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Abstract

We derive how directional and disruptive selection operate on scalar traits in a heterogeneous group-
structured population for a general class of models. In particular, we assume that each group in the
population can be in one of a finite number of states, where states can affect group size and/or other
environmental variables, at a given time. Using up to second-order perturbation expansions of the
invasion fitness of a mutant allele, we derive expressions for the directional and disruptive selection
coeflicients, which are sufficient to classify the singular strategies of adaptive dynamics. These expressions
include first- and second-order perturbations of individual fitness (expected number of settled offspring
produced by an individual, possibly including self through survival); the first-order perturbation of the
stationary distribution of mutants (derived here explicitly for the first time); the first-order perturbation
of pairwise relatedness; and reproductive values, pairwise and three-way relatedness, and stationary
distribution of mutants, each evaluated under neutrality. We introduce the concept of individual k-fitness
(defined as the expected number of settled offspring of an individual for which k£ — 1 randomly chosen
neighbors are lineage members) and show its usefulness for calculating relatedness and its perturbation.
We then demonstrate that the directional and disruptive selection coefficients can be expressed in terms
individual k-fitnesses with k& = 1,2,3 only. This representation has two important benefits. First, it
allows for a significant reduction in the dimensions of the system of equations describing the mutant

dynamics that needs to be solved to evaluate explicitly the two selection coefficients. Second, it leads
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to a biologically meaningful interpretation of their components. As an application of our methodology,
we analyze directional and disruptive selection in a lottery model with either hard or soft selection and
show that many previous results about selection in group-structured populations can be reproduced as

special cases of our model.

1 Introduction

Many natural populations are both group-structured — with the number of individuals interacting at the
local scale being finite — and heterogeneous — with different groups being subject to different demographic
and environmental conditions (e.g., varying group size and temperature, respectively). Understanding
how evolution, and in particular natural selection, moulds phenotypic traits in such systems is compli-
cated as both local heterogeneity and demographic stochasticity need to be taken into account. In order
to predict the outcome of evolution in heterogeneous populations, evolutionists are generally left with
the necessity to approximate the evolutionary dynamics, as a full understanding of this process is yet
out of reach.

A standard approximation to predict evolutionary outcomes is to assume that traits are quantitative,
that the details of inheritance do not matter (“phenotypic gambit”, Grafen, 1991), and that mutations
have weak (small) phenotypic effects (e.g. Grafen, 1985; Taylor, 1989; Parker and Maynard Smith, 1990;
Rousset, 2004). Under these assumptions, directional trait evolution can be quantified by a phenotypic
selection gradient that captures first-order effects of selection. Thus, phenotypic change occurs in an up-
hill direction on the fitness landscape. This directional selection either causes the trait value to change
endlessly (for instance, due to macro environmental changes or cycles in the evolutionary dynamics), or
the trait value eventually approaches a local equilibrium point, a so-called singular strategy, where di-
rectional selection vanishes. Such a singular strategy may be locally uninvadable (“evolutionary stable”)
and thus a local end-point of the evolutionary dynamics. However, when the fitness landscape is dynamic
due to selection being frequency-dependent, then it is also possible that, as the population evolves uphill
on the fitness landscape, this landscape changes such that the population eventually finds itself at a
singular strategy that is located in a fitness valley. In this case, directional selection turns into disruptive
selection, which means that a singular strategy that is an attractor of the evolutionary dynamics (and
thus convergence stable) is invadable by nearby mutants and thus an evolutionary branching point (Metz
et al., 1996; Geritz et al., 1998). Further evolutionary dynamics can then result in genetic polymorphism
in the population, thus possibly favoring the maintenance of adaptive diversity in the long term (see
RuefHler et al., 2006, for a review). Disruptive selection at a singular point is quantified by the disruptive
selection coefficient (called quadratic selection gradient in the older literature: Lande and Arnold, 1983;
Phillips and Arnold, 1989), which involves second-order effects of selection.

A central question concerns the nature and interpretation of the components of the selection gradient
and the disruptive selection coefficient on a quantitative trait in heterogeneous populations. For the
selection gradient, this question has been studied for a long time and a general answer has been given
under the assumption that individuals can be in a finite number of states (summarized in Rousset, 2004).

Then, regardless of the complexity of the spatial, demographic, environmental, or physiological states
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individuals can be in or experience (in the kin-selection literature commonly referred to as class-structure,
e.g. Taylor, 1990; Frank, 1998; Rousset, 2004), the selection gradient on a quantitative trait depends on
three key components (Taylor, 1990; Frank, 1998; Rousset, 2004). The first component are individual
fitness differentials, which capture the marginal gains and losses of producing offspring in particular
states to parents in particular states. The second component are (neutral) reproductive values weighting
these fitness differentials. These capture the fact that offspring settling in different states contribute
differently to the future gene pool. The third component are (neutral) relatedness coefficients. These
also weight the fitness differentials, and capture the fact that some pairs of individuals are more likely to
carry the same phenotype (inherited from a common ancestor) than randomly sampled individuals. This
results in correlations between the trait values of interacting individuals. Such correlations matter for
selection (“kin selection”, e.g. Michod, 1982) and occur in populations subject to limited genetic mixing
and small local interaction groups. At the risk of oversimplifying, reproductive values can be thought
of as capturing the effect of population heterogeneity on directional selection, while relatedness captures
the effect of demographic stochasticity under limited genetic mixing.

The situation is different with respect to the coefficient of disruptive selection, i.e., the second-order
effects of selection. The components of the disruptive selection coefficient have not been worked out in
general and are studied only under the assumptions of well-mixed or spatially structured populations,
but with otherwise homogeneous individuals. For the spatially structured case the effects of selection on
relatedness has been shown to matter, as selection changes the number of individuals expressing similar
trait values in a certain group (Ajar, 2003; Wakano and Lehmann, 2014; Mullon et al., 2016), resulting in
a reduced strength of disruptive selection under limited dispersal. For the general case that individuals
can be in different states one expects intuitively that disruptive selection also depends on how selection
affects the distribution of individuals over the different states. But this has not been analyzed so far
even though it is captured implicitly when second-order derivatives of invasion fitness are computed as
has been done in several previous works investigating evolutionary branching in some specific models of
class-structured populations (e.g. Massol et al., 2011; Rueffler et al., 2013; Massol and Débarre, 2015;
Kisdi, 2016; Parvinen et al., 2018, 2020).

In the present paper, we develop an evolutionary model for a heterogeneous group-structured pop-
ulation that covers a large class of biological scenarios. For this model, we show that the disruptive
selection coefficient can be expressed in terms of individual fitness differentials weighted by the neutral
quantities appearing in the selection gradient. This both significantly facilitates concrete calculations
under complex scenarios and allows for a biological interpretation of selection. Our results contain several
previous models as special cases.

The remainder of this paper is organized as follows. (1) We start by describing a demographic model
for a heterogeneous group-structured population and present some background material underlying the
characterization of uninvadable (“evolutionary stable”) strategies by way of invasion fitness for this
model. We here also introduce a novel individual fitness concept — individual k-fitness — defined as the
expected number of settled offspring of an individual for which k¥ — 1 randomly chosen neighbors are

relatives (i.e., members of the same lineage). This fitness concept plays a central role in our analysis. (2)
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Assuming quantitative scalar traits, we present first- and second-order perturbations of invasion fitness
(i.e., the selection gradient and disruptive selection coefficient, respectively), discuss their components
and the interpretations thereof, and finally express all quantities in terms of individual k-fitness with
k=1,2,3. (3) We present a generic lottery model under spatial heterogeneity for both soft and hard
selection regimes and show that the selection gradient and the disruptive selection coefficient can be
computed explicitly under any scenario falling into this class of models. We then apply these results to a
concrete local adaptation scenario where we derive conditions for evolutionary stability and convergence
stability of singular trait values, and show their dependence on migration rate and group size. In doing so,
we recover and extend previous results from the literature and show how our model connects seemingly

different approaches.

2 Model
2.1 Biological assumptions

We consider a population of haploid individuals that is subdivided into infinitely many groups that are
connected to each other by dispersal (i.e., the infinite island model). Dispersal between groups may occur
by individuals alone or by groups of individuals as in propagule dispersal, but is always random with
respect to the destination group . We consider a discrete-time reproductive process and thus discrete
census steps. At each census, each group is in a state s € 8§ with 8 = {s1, s2, ..., sx} where N denotes
the number of possible states. The state s determines the number of individuals in a group and/or any
environmental factor determining the survival, reproduction, and dispersal of all individuals within a
group. For the sake of simplicity, we will consider only a finite number of discrete states in this paper.
The state s does not need to be a fixed property of a group but can change in time and be affected
by individual trait values and thus be determined endogenously. However, we assume that such state
changes are governed by a time-homogeneous Markov chain, meaning that there are no temporal trends
in dynamics of the group states. We denote by ngs the finite number of adult individuals in a group
in state s, which can thus change over time if the group state changes. We assume that group size is
bounded as a result of density dependence acting at the local scale (hence there is an upper bound on

group size). The described set-up includes a variety of classical models.

1. Purely spatially structured populations: The state s is identical for all groups (N = 1) and so there
is only one group size. This is essentially the island model as developed by Wright (1943), which
has been a long-term work horse for understanding the effect of spatial structure on evolutionary

dynamics (e.g. Eshel, 1972; Bulmer, 1986; Rousset, 2004).

2. Stochastic population dynamics at the group level: The state s determines the number of individ-
uals in a group, which can potentially vary in time (e.g. Metz and Gyllenberg, 2001; Rousset and
Ronce, 2004). This case covers the situation in which each group is embedded in a community
consisting of several interacting species and where the state s determines the number of individuals

for each of the other species (e.g. Chesson, 1981).
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3. Environmental heterogeneity: The state s determines an aspect of the within-group environment,
which affects the survival and/or reproduction of its group members. An example is heterogeneity
in patch quality or size (e.g. Wild et al., 2009; Massol et al., 2011; Rodrigues and Gardner, 2012).
We note that in the limit of infinite group size this coincides with models of temporal and spatial

heterogeneity as reviewed in Svardal et al. (2015).

4. Group splitting: This is a special case in which migration between groups is in fact absent but
groups can be connected to each other if they originate through splitting of a parental group. The
state s again determines the number of adults in a group. This model is inspired by compart-
mentalized replication in prebiotic evolution (stochastic corrector model, Szathmary and Demeter,

1987; Grey et al., 1995).

5. Purely physiologically structured population: In the special case with only a single individual in a
group, the state s can be taken to represent the physiological state of an individual such as age or
size or combinations thereof (e.g. Ronce and Promislow, 2010). In the special case of complete and
independent offspring dispersal (i.e., no group dispersal) but arbitrary group size, the state s can
be taken to represent the combination of individual physiological states of all members in a group

so that the model covers within group heterogeneity.

Since we are mainly interested in natural selection driven by recurrent invasions by possibly different
mutants, we can focus on the initial invasion of a mutant allele into a monomorphic resident population.
Hence, we assume that at any time at most two alleles segregate in the population, a mutant allele
whose carriers express the trait value x and a resident allele whose carriers express the trait value y. We
furthermore assume that traits are one-dimensional and real-valued (z,y € R). Suppose that initially
the population is monomorphic (i.e., fixed) for the resident allele y and a single individual mutates to

trait value x. How do we ascertain the extinction or spread of the mutant?

2.2 Multitype branching process and invasion fitness

Since any mutant is initially rare, we can focus on the initial invasion of the mutant into the total popula-
tion and approximate its dynamics as a discrete-time multitype branching process (Harris, 1963; Karlin
and Taylor, 1975; Wild, 2011). In doing so, we largely follow the model construction and notation used
in Lehmann et al. (2016) (see section A in the Supplementary Material for a mathematical description
of the stochastic process underlying our model). In particular, in order to ascertain uninvadability of
mutants into a population of residents it is sufficient to focus on the transition matrix A = {a(s’,4’|s,)}
whose entry in position (s,4;s,4), denoted by a(s’,i']s, i), is the expected number of groups in state
s’ with ¢/ > 1 mutant individuals that descend from a group in state s with 4 > 1 mutant individuals
over one time step in a population that is otherwise monomorphic for y. In the following, we refer
to a group in state s with ¢ mutants and ns — ¢ residents as an (s,)-group for short. The transition
matrix A is a square matrix that is assumed to be primitive (we note that primitivity will obtain under
all models listed in section 2.1 but may be induced for different reasons). Thus, a positive integer ¢

(possibly depending on = and y) exists such that every entry of A¢ (¢th power of A) is positive. The
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entries a(s’,i']s, 1) of the matrix A generally depend on both x and y, but for ease of exposition we do
not write these arguments explicitly unless necessary. The same convention applies to all other variables
that can in principle depend on x and y.

From standard results on multitype branching processes (Harris, 1963; Karlin and Taylor, 1975) it
follows that a mutant x arising as a single copy in an arbitrary group of the population, i.e., in any
(s, 1)-group, goes extinct with probability one if and only if the largest eigenvalue of A, denoted by p, is
less than or equal to one,

p <1, (1)

where p satisfies

Au = pu (2)

and where wu is the leading right eigenvector of A. We refer to p as the invasion fitness of the mutant.
If eq.(1) holds, then we say that y is uninvadable by x. To better understand what determines invasion
fitness, we introduce the concept of the mutant lineage, which we define as the collection of descendants
of the initial mutant: its direct descendants (possibly including self through survival), the descendants of
its immediate descendants, and so on. Invasion fitness then gives the expected number of mutant copies
produced over one time step by a randomly sampled mutant from its lineage in an otherwise monomorphic
resident population that has reached demographic stationarity (Mullon et al., 2016; Lehmann et al.,
2016). The mutant stationary distribution is given by the vector w with entries u(s,i) describing,
after normalization, the asymptotic probability that a randomly sampled group containing at least one
mutant is in state s and contains ¢ > 1 mutants. In other words, invasion fitness is the expected number
of mutant copies produced by a lineage member randomly sampled from the distribution u (see eq.(C8)

in the Supplementary Material and the explanation thereafter).

2.3 Statistical description of the mutant lineage

We use the matrix A = {a(s,7’|s,4)} and its leading right eigenvector u to derive several quantities
allowing us to obtain an explicit representation of invasion fitness, which will be the core of our sensitivity

analysis.
2.3.1 Asymptotic probabilities and relatedness of k-individuals

We start by noting that the asymptotic probability for a mutant to find itself in an (s,%)-group is given
by
. iu(s, i)
q(s,i) = Wi .
e Xty (s’ )

From this, we can compute two state probabilities. First, the asymptotic probability that a randomly

3)

sampled mutant finds itself in a group in state s is given by

ng

a(s) =y als,i). (4)

=1
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Second, the asymptotic probability that, conditional on being sampled in a group in state s, a randomly

sampled mutant finds itself in a group with ¢ mutants is given by

()
alile) = L2 (5)
Let us further define
1 (k=1)
k=1 _
onlsi = [[ =L @<k<i (6)
g=1"
0 (t+1<k<ny),

which, for & > 1, can be interpreted as the probability that, given a mutant is sampled from an (s, %)-
group, k — 1 randomly sampled group neighbors without replacement are all mutants. This allows us to

define the relatedness between k individuals in a group in state s as
ril(s) =Y di(s,4)qlils)- (7)
i=1

This is the probability that k—1 randomly sampled neighbors without replacement of a randomly sampled
mutant in state s are also mutants (i.e., they all descend from the lineage founder). For example,

ng

rals) = Y (il (5

is the asymptotic probability of sampling a mutant among the neighbors of a random mutant individual
from a group in state s and thus provides a measure of pairwise relatedness among group members.
Likewise,

rs(s) =

n

N (i—-1)@E-2) .

S ———valils) 9)
P (ns — 1)(ns — 2)

is the asymptotic probability that, conditional on being sampled in a group in state s, two random

neighbors of a random mutant individual are also mutants.
2.3.2 Individual fitness and individual k-fitness

Consider a mutant in an (s,4)-group and define

1 ngs
w(s']s, i) = = Z i'a(s',i']s,1). (10)
i

i'=1
The sum on the right-hand side of eq.(10) counts the expected total number of mutants in groups in state
s’ produced by an (s,i)-group, and the share from a single mutant in this (s,#)-group is calculated by
dividing this lineage productivity by i. Hence, w(s’|s, ) is the expected number of offspring of a mutant
individual (possibly including self through survival), which settle in a group in state s’, given that the
mutant resided in a group in state (s,4) in the previous time period. Thus w(s’|s,?) is an individual

fitness!.

11t is important to note that the conditioning in w(s’|s, 1) is only on the state of the parental generation (as emphasized
by the notation) and that w(s’|s,i) depends on group transition probabilities in models in which the state s of a group
can change in each generation. See egs.(E.1-E.2) in Lehmann et al. (2016) as well as section G.2 in the Supplementary
Material for more details.
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generations

Figure 1: A schematic example for the calculation of individual k-fitness. Symbols M and R represent
mutants and resident individuals, respectively. In this example, an (s,2)-group “produced” one (s',3)-
group and one (s, 1)-group. Individual 1-fitness of each mutant in the parental generation is the total
number of mutants in the following generation (3 + 1 = 4) divided by the number of mutants in the
(s,2)-group (= 2). Thus wy(s’|s,2) = 4/2 = 2. For individual 2-fitness we calculate the weighted number
of mutants in the following generation, where the weights are the probabilities that a random neighbor of
a mutant is also a mutant, and then divide it by the number of mutants in the (s, 2)-group (= 2). These
probabilities are 2/4 for the (s’,3)-group and 0/4 for the (s’,1)-group. Thus, the weighted number of
mutants is 3-(2/4)+1-(0/4) = 3/2, and the individual 2-fitness is wa(s']s, 2) = (3/2)/2 = 3/4. Similarly,
ws(s'ls,2) ={3-(1/6) +1-(0/6)}/2 =1/4 and wy(s'|s,2) = ws(s|s,2) = 0.

We now extend the concept of individual fitness to consider a collection of offspring descending from

a mutant individual. More formally, for any integer k (1 < k < ny ) we let

1 ’ILS/
w(s']s, i) = - > owl(s,i)ial(s',i|s, i) (11)

ir=1
be the expected number of offspring produced by a single mutant individual in an (s, %)-group (possibly
including self through survival) that settle in a group in state s’ and have k — 1 randomly sampled group
neighbors (without replacement) that are also mutants. We refer to wy(s’|s, i) as “individual k-fitness”
regardless of the states s’ and (s, ) (see Figure 1 for an illustrative example).

Note that individual 1-fitness equals w(s'|s,i) as defined in eq.(10). Hence, individual k-fitness
wi(s']s, 1) is a generalization of this fitness concept. The difference between eq.(10) and eq.(11) is the
term ¢y (s, 1), which shows that k-fitness counts an individual’s number of offspring (possibly including
self through survival) that experience a certain identity-by-descent genetic state in their group. Under
our assumption of infinitely many groups, more than one dispersing offspring can settle in the same group

only with propagule dispersal. Thus, without propagule dispersal dispersing offspring do not contribute
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to k-fitness for k > 1.
2.3.3 Notation for perturbation analysis

Since our goal is to perform a sensitivity analysis of p to evaluate the selection gradient and disruptive
selection coefficient, we assume that the mutant and resident trait values are close to each other and
write

r=y+06 (12)

with ¢ sufficiently small (i.e., |6| < 1). Thus, p can be Taylor-expanded with respect to 4.
For invasion fitness p, or more generally, for any smooth function F that depends on ¢, we will use

the following notation throughout this paper. The Taylor-expansion of F' with respect to § is written as

F()=FO© 4 6FM 4 52F® 4 ... (13a)
where F®) is given by
1 d“F(6)
FO = — . 1
0 dét |, (130)

2.3.4 Properties of the monomorphic resident population

The zeroth-order coefficient in eq.(13) corresponds to the situation where the function F' is evaluated

”

under the supposition that individuals labelled as “mutant” and “resident” are the same. In that case,
individuals in groups with the same state are assumed to be exchangeable in the sense that they have
the same reproductive characteristics (the same distribution of fitnesses, i.e., the same mean fitness, the
same variance in fitness, and so on). This results in a neutral evolutionary process, i.e., a monomorphic
population.

We now characterize the mutant lineage dynamics under a neutral process as this plays a crucial role

in our analysis. From eq.(10), the individual 1-fitness in an (s, )-group, written under neutrality, equals

Ngt

1
Wi (s']s,8) = = 37 a5 1]s,), (14)

/=1

where each a(®)(s',4'|s,i) is an entry of the matrix A under neutrality. By our exchangeability assump-
tion, eq.(14) does not depend on ¢, the number of the individuals labeled as “mutants” in this group
(see section A.2 (iv) in the Supplementary Material). If this would not be the case, mutants in a group
(s,i1) and in a group (s,i2) with 41 # i would have different reproductive outputs and mutants and
residents would not be exchangeable. Therefore, from now on we write w§0)(s’ |s,7) simply as w§0)(s’\s).
We collect these neutral fitnesses in the N x N matrix W () = {wgo)(s’|s)}. Its entry (s, s) gives the
expected number of descendants (possibly including self through survival) settling in groups of state s’
that descend from an individual residing in an s-group (mutant or resident since they are phenotypically
indistinguishable).

The assumptions that each group is density regulated (see Section 2.1) and that the resident popula-

tion has reached stationarity guarantee that the largest eigenvalue of W (9 equals 1 (see section A.2 (v)

in the Supplementary Material). This is the unique largest eigenvalue because W () is primitive due to
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the assumption that A is primitive. Thus, there is no demographic change in populations in which all
individuals carry the same trait y and that have reached stationarity.

The fact that under neutrality wgo)(s’\s,i) is independent of i and W(® has the unique largest
eigenvalue of 1 imposes constraints on the matrix A© = {a(9) (s’ i’|s,i)} that describes the growth
of a mutant lineage under neutrality. Let us denote the left eigenvector of W(® corresponding to
the eigenvalue 1 by v(® = {v(9)(s)}, which is a strictly positive row vector of length N. Each entry
v(o)(s) gives the reproductive value of an individual in state s, which is the asymptotic contribution
of that individual to the gene pool. Note that U(O)(S) does not depend on § because it is defined
from W which is independent of 5. We now construct a row vector #(*) = {5 (s,i)} of length
n =3 csns by setting 9V (s,i) = v(O(s)i. It has been shown that 9¥) is a positive left eigenvector
of the matrix A©®) = {a(9(s',i|s,i)} corresponding to the eigenvalue 1, and therefore — since () is
strictly positive — the Perron-Frobenius theorem implies that the largest eigenvalue of A©® is p(® =1
(see Appendix A in Lehmann et al., 2016, for a proof and more details). We also show that the column
vector {q(®)(s)} of length N, denoting the stable asymptotic distribution given by eq.(4) under neutrality,
is the right eigenvector of the matrix W(® corresponding to the eigenvalue of 1 (see section C.2.1 in the
Supplementary Material). There is freedom of choice for how to normalize the left eigenvector v(© and
here we employ the convention that 3 s v(?)(s)¢(®)(s) = 1. This means that the reproductive value of
a randomly sampled mutant individual from its lineage is unity.

To summarize, under neutrality, the stable asymptotic distribution of mutants and the reproductive

value of individuals satisfy

V() =Y i (5]5)a 0 (s) (q© = wq®), (152)
sES

vO(s) = 3 o (5w (s]s) (0@ = O W), (15b)
s'e8

1= v(s)g(s) (1=0vVg), (15c)
sES

where v(?) is a row-vector with entries v(9) (s) and ¢ is a column-vector with entries ¢(9)(s).

2.4 Invasion fitness as reproductive-value-weighted fitness

Equation (2) for the leading eigenvalue and eigenvector of the matrix A can be left-multiplied on both
sides by any non-zero vector of weights. This allows to express p in terms of this vector of weights and
A and w. If one chooses for the vector of weights the vector of neutral reproductive values ©(?) discussed

above, then invasion fitness can be expressed as

p= % > 2 Z VO (s Y (s']s,)a(ils)a(s), (162)

s'€8 s€8 i=1

where

V=" v(s)q(s) (16b)

sSES
(see Lehmann et al., 2016, Appendix C, eq.(C.5), for the proof). This representation of p is useful to

do concrete calculations. The intuition behind it is as follows. The inner sum, taken over i, represents
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the reproductive-value-weighted average number of offspring in states s’ given a parental mutant resides
in an s-group, where the average is taken over all possible mutant numbers experienced by the parental
mutant in an s-group. The middle sum takes the average over all states s in which mutants can reside in
the parental generation, and the outer sum takes the average over all possible states s’ in which mutant
offspring can reside (possibly including parents through survival).

