the phosphoproteome has not kept pace with its discovery.
For example, only about 3% of phosphorylation sites have a
kinase that is known to recognize and phosphorylate that site
(i.e. a kinase’s substrate), meaning that the vast majority of
phosphorylation sites have no validated kinase (6). A major
hurdle for validation is due to the preponderance of evidence
required to ensure that a kinase is directly responsible for
a specific phosphorylation site, especially when kinase net-
works often involve the activation of many kinases within a
network. Since dysregulation of phosphorylation-driven net-
works are common to disease states and kinase inhibitors are
a major class of FDA-approved drugs (7), it would be highly
beneficial to connect dysregulated phosphorylation sites to
candidate kinase targets.

A major breakthrough in the ability to hypothesize kinase-
substrate connections came with the discovery that kinase
catalytic domains have preferences for the protein sequence
immediately surrounding the site of phosphorylation (8).
However, kinases are often part of multi-domain protein ar-
chitectures, where tertiary protein-protein interactions also
help to shape kinase-substrate recognition (9, 10). Although
full proteins may be referred to as substrates of kinases, it
is individual tyrosine/serine/threonine residues that are phos-
phorylated by a kinase and not all sites on a protein are
regulated by the same kinase. Hence, for the purposes of
this work, the term substrate will refer to the site-specific
phosphorylation site targeted by a kinase. The motivation
to understand the kinases responsible for phosphorylating
substrates and the discovery of kinase specificity determi-
nation has resulted in the proliferation of a large number

Xue et al. | bioR‰iv | November 24, 2020 | 1–13

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.08.10.244426doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.244426
http://creativecommons.org/licenses/by-nd/4.0/


of kinase-substrate prediction approaches, which extrapolate
from available kinase-substrate data, or specificity features,
to predict kinase-substrate relationships across the whole
proteome. We found 31 such predictive algorithms pub-
lished since 1999, ranging in methodologies from position
specific scoring matrix approaches (11) to machine learn-
ing approaches, such as support vector machines (12, 13),
Bayesian-based learning (14, 15), and recently, deep learn-
ing approaches (16). Additionally, new approaches that infer
kinase networks from phosphoproteomic data have also re-
cently emerged (17, 18) – although these types of predictions
are on the order of the experimental size, versus at the scale
of the entire proteome, which we focus on here. The myriad
of approaches suggest a vast array of resources to consider
when identifying candidate kinases for new phosphosites, in-
tegrating for network-based approaches, or looking for kinase
enrichment, such as in KSEA (19).

Despite a plethora of resources, there are significant barri-
ers to the use of these kinase-substrate prediction algorithms.
For example, in our experience, more than one-third of the 16
resources published since 2010 are no longer accessible. In
the event that the publication provided the predictions as sup-
plementary material, there are two main classes of problems
one encounters. First, there are issues with the sequences
provided and mapping to current databases. For example, a
phosphorylation site is often only designated by its position
and an accession (e.g. Y1197 in UniProt record P00533).
The older the dataset, the less likely there exists a Y/S/T at
that position, as reference proteins are not static records. Sec-
ond, these predicted resources might publish data filtered, ei-
ther based on a stringency or based on the known phospho-
proteome at that time. That presents a problem when one
wishes to know whether the absence of a kinase-substrate
edge represents a relationship that was tested and then filtered
out due to stringency (a true negative), or is not present, be-
cause it was: 1) not tested (reference proteome difference)
or 2) the site was not known to be phosphorylated at the
time (reference phosphoproteome difference). Additionally,
different age datasets and datasets published using alternate
accession numbers are difficult to compare/cross-reference.
The culmination of these challenges results in difficulty for
researchers to consider multiple prediction algorithms in their
research, to get complete results for the current scale of the
phosphoproteome, or to interpret the meaning of various pre-
diction algorithms.

To overcome these challenges, we built a process for
unifying kinase-substrate prediction datasets, where sub-
strates are residue-specific targets of kinases. This pro-
cess uses a non-redundant reference proteome to retrieve
proteome-level predictions (keeping all edges tested), maps
kinase names to a common ontology, filters on the cur-
rent phosphoproteome, and provides methods to allow for
updates to both the reference proteome and phosphopro-
teome. Here, we present KinPred v1.0, a framework for
unification, a unified resource containing three selected pre-
dictive algorithms, and analysis and methods for consid-
ering how to compare results, network sizes and emer-
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Fig. 1. Comparison of the number of kinases in each predictive al-

gorithm by kinase group. (A) Tyrosine kinases. (B) Serine/threonine
kinases.

gent properties, agreement/disagreement between predic-
tive algorithms, study bias, and the discriminability/overlap
of different kinases within a predictive algorithm. We
have made all code and datasets of KinPred v1.0 pub-
licly available at https://github.com/NaegleLab/
KinPred, and https://figshare.com/projects/
KinPred_v1_0/86885, respectively.

