

1 **Short title:** Vacuolar hexose transport and xylem development

2

3 *** Corresponding author:** Rozenn Le Hir

4 Telephone: +33 1 30 83 30 57

5 Fax: +33 1 30 83 30 96

6 Email : rozenn.le-hir@inrae.fr

7 ORCID ID: 0000-0001-6076-5863

8

9 **A vacuolar hexose transport is required for xylem development in the inflorescence stem**
10 **of *Arabidopsis*.**

11

12 Emilie Aubry^{1,2}, Beate Hoffmann¹, Françoise Vilaine¹, Françoise Gilard³, Patrick A.W.
13 Klemens⁴, Florence Guérard³, Bertrand Gakière³, H. Ekkehard Neuhaus⁴, Catherine Bellini^{1,5},
14 Sylvie Dinant¹ and Rozenn Le Hir^{1,*}

15 ¹ Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000
16 Versailles, France

17 ² Ecole Doctorale 567 Sciences du Végétal, Univ Paris-Sud, Univ Paris-Saclay, bat 360,
18 91405 Orsay Cedex, France

19 ³ Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay IPS2, CNRS,
20 INRAE, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cité, Université
21 Paris-Saclay, Bâtiment 360, Rue de Noetzlin, 91192 Gif sur Yvette, France

22 ⁴ Universität Kaiserslautern, Pflanzenphysiologie, Postfach 3049, D-67653 Kaiserslautern,
23 Germany

24 ⁵ Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187
25 Umeå, Sweden

26 * Author for correspondence

27

28 **One-sentence summary:** A control of cytosolic sugar availability, regulated by SWEET16
29 and SWEET17, is required to sustain xylem development and secondary cell wall formation.

30

31 **Author contributions**

32 E.A. performed most of the research and made a first analysis of the data; P.K. performed the
33 initial BIFC experiment under the supervision of H.E.N. and R.LH performed the
34 complementary BIFC experiment; P.K and H.E.N gave seeds of *sweet16* mutant; F.Gi., F.Gu
35 and B.G. supervised and helped E.A. for the GC-MS analysis; F.V. cloned the complemented
36 lines; B.H. provided technical assistance to E.A.; S.D., C.B. and R.LH reviewed and edited
37 the manuscript; R. LH conceived the project, designed the research and wrote the article with
38 contributions of all the authors.

39

40 **Funding information:**

41 This work has benefited from the support of IJPB's Plant Observatory technological platforms
42 and from a French State grant (Saclay Plant Sciences, reference ANR-17-EUR-0007, EUR
43 SPS-GSR) managed by the French National Research Agency under an Investments for the
44 Future program (reference ANR-11-IDEX-0003-02) through PhD funding to E.A.

45

46

47 **ABSTRACT**

48

49 In higher plants, the development of the vascular system is controlled by a complex network
50 of transcription factors. However, how nutrient availability in the vascular cells affects their
51 development remains to be addressed. At the cellular level, cytosolic sugar availability is
52 regulated mainly by sugar exchanges at the tonoplast through active and/or facilitated
53 transport. In *Arabidopsis thaliana*, among the tonoplastic transporters, *SWEET16* and
54 *SWEET17* genes have been previously localized in the vascular system. Here, using a reverse
55 genetic approach, we propose that sugar exchanges at the tonoplast, regulated by *SWEET16*,
56 are important for xylem cell division as revealed in particular by the decreased number of
57 xylem cells in the *swt16* mutant and the expression of *SWEET16* at the procambium-xylem
58 boundary. In addition, we demonstrate that transport of hexoses mediated by *SWEET16*
59 and/or *SWEET17* is required to sustain the formation of the xylem secondary cell wall. This
60 result is in line with a defect in the xylem cell wall composition as measured by FTIR in the
61 *swt16swt17* double mutant and by upregulation of several genes involved in secondary cell
62 wall synthesis. Our work therefore supports a model in which xylem development is partially
63 dependent on the exchange of hexoses at the tonoplast of xylem-forming cells.

64

65

66

67

68 **Keywords:** Vacuole, tonoplast, sugar, transport, xylem, development, *Arabidopsis*,
69 inflorescence stem

70

71

72

73 **INTRODUCTION**

74 The plant vasculature, composed of phloem, procambium/cambium, and xylem, is an
75 elaborate system responsible for the transport of most biological compounds throughout the
76 plant (Lucas et al., 2013). At the molecular level, vasculature development is governed by a
77 complex network of transcription factors that are under the control of several signals,
78 including hormones, peptides, and miRNAs (Fukuda and Ohashi-Ito, 2019; Smit et al., 2019).
79 However, within this well-organized framework, a certain plasticity is required to adjust to
80 cellular variations in terms of the availability of nutrients (i.e. sugars and amino acids).

81 Sugars, which represent the main source of energy, are required for metabolic
82 activities, and they serve as a carbon reserve, and as intermediates for the synthesis of cell
83 wall polysaccharides. Additionally, they have morphogenetic activity and act as primary
84 messengers in signal transduction pathways (Sakr et al., 2018). It is therefore logical that
85 modifications of sugar metabolism, transport or signaling can lead to multiple defects in plant
86 growth and development (Eveland and Jackson, 2012). However, despite this central role, the
87 role of sugar availability in the development of the vascular system in general and more
88 specifically in heterotrophic tissues such as cambium and xylem is still elusive.

89 In these tissues, it has been suggested that lateral transport of sugars, coming from
90 leakages from phloem sieve tubes, provides the sugars needed for vascular cell development
91 (Minchin and McNaughton, 1987; Sibout et al., 2008; Spicer, 2014; Furze et al., 2018).
92 Lateral transport is especially crucial for xylem secondary cell wall formation, since sugars
93 are intermediate compounds in the synthesis of the cell wall polysaccharides which represent
94 80 % of the secondary cell wall (Marriott et al., 2016; Verbančić et al., 2018). The xylem
95 tissue thus represents a strong sink for sugars that must be imported from surrounding tissues
96 to serve as the source of carbon and energy. This is supported by the fact that perturbations in
97 sugar transport at the plasma membrane of vascular cells, via SWEET or SUT transporters,
98 affect the composition of the xylem secondary cell wall both in aspen and in *Arabidopsis*
99 inflorescence stems (Mahboubi et al., 2013; Le Hir et al., 2015). Furthermore, in the
100 *Arabidopsis* inflorescence stem, it has been suggested that movements of sucrose and/or
101 hexoses towards the apoplast, mediated by SWEET11 and SWEET12, occur between the
102 vascular parenchyma cells and the developing conducting cells to drive cell wall formation in
103 a cell-specific manner (Dinant et al., 2019). Intercellular sugar availability seems, therefore, to
104 play an important role in xylem development. However, the question remains open as to
105 whether modification of sugar partitioning within the vasculature cells is also of importance.

106 The vacuole represents the main storage compartment for numerous primary and
107 specialized metabolites including sugars (Martinoia, 2018). In tobacco leaves, up to 98% of
108 hexoses are found in the vacuole (Heineke et al., 1994). In *Arabidopsis* leaves
109 compartmentation of sugars is different. Sucrose is mostly present in the cytosol and the
110 plastids while glucose and fructose are mostly found in the vacuole (Weiszmann et al., 2018).
111 Sugar exchanges between the vacuole and the cytosol are therefore required for dynamic
112 adjustment of the quantity of sugar needed for metabolic and signaling pathways. In
113 herbaceous and ligneous plants, few sugar transporters have been functionally characterized at
114 the tonoplast (Hedrich et al., 2015), and localization in the cells of the vascular system has
115 been shown only for *SUC4/SUT4*, *ESL1*, *SWEET16* and *SWEET17* (Yamada et al., 2010;
116 Payyavula et al., 2011; Chardon et al., 2013; Klemens et al., 2013). In *Populus*, sugar export
117 mediated by the tonoplastic sucrose symporter PtaSUT4 is required for carbon partitioning
118 between the source leaves and the lateral sinks (e.g. xylem) (Payyavula et al., 2011). In
119 *Arabidopsis*, *SWEET16* and *SWEET17* transporters were localized in the roots (Guo et al.,
120 2014) and we showed that the *SWEET16* promoter is active in the xylem parenchyma cells
121 (Klemens et al., 2013), while the *SWEET17* promoter is active in the xylem parenchyma cells
122 and young xylem cells of the *Arabidopsis* inflorescence stem (Chardon et al., 2013).
123 Moreover high levels of *SWEET17* transcripts have been measured in the inflorescence stem,
124 compared to other organs including roots, after 7 to 8 weeks of growth (Guo et al., 2014).
125 *SWEET16* and *SWEET17* are therefore good candidates with which to assess whether the
126 maintenance of sugar homeostasis between the cytosol and the vacuole influences xylem
127 development in *Arabidopsis*.

128 In the present work, through a reverse genetic approach, we demonstrate that
129 *SWEET16* and *SWEET17* have specific and overlapping roles during xylem development. In
130 particular, we suggest that tonoplastic sugar exchanges across the procambium-xylem
131 boundary regulated by *SWEET16* are important for xylem cell proliferation. By using infrared
132 spectroscopy and gene expression analysis, we also show that both *SWEET16* and *SWEET17*
133 are required for correct development of the secondary cell wall of xylem cells. Finally, since
134 glucose and fructose accumulation are observed in the inflorescence stem of the double
135 mutant, we suggest that maintenance of hexose homeostasis through the action of *SWEET16*
136 and/or *SWEET17* is important at different stages of xylem development.

137

138

139 **RESULTS**

140 **Radial growth of the inflorescence stem is altered in the *swt16swt17* double mutant**

141 To explore to what extent mutations in *SWEET16* and/or *SWEET17* impact
142 inflorescence stem development in *Arabidopsis*, we used the previously described *sweet17-1*
143 (hereafter called *swt17*) mutant line (Chardon et al., 2013) and identified two new T-DNA
144 insertion lines in the *SWEET16* gene. The mutants *sweet16-3* (SM_3.1827) and *sweet16-4*
145 (SM_3.30075) possess an insertion in the promoter region and in the first exon of the
146 *SWEET16* gene respectively (Supplemental Figure 1A). They were named after the previous
147 alleles already published (Guo et al., 2014). A full-length *SWEET16* transcript was detected
148 by RT-PCR in the *sweet16-3* allele, while no full-length transcript could be detected in the
149 *sweet16-4* allele (Supplemental Figure 1B and 1C). The *sweet16-4* allele (hereafter called
150 *swt16*) was therefore deemed to be a null allele. We generated the double mutant
151 *sweet16sweet17* (hereafter called *swt16swt17*) and confirmed by RT-PCR that both genes full
152 length were absent in this double mutant (Supplemental Figure 1C).

153 Analysis of the inflorescence stems of the *swt16*, *swt17* and *swt16swt17* mutants
154 showed that the area of stem cross-sections was significantly smaller compared to that of the
155 wild-type (Figure 1A and B). More precisely, the stem of all mutant lines contained less
156 xylem tissue compared with the wild type, while only the stem of *swt16swt17* displayed
157 significantly less phloem tissue (Figure 1C-D). Additionally, the proportion of xylem or
158 phloem per stem was calculated (Figure 1E-F). While no change in the proportion of phloem
159 was observed in the mutants compared to the wild type (Figure 1E), a significant reduction in
160 the xylem proportion was observed in the double *swt16swt17* mutant (Figure 1F).

161 To further assess the involvement of *SWEET16* and/or *SWEET17* in the radial
162 growth, constructs containing N-ter GFP-fused *SWEET16* and/or *SWEET17* genomic DNA
163 driven by their native promoter were introduced into the *swt16*, *swt17* and *swt16swt17*
164 mutants (Supplemental Figure 2A). The GFP-SWEET17 successfully complement the
165 phenotype of the *swt17* mutant (Supplemental Figure 2A), while GFP-SWEET16 only
166 partially complemented the stem phenotype of the *swt16* mutant (Supplemental Figure 2A).
167 However, full complementation of the double mutant *swt16swt17* was achieved when both
168 translational GFP fusions were expressed (Supplemental Figure 2A).