Hence, the numerator in eq.(16a) is the reproductive-value-weighted average individual 1-fitness of
a mutant individual randomly sampled from the mutant lineage, while the denominator V' can be in-
terpreted (in force of eq.(15b)) as the reproductive-value-weighted average of the neutral 1-fitness of an
individual sampled from the asymptotic state distribution of the mutant lineage. Hence, p is the ratio of
the reproductive-value-weighted average fitness of a mutant individual and that of a mutant individual
under neutrality where both individuals are sampled from the same distribution. Note that in eq.(16a)
the quantities wy (s'|s, ), g(s) and ¢(i|s) depend on § while v(®)(s") does not.

Our goal is to compute from eq.(16a) the selection gradient and disruptive selection coefficients,
2

P
— . (17)
952 [5_0

>
QO

p
p(l)(y) =255 and  p? (y) =
6=0

DN =

These coefficients are all we need to classify singular strategies (Metz et al., 1996; Geritz et al., 1998).

Indeed, a singular strategy y* satisfies
pM(y*) =0. (18)

This strategy is locally convergence stable (i.e., a local attractor point of the evolutionary dynamics)

when

_ ()

c(y*) m < 0. (19)

y=y*

Note that convergence stability hinges on mutants with small phenotypic deviation § invading and substi-
tuting residents (“invasion implies substitution”), which holds true when |6| <« 1 under the demographic
assumptions of our model (Rousset, 2004, pp. 196 and 206). Furthermore, the singular point is locally
uninvadable if

PP (y*) <0. (20)

A singular strategy can then be classified by determining the combination of signs of the disruptive
selection coefficient p(®)(y*) and the convergence stability coefficient c(y*) at y* (Metz et al., 1996;
Geritz et al., 1998).

3 Sensitivity analysis

3.1 Eigenvalue perturbations

Using eq.(16a), as well as the normalization of reproductive values given in eq.(15¢), we show in section

B in the Supplementary Material that the first-order perturbation of p with respect to ¢ is given by

p=3"% Z VO () wi (s']s,)g® (1] 5)g ) (s). (21)

s’'e8 se8 i=1
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Thus, p) is simply a weighted perturbation of individual 1-fitnesses w;. For the second-order pertur-

bation of p with respect to 8, given that p(t) = 0, we find that
p?) = pW) 4 p2a) 4 ,(2r) (22a)

where

P =3 ZZ“(O) (']s,1)q"* (il s)g'" (5) (22b)

s'€8 s€8 i=1
ng

pEV =33 Oy (515, 1)g (i)™ (s) (22¢)
s'€8 s€8 i=1

p(2) = Z sz(o) (1) s'|s,9)gM (i]s)q® (s) (224)
s'€8 s€8 i=1

(section B in the Supplementary Material). The first term, labelled p%) | comes from the second-
order perturbation of individual 1-fitnesses. The second term, labelled p?%, comes from the first-order
perturbation of the stationary distribution of mutants in the different states, and the third term, labelled
p) | comes from the first-order perturbation of the stationary distribution of the number of mutants in
any given state.

While egs.(21) and (22) give some insights into how selection acts on mutants, in particular, they
emphasize the role of selection on the distributions ¢(s) and ¢(|s), these expressions remain complicated
as they involve weighted averages of fitness derivatives w( )( ’Is,4) (£ = 1,2) over the neutral and
perturbed mutant distributions ¢ (i|s) and ¢(*)(s). To obtain more insightful expressions for these
sensitivities, we express in the next section wy(s'|s,?) for k = 1,2,3 in terms of trait values. This will

allow us to carry out rearrangements and simplifications of p(*) and p(®).

3.2 Individual fitness functions

3.2.1 Individual 1-fitness

Consider a focal individual in a focal group in state s and denote by z; the trait value of that individual.
Suppose that the other ns — 1 neighbors adopt the trait values za,--- ,2,, and almost all individuals

outside this focal group adopt the trait value z. Let then
Wy, 15(21, 22, 5 Zn,, 2) (s',s€8, 21, ,2n.,2 ER) (23a)

be the expected number of offspring in state s’ that descend from a focal in state s. Equation (23a)
expresses individual 1-fitness in terms of the phenotypes of all interacting individuals and will be referred
to as an individual fitness function. It is a common building block of phenotypic models (see Frank,
1998; Rousset, 2004, for textbook treatments) and is the fitness that has to be considered if an exact
description of a population is required, for instance, in an individual-based stochastic model, where each
individual may have a different phenotype.

Because the only heterogeneity we consider are the different group states (we have no heterogeneity in
individual states within groups), the individual 1-fitness function w, 4, is invariant under permutations

of z3,- -+, zp,. With this, we can rewrite eq.(23a) as

wl,s’\s(zlvz{2,~~,n5}az) or wl,s’\s(zhz—{l}aZ)’ (23b)

12


https://doi.org/10.1101/2020.03.02.974279
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.02.974279; this version posted August 4, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

where the set-subscripted vector 25 ... , ) represents a vector of length ns—1 in which each of za, -, 2,
appears in an arbitrary order but exactly once. The subscript —{1} is used as a shorthand notation of
the set difference {1,2,--- ;ns}\ {1} = {2, -+ ,ns} and used when the baseline set {1,2,--- ny} is clear
from the context. Therefore, z_y;; is the same as 2y ... 5, y. Similarly, in the following the subscript
—{1,2} represents the set difference {1,2,--- ;ns}\ {1,2} = {3, -+ ,ns}, and so forth. For example,
Z_{12} = 2Z(3,.. n,} represents a vector of length ny — 2 in which each of z3,---,2,, appears in an
arbitrary order but exactly once.
For our two allele model z;, z € {x,y}, we can write a mutant’s individual 1-fitness as
wi(s']s,9) = W gps(T, 2,2,y YY) (24)
i—1 ne—i

By using the chain rule and permutation invariance, the zeroth, first, and second order perturbations of

wi (8'|s,4) with respect to § are

wgo)(3/|s7i) = wlys/‘w (253)
1)/ . au}l,s’|s . 8/wl,s’\s
wq (S |S7Z) = T,Zl+(z_1)87227 (25b)
2 . 2 2 . . 2
(2)/ 1 . 10 W1,s'|s i—10 W1,s'|s . 0 W1,s'|s (Z - 1)(Z - 2) 0 W1,s'|s
i) =2 1 . 25
wi”(s']s,9) 2 023 2 D22 (@ ) 021029 2 029023 (25¢)

Here, all functions and derivatives that appear without arguments are evaluated at the resident popula-
tion, (y,--- ,¥), a convention we adopt throughout. Note that some derivatives appearing in egs.(25) are
ill-defined for ns; = 1 and ns; = 2, but they are always nullified by the factors (¢ — 1) and (i — 1)(i — 2).

Thus, by simply neglecting these ill-defined terms, eq.(25) is valid for any 1 < i < n.
3.2.2 Individual 2- and 3-fitness

Consider again a focal individual with trait value z; in a group in state s in which the ng — 1 group
neighbors have the trait values z_;1y = 23 ... .} in a population that is otherwise monomorphic for z.

For this setting, we define two types of individual 2-fitness functions. First, let
was,‘s(zl,z,{l},z) (s',s €8, 21, ,2n.,2 ER) (26)

be the expected number of offspring in state s’ that descend from the focal individual and that have
a random neighbor that also descends from the focal individual (see Figure 2). Intuitively speaking,
wé)s,ls measures the number of sibling pairs produced by a focal individual. Hence, when one considers
the reproductive process backward in time, was,‘s > (0 means that coalescence events do occur. We call
w;s’ls the “same-parent individual 2-fitness”, because the offspring involved in it descend from the same
individual.

Second, for ng > 2 consider a neighbor of the focal individual with trait value zs, called the target
individual, in a group in which the remaining ns — 2 neighbors have the trait profile z_; 2y = 2(3... n,}-

Let

wg,sﬂs(zlvZsz—{l,Q}vz) (5,75 € Sa 21,00 3%, % € R) (27)
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generations

Figure 2: A schematic example of how we calculate the individual 2-fitnesses w) and wi!. Gray arrows
represent reproduction (or survival). We label by “1” the focal individual with trait value z; in the
parental generation and its offspring (possibly including self through survival) in the following generation.
Similarly, we label by “2” the target individual with trait value z5 in the parental generation and its
offspring (possibly including self through survival) in the offspring generation. Because each of the two
descendants of the focal individual in the bottom-left group (those with label “1”) finds with probability
1/4 a random neighbor whose label is “1”, whereas the one descendant of the focal individual in the
bottom-right group in the offspring generation finds no neighbors whose label is “1”, the same-parent
individual 2-fitness of the focal is calculated as wé’s,ls(zl, zZ_q1y,2) =2-(1/4)+1-(0/4) = 1/2. Similarly,
because each of the two descendants of the focal individual in the bottom-left group finds a random
neighbor whose label is “2” with probability 1/4, and because the one descendant of the focal in the
bottom-right group finds a random neighbor whose label is “2” with probability 1/4, the different-parent
individual 2-fitness of the focal is 11);175,‘3(21,227 zZ_q12),2)=2-(1/4)+1-(1/4) = 3/4.

14
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be the expected number of offspring in state s’ that descend from the focal individual with trait value z;
and that have a random neighbor that descends from the target individual with trait value z5 (see Figure
2). We call wgsqs(zl,zz,Z_{Lz},z) the “different-parent individual 2-fitness”, because the offspring
involved in it descend from two different pre-selected individuals, which can thus collectively be thought
of as the focal set of individuals under consideration. We note that this fitness function is invariant
under the permutation of the trait values z; and zs of individuals from the focal set? and it is also
invariant under the permutation of the trait values in z_y; »3. But since wgs,‘s(zl, 22, Z_{1,2}5 z) counts
the offspring number (of a certain type) per individual with trait 2, wgs,‘s(zh 22, Z_{1,2},2) is a type of
individual fitness.
Using the notation of mutant and resident phenotypes we have for 2 < i < ng that
. 1 . 1T
w2(5/‘8v Z) = w2,3’|5($7xa LT Y, Y, y) + (Z - 1)11)2)3/'5(1',.13,1‘, T, Y, ayay)a (28)

H',_/

1—1 Ns—1 1—2 Nng—1
because a mutant neighbor of an offspring of a focal mutant either descends from the focal itself or is an
offspring of one of the i — 1 mutant neighbors of the focal. The zeroth and first order perturbations of

wa(s']s,4) with respect to § are given by

wéo)(s'|s,i) = wé,s,‘s + (i — 1)11)£I’S,|57 (29a)
1)y, . 8w£,s’\s . 1 8w;,s’\s 2i 1 awg,sﬂs . (i 9 awgsﬂs 29h
W(s,d) = 2 (- ) - )= oG- 2 (o)

where the derivatives 8w£fs /0z and 8w£1’8,|8 /0zo (the latter is equal to 8“};1,5/\3 /0z1 due to the per-

s
mutation invariance, and hence the coefficient “2” appears in eq.(29b)) involve the trait values of the
individuals of the focal set and 8wg o)s /0zs involves the trait values of a third individual. Note that
some derivatives in egs.(29) are ill-defined for ns = 1,2 but they are always nullified by the factor (i — 1)
or (¢ —1)(¢ — 2). Thus, by simply neglecting these ill-defined terms eq.(29) is valid for any 1 < i < n.
Following the same line of reasoning as for individual 1- and 2-fitness, we similarly define three
different types of individual 3-fitness. See section D in the Supplementary Material for more detailed ex-
planations. Specifically, wéys,ls(zl, Z_{13, 2) is defined as the expected number of offspring in state s” that
descend from a focal individual in state s with trait value z; and that have two random neighbors sampled
without replacement both descending from the focal individual. Furthermore, wé{s,‘ o(21,22,2_1,9),2) Is
defined as the expected number of offspring in state s’ that descend from the focal individual in state s
with trait value z; and with two random neighbors sampled without replacement both descending from
a target individual with trait value z,. Finally, w})’g,‘s(zl, 22,23, %_{1,2,3}, %) is defined as the expected
number of offspring in state s’ that descend from the focal individual in state s with trait value z; with

two random neighbors sampled without replacement, one of which descends from a first target individual

2This can be seen by noting that when the focal and target individual from the focal set leave a realized number of Ap
and As offspring, respectively, in the same group of size ng, then this group contributes to the focal’s 2-fitness wg with
A1 (the number of focal’s offspring) times As/(ns — 1) (the probability that a random neighbor of focal’s offspring is the
target’s offspring), which equals to Aj As/(ns —1). Since A; Az /(ns —1) is symmetric with respect to A; and As, changing
the roles of the focal and target individual does not alter the realized fitness count. The same logic applies when the focal
and target individuals leave offspring to different groups, because in this case the counts per group are simply summed over
all groups. A single individual’s wgl is the expectation of such counts over all realizations of offspring number in the same
and different groups (where the expectation is taken over all single generation stochastic events affecting reproduction and
survival), and the invariance holds because it holds for each realization.
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with trait value zo and the other descends from a second target individual with trait value z3. With these
definitions, we show in section D in the Supplementary Material that the zeroth-order perturbation of
3-fitness ws(s’|s, ) with respect to ¢ is given by

(i B 1)(Z B 2) 111 (30)

0)
w( ( |S z)_w35’|s+3(z_1>w35'\s+ ) w35’|s7

where w:I,) o|s w:I,)I o|s wéns,‘g are those three different individual 3-fitness functions evaluated in a resident

monomorphic population, (y,---,¥).

3.3 Sensitivity results

We now write p) and p(® from Section 3.1 in terms of the just defined derivatives of the individual

fitness functions.

3.3.1 Selection gradient

By substituting eq.(25b) into eq.(21) we obtain

Owy o i Oowy
U = 05y | L0rss 1 2isls 0 gy | 4@
OPIRL [ e G- 2t <z|s>]q (5). @1

s'€8 s€8 i=1
and by applying eq.(8) to the second term in square brackets we obtain

ow ow
1)_ (o) 1,s'|s _ Ls'ls .(0) (0)
> v [ ot g =)= <s>}q (s). (32)

s'€8 seS

Thus, in order to be able to evaluate p1) it is sufficient to compute the neutral pairwise relatedness
réo)(s) while the explicit evaluation of the ¢(%)(i|s) distribution is not needed. It is indeed a well-known
result that the selection gradient p*) can be expressed in terms of reproductive values and relatedness-
weighted fitness derivatives (see Frank, 1998; Rousset, 2004, for textbook treatments) and where ¢(©)(s)
and v (s) are given by eq.(15) with w; s = wg )( 'Is).

Equation (32) can be interpreted as the expected first-order effect of all members of a lineage changing
to expressing the mutant allele on the fitness of a focal individual that is a random member of this lineage.
The recipient is sampled from state s with probability q(o)(s) and the derivative in the first term in the
square brackets of p(1) is the effect of the focal changing its own trait value on its individual fitness. The
derivative in the second term in the square brackets describes the effect of the group neighbors of the
focal changing their trait value on the focal’s individual fitness. This term is weighted by pairwise neutral
relatedness since this is the likelihood that any such neighbor carries the same allele as the focal in the
neutral process. Equation (32) is the inclusive fitness effect of mutating from the resident to the mutant
allele for a demographically and/or environmentally structured population and the term in brackets can
be thought of as the state-s-specific inclusive fitness effect on offspring in state s’. Equation (32) has
previously been derived by Lehmann et al. (2016, Box 2) and is in agreement with egs.(26) and (27)
of Rousset and Ronce (2004), who derived the first-order perturbation p(*) in terms of other quantities

under the assumptions of fluctuating group size.
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We show in section E in the Supplementary Material that by substituting eq.(29a) into eq.(C15),

pairwise relatedness (eq.(8)) under neutrality satisfies the recursion
0 gy — 1 I 0 ()] 4©
) = o 2 [0h s + (s = Dodly 7 ()] ¢ (s). (33)

This expression for Téo)(s), formulated in terms of individual 2-fitnesses, is novel but is in full agreement
with previous results. In particular, eq.(29) of Rousset and Ronce (2004) can be shown to reduce to
eq.(33) (see section G.2 in the Supplementary Material for a proof of this connection).

In summary, consistent with well established results, we present a biologically meaningful represen-
tation of p(!). The ingredients in this representation can be obtained from the three systems of linear
equations defined by eqs.(15a), (15b) and (33). This system of equations is fully determined once the
individual k-fitnesses functions for k = 1,2, namely, wy ¢/, w; o) and wg 5| ATE specified for a resident
population, and the k-fitness functions can usually be evaluated once a life-cycle has been specified. The
dimension of this combined equation system has maximally three times the number of states V. This is
significantly lower than the dimension of the matrix A we began with, especially, if group size > 10. In

the next section, we extend these results to the disruptive selection coefficient.
3.3.2 Disruptive selection coefficient

Assuming that p(*) = 0 and substituting eq.(25) into eq.(22), rearrangements given in section E in the

Supplementary Material show that

8 s'|s a s'|s
=5 2 )| o+ = D)
SGS s€$ 1
Pwiss (o) 0wy g X0
. ,8'|s . . s’|s (0)
42, = D70 (5) 4 (= D = ) g 0 ()| g0 (34)
owq o owq 4
(2q) (0) 1,s'|s _ 1,s'|s (0) (1)
0 = 30 S0 [P = )05 e (310)
s'€8 seS
0 s'|s
" =202 00 [<ns S et %)} 0 (s). (34c)
22
s'€8 se8

Equation (34a) depends on four different types of qualitative effects on the fitness of a focal individual:
(i) The second-order effect on own fitness of the focal changing its trait value, which is positive, and then
contributes to disruptive selection, if fitness is convex in own phenotype. (ii) The second-order effect
resulting from the neighbors of the focal changing their trait values, which is positive if the focal’s fitness
is convex in phenotype of group neighbors. This contributes to disruptive selection proportionally to
pairwise relatedness réo) (s), since this is the likelihood that a random neighbor carries the same allele as
the focal individual. (iii) The joint effect of the focal individual and any of its neighbors changing their
trait value, which is positive if the effect of increased trait values of own and others complement each
other. This again contributes to disruptive selection in proportion to the likelihood that any neighbor
is a mutant. (iv) The joint effect of pairs of neighbors of the focal changing their trait values, which is
positive if the effect of increased trait values in neighbors complement each other. This contributes to
disruptive selection with the probability réo)(s) that a pair of neighbors carry the the same allele as the

focal individual.
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Equation (34b) depends, for each state, on the product of the state specific inclusive fitness effect
(recall the term in brackets in eq.(32)) multiplied with the perturbation ¢(!)(s) of the group state prob-
ability. A contribution to disruptive selection occurs if the mutant allele increases its probability to
be in a given state while simultaneously increasing the individual fitness of its carriers in that state.
Similarly, eq.(34c) depends, for each state, on the product of the state specific indirect effect of others
on own fitness (recall the second term in brackets in eq.(32)) and the relatedness perturbation rél)(s).
This contributes to disruptive selection if the mutant allele increases the probability that a focal has
mutant neighbors while simultaneously increasing the individual fitness of those neighbors. Finally, we
note that in the presence of a single state (i.e., no state heterogeneity among groups) p(®? = 0. This is
the case in all previously published expressions for the disruptive selection coefficient (Day, 2001; Ajar,
2003; Wakano and Lehmann, 2014; Mullon et al., 2016), which therefore reduce to p(QW) + p(2r) as defined
by egs.(34a) and (34c).

In order to compute p® we need, in addition to egs.(15a), (15b) and (33), expressions for ¢ (s),
réo)(s), and rél) (s). In section E in the Supplementary Material, we derive the corresponding recursions

for p() = 0. In particular, we show that ¢(!)(s) satisfies

a’UJl s Owy 415
1 _ s']s L,s'|s (0) 0 1
R MR R e ACI LD (35)

sES sES

and that réo)(s) satisfies

), n 1 I I (0) (ns —1)(ns —2) 1pp (0) (0)
ry (s) = ‘Z(T(Sl) % [wg’sqs + 3(ns — 1)w375/\57”2 (s) + ﬁw&sqsriﬁ (s)1¢"(s). (36)

Finally, we show that rél)(s) satisfies the recursion

r(l)(s’) = 1 Z —— + (ns — l)Lwé’sl‘sr(o)(s)
2 7O (s) 921 ° 02y 2

owll owll |
+2(ns — 1) 52 210 (5) + (s — 1) (s — 2)827;)'5,,5(»(8) a(s)
1 1
o 2 (s = Dkl )] )

o+ (g = Dl ()] D (s)

(37)

Equation (35) shows that ¢(*)(s) depends on the state-specific inclusive fitness effect (compare the
first summand in eq.(35) to the term in brackets in eq.(32)). Thus, the probability that a mutant is
in a certain state s increases with its state-specific inclusive fitness effect. Equation (36) for the three-

way relatedness coefficient depends on wé s wgs and wgi and it is a generalization of the pairwise

relatedness coefficient given by eq.(33). Finally, eq.(37) shows that rél)(s) depends on direct and indirect

Note, that eq.(37) together with egs.(15a), (15b), (33), (35), and (36) form

"Is? "I 'Is

. I I
effects on wy and wy

/ls /IS-

a linear system of equations with a dimension equal to six times the number of states N. Its solution

allows us to determine the disruptive selection coefficient p(?). This system of equations in turn is fully
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determined once the the k-fitnesses for k = 1,2, 3 are specified for a resident population, namely, w; /s,

I 11 I

111
w2,s’|s’ w2,s’|s’ w3,s

and Wy o)

11
|s? w3,s’|s’

In general, if the state space 8 is large, solving this system of equations (and those needed for p(l))
may be complicated. Similarly, the 2- and 3-fitnesses may be complicated. We here give two directions
for approximating p") and p(?). First, individual fitness generally depends on vital rates like fecundity
and survival (see egs.(45)—(46) for a concrete example) and variation of these vital rates may have small
effects on fitness, which induces weak selection regardless of the magnitude of the phenotypic deviation
0 (called “w-weak selection” by Wild and Traulsen, 2007, and “weak payoff” by Van Cleve, 2015). For
“weak payoffs” (or w-weak selection), p(?) ~ p%) because one can neglect p9 and p2v). Indeed,
both these terms involve products of marginal changes in fitness, which implies that these products
are of second-order effect under weak payoffs and first-order effects will thus dominate. Since p(%)
only involves first-order effects it dominates the disruptive selection coefficient. See Van Cleve (2015)
for an applications of this approximation to p(*) and Wakano and Lehmann (2014) and Mullon et al.
(2016) to p®. Second, variation of vital rates and fitness across states may be small under certain
biological scenarios in which case one may apply a so-called small noise approximation (e.g., Tuljapurkar,
1990; Caswell, 2001) to p) and p(?), whereby the magnitude of variation are taken to be small. This
simplification has been used to approximate p(*) in a multi-species meta-population model that is covered
by our general model (Mullon and Lehmann, 2018), but has not yet been applied to p), which would
be interesting in future work.

Finally, for some specific life-cycles the 2- and 3-fitness functions can be expressed in terms of com-
ponents of the 1-fitness functions. This greatly simplifies the calculations because all recursions can then
be solved explicitly. We will now provide an application of our model along this latter line, which still

covers a large class of models.

4 Application to a lottery model with spatial heterogeneity

We now study a lottery model with overlapping generations and spatial heterogeneity. Such a model
can be formulated for a variety of life-cycles and we here take a hierarchical approach in which we make
increasingly more specific assumptions. Accordingly, this section is divided in three parts. Section 4.1
provides general results about the components of the selection coefficients based on the assumption of
fixed group states s. In Section 4.2 we introduce two forms of population regulation resulting in hard
and soft selection, respectively. Finally, in Section 4.3 we specify an explicit fitness function which allows
us to present a fully worked example for the effect of group size and spatial heterogeneity on disruptive

selection.