Results

Evaluation of available kinase-substrate prediction

sets. We performed a wide literature search of available
kinase-substrate prediction algorithms. This encompasses
approximately 30 prediction algorithms published between
1999 and 2020 (Table S1). Our goal was to select prediction
resources that are: 1) available/accessible, 2) covered a large
range of kinases, 3) residue-specific predictions, versus pre-
dictions of whole proteins as substrates, 4) proteome-scale
predictions, and 5) kinase-specific, versus predictions by ki-
nase family. We selected algorithms that focused on kinase-
specific results, instead of kinase family predictions, such as
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DeepPhos (16), Quokka (20), and MusiteDeep (21), for the
breadth of kinases and to allow comparisons between sets,
but also because there is evidence that total sequence simi-
larity does not guarantee similarity in specificity. Typically,
the most recently duplicated paralogs may have high overall
similarity, but the duplication event itself likely results in the
freedom of one of these copies evolving new function – i.e.
substrate targets (22). Instead, small changes in key regions
that define specificity can occur (23), resulting in differential
specificity, such as seen for the highly similar paralogs SRC
and LCK (24). There are three prediction algorithms that met
these requirements, which are: (NetworKIN (25, 26), Phos-
phoPICK (15), and GPS 5.0 (27) (referred to here as GPS).
The three selected predictive algorithms use various features
for prediction, which ultimately result in weighted edges
between kinases and possible substrates, where the edge
weight indicates a likelihood of that relationship, although
edge weight values are not directly comparable across al-
gorithms. NetworKIN’s (26) prediction approach uses a
kinase-specific classifier, based on sequence and evolution-
ary phylogeny, and a network proximity score, based on an-
notated proximity between kinases and substrates from the
STRING protein-protein interaction database (28). We used
the combined score of the sequence-specific and network-
specific scores (done by a naive Bayes approach), which is
reported as a log-likelihood. GPS’s prediction approach re-
lies on combined literature curation and kinase-substrate an-
notations from Phospho.ELM 7.0 (29) and PhosphoSitePlus
(30), then uses a scoring approach based on sequence sim-
ilarity to kinase substrates. GPS edge weights are reported
as false positive rates based on generation of 10,000 ran-
dom phosphopeptides, which are calculated within defined
protein families based on protein kinase homology. Finally,
PhosphoPICK, like NetworKIN, incorporates both sequence-
based and network-based information. For training data, they
used Phospho.ELM (29) and HPRD (31) for defined kinase-
substrate relationships and BioGRID (32) and STRING (28)
for protein-protein interactions. Their Bayesian network al-
gorithm then estimates a likelihood p-value, which is the
reported edge score. In summary, the three predictive al-
gorithms rely heavily on sequence context, either from de-
generate libraries (NetworKIN) or annotated kinase-substrate
training sets (GPS, PhosphoPICK), where NetworKIN and
PhosphoPICK add protein-protein interaction information
and other context features.

Integration of multiple kinase-substrate predictions

into a common ontology that can be updated. Having
selected our three predictive algorithms, we next wished to
create a unified prediction set in which all possible human
substrates had been tested and the substrates and kinases
were mapped onto a common ontology. In this framework,
there are two steps: 1) we used the algorithm to compute
the prediction for all unique human proteins, capturing all
predicted kinase-substrate edges – where edges may exist to
Y, S, or T amino acids that are not known to be phospho-
rylated and 2) substrates were filtered to include only those
sites that have been identified as phosphorylated according to

the integrated compendia and experimental database of post-
translational modifications, ProteomeScout, which combines
five major compendia and primary phosphoproteomic exper-
iments (3). The results are based on current ProteomeScout
data (Feb. 7, 2020), which includes 41,414 unique phos-
photyrosines and 204,399 unique phosphoserines/threonines.
Combined, the three kinase-substrate predictive algorithms
cover 76 tyrosine kinases and 266 serine/threonine kinases.
Based on current UniProt annotations of human kinases this
is out of 100 human tyrosine kinases and 376 human ser-
ine/threonine kinases possible. Of the few (9) dual speci-
ficity kinases, we include them in both categories, keeping
their relevant substrates as either phosphotyrosine or phos-
phoserine/phosphothreonine substrates. Figure 1 shows the
total kinases covered, indicating that GPS is the largest and
PhosphoPICK is the smallest of the predictive algorithms in
this set. This dataset guarantees coverage of known phos-
phorylation sites across the available kinases, all commonly
mapped to the same kinase and substrate identifiers.
In order to update this common resource in the future when
new phosphorylation sites are discovered, a trend that con-
tinues (4), we have implemented two basic approaches. First,
most updates will require pulling pre-calculated edge weights
from the resource that were filtered in the last version as not
being phosphorylated at that time. Second, for a smaller
number of cases, the underlying human proteome sequence
may have changed in a way that affects the sequence sur-
rounding the phosphorylated amino acid of interest. In these
cases, our infrastructure identifies these protein sequences for
running anew on the prediction servers/code, where new pre-
dictions are then replaced/added in the compendia of kinase-
substrate predictions. We plan to update these predictions
once to twice a year, when ProteomeScout undergoes a stable
update. Hence, we provide here both a current, unified pre-
diction set across the three predictive algorithms, but also a
general framework for adding new predictive algorithms and
updating prediction sets in the future.
Table 1. The definition of kinase-substrate edge weights in a given prediction net-
work and stringencies cutoffs used by algorithm for low, medium, and high stringen-
cies.