169 Altogether, our results show that both SWEET16 and SWEET17 transporters are
170 required for proper radial growth of the stem by affecting the vascular system development.

171

172 **SWEET16 and SWEET17 proteins interact physically and are expressed in the xylem**
173 **during its early development**

174 Previously, using lines expressing *pSWT:GUS* transcriptional fusions, we showed that
175 *SWEET16* and *SWEET17* were expressed in the xylem tissue of petioles and inflorescence
176 stems (Chardon et al., 2013; Klemens et al., 2013). To confirm the presence of SWEET16 and
177 SWEET17 proteins in the inflorescence stem we analysed the N-ter translational GFP fusions
178 that are complementing the mutant's phenotype (Supplemental Figure 2A). Unfortunately,
179 despite the phenotype complementation, we could not detect any GFP signal in these lines.
180 Nonetheless, we obtained lines from Guo et al. (2014) expressing translational fusions
181 between *GUS* and the C-terminus of *SWEET16* or *SWEET17* coding sequences under the
182 control of their respective native promoter in a wild type background. We analysed the
183 expression in three different zones: (1) a stem region where the growth was rapid, (2) a stem
184 region where elongation growth had finished but where further thickening of the secondary
185 cell wall was still ongoing and (3) the base of the stem, which corresponds to a mature zone
186 (Hall and Ellis, 2013) (Figure 6).

187 In the region where the stem was growing rapidly SWEET16 and SWEET17 proteins
188 are expressed in the cortex, the phloem cells, the interfascicular fibers and in the developing
189 xylem cells (Figure 2A-B and insets). In the phloem tissue whether SWEET16 and SWEET17
190 were expressed in the phloem parenchyma cells and/or the companion cells will need to be
191 further addressed by using for instance translational GFP fusions (Guo et al., 2014). In the
192 region where secondary cell wall thickening was still ongoing and in the mature stem,
193 SWEET16 and SWEET17 were found to be expressed in the cortex and across the phloem-
194 procambium-xylem region (Figure 2C-F). Expression of SWEET16 and SWEET17 were also
195 observed in young xylem cells, that could be developing xylary fibers and/or in developing
196 xylem vessels, before extensive cell wall lignification had occurred, as shown by the weaker
197 phloroglucinol cell wall staining (insets in Figure 2C-F). Additionally, an expression of
198 SWEET17 was observed in xylem cells showing a lignified cell wall and situated close to the
199 xylem vessels (Figure 2D and F). Based on their localization in the middle of the vascular

200 bundle, this cell type are more likely to be axial parenchyma cells (Turner and Sieburth, 2002;
201 Baghdady et al., 2006) than developing xylary fibers. Finally, SWEET17 was also expressed
202 in xylary parenchyma cells situated at the bottom of the vascular bundle (Berthet et al., 2011)
203 (Figure 2D and F). In addition, we also verified the expression pattern of *pSWEET16:GUS*
204 and *pSWEET17:GUS*, used to generate the translational GFP fusions, which contains shorter
205 promoters (1295 bp for *SWEET16* and 2004 bp for *SWEET17*) than the ones used for the
206 translational GUS fusions (1521 bp for *SWEET16* and 2746 bp for *SWEET17*) (Supplemental
207 Figure 2B-G). Overall we observed that the expression pattern obtained with the *pSWEET:GUS*
208 transcriptional fusions is included in that of the translational SWEET:GUS fusions
209 (Supplemental Figure 2B-G). In conclusion, SWEET16 and SWEET17 expression patterns
210 overlap in cortex cells as well as in the phloem-procambium-xylem region and in the young
211 xylem cells, whereas SWEET17 is specifically expressed in the xylem parenchyma cells.

212 It has been established that plant sugar SWEET transporters require homo or hetero-
213 oligomerization to gain functionality (Xuan et al., 2013). Because *SWEET16* and *SWEET17*
214 expression patterns overlap in several cells types of the inflorescence stem, we investigated
215 whether these proteins could interact. Xuan et al. (2013) previously showed that SWEET16
216 and SWEET17 can form homodimers as well as heterodimers in a split ubiquitin yeast two-
217 hybrid assay. We confirmed that SWEET16 and SWEET17 can form a heterodimer at the
218 vacuolar membrane in a bimolecular fluorescence complementation assay in *Arabidopsis*
219 mesophyll protoplasts (Figure 2G-H and Supplemental Figure 3).

220

221 ***SWEET16* but not *SWEET17* is required for proliferation of xylem cells**

222 The localization of SWEET16 and SWEET17 in the young xylem cells prompted us to
223 further analyzed the phenotype of the xylem tissue (Figure 3). On an independent set of
224 plants, we first checked the robustness of the inflorescence stem phenotype and confirmed
225 that the *swt16* and *swt17* single mutants and the *swt16swt17* double mutant consistently
226 displayed a significantly thinner inflorescence stem compared to the wild type (Figure 3A). In
227 addition, we confirmed our previous results that showed a significantly shorter inflorescence
228 stem in the *swt17* mutant compared to the wild-type (Figure 3B) (Chardon et al., 2013).
229 Interestingly, we did not observed any alteration in the inflorescence stem height in *swt16* or
230 *swt16swt17* compared to the wild type (Figure 3B). This suggests a compensation by other
231 sugar transporters yet to be identified in absence of SWEET16.

232 The xylem phenotype was then studied in more detail by counting the number of
233 xylary fibers (cells with an area of between 5-150 μm^2) and xylem vessels (cells with an area
234 greater than 150 μm^2) as well as measuring the individual cross-sectional areas within each
235 vascular bundle (Figure 3C-I). In the vascular bundles of the *swt16* and *swt16swt17* mutants,
236 but not *swt17*, the area occupied by the xylem tissue was significantly smaller than in the wild
237 type (Figure 3C). These changes could result from modification of either cell size or cell
238 number. While no changes in the size of the xylary fibers or the xylem vessels were observed
239 in any of the genotypes analyzed (Figure 3D-E), the total number of xylem cells per vascular
240 bundle was significantly reduced, by about 20%, in the single mutant *swt16* and the double
241 mutant *swt16swt17* but not in *swt17* (Figure 3F). The numbers of xylary fibers and xylem
242 vessels per vascular bundle were significantly reduced in the stem of the *swt16* single and
243 *swt16swt17* double mutant but not in the *swt17* mutant (Figure 3G-H). The decreased number
244 of xylary fibers was proportional to that of xylem vessels since the vessels-to-fibers ratio was
245 the same in the wild type and the *swt16*, *swt17* and *swt16swt17* mutant lines (Figure 3I).

246 Overall, these results show that the single *swt16* mutant and the *swt16swt17* double
247 mutant have the same phenotype (Figure 3 and Supplemental Table 1) and suggest that the
248 expression of *SWEET16*, but not that of *SWEET17*, is required for correct division of xylem
249 cells.

250

251 ***SWEET16* and *SWEET17* are required for normal secondary cell wall composition and**
252 **development in xylem cells**

253 To explore whether modifications in the vacuolar transport of sugars impact the
254 formation of the xylem cell wall, we first exploited the transcriptomic dataset obtained from
255 plants overexpressing a dexamethasone (DEX)-inducible version of the *VASCULAR*
256 *RELATED NAC-DOMAIN PROTEIN 7* (*VND7*) gene, the master secondary wall-inducing
257 transcription factor (Li et al., 2016). The *VND7*-VP16-GR plants allow the transcriptional and
258 metabolic changes occurring during secondary cell wall formation to be studied. From the
259 RNA-seq dataset, we extracted information related to the expression of the family of *SWEET*
260 genes at different time points after induction of *VND7* expression (Supplemental Figure 4).
261 Out of the 17 *SWEET* genes identified in *Arabidopsis*, 7 were differentially expressed during
262 secondary cell wall formation (Supplementary Figure 4). Most interestingly, the vacuolar

263 *SWEET2* and *SWEET17* were significantly upregulated 3 hours after DEX induction while
264 *SWEET16* expression was upregulated 12 hours after DEX induction (Supplementary Figure
265 4). In contrast, the expression of genes encoding the plasma membrane localized SWEET
266 transporters (e.g. *SWEET1*, *SWEET3*, *SWEET11* and *SWEET12*) was significantly
267 downregulated during secondary cell wall formation (Supplementary Figure 4). Additional
268 analysis of the dataset showed that *SWEET2* and *SWEET17* were co-regulated with genes
269 related to cell wall synthesis (*CESA*, *SND2*, *SND3*, *MYB46*) as well as those encoding other
270 sugar transporters localized at the tonoplast (*ESL1*) or at the plasma membrane (*STP1*, *STP13*
271 and *PMT4*) (Supplementary Table 4). These results support the fact that, in Arabidopsis
272 seedlings, sugar export from the vacuole to the cytosol is ongoing during secondary cell wall
273 formation, most probably to provide sugars to be used as intermediates for cell wall
274 formation. Since *VND7* is also expressed in xylem vessels in Arabidopsis inflorescence stems
275 (Shi et al., 2021), we can postulate that similar sugar exchanges involving tonoplast sugar
276 transporters take place during secondary cell wall formation in this organ.

277 To assess whether *SWEET16* and *SWEET17* are indeed functionally involved in xylem
278 secondary cell wall formation, we performed a targeted gene expression analysis including
279 genes that are known to be part of the transcriptional network involved in stem cell
280 proliferation/organization (*PXY*, *WOX4*) (Etchells et al., 2013), xylem cell identity (*ATHB8*)
281 (Smetana et al., 2019), and secondary cell wall biosynthesis in vessels/fibers (*CESA4*, *CESA7*,
282 *CESA8*, *KNAT7*, *MYB4*, *MYB43*, *MYB46*, *MYB52*, *MYB54*, *MYB58*, *MYB63*, *MYB83*,
283 *MYB103*, *NST1*, *VND6*, *VND7*, *SND1/NST3*, *SND3*, *VNI2* and *XND1*) (Hussey et al., 2013)
284 (Figure 4A-I). When looking at the overall transcriptional profile of the wild type and the
285 *swt16*, *swt17* and *swt16swt17* mutants, two clusters can be identified (Figure 4A). The first
286 cluster contains the wild type, the *swt16* and *swt17* single mutants, whereas the second
287 includes only the *swt16swt17* double mutant. Only a subset of genes shows significantly
288 increased expression among the different genotypes, namely *SND3*, *MYB103*, *MYB4*, *VNI2*,
289 *SND1*, *MYB83*, *MYB54* and *MYB46* (Figure 4A), though a tendency, albeit not significant, is
290 observed for *MYB43* ($P=0.053$) and *KNAT7* ($P=0.091$) (Figure 4A). Interestingly, all these
291 genes belong to the transcriptional network involved in secondary cell wall biosynthesis in
292 xylem vessels and/or in xylary fibers (for review Hussey et al., 2013). A Student's *t*-test was
293 then performed to compare each mutant line to the wild-type plants (Figure 4B-I). On
294 average, a 2-fold increase in expression was measured for the genes *SND1*, *MYB46*, *VNI2*,
295 *MYB83* and *MYB54* in the *swt16swt17* double mutant compared to the wild type (Figure 4B,

296 C, D, F and G), while a similar tendency was observed for *MYB4*, *SND3* and *MYB103*
297 expression (Figure 4E, H and I). Overall, these results show that in the *swt16swt17* double
298 mutant neither stem cell maintenance nor xylem identity genes are affected, whereas
299 secondary cell wall biosynthesis genes are deregulated.