4.1 Spatial lottery model

4.1.1 Decomposition into philopatric and dispersal components

We start by making the following three assumptions. (i) Group states s describe environmental variables
that do not change in time. Thus, group states are fixed and we here refer to them as habitats. By

we denote the relative proportion of groups in habitat s, hence > o7, = 1. (ii) Individuals survive

sES
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independently of each other with probability s < 1 to the next time step in a group in habitat s. Note
that s = 0 corresponds to the Wright-Fisher update where all adults die simultaneously, and that s ~ 1
corresponds to the Moran update where at most one individual dies in a group. (iii) Dispersal occurs
individually and independently to a random destination (no propagule dispersal). (iv) The evolving trait
does not affect survival. With these assumptions we can decompose the 1-fitness of a focal individual

into a philopatric and dispersal component as

wis‘s(zl, Z_{1},%) +wf78|5(z1, z_(1y.2)  (s=s)

philopatric dispersal
wy g|s(21, 2-{1},2) = J ) (38a)
wl,s/|s(21ﬂz—{1}7’z) (S 7é S)

dispersal

Offspring that have left from their natal group and successfully settled elsewhere are counted in the dis-
persal component w¢ s,ls(zl, Z_{1},2). The philopatric component w} S‘S(zl7 Z_q1y,2) counts the number
of non-dispersing offspring, possibly including self trough survival. Thus, we further decompose the

philopatric part into a survival part and a reproduction part as

wis‘s(zl7 Z_{1},2) = Yo +(1- 'ys)wi’fs‘s(zl, Z_{1},%)- (38D)
philopatric survival philopatric reproduction
Similarly, for the dispersal part we write
d dr
Wy o521, 213, 2) = (1 = vs)wily (21, 2o (13, 2) - (38¢)

dispersal reproduction
4.1.2 General results for spatial lottery model

For this model, we explicitly compute the components of the selection gradient and disruptive selection
coefficient in sections F.1 and F.2 of the Supplementary Material. In particular, we show that the
probability that a random lineage member is sampled from a group in state s under neutrality equals
the weighted frequency
TN
q(o)(S) = m7 (39)
where the weights are the number of individuals in the group state.
For the reproductive value, it is instructive to provide a formula for v(?(s")q(%) (s), because the

reproductive value always appears as a product with ¢(®(s) in p™) (eq.(32)) and p (eq.(34)) (the only
exception is eq.(34b), but see the discussion below eq.(43)). This product is given by

(O)( /) (0)( ) w?rs|s’ w?rslllsll (4 )
v 5)q s) = T T E 7 T 0
(1 - 75’)(1 - wll),s’|s’)(1 - w]isls) eS8 (1 B 75”)(1 o w¥75”|5”)2

(section F.1 in the Supplementary Material). Furthermore, the neutral pairwise relatedness coefficient

equals
2
275w§)fs|s + (1 - Pys) (wll),rs\s)

0
ry(s) = 2
na(1+70) = 2(ne — Dyaed”, | — (ne = 1)(1 ) (wi’;‘s)

(41)
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(section F.2 in the Supplementary Material). The general solution for réo)(s) remains complicated (see

eq.(F32) for the full expression), but for special cases it is

(s) =

3 2
(wi),rs|s> |:n5 + 2(77/5 - 1) (wllj,rs|s) :|
Wright-Fisher process, 75 = 0),

kfmfn@me@4m4mrm@if}( (12

(Moran process, vs ~ 1).

[ns —(ns — l)wlf,rsls} [ns — (ng — Q)wirs‘s}
If the resident trait value is equal to the singular strategy where p(*) = 0, then the first-order
perturbation of the stationary mutant distribution is

1 owy” ow” |
(1) _ ,5|s _ 1,s]s (0)
¢ (s) { 1 br [ 0z1 (s = 1) 0zo 2 (5)

- wl,s|s

pr
1 8’wl,s’\s’
_ —
S1 Wy o)y 0z1

(43)
o, .,
1;2'5@0)(5’)1 q(o)(S')}q(O)(S)

+ (ny — 1)

s'e
(section F.1 in the Supplementary Material). Note that we can obtain the fraction ¢")(s)/q(®)(s) by
dividing both sides of eq.(43) by ¢(®(s), which, when combined with eq.(40), allows to directly obtain
the product v(©)(s")¢M(s). This quantity is required to compute eq.(34b). Finally, for p(Y) = 0 we have
Ys + (1 - 'Ys)wll)fﬂs
2
273w§)f3|s + (1 - 73) (wi),rs|s>

ow®" owP*

’ {“ + (e = Dr? ()52 + (e = D[2r(5) + (s = 2>ré°><s>}al’§s}

() = 2r” (s)

(44)

(see Section F.2 in the Supplementary Material where we also make the connection to previous work).
With eqs.(40) and (41) we can compute the first-order perturbation of invasion fitness, eq.(32),

explicitly given specific life-cycle assumptions (since all recursions have been solved). Similarly, under

the assumption that p(") = 0, and with eqs.(39)(44) in hand, we can explicitly compute the second-order

perturbation of invasion fitness, eq.(34).

4.2 Fecundity selection under two different forms of density regulation

We further refine our assumptions in order to arrive at two life-cycles with concrete expressions for wfrs‘s
,

and wd*

1s/js- The first one is as follows. (1) Each adult individual in a group in habitat s produces

on average a very large number f; of offspring, and then either survives with probability s or dies
with the complementary probability. (2) Offspring disperse independently of each other to a uniformly
randomly chosen non-natal group with the non-zero probability m,. An offspring survives dispersal with
probability ps when dispersing from a group in habitat s. (3) All offspring aspiring to settle in a group
in habitat s compete for the average number (1 — «,)ns of breeding sites vacated by the death of adults
and are recruited until all ng breeding sites are occupied. (4) The evolving trait does not affect dispersal.

In this life cycle, density-dependent population regulation occurs after dispersal when offspring aspire

to settle and we refer to this regime as hard selection. We also consider a soft-selection variant in which
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density regulation occurs in two steps (as in Fig. 1 of Svardal et al., 2015). First, a local trait-dependent
stage of density-dependent regulation occurs immediately after reproduction (after stage (1) in the above
life cycle) in which the offspring pool in each group is brought back to a size proportional to the local
group size ng, say size Kng, where K is a large number. From here on dispersal and recruitment (second
regulation step) proceed as in the hard-selection life cycle.

For these two life cycles, the philopatric and dispersal fitness components can be written as

(1 —=ms)fs(21,2-41}, 2)

Ng (hard selection) (45a)
w?iﬂs(zl’zf{l}’z) = (1 _ms) fs(zlvz—{1}7z)

s X Ns s soft selection), (45b)
(1 - ms)ns + Isoft ZZ;I S(Zi, Z,{i}, Z) ( )

trait independent recruitment trait dependent regulation
and
m Z1, 2 z
Tor Mg Ps ZJTS( 21} 2) (hard selection) (46a)
(1 - ms’) 21;1 Is (27 z, Z) + Ihard(z)
dr
w 21,2 z) = m 21, 2_ z )
Lrls (71,241, 2) e/ Mg Pstits X Mg 7{5( LZ-q1),%) (soft selection), (46b)
(1 =mg)ng + Lot Zi:l fs(zis Z—{i}s z)
trait independent recruitment trait dependent regulation

respectively, where f,(2;, z_(;},2) is the fecundity of individual 7 in a group in habitat s and

Ihard(z) Ezﬂ'snspsmsfs(zaz7z) (473)
sES

Loy = Z TsMsPsTg (47b)
sES

are the trait-dependent immigration terms for the hard-selection model and trait-independent immigra-
tion term for the soft selection model, respectively.

Equations (45b) and (46b) can be understood as follows. During the stage of trait-dependent reg-
ulation the local offspring pool in a group in habitat s is brought back to a size proportional to ng,
namely Kn,, whereby the proportion of individuals among the surviving offspring descending from a
focal individual is fs(21,z_{1},2)/ Yooy fs(2is 2_{i}, 2). Each of these offspring either disperses or stays
local and then competes to be recruited. With probability 1 — mg an offspring is philopatric, and
this philopatric offspring gets recruited with probability 1/ [K((1 — ms)ns + Isost)] per open spot. Here
K((1 — mg)ng + Isost) is the expected number of local competitors, where the number of migrant off-
spring competing in a given group for recruitment and coming from a group in habitat s is proportional
to msngpsms. Offspring dispersing to a group in habitat s’ experience on average K ((1 — mg )ng + Lsoft)
competitors and the probability to compete in such a group is ms. The likelihood to be recruited (either
after dispersing or without dispersing) is then multiplied by the expected number of open breeding sites,
which equals ng(1 — 75) in the natal group and ng (1 — vs) in non-natal groups in habitat s’, but the
factors (1 — 7,) and (1 — 7,) are already accounted for in eqs.(38b) and (38c). Note that the constant
K does not appear in egs.(45b) and (46b) because it appears both in the numerator and denominator
of these equations and thus cancels out.

Using eq.(45) and eq.(46) along with eqs.(39)—(44) allows to compute p") and p) for a large class

of models. In sections G, H.3 and 1.3 in the Supplementary Material, we show that we recover a number
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of previously published results belonging to this class of models, some of which were derived with quite
different calculations (Pen, 2000; Ohtsuki, 2010; Lehmann and Rousset, 2010; Rodrigues and Gardner,
2012; Wakano and Lehmann, 2014; Svardal et al., 2015; Mullon et al., 2016; Parvinen et al., 2018).
This indirectly confirms the validity of our calculations. For simplicity of notation we assumed that the
evolving trait does neither affect survival nor dispersal (it only affects fecundity), extensions to include

effects on survival and dispersal are in principle straightforward.

4.3 Selection analysis

In this section, we finally present explicit expressions for the selection gradient p(*) and the coefficient
of disruptive selection p(® for both the model of hard and soft selection. We then introduce an explicit
fecundity function, which, under some additional symmetry assumptions, allows us to have a completely

worked example.
4.3.1 Hard selection

Inserting eqs.(45a) and (46a) into egs.(38b) and (38c), respectively, we show in section H in the Supple-

mentary Material that the selection gradient for the hard selection lottery model is

p(l) x Wsnspsmsfs % + ’I"(O) (8)(7’l _ 1) % _ (1 —d b d)2r(0) (S) % + (n _ 1) %ﬁ;
§ s s,har, s )
se8 ds,hard fs 2 fs / 2R fs fs

(48)

where the proportionality constant is positive (and given by the inverse of eq.(H4)) and ds parq is the

backward migration rate from groups in state s under neutrality defined as

Ihard
1- ms)nsfs + Ihard ’

ds,hard = ( (49)

This rate depends on y because Iharq and fs are evaluated at (y,--- ,y). Equation (48) further depends

on

1 ng — 1
i (s) = — + i (s), (50)

Ng Ng
which is the relatedness between two individuals sampled with replacement in a group in state s and

where
275(1 - ds,hard) + (]- - 75)(1 - ds,hard)2

nb(l + 76) - 2(”5 - 1)7@(1 - ds,hard) - (ns - 1)(1 - 75)(1 - ds,ha,lrd)2 .

Equation (48) can be understood as follows. The first term in the curly brackets is the marginal

() = oy

fecundity effect by a focal individual on itself, while the second term is the marginal fecundity effect
conferred by all group members to the focal individual weighted by the coefficient of pairwise relatedness.
Finally, the third term reflects competition for the finite number of breeding spots in a group. A change
in the trait value of a focal individual that increases its fecundity or that of its neighbors increases the
strength of local competition. This reduces the fitness of the focal individual if the additional offspring
remain philopatric and compete with own offspring. Equation (48) is a generalization of previous results
obtained for the island model (see section H in the Supplementary Material for the detail of these

connections).
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Similarly, inserting eqs.(45a) and (46a) into eqs.(38b) and (38c), respectively, and using these in
eq.(34), we obtain a general expression for the disruptive selection coefficient p) under hard selection.
The resulting expression, while useful for numerical calculations, is too lengthy to be presented here and
we refer to section H in the Supplementary Material for details. Therein, we show that under a Wright-
Fisher process (75 = 0) the results of Parvinen et al. (2018) are recovered, who obtained an expression
of p® expressed in terms of first- and second-order derivatives of f.

To complement these results and to approach a fully worked example, we assume a Moran pro-
cess (i.e., 75 ~ 1) and that fecundity of an adult individual depends only on its own phenotype (i.e.,
fs(z1,2_01},2) = [s(21)). Under these assumptions, we show in section J.1 in the Supplementary Ma-
terial that the selection gradient is a weighted sum of dfs/dz; over different states s (see eq.(J1)), and

that the disruptive selection coefficient is

TsNsPsMs [, ffj dr. \ *
@ Z TsNsPsMMs s X1shard 2 + Xo g hara | 22 , (52a)
sc8 ds,hard fs f@

where the positive proportionality constant is the same as in eq.(48), and
Eds,hard(l - ds,hard + ns)
2 1 + ds,hard(ns - 1)

ds,hard(]- - ds,hard)(]- - ds,hard + ns)”s
{2 + ds,hard(”s - 2)}{1 + ds,hard(ns - 1)}

For complete dispersal (i.e., dsnara = 1)® we obtain that Xi s hara = 1/2 and Xo s hara = 0. As the

Xl,s,hard = (2 0) (52b)

X2,s,hard = (Z O) (52C)

dispersal rate ds hara decreases, the ratio Xo ¢ hard/X1,s hard increases monotonically. Hence, as dispersal
becomes more limited, relatively more weight is put on the squared first-order derivative (dfs/dz;)?
compared to the second-order derivative d? f; /dz?, indicating that limited dispersal facilitates disruptive
selection (and, if the singular strategy y* is convergence stable and remains so when varying disper-
sal, then evolutionary branching is facilitated). On the other hand, for a fixed dspnara < 1, the ratio
X2,5 hard/ X1,s,hara monotonically decreases as group size decreases. Hence, with decreasing group size
less weight is put on the squared first-order derivative (dfs/dz1)?, which acts to limit disruptive selection.
We finally note that the functional form of eq.(52a) holds beyond the Moran process, provided all other
assumptions are the same. While the weights will depend on the specifics of the reproductive process,
we conjecture that the weights will feature the same qualitative dependence on dispersal and group size.

We now make two further assumptions. First, we follow Svardal et al. (2015) and assume that

fecundity is under Gaussian stabilising selection with habitat specific optimum y,p . Thus,

(Zl - yop,s)2:|

(53)
20%;

fs(zl) = fmax exp |:

where fiax is the maximal fecundity of an individual and o2 is inversely proportional to the strength
of stabilising selection. Second, we assume that group size, migration and juvenile survival are identical
for all habitats, i.e., ny = n, ms = m, and ps = p for all s. Hence, habitats only differ in the trait value

Yop,s that maximizes fecundity.

3For a homogeneous population with a single habitat s, a singular point is characterized by dfs/dz1 = 0, and therefore
eq.(52) predicts that the sign of the disruptive selection coefficient is solely determined by the sign of d? fs /dz% no matter
whether dispersal is complete or locally limited. A similar result has been shown in Parvinen et al. (2017) by assuming a
Wright-Fisher process.
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Under these assumptions, the singular strategy y* is implicitly given by

y* = Zws(y*)yop,sv (54)

SES
which is a weighted average of the habitat specific trait optima with the weights 1, being complicated
functions of the model parameters (see section J.1 in the Supplementary Material). The condition for

the disruptive selection coefficient at the singular point y* (eq.(52a)) being positive can be expressed as

Z Vs(y") (Yop,s — y*)? > ok, (55)
s€8

where the W,’s are again complicated weights (section J.1 in the Supplementary Material).

These expressions greatly simplify when we consider only two habitats with equal proportions, i.e.
8 = {1,2} with m; = w2 = 1/2, no mortality in dispersal, p = 1, and symmetric optima in the sense that
Yop,2 = —Yop,1. Due to this symmetry, y* = 0 is a solution of eq.(53) and therefore a singular strategy.
Furthermore, in section J.1 in the Supplementary Material, we find that under the aforementioned

assumptions
o 1 [(2-m 4(1 —m)?
sy )_5 < m _m(2+m(n—2))>' (56)

Then, by using the variance of the habitat optima defined by

02 = s (Yop.s —y")’ (57)

sES
(in the current case, with m = 7o = 1/2), condition (55) can be written as
2—m 4(1 —m)? 9 9

m m2+m(n—2)) Top = st (58)

— 0 when n — oo
The first term in the parenthesis is the effect of limited dispersal on disruptive selection in the absence
of kin selection (that is, under infinite group size). This term increases with decreasing dispersal, which
facilitates disruptive selection. Indeed, low dispersal increases the probability that lineage members
experience the same group-specific state favoring local adaptation. The second term in the parenthesis
captures the effect of kin selection. The absolute value of this negative term increases with both decreasing
dispersal and decreasing group size, which inhibits disruptive selection. This effect can be understood
as follows. All philopatric offspring within a group compete with each other for the limited number of
spots to settle within a group. Relatedness among individuals within a group increases with decreasing
group size. Thus, in smaller groups competing individuals are more likely to be related with each other
and this diminishes the benefit of mutations increasing adaptation to the group-specific state. This effect
becomes more pronounced with decreasing dispersal since this increases relatedness within groups even
more. We therefore expect that the singular point y* is more likely to be uninvadable for small groups
and this is indeed what we observe in Figure 3, especially evident in panel (f). It can be shown that the
effect of decreasing dispersal on the first term on the left-hand side of (58) dominates the effect on the

second term. Thus, decreasing m indeed facilitates disruptive selection as illustrated in Figure 3(b-f).
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In the limit of m = 0 and m = 1 the condition for the disruptive selection coefficient being positive

(58) becomes
(1+ n)ogp > 02 whenm — 0
(59)
crgp > o2  when m = 1.
Thus, at very low dispersal the singular point changes from being uninvadable to invadable when group

size exceeds n = (0% — 02,)/02, (as can be seen in Figure 3(f) where the boundary between CSS and
branching point for very low m occurs at n = 4). At complete dispersal, the singular point is uninvadable

for agp < 02 and invadable otherwise. Finally, the singular strategy is more likely to be under stabilizing

2

op> as is clearly illustrated in Figure 3(a-f).

selection the larger the ratio o2 /o
A singular point at which selection is disruptive is an evolutionary branching point if it is also
convergence stable. Substituting eq.(48) under all mentioned assumptions into eq.(19) we obtain after

rearrangements that y* = 0 is convergence stable if

(L=mP(L—m+A+mn) | 5 _
A+mn—1)1-m+n) | < O (60)

— 0 when n — oo

2—m—

and repelling otherwise. From inspecting the left-hand side of this condition, the coefficient of Jgp is a

unimodal function of m and takes the minimum value 1 at m = 0,1 and the maximum at

m= Ltn (61)

n++v1+n

for any fixed n. Therefore, it is clear that o2, < o2 is a necessary but not sufficient condition for

convergence stability. More generally, increasing o relative to o2, increases the space in the (m, n)-plane

P
for which the singular point is convergence stable (c¢f. Figure 3(a-f)). In section J.1 in the Supplementary
Material we show that 202 < o2 is a sufficient condition for convergence stability (cf. Figure 3(e-f)).
Interestingly, from the unimodality above, the singular point can be repelling for intermediate values of
m as can be seen in Figure 3(b-d). For large group size, condition (60) becomes (2 — m)oZ, < 02 and
therefore convergence stability changes at m = 2 — (02,/ agp), which coincides very well with where the
singular point turns from convergence stable to repelling at group size n = 100 in Figure 3(b-d). For the
effect of group size n on convergence stability, the coefficient of agp in condition (60) is, for any fixed
0 < m < 1, an increasing function of n. Thus, smaller group sizes are more favorable for convergence
stability of the singular point y* = 0.

An immediate conclusion from these observations is that for m = 1 evolutionary branching does not
occur under hard selection (with fecundity given by eq.(53)). This is so because for m = 1 competition
is global and does not occur between individuals within a group. This removes any frequency-dependent
selection effect. Indeed, under our assumptions setting m = 1 (and p = 1) in eq.(45a) and eq.(46a) results

. r
m U_)p

1,5\5(2172—{1}72) =0 and wffs/ls(zl,z_{l},z) = meng fs(21)/Inara(z) for all s’ and s. Thus, there

is no longer any state specific frequency-dependence, since Iyarq(2) is common to all fitness functions.
In this case, the singular point is both convergence stable and uninvadable if ng < 02 and both
repelling and invadable if 62, > o%. This is in agreement with the well-known finding that under hard

selection and complete dispersal selection is frequency-independent and adaptive polymorphism cannot
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be maintained by spatial heterogeneity alone (Dempster, 1955; Ravigné, 2004; Ravigné et al., 2009;
Débarre and Gandon, 2011).

4.3.2 Soft selection

Inserting eqs.(45b) and (46b) into eqs.(38b) and (38c), respectively, we show in section I in the Supple-
mentary Material that the selection gradient for the soft selection lottery model is
dfs Ofs Ofs

of.
3 metpes T anaDas { ;}Z; + 10 (s)(ns — 1) f}z: — % (s) (8;; +(ns — 1) f}Z: ) } , (62)

S8 ds soft

where the positive proportionality constant is positive (and given by the inverse of eq.(I4)) and

Isoft
1—- ms)ns + Isoft

ds,soft = ( (63)

is the backward migration rate from groups in habitat s under neutrality. In contrast to the case of hard
selection, eq.(63) is independent of y. Pairwise relatedness under neutrality r( )( ) takes the same form
as in eq.(51) where all ds nara have to be replaced with ds sofr. The key difference between eq.(48) and
eq.(62) is that under soft selection the competition term is larger than under hard selection because the
weighting by the backward dispersal probability has disappeared in the latter case. This reflects the fact
that under soft selection density regulation occurs before dispersal. Again, eq.(62) is a generalization of
previous results as detailed in section I in the Supplementary Material.

Similarly, inserting eqs.(45b) and (46b) into eqs.(38b) and (38c), respectively, and using these in
eq.(34), we obtain a general expression for the disruptive selection coefficient p?) under soft selection.
As was the case for hard selection, the resulting expression can be useful for numerical calculations, but
is too lengthy to be presented here and we refer to section I in the Supplementary Material for details.

Paralleling the analysis under hard selection, we assume a Moran process (i.e., 75 ~ 1) and that the
fecundity of adult individuals depends only on their own phenotype (fs(z1,2-1},2) = fs(21)). Under
these assumptions we show in section J.2 in the Supplementary Material that

dzfs

dfs

TsMNsPsTs z

p(2) X Z L Xl ,s,80ft T + X2 s,s0ft da ) (643)
sc8 s,s0ft fs fs

where the positive proportionality constant is the same as in eq.(62), and
1 ds,soft (ns - ]-)
21+ ds,soft(ns - 1)
ds,soft(ns - 1){ds,soft(1 - ds‘ soft)( 1)(”9 - 2) - 2ds,soft(ns - 1) + (ns - 2)}
{2 + ds,soft(ns - 2)}{1 + dS,SOft(nS - 1)}2 .

The ratio of these weights, Xo ¢ soft /X1 s soft, Shows qualitatively the same behavior as the corresponding

Xl,s,soft = (Z 0) (64b)

X2,s,soft = (640)

expressions under hard selection (egs.(52b) and (52¢)) with respect to changes in d; sof and ns. However,
a notable difference from the hard selection case is that X s sofy (and hence the ratio, Xo s soft/X1,s,soft)
can be negative for small ng and large ds. We finally note that, as was the case for eq.(52a), the functional
form of eq.(64a) holds beyond the Moran process, provided all other assumptions are the same.

Under the assumption of Gaussian fecundity selection (eq.(53)) and ny = n, ms = m, ps = p =1

for all states s, which entails dgory = m, we again obtain a fully worked example. The value y* for the
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Figure 3: Bifurcation diagrams for the singular point y* = 0 as a function of the migration rate m

(x-axis) and group size n (y-axis) for six different values of the within group selection parameter oz

2

(see eq.(53)). (a-f) Hard selection, (g-1) soft selection. Purple: evolutionary repellor, blue: evolutionary
branching point, white: uninvadable and convergence stable singular point, 4.e., continuously stable
strategy (CSS). Other parameter values: yop1 =1 = —yop,2 (implying agp =1).
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singular strategy is given by the average habitat optimum,
y* = Z TsYop,s (65)
SES

(section J.2 in the Supplementary Material). Furthermore, the coefficient of disruptive selection is

positive if and only if

2—-m 442m((2—m)(n—2)
m m(2+m(n —2))(1+m(n—1))

ng > aft, (66)

— 0 when n — oo

where ogp is the variance in the habitat optima defined by eq.(57). Note that condition (66) is valid only
for n > 2 (because otherwise egs.(64b) and (64c) evaluate to zero). The two terms in parenthesis on the
left-hand side of condition (66) have the same interpretation as the corresponding terms in condition (58)
for the case of hard selection and they respond in the same direction with respect to changes in dispersal
m and group size n. In the limit of infinitely large group size (n — oo0) the second term vanishes and we
recover eq.(C.15) of Svardal et al. (2015).

In section J.2 in the Supplementary Material, we show that y* as given by eq.(65) is convergence
stable for any value of 02 and agp and independent of group size n and dispersal probability m. Thus, the
singular point is an evolutionary branching point when it is invadable and an endpoint of the evolutionary
dynamics (continuously stable strategy, CSS) when uninvadable. For the special case of only two habitats
With Yop,1 = 1 = —¥op,2, Figure 3 shows how n, m and o2 determine whether y* = 0 is a branching
point or a CSS. In summary, stronger selection (smaller values of 02 ), lower migration and larger groups

favor adaptive diversification at an evolutionary branching point.

5 Discussion

The main result of this paper is an expression for the disruptive selection coefficient p(?) in heterogeneous
group-structured populations (eq.(34)). We show that p(2) depends on three types of differentials: (a) the
first- and second-order perturbations of the expected number of offspring in different states produced by
an individual in a given state, (b) the first-order perturbation of the probability that an individual is in the
different states, and (c¢) the first-order perturbation of the probability that a randomly sampled neighbor
of an individual carries alleles identical by descent (perturbation of relatedness). These differentials
depend on and are weighted by three quantities evaluated under neutrality: (i) the reproductive values
v(9) (s) of individuals in state s, (ii) the pairwise and three-way relatedness coefficients réo) (s) and 7“:(,,0) (s)
in state s, and (iii) the probability ¢(*)(s) that a randomly sampled individual resides in a group in state
s.