Algorithm Score Definition Low Medium High

NetworKIN Likelihood Ratio 0.3 0.5 1
PhosphoPICK P-value 0.1 0.06 0.02
GPS (Ser/Thr) False Positive Rate 10% 6% 2%
GPS (Tyr) False Positive Rate 15% 9% 4%

Thresholding kinase-substrate predictions. The kinase-
substrate edges predicted by each algorithm have different
mathematical interpretations and each resource publication
suggested stringency thresholds (Table 1), where edges above
that threshold are retained in the network. To explore the ef-
fects of these thresholds on overall algorithm coverage and
size, we measured the number of unique phosphorylation
sites in post-thresholded networks, across the suggested strin-
gencies (Fig. 2A). There is a unique behavior between tyro-
sine and serine/threonine kinase networks – increasing strin-
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Fig. 2. Network Comparisons Across Stringencies. (A) Bar graph of total phosphotyrosine and phoshposerine/phosphothreonine sites included
in the network, normalized to the total number in the low stringency network, as a function of increasing stringency. Number of substrates at low
stringency is labeled on each bar. B) Bar graph of total edges in the network, normalized by the total number covered in low stringency, as a function
of threshold. Numbers on low stringency bars are the total number of edges at low stringency. (C) Distributions of substrate degree of phosphotyrosine
and phosphoserine/phosphothreonine sites, where degree is the number of edges connected to a substrate at or above the denoted stringency.

gency in tyrosine kinase predictions results in a significant
loss of human phosphotyrosine coverage in NetworKIN and,

to a lesser extent, PhosphoPICK. For PhosphoPICK, this may
be related to the smaller number of kinases predicted, com-
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pared to the other algorithms. However, NetworKIN and
GPS have more equivalent tyrosine kinases in their predic-
tive algorithms (50 and 65, respectively). Hence, the decrease
in NetworKIN phosphotyrosine coverage is likely due to the
distribution of edges – fewer overall sites have at least one
high stringency edge in NetworKIN, compared to GPS. This
behavior is unique to phoshphotyrosine networks. Phospho-
serine/threonine networks drop a significantly smaller frac-
tion of the known human sites as a function of increasing
stringency. Each algorithm stringency therefore has different
effects on overall phosphorylation site coverage that is spe-
cific to the algorithm and the type of kinase network under
consideration.
The total number of edges included in the post-thresholded
networks is also of interest, this captures the density of
kinase-substrate connections predicted in each network at,
or above, the given stringency (Fig. 2B). At all thresholds,
GPS contains the highest number of kinase-substrate edges,
consistent with it being the largest of the three predictive al-
gorithms, in terms of the total number of kinases available.
However, the rate of loss of edges in the different predictive
algorithms as a function of stringency differ. Specifically,
medium and high stringencies in NetworKIN result in signif-
icant loss of predicted edges (as well as phosphorylation site
coverage). To a lesser extent, this loss of network edges also
occurs in PhosphoPICK.
Finally, in order to understand how edge loss translates to
the connectedness of individual substrates, we explored the
degree distribution of substrates as a function of stringency
(Fig. 2C). Generally, the median substrate degree is directly
proportional to the networks’ size (Fig. 2), where the center

of the distribution is highest for GPS, which generally pre-
dicts significantly more kinases are responsible for phospho-
rylating substrates than the other algorithms. All algorithms
demonstrate that there are a small proportion of substrates
that are highly connected – being more than two standard
deviations higher, compared to other substrates for that al-
gorithm (Fig. 2C). For GPS, lowly connected substrates are
considered outliers, which is different than the other algo-
rithms, where the majority of substrates are lowly-connected
– i.e. the majority of their substrates have connections from
0 to 10 kinase connections. Increasing stringency generally
has the effect of reducing highly-connected outliers and de-
creasing the average degree of substrates. Taken together, the
three different networks demonstrate very different properties
regarding substrate inclusion and connectedness, including
different effects of stringency thresholds, suggesting that di-
rect stringency comparisons do not result in comparable net-
works.

Effect of study bias in substrate prediction networks.