300 Next, we tested whether this transcriptional deregulation was accompanied by
301 modifications in the cell wall composition. We used Fourier-transformed infrared
302 spectroscopy (FTIR) on inflorescence stem cross-sections to analyze the xylem secondary cell
303 wall composition as previously described in Le Hir et al. (2015) (Figure 5). The average
304 spectra for all three mutants showed several differences compared to the wild-type spectra in
305 fingerprint regions associated with cellulose, hemicelluloses and lignin (Figure 5A). The *t*-
306 values, plotted against each wavenumber of the spectrum, showed that the mutant lines
307 exhibited several significant negative and positive peaks (higher or lower absorbance than in
308 the wild type) at wavenumbers associated with cellulosic and hemicellulosic polysaccharides
309 (898 cm⁻¹, 995-1120 cm⁻¹, 1187 cm⁻¹, 1295 cm⁻¹, 1373 cm⁻¹, 1401 cm⁻¹, 1423 cm⁻¹, 1430 cm⁻¹,
310 1440 cm⁻¹, and 1485 cm⁻¹) (Åkerblom and Salmén, 2001; Kačuráková et al., 2002; Lahlali et
311 al., 2015) (Figure 5A and B). More precisely, wavenumbers at 898 cm⁻¹, associated with the
312 amorphous region of cellulose (Kačuráková et al., 2002), and at 1430 cm⁻¹, associated with
313 crystalline cellulose (Åkerblom and Salmén, 2001), showed opposite and significant
314 differences (Figure 5B). This suggests a potential defect in cellulose organization in the xylem
315 secondary cell wall. Measurements of the cellulose C-O vibrations at a peak height at 1050
316 cm⁻¹ (Lahlali et al., 2015) further indicate modifications of the cellulose composition in the
317 cell wall of all the mutant lines (Figure 5C).

318 The *swt16* and *swt16swt17* mutant also displayed significant variations compared to
319 the wild type at 1740 cm⁻¹ (band specific for acetylated xylan; Gou et al. 2003) and 1369 cm⁻¹
320 (deformation of C-H linkages in the methyl group *O*-acetyl moieties; Mohebby, 2008)
321 suggesting modifications in xylan acetylation (Figure 5A and B). Furthermore, the
322 hemicellulose peak height at 1740 cm⁻¹ (C-O and C-C bond stretching) was significantly
323 smaller in the *swt16* mutant suggesting less acetylated xylan (Figure 5D). Although the *swt17*
324 single mutant was not distinguishable from the wild type, the *swt16swt17* double mutant had
325 significantly fewer acetylated xylyns than the wild type and the *swt16* single mutant (Figure
326 5D). The lignin-associated bands at 1510 cm⁻¹ (Faix, 1991), 1520 cm⁻¹ (Faix, 1991; Gou et al.,
327 2008) and 1595 cm⁻¹ also exhibited significant differences in the single and double mutants
328 compared to the wild type plants (Figure 5B). In addition we measured the lignin height peak

329 ratio (1510/1595 cm⁻¹) that can be used as a proxy for G-type lignins, to have a more detailed
330 analysis of FTIR spectra of lignins. G-type lignins are mainly present in the cell wall of xylem
331 vessels while G-type and S-type lignins are present in cell wall of xylary fibers (Schuetz et al.,
332 2012; Öhman et al., 2013). We showed that the secondary cell wall of the *swt16* single mutant
333 contains significantly more G-type lignin than that of the wild type (Figure 5E). On the other
334 hand, only a tendency for more G-type lignin was measured for the *swt17* and the *swt16swt17*
335 mutants which suggest that S-type lignin, also present in fibers with G-type lignin (Gorzsás et
336 al., 2011), are responsible for the changes observed in the FTIR profiles (Figure 5A and B).

337 Overall, these results suggest that sugar export between the cytosol and the vacuole
338 regulated by SWEET16 and/or SWEET17 is required to provide the intermediates needed for
339 the synthesis of cellulosic and hemicellulosic polysaccharides.

340

341 **The hexose content is modified in the inflorescence stem of the *swt16swt17* double
342 mutant**

343 Assuming that SWEET16 and SWEET17 are sugar carriers, we wondered what would
344 be the metabolic status of the inflorescence stem in the *swt16swt17* double mutant. We
345 therefore used GC-MS to explore the global metabolomic profiles of the wild-type and the
346 double *swt16swt17* mutant, identifying a total of 158 metabolites. In order to identify the
347 subset of metabolites that best discriminate between the genotypes, we performed a sPLS-DA
348 (Figure 6A). The resulting score plot clearly allows the two genotypes to be separated by the
349 first dimension (Figure 6A). Among the metabolites selected by the sPLS-DA analysis, a
350 subsequent *t*-test identified nine that were significantly different between wild type and the
351 *swt16swt17* double mutant: allothreonine, benzoic acid, citraconic acid, cysteinylglycine,
352 fructose, fumaric acid, glucose-6-phosphate, phytol and valine (Figure 6B and Supplemental
353 Table 3). The relative quantities of benzoic acid, citraconic acid and fumaric acid (a
354 component of the tricarboxylic cycle) were significantly reduced in the double mutant
355 compared to the wild type (Supplemental Figure 5A, B and F). On the other hand, significant
356 accumulation of cysteinylglycine (an intermediate in glutathione biosynthesis;
357 (Hasanuzzaman et al., 2017), hexoses and hexose-phosphates (e.g. glucose-6-phosphate and
358 fructose), amino acids (e.g. allothreonine and valine) and phytol (a chlorophyll component;
359 (Gutbrod et al., 2019) was measured in the *swt16swt17* mutant compared to the wild-type
360 stems (Supplemental Figure 5C, D, E, G, H and I). We further quantified the soluble sugars

361 and starch content in both genotypes by enzymatic methods. Consistent with the
362 metabolomics results, a 6-fold significant increase of fructose in the double mutant was
363 confirmed (Figure 6C). In addition, the glucose content was significantly increased by 4-fold
364 in the stem of the double mutant (Figure 6C), while no variation in the sucrose and starch
365 contents was observed (Figure 6C). Interestingly, the inflorescence stem of the *swt16swt17*
366 double mutant accumulated mostly hexoses while no significant changes in glucose or sucrose
367 were observed in the stem of the *swt16* and *swt17* single mutants (Supplemental Figure 6A).
368 Although it was not significant, a tendency to accumulate glucose was observed in the single
369 mutants (Supplemental Figure 6B). A significant increase in fructose content was measured
370 only in the *swt17* mutant compared to the wild type (Supplemental Figure 6C).

371

372 **DISCUSSION**

373 To efficiently control carbon homeostasis within a cell and to fuel the different
374 metabolic and signaling pathways, dynamic sugar storage in the plant vacuole is critical. Over
375 the past years, several vacuolar transporters have been identified at the molecular level (for
376 review see Hedrich et al., 2015). Among them, SWEET16 and SWEET17 have been
377 characterized as bidirectional tonoplast sugar facilitators and shown to be involved in seed
378 germination, root growth and stress tolerance (Chardon et al., 2013; Klemens et al., 2013;
379 Guo et al., 2014; Valifard et al., 2021). In addition, the expression of both genes has been
380 shown in the inflorescence stem's vascular parenchyma cells, but this had not previously been
381 explored further. In this work, we ask whether facilitated sugar transport (*via* SWEET16 and
382 SWEET17) across the vacuolar membrane limits vascular tissue development in the
383 inflorescence stem of *Arabidopsis*.

384 Our data show that vascular tissue development in the inflorescence stem is regulated
385 by both SWEET16 and SWEET17 transporters. This conclusion is supported by the fact that
386 mutations in both genes impact the inflorescence stem diameter along with the quantity of
387 phloem and xylem tissues. These phenotypes are consistent with our analysis of lines
388 expressing translational CDS-GUS fusions which confirmed the presence of both transporters
389 in phloem and xylem tissues of the flower stem. Nonetheless, because SWEET16 and
390 SWEET17 are also expressed in the root (Guo et al., 2014), the defects observed in the flower
391 stem could also result from a disruption of sugar allocation between roots and shoot. Further
392 experiment will be required to address the relative role of SWEET16 and SWEET17 in shoot

393 and root parts and the consequences on development of the vascular system in the
394 inflorescence stem.

395 Our data also highlight modifications of hexose homeostasis in the inflorescence stem
396 of the different mutant lines. Although a tendency to accumulate glucose was observed in the
397 *swt16* mutant, a significant increase in fructose was measured in the *swt17* mutant stem.
398 Furthermore, mutations in both *SWEET16* and *SWEET17* induced somewhat specific
399 accumulation of glucose, glucose-6-phosphate and fructose in the inflorescence stem. It has
400 been previously shown that defects in the expression of vacuolar sugar transporters alter
401 carbon partitioning and allocation in different organs, which is in line with our findings for
402 the inflorescence stem (Wingenter et al., 2010; Yamada et al., 2010; Poschet et al., 2011;
403 Chardon et al., 2013; Klemens et al., 2013; Guo et al., 2014; Klemens et al., 2014). Knowing
404 that SWEET proteins are sugar facilitators working along the concentration gradient (Chen et
405 al., 2010) and that at least half of the hexoses are present in the plant vacuole (Heineke et al.,
406 1994; Weiszmann et al., 2018), we can reasonably propose that some of the hexoses are
407 trapped inside the vacuole in the single *swt16* and *swt17* mutants and the *swt16swt17* double
408 mutant. As a consequence, modifications in the distribution of hexose concentrations between
409 the vacuole and the cytosol, which would impact the availability of hexoses for subsequent
410 metabolic and signaling purposes, could be expected. Hexoses are known to favor cell
411 division and expansion, while sucrose favors differentiation and maturation (Koch, 2004). In
412 addition, after metabolization, hexoses and hexoses-phosphates constitute the building blocks
413 for the synthesis of cell wall polysaccharides (Verbančič et al., 2018). Since *SWEET16* and/or
414 *SWEET17* are expressed in the xylem initials, in young xylem cells and in xylem parenchyma
415 cells, we propose that enhanced storage of vacuolar hexoses in these cells will affect different
416 stages of xylem development.

417 (Pro)cambium and xylem tissues can be regarded as sinks because they rely mostly on
418 the supply of carbohydrates from the surrounding cells to sustain their development (Sibout et
419 al., 2008; Spicer, 2014). In aspen stem, a gradual increase in sucrose and reducing sugars,
420 together with a rise in the activities of sugar metabolism enzymes, are observed across the
421 cambium-xylem tissues (Roach et al., 2017). In addition, in tomato, modification of fructose
422 phosphorylation by the fructokinase SlFRK2 leads to a defect in cambium activity (Damari-
423 Weissler et al., 2009). Taken together, these results support the need for maintenance of sugar
424 homeostasis in the (pro)cambium to respond to the high metabolic activity required during

425 cell division. Our work identified SWEET16 as a player in the dividing xylem cells, acting to
426 balance the tradeoffs between the need for sugars in the cytosol and their storage in the
427 vacuole (Figure 7). This conclusion is supported by the fact that SWEET16 is expressed
428 across the procambium-xylem boundary and that a mutation in *SWEET16* leads to defects in
429 the number of xylem cells and in radial growth of the inflorescence stem. Furthermore, the
430 expression of the gene coding for the WUSCHEL RELATED HOMEOBOX 4 (WOX4)
431 transcription factor (Etchells et al., 2013), which is involved in cellular proliferation, was
432 unchanged in both *swt16* and *swt16swt17* mutants. These results suggest that the defects in
433 xylem cell division could result from reduced availability of energy and matter resources due
434 to a reduction in sugar transport and/or from a defect in sugar signaling.

435 The reduced number of xylem vessels in the *swt16swt17* double mutant's vascular
436 bundle could be explained by the upregulation of *VND-INTERACTING 2* (*VNI2*), which is a
437 repressor of the activity of the master regulator of xylem vessel differentiation *VND7* (Zhong
438 et al., 2008; Yamaguchi et al., 2010). On the other hand, the overexpression in the double
439 mutant *swt16swt17* of *SECONDARY WALL-ASSOCIATED NAC DOMAIN 1* (*SND1*), the
440 master switch for fiber differentiation, would be expected to result in a shift towards increased
441 differentiation of xylary fibers (Zhong et al., 2006), which is not consistent with the fewer
442 fibers observed in the double mutant. Based on these results, we can assume that the increase
443 in storage of vacuolar hexoses in the double mutant also affects xylem cell differentiation.
444 Against this hypothesis, our results show that both xylary fibers and xylem vessels number
445 decreased proportionately, since no change in the xylem vessels/xylary fibers ratio was
446 measured. Consistent with this observation, the expression of the gene coding for the
447 *PHLOEM INTERCALATED WITH XYLEM* (*PXY*) receptor, which is involved in xylem
448 cell differentiation (Etchells et al., 2016), was not modified. Despite the upregulation of *VNI2*
449 and *SND1* expression, which could be due to a feedback mechanism yet to be identified, these
450 results therefore tend to suggest that no disequilibrium is occurring in xylem cell
451 differentiation in the *swt16swt17* mutant stem. The enhanced storage of hexoses in the
452 vacuole of the double mutant is therefore affecting the overall pattern of xylem cell division
453 rather than xylem cell differentiation.