At a conceptual level, our results about the components of p(2) can be thought of as a direct extension
of the result that the three types of neutral weights — reproductive values, relatednesses, and probabilities
of occurrence in state s — are needed to evaluate the selection gradient p(!) for quantitative traits in group-
structured populations (Taylor and Frank, 1996; Frank, 1998; Rousset, 2004). All the above mentioned

differentials and their weights can be obtained by solving systems of linear equations that are at most
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of dimension N, i.e., the number of states groups can be in. This represents a significant reduction
compared to the dimension of the state space of the original evolutionary process, which is equal to the
dimension of the mutant transition matrix A.

A distinctive and novel feature of our analysis is the introduction of the concept of individual k-
fitness, wy(s'|s, ), which describes the expected number of descendants of a mutant in an (s,i) group
(possibly including self through survival) that settle in state-s’ groups and have k — 1 randomly sampled
neighbors that are also mutants (i.e., that descend from the same common ancestor). In the context of
our perturbation analysis, we show that wy(s'|s,i) can be themselves expressed in terms of individual
k-fitness functions for k = 1,2, 3 where individuals are labelled as focal, group neighbor and population
member, and which are sufficient to evaluate all aforementioned quantities and thus p(*) and p (see
sections 3.2.1-3.3). These latter individual k-fitness functions do not depend on the mutant type and
provide for k = 2,3 the generalizations of the fitness functions for k¥ = 1 already in use in the direct
fitness method (Taylor and Frank, 1996; Frank, 1998; Rousset, 2004). They are thus sufficient biological
ingredients to determine whether or not disruptive selection occurs. In a well-mixed populations in which
individuals do not interact with relatives only individual 1-fitness functions are required to evaluate p(*)
and p(?. Individual 2- and 3-fitnesses describe the possibility that under limited dispersal the offspring
of a given parent can have neighbors (here one or two) that belong to the same lineage and are thus
more likely to have the same trait value than randomly sampled individuals from the population. This
causes non-random mutant-mutant interactions, which is well known to critically affect the nature of
selection on traits affecting own and others’ reproduction and survival (Hamilton, 1964; Michod, 1982;
Frank, 1998; Rousset, 2004). Because the individual k-fitnesses describe group configurations in which
offspring have neighbors that belong to the same lineage, the ancestral lineages of the k interacting
individuals must coalesce in a common ancestor, and this can occur only if there is a non-zero probability
that at least two individuals descend from the same parent over a generation (see section G.2 in the
Supplementary Material for the connection to coalescence theory). Neutral relatedness in evolutionary
models is indeed usually computed by using coalescence arguments and thus use a “backward” perspective
on allele transmission (e.g. Taylor and Frank, 1996; Frank, 1998; Rousset, 2004). This may somewhat
disconnect relatedness from the “forward” perspective of allele transmission induced by reproduction.
Using individual 2-fitnesses to evaluate relatedness (see eq.(33)) brings upfront the connection between
relatedness and reproduction (note that the “backward” approach may nevertheless be more useful for
concrete calculations of relatedness).

As an application of our results, we analyze a lottery model with overlapping generations in hetero-
geneous habitats that allows for both hard and soft selection regimes. For this scenario, we show that
oM and p® can in principle be solved explicitly (all systems of equation can be solved explicitly) but
that generic expressions remain complicated functions, since they apply to any kind of social interactions
(i.e., any “game”) and different ecologies. In doing these calculations, we recover a number of previous
results concerning relatedness, selection gradients and disruptive selection coefficients for lottery models
(in particular those of Pen, 2000; Rousset and Ronce, 2004; Ohtsuki, 2010; Lehmann and Rousset, 2010;
Rodrigues and Gardner, 2012; Wakano and Lehmann, 2014; Svardal et al., 2015; Mullon et al., 2016;
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Parvinen et al., 2018, see sections G, H.3 and 1.3 in the Supplementary Material for details), which
confirms the validity of our approach. Finally, as a fully worked example, we investigate the evolution
of adaptive polymorphism due to local adaption by extending the soft selection model of Svardal et al.
(2015) to finite group size and hard selection. We confirm that adaptive polymorphism is generally
favored by limited migration under soft selection and that small group size does not change this result
qualitatively but tends to inhibit disruptive selection. For hard selection, however, the situation is more
complicated as limited dispersal and finite group size favors not only disruptive selection but also re-
pelling generalist strategies so that it becomes less likely that polymorphism can emerge from gradual
evolution (Figure 3). With respect to limited migration this finding is also described by Débarre and
Gandon (2011).

While our model allows for many different types of interactions between individuals within groups, it
also has several limitations. At the individual level, we consider only scalar traits, but multidimensional
(or functional-valued) traits can be taken into account by replacing derivatives by directional derivatives,
which will not change the structure of our perturbation analysis. At the group level, we do not consider
heterogeneity within groups, but in natural populations individuals within groups are likely to differ in
their physiological state such as age, size and sex. To incorporate physiological heterogeneity requires
an extension of the state space 8§ and to take into account the distribution of mutants within sub-groups
of individuals belonging to the same physiological state in a group. The structure of our perturbation
analysis, however, will remain unchanged by adding within-group heterogeneity, and only additional
reproductive values and relatednesses will be needed. Likewise, in order to take isolation-by-distance into
account, one again needs to extend the state space 8, while to include diploidy one needs to extend the
number of genetic states and this should only impact the relatedness coefficients. While such extensions
remain to be done (and have all been done for the selection gradient p (e.g. Rousset, 2004)), they are
unlikely to change the required components of the disruptive selection coefficient p®) and how they are
connected algebraically. We thus conjecture that the representation of p(® holds generally.

In conclusion, for a large class of models we describe the consequences of limited dispersal and finite
group size on evolutionary stability and diversification in heterogeneous populations, which we hope will

help to formulate and analyze concrete biological models.
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A Mathematical properties of the baseline model

In this section, we provide a mathematical description of the stochastic process underlying the mutant

dynamics that we consider in our paper.

A.1 Multitype branching process

We study the process of invasion of a mutant arising as a single copy (or a finite number of copies) in
a monomorphic resident population and consider mutant dynamics as long as the mutant remains rare.
Specifically, we pay attention to the number of groups including at least one adult mutant. Groups can
differ in their state s € § and in the number i € {1,--- ,ns} of mutants. We therefore count the number
of each “type” of group, where a type, denoted by 7 here and thereafter, is specified by the vector
7 = (s,4). The set of all possible types is T = Uses{(s,4) | i € {1,--- ,ns}} and there are n = ) ¢ n
different group types.

A “population state” describes how the mutant is distributed among group types as long as it is rare
in a population otherwise monomorphic for the resident type. It is specified by a vector M = {M,} € N™,
where N = {0,1,2,---} and where each M, represents the number of type-r groups at a given time.
We consider that the change in state is given by a discrete-time and time-homogeneous Markov chain,
denoted by M, defined on N”, where the transition probability from population state M to M’ is given
by P(M — M’). Here, P implicitly depends both on the mutant and resident trait values, z and y,
respectively, and allows to define the generating function

Gu©)= > (P(M M) ] g%) (A1)
M'eN? TET
induced by the Markov chain, where & = {&; },;e7 is a vector of dummy variables. This Markov chain
has one absorbing state, which is the extinction of the mutant, and otherwise only transient states with
the possibility that the absorbing state is never reached and so the number of mutants grows without
bound.

We assume that the Markov chain M is a multitype branching process, meaning that each group
“behaves” independently of the other groups. Mathematically, this assumption is embodied by the
generating function of the Markov chain (eq.(A1)) being given by

Gm(8) = [[{Ge, )}, (A2)
TET
where E, is a vector of length n whose 7-th component is 1 and all the others are zero. Intuitively

speaking, eq.(A2) shows that P(M — M) is uniquely determined by the “fundamental” transitions
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probabilities, P(E, — M’) (7 € 7), each representing how many groups of the same and different types
are “produced” by a single type-7 group in the previous time step (by “produced” we mean that the
survival and reproduction of individuals in a single type-7 group affect the composition of that group in
the descendant generation, as well as the composition of other groups by emigration of offspring, e.g.,
eq.(1) of Lehmann et al., 2016).

For a given initial population state My € N™, the ultimate extinction probability of mutants is defined
as

7T(M()) = PrOb(Mt:oo =0 | Mo), (A?))

where M;_, is the population state vector when the number of time steps ¢ — oo, and 0 represents a

vector of zeroes of length n. Now we define

a(r'|r)= Y M.LP(E,— M), (A4)
M’eNnm

which is the expected number of type-7/ groups that are “produced” by a single type-7 group’. We collect
the expectations a(7’|7) for all 7,7" to construct matrix A = {a(7’|7)}. We assume that (i) matrix A is
primitive, as specified in section 2.2 in the main text, and that (ii) M is not “singular” (where M being
“singular” means that all of Gg, (&) (7 € T) are linear functions without a constant term; see Harris,
1963). Let p be the largest eigenvalue of A (since A is primitive it follows from the Perron-Frobenius
theorem that such a unique positive p exists). Then, a standard result in multitype branching process
theory (Harris, 1963; Karlin and Taylor, 1975) guarantees that the following relations hold between p

and the w(E;):
p<1l = w(E;)=1 (forallTe?7),
(AD)
p>1 = n(E;)<1 (forall7eT).
It is precisely matrix A = {a(7'|7)} = {a(s’,4’|s,i)} that we study in the main text. Because our focus is
only on the uninvadability of the resident with respect to invasion of single mutants, which translates to
whether or not 7(E, 1)) = 1, we do not have to distinguish two different multitype branching processes

that yield the same A-matrix. Therefore, an evolutionary invasion analysis can be started from A, and

does not need to detail the transition probabilities of the underlying multitype branching process.

A.2 List of assumptions and their implications

We here summarize the basic mathematical assumptions for our model and their biological implications.

(i) A time-homogeneous Markov chain M, which depends on z, y and whose state space is {(M,),c7 €
N7}, is a multitype branching process. This implies that each group that includes at least one

mutant behaves independently of all other groups with mutants.

(ii) Matrix A = {a(7'|7)}, calculated from M as in eq.(A4), is primitive. This implies that each type
of group has a positive contribution to the production of any other type of group after some finite

number of time steps.

I'We assume that this expectation exists for all 7 and 7/. Using generating the function Gg, (§), eq.(A4) is calculated

) .
as @GE, &) eer’ where 1 is a vector of ones.
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(iii) M is not singular. Hence, we do not consider a degenerate multitype branching process in which

each group always produces exactly one group at the next time step.

(iv) Individual fitness wgo)(s’\s,i) as defined in eq.(14) does not depend on ¢ (and therefore can be
written as wgo)(s’ [s)). This implies that resident and mutant individuals are indistinguishable (and

exchangeable) under neutrality.
(v) Matrix W) whose entries are determined by wgo)(s' |s), has 1 as its largest eigenvalue. This
implies that a monomorphic population of resident individuals stays at the same average group size

due to density-dependent regulation.

B Derivation of perturbations of invasion fitness

We here prove eq.(21) and eq.(22). Before doing so, we list some frequently used relations:

wl®(s']s, 1) = wl? (s']s) (see section 2.3.4) (Bla)
Zq(s) =1 (see egs.(3) and (4)) (B1b)
s€8
Zq(z|s) =1 (see eqs.(4) and (5)). (Blc)
i=1

We decompose wi (s'[s, ) in eq.(16a) into a neutral part and a non-neutral part,

wi(s]s,1) = wgo) (8'8,1) + w1 se1 (5] s, 1)

neutral non-neutral (BQ)

= 0) (o o
eq.(Bla) ! (S ‘8) + wl,sel(S |S7Z)'

Note that, by definition, the ¢-th order perturbation of wy ge1(s'|s, ) with respect to ¢ equals
® 0 (£ =0)
0o
wy [ (8']s,1) = © (B3)
wy”(s']s, 1) (£=1).

From eq.(16a), we then have

1 = . 1 = o
P= Z ZU(O)(S’)UJEO)(S/@ Z q(ils) q(s)| + v Z Z Z v (s wy g1 ('3, z)q(z|s)q(s)]
s'€8 s€8 =1 s'€8 s€8 i=1
———

(from eq. (Blc))

7 [Z X el )| + 5

sES s'€8

Z Z Zb U(O) (5/)w1,se1(5/|sa Z)Q(l|5)q(s)]

s'€8 s€8 =1

=v(9)(s) (from eq.(15b))

:% > v V(s)as) +% 3 Zst@)(s')wl,sd(sqs,i)q(¢|s)q(s)]

sES s'e8 s€8 i=1

—_———
=V (from eq.(16b))

ZZiwwmwmwm@.

s'€8 s€8 i=1

L
B %4
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As a check, the zeroth order perturbation is

(0)

PO =14 (V1) ZZZU(O) Jwisei(s'[s, 1)q(i]s)q(s)

SGSSESI 1

=1+ (v HY ZZZW ) Wi (s')s,8) q©(i]s)q @ (s)

s'€8 s€8 i=1

=0 (from eq.(B3))

=1

)

as expected. The first-order perturbation of eq.(B4) is

(0)
p) = [Z > Zv(o) Jw1sei(s']s, i)Q(iIS)Q(S)]

s'€8 s€8 i=1

=0 (shown in eq.(B5))

)
H® [Z ZZU (5w (s Is,i)Q(ils)q(S)]

iy s ses i=1

—1

(1)
= va)(s)q(o)(s) [Z ZZU(O) Jwr sel( |s,i)q(i8)q(8)] (B6)

SES s'€8 se8 i=1

=1 (from eq.(15c))

> Z Sy (s'ls,1) ¢ (il)g* ()
\q/_/

s'e8 s€8 i=1

=w<11)(s’|s,i)
(from eq.(B3))

= ZZU (s']s, )¢ (i]5)g'V (s),
s'€8 s€8 i=1

which reproduces eq.(E.14) in Lehmann et al. (2016). Note that the first-order perturbation of the term
in square brackets in the third line of eq.(B6) can potentially produce more terms in the fourth line, but

they are null because w§?§el(s’|s, i) =0 (see eq.(B3)). Equation (B6) proves eq.(21) in the main text.

40


https://doi.org/10.1101/2020.03.02.974279
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.02.974279; this version posted August 4, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Next, we study p(®) under the condition p) = 0. The second-order perturbation of eq.(B4) is

ne (0)
o = (ﬂZZZ“>memmmﬂ

s'€8 se8 i=1

=0 (shown in eq.(B5))

(1)
1 [ZZZUU Jwi (s s,z‘)q(ilsM(S)}

s'€8 se8 i=1

=p(1)=0, (shown in (B6) & assumption)

(2)
+ (V_l)(O) [Z ZZU(O) wl sel |S7Z)q(ZS)Q(S)‘|

1
=1 (shown in eq.(B6)) s'€8 s€8 1=

= S O w515 1) O (i])g ) (s)
s'€8 s€8 i=1 —_———
:w?)(s'\sj)
(from eq.(B3))
Ns
#2203 0O w1, 8) g ils)a D (s)
s'€8 s€8 i=1 W
(frOI%l eq.(B’B))
S 0O wl'), (s, ) ¢ Dils)g @ (s)
s'€8 s€8 i=1 —_——

=w? (s'|s,5)
(from eq.(B3))

= 30 ()25, g 1) (5) + 30 30 S0l (s, 1 g V()

s'€8 s€8 i=1 s'€8 s€8 i=1

—p(2w) —p(2a)

Z ZW) (s'],1)g ™ (i]5)g ) (s)

8 s€8 i=1

=p(2r)
(B7)
Note that the second-order perturbation of the term in square brackets in the third line of eq.(B7) can
potentially produce more terms in the following lines, but they are null because wi?s)cl(s’ |s,i) = 0 (see

eq.(B3)). Equation (B7) proves eq.(22) in the main text.

C Derivation of recursions

In order to practically use the general formulae for the first and second order derivatives of invasion fitness,
eq.(21) and eq.(22), or to use the corresponding formulae derived for the individual fitness functions,
eq.(32) and eq.(34), we need to know ¢(s) (the asymptotic distribution that a randomly sampled mutant
finds itself in a group of state s) and ¢(i|s) (the asymptotic distribution that a randomly sampled mutant,
given that it is sampled from a group in state s, finds itself in a group with ¢+ mutants) under neutrality
as well as the first-order perturbation of these quantities with respect to §. Due to eq.(7), knowing
q(ils) (i = 1,--- ,ng) is equivalent to knowing relatedness, ri(s) (k = 1,--- ,ns). The purpose of this
section is to derive recursions that ¢(s) and r(s) satisfy. Specifically, in section C.1 we derive recursions

that are valid for any ¢, and in section C.2 we describe their perturbations to the zeroth- (hence under
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neutrality) and first-order of ¢.

C.1 Recursions of ¢(s) and r(s) for arbitrary ¢

For simplicity, we will from here on omit the lower and upper bound of the summation when obvious

from the context.

C.1.1 Recursion for ¢(s)

Writing pu = Au component-wise gives

i) = ZZ&(S’,HS,Z’)u(sJ). (C1)

By multiplying both sides with i we obtain

pi'u(s’, i) ZZzas i'|s,i)u(s, ). (C2)

Summing eq.(C2) over s’ and ¢’ gives

p Z Z iu(s’,i) = Z Z Z Z i'a(s’,i'|s, i)u(s,1). (C3)

Dividing eq.(C2) by eq.(C3) results in
i'u(s’,4) B Yo tals s, i)u(s, )

= . C4
Zs” ZZ” 7 u( 1" ’i”) ES” Zi” ZS iz’”a(s”, i”|$, i)u(s, Z) ( )
Using eq.(3) we note that the left-hand side equals ¢(s’,4"). Thus, eq.(C4) can be rewritten as

n_
U T) = S S S S fals”, ], ) i} {iu(s, )]
We divide both the numerator and the denominator of the right-hand side of eq.(C5) by the constant,

Yoo i tu(s’,i’). By using eq.(3) once again we obtain

o) — S il als’ 15, ) iYa(s. )
’ Zs” Zi” Zs Zi{i//a(5/l7 Z'H|57 Z)/Z}Q(Sv Z) ’

which is the recursion that ¢(s,i) obeys.

(C6)

To obtain the recursion that ¢(s) obeys, we sum eq.(C6) over i and obtain

3, 3 S dials i), ) /iYa(s.d)
Z“’ S Sy Do i als”is,7)/iYa(s,q)
— Zs Zz wl(s |SaZ)Q(57i) (07)
eq.(10) Z " Z Z wy(s"]s,4)q(s,i
L w(s s i)alils)a(s
ca5) Yogn > 3oy wi(s"]s, )a(ils)q(s)

L=

42


https://doi.org/10.1101/2020.03.02.974279
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.02.974279; this version posted August 4, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Interpretation of p: Dividing eq.(C3) by the constant ) > . iu(s, 1) gives

p = 2 2uir 25 2V V5 Duls, §)
Z “E"Z u( " //)

iu(s, 1)
_ZZZ Z{zas i'|s,1)/i} S S (e )

=w1 (s’]s,t) (from eq.(10))

- Z Zzwl |8 i Z ., z;jf/(j L)( 1" //) ) (08)

=q(s,1)
=q(i|s)q(s)

which reproduces eq.(5) of Lehmann et al. (2016). The term inside the square bracket of eq.(C8) can be
interpreted as the state-s’ component of the expected individual fitness of a mutant randomly sampled
from the asymptotic distribution u(s, ) (i.e., the probability for a randomly sampled mutant to find itself
in an (s,)-group is proportional to iu(s,)). Thus, invasion fitness p can be interpreted as the expected
number of mutant copies produced by a lineage member randomly sampled from the distribution ¢(s, 7).

Combining eqs.(C7) and (C8) gives us a useful relationship

a(s') = % {Zzw1<s'|s,z’>q<z‘|s>q<s>} . (C9)

C.1.2 Recursion for ri(s)

From the definition of 71 in eq.(7) we have r1(s) = 1. Thus, we are interested in the recursions for r(s)
for k > 2. Using the definition for ¢(s,?) in eq.(5) and the expression eq.(C6), we have
> 2oiiials’, i'ls, i) /i}q(s, i)
i 2o 2ofials’ i"s,4) fita(s, i)
Multiplying both sides of the last equation by ¢ (s’, i) and summing over i’ gives
') = Z (Z)k(sl i/)q(i’|s’) _ Zs Zz Zi’ (bk(‘s/’ il){i’a(sl7 il|57 z)/Z}Q(& Z)
’ Zs Zz Zi,,{i”a(s’7i”|s,i)/i}q(s,i)

_ Zs Z’L wk(s’|s,z:)q(s,z:) (Cll)
eas.(10, 11) Y > wi(s'|s, 1)q(s, @)

2 i wk(sls, D)q(ils)g(s)
ea.(5) Yo, o wi(s']s,1)q(i]s)q(s)’

where wy, denotes k-fitness as defined in eq.(11) in the main text.

q(i's") =

(C10)

C.2 Perturbations of ¢(s) and r(s)

Here, we derive recursions satisfied by the zeroth- and first-order perturbations of ¢(s) and rg(s). These
will be of practical use when computing the selection gradient and disruptive selection coefficient, e.g.,
eq.(21) and eq.(22) or eq.(32) and eq.(34). We also show that the recursions for the perturbation of 7 (s)

can be greatly simplified if we make some additional assumptions on the fitness functions.
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C.2.1 Perturbation of ¢(s)

The following observation is useful in later calculations. For the perturbations of egs.(Blb) and (Blc)

we obtain

206 =1 Eae =0 ZdV =1 Fals) =0 (c12)

S

Zeroth-order perturbation of ¢(s): The zeroth-order perturbation of eq.(C9) with respect to ¢ is

given by

(0)
4O(s o {ZZwl Is,49)q(i]s)q(s )}
- ZZ Is i) q'(ils)q" (s)

(0)
(s'ls)
(from eq.(Bla)) (013)

=2 o) Eai) o

—————
=1 (from eq.(C12))

_ Z w(O) (0) (s).

This proves eq.(15a) in the main text.

First-order perturbation of ¢(s): Assuming pM) = 0 and using the quotient rule the first-order

perturbation of eq.(C9) with respect to § is given by

(1) (0)
1 / 1 ’ . . / . . 1
gW(s") = SO {ZZUH(S |Sal)CI(l|S)Q(S)} - (o 3 {ZZ’LUI(S |S,Z)Q(ZIS)Q(S)} pt

s 4 -0

—ZZw (s'ls,)a® (il5)g"*) (s)
+ZZ¢“$%” 0+ 230wl wld) ¢ il e

<°’<s B <°><s B
(from eq.(Bla)) (from eq.(Bla)) (014)

= > >t (15,0 (i)g ) (s)
2w (1) D00 Gls) gV 6) + 3 ut(ls) 3 a®ils) 4 V6)

i s
— \—/—"
=0 =1
(from eq. (012)) (from eq.(C12))

_Zzw(l) |SZ 0) +Zw(0) ().

C.2.2 Perturbation of r4(s)

Zeroth-order perturbation of 7 (s): With respect to the zeroth-order perturbation of eq.(C11) with

respect to § we obtain

w(s']s,1)q(i]$)q(s) O
) = T T oy T 20 22 415 944, (€13
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Of practical importance for k > 2 is the case that wl(co)(s’|s,i) = 0 holds for all s’ # s and all
i =1,--- ,ng. This applies, for example, when the state of a given group does not change and mutants

settle in new groups only as single individuals (no propagule dispersal). Then eq.(C15) simplifies to
Zw sls )a” (ils), (C16)
and r,io)(s) can be calculated independently of {¢(®)(s)}ses.

First-order perturbation of r;(s): Assuming p(!) = 0 and using the quotient rule the first-order

perturbation of eq.(C11) with respect to d equals

{32 205 wi(s']s, 1)ails)a(s)}
{32, 225 wa(s']s, i)q(ils)q(s) }O)

S w1, Dails)a(s)} O {

{32, 22 wa(s']s,0)q(ils)q(s)}O) |

=r”)(s") (from eq.(C15))

() =

For p) = 0 we observed in eq.(C14) that {3, > wi(s']s,i)q(i]s)q(s)}V) = ¢ (s") holds. Applying
this relation and eq.(C13) we obtain

(1)
1 I 1 ’ . . / (1)(8/)
W)= o {;;w s,z>q<z|s>q<s>} -1 @iy (C18)

which, upon expanding the first-order perturbation on the right hand side more explicitly, becomes

;1)(3) q(o) l{zzw(l) "Is,7) (0)(2‘3)(](0)(3)}
{Zzw s'ls,1)g" (il )q(o)(s)} (C19)
M) (g
+ {Z > w515 1)a <z’|s>q<1><s>} ] r(s') f]@ﬁs/}

When considering the case that w ( ’|s,4) = 0 holds for all ' # s and all i =1,--- ,ng, just as we

did for the case of the zeroth-order perturbation, eq.(C19) simplifies to
Zw(l) (s]s,7)q® (i —i—Zw s|s,1)q™M (i]s)
1 1)
(0) . gV (s) OrRY (s)
{Zw s|s, ) (zs)} O (s)q(o)(s)
= (0)(9) (from eq.(C16))

—Zw<” (s]5,1)¢* (i +Zw sls,i)q ™ (if),

and r,il)(s) can be calculated independently of {g(®)(s)}ses and {g™)(s)}ses.