The training of kinase-substrate predictive algorithms relies
on well-annotated training data, which has the potential to
create bias of strong predictions for phosphorylation sites that
formed the basis of training sets, i.e. study bias. To test for
this type of study bias, we looked at the relationship between
the number of high-stringency edges a substrate has and
how frequently it appears in compendia/databases of phos-
phorylation. ProteomeScout currently contains five com-
pendia (PhosphoSitePlus (30), Phospho.ELM (29), dbPTM
(33), HPRD (31), and UniProt (34)). Two of these re-
sources, Phospho.ELM and HPRD are no longer updated,
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Fig. 3. Effect of study bias Each panel shows the distribution (boxen plot) of the number of high stringency kinase connections a substrate has, where
substrates are grouped according to the number of compendia they were annotated in, where the more the compendia a substrate is in the more likely
it was part of a training set for the algorithms (i.e. a type of study bias). Distributions are plotted for high-stringency networks for NetworKIN, GPS, and
PhosphoPICK (from left to right) and for tyrosine (top) and serine/threonine networks (bottom). To test if there is a difference between one compendia
group and the next higher compendia group, we performed pairwise Kolmogorov-Smirnov (KS)-tests, where * denotes <1e-3 p-value, indicating the data
do not come from the same underlying distribution, which is the expected behavior if each sample distribution by compendia was randomly pulled from
the background.
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but represent the oldest data that was the foundation of many
kinase-substrate prediction algorithms. Conversely, Phos-
phoSitePlus, the largest resource, is predominantly composed
of mass spectrometry-based discovery and accounts for a
large proportion of the data represented by just one com-
pendium. Interestingly, none of the compendium completely
overlaps with another compendium. Hence, we propose that
the total number of compendia a phosphorylation site appears
in can be used as a proxy for how likely they were included as
part of the original training or testing data of kinase-substrate
prediction algorithms – i.e. a measure of training set study
bias.
Figure 3 shows the distribution of substrate degrees as a func-
tion of the number of compendia the substrate has been ob-
served in. Roughly 93% and 90% of phosphotyrosine and
phosphoserine/threonine sites, respectively, are annotated by
at least one compendium, the majority of which are anno-
tated only in one compendia (60% and 53% respectively).
Roughly 16% of phosphotyrosines and 23% of phosphoser-
ine/threonine are very well studied, appearing in at least three
different compendia. Most predictive algorithms, in both
phosphorylation groups, generally show increasing degree
with increasing compendia annotations, suggesting a strong
relationship between how many high-stringency edges a sub-
strate has and how well-studied it is. To statistically test this,
we used the Kolmogorov-Smirnov (KS)-test to compare the
distributions of a group to the distribution in the next com-
pendia group. If substrates were truly a random sampling
of the background, the KS-test would result in no signifi-
cant rejections of the null hypothesis. However, we observed
very significant differences in most comparisons, including
all of the tests in GPS substrate degrees and most of Phospho-
PICK tests. NetworKIN demonstrates fewer significant dif-
ferences in network degree as a function of study bias. These
results suggest that it is important to understand the effect
of study bias that underlies the kinase-substrate predictions
when drawing conclusions from these predictive algorithms.

Direct comparison of kinase-substrate predictive al-

gorithms. We wished to understand the similarity of kinase-
substrate predictive algorithms. For these analyses, we con-
sider only the kinases that are predicted in any pair of predic-
tive algorithms (Fig. 1), which includes: 11 tyrosine kinases
and 68 serine/threonine kinases between PhosphoPICK and
NetworKIN; 39 tyrosine kinases and 117 serine/threonine ki-
nases between GPS and NetworKIN; 19 tyrosine kinases and
87 serine/threonine kinases between GPS and PhosphoPICK.
One aspect of comparison we considered was whether differ-
ent algorithms generally agreed with how connected kinases
are – i.e. their degree or number of substrates predicted per
kinase. To measure this, we looked at the correlation in ki-
nase degree between predictive algorithms at different strin-
gencies. There was no discernible correlation between any
pair of predictive algorithms. The highest correlation was be-
tween PhosphoPICK and NetworKIN tyrosine kinase degrees
with a Pearson correlation of 0.49 (p-value of 0.12, likely due
to few numbers of kinases in the set). If we perform the same
analysis from the perspective of substrate connectivity, there

is a modest correlation only between PhosphoPICK and Net-
worKIN for both tyrosine (r=0.6, p-value < 1e-100) and ser-
ine/threonine networks (r=0.4, p-value < 1e-100). All other
pairwise comparisons of kinase and substrate degree showed
poor correlation. In short, this means algorithms do not gen-
erally agree about which kinases and substrates are highly or
lowly connected within networks and only PhosphoPICK and
NetworKIN have some agreement as to the general trend of
substrate connectivity.
Finally, we wished to ask how similar/dissimilar kinases are
within and across predictive algorithms. We measured the
similarity between kinases using the Jaccard index, which is
the size of the intersection of two sets, normalized by the size
of the union of the sets, for thresholded networks. The Jac-
card index ranges from 0 (no overlap), to 1 (complete over-
lap). There is an expectation that some amount of overlap
occurs by random chance. For sets containing at least 100
elements, a Jaccard index of 0.49 or larger is considered sig-
nificant at a p-value of 0.001 (35). A kinase set is defined as
the substrates connected to it at, or above, a given threshold.
Since all comparisons here contain at least 100 elements, then
0.49 is a bound with conservative estimate of being unlikely
due to random chance alone. Additionally, a Jaccard index of
0.49 corresponds to roughly half of the available substrates
between a pair of kinases as being shared. We used this ap-
proach to understand network overlap between kinases within
the same algorithm and between kinases in different predic-
tive algorithms.