454 After cell division and differentiation, xylem cells undergo a developmental program
455 that includes secondary cell wall formation, lignification and programmed cell death, to
456 produce functional xylem fibers and vessels (Schuetz et al., 2012) (Figure 7). Along with the

457 overexpression of *SND1*, the overexpression of genes encoding its downstream targets,
458 namely MYB DOMAIN PROTEIN 46 and 83 (MYB46 and MYB83), was observed in the
459 *swt16swt17* double mutant. Furthermore, the targets of the MYB46/MYB83 node, which
460 positively regulates SND3 (SECONDARY WALL-ASSOCIATED NAC DOMAIN
461 PROTEIN 3), KNAT7 (KNOTTED-LIKE HOMEOBOX OF ARABIDOPSIS THALIANA
462 7), MYB43 and MYB54 or/and negatively regulates MYB103, KNAT7 and MYB4, all of
463 which are involved in the formation of the xylem secondary cell wall, are also upregulated
464 (Hussey et al., 2013). KNAT7 directly or indirectly represses cellulose, hemicellulose and
465 lignin biosynthetic genes (Li et al., 2012), while MYB54 is related to cellulose synthesis
466 (Zheng et al., 2019). In Arabidopsis, MYB43 along with other MYB transcription factors
467 regulates lignin biosynthesis (Geng et al., 2020), while its ortholog in rice is involved in the
468 regulation of cellulose deposition (Ambavaram et al., 2011). Finally, upregulation of MYB4
469 in Arabidopsis results in downregulation of the lignin pathway (Jin et al., 2000), while a role
470 for MYB103 in lignin biosynthesis has been shown in Arabidopsis stem (Öhman et al., 2013).
471 In the *swt16wt17* double mutant, these transcriptional changes were accompanied by
472 modifications of the secondary cell wall in terms of cellulose and hemicellulose composition.
473 However, a single mutation in *SWEET16* or *SWEET17* was sufficient to modify the
474 composition of the xylem cell wall without any alteration in the expression of genes involved
475 in secondary cell wall synthesis. Our data further show that the SWEET16 and SWEET17
476 expression patterns overlap in xylem cells that are building a secondary cell wall and that they
477 form a heterodimer in Arabidopsis mesophyll protoplasts. We therefore postulate that the
478 intermediate sugars required for the synthesis of cell wall polysaccharides come in part from
479 the vacuole unloading mediated by SWEET16 and SWEET17 homo- and heterodimers
480 (Figure 7). Previously, it has been shown that genes encoding vacuolar sugar facilitators are
481 up-regulated during secondary cell wall formation in xylem vessels, while sugar facilitators
482 expressed at the plasma membrane are down-regulated (Supplementary Figure 2) (Li et al.,
483 2016), supporting the idea that secondary cell wall formation relies on sugar export from the
484 vacuole. In the current model of cell wall synthesis, the cytosolic catabolism of sucrose is
485 thought to be the main source of nucleotide sugars (e.g. UDP-glucose, UDP-galactose, GDP-
486 mannose) that act as precursors for cellulose and hemicellulose synthesis (Verbančić et al.,
487 2018). Our data support the existence of a more complex system in which the export of
488 vacuolar hexoses also represents a source for the synthesis of nucleotide sugars and
489 subsequent cell wall formation (Figure 7).

490 Because SWEET17, a fructose-specific transporter (Chardon et al., 2013), is also
491 expressed in the xylem parenchyma cells (including axial xylem parenchyma cells and xylary
492 parenchyma cells), we postulate that the maintenance of fructose homeostasis within this cell
493 type, is important and could contribute to the provision of carbon skeletons for secondary cell
494 wall synthesis after the disappearance of the vacuole from the maturing xylem cells (Figure
495 7). Previously, the *Arabidopsis* fructokinases (FRKs), which allow the fructose
496 phosphorylation before its metabolization by the cells, has been shown to play an important
497 role in the vascular tissue development in hypocotyls (Stein et al., 2017). Furthermore, based
498 on abnormal vascular cell shapes, Stein et al. (2017) proposed that FRKs may also contribute
499 to the strength of the cell walls. This study and our results concur, therefore, to propose a link
500 between fructose transport/metabolism and secondary wall formation that should be further
501 explored. Within this scheme, the export of sugars in the apoplastic space between
502 parenchyma cells and developing conducting cells could be carried out by the plasmalemmal
503 SWEET11 and SWEET12 transporters which also expressed in the xylem parenchyma cells
504 (Figure 7 and (Le Hir et al., 2015). Such cooperation between parenchyma cells and
505 developing conducting cells was previously described as the “good neighbor” hypothesis in
506 the context of H₂O₂ and monolignol transport (Barcelo, 2005; Smith et al., 2013; Smith et al.,
507 2017). To further explore the importance of sugar transport between xylary parenchyma cells
508 and developing xylem cells, more experiments, such as cell-specific complementation of the
509 *sweet* mutant lines, will be needed in order to better comprehend the role of xylary
510 parenchyma cells in xylem development. Additionally, it would be interesting to explore, with
511 similar techniques, whether or not the vascular system development is impaired in the leaf
512 petiole where both *SWEET16* and *SWEET17* genes are expressed (Chardon et al., 2013;
513 Klemens et al., 2013). If this is the case, this would suggest a more general role of SWEET16
514 and SWEET17 in the xylem development.

515 As sink tissues, cambium and xylem rely on the lateral escape of sugars along the
516 phloem pathway to nourish them (Sibout et al., 2008; van Bel, 2021). The localization of
517 SWEET16 and SWEET17 at the phloem-cambium-xylem interface in the inflorescence stem
518 along with our previous results on the localization of *SWEET11* and *SWEET12* (Le Hir et al.,
519 2015) suggest that these SWEET transporters play a role in the radial transport (lateral
520 transport) of sugars in order to provide energy and substrate to sustain cell division and xylem
521 formation. However, such hypothesis needs to be tested by using for instance tissue-specific

522 complementation to address the significance of their expression in either phloem or xylem on
523 the global vascular system phenotype.

524 In conclusion, our results propose that the hexose exchanges regulated by SWEET16
525 are important for the division of the vascular cells while both SWEET16 and SWEET17
526 transporters, working as homo and/or heterodimers, are important for the secondary cell wall
527 synthesis before the vacuole disruption. Finally, we identified SWEET17 as specifically
528 involved in the maintenance of fructose homeostasis within the xylem parenchyma cells in
529 order to sustain the latest phases of secondary cell wall formation. Overall, our work shows
530 that exchange of intracellular hexoses, regulated by SWEET16 and/or SWEET17 at the
531 tonoplast, contributes to xylem development by modulating the amounts of sugars that will be
532 made available to the different cellular processes. However, how the cell is prioritizing the
533 distribution of sugars among the different processes remains an open question. Although these
534 technologies are challenging, the use of non-aqueous fractionation and metabolomics
535 approaches (Fürtauer et al., 2019) could help in resolving subcellular sugar metabolism in a
536 cell-specific context in mutant lines affected in sugar metabolism, transport and signaling.

537

538

539 **MATERIALS AND METHODS**

540 ***Plant material and growth conditions***

541 Seeds of T-DNA insertion lines homozygous for *SWEET17* (*sweet17-1*) and *SWEET16*
542 (*sweet16-3* and *sweet16-4*) in Col-0 background were gifts from Dr. F. Chardon and Pr. E.
543 Neuhaus respectively. The *sweet17-1* line was previously reported to be a knock-out by
544 Chardon et al. (2013). The *sweet16-3* (SM_3_1827) and *sweet16-4* (SM_3_30075) lines were
545 numbered following the *sweet16-1* and *sweet16-2* lines already published by Guo et al.
546 (2014). To verify whether *sweet16-3* and *sweet16-4* were knock-out mutants we performed
547 RT-PCR with specific primers to amplify the full-length *SWEET16* cDNA (Supplemental
548 Figure 1 and Supplemental Table 4). Since only the *sweet16-4* mutant turned to be a knock-
549 out (Supplemental Figure 1B), we crossed it with *swt17-1* to obtained the double mutant
550 *sweet16-4sweet17-1* (hereafter referred as *swt16swt17*). Homozygous plants were genotyped
551 using gene-specific primers in combination with a specific primer for the left border of the T-
552 DNA insertion (Supplemental Table 4).

553 To synchronize germination, seeds were stratified at 4°C for 48 hours and sown in soil in a
554 growth chamber in long day conditions (16 hours day/8 hours night and 150 $\mu\text{E m}^{-2} \text{ s}^{-1}$) at
555 22/18°C (day/night temperature) with 35% relative humidity. Plants were watered with Plant-
556 Prod nutrient solution twice a week (Fertil, <https://www.fertil.fr/>). For all experiments, the
557 main inflorescence stems (after removal of lateral inflorescence stems, flowers and siliques)
558 were harvested from seven-week old plants.

559

560 ***Inflorescence stem sample preparation***

561 For each plant, the main inflorescence stem height was measured with a ruler before
562 harvesting a 1 to 2 cm segment taken at the bottom part of the stem. The stem segments were
563 embedded in 8% agarose solution and sectioned with a VT100 S vibratome (Leica,
564 <https://www.leica-microsystems.com/>). Some of the cross-sections were used for FT-IR
565 analysis and the others were stained with a FASGA staining solution prepared as described in
566 Tolivia and Tolivia (1987) for morphometric analysis of the xylem.

567

568

569

570 ***Morphometric analysis of the xylem***

571 Previously stained inflorescence stem cross-sections were imaged under an Axio Zoom V16
572 microscope equipped with a Plan-Neofluar Z 2.3/0.57 FWD 10.6 objective (Zeiss,
573 <https://www.zeiss.fr/microscopie/>). For each section, the diameter of the inflorescence stem
574 was measured using the Image J software package (<https://imagej.nih.gov/ij/>). For the same
575 sections all the vascular bundles were photographed individually using a confocal laser
576 scanning microscope and morphological analysis of the xylem were performed as described in
577 Le Hir et al. (2015). For each vascular bundle, the morphological segmentation made it
578 possible to find the number of xylem cells (xylary fibers and xylem vessels) as well as their
579 cross-sectional areas. Cells with a cross-sectional area of between 5 to 150 μm^2 were
580 considered to be xylary fibers and cells with a cross-sectional area greater than 150 μm^2 were
581 considered to be xylem vessels. The sum of all xylem cell cross-sectional areas was then
582 calculated to give the total xylem cross-sectional area. The average xylary fiber and xylem
583 vessel area was calculated by dividing the total xylem cross-sectional area by the number of
584 each cell type.

585

586 ***GUS staining***

587 The lines expressing pSWEET16:SWEET16-GUS and pSWEET17:SWEET17-GUS were
588 kindly provided by Dr. Woei-Jiun Guo (National Cheng Kung University, Tainan, Taiwan)
589 were used to assess the SWEET16 and SWEET17 expression pattern on seven-week-old
590 plants grown under greenhouse conditions. The histochemical GUS staining was performed
591 according to Sorin et al. (2005). Inflorescence stem subjected to GUS staining were then
592 embedded in 8% agarose and sectioned with a Leica VT100S vibratome (Leica,
593 <https://www.leica-microsystems.com/>). Sections were counterstained for lignin by
594 phloroglucinol staining (Pradhan Mitra and Loqué, 2014). Pictures were taken using Leitz
595 Diaplan microscope equipped with a AxioCam MRc camera and the ZEN (blue edition)
596 software package (Zeiss, <https://www.zeiss.com/>).