(C20)

C.3 Closedness of the recursions in ¢(s) and r(s)

In the previous sections, we obtained recursions for ¢(s), 7x(s) and the perturbations thereof to the first

order. However, it is not clear whether these actually form a closed system of equations in terms of
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the variables. The purpose of this section is to show that eqs.(C7) and (C11) (and the perturbation
thereof) indeed constitute such a closed system of equations. To do this, we pay attention to the sum
> wr(s'|s,4)q(i]s), which frequently appears in eqs.(C7) and (C11). We prove that this sum can be
written as a linear combination of the n, relatedness coefficients 71(s),- -+ , 7, (s). With this, it follows

that the desired result indeed holds.

Proof: For fixed k, s’ and s (and for fixed « and y), consider n, distinct points on a two-dimensional
plane, (i,wy(s'|s,i)) € R? (i = 1,...,ns). Then, from a standard result of polynomial interpolation,
there exists a unique polynomial in &, denoted by Ly, o s(€) (called a Lagrange polynomial), whose graph
{(&, Li,s s(£)) | € € R} passes through the above ns points and whose order as a polynomial in ¢ is equal

to or less than ns — 1. Take such a polynomial Ly, s ;. By definition
wi(s'|s,i) = Lps (i) (1=1,...,n) (C21)
holds. Now we define a set of polynomials in &, {®1 5(§), -, Pn, s(£)}, as

{—1 .
0.9 =1 S (1<l<n, s€8), (C22)

ns —J

j=1
where we define ®; 4(¢) = 1. This set of ns polynomials of order 0 to ns —1 can be written more explicitly

as

LEo1 (E-DE-?)  (E-DE=2)(E-n+ D) o
"ng—1"(ng—1)(ns —2)" (ng—1)(ns —2)---1 '
It is thus a basis of the vector space composed of all polynomials in £ of order equal to or less than ng—1.

Because Ly, ¢ s(€) is one such polynomial it can be written as

Lk,s’,s(é-) = Zaé,k,s’,sq)f,s(g) (C24)
(=1
for some ap ks s € R(£=1,---,n,). By construction
(I)&S(Z.) :QSZ(Sai) (Z: 1a ;ns) (C25)

holds (compare eq.(C22) with eq.(6)).
We now consider ), wy(s'|s,)q(i|s). Using Ly o s and egs.(C21),(C24) and (C25) we obtain

w 3’57i ils — Lo «(i)q(ils
; k(5] )Q(‘)eq‘(Cﬁl); k,s'.s(1)q(i]s)

Ns Ns

— a ’ (I) 7 ils
S g; k5@ (0)g(il5)
Ng MNg

T 2 2 el il (©2)

i=1 ¢=1

Ng Ns
= Z Ap.k,s' s Z ¢@(8’ Z)q(l|8)
=1 =1

N
= Zag7k7(/7( Tre(S).
eq-(7) o= «,a7e(3)

Given 11(s) = 1 for all s € 8, eqs.(C7) and (C11) form a large but closed system of equations with ¢(s)
and 7x(s) for all k = 2,--- ,n, and all s € 8. Its size is N + > _¢(ns — 1) = N 4 (n — N) = n, which

makes sense since n is the dimension of matrix A. O
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D Individual 3-fitness

We define the following four different individual 3-fitness functions. For that purpose, consider a focal
individual in a group in state s who adopts 21, and its ny — 1 neighbors who adopt z_y;} in an otherwise

monomorphic population for z.

Individual 3-fitness of type I: Define
wéys,ls(zl,z,{l},z) (D1)

as the expected number of offspring in state s’ that descend from the focal individual adopting 27 in
state s and that have two random neighbors (sampled without replacement) that both descend from the

focal individual.

Individual 3-fitness of type II: Consider one of the focal’s neighbor, called the target individual,
who adopts zo. We define

wél,s’\s(zla'227z—{1,2},2) (DQ)

as the expected number of offspring in state s’ that descend from the focal individual adopting z; in
state s and whose two random neighbors (sampled without replacement) both descend from the target

individual (adopting z3).

Individual 3-fitness of type II’: Consider one of the focal’s neighbor, called the target individual,
who adopts zo. We define

wg;,‘s(zl, 22,Z_{1,2}, %) (D3)

as the expected number of offspring in state s’ that descend from the focal individual adopting z; in state
s, and where one of its two random neighbors (sampled without replacement) descends from the focal
individual while the other descends from the target individual (adopting trait value z3). The following

v 11 .
useful symmetry between Wy o) and Wy o) holds:
r _ o 11
Wy 4(21, 22, 2 (1,2}, 2) = 2wg o |o(22, 21, 2 {1,2}, 2)- (D4)

The reason for this symmetry is as follows. Consider a focal individual adopting z; and a target individual
adopting z2 in the same state-s group. Suppose that a group in state s’ at the next time step comprises
A; individuals that descend from the focal individual and As individuals that descend from the target

individual. Then, by definition such a group contributes to the 3-fitness of type II’ of the focal individual

wé{;/|s(zl,zz,z_{172},z) by

2(A1 — 1)A2
(ne = 1)(ne —2)’
The same group contributes to the 3-fitness of type II of the target individual, wz{)ls,‘s(z27 21, 2_{12}, %),

by

A - (D5)

A1(A1 —-1)
(ns/ - 1)(713/ - 2) '
Equation (D5) is twice as large as eq.(D6), and therefore the symmetry eq.(D4) holds.

As - (D6)
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Individual 3-fitness of type III: Consider two neighbors of the focal individual, the one who adopts
zo (called the first target individual) and the one who adopts z3 (called the second target individual).
Then we define

wél,iqs(zb 22,23, 2-{1,2,3}> Z) (D7)
as the expected number of offspring in state s’ that descend from the focal individual adopting 27 in
state s, and where one of its two random neighbors (sampled without replacement) descends from the
first target individual (adopting z2) and the other descends from the second target individual (adopting

z3). The following symmetry exists for a similar reason as above. For any permutation of o of the set

{1,2,3} holds

1 111
w3,5’|s(20'(1)7 Z5(2)) %o (3)s #—{1,2,3}> z) = wS,s/\s(Zly 22,23, 2-{1,2,3}» z). (D8)

Calculation of ws: With these four individual 3-fitness functions the individual 3-fitness of a mutant

in an (s,4)-group, for 3 < i < ng, can be written as

w3 (s |s,7)
= 'IUZILS/‘S(.’E,SU,"' sy Ly Yy ayay) + (1 - 1)’[0;175/‘3(.%,25,1'7'” Y Ly Yy ,yvy)
—_—— —— —_——— —
i—1 ns—i i—2 ns—i
(t—1)(—2)
(Z - 1)71}3 5/‘5(xa$7$>"' Y Ly Yyt 7y7y) + f’w}}li"s(‘r7$7xax7“' s Ly Yyt 7yuy)
—— —— ——— ——
i—2 ns—i i—3 ns—i
= wili 3/ ’(x7x7"'7x7ya"'7yay)
eq.(D4) osls —_—
i—1 ne—i
| (i—1)(i—2)
+ 3(Z - 1)’10:131,‘9/'8(113,30,%, T, Y, ayvy) + fwilgng/\ (Z,CE,ZL’,ZL’, X, Y, 7y7y)'
i—2 ne—i i—3 ne—i
(DY)
Its zeroth-order perturbation with respect to ¢ is
, i—1)(—2
wgo)(s’|s, i) = w;s% +3(i — 1wy s)s T %wgiqs, (D10)
where all 3-fitness functions ws are evaluated at (y,--- ,y). Equation (D10) is the expected number of

offspring in state s’ under neutrality that descend from a focal mutant individual in state s and have
two random neighbors (sampled without replacement) that are both mutants.

Note that the derivation above assumed 3 < i < ng,, but we can separately confirm that eq.(D10) is
valid for any 1 <1i < ng, because some ill-defined terms for ny; = 1 and 2 become nullified by the factors

i—1andi—2.
E Derivation of the quantities with individual fitness functions
Here, we derive all the key results presented in section 3.3 in the main text.

Equation (33): By setting k¥ = 2 in eq.(C15) and substituting wéo) with eq.(29a), we obtain
0 )
’I“é )( q(o) Z Z |:’LU2 s’|5 Z - 1)wg,s’\s:| q(O) (le)q(O)(S)

1
Z [w;s’\s + (ns - 1)wgs’\s (0)( )] q(O)(s)

cas.(8,012) qO)(s)

(E1)
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This proves eq.(33).

II

If wé)s = wy 4, =0 for ' # s (this is the case, for example, when propagule dispersal is not

/|S "S

allowed), we can use eq.(C16) instead of eq.(C15). Substituting eq.(29a) in eq.(C16) for k = 2 gives

() =7 [k g+ (= Dty ] aOils)
i (E2)

5. no 0
cas.(s.012) 2ol (ns = Dwy 737 (5).

Equation (34): First, substituting w( ) in eq.(22b) with eq.(25¢) gives

aw s'|s . 8210 ,s'|s
(2w: ZZZ 0) { 8;1‘ +(i—1) a;gl

2
0 W1,s'|s

82132’2
8 Wi,s'|s 8 W1, s'|s (0)
cas.(8,9,012) 722” { 922 JF(”s*l)TQ 5 (8)

Pwi, s O () 4 (ng — 1)(n, 2)m ()[4 9(s).

2
0 W1,s'|s

©)(418)g(®
T [ ils)g (5

+2(i—1) +(—1)(i—2)

2(ns — 1
+2(n. ) 02102 029023
(E3a)
Second, substituting wgl) in eq.(22c) with eq.(25b) gives
Pl = ZZZv‘O) Dhtls 1 ;1) 220le ] 40011500 s)
821 82’2 9 9
(E3b)
aw ’ a'u} ’
0) 1,s'|s 1 1,s'|s (0) (1)
eqgs. (8 C12) ZZU |: 821 + (ns ) aZ "2 ( ):| 4 (S)
Third, substituting wgl) in eq.(22d) with eq.(25b) gives
r awl ,s|s . (“)wLS/ s .
4 = 3T S | TG i) TG g e
° (E3c)

/ Ow g\
e 222270 {(”S -2 l 51)(5)] ¢ (s).

eqs.(8,

Equation (35): Substituting wgo) and wgl) in eq.(C14) with eq.(25a) and eq.(25b), respectively, gives

owq o Owq o
gD (s Z Z Lafls - 1)L 0 (4]5)g© (s Z
[ 07 1 0z } o S/‘Sq

511}1 | 8'11}1 | (0)
— Z 58S s—1 Ll L (0) ,
eqs.(8,C12) zs: |: 821 + (n ) 8252 :| + Z W1s ‘Sq

(E4)

Equation (36): By setting k£ = 3 in eq.(C15) and substituting w( ) with eq.(30) we obtain

1—1)(—2 .
TLSO)( Z Z |:U}3 s'|s + 3 Z - ]')wB s’|5 ()2()w21317£’s:| q(O) (Z|S)q(0) (8)

1 0 (ns —1)(ns —2) 0
eqSA(8:9 c12) O (s') Z [wé,s’s +3(ns — l)w?sqsré )( )+ fwyil‘srg )(s) q(o)(s).
)9, "

This proves eq.(36) in the main text.
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If wé s = wgs = wgi = 0 for s’ # s (this is the case, for example, when propagule dispersal is

'l 'l = Wasr)s

not allowed), we can use eq.(C16) instead of eq.(C15). Substituting eq.(30) in eq.(C16) for k = 3 then
gives us
0 (i—1)(i—2) .
066 = 2 [wh 30— Dy, + =2 [ g0

i E6
(ns —1)(ns —2) 1y (0)( ). (50)

_ m (0
cqs.(6.0.012) ws, sls T3(ns — Dwg g r57 () + T WasisTs

Equation (37): By setting k¥ = 2 in eq.(C19), substituting wéo) and wél) with eq.(29a) and (29Db),

respectively, we obtain

ow} ow!
(1) o 1 j :j : 2,s'|s . 2,s'|s
"2 (8/) - q(O)(s’) - |: 0z +(i-1) 0z
awus’ s ast’ s
2= D= = 1= ) =5 g0 i) )

q(O) Z Z [wz o)s = Dws é/lb} g (i]5)qg (s)
q(T(s/) Z Z [wé,sqs (i— 1)w2 S’|s} q(o)(i|s)q(1)(s)

(1)
0 g (s")
- ’I“é )( ) (0)( )
1 owl Ow! (ED
2,s'|s 2,s'ls (0)
= _— s — 1
eqs.(8,9,012) q(0)(s) Zs: [ 021 (n ) Ozy 2 (5)
11 Owll
2,s'|s (0 2,s'|s (0
+2(ns — 1) 8le ri(s) + (ns — 1)(ns — 2) 823\ O s)|¢@(s)
1 _ I (1) (0)
+ ) o [y = Dty ()] 4O s)
1 I 11 (0) (1)
@) ES: |:w2,s’|s + (ns = Dwy g,r5 7 (s )} q’(s)
O] s q(l)( )
o)
This proves eq.(37) in the main text.
If wé)s,ls = w;ls,‘s = 0 for ¢’ # s (this is the case, for example, when propagule dispersal is not

allowed), we can use eq.(C20) instead of eq.(C19). Substituting eq.(29) in eq.(C20) for k = 2 gives us

8 5 S|s a 5 S awIIS S awIIG S
rS)(s):Z[ Sl (1= )l 2 - D 4 - 1) - D | i)

+ Z |:w£,3|s + (Z - 1)wg,s|s q(l)(z|s)

ows ow} owl! owl!
o ,8|s . 29| () 2,sls (0) . . 2,s|s (0)
= S (= )T () 4200, — DL () 4~ i, — 2) =520 )

+ (7’7/5 - 1)’11}2 s|5r§1)(8)'
(E8)
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Therefore, rél)(s) is solved as

() = {1 (- Dwill, } %

ow 2,s|s ow és\s (0) ow ;Is|s (O) awgs\ ()
[azl + 00 = 1) 0(5) 4 20— D=2 () + (0, = s — 220 )

(E9)

From eq.(E2) we see that {1 — (ns — 1)w§15‘ 1= réo)( )/wh s|s Dolds, so eq.(E9) can also be written as

S

(0)
T S
0 (s) = 20
2,s|s
ow} ow! owl! Owl!
,8|s 25\5 (O) 25|8 (0) 2,s|s ()
Z 2sls L) 2 ny — 1)—=21s —1)(ny — 2)—2=1
[ 821 + (nS ) 822 ( )+ ( ) 82’1 T'a ( )+ (nS )(nS ) 823 T's (S)

F Derivation of the results for the lottery model
Here, we derive all the results presented in section 4.1 of the main text.

F.1 Calculations for ¢(s) and v (s)

Under the assumptions (i)-(iii) described in section 4.1 of the main text, eq.(38c) therein can be further

decomposed as

wi 1s(21, 221y, 2) = (1= e )wi’y (21, 2_q1}, 2)

allopatric, reproduction
=(1- %/)wg?l(z) ~wg™ (21, 2-1}, 2),

colonization success emigrant production

(F1)

where wS' represents a component of colonization success of dispersing offspring arriving in groups in
state s’, w™ represents the emigrant production in groups in state s, and wirs,‘s is given as a product of
these two terms. This multiplicative decomposition is a key property that greatly simplifies the following
analysis. It follows from the fact that when dispersal occurs individually and independently to a random
destination, the production of emigrants in a group in habitat s does not depend on the habitat s’ of
the destination group and the colonization success depends only on the habitat of the destination group
and the resident trait value.

Before proceeding to the derivation, we show that
wy s < 1, wi”sls <1, wirs‘s <1 (F2)

hold for all s € §, because we will frequently use these facts without a particular notice below. The proof

starts from the observation that eq.(15a) is rewritten as

(]-_wl e’|s q( ) Z wy e’\eq ) (F'?’)
SES,s#s’

Remember that ¢(®)(s) > 0 holds for all s € 8, and therefore the right hand side of eq.(F3) is non-

negative. Suppose the right hand side of eq.(F3) is zero. Then we have w; s = 0 for all s # s’, which
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contradicts that matrix W (® is primitive (see section 2.3.4). Therefore, the right hand side of eq.(F3)
must be strictly positive. Because q(o)(s’) > 0, it follows that w; | < 1 holds, and this argument is
valid for all s’ € 8. Second, because wy s = wis‘s +wf,s|s < 1, we have wlf’s‘s < 1. Third, from eq.(38Db),
one can see that the relation

T—wy o= 1 —73) (1 —wy,) (F4)
holds. Because we have just proven that wisls < 1 and because s < 1, one concludes that wll’fs‘s <1
holds. End of the proof.

We now first calculate explicitly q(o)(s) and U(O)(S). For that purpose, the vector-matrix notation in

egs.(15a) and (15b) is helpful. In fact, from eqs.(38) and (F1), the fitness under neutrality is written as

p
w1,81|81 0 (1 - ,Y81)wg?l
w© — + : (w‘;‘ln wggl) . (F5)
O wisN‘SN (1_73N)w§(1171 1xN
diagonal matrix (N X N) Nx1
Note that w!’s and w§™'s without variables are evaluated respectively at y and (y,---,y) here and

thereafter. To solve eq.(15a), we right-multiply eq.(F5) by the column vector ¢(°) and obtain

wlp,sl [s1 0 (]. — ’}/51)’(1);?1
q© = q9 + : (wgin wgg‘) q?
0 w}ilesN (1 - ’st)wg]ovl =some constant
p
L— wl,sl\s1 0 (1 — ’Ysl)wg?l (FG)
— g :
0 1 _wIIJ,SN\sN (1 773N)wg[]zjl
(A = )ul” (1~ y)uf” wg”

(0) _
— q (5) X . T - T .
1— wis‘s ea.(F4) (1 —5)(1 — wf)sls) 1— wf,sls

To solve eq.(15b) we left-multiply eq.(F5) by the row vector (%) and obtain

p 1
wl,sﬂsl 0 (1 - ’YSI)ng
v = () + 9O : (w‘z?’ wgrlg)
p 1
0 wl,lesN (1 - FYSN)wg(])\]
=some constant
p
1— WY gl 0 (F7)
— o (wii“ w‘j‘}?)
p
0 1-— Wy o lsw
wem wem
= vO%) x —E— = s

L—wp o ea (k) (1—7)(1—wy,)

We normalize ¢(9) (s) and v(®)(s) to satisfy eq.(15¢) and eq.(B1b) and obtain the following result:

col col
(0) _ W E Wy F8
K (8) 1 - wlfrss/ ( s 1- wlljrs’|s’> ( )

em col wdr
0)(g) = Wy Wy = k9
v (S) (1 — ’Ys)(l — w?rs‘s) <g: 1— wi“;[g[) / <§ (1 - 75/)(1 — wlfrsls')2> . ( )

)

Combining eqs.(F8) and (F9) gives eq.(40) in the main text. In particular, their product

(0)( ) (0)( ) wffsls w‘irsqs, (F10)
v (s)gv (s) = T r Z — —w? ’
(1 _ fys)(l — wlla,s|s)(1 wlp,s|s) > (1 ’Ys’)(l 'LUiS/‘Sl>2
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can be recognized as the the class reproductive value of a group in habitat s (Rousset, 2004).

We note that ¢(°)(s) can also be derived via a different pathway. To ease our understanding, let
us temporarily consider a finite population that consists of Ng groups (later we will take the limit,
Ng — o0, because we actually consider an infinitely large population in this paper) and consider the
neutral case. The total number of individuals in groups in habitat s’ in a next time step is the sum of

the number of individuals in habitat s’ produced by individuals in habitat s over all s € 8, which is
> wi s Namans. (F11)
S

Here, Ngmy is the total number of groups in habitat s, and Ngmsng is the total number of individuals in
groups in habitat s. However, eq.(F11) can also be written as Ngmeny, so equating these two quantities

cancels out N¢ and gives us

T Mg = Zwl’sl‘swsns, (F12)

S

and therefore eq.(F12) is valid for Ng — oo as well (see also eq.(E.21) of Lehmann et al., 2016). Equation
(F12) suggests that the column vector {msns}scs is an eigenvector of matrix W corresponding to
the leading eigenvalue of 1. From the Perron-Frobenius theorem the eigenspace of the matrix W (%)
corresponding to the leading eigenvalue 1 is one-dimensional. Thus, from the uniqueness of the normalized

eigenvector we obtain
0)(g) = _TsTs
g (s) = .
( ) Zs/ Tg' Mgt

Note that eq.(F8) and eq.(F13) are both correct. Their equivalence suggests the existence of the following

(F13)

constraint in the choice of w¢! and 1 — wfrsls in our spatial lottery model, namely, that there exists a
positive constant C' which is independent of s and

col
L
1—

1 s|s

= Cmgng (F14)

is satisfied for all s € 8.

Finally, we calculate ¢(!) (s) under the assumption that p") = 0. From eq.(35), we then obtain

1) s _ 8w¥75|s ( . ) 1,s|s (0)(8) (0)( ) + wP (1)( )
4 eq.(38a) 021 8 0 q 1 Sls
owd ow?
8|8’ 1,s]s” (0
+ Z 8zi ; ny —1) 822‘3 g ) s') + Z wis\s/q(l)(sl
° ° (F15)
pr pr
S L NI PR IR SR LI VT
eqs.(38b, F1) 0% 029 wy s|s
(1 _ ’YS) col Z 5“’2/““ + (ngl _ 1)awe§a ,,,(0) (5/) q(O)(S/) + Zwewq(l)(sl)
p 821 ) 822 2 " s ’
which is implicitly solved as
1 owl" owP".
(1) 8|8 1 1,sls _(0) (0)
(5) = 1_wm[ S (= 1) 520 ) | )
col Owem ) (F16)
Wy W Wgr (0) em (1
s’ 1
i L= wi)rsls {Z/ [ 0z - (n ) 0z9 ( :| + Zw }
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Using >, ¢V (s) = 0 (see eq.(C12)), we have

1 ow owt”
(1) _ 1 s|s _ 1,s|s (0) (0)
ES q (S) §s 1— wpr l 521 + (ns 1) 822 7“2 (S)] q (S)

1,s|s

wcol awem aw (O)
E s E o — (0) E em (1) _
+ < 1 pr ) { s’ |: 821 + ( 1) 622 ( :| q + w O’

s 1 s|s
(F17)

which shows that

owg" _ owg™ (o), 0) [ em (1)(/
> %+ e = DG 40 + T ()

s/

- . (F18)
wcol 1 8w§’ st afwlf Is'(0)
_ W .5'ls 1)l N a©e )
(Zl— |> (Zl_ l[ 1 (= )20 0| O
holds. Putting eq.(F18) back into eq.(F16) and using eq.(F8) gives us
1 oy’ ow”
W (s) = sls 1) Lsls,.(0)
d(s) {1 wi’:b[ Sl (= 1))
1 8wpr aw r (Flg)
- 1,s'|s’ . 1,s'|s" (0), 4 0) (ot (0)
s’ 1 )
) l—wfi,,[ A (g — 1) 1 <s>]q <s>}q (5

which proves eq.(43) in the main text.

F.2 Individual 2-fitness and 3-fitness for the lottery model and calculations
for relatedness

The purpose of this subsection is to derive pairwise relatedness and three-way relatedness under neu-
trality, as well as the first-order perturbation of pairwise relatedness under the assumption of the lottery
model in section 4.1. For that purpose we will show that for this lottery model individual 2-fitness
and individual 3-fitness are written in terms of the philopatric component of individual 1-fitness as in
eq.(F23) and eq.(F31).

Let us label individuals in a focal group in habitat s from 1 to ng, and let their trait values be z;
to zn,, respectively. Let us also operationally define “positions” in this group, from “position 1”7 to
“position ng”. If adult k survives (with occurs with probability 7,) we operationally assume that he/she
occupies “position k” in the next generation. If adult k dies (which occurs with probability 1 — ~,) we
assume that “position k” in the next generation becomes open to competition. In the latter case, adult
i bears a descendant in this “position k” with probability wffsls(zi, Z_giy, 2)/ns, which we will write as
w; in what follows as a short-hand notation.