Within-algorithm kinase similarity. We compared within-
algorithm kinase similarity to understand the overlap, or lack
of discriminability, between kinases within an algorithm.
Figure 4 shows the results of all pairwise Jaccard scores for
tyrosine kinase predictions within NetworKIN at low and
high stringency. The highest degree of overlap exists at
low stringencies, where 46% (23) of the tyrosine kinase net-
works predicted by NetworKIN are significantly similar to
at least one other tyrosine kinase in NetworKIN. This over-
lap decreases with increasing stringency – dropping to 26%
of kinases (13) at medium stringency and 22% of kinases
(11) at high stringency. The NetworKIN serine/threonine ki-
nase overlap starts higher (65.7% overlap significantly at low
stringency), but also drops faster to end at only 9.3% over-
lap at high stringency. PhosphoPICK shows no significant
overlap at high stringency for tyrosine kinases and modest
overlap (2%) for serine/threonine kinases. The general trend
of decreasing overlap with increasing stringency is consis-
tent across all predictive algorithms and both tyrosine and
serine/threonine networks (Fig. S1), with the exception of
tyrosine kinase networks in GPS, which actually increase in
the extent of overlap with increasing stringency.
We next used a network layout to see what kinases signifi-
cantly overlap with each other (Fig. 4C,D and Fig. S1). The
kinases that significantly overlap with each other show very
different patterns in NetworKIN than in GPS. In NetworKIN
high stringency networks, overlap occurs between highly ho-
mologous paralogs of kinases (e.g. the EPHA and MAPK
family of kinases). However, in GPS there is low overlap
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Fig. 4. Within-algorithm kinase similarity. Jaccard index matrices for NetworKIN predictions at (A) low and (B) high stringency. The symmetric
matrix was sorted hierarchically and kinase names are highlighted in red text if their Jaccard index meets a minimum of 0.001 p-value significance (a
value of 0.49 or greater). Those relationships that exceed significant Jaccard index values are shown in network diagrams (C) NetworKIN tyrosine and
serine/threonine kinases under high stringency and (D) GPS tyrosine kinase networks (serine/threonine are large and available in Fig. S1). A spring
layout was used on the weighted graph, so the closer the nodes the larger the Jaccard index. These graphs show all significant overlapping kinases in
the given kinase network.

amongst these families, but high overlap between evolution-
arily diverse kinases, such as CSF1R, JAK1, ITK, ERBB4,
and PTK2. Hence, our analysis suggests that when using the
kinase-substrate networks as a whole, one must consider the
degree of overlap, i.e. lack of discriminability, between ki-
nases in an algorithm and the role of stringency in alleviating,
or in the case of GPS, increasing overlap.

Between-algorithm kinase similarity. We next wished to un-
derstand whether the different predictive algorithms gener-
ally agreed regarding kinase network similarity. We again
used the Jaccard index, this time measuring overlap between

a kinase in one algorithm and kinases in a second algo-
rithm. Most notably, this analysis demonstrated that glob-
ally the between-algorithm similarity of the same kinases is
significantly lower than within-algorithm similarities of dif-
ferent kinases. For example, Figure 5 shows NetworKIN vs.
PhosphoPICK at low stringencies for both tyrosine and ser-
ine/threonine networks (all direct comparison JI matrices are
available in Fig. S2), with JI values that are significantly
lower than the best JI values seen within an algorithm (Fig.
4A).

Despite having low overall similarity, we wished to know if
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Fig. 5. Between-algorithm kinase similarity. Jaccard index matrices (non-symmetric), comparing GPS and NetworKIN, both at low stringency, where
highlighted labels in red for tyrosine kinases (A) or labeled for serine/threonine kinases (B) indicate that comparison falls within the top 1% of all kinase
comparisons. (C) In order to understand if the highest overlap of a kinase in one algorithm is the same kinase in the other algorithm, we calculated
the cumulative distributions of the fraction of this match from the highest ranked kinase to the top 10 (tyrosine kinases) or top 20 (serine/threonine
kinases). For example, a y-axis value of 0.3 at x-axis value of 2 means that 30% of the kinase comparisons from algorithm A to algorithm B, where
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of all possible NetworKIN:GPS comparisons. The faster and higher the deviation from the random chance line, the more agreement there is between
prediction algorithms networks at those stringencies.
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the best overlap still occurred between predictive algorithms
for the same kinase. Figure 5 and Figure S2 highlight the
kinases whose match is in the top 1% of Jaccard scores mea-
sured against all kinases in another algorithm. We noticed
that although some kinase’s rank high when comparing from
one algorithm to another, the opposite is not necessarily true.
For example, SRC, ERBB1, ABL1, HCK, and INSR rank
high when comparing NetworKIN to PhosphoPICK, but only
SRC and ERBB1 rank high when comparing from Phospho-
PICK to NetworKIN. Based on Jaccard scores, HCK of Net-
worKIN overlaps best with HCK PhosphoPICK networks,
but the HCK PhosphoPICK network instead overlaps to a
greater extent with NetworKIN’s LCK, ABL2, and FYN net-
works. The same trend holds true for serine/threonine net-
works, where 14 kinases in NetworKIN’s overlap in the top
1% of rankings with PhosphoPICK, but only 10 Phospho-
PICK kinases overlap in the top 1% of JI values with Net-
worKIN kinases. Finally, we noted that the identity of the
best-ranking kinases is highly dependent on stringency – the
kinases that overlap change drastically across different strin-
gency networks (Fig. S2).

Since each algorithm’s stringency value has a different inter-
pretation and results in different impacts on the overall net-
works (e.g. the number of edges, edge degree distributions,
etc.), we wished to compare all combinations of stringency in
a pairwise manner to identify the maximum overlap of kinase
networks between predictive algorithms. Figure 5 shows the
results of this experiment, presented as the cumulative dis-
tribution function of the kinases by rank – meaning one can
measure the fraction of kinases whose direct match appears
in the top 10 or top 20 ranks for tyrosine and serine/threonine
networks, respectively. We included a line (in black) that
establishes a bound on random expectation for this type of
calculation. Additionally, we randomized the networks and
performed this experiment, which demonstrated that random
networks generally follow random expectation (Fig. S3).