597

598

599

600 ***FT-IR analysis of the xylem secondary cell wall***

601 The composition of the secondary cell wall of the xylem tissue was determined by Fourier
602 Transformed Infra-red spectroscopy using an FT-IR NicoletTM iNTM (Thermo Fisher
603 Scientific, <https://www.thermofisher.com>). Spectral acquisitions were done in transmission
604 mode on a 30 µm by 30 µm acquisition area targeting the xylem tissue (xylem vessels and
605 xylary fibers) as described in Le Hir et al. (2015). Between 10 to 15 acquisition points
606 sweeping the xylem tissue homogeneously were performed on each vascular bundle within a
607 stem section. Three individual inflorescence stems were analyzed for each genotype. After
608 sorting the spectra and correcting the baseline, the spectra were area-normalized and the
609 different genotypes were compared as described in Le Hir et al. (2015). The absorbance
610 values (maximum height) of the major cellulose, lignin and hemicellulose bands in the
611 fingerprint region (1800–800 cm⁻¹) were collected using TQ Analyst EZ edition (Thermo
612 Fisher Scientific, <https://www.thermofisher.com>).

613

614 ***Metabolomic analysis***

615 The inflorescence stems of the wild-type and the *swt16swt17* double mutant were harvested in
616 the middle of the day (8 hours after the beginning of the light period). Metabolites were
617 extracted from 4.5 mg of lyophilized stem powder from eight individual plants and analyzed
618 by GC-MS as described in Cañas et al. (2020). Relative concentrations of metabolites were
619 determined relative to the internal standard ribitol, which was added after grinding the
620 lyophilized material. Differential accumulation of metabolites was determined by one-way
621 analysis of variance (ANOVA) and *post hoc* Tukey tests ($P < 0.05$).

622

623 ***Quantification of soluble sugars and starch***

624 The main inflorescence stems of the wild type, and the *swt16*, *swt17* and *swt16swt17* mutants,
625 were harvested in the middle of the day (8 hours after the beginning of the light period),
626 frozen in liquid nitrogen and ground with a mortar and a pestle. Soluble sugars and starch
627 were extracted from 50 mg of powder from an individual stem as described in Sellami et al.
628 (2019). Depending on the experiment, 4 to 9 biological replicates were analyzed.

629

630

631 ***RNA isolation and cDNA synthesis***

632 RNAs were prepared from the main inflorescence stem from four 7-week-old individual
633 plants grown as described above. Samples were frozen in liquid nitrogen before being ground
634 with a mortar and a pestle. Powders were stored at -80°C until use. Total RNA was extracted
635 from frozen tissue using TRIzol® reagent (Thermo Fisher Scientific, 15595-026,
636 <https://www.thermofisher.com>) and treated with DNase I, RNase-free (Thermo Fisher
637 Scientific, EN0521, <https://www.thermofisher.com>). cDNA was synthetized by reverse
638 transcribing 1 µg of total RNA using RevertAid H minus reverse transcriptase (Thermo Fisher
639 Scientific, EP0452, <https://www.thermofisher.com>) with 1 µl of oligo(dT)18 primer (100
640 pmoles) according to the manufacturer's instructions. The reaction was stopped by incubation
641 at 70 °C for 10 min.

642

643 ***Quantitative qPCR experiment***

644 Transcript levels were assessed for four independent biological replicates in assays with
645 triplicate reaction mixtures by using specific primers either designed with the Primer3
646 software (<http://bioinfo.ut.ee/primer3-0.4.0/primer3/>) or taken from the literature
647 (Supplemental Table 5). qPCR reactions were performed in a 96-well transparent plate on a
648 Bio-Rad CFX96 Real-Time PCR machine (Bio-Rad) in 10 µl mixtures each containing 5 µl
649 of Takiyon™ ROX SYBR® MasterMix dTTP Blue (Eurogentec, UF-RSMT-B0710,
650 <https://www.eurogentec.com/>), 0.3 µl forward and reverse primer (30 µM each), 2.2 µl sterile
651 water and 2.5 µl of a 1/30 dilution of cDNA. The following qPCR program was applied:
652 initial denaturation at 95°C for 5 min, followed by thirty-nine cycles of 95°C for 10 sec, 60°C
653 for 20 sec, 72°C for 30 sec. Melting curves were derived after each amplification by
654 increasing the temperature in 0.5°C increments from 65°C to 95°C. The Cq values for each
655 sample were acquired using the Bio-Rad CFX Manager 3.0 software package. The specificity
656 of amplification was assessed for each gene, using dissociation curve analysis, by the
657 precision of a unique dissociation peak. If one of the Cq values differed from the other two
658 replicates by > 0.5, it was removed from the analysis. The amplification efficiencies of each
659 primer pair were calculated from a 10-fold serial dilution series of cDNA (Supplemental
660 Table 5). Four genes were tested as potential reference genes: *APT1* (At1g27450), *TIP41*

661 (At4g34270), *EF1α* (At5g60390) and *UBQ5* (At3g62250). The geNorm algorithm
662 (Vandesompele et al., 2002) was used to determine the gene most stably expressed among the
663 different genotypes analyzed, namely *UBQ5* in this study. The relative expression level for
664 each genotype was calculated according to the ΔCt method using the following formula:
665 average $E_t^{-Cq(\text{of target gene in A})}/E_r^{-Cq(\text{of reference gene in A})}$, where E_t is the amplification efficiency of
666 the target gene primers, E_r is the reference gene primer efficiency, A represents one of the
667 genotypes analyzed.

668

669 ***Production of complementation lines***

670 For complementation of the single *sweet16-4* and *sweet17-1* and the double *sweet16-*
671 *4sweet17-1* mutants, N terminal with GFP were constructed as follow. First, the coding
672 sequence of eGFP was amplified from the pKGWFS7 plasmid (Karimi et al., 2002) with or
673 without a stop codon and then introduced into a modified donor pENTR vector to produce
674 pENT-GFP (w/o stop). To make the N terminal translational GFP fusions (pSWEET16:GFP-
675 SWEET16 and pSWEET17:GFP-SWEET17), the promoters (1295 bp for *SWEET16* and 2004
676 bp for *SWEET17*) and genomic sequences (1863 bp for *SWEET16* and 2601 bp for *SWEET17*)
677 were amplified separately and then cloned on each side of the GFP gene in the intermediary
678 vector pENT-GFP by taking advantage of the restriction sites generated by PCR. All the PCR
679 reactions were performed using Phusion High-Fidelity DNA Polymerase (Thermo Fisher
680 Scientific, F-530S, <https://www.thermofisher.com>) with the primers listed in Supplemental
681 Table 4. Donor vectors created in this way were analyzed by sequencing in order to check the
682 reading frame of the translational fusions and the integrity of the whole genomic sequences.
683 Destination binary vectors were then obtained by recombination, using Gateway® LR Clonase
684 II Enzyme Mix (Thermo Fisher Scientific, 11791-100, <https://www.thermofisher.com>),
685 between pENTR donor vectors and pMDC99 (for pSWEET16:GFP-SWEET16) or pMDC123
686 (for pSWEET17:GFP-SWEET17) (Curtis and Grossniklaus, 2003). All binary vectors were
687 introduced into *Agrobacterium tumefaciens* C58pMP90 (Koncz and Schell, 1986) by
688 electroporation. *Arabidopsis* single mutants *swt16-4* and *swt17-1* as well as the double mutant
689 *sweet16-4sweet17-1* plants were transformed by the floral dip method (Clough and Bent,
690 1998). Transformants were selected on hygromycin (15 mg/L) for pMDC99 constructs and/or
691 Basta (7.5 mg/L) for pMDC123 constructs. For all constructs, three independent transgenic
692 lines were analyzed and one representative line was selected for subsequent studies.

693

694 ***BiFC assay***

695 For the bimolecular fluorescence complementation (BiFC) assay, the full-length ORFs of
696 *SWEET16* and *SWEET17* were amplified from cDNA with the primers given in Supplemental
697 Table 4, either with or without their stop codons, depending on the final vector used. The
698 ORFs were further sub-cloned into pBlueScript II SK, blunt end cut with EcoRV. The
699 resulting vectors were checked for errors and orientation of the insert by sequencing with T3
700 and T7 primers. Subsequently, positive clones in the T7 orientation and the corresponding
701 pSAT1 vectors (Lee et al., 2008) were cut with EcoRI and XhoI. *SWEET16* including the stop
702 codon was ligated into pSAT1-cCFP-C, and *SWEET17* without the stop codon into pSAT1-
703 nCerulean-N. Plasmid DNA of the final constructs was isolated with a PureLinkTM HiPure
704 Plasmid Filter Midiprep Kit (InvitrogenTM /Thermo Fisher Scientific) according to the
705 manufacturer's manual. Isolation and transfection of *Arabidopsis* mesophyll protoplasts were
706 performed as described by Yoo et al. (2007). For imaging protoplasts, a Leica TCS SP5 II
707 confocal laser scanning microscope (<http://www.leica-microsystems.com>) was used. All
708 pictures were taken using a Leica HCX PL APO 63·/1.20 w motCORR CS objective with a
709 VIS-Argon laser suitable for constructs with CFP (Cerulean, 458 nm excitation/460-490 nm
710 collection bandwidth, laser power 90% and gain at 735 V) or YFP (Venus, 514 nm
711 excitation/520-540 nm collection bandwidth, laser power 70% and gain at 700 V) derivates.
712 The Chloroplast autofluorescence was imaged between 620-700 nm after excitation with the
713 514 nm laser line (laser power 70% and gain at 690 V).

714

715 ***Statistical analysis***

716 Differences between genotypes were assessed by a Student's *t*-test for comparison between
717 wild-type plants and mutant lines or by using one-way analysis of variance (ANOVA) with a
718 Tukey HSD post-hoc test or a Dunnett post-hoc test (for analysis of the qPCR dataset). The
719 sPLS-DA analysis was performed according to Jiang et al. (2014) and Lê Cao et al. (2011).
720 Irrelevant variables were removed using lasso (least absolute shrinkage and selection
721 operator) penalizations and 20 variables were selected in each dimension. The 'mixOmics'
722 package (Rohart et al., 2017) was used to perform sPLS-DA. All the statistical analysis and
723 graph production were done in RStudio (version 1.1.456) (Rstudio Team, 2015), which

724 incorporates the R software package (version 3.5.1) (R Core Team, 2017) using ‘ggplot2’
725 (Wickham, 2016), ‘ggthemes’ (Arnold, 2019), ‘cowplot’ (Wilke, 2019), ‘hyperSpec’ (Beleites
726 and Sergo, 2020) and ‘multcompView’(Graves et al., 2015).

727

728 **ACCESSION NUMBERS**

729 Sequence data from this article can be found in the GenBank/EMBL data libraries under the
730 following accession numbers: *SWEET16* (AT3G16690), *SWEET17* (AT4G15920).
731 Metabolomic data can be found at <https://www.ebi.ac.uk/metabolights/MTBLS2179>.

732

733 **ACKNOWLEDGMENTS**

734 The authors would like to thank Dr. Fabien Chardon and, Dr. Anne Krapp (IJPB, INRAE
735 Versailles, France) for providing seeds of the *sweet17-1* mutant as well as Dr. Woei-Jiun Guo
736 for kindly providing us the SWEET16 and SWEET17 translational GUS fusions. The authors
737 also thank Dr. Grégory Mouille (IJPB, INRAE Versailles, France) for advice on FTIR dataset
738 analysis and anonymous reviewers who helped us to improve the manuscript.

739

740

741

742

743

744

745

746

747

748 **FIGURE LEGENDS**

749 **Figure 1. Altered development of the inflorescence stem in the *swt16swt17* double**
750 **mutant.**

751 (A) Transverse sections of the basal part of the inflorescence stem of 7-week-old plants
752 stained with FASGA solution. Stars indicate the phloem tissue while circles indicate the
753 xylem tissue. Bars = 200 μ m.

754 (B to F) Boxplots showing the inflorescence stem cross-sectional area (B), the area occupied
755 by xylem tissue (C) or phloem tissue (D) within a stem section, the ratio of xylem area to stem
756 area (E) and the ratio of phloem area to stem area (F).