With these, the probability (; , that an individual in position k& in the next generation in the focal
group “descends” from adult ¢ in that group in the previous generation (thus including self through

survival) is, for the lottery model, given by
Gisk = Ys0ik + (1 = 7s)ws, (F20)

where §; , equals one if i = k and otherwise zero. In eq.(F20), the first term represents the probability that
adult 7 survives and occupies position k (thus equal to «, if ¢ = k, zero otherwise), and the second term
represents the probability that adult k£ dies, position k becomes open to competition, and a descendant

of adult 7 occupies this position.
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F.2.1 Pairwise relatedness

Then, same-parent individual 2-fitness of adult 1, which we take as a focal individual, denoted by

was‘s(zl, Z_{1y,2) (recall eq.(26)), is written as

w;,s|s(zlv Z—{l}a Z)

i: C1 ks ﬁ Z CLks

ki1=1 ko=1

ko#k1
1
— > Dbk + (L= ys)wr] fsdu e, + (1= s)wn]
s T L 1<k kp<n,
k1#k2
1
= 3 D ik [ (1) Yo (@G +0uk) | wn
s 1<k ko <n. 1<k ko<n, (F21)
k1#ko k1#k2
=0 =2(7L3—1)
) I S ]
1<ky ka <n,
k1 ks
=ns(ns—1)

= 2795(1 — 7s)w1 +ns(1 — 75)2‘”%

1 T T 2
—— {2%(1 —s) [wis‘s(zl,z_{l}, z)} +(1— %)2 [wisls(zl, zZ_{13, z)} } .

ns
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In a similar vein, different-parent individual 2-fitness is

1T
w2,s\s(zlv 22, Z—{1,2}» Z)

i Cl,lﬂ ﬁ i: CQ,k2

k‘1:1 k‘g:l
ok
1
T —1 Z [Vs01,k, + (1 — vs)wi] [1s02,k, + (1 — s )wo]
s T L <k kp<n,
k1#k2
1
= oA Y Sumams [ (1) Yo G [wa Yo Gaks [ wn
s 1<k ko <n, 1<k, ka<n, 1<k, ka<n,
k1#k2 k1#k2 k1#k2
=1 =ns—1 =ns—1
+ (1= wwe | > 1 1
1<ky,k2<ns
k1#k2
=ns(ns—1)
72

= + s (1 = yo) (w1 + wa) + 1 (1 — 75) 2wiwo
I v .
- —1 * { (1 - ’YS) ([wis\s(zl’zf{l}’z)} + [wis‘s(z27Z7{2}7z)})

(1= )? {wlffs‘s(zl,z,{l},z)} [wffsls(zz,z,{g},z)} }
(F22)

In contrast, when s’ # s, we have wé s = 0 and wgs/ls = 0 from the assumption of independent

dispersal. With these expressions, we obtain

1 )2
w£,3|s = ;(1 - 75) {275 wy s\s ( 75) ( ?s|s) }

11 T 1 pr\?
Wy s|s = ne — 1 + Fs(l ) 275 1 s|s (]' - ’YS) (wl,s|s)
ow} 2 - 5 owd”
,8|s 1,s|s
=—(1- s s 1- s
821 N ( v ) _'Y + ( v ) wy s|s_ 821
8w£7sls 2 a ) - (1 — )P . 8w11):| (F23)
8z  ng Vs) s Ts)t S|S< 82’2

- :7(1_75) ’75"'(1 '75) 15|S

071 N 321 32’2
owl! 2 - 1 Ow”
8|8 1,s|s
= —(1 - s 1—7s
823 Ng ( . ) _7 ( Y ) 1 S|S_ 622

By substituting eq.(F23) in eq.(E2), we obtain a recursion on Téo)(s) as

O (s) = nls (1) {275 w4 (1= 7s) (wf,rs|s>2}
L1 oty 0 (uf,) ] 00

S

(F24)

n
+ {72 +
which is explicitly solved as eq.(41) in the main text.
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F.2.2 Three-way relatedness

Next we calculate individual 3-fitness of three different types (from type-I to III) in order to calculate

three-way relatedness. For type-I, we have

wiI%,s|s(Z17 Z*{1}7 Z)

Ng 1
= Z Clkey m Z C1,ko G ks

ki=1 1<kz,k3<n;
k1#ka#k3F#k1

1
= (e — 1) —2) Z [Vs01,ky + (1 = ys)wi] [Vs01 5, + (1 — vs)wi] [1501k5 + (1 = 7s)w1]
8 s 1<ky ko, ks<ns

ki#koF#ksFEkL

1
= D) D (=702 Orky + O1k, + 01 )} + (1= 75) wi]
5 s 1<k ,k2,ks<ns

k1#ka#ks#k1
= 375(1 - 75)29‘)% + ns(l - 75)39‘)%

1 T
== {3%(1 — 7,)? [wisp(zla Z_(1y z)}

S

2 3 pr 3
+ (1 — 73) [st‘S(Zl,z—{l}: Z)} ,

(F25)
where we have used
E 01,5101, k201,85 = 0,
1<k1,ko,k3<n;
k1#koFks#k1
E 01,k1 01,k = E 01,k1 01,k = E 01,k201,k5 = 0,
1<k1,k2,kz<ns 1<k1,k2,kz<ns 1<k1,k2,kz<ns
k1 Aka ks Zky k1 #koAt ks Zhy k1#ka#ksEky
) 01k, = N O1ky = > 01,k = (ns — 1)(ns — 2), (F26)
1<k1,k2,k3<ns 1<k, ko,k3<ns 1<ky,k2,k3<n;
Fr#kaFksZk k1 koA ks Zky 1 # koA ks 2k,
E 1| =ns(ns — 1)(ns — 2).
1<k ,k2,k3<n;
k1#kaF#ks#k1
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For type-11, we obtain

ot
w3,5|5(21a 22, Z_{12}5 z)

Ns 1
=Y GQm (e —D(ns—2) > Gkl

ki=1 1<ks, k3 <n;

k1#koF#ks#k1
1

=——————~ Y [y + (1= ve)wi] [eO2.k, + (1= Ye)wa] [Ya02ks + (1 — 7s)w2]

(ns — 1)(ns — 2)

1<ky,k2,k3<n;

k1#kaF#ksF#k1
1
N m Z [’Yf(l = Vs) (01,1 02,2 + 01y 02,5 )2
s s 1<kq ko ks <ns
T ks ks 2k

+ Vs (1 = 75)* (01, w5 + G2 kywi1w2 + G2 kyw1wa)

+ (1 = 75) wyw3]

2
Il 1'75(1 — s )wa + s (1 = 75) (2w1w2 + w3) + (1 = 75) wiws
S
2

— 201 _ pr
=, — )T [ 2.2

1 r r r 2
+ ﬁ{’ys(l - 75)2 (2 |:w11),s|s(zl’z*{1}’z):| |:w113,s\s(z2’27{2}’2):| + |:w11:),s\s(227Z7{2}’Z):| )

+ (1 =) [wlf,rs|s(zh Z_(1}, Z)} [wlf,];\s(z%z—{z}’z):r }

(F27)
where we have used
E 01,5102, k502,15, = 0,
1<ks,k3<ns
k1#koF#ks#k1
§ 52,k252,k3 = 07
1<ks,k3<ns
k1#kaFks#k1
E 01,1102,k = g 01,6102, = N5 — 2,
1<ks,k3<ns 1<ka,k3<ns
oa s ey ey i Ak ey Aoy (F28)
E : 61,’f1 = E : 527192 = E : 6271% = (ns - 1)(77,8 - 2)7
1§k2,k3§ns 1§k2,k3§ns 1§k2,k3§ns
k1#koF#k3F#k1 k1#koF#k3F#k1 k1#koF#kzF#k1
E 1| =ns(ns — 1)(ns — 2).
1<k1,k2,k3<ns
k1#koF#ks#k1
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Finally, for type-III we obtain

111
W3 5|5 (21, 225 %3, 2—{1,2,3}> Z)

n n
s 1 s
=Y Gk =D =2) > (GkaCaiks + CkaCorks)
ki=1 s s 1<ks,k3<ns
k1#koF#ks#k1

2
= DY) lgkhgﬁgm C1,k162,k2C3 k5
k1#kaF#ksF#k1
N b (= o)) Bk, + (1 — )wn] Predse, + (1 — 7)es]
(s =1)(ns =2) |, = _ o ) T ’ T )
k1#koF#k3Fk1
2 3
T, 2 P
k1#koF#kzF#k1

+ Y2 (1 = 7s) (01, 02k, w3 + 61,1, 03,k w2 + 02k, 03y w1 )

+ 95 (1 = 75)2 (01,1, wows + 02, kywiws + 65 gywiwa) + (1 — 7s) Pwiwaws]

= 1)2(ns — 2)75 + ns2— 17?(1 —¥s) (w1 + w2 + ws)
+ 27, (1 — 75) 2 (wrwz + wiws 4 waws) + 2n6(1 — 7, ) wiwows
-
ot ([ Gz 2] [ o2, 2)] o [ s 2,2 )
+ %{%(1 = (b 2oy )] [, (2 g2y )|
+ [0d Gz 2)] [ (2 gay.2)]
+ {wffs‘s(z%z_{g},z)} |:’LU11);|S(23,Z_{3},Z):| )

(=) [0l 2y )] [ (o 2o, )] [l (s, 2o 2)|

(F29)
Here we have used
E 01k, 02k, 03 k5 = 1,
1<k1,ko,k3<ns
k1#ko#kzF#k1
E 01,k 02,k = g 01,k 03,k = g 02,k,03,k5 = Ms — 2,
1<k1,k2,kz<ns 1<k1,k2,kz<ns 1<k1,k2,kz<ns
k1#ko#ksF#k1 k1#ko#kz#k1 k1#ko#kzF#k1
> =) 02k, = > I3,k = (s — 1)(ns — 2), (F30)
1<ky,k2,k3<ns 1<k1,k2,kz<ns 1<k1,k2,kz<ns
k1#kaF#ksF#k, k1#kaF#k3F#k, k1#ka#k3F#k1
E 1| =ns(ns —1)(ns — 2).
1<k ,k2,k3<ns
k1F#ke#k3#k1
In contrast, when s’ # s, from the assumption of random dispersal we have wé sls = wgs,‘ s =
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wgli,ls = 0. From these calculations we arrive at

1 r 2 T 3
wé,s\s = ﬁ {373(1 - '73)2 (wll),s|s> + (1 - 73)3 (wll),s|s) }

S

2 T 1 r 2 r 3
wzl’,{s\s = 7?(1 - ’Ys)wg)s‘s + 72{378(1 - 78)2 <w1p3|s> + (1 - 78)3 (wlp.s|s) }
ng(ns — 1) ; n?2 ; / (F31)
IT1 2 3

2 pr
W3 4|5 Vs + Vs 1- Vs)W sls
3.5 (ns — 1)(ns — 2) ns(ns — 1) ( ) Ls|

+—£%{3741——792(uﬁ;b>2+-ﬂf—793(“f;b)3}'

S

Substituting eq.(F31) in eq.(E6) gives us a recursion on réo) that includes réo). Solving it with the help

of eq.(41) gives the following result:

(wi),rs|5)2{a0 + a’l(wi),rﬂs) + C”Q(U)ll),rﬂs)2 + a3(w§),rs\s)2}

) Rl ) TRl PHe F el el el
where ao = 3n7s(1+ 372)
ar = {ns + (17ns — 12)72}(1 — 7s)
az = 10(ns — 1)75(1 — 7s)?
ag =2(ns — 1)(1 = 7,)°
bo = ns(1+7s)
by = —2(ns — 1)7 (F32b)

by = —(ns = 1)(1 —7s)

co = nZ(L+7s +3)

c1 = —3n,(ng — 2)v2

2 = =3(ns — 1)(ns = 2)75(1 =)

c3 = —(ns — 1)(ns = 2)(1 —75)*.

Setting vs = 0 or 5 ~ 1 (note that setting 75 = 1 means individuals never die and hence evolution does

not occur, so we need 75 to be “close” to 1) in eq.(F32) gives eq.(42) in the main result.
F.2.3 First-order perturbation of pairwise relatedness

Here we assume p") = 0 and calculate the first-order perturbation of pairwise relatedness, rél).
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Substituting eq.(F23) in eq.(E10) yields

(0)
5 (s) 2 .
rél)(s) = 2 5y ;(1 —s) |vs + (1 — 'ys)wlisls} X
o {0 (o)}
ow™" owr"
1,5]s 1,5]s (0)
_ bsis )8
[ 821 + (ns ) 822 T2 (S)
owr” owr* owr”
1,s|s 1,s|s 0 1,s|s (0
+(n, — 1) { o+ }ré () (ns = 1)(ms = 2)—5 ><s>] (F33)
’Ys"’(l_fy )wpr s
— 27‘50) (s) o7 Ll

2
27511)51“5\8 + (1 - rys) (wlp,rs|s)

oy, ow™"
x4 1L+ (g = D ()] =212 4 (ny — 1)[2r(s) + (g — 207 ()] 22 b,
821 822

which is eq.(44) in the main text.

G Consistency with previous results about relatedenss
We here show that we recover several previous results concerning relatedness from our model.

G.1 Neutral relatedness in the lottery model

Our result for the neutral pairwise relatedness given in eq.(41) agrees with R4 in Pen (2000) (the solution
to his eq.(A2)). To see this one has to set S = 75, h = lfrs‘ and N = n, in Pen (2000). Furthermore,

S

for the special case that v, = 0 in eq.(41) we obtain

2
i (s) = G - (G1)
ns — (ng — 1) <w1p7rsls)

which agrees with @ in eq.(2.9) in Rousset (2004), a standard results for the island model, by using

vy=1,1-—m=w",_ and N = n, there.

1,s|s
On the other hand, taking the limit v, — 1 in eq.(41) gives

pr

0 wl,ss
) = e e (G2)
s s 1,s|s

This result agrees with ro(2z,2) = (1 —m(2))/(1 + m(z)(N — 1)) in Table 1 in Mullon et al. (2016) by

lprs|s and N = n, in their formula. Note, that there was a typo in their original

setting 1 — m(z) = w
expression, which we corrected here.

Finally, as for r:(,)o)(s), the first line of eq.(42) agrees with R3 in eq.(12b) in Ohtsuki (2010) by setting
l—-m= wf)rsls and N = n; there. The second line agrees with r3(z, z) in Table 1 in Mullon et al. (2016)

by setting 1 —m(z) = wfrsls and N = ng there.

G.2 Neutral relatedness under fluctuating group size

We here prove the connection between our eq.(33) and eq.(29) of Rousset and Ronce (2004). In this latter

model, individuals migrate independently from each other (no propagule migration) and states determine
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group size, which fluctuates stochasticaly between generations according to an ergodic Markov chain.

The probability p(o)(s) that a group is in state s in the neutral process at stationarity then satisfies

pO(s") =DV ( ) (s), (G3)

sES

where p(®(s'|s) = p(©(s'|s;p(?)) is the forward transition probability that a group in state s in the
parental generation is in state s’ in the offspring generation and this generally depends on whole pop-
ulation state p(® = (p(®(s1),---,p@(sx)) (since groups are connected to each other by dispersal, see
Metz and Gyllenberg (2001); Lehmann et al. (2006); Alizon and Taylor (2008) for concrete examples of
such transition probabilities) and on the resident trait value.

In terms of these quantities, first note

40(s) _ nsps) (G4)
q(o) (s/) nS/p(O) (3/) ’

where the equality follows from eq.(E.21) of Lehmann et al. (2016). Intuitively speaking, eq.(G4) tells
that the stationary fraction of individuals in group s under neutrality, n,p(®)(s), is proportional to the
stationary distribution of mutants under neutrality, q(o)(s). Second, because the model of Rousset and
Ronce (2004) did not allow any propagule dispersal, the only way that a focal individual in a group
in state s earns individual 2-fitness is that the state of the group changes from state s in the parental
generation to state s’ in the offspring generation and the focal individual produces offspring in the focal

group. Thus, we obtain

wé,s’|s = w;,s’|(s’<—s)p(0)(8/|s) (G5)

nm I (0) (ot
w2,s/|s - w2,s/|(s’<—s)p (S |8)7

where w; s and wg o|(s's) A€ conditional 2-fitness components of the focal individual (they follow

"|(s4=s)

the same definition as wé ols and wgs but are conditional on the parental generation being in state s

’ ‘S
and the offspring generation being in state s’) evaluated under neutrality.

Substituting eqs.(G4)—(Gb) into eq.(33) and using the backward transition probability

0) (g (0)
0 P (s']5)p(s)
Phonc(s15") SO (G6)

that a group in state s’ in the offspring generation was in state s in the previous generation, we obtain

that
CHCEDY [Fz{s'us/es) + F2I,Is/|(s/es>7‘§o)(8)] Pho(s | ), (G7)
s€8
where
F2I,s’|(s’<—s) = %wé,sﬂ(s’es)
(G8)

(ns —ns g
Ngr w2,s

11
F2,s’|(s’<—s) "|(s"4s)"

We now claim that F2I o|(s's) is the probability that two randomly sampled offspring in state s’
both descend from the same parent in state s (i.e., the coalescence probability) under neutrality and

that FII

2,8'|(s"«s)

is the probability that two randomly sampled offspring in state s’ both descend from
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two distinct parents in state s under neutrality. If this interpretation holds, then our eq.(G7) reduces to
eq.(29) of Rousset and Ronce (2004).
We now proceed to prove this claim. Given that the state of the group is s in the parental generation

and s in the offspring generation, from the definition of (conditional) same-parent 2-fitness, we can write

w2 ,8'|(s"4s) Z Cl k1 1 Z Cl ka | > (Gg)

k1=1 ka=1
ka#ky

where, we use the (-notation once used in section F.2; this time (; ; represents the probability that an
individual in position & € {1,--- ,ny} in the next generation in the focal group descends from adult
1€ {1, -+ ,ns} in that group in the previous generation under neutrality conditioned on that the group

state has changed (forwardly in time) from s to s'.

ng Ny

I _ ~ (ki Gk
Fyi(sres) =N X D D Ty (g — 1)’ (G10)
ki=1 ko=
' k22767€11

which, owing to neutrality (and thus exchangeability of individuals), can be rewritten as

s/ Ngr

I S Gi ks Gisk
Flawen =Y 30 Gl (G11)
Ngr (N 1
i=1 k=1 ko=1
ka#ky
and therefore can be read as the ratio of the total number of ways of sampling two offspring from the

same parent in a group of size ng to the total number of ways of sampling two offspring in a group of

size ng (i.e., the coalescence probability). Likewise, we have

U)2 ,8'|(s"4—s) Z Cl k1 7_1 Z CZ ka | > (G].Q)

kll kzl

ka#k
hereb
whereby S e
11 1,k162,k2
F2,s'|(s'<—s) = (ns — 1)ns x Z nir—l) (G13)
1=1k s
g

which, owing to neutrality and exchangeability of individuals, can be rewritten as

% - - Cz k C’L k
ERINES 35 30 D S L o
i1=1 i2=1 k1=1 ko=1
12741 ko#k1
and thus can be read as the ratio of the total number of ways of sampling two offspring from the distinct
parents in a group of size ng to the total number of ways of sampling two offspring in a group of size ny

(i.e., the proability that offspring in state s’ descend from two distinct parents in state s). This ends the

proof of our aforementioned claim.

G.3 Perturbation of relatedness

As for rél)(s), eq.(44) evaluated at s = 0 reads

1 owy’, owyy,
rél)(s) = 2r§0)(s) - {{1 + (ng —1)r <0>( ) #71\ + (ns — 1) 2T§0)(5) + (ns — 2)71530)(3)} ZLsls ’

1,s|s 0z)

(G15)

63


https://doi.org/10.1101/2020.03.02.974279
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.02.974279; this version posted August 4, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

which corresponds to the expression that appear in Ar in Wakano and Lehmann (2014) (see the bottom of

their Appendix B, after their eq.(B.46)), which essentially shows that the perturbation of pair-relatedness

is

(1+ (N = 1)Ro)w§ + (2R + (N — 2)R3)w]
1—m '

The correspondence between eq.(G15) and eq.(G16) is as follows. Set Ry = réo)(s), R3 = réo)(s), N =

/0z1, and wh = (ng—1)(Ow?" | /0z) in eq.(G16). Note that the original

1,s|s

2R, (G16)

P

. __..pr r
ng,l—m=w 1sls

P _
1,s|s7wS = Ow

expression at the bottom of Appendix B in Wakano and Lehmann (2014) contains the factor 4, not
2. This two-fold difference comes from the fact that Wakano and Lehmann (2014) considered variance

dynamics of a trait distribution, whereas we here consider directly the perturbation of ra(s).

H Perturbations for the hard selection lottery model

Here, we derive the expressions for p(*) and p(? for the lottery model under hard selection. The resulting
expression are complicated and do not appear in the main text, but they can be useful for numerical
calculations as they apply to any fecundity function given the model’s other assumptions.
We recall that for hard selection, from eqs.(38b) and (38¢) with egs.(45a) and (46a), we have
(1 —mg)ns fs(21,2_{13,2)
L—mg) >0 fo(zis 2 giy, 2) + Thara (2)

=wy)s (71,2 1y52)

wll:),s|s(zl7 z*{l}’ Z) =s + (1 - ’YS) (

: = i (H1)
/ 72:7 9 — 1 - Vs’ ; - PDs sfs ,z7 , .
Wy s |s(21 {1} z) = ( s') (1-— ms')Z?; for (2,2, 2) + Inara(2) psmis fs(z1 {1} 2)
=wel(=) =wgh (21,2 (13,2)

—wdr
77‘0115/‘5('2172—{1}12)

H.1 First-order perturbation of invasion fitness

Our goal here is to calculate the first-order perturbation of invasion fitness, given by eq.(32). For that
purpose, we will calculate the components that appear in eq.(32), as below.
Firstly, we will calculate v(®)(s')¢(®)(s). With the definition of backward migration probability,

eq.(49), we see that

pr =1

Wysls =+~ ds hard

dr W(s/ns/psmsfs (H2)
w1,3’|5 = ds’,hard
Ihard

hold. Substituting them into eq.(40) gives

U(O)(s’)q(o)(s) — ﬂ—snsps’ms’fs’ / (Z ( 7-‘—s”ns”ps”"ns”fs” )
s//

(1 - ’Ys’)ds’,hardlhard 1- ’Ys”)ds”,hardlhard

(H3)
o Wsnsps’ms/fs’ < npmf >
(1 = 7s)ds’ hara (1 —7)dnara/’
where we set
npm f > _ NsPsts fs
T, )= Mg H4
< (1 - ’Y)dhard Z (1 - ’Ys)ds,hard ( )

sES
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Secondly, we will calculate two different derivatives of individual 1-fitness that appear in eq.(32). A

direct calculation of eq.(H1) shows that

wl”, of. | O A
1,s|s Oz 2 0z Ozo
—(1-d R om0
821 ( s,hard) fs ( s,hard) <ns fs Ns fs >
Pt
=Wy sls
pr Ifs Ofs Ofs
awls‘s—(l—dh' d)azg_(l_dh d)2 iTzl_’_ 1322
822 \—i’l/ fs shar Ng fs Ns fs
pr
=Wy s)s
d Ofs
6wlrs’\s —d . dﬂs/ns/psmsfs 67; (H5)
= @g’ har
621 Ihard fs
:wil,rsl\s
d Ofs
awl,rs’\s —dy, dﬂs/nslpsmsfs ' 5752
= @g’ har .
822 Ihard fs
=w" (sl |s
Remember that from eq.(38)
Wi,s'|s = 68',8[75 + (1 - ,yé)wlfl‘b] + (1 Vs’ )wl ,s'|s (H6)

(where d, ¢ is Kronecker’s delta; it is 1 if s’ = s and is 0 if s’ # s) holds. Taking the first-order derivative

of eq.(H6), substituting eq.(H5) therein, and using eq.(H6) again for rewriting give us

8wl s'|s gf 1 % 1 gfs
: = \W1,ss — 68 ,sVs 2 68’,5 1- Vs 1-— ds,hard Rl ——s + 22
0o = (WL )= T. ( ) I - —
Owy s Of | oL A (H7)
Ls'ls 9z 2 0z Oz
= s/s_asss 2_68’51_ s 1_ds ar — = 2 .
B2 (wr. 7s) T (1= 7s)( hard) (n T + 2 m— )

Now we are ready to calculate the first-order perturbation of invasion fitness, eq.(32). We substitute

eq.(H7) into eq.(32). We show this calculation piece by piece. Firstly,

a s'|s
I
3f< Ofs
= Z ZU(O)(SI)M,S/\S

Z v 0) 3z1 (0) (8)

=v (s
(from eq‘%léb)) (HS)

ofs

E 2 1 0z1 ng — 1 gz; (0)
_ U 1 - 78)(1 — ds,hard) f + TT q (8)
Ofs 1 Ofs -1 Ofs
= 1— (0) (0) 921 (1 _ ds har 2 1 9z Dz .
st 76000 (8)g () § S = (1= donara)® - s B

Secondly, a quite similar calculation to above leads to

Owy o
0) o . 1,s|s (0) (0)
22 v =)= (4 06)
Ofs

- Z 1 - ’yS ) (0)( ) (ns - 1)7"(0) (S) 025 — (]. - ds hard)2 i % + -1 gi‘z .
2 s ' ns fs N Is
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By combining eqs.(H8) and (H9) in eq.(32), we obtain the first-order perturbation as

o]

9fs
821

[s

9fs
822

[s

(0)
2

PV =3 (1= 70 (s)g ) (s) + (ns = Dy (s)

(H10)

) 1 Ofs n 1 Ofs

(0 2 0z1 s = 0zo

-1 s— 1 1 — dghar — .
1+ (12 = DAV ()1~ ) (n m oy Bl )}

Rewriting it by using eqs.(50) and (H3) gives eq.(48) in the main text. Here, réo)(s) is calculated by
substituting eq.(H2) into eq.(41). The result is shown in eq.(51) in the main text.