The CDF ranks, akin to the findings of the top 1% of ki-
nases in the heatmaps, highlights that the asymmetry in map-
ping results is universal. Specifically, there are drastically
different behaviors in mapping from algorithm “A” to algo-
rithm “B” than from B to A. For example, not only are the
starting points (fraction that are ranked first) in the A:B than
B:A plots different, but which stringency selections achieve
optimum overlap varies between comparisons and between
kinase types. For example, low stringency NetworKIN pre-
dictions have the best overlap with PhosphoPICK for tyro-
sine kinases, but the opposite is true for the serine/threonine
comparison, where high stringency creates the best overlap.
Additionally, the shape of the curve, where positive devia-
tion from the random line indicates more similarity between
predictive algorithms, is not the same in the A to B than the
B to A comparisons. For example, although mapping from
NetworKIN into GPS deviates positively from the random
line, the opposite is not true – GPS rankings are not bet-
ter than expected by random chance. This means that GPS
overlap of kinases with the same kinase in NetworKIN is in-
distinguishable from the overlap they share with different ki-

nases in NetworKIN. GPS mappings in both kinase groups
and against both NetworKIN and PhosphoPICK perform the
worst in matching relevant kinases in other predictive algo-
rithms. Taken together, these results suggest that there is
generally low agreement between predictive algorithms, al-
though it is often better than random chance, suggesting at
least some agreement. Unfortunately, these results also sug-
gest that there is no single best stringency to recommend that
maximizes the comparisons between predictive algorithms.

Discussion

Lessons from comparisons of multiple predictive al-

gorithms. The analyses we performed on the three different
prediction datasets demonstrated vastly different behaviors
in terms of network size, properties, study bias, and over-
lap both within and between predictive algorithms. Sadly,
the deeply disparate results from the network overlap analy-
sis suggest that it is unhelpful to merge networks in a manner
that relies on agreement between predictive algorithms. In-
stead, users of these networks should likely consider specific
needs when determining which predictive algorithms to use,
how to consider stringency, and how to aggregate results be-
tween predictive algorithms. For example, if one wishes to
minimize overlap between kinase networks within an algo-
rithm, then for serine/threonine predictions you would select
high stringency networks for all predictive algorithms, but
for tyrosine networks you would select low stringency for
GPS, medium or high stringency for PhosphoPICK, and high
stringency for NetworKIN. If instead, one wished to maxi-
mize network coverage of phosphorylation sites, then GPS
at any stringency and low stringencies for NetworKIN and
PhosphoPICK would be ideal. Finally, if the goal is to max-
imize overlap between predictive algorithms, there is no sin-
gle stringency selection that is ideal, even in a single pair of
predictive algorithms, since mapping from one to the other
is not equivalent in the reverse mapping. In conclusion, we
propose that the general analysis framework developed here
will be useful to researchers when considering this, or other
predictive algorithms.
Another important conclusion from this analysis, is that it is
likely that the predominate behaviors within the predictive
algorithms are largely driven by the underlying assumptions
and training data at the basis of the predictive algorithms. For
example, NetworKIN’s basis for sequence recognition did
not come from annotated sets, but from degenerate libraries
and therefore, may be the reason that NetworKIN does not
exhibit the same extent of study bias within its network as
GPS and PhosphoPICK. Since the latter two predictive algo-
rithms relied on relatively small numbers of kinase-substrate
annotations coming from databases like Phospho.ELM, we
hypothesize that these predictive algorithms enrich for con-
fident scores on well-studied proteins from the training data,
which results in the very high degree of study bias observed.
Secondly, NetworKIN’s poor discrimination between highly
homologous kinases is likely due to its reliance on assump-
tions that homologous kinases result in similar specificity.
Unfortunately, whether highly homologous kinases are more
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likely to phosphorylate similar substrates, versus the sugges-
tion of GPS, where highly dissimilar kinases have high de-
gree of overlap, is difficult to explore given the small amount
of available, validated kinase-substrate relationships. Beyond
the onus of explicit kinase-substrate identification, recent ap-
proaches for assessing kinase specificity profiles have been
developed, which demonstrated that two highly homologous
proteins (SRC and LCK) have evolved different specificities
(24). Ideally the expansion of these approaches will eventu-
ally aid in the determination of the relevance of homology-
based specificity assumptions in kinase models.