757 The box and whisker plots represent values from 7 to 8 independent plants. The lines
758 represent median values, the tops and bottoms of the boxes represent the first and third
759 quartiles respectively, and whisker extremities represent maximum and minimum data points.
760 A one-way analysis of variance combined with the Tukey's comparison post-hoc test were
761 performed. The values marked with the same letter were not significantly different from each
762 other, whereas different letters indicate significant differences ($P < 0.05$).

763

764 **Figure 2. SWEET16 and SWEET17 are expressed in the xylem cells throughout the**
765 **inflorescence stem development and are forming heterodimers.**

766 (A, C and E) Histochemical analysis of GUS activity in lines expression SWEET16-GUS
767 fusion proteins driven by the *SWEET16* native promoter in sections taken at different
768 positions in the inflorescence stem of 7-week-old plants. (B, D and F) Histochemical analysis
769 of GUS activity in lines expression SWEET17-GUS fusion proteins driven by the *SWEET17*
770 native promoter in sections taken at different positions in the inflorescence stem section of 7-
771 week-old plants. Sections were taken in a stem region where the growth was still rapid (A, B
772 and insets), in a stem region where elongation growth had finished but where thickening of
773 the secondary cell wall was still ongoing (C, D and insets), and at the bottom of the stem, a
774 region that corresponds to a mature stem (E, F and insets). Arrows point to cells showing blue
775 GUS staining in developing xylem cells and arrow heads point to axial parenchyma cells and
776 asterisks indicate xylary parenchyma cells. Lignin is colored pink after phloroglucinol
777 staining. The intensity of the pink color is correlated with the stage of lignification of the
778 xylary vessels. ep: epidermis; co: cortex; iff: interfascicular fibers; ph: phloem; xy: xylem.

779 Scale bar = 50 μ m. (G) Arabidopsis mesophyll protoplast expressing SWEET17-cCFP^C and
780 SWEET16-nVenus^C interaction revealed by false color yellow, chloroplast auto-fluorescence
781 is in false color red. (H) Arabidopsis mesophyll protoplast expressing SWEET16-cCFP^C and
782 SWEET17-nCerulean^C interaction revealed by false color cyan, chloroplast auto-fluorescence
783 is in false color red. Invaginations around the chloroplasts in (G) and (H) indicate that
784 SWEET16 and SWEET17 interact at the vacuolar membrane.

785

786 **Figure 3. Knockout of SWEET16 gene expression impacts the proliferation of xylem
787 cells.**

788 (A to I) Boxplots showing the inflorescence stem height (A) and diameter (B), the cross-
789 sectional area occupied by xylem tissue per vascular bundle (C), the average cross-sectional
790 area of a xylary fiber (D) or of a xylem vessel (E), and the average number of xylem cells (F),
791 of xylary fiber vessels (G), of xylem vessels (H) per vascular bundle and the ratio of vessel
792 number to fiber number (I).

793 The box and whisker plots represent values from 5 to 7 independent plants (A and B) or from
794 71, 53, 41 and 50 individual vascular bundles from wild type, *swt16*, *swt17* and *swt16swt17*
795 respectively coming from 5-7 independent plants for each genotype (C-I). The lines represent
796 median values, the tops and bottoms of the boxes represent the first and third quartiles
797 respectively, and whisker extremities represent maximum and minimum data points. A one-
798 way analysis of variance combined with the Tukey's comparison post-hoc test were
799 performed. The values marked with the same letter were not significantly different from each
800 other, whereas different letters indicate significant differences ($P < 0.05$).

801

802 **Figure 4. Genes involved in the development of xylem secondary cell wall are
803 differentially regulated in the *swt16swt17* double mutant.**

804 (A to I) mRNAs were extracted from total inflorescence stems collected from 7-week-old
805 wild-type, *swt16*, *swt17* and *swt16swt17* plants. The mRNA contents are expressed relative to
806 those of the reference gene *UBQ5*.

807 (A) Heatmap of expression of candidate genes involved in xylem development and secondary
808 cell wall biosynthesis in the inflorescence stem of the wild type, *swt16*, *swt17* and *swt16swt17*
809 mutants. The values used to build the heatmap are the mean accumulation of transcripts ($n=4$)

810 normalized by the median value of each gene and expressed as \log_2 values. For each gene, the
811 result of one-way ANOVA is displayed beside the heatmap. Those *p*-values below the
812 significance threshold ($P<0.05$) are in red.

813 (B to I) Boxplots showing the relative expression of *SND1* (B), *MYB46* (C), *VNI2* (D), *MYB4*
814 (E), *MYB83* (F), *MYB54* (G), *SND3* (H) and *MYB103* (I). The box-and-whisker plots represent
815 values from 4 biological replicates. The lines represent median values, the tops and bottoms
816 of the boxes represent the first and third quartiles respectively, and the ends of the whiskers
817 represent maximum and minimum data points. Black dots are outliers. Stars denote significant
818 differences between the mutant line compared to the wild type according to a one-way
819 ANOVA followed by a Dunnett post-hoc test (* $P<0.05$; ** $P<0.01$; *** $P<0.001$). The *p*-
820 values for the comparison between wild type and *swt16swt17* are indicated on each graph.
821 The experiment was repeated twice and gave similar results.

822

823 **Figure 5. The composition of the xylem secondary cell wall is altered in the *swt16swt17*
824 double mutant.**

825 FTIR spectra were acquired on xylem tissue from sections of the basal part of the
826 inflorescence stem. All spectra were baseline-corrected and area-normalized in the range
827 1800-800 cm^{-1} .

828 (A) Average FTIR spectra were generated from 266, 170, 123 and 170 spectra for the wild
829 type, *swt16*, *swt17* and *swt16swt17* respectively, obtained using three independent plants for
830 each genotype.

831 (B) Comparison of FTIR spectra obtained from xylem cells of the *swt16*, *swt17*, and
832 *swt16swt17* mutants. A Student's *t*-test was performed to compare the absorbances for the
833 wild type, single and double mutants. The results were plotted against the corresponding
834 wavenumbers. T-values (vertical axis) between -2 and +2 correspond to non-significant
835 differences (*p*-value < 0.05) between the genotypes tested (n=3). T-values above +2 or below
836 -2 correspond to, respectively, significantly weaker or stronger absorbances in the mutant
837 spectra relative to the wild type.

838 (C to E) Boxplots of the cellulose (C-O vibration band at 1050 cm^{-1}) (C), hemicellulose (C-O
839 and C-C bond stretching at 1740 cm^{-1}) (D) peak height and lignin peak height ratio
840 (1510/1595 cm^{-1}) (E). The lines represent median values, the tops and bottoms of the boxes
841 represent the first and third quartiles respectively, and the ends of the whiskers represent

842 maximum and minimum data points. The boxplots represent values (shown as colored dots)
843 from 266, 170, 123 and 170 spectra from the wild type, *swt16*, *swt17* and *swt16swt17*
844 respectively, obtained from three independent plants for each genotype. A one-way analysis
845 of variance combined with the Tukey's comparison post-hoc test were performed. Values
846 marked with the same letter were not significantly different from each other, whereas
847 different letters indicate significant differences ($P < 0.05$).

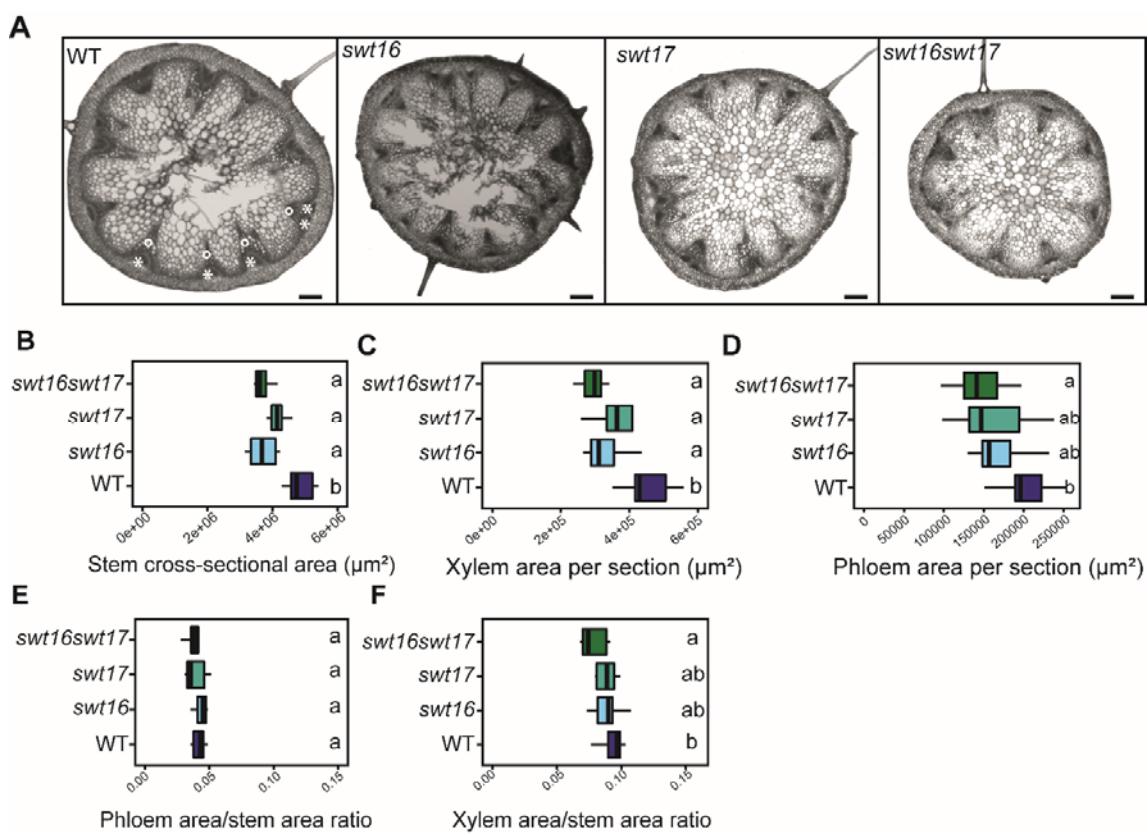
848

849 **Figure 6. Hexoses accumulate in the inflorescence stem of the *swt16swt17* double mutant.**

850 (A and B) Multivariate analysis of the metabolomic datasets obtained from wild-type and
851 *swt16swt17* inflorescence stems. Metabolites were extracted and analyzed by GC-MS from
852 eight individual plants for each genotype. Plants were grown under long-day conditions for
853 seven weeks. (A) sPLS-DA score plot for wild-type (purple) and *swt16swt17* (green) samples.
854 The variable plot for the sPLS-DA is presented in (B) and metabolites in red are significantly
855 different between the wild type and the *swt16swt17* mutant according to Student's *t*-test
856 ($P < 0.05$) (Supplemental Table 3 and Supplemental Figure 3). ADP: adenosine-5-diphosphate;
857 G-6-P: glucose-6-phosphate.

858 (C) Boxplots showing the sucrose, glucose, fructose and starch contents of the inflorescence
859 stems of the wild type (in purple) and the *swt16swt17* (in green) mutant grown under long-day
860 conditions for seven weeks. The box-and-whisker plots represent values from 9 biological
861 replicates coming from plants grown at two separate times. The lines represent median values,
862 the tops and bottoms of the boxes represent the first and third quartiles respectively, and the
863 ends of the whiskers represent maximum and minimum data points. Black dots are outliers.
864 Asterisks above the boxes indicate statistical differences between genotypes according to
865 Student's *t*-test ($P < 0.05$).