H.2 Second-order perturbation of invasion fitness

We now assume that p) = 0. Our goal here is to calculate the second-order perturbation of invasion
fitness, given by eq.(34). We have already calculated first-order derivatives that appear there, as given
in eq.(H7). We will then calculate various second-order derivatives that appear in eq.(34). A direct

calculation of eq.(H1) shows that relevant terms are

66

2,,Pr % fs 2*fs 2 fs
3 w17s|s _ (1 —d ) 82% . (1 —d )2 i 82% Nsg — 1 az%
- 62’% s,hard fs s,hard s fs Ne fs
=wl’y),
of. (| 0f 0L
_ 2(1 — ds hard)2 22 — 2z fe 0z
’ fs \ns [s ns fs
% ng— 1 % ’
+2(1 = dypara)® | — 22 : -
( shar ) nS fS ns fS
B2 f. 9% £, 3 fs
aQwﬁrs s BZJ; 1 Bzfz Ng — 1 8zfQ
’l—(l—d ) 2_(1_d )2 - 1 2
8,2% s,hard fs s,hard e fs N fs
=w$,rs\
Afs Ofs Ofs
- 2(1 — ds hard)2 Oz i EF B T ! 2
’ fs \ns [s ns fs
s 120\
+ 2(1 - ds h%rd)g — o= Do =~ 0
o ns fs ns fs HI1
S2wP" 0*fs 0 fs 0% fs (Hila)
Lsls _ (1 = ds hara) fuz (1—dsn d)2 2 Daz g Te =2 e
02122 $ fs ot Mg fs N fs
:wi)fs\s
Ofe Of\ (| 8L 0%
— (1 —dspara)® | =+ 22| | =2+ = -
U A A A R S
ol g 9L 2
+2(1 — ds para)® | — 22 + = =2
( et ) ns fs N Is
20P" e 9% fs 9 fs
9 wl,s|s _ (1 —d d) Ozaz3 (1 —d.y d)2 3 0z122 ns —2 02323
82223 s,har fs s,nar ’]’LS fs ns fs
:wi)ra\s
Afs Ofs Ofs
72(1*dhd)287£2 iaﬁiJrnsila%2
R e \ s fs ns fs
ofs ofs \ 2
1 ;) Nng — 1 Oz-
+2(1 = dgnara)® | — 2 :
( e ) ng fs N fs
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2,,,dr
9 wl,s’|s

2,,dr
9 wl,s’|s

2
023

2,,dr
9 w1,5’|s

82122

2,,dr
0 w1,5’|s

02923

T 5.2
0z

67

9% fs
71—s’77Js’ps'rn5]('s 023
s’ hard .
Ihard fs
—pdr
_w1,5’|s
*fs
71—s’ns’ps’rnsfs 6z§
ds’,hard .
Ihard fs
_ydr
_w1,s’|s
9% fs
7"-s’ns’ps’rnsfs Oz122
s’ ,hard .
Ihard fs
—ppydr
=Wy sls
9% fs
7"'s’ns’ps'rnsfs Dz223
s’ hard :
Ihard fs
—apdr
1,8 s

(H11b)
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Taking the second-order derivative of eq.(H6), substituting eq.(H11) therein, and using eq.(H6) again for

rewriting yields

92w 9 f
1,5|s 022
T%‘ - (w175'\5 — Oy SfYS) fsl Oy s(l - 75)X
% fs 9% f,
(1 d )2 1 027 ng—1 023
— Ug hard
fs Ng fs
(?fs 1 % 1 6f~
+2(1 - ds,hard 204 0z 923
( ) fs N fs Ng fs
Ofs Afs
—92(1 — dg . 31 — 9z 25
( s,ha d) (ns fs . fs ) }
82f3
82101 s'|s 522
—5 = ws’s_és ,5Vs 2 _(55/’51—’)%)(
022 (wi,s )= 2 ( )
821& 9% f,
(1 = ds nara)” 1o ne 19
, fs Ns fs
Ofs 1 Ofs _1 Ofs
2 1_ds . 2 Oza L oz Ozo
+2( Jhard) 7, <ns 7. e I
Ofs Afs
1 Ere — 13
- 2(1 - ds,hard)3 0z GED
N fs Ng fs (H12)
2
8211)1 s'|s (’;9 L
- = s’s_ée/ s 2122 §g o(1 — X
Doz (Ul T 0T T Ol =)
2% fs 92f,
2 0 Ng — 2 )
1_ds . 2| & Ozizs 2223
{( Jhard ) (ns T >
8l oL 1 2 19
1—d . 2 Z1 Z2 Lt 0z 2z
+( s,hard ) n + n o + o fs
Afs 1 dfs
—2(1 = dg nar 3 - 9= Oz
( ,h d) (ns fs . fs
2
82H)l s'|s 5} fe
" = 5’3*5 Z2Z3*6g/9 )X
0zo23 (w191 ,57s) s (1 =)
*fs 92 f,
(1 —dyp d) 2 952 : — 2 92325
s,har e fs . fS
s 1 afs -1 Ofs
2(1 — dg par 2 Oz2 021 Dz
+2( s hard) 7. (ns A —
Ofs Afs
1 9z1 —1 Oz
—2(1 - ds ar 31— ! 2 .
( Jhard) (ns 7. +Z F ) }

Now we are ready to calculate eq.(34). We start from p

68

2%) which is given by eq.(34a). We substitute
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eq.(H12) in eq.(34a). The four terms in eq.(34a) are then calculated as follows. For example,

811] s'ls
B = 5 3500 0
1

> fs 22 fs

8zf 1 821
= *ZZ” Dwnsls ¢ (s) = 5 D v () 7 ¢ (s)

S

=0 (s)
(from eq.(15b))
o2fs o2
1 027 -1 023

_;zs:v(o)(s)(l_%){(l—ds,hard)Q ns fs +5 ns fs

Ofs 1 Ofs 1 Ofs
+ 2(1 — dg,hard)2 (“3;1 <7’l (“3;1 + n de2 )
s s Js s s

1 Ofs 1 Ofs
- 2(1 - ds,hard)‘3 ( (:)fZl + n é;fz > }q(o) (S)

_1 Z(l —75) 0O (5)¢ @ (s)x

(H13a)

2
S
9> fs 1 *fs 1 9% fs
82% 2 é)zf Ng — 82%
— (1 = ds hara — +

{ fs ( sacd) ns fs ns  fs
gfe 1 gfs 1 gf;

_ 2(1 _ ds,hard)2 le - fZ1 + - ;2

S S S S S

13 a1 ’
+2 1_dsA ar: 3 2 + 2 z .
( b d) ng fs N fs

/\
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The other terms that appear in eq.(34a) are calculated in essentially the same way as

2
0“w1 15 (o)
T

1
Tamara = 5 3 500, -y Z
s’ s 2

= 2 30O (5)gOs) - (s~ 1ri ()%

(5)g(s)

9> fs 9% f, 027,
923 (1-d )2 i 822 ne — 17922
fs s,hard T fs e fs
gfs 1 % ne — 1 %
- 2(1 - ds,hard)2 ;2 (n Jfl T ;2 >
Ofs afs \ 2
1 32, ns—1 35,
+ 2(1 - ds,hard)3 (Tl afl + - 8]?2 ) }
1 82101_8/ s
Z3 hard = D) Z Z”(O)(Sl)z(”s - 1)ﬁT§O)(S)q(O)(S)
1
= 5 2 (1 =70 () () - 2(ns = 1)ry” (5)x
8% f, 5 o2 1. N ) ﬂ
Oz12z9 (1 —d, hard)2 4 Oz120 + s T 4 Dzozs H13b
{ fs 7 N fs Ng f& ( )

Ofs Ofs 1 Ofs ne —1 Ofs
—(1- dsAhard 2 0z + Oz - 0z + & Oz
( i ) fs f@ Ns fs Ng fs
ofs ofs \ 2
1 35, ns—135,
2(1 — dy para)® | — 2 22
+ ( 7h d) (ns fS + nS fS) }

1 82w s'|s
Z4 hard = Z ZU(O)(S/)(HS —1)(ns — 2)#@0)(5)(1(0)(5)

2 ™ 3 82223
1 (0) (0) (0)
=5 2 (1 =7)v ()¢ (s) - (ns — 1) (s — 2)r57(s) %

ns fs ns  fs

9fs 9fs ofs

2 0zo 1 0z1 ng — 1 0za
— o

fs ns fs Ns s

dfs afs \ 2
13 nsfla
2(1 — dg para)® | — 22 2 .
+ sshard) (ns fs * Mg fs> }

Collecting the Z-terms in egs.(H13a) and (H13b) gives us

22, % fs 2% fs
{ Oz223 (1 . ds,hard)2 (2 Oz122 + ng — 2 6z223>

- 2(1 - ds,hard)

p(2W) = Zl,hard + Z2,hard + Z3,hard + Z4,hard~ (H]‘SC)

Here, réo)(s) is calculated by substituting eq.(H2) in eq.(F32).
Next, we calculate p(29), which is given by eq.(34b). We repeat the same calculations as eqs.(H8) and

70


https://doi.org/10.1101/2020.03.02.974279
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.02.974279; this version posted August 4, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

(H9), but this time ¢(®) is replaced with ¢(*) there. From eq.(H10), the result is

Ofs Afs
ﬁmim%mew@{%+msn$%ﬁﬁ

- Is fs
Ofs Ofs
0 1 3z, ne — 1 3z,
— 14 (ns — Dr$?(8)](1 = do para)? (n R
©) 7y (07 4P (5) oL ©), \ 92 ()
= 1—~)v9 (s s L4 (ng — 1)y (8) 222
520 =2 60 1 5 (e = D)
(0) 155 n,-158
- -1 1— 2 - 9O= S Z2 .
[ +(ns )7"2 (S)]( ds,hard) (TLS fs + e fs ) }
By substituting eqs.(H2) and (H5) into eq.(43) we obtain
& 1-d o 1—d 9fs
q . (S) _ s,hard 9z + (ns . 1)T§O)(8) s,hard 9z,
q( )(S) ds,hard fs ds,hard fs
Ofs Ofs
(0) (1 - ds,hard)2 1 Dz Ng — 1 Bze
n 1 7 @shard) [ 4
[ * (nS )7"2 (S)] ds,hard Ns fs + Ng fs
(H15)

Of s Of s

1 — dy hard Oz1 0)/ s 1 —ds hard 32
- T E— + (ng — D)y " (8) ———— ==
g: { ds’,hard fs/ ( ° ) 2 ( ) ds’,hard fs’

Ofr Ofr
© (A =donara)® [ 1 T2 | e —1 55 (0) (.
— L+ (ny —1 S 1LV R .
[ M (n )TZ (S )} ds’7hard Mg fs’ * N fs’ 1 (S )

Now we substitute eq.(H15) into eq.(H14). Before doing so, we observe that the second term in eq.(H15),
which is made of the sum over s’, is just a constant, and that putting a constant in the place of
M (5)/q9(s) in eq.(H14) gives p*) times this constant (see eq.(H10)), which is zero by the assumption
in this subsection. Thus we can substitute only the first term of eq.(H15) into eq.(H14) to obtain p(?),
which leads to

PPV = (1= 7)oV ()¢ (5) x

S

Ofs Ofs

1 —dshard 52 (0) 1 —ds hard 92
——— L 4 (ng— 1)ry ' (s) ————— =2
{ ds,hard fs ( ) 2 ( ) ds,hard fs

dfs dfs (H16)
(0) (1 - ds,hard)2 1 dz1 Ns — 1 Bzo
-n -1 A= Tshard) f - 9z P8 -
[ * (nS )r2 (8)] ds,hard Ns fs + Ng fs .

of. " ofs " | 2 g 2
0z1 0 Ozo 0 2 Dz s 7 L Ozo
s—1 9z s—1 1 — ds har - )
{ A +(n )y (s) 7 1+ (n )y (8)]( ‘hard) (n A + P )}

Thirdly, we calculate p(”), which is given by eq.(34c). For this, we repeat the calculation in eq.(H9),

but this time réo) is replaced with 7“51) there. The result is

r 1 0z 0z s — L 0z
pm=20memmefw&@{g4hmmwQ%A+ns5)}

S

(H17)
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Here, we obtain rél)(s) by substituting egs.(H2) and (H5) in eq.(44), as

r(s)
s 1- s 1- ds ar
— 27"%0)(8) Vs + ( 7 )( ;h d) .
2,-)/9(1 - ds,hard) + (1 - 7?)(1 - ds,hard)
(0) 0z1 2 0z s 0zo
]- s*]- ]-*ds ar 7*1*ds ar -
x{[+ml >@<@%< ) 2 — *d)<mf;+ - k)]
( (0) gL A
5—120) s —2 (0 1 — dg par %_1_(18 . 2 [ L 9z s — 1 9z, ’
+(n )[ " (8) " (n )rd (S)} |f " d) fS ( " d) Ns fs N s fs

(H18)
H.3 Consistency with previous results about perturbations
We here show that we recover several previous results from our model.
H.3.1 A model with overlapping generations by Lehmann and Rousset (2010)

Suppose there is a single habitat (N = 1) and no mortality in migration (ps; = 1). Then eq.(48) becomes

af of (0) /o5 9f
Wuu—w{?+m_w9?—u_m”+m;W2(?+m—w?>} (H19)

which precisely recovers the inclusive fitness effect Sip shown in eq.(A.21) in Lehmann and Rousset
(2010) with the following correspondence; v — s, (8f/0z1)/f — —C, Tgo) — R, (n—1)(0f/022)/f — B,
and {1+ (n — 1)r50)}/n — RR.

H.3.2 A spatially heterogeneous model by Rodrigues and Gardner (2012)

Rodrigues and Gardner (2012) studied effects of spatial and temporal heterogeneity of patch quality on
the evolution of helping/harming. Their results on spatial heterogeneity (Results 1 and 2 therein) readily
follow from our eq.(48). To recover them, set N = 2 (high/low quality patches) and 8§ = {1,2}. Also, set

1 =72 =0,n1 =ng =n(>2), p1 =p2 =1, and m; = my = m(> 0), which leads to

m(my f1 + 72 f2)

h = (1 =m)fi +m(m1fi + m2fa) (H20)
dy = m(my f1 + 72 f2) _
(1 =m) fa +m(m1f1 + m2fa)
Therefore, eq.(48) becomes
-1 Ofs Ofs
V) = <§> Z_:l ;fs {8;; + (ns — 1)r§0)(s)%
= (H21a)

(0) Afs Afs
. 1+(’I’LS—1)7‘2 (S)(l_ds)2<3fzs1 +(n3_1>(}iz> },

where )
I\ _ s

For the Wright-Fisher update (y; = 72 = 0), via a direct calculation of eq.(51) we can confirm

14 (ns — 1)r$?(s) (1 dy)? = (s) (H22)
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holds for n > 2. Simplifying eq.(H21) by using eq.(H22) leads to

p(l):<f>_122:77sfs{1_7“(0)(3)} %
d s=1 ds 4_/ s - (H23)
(>0

Notice that effect on others’ fecundity, 0fs/0z2, is completely absent above. Thus we conclude that, as
long as there is cost in helping/harming in both group states (i.e. 9fs/0z1 < 0 for s = 1,2), neither
obligate nor facultative helping/harming evolves, which essentially echoes Results 1 and 2 in Rodrigues

and Gardner (2012).

H.3.3 A cancellation result by Mullon et al. (2016)

Consider N = 1 (only one state) and the limit of 7, — 1 (Moran process). Also, suppose p(!) = 0
(first-order perturbation of invasion fitness is null). This means that the expression inside the curly

brackets of eq.(H10) is null. By applying eq.(51), this condition can be rewritten as

Ofs Ofs
ds,hard(1 - ds,hard + ns) 8751 ds,hard(l - ds,hard)(ns - 1) Ti; _ 0 (H24)
1 + ds,hard(ns - 1) fs 1 + ds,hard(ns - 1) fs '

Meanwhile, consider rél)(s). It is proportional to the expression inside the curly brackets of eq.(H18),

that is
o s 9 s
ns(l - ds,hard) ds,haurd(1 - ds,hard + ns) 87; d&hard(1 - ds,hard)(ns - 1) 852 (H25>
2 + ds,hard(ns - 2) 1 + ds,hard(ns - 1) fs 1 + ds,hard(ns - 1) fs ’

which is zero. Hence Tél)(s) = 0. This suggests that the first-order perturbation of relatedness in the

Moran process is null, and therefore that the component of second-order perturbation of invasion fitness
due to perturbation of relatedness is

p*) =0 (H26)

in the Moran process.

Mullon et al. (2016) found essentially the same result (see their eq.(16)) for their Moran model,
although their model was slightly different from ours here; Mullon et al. (2016) assumed that in each
(non-extinct) patch exactly one adult individual always dies at each update step, whereas our model

assumes that death occurs randomly to each individual and that it occurs rarely (s — 1).

H.3.4 Second-order results by Parvinen et al. (2018)

Parvinen et al. (2018) calculated the metapopulation fitness of mutants, Ry,, in a subdivided population
by assuming non-overlapping generations, vs = 0 (Wright-Fisher process), uniform migration rate (mgs =
m), and uniform death rate during dispersal (ps = p). It is known that R,, — 1 has the same sign as p—1
(Lehmann et al. (2016)), and therefore that metapopulation fitness can be used as a proxy to determine
evolutionary success of mutants.

Parvinen et al. (2018) calculated a Taylor expansion of R, with respect to mutational deviation, ¢:

Ry =1+06RY +62R® ... (H27)
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where Rg) corresponds to their Dj(s;es) (see their eq.(3.5)), and Rg) corresponds to their Da(8yes)/2
(see their eq.(3.10)).

By using our eq.(H10) we can confirm (calculations are not shown here because they are too long)

that < >
nf
dhard
RY = RN pV) (H28)

holds, where

nf o\ _ nsfs (Y, 9, y) B
<dhard> = ;ﬂ'sm’ <nf> = ;T"Snsfs(yvya y) (H29)

This result was firstly shown by Parvinen et al. (2018) (see their eq.(B.26)). Similarly, when p*) = 0,

by using eqs.(H13), (H16) and (H17) we can confirm (calculations are not shown here because they are

-2

holds, as expected. These work as indirect confirmations that our results, eq.(H10) (for first-order) and

eqs.(H13), (H16) and (H17) (for second-order), are correct.

too lengthy) that

(H30)

I Perturbations for the soft selection lottery model

In this section, we derive the expressions for p() and p® for the lottery model under soft selection.
Recall that for this model; namely, eqs.(38b) and (38c) with eqgs.(45b) and (46b), we have

(1 —mg)ns o fs(z1,2_(13,2)
1 _ms)ns + Lsott Z;n:sl fs(Zivz—{i}az)/ns

=wi" | (21,2 (1},2)

w¥’5‘s(zl7 z—{1}7 Z) =Vs + (1 - ’Ys) (

d T/ Ngt f‘(g(Zl,Z,{l}7Z) (Il)
Wy o4 21,22 7,2;:1— ’ *Psm, oy .
L,s ‘é( ! {1} ) ( s ) (1 - ms’)ns’ + Isoft Pstits Zz;l fs(zia z—{i}ﬂ Z)/Tls
:wz‘,)l(z) =we™ (21,2_{1},%)

:wirsl‘s(zluz—{l}»z)
1.1 First-order perturbation of invasion fitness

The goal here is to calculate the first-order perturbation of invasion fitness, given by eq.(32). For this
purpose we will calculate its components one by one. First, we derive v(o)(s’ )q(o)(s). With the definition
of the backward migration probability (eq.(63)) we obtain

pr =1

Wysls =+~ ds soft

dr _ d Ts' Mg PsTg (12)
w1)3/|3 = Us' soft — 5 -
Isoft

Substituting them into eq.(40) yields
0) [ o1\ ,(0) _ TsMsPs' Mg’ Tst Mgt Pgtt Mgt
v\ (s)g\"V (s) =
(&) (=) (1 = s )ds softLsoft ; (1 — o )ds soteLsoft

_ TgNgPsMyg < npm >
(1 - 78')ds/,soft (1 - 'Y)dsoft ’
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where

<(1_oft> Zﬂs 1—§p:mé (14)

s soft
Second, we calculate first-order derivatives of 1-fitness that appear in eq.(32). A direct calculation of

eq.(I1) shows that relevant first-order derivatives are

pr Ofs Ofs Ofs
awl ,8ls 1-d 9z1 1 Oz -1 822
- ( s,soft) +
0z N —— R ns fs ns
:w?,:ws
pr Afs Ofs Ofs
awl,s\s —(1-d Dz _ 1 Dz, -1 622
- ( s,soft) +
029 —_——— fs Ng fs Ns
pr
—1,s]s
d Ofs Ofs Ofs
8w1rs’\s - Ts'Ms' PsTs Bifl . ]- Bigl + -1 652 (15)
8Zl oo Isoft fs Ng fs Ng fs
—n
d Ofs Ofs Ofs
awllrs’\s . Ts' Mg PsTs 8£2 . ]- 87201 + -1 652
82:2 oo Isoft fs Ng fs Ng fs
=u};i,rs’|s

Taking the first-order derivative of eq.(H6), substituting eq.(I5) therein, and using eq.(H6) again for

rewriting give us

awl s'|s

ofs 1 Ofs 1 Afs
8718 (st/lS _ 55/’575) 821 _ 821 + dZQ
021 fs s fs N .fs

of. dfs Ofs
(‘:)wl’s/|s — (w1 s — B s7s) 0zy 1 021 + - 17, .
e A P A

Finally, with eqs.(I3) and (I6) we can calculate p(*). We observe that each equation in eq.(I6) has

the factor (w; |5 — s s7s) in common. Thus the following relation is useful in the following calculation;

for any function F(s) we have

ST S 0O () (w0 — b.576) Fls)] 0O (5)
:ZZv(O)( wy,e|s F(s ZU(O ()9 (s)

=0 (s)
(from eq.(15b))

=D (1 =70V (5)g” (5)F(s).