Value of cohesion and growth. KinPred (version 1.0)
is the first bioinformatics resource that provides a unified
kinase-substrate prediction network for the human phospho-
proteome from multiple predictive algorithms. Here, we re-
trieved unified results for all kinase-specific predictive algo-
rithms that were accessible at the time of this research. We
believe this is a useful resource for any researcher wishing to
explore specific kinase-substrate hypotheses or for use in al-
gorithms that rely on entire networks, such as KSEA (19). In
addition to providing current, updated results of these three
predictive algorithms for the whole proteome, we have pro-
vided code and a created a general framework for: 1) unify-
ing new approaches in kinase-substrate predictions 2) updat-
ing resources as knowledge of the human phosphoproteome
grows, and 3) updating resources for when the underlying
protein databases are updated in a way that impacts spe-
cific kinase-substrate predictions. By using a framework for
updating these predictions, it helps to ensure the usability,
accessibility, and accurateness of these resources for future
users.
Unfortunately, our broad exploration of kinase-substrate pre-
diction resources highlighted challenges users face in access-
ing or understanding the predictions. Of the five predictive
algorithms for site-specific kinase-substrate prediction, three
were unavailable or unaccessible for creating updated results.
For available resources, if we wished to guarantee coverage
of the human phosphoproteome, it required running the full
proteome against the website, or in downloadable code. This
process took several weeks for the largest predictive algo-
rithms. Hence, there are significant barriers to the usability
of these resources and we would like to emphasize that for
long term sustainability/usability of new algorithms in the
field, publication should include the entirety of the predic-
tion against a reference proteome (i.e. all kinase-substrate
edges tested) and a subset of those predictions for the current
phosphoproteome, provided with the reference proteome and
phosphoproteome used. This way, should algorithm access
no longer be available, users could more easily access and
update from the larger set of available predictions provided
at the time of publication. Ideally, if prediction results were
provided in the unified format we have developed, results are
also easily comparable between algorithms. Finally, an ad-
vantage to providing all edge weights, instead of filtering on
a specific stringency, is that, as we demonstrated, stringency
selection for considering edges as significant depends on the
application, so publishing only post-filtered results presents a

significant barrier for the use of these resources.

Materials and Methods

Data and Code Availability. All retrieval, processing, and
analysis code was written in Python3/Jupyter and are avail-
able in our Github repository at: https://github.com/
NaegleLab/KinPred. All datasets, midpoints, reference
proteome and phosphoproteomes, and mapping ontologies,
extracted code, for KinPred v1.0 are available on Figshare
at: https://figshare.com/projects/KinPred_
v1_0/86885.

Data Preparation.

Retrieving and processing a unified prediction set. We
used a non-redundant canonical human proteome refer-
ence file from UniProt (Feb. 26, 2020, stored with
project data at: https://doi.org/10.6084/m9.
figshare.12749342.v1). The downloaded FASTA file
was programmatically split into 21 smaller files and then sub-
mitted to the prediction services, using the appropriate pro-
grammatic or web-based interface, as outlined below. We
removed prediction types that did not refer to protein kinase-
substrate interactions. For unification between predictive al-
gorithms, the raw prediction data was pre-processed to a stan-
dard format, and a controlled vocabulary was used (labeled
Whole proteome-level predictions in the Figshare project).
The substrates and kinases were mapped to the same ontol-
ogy, compliant with the UniProt reference. The standard-
ized format includes the following information: the unique
identifier for substrates, which is the combination of the pro-
tein UniProt accession and site position within the protein se-
quence; the protein accessions and gene names annotated in
UniProt; the site, which is the combination of the amino acid
residue and the site position within the protein sequence; the
peptide sequence around the predicted site; and the common
kinase name used across all predictions. Each algorithm has
a pre-processed prediction data file with a standardized for-
mat. We created a global kinase ontology reference to map
between algorithm-specific kinase names and a common ki-
nase name (available at: https://doi.org/10.6084/
m9.figshare.12749333.v1). The global kinase map
contains the UniProt accession, a common kinase name, the
description of the kinases, the kinase type, and the reference
kinase names in each algorithm. Additionally, this file con-
tains a preferred name, so that users may define preferred
kinase names in downstream analyses.
NetworKIN predictions were run from a local in-
stallation of NetworKIN3.0, software available
at https://networkin.info/download/
NetworKIN3.0_release.zip. Predictions were
set to include all kinases with no threshold, in order to
retrieve all possible edges, and Human was the selected
species, if available.
GPS The GPS5.0 application was downloaded (GPS5.0
Unix v. 20190721 from http://gps.biocuckoo.cn/
download.php), installed locally, and predictions were
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initially collected in January 2020, then updated to Feb. 26,
2020 reference proteome.
PhosphoPICK predictions were retrieved in Novem-
ber 2019 by submitting the split FASTA files to the
web interface at http://bioinf.scmb.uq.edu.au/
phosphopick/submit. Initial predictions were per-
formed on a reference proteome from Oct.16, 2019, and then
updated to the Feb. 26, 2020 reference proteome.

Filtering predictions for known phosphorylation sites.

We retained kinase-substrate predictions for known phospho-
rylation sites by using the reference phosphoproteome from
ProteomeScout (downloaded Feb. 2020, reference available
in project data with the human UniProt reference on the
Figshare project in the Raw directory). Phosphosites were
retrieved from the ProteomeScout database by protein acces-
sions using ProteomeScout API (4, 36) for every UniProt ac-
cession in the reference proteome. The phosphorylation sites
were matched by the site position. If the site position did not
match between the ProteomeScout UniProt record and the
reference record, we matched the substrate sites by using the
algorithm returned 11-mer or 15-mer (GPS, PhosphoPICK)
peptide – which, for some highly repetitive sequences in the
human proteome, may match multiple times in a single pro-
tein record. In these cases, all matches were retained in the
final data format. Kinase-substrate predictions were filtered
for coherence – i.e. serine/threonine sites were removed if
the kinase is a known tyrosine kinase and vice versa. Tyro-
sine/serine/threonine residues were kept for dual specificity
kinases only. The final datasets for each algorithm are avail-
able in the Figshare project under the “Final Data” directory.
It is important to note that no stringency filters have been ap-
plied to this data, so that researchers have full control over
edge weights of interest. However, all analyses in this pa-
per applied at a minimum the lowest stringency as defined in
Table 1.