866

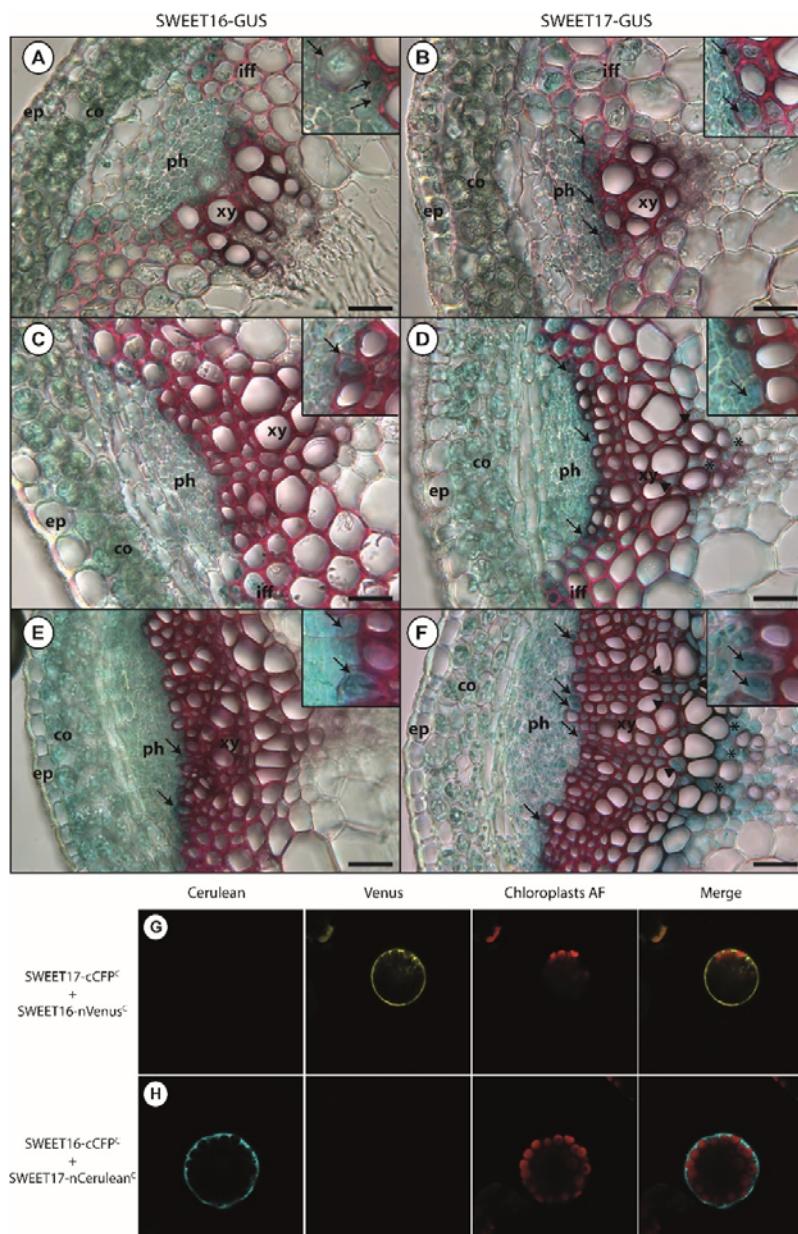

867 **Figure 7. Model for the role of SWEET transporters during xylem development in**
868 ***Arabidopsis* inflorescence stems.**

869 This model is based on the results presented in this work on SWEET16 and SWEET17 and
870 those previously published on SWEET11, SWEET12 and SUC2 transporters (Truernit and
871 Sauer, 1995; Chen et al., 2012; Gould et al., 2012; Le Hir et al., 2015). In the phloem tissue,
872 sugar exchanges between cytosol and vacuole in companion cells and/or parenchyma cells are

regulated by SWEET16 and SWEET17. In addition, cytosolic sucrose and hexoses present in the phloem parenchyma cells (PPC) are exported into the apoplastic space between PPC and companion cells (CC) by the sugar transporters SWEET11 and SWEET12 (fuchsia circles). Apoplastic sucrose is then imported into the CC cytosol *via* the SUC2 transporter (yellow circles) before entering the phloem sieve tubes (SE) and being transported over long distances (light green arrows). A part of these sugars leaks from the SE, most probably through plasmodesmata (orange arrow), and reaches axial sinks (e.g. procambium and xylem) while another part of the sugars is reimported inside the SE, mostly through the action of SUC2 (1). In the cells at the cambium-xylem boundary, soluble sugars are probably exported by SWEET16 (light blue respectively) into the cytosol in order to sustain the division of xylem cells (2). Given the high cytosolic sugar demand required to sustain the secondary cell wall (SCW) deposition process (3), sugars stored in the vacuole are likely exported into the cytosol through the action of SWEET16 and/or SWEET17. Interaction between SWEET16 and SWEET17 is shown as bicolor circles. After the completion of programmed cell death (PCD) and the disintegration of the vacuole (4), the SCW is still being reinforced (5) and we can assume that the sugar demand is still high. At this stage, the sugars stored in the vacuole of the xylary parenchyma cells (XPC) and the axial xylem parenchyma cells (aXPC) are likely released by SWEET17 and then exported into the apoplastic space by SWEET11 and SWEET12. Whether it is the sugars themselves or more complex cell wall sugar-derived molecules that reach the dead xylem cells remains an open question.

893

894


897 **Figure 1. Altered development of the inflorescence stem in the *swt16swt17* double**
898 **mutant.**

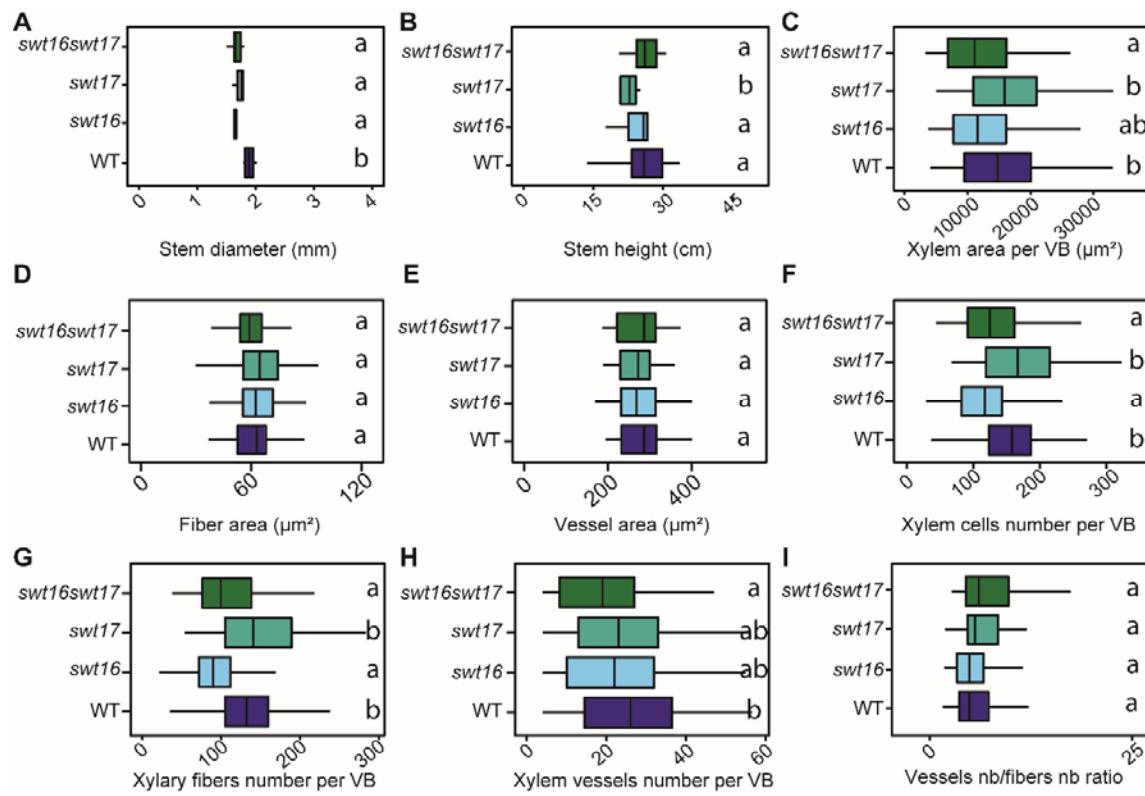
899 (A) Transverse sections of the basal part of the inflorescence stem of 7-week-old plants
900 stained with FASGA solution. Stars indicate the phloem tissue while circles indicate the
901 xylem tissue. Bars = 200 μ m.

902 (B to F) Boxplots showing the inflorescence stem cross-sectional area (B), the area occupied
903 by xylem tissue (C) or phloem tissue (D) within a stem section, the ratio of xylem area to stem
904 area (E) and the ratio of phloem area to stem area (F).

905 The box and whisker plots represent values from 7 to 8 independent plants. The lines
906 represent median values, the tops and bottoms of the boxes represent the first and third
907 quartiles respectively, and whisker extremities represent maximum and minimum data points.
908 A one-way analysis of variance combined with the Tukey's comparison post-hoc test were
909 performed. The values marked with the same letter were not significantly different from each
910 other, whereas different letters indicate significant differences ($P < 0.05$).

911

912

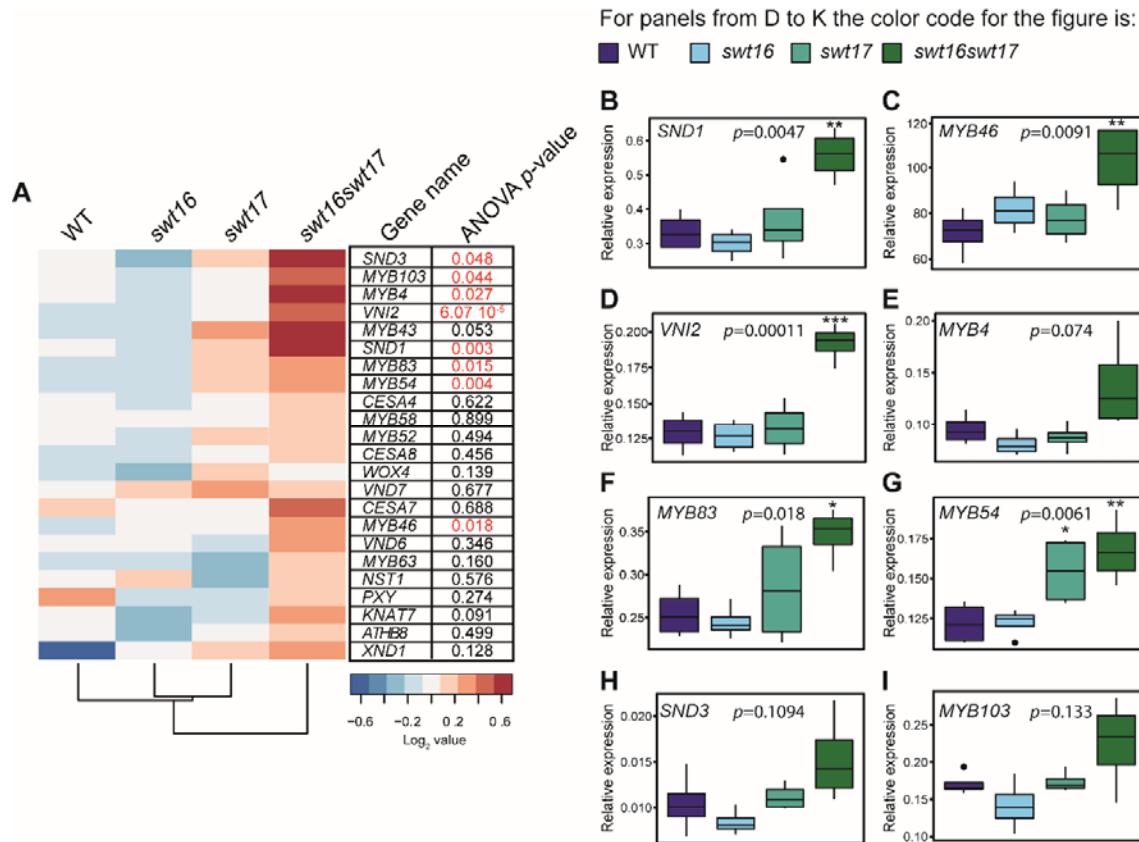

913

914 **Figure 2. SWEET16 and SWEET17 are expressed in the xylem cells throughout the**
915 **inflorescence stem development and are forming heterodimers.**

916 (A, C and E) Histochemical analysis of GUS activity in lines expression SWEET16-GUS
917 fusion proteins driven by the *SWEET16* native promoter in sections taken at different
918 positions in the inflorescence stem of 7-week-old plants. (B, D and F) Histochemical analysis
919 of GUS activity in lines expression SWEET17-GUS fusion proteins driven by the *SWEET17*
920 native promoter in sections taken at different positions in the inflorescence stem section of 7-

921 week-old plants. Sections were taken in a stem region where the growth was still rapid (A, B
922 and insets), in a stem region where elongation growth had finished but where thickening of
923 the secondary cell wall was still ongoing (C, D and insets), and at the bottom of the stem, a
924 region that corresponds to a mature stem (E, F and insets). Arrows point to cells showing blue
925 GUS staining in developing xylem cells and arrow heads point to axial parenchyma cells and
926 asterisks indicate xylary parenchyma cells. Lignin is colored pink after phloroglucinol
927 staining. The intensity of the pink color is correlated with the stage of lignification of the
928 xylary vessels. ep: epidermis; co: cortex; iff: interfascicular fibers; ph: phloem; xy: xylem.
929 Scale bar = 50 μ m. (G) Arabidopsis mesophyll protoplast expressing SWEET17-cCFP^C and
930 SWEET16-nVenus^C interaction revealed by false color yellow, chloroplast auto-fluorescence
931 is in false color red. (H) Arabidopsis mesophyll protoplast expressing SWEET16-cCFP^C and
932 SWEET17-nCerulean^C interaction revealed by false color cyan, chloroplast auto-fluorescence
933 is in false color red. Invaginations around the chloroplasts in (G) and (H) indicate that
934 SWEET16 and SWEET17 interact at the vacuolar membrane.