The first term in eq.(32) is then
811) ’
ZZ (0) () 2 Lels (0)
82’1 "0z, ! ( )

ofs | e g O
=ZZW)(s')(wLS/S—as/,s»m{8;1 - (n 0;1 + 2 6;2)}q<°><s> (18)

Ofs 1 Ofs 1 Ofs
= 1-— o ’U(O) s (0) s Oz1 0z1 + Oza )
) ES (=)0 (s)q™ (s) T, o T I

(0]
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The second term in eq.(32) is similarly calculated as

0 s'|s
> 30O e = )75 (50O )
s’ s 822

Ofs | o O
=Z(1—vs)v<°><s>q<°><s>-<ns—1>r§°)<s){M ( B g Do 8)}

fS a ns fS nS fS
(19)
By combining egs.(I8) and (I9) we obtain
Ofs Ofs
z 0 z
=20~ vs>v<°><s>q<°><s>{§l + (ns = )i (5) 7
© 1 Ofs n 1 Ofs (110)
0 0z s = 1 0z
— 1+ (s — 1 — oz 2 | 4
[ + (né )TQ (8)] (ns fs + N fs ) }

Rewriting eq.(I10) with eqgs.(50) and (I3) gives eq.(62) in the main text. Here, réo)(s) is obtained by
substituting eq.(I2) into eq.(41). We find that réo) (s) takes exactly the same form as eq.(51) except that
all dg hara there should be replaced by ds sofs-

1.2 Second-order perturbation of invasion fitness

Below we assume p(!) = 0. The goal here is to calculate the second-order perturbation of invasion fitness,
given by eq.(34). As in the hard selection case, we have already calculated first-order derivatives that
appear there, as given in eq.(I6). We will then calculate various second-order derivatives that appear in

eq.(34). A direct calculation of eq.(I1) shows that relevant terms are

2,,,Pr 82fs azfs azfs
0 wl,s\s (1 d ) Bzf 1 82% + Nnsg — 1 62%
Y - ,soft - -
82% $ fs N fs Ng .fs
:wlf,rs\s
ofs ofs ofs Ofs ofs \ 2
_ 901 iTn+ns—1T@ 49 iazurns—laz
Is ns fs ng fs ns fs ns fs
2,,,Pr BQfS 82fs 32fs
9 W1 s|s (1-d ) 023 1 522 4 ns — 1 7322
—22 = (1 — ds soft N
E)zg \_\P;L fs Ns fs Ns fs
=Wy 51
ofs Ofs Ofs 0fs ofs \ 2
gtz (L om  mem 1 ) (Lo Moy
fs ng fs Ns fs ns fs Ns fs

82’122 fs Ns fs Ns fs

fs  Ofs ofs Afs ofs Afs \ 2
_ 321 + 822 i 821 + nS - 1 622 + 2 i 321 + nS - 1 822
fs fs ns fs ns fs ns fs ns  fs

2P" 9 fs 9% fs 9> fs
9 wl,s\s - (1 —d ft) { Ozaz3 (2 0z122 + ns — 2 32223>
— = 5,50

2, Pr 9% f. 9% f o fs
9 wl,s\s o (1 _d ft) { Oz122 <2 Oz122 + Nns — 2 8@23)
= 8,80
—_——

— o, PT
_wl,s\s

82223 ——— fs Ng fs N fs
—yPT
Wi s|s
dfs dfs dfs dfs afs \ 2
90z ia?urnsfla?z 49 iazurnsfla?z
fs \ns fs ne fs ns fs ns  fs

(T11a)
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and

9 0 & fs
027 1 023 + —1 023

2
9 wl ,s'|s

=d Ts' Mg PsTg
82 = Ug/ soft
1

I soft

dr
=Wy sls

fs ns fs ny  fs
Ofs
_90u

dfs afs dfs afa\ 2
1 35 " - 13, 49 1 5 L —13,
fs \ns fs ns fs ns fs ns  fs

92qdr { 62f25 9% fs 9%fs

1 s/‘s Ts'Ng/ PsMg 822 1 821 —1 822
= ds’,soft - +
822 Isoft fs s fs s fs

wdr
1#\;

Ofs Ofs Ofs Ofs Ofs
6Z2 ]‘ 6Z1 1 822 ]' 821 1 822
-2 — + +2 — +
fs \ns [s ns fs ns fs ns fs
2 9% fs % fs 2% fs
0 wl ,8'|s —d. ft T/ Mg PsTMg Oz122 2 0z122 + -2 Ozoz3
02122 oo Tsof fs ng fs Ns fs
:wT,rs’\s
ofs  Ofs ofs ofs ofe of: \ ?
0z1 Ozo 1 0z1 -1 Dzo 1 0z1 Ns — 1 Dza
- + — — + + 2 + —
fs s ns fs ns fs ns fs ns fs
2 2% fs O fs 2% fs
9 wl re ot Ts'Ns'PsMs | Dzp25 2 02122 + -2 02223
02223 e Lot fs ng fs Ns fs

dr
Wi |s

% 1 gfs 1 gfs 1 % 1 gfs
_2 zZ2 . zZ1 zZ2 2 . Z1 Z2
fs \ns fs += o )\ s += ns  fs

(I11b)
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Taking the second-order derivative of eq.(H6), substituting eq.(I11) therein, and using eq.(H6) again for

rewriting yields

3 fs 3% fs 3 fs
82u)l s'|s sz; 1 azf -1 Bzf
7’2‘ = (wl,s’\s - 63/7373) - — s + 2
321 fs fs Ng fs
dfs afs ofs af. 0fs \ 2
_gom (Lo  memdEn ) o (Lo 1oy
fs \ns fs ns fs ns [s ns fs
8% f, 8% f, 8% f,
8271}1 s’|s 8zf2 1 8zf2 -1 azf
75‘ = (wlys/\s — 0s,57s) = = + 2
822 fs ng fs N fs
Ofs Ofs Ofs Ofs Ofs
2 322 1 8721 + 1 322 _|_ 2 i (9721 + 1 6Z2
fs \ns [s ns fs ns fs ns fs
O%fs 0°fs Ofs
a2wl,s’\s - lezz lezz -2 Dza23
. .= (wl,s’\s — Oy S’Ys
02129 N Is
Ofs Ofs 6f€ 1 Ofs 1 Ofs _1 Ofs
_ 821 8Z2 0z1 Ns Dzo + o — 0z1 _|_ Dzo
N, fs ns [ ns fs ns [
a%ﬁ, 9 fs &£
a2w1,s’\s o (wl s — 5ur '7 BZQZ3 2 BZIZQ —2 Dz223
— s’ s’,s' Vs
82223 e Ng fs
ofs Afs Ofs Ofs Ofs
_ 90z 1871+ﬂs*18z2 49 iaTl+ —13,
S nS S nS S nS S nS S
[ f I [ [

(112)

Now we are ready for calculating the second-order derivative of invasion fitness, given by eq.(34). We

start from from p(%), given by eq.(34a). Substituting eq.(I12) in eq.(34) and using eq.(I7) produces the
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following four terms:

7 - EZZU(O)(S')M 0) ()
1,soft = 2 (92:12 q

1 82fs 1 82fs 1 azf‘g

9% 927 ns — 1 922
= — 1— Vs U(O) s q(o) s 1 - 1 + 5
5 g( Jo(s)a T s) =1 T P

Afs Afs ofs Afs afs \ 2
_2821 iazl_i_ns_lazz +2 i@zl_*_ns_leQ
fs \ns fs ns fs ns fs ns fs

1 6211)1 s'ls
22, soft = 9 Z ZU(O)(SI)(ns - 1)T’2|T§0)(8)q(0)(8)
s’ s 2

]. 82]“5 1 a2fs 1 62fs
0 022 022 Ng — 522
=3 283(1 — )@ ()@ (s) - (g — 1)1 >(S>{ f: - = f; 40 f:

afs afs dfe dfe afs \ 2
_267,22 iazl_’_ns_l% +9 iazl_’_ns_l@zz
fs ns fs nS fs ns f& nS fs

1 6211/175/ s (0
ZB,Soft = 5 ZZ’U(O)(S’)Z(’RS — 1)%7’5 )(S)q(o) (S)

1 © s g Lfs 9 P
_ - 1 X (0) (0) .9 .- 1 0 Oz122 _ e Oz122 s Oza23
2 g( v )U (S)q (S) (n )7"2 (8) fs N fs + I fs

dfs  Ofs dfs dfs dfs afs \ 2
(Fm o | (Lo =l ) o Lon M= lon
fs fs Ng fs Ng fs Ng fs Ns fs

1 82’11_)1781‘8 0
Zasots = 9 ;;v(o)(sl)(ns —1)(ns — Q)TQZ’?,T:()’ )(s)q(o)(s)

9% fs 2°fs

% fs
1 2 ng — 2
= E — (5)gO () . _ — 9),(0) D22z [ 2 Oziz s 9z223
9 - (1 ’)/S)’U (S)q (S) (nS 1)(n5 2)T3 (S){ fs (ns fs + N fs )

Afs Afs Afs Ofs afs \ 2
_2822 iazl_’_ns_l@zg +2 iazl_’_ns_l'zQ
Is ns fs N fs ng fs Ng fs ’

p(QW) — Zl,soft + ZQ,soft + Z3,soft + Z4,soft~ (Il3b)

(I13a)

and we have

Here, réo)(s) is calculated by substituting eq.(I2) in eq.(F32).
Next, we calculate p(®9) | given by eq.(34b). We repeat the same calculations as egs.(I8) and (19), but
¢© there should be replaced with ¢). From eq.(I10) we have

afs 9fs
p(2Q) — Z(l _ ,YS)U(O)(S)q(l)(s){dzl + (ns - 1)ré0) (S) 0z

" [ [
(0) 1 gt n—1358
- [1 + (nS - ]‘)TQ (S)] E fsl + Ng f:
(114)
_ O 000 [ 5 O
521 =500 ()0 5) T E (= ()
(0) 15k n 13k
— [+ (ns = 1)ry " ()] e fsl t fj :
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By substituting eqs.(I12) and (I5) in eq.(43) we obtain ¢(*)(s)/q(?) (s) as

afs Ofs
gD (s) 1= dysors {azl (0) (022

+ (ng = Dri(s)

q(o)(s) B ds soft s fs
© 1 oL N —1 Ofs
0 le s azz
n 1 il
[ +(ns )7’2 (S)] <7Ls fs + Ng fs ) }
o by 13
— Qg’ soft ) 0z (0)/ 1\ Oz2
-y —— L FE 4 (g — 1)y () =2
o ds’,soft { fs’ ( ) 2 ( ) fs’
| e | A
0 Oz s’ 0z
~ L+ (= D) <n o e g ) }qm)(S')-

Now we substitute eq.(I15) into eq.(I14). Note that the second term in eq.(I15), which consists of the
sum over s, is just a constant, and that putting a constant in the place of ¢(V)(s)/q(® (s) in eq.(114)
gives p(1) times this constant (see eq.(I10)), which is zero by the assumption in this subsection. Thus we

can substitute only the first term of eq.(I15) into eq.(I14) to obtain p(29, by which we obtain

Ofs Ofs
- ds,soft { 0z1 (0) Dz

P = 37 (1= 200 (5)g () + (= i)

S s,s0ft fs fs
1 o 1 o 2 (116)
0 Oz Ng — 1 9z,
_ [1 —+ (ns — l)ré )(5)] (nsf; + o f: > } .

Quite notably, p®® in eq.(I16) is always non-negative, which is apparently seen from its expression.

) given by eq.(34c). For this, we repeat the calculation in eq.(I9), but réo)

there should be replaced by Tél). The result is

o (0L 0L
P20 =Z<1—vs>v<°><s>q<°><s>-<ns—1>r£”<s>{6”‘ ( T 8>} o

Thirdly, we calculate p

fs ne fs ns  fs

Here, we obtain rél)(s) by substituting egs.(I2) and (I5) in eq.(44), as

S

(1) (0) Vs + (1 — 75)(1 — ds,soft)
ry ' (s) =21y (s
2 ( ) ? ( )273(1 - d3750ft) + (1 - 75)(]— - ds,soft)2

of. 1 8, q 0
(0) 0z 0z s " 0%
X 14+ (ns—1)r $)](1 —ds 5o I +
{[ (. = DV () ,ft>[fs (n A fﬂ

Ofs Ofs Ofs
Ozo . i Oz + Nng — 1 Bza
fs s fs Ns fs

(118)

+ (ns — D)[2r57(5) + (s — 2)r$” ())(1 — disotc)

1.3 Consistency with previous results
Here, we again show that we recover previous results.
1.3.1 A model with “Regulation before dispersal” by Lehmann and Rousset (2010)

When there is a single habitat type (N = 1), no mortality in migration (p; = 1), and no overlap of
generations (ys = 0), eq.(62) reduces to

(1) (0) % 1 % %
oo {1 (o)

which reproduces eq.(A.7) of Lehmann and Rousset (2010) for their “regulation before dispersal” model
with the following correspondence; réo) — R, (0f/0z1)/f = —C,n— N,and (n—1)(0f/0z2)/f — B.
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1.3.2 A model with local adaptation by Svardal et al. (2015)

Svardal et al. (2015) studied a soft selection model with spatial and temporal environmental heterogeneity
and effectively infinitely large group size. In the absence of temporal heterogeneity, their model fits
our soft selection framework by setting ms = c¢5, ns = no(— o), ps = 1, mg = m, v, = v and
fs(z1,2_01},2) = fs(21). Then our eq.(62) predicts

dfs

Bl == Tefca-n T (55)

S

(120)

r=y
In the notation of Svardal et al. (2015) this can be written as (1 —v)Es[0p], which equals their first-order
derivative of invasion fitness (see their Appendix B.1). Similarly, when the first-order derivative is null,

eqs.(113), (I16), and (I117) predict

d?p fff 1-m [ §& ’
z - dz
r=y 3 s s

In the notation of Svardal et al. (2015) this can be written as (1 —~){Es[0%p] + {2(1 —m)/m}Es[(9p)?]},
which agrees with their second-order derivative of invasion fitness, because in the absence of temporal

heterogeneity their eq.(B.27) becomes

1—m

(1-7) {Es [0%p — (9p)*] + Vars[9p] + 2 Vars[ap]}

= (1-9) [BslPp — (@p)?] + Fsl(0p)*) ~ Eslpl +2-—" { Bis[(0p)*) ~ Bsop?
=0 =0

—m

—(1-) [Es[a%] P! Esuap)?]} |

J Evolutionary analysis of a lottery model with local adaptation

In this section, we derive the results for the special case presented in section 4.3 of the main text based
on the assumptions that (i) the demography follows the assumptions in section 4.2 (either hard or soft
selection), (ii) the Moran process limit is considered (s = v ~ 1 for all s), and (iii) fecundity of an adult

only depends on its trait value, as fs(z1,2_{1y,2) = fs(21).

J.1 Hard selection

Analysis under assumptions (i) to (iii): Under these assumptions, eq.(48) simplifies to

df.

7TS"/LS SmS S 1

Py #% {1 — i) - ds,hard)z} , (J1a)
s s,hard s

where the proportionality constant is
-1
(Z . lnsplest ) . (J1b)
s€s ( - ’7) s,hard

Remember that in eq.(J1), ds hard, fs and its derivative, and ré?r){(s) all depend on y. A singular strategy

y* is the one at which p(!) vanishes.
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Next we study the second order effect of selection at the singular point y* by using egs.(H13), (H16)
and (H17). Note that our f, depends only on its bearer’s trait value, so most of the derivatives of f

that appear there are null. We start from eq.(H13):
PP = Z1 hard + Zonard + Z3 nard + Za hard; where

1
71 hard = 5 Z(l — 0@ (8)g® (s)x

d2f, d2f, df. \ 2 df N 2
dey (- ds’hard)Q dzf (1- ds,hard)2 d7£1 (1-— ds,hard)3 d7£1

- —2 4 gin — Cshard)
fs Ng fs Ng fs nz fs

s hard = fz (1- 5)g©(s) - (ns = )i (s)
d*fs . N\ 2
B (1 - ds,haurd)2 dzf +9 (1 - ds,hard)d % (J2)
Ns fs ng fs
Zs hard = fz (1- 5)4©(s) - 2(ns — 1)r§” (s)x

dfs \ 2 dfs \ 2
(1 - ds,hard)2 dicl (1 - ds,hard>3 d;
s fs s Is

dfs 2
Zasana = 5 (1= DO ()3 (s) - (n — 1) (s — 278 (5) x {2(1dn) (df ) }

S

Next we calculate eq.(H16):

P = 321 = 7)o (5)g ) (s) x {1 ooty 4, — ) o L d)}

S s,hard d&hard”s ( )
J3
dfs \ 2
(0) (1 - ds,hard)2 dz;
1-1[1 -1 —_— .
R R e L
Then, we calculate eq.(H17):
]- _ds ar: 2 %b
P =3 (1= () (s) - (ms = 173 (s) x {( - dfl}. (74)

Relatedness values are calculated from eqs.(51), (42) (with w’| =1 — dy hara; see eq.(H2)), and (H18)

respectively, as

(0) B 1-— ds,hard
"2 (S) 1 + ds,hard(ns - 1)
0) 2(1 - ds,hard)2
T S) =
3 ( ) {2 + ds,hard(ns - 2)}{1 + ds,hard(ns - 1)} (J5>
dfs
’I”(l) (S) = dS,hard(l — ds,hard)(1 — ds,hard + Tls)ns difl
2 {2+ dspara(ns — 2)H{1 + ds hara(ns — 1)}

By using egs.(J2)—(J5) and eq.(H3), and after doing some algebra, we arrive at the expression eq.(52) in

the main text.

With two additional assumptions: Here, we add two more assumptions to make our model fully
tractable: (iv) group size ng, the probability to migrate mg, and survival of migrating individuals ps are
identical across habitats (ns = n, ms = m, and p; = p for all s), and (v) fecundity in groups in habitat

s is given by eq.(53) in the main text.
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For the selection gradient, by using eqs.(50), (53) and (J5), we calculate eq.(J1) as

1) Yop,s — Y 1- ds,hard(y) +n J6
X Zﬂéfé(y) 0'52t 1 + d57hard(y) . (n _ 1)7 ( a‘)

where the proportionality constant is

A o
(Z 7rS(l—v)ds,hard(y)> : (J6b)

SES
and the dependence of fs and ds hara On y is made explicit. The singular strategy y* is only implicitly

solved as

Y= Z%(y*)yop,a (J7)

which is a weighted average of y.p s, the optimal trait values in groups in state s, with the weights v,

given by

*\ * 1-— ds hard * 1-— s’ hard(y*)
7/%(9 ) N TrSfS(y )1 +d8,hard 7’L— 1 /Zﬂ-g f9 1 +d ’ hard( *) (n_ 1) (Jg)

For the disruptive selection coefficient at the singular strategy, y*, a direct calculation of derivatives

of eq.(53) in eq.(52a) leads to

o dfi POt sl o2 IOy e 0
(J9)
x Z djiid {(X1 s mara (") + X2, hard (U")) Wop,s — ¥*)?* = X1, hara(¥*) 05 }
so the condition for p > 0 can be expressed as
Z U (y") Wop.s — y*)? > 0, (J10)
where
V() = %(Xlﬁ,hm(y*) + X)) | 3 T, a4
o
[t e

Further assumptions: Here we make three more assumptions: (vi) no mortality during dispersal,
p = 1, (vil) two habitats with equal proportions, 8 = {1,2} and 7m; = my = 1/2, and (viii) optima are
symmetric in the sense of yop 2 = —Yop,1-

In this case y* = 0 is a singular strategy due to symmetry. To see this, from the symmetry of the
fecundity functions f1(y) and f2(y), we have f1(0) = f2(0) (see eq.(53)). Then, from the definition of
ds hara (€q.(49); see also eq.(47)), we have

m 110 +/2(0)
ds hara (0) = R =™ (J12)
(1 =m)nfs(0) + nm=52=

for s = 1,2. Substituting these into eq.(J8) gives us 11 (0) = ¢2(0) = 1/2, and hence eq.(J7) is satisfied.
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We are interested under what conditions p(2) > 0 holds. By using 7 = 72 = 1/2, f1(0) = f2(0) and
eq.(J12), the weight given by eq.(J11) can be written as

1/2-m 4(1 —m)?
\IJS(O)_Q( m _m(2+m(n2))>' (J13)

Therefore, when we define the variance of the habitat optima o2, by eq.(57), the condition (J10) can be
re-written as eq.(58) in the main text (note that we use m1 = mo = 1/2 there).

Finally, we determine convergence stability of y* = 0. Calculating eq.(19) for the selection gradient
eq.(J6) gives us, after some algebra,

dpM ()

c(0) = m

. o (14+m(n—1))(1—m+n)(c?

o — 0%) +n’m(l —m)ol, (J14)

with a proportionality constant that is positive for m > 0. Rearranging the convergence stability
condition, ¢(0) < 0, gives condition (60) in the main text. To obtain a sufficient condition for convergence

stability, we substitute eq.(61) into the coefficient of o2, in (60) and obtain

(1—=m)?(1 —m+ (1+m)n)  2V/T+n

2—m — - ) J15
1+mn—1)1-m-+n) 1+vV14+n (J15)
— 0 when n — oo m=_YTtn
e VItn
and therefore
21
A ) (J16)

—0,
14++/1+n °P

is a sufficient condition for convergence stability for fixed n. In addition, since eq.(J15) is upper-bounded

by two, Qng < 02 is a sufficient condition for convergence stability for any n.

J.2 Soft selection

Analysis under assumptions (i) to (iii): Under these assumptions, eq.(62) simplifies to

dfs
TsNsPsMs dz (0)
D D s {1-rihe)} (7172)

where the proportionality constant is

-1
<Zws 1_“”“”@ ) . (J17b)

ses s soft

Remember that in eq.(J17), fs, its derivative, and ré?l){(s) depend on the resident strategy y, whereas
ds soft is independent of y (see eqs.(47) and (63)). A singular strategy y* is the one at which p{!) vanishes.
The disruptive selection coefficient at the singular point y* is calculated through egs.(I13), (I16) and

(I17) under the assumption that fs depends only on its bearer’s trait value, so most of the derivatives
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of f, that appear in p(®) are null. In particular, from eq.(I13), we have

p(2W) = Zl,soft + ZZ,soft + Z3,soft + Z4,S0ft7 where

1
Zl,soft = 5 Z(l - V)U(O)(S)Q(O) (S)X

d>f, d?f, dfs \ 2 df. \ 2
1wt 2 (e 2 (&
fs ns fs ns \ fs n2 \ fs

1
Z2,soft = 5 (]- - PY)U(O) (S)q(O) (8) ' (ns - 1)ré0) (S)X
2 2
w2 (& (118)
nS fS n% .fS

Z3,soft - 5 Z(l - PY)U(O) (S)q(O) (8) : 2(’]7,5 - 1)T£O) (S)X

dfs \ 2 dfs \ 2
_1 (a2 (6
ns \ fs n2 \ fs

1 (0) /. .(0) (0) 2 (i i
Zasoft = 5 Z(l =)o (8)q (s) - (ns — 1)(ns = 2)r57 (5) ¥ n2 - :

S

Second, eq.(I16) becomes

§29) = 371 = ) (5)g®(s) 1 — ds soft {1 1+ (ns - 1)r$9 (s) } (&) . (J19)

d .
S s,soft

Third, eq.(I17) becomes

dfs
p(gr) _ Z(l . ’y)U(O)(S)q(O)(S) . (ns i 1)7’%1)(8) « {_ 1 (dzl ) } . (JQO)

s ng \ fs

Relatedness values are calculated in the following way: réo)(s) is from eq.(51) (where all dg hara are

replaced by ds soft; see section 4.3.2 in the main text), réo)(s) is from eq.(42) (with w?"

1,s|s = ]-_ds,soft; see

eq.(12)), and rél)(s) is from eq.(I18) combined with réo)(s) and réo)(s) as just derived. We then obtain

(0) o 1- ds,soft
T2 (8) o 1 + ds,soft (ns - 1)7
©) (g} — 2(1 — ds sott)?
"3 (s) {2+ ds,soft(”s —2)H{1+ ds,soft(ns - 1)}7 t21)
dfs
7“(1)(3) = ds,soft(l — ds,soft)ns(ns — 1) Tgl
2 {2+ dysote (s — 2)H1 + dssore(ns — 1} \ f )~

By using eqs.(J18)—(J21) and eq.(I3), and after some algebra, we arrive at the expression eq.(64) in the

main text.

With two additional assumptions: Similarly to the hard selection case, we here add two more
assumptions: (iv) group size ns, the probability to migrate ms, and survival of migrating individuals
ps are identical across habitats (ns = n, mgs = m, and ps = p for all s), and (v) fecundity in groups in
habitat s is explicitly given by eq.(53) in the main text.

With these assumptions, from egs.(47) and (63) we see that

pm
dssoft = —————— J22
,s0ft (1_m)+pm ( )
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does not depend on s, and hence we write it as dgof; from now on. An immediate consequence is that

X1 5,50t and Xo ¢ g0 in egs.(64b) and (64c) are independent of s, and we write them as

_ 1 dsoft(’I’L — 1)
ST 91+ dgop(n — 1)
dsoft(n — 1){dsoft(1 — dsoft)(n — 1)(TL — 2) — 2dsoft(n — 1) + (n — 2)}

X2,soft = {2 i dsoft(n _ 2)}{1 T dsoft (n — 1)}2 . (J23b)

(J23a)

For the selection gradient, by using egs.(50), (53) and (J21), we calculate eq.(J17) as

dso -1 op,s
PV = (1—+) it (1 )Zwsyp’ Y (J24)

1+ dsott(n — 1) a

S

and therefore, the singular strategy is simply given by
y* = Zﬂ-syop,s- (J25)
S

For convergence stability, we take the derivative of eq.(J24) with respect to y and obtain

_ ) —(1— ’Y)M (12> <0, (J26)

c(y* =
") dy . 14+ dsot(n — 1) o3

y=y
which shows that a singular strategy is always convergence stable. This parallels the results of Svardal
et al. (2015).

For disruptive selection coefficient at the singular strategy y* a direct calculation of eq.(53) in eq.(64a)

leads to

*\2 2 *\2
, — —0 . —
PP oY m, {Xl,soft (Yop.s ?44) st X27SO&(?Jop,s4y)}
S

Ost Ost
(J27)
X Zﬂ-s {(XLsoft + X2,soft)(y0p7s - y*)z - Xl,softO-St} )
and the condition for p(® > 0 becomes
Xl,sof + X2,sof *
Kot Xt §7 1 ()7 > 329

=02, (from eq.(57))

No mortality in dispersal: If we further assume that (vi) no mortality occurs during dispersal,
p = 1, then substituting p = 1 into eq.(J22) gives dgoir = m. Inserting this into eq.(J23) and calculating
condition (J28) with the expressions obtained for X7 sof and Xg gor results, after rearranging terms, in

condition (66) in the main text.
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