Updating prediction data. We wrote methods to update the
human phosphoproteome predictions for future releases of
ProteomeScout datasets. This method checks for changes
between the human reference used to generate KinPred
v1.0 and a new human reference dataset. Any sequences
that have changed or been added will be provided, such
that the retrieval of new predictions can be performed and
added/replaced in the datasets. Next, phosphosites in the new
reference phosphoproteome, mapped to the common sub-
strate ontology, are used to filter the whole proteome-level
predictions for each resource.

Data Analysis Methods.

Thresholds for Final Prediction Data Comparison across
predictive algorithms. Each algorithm has a different inter-
pretation of what an edge weight signifies and therefore, there
is no single value that can be applied to threshold all predic-
tive algorithms. The thresholds used for filtering each algo-
rithm dataset are summarized in Table 1.

NetworKIN the unified likelihood was used as the score of
the predictions. The unified likelihood of a certain NetPhor-
est probability and network proximity score of STRING were
calculated by the joint probability rule (26). Horn et al. in-
dicated that it is likely to be true for the unified likelihood
scores to be higher than the theoretically neutral value of 1
(26). Therefore, for the purpose of the algorithm compar-
isons for NetworKIN prediction data, the low, medium, and
high thresholds were adopted with the unified likelihood of
0.3, 0.5, and 1, respectively.
GPS5.0, the default low, medium, and high thresholds for
serine/threonine kinases were adopted with FPRs of 10%,
6%, and 2%, respectively; and 15%, 9%, and 4%, respec-
tively, for tyrosine kinases (27). These default thresholds
were kept in this study. To obtain the actual cutoff scores
for the predicted kinases, a random subset of the human pro-
teome sequences was submitted to GPS5.0 with threshold
setting of low, medium, or high. The actual cutoff scores
were extracted from the ’Cutoff’ column of the prediction re-
sults of GPS5.0 application. These values are provided in the
Figshare project under the Raw/GPS directory.
PhosphoPICK PhosphoPICK is the only resource that in-
cludes a fourth category of stringency, with default thresholds
of 0.25, 0.1, 0.05, and 0.005 as the low, medium, high, and
very high, respectively (15). In order to identify a relevant set
of cutoffs that produce three categories for direct comparison
to GPS and NetworKIN, and since both GPS and Phospho-
PICK stringencies are based on a false positive rate, we used
p-values of 0.1, 0.06, and 0.02, for low, medium, and high
stringencies, respectively.

Predicted Kinase Networks Similarity Comparisons. The
predicted kinase network similarity comparisons were mea-
sured by the Jaccard’s Index (35). The Jaccard’s index is the
ratio of the intersection to the union of the two sets. The val-
ues range from 0 for no similarity to 1 for the complete over-
lap of the two compared sets. Based on "Tables of significant
values of Jaccard’s index of similarity" (35), the lower and
upper critical values of Jaccard’s index with the probability
levels 0.05, 0.01 and 0.001 were calculated for the N ele-
ments in either of the two compared OTUs (Operational Tax-
onomic Units). The upper critical values of Jaccard’s index of
0.49 with N=100, which is the upper limit for the calculated
table of the significant values of Jaccard’s index, correspond
with the probability level of 0.001. Hence, we used a thresh-
old of 0.49 to identify similarities between kinases that are
significant.
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Fig. S1. Within Algorithm Similarities Within-algorithm kinase similarity measured by Jaccard index for all predictive algorithms at all stringencies (low,
medium, and high from left to right). The symmetric matrix was sorted hierarchically. The within-algorithm relationships that exceed significant Jaccard
index (0.49) values are shown in network diagrams, below their corresponding heatmap. The figures are separated by kinase type (tyrosine kinases
first and serine/threonine kinases second. For dense maps, where it is not possible to achieve label separation, the names of kinases can be found as
labels in the heatmap, where heatmap sorting correlates with proximity in the network graphs.

Fig. S2. Between Algorithm Similarities Between-algorithm kinase similarity measured by Jaccard index for all combinations of predictive algorithms
at all stringencies (low, medium, and high from left to right). The matrices are sorted by the same kinase order on both the Y- and X-axes. If the ranking
of kinase in algorithm A is in the top 1% of similarities in algorithm B comparisons, the font is in red for tyrosine kinases, or indicated with a label in
serine/threonine kinases.

Fig. S3. Ranking Performance for Randomized Datasets The edges of predictive algorithms were randomized and the process of measuring Jaccard
index overlap between predictive algorithms and measuring the cumulative distribution function of rankings, as done in Figure 5 was repeated on random
datasets. The dashed-black line indicates the expectation of random performance line.

Table S1. Overview of predictive algorithms. The name, Pubmed link, and details about the availability and details of 49 predictive algorithms of
phosphorylation and kinase-substrate relationships.

Table S2. Ranks of kinases in between-algorithm comparisons This Excel book contains an overview of the performance of each pairwise algorithm
overlap, the optimum stringency selected, and the ranks of kinases mapping from one algorithm to another at those optimum stringencies.
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