935


936

937

938 **Figure 3. Knockout of the *SWEET16* gene expression impacts the proliferation of xylem
939 cells.**

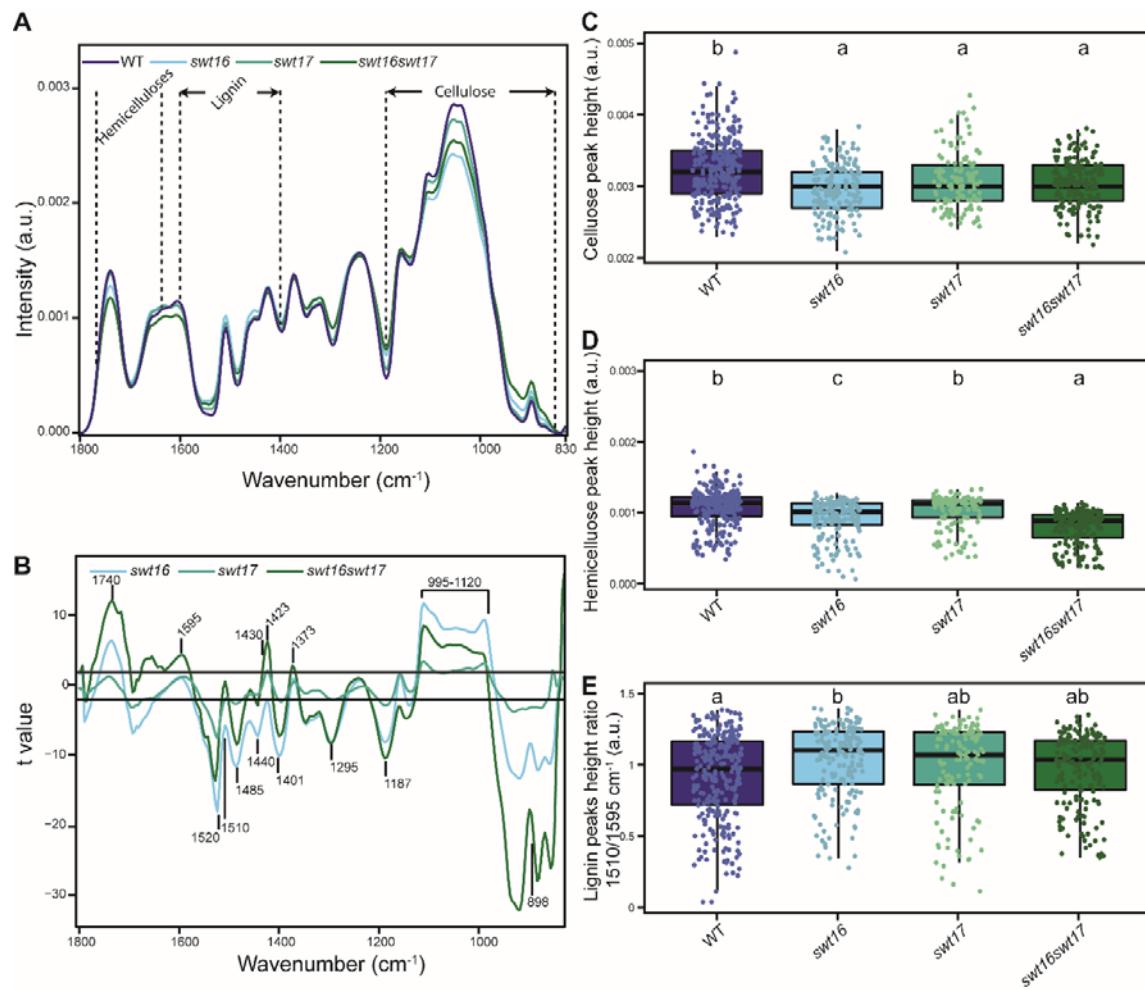
940 (A to I) Boxplots showing the inflorescence stem height (A) and diameter (B), the cross-
941 sectional area occupied by xylem tissue per vascular bundle (C), the average cross-sectional
942 area of a xylary fiber (D) or of a xylem vessel (E), and the average number of xylem cells (F),
943 of xylary fiber vessels (G), of xylem vessels (H) per vascular bundle and the ratio of vessel
944 number to fiber number (I).

945 The box and whisker plots represent values from 5 to 7 independent plants (A and B) or from
946 71, 53, 41 and 50 individual vascular bundles from wild type, *swt16*, *swt17* and *swt16swt17*
947 respectively coming from 5-7 independent plants for each genotype (C-I). The lines represent
948 median values, the tops and bottoms of the boxes represent the first and third quartiles
949 respectively, and whisker extremities represent maximum and minimum data points. A one-
950 way analysis of variance combined with the Tukey's comparison post-hoc test was performed.
951 The values marked with the same letter were not significantly different from each other,
952 whereas different letters indicate significant differences ($P < 0.05$).

953

954

955 **Figure 4. Genes involved in the development of xylem secondary cell wall are**
 956 **differentially regulated in the *swt16swt17* double mutant.**


957 (A to I) mRNAs were extracted from total inflorescence stems collected from 7-week-old
 958 wild-type, *swt16*, *swt17* and *swt16swt17* plants. The mRNA contents are expressed relative to
 959 those of the reference gene *UBQ5*.

960 (A) Heatmap of expression of candidate genes involved in xylem development and secondary
 961 cell wall biosynthesis in the inflorescence stem of the wild type, *swt16*, *swt17* and *swt16swt17*
 962 mutants. The values used to build the heatmap are the mean accumulation of transcripts ($n=4$)
 963 normalized by the median value of each gene and expressed as \log_2 values. For each gene, the
 964 result of one-way ANOVA is displayed beside the heatmap. Those p -values below the
 965 significance threshold ($P<0.05$) are in red.

966 (B to I) Boxplots showing the relative expression of *SND1* (B), *MYB46* (C), *VNI2* (D), *MYB4*
 967 (E), *MYB83* (F), *MYB54* (G), *SND3* (H) and *MYB103* (I). The box-and-whisker plots represent
 968 values from 4 biological replicates. The lines represent median values, the tops and bottoms

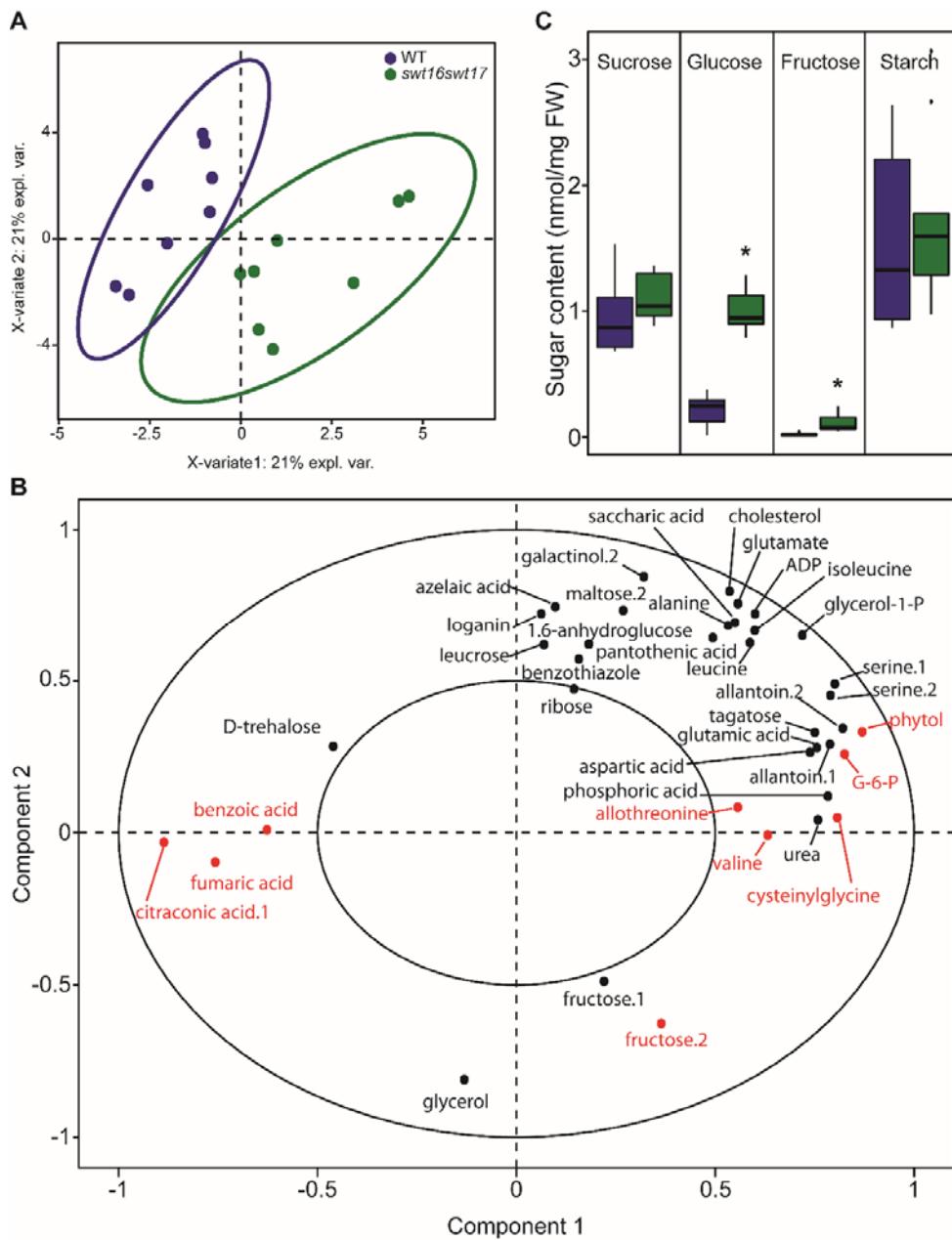
969 of the boxes represent the first and third quartiles respectively, and the ends of the whiskers
970 represent maximum and minimum data points. Black dots are outliers. Stars denote significant
971 differences between the mutant line compared to the wild type according to a one-way
972 ANOVA followed by a Dunnett post-hoc test (* $P<0.05$; ** $P<0.01$; *** $P<0.001$). The p -
973 values for the comparison between wild type and *swt16swt17* are indicated on each graph.
974 The experiment was repeated twice and gave similar results.

975

976

977

978 **Figure 5. The composition of the xylem secondary cell wall is impaired in the *swt16swt17* double mutant.**


980 FTIR spectra were acquired on xylem tissue from sections of the basal part of the
981 inflorescence stem. All spectra were baseline-corrected and area-normalized in the range
982 1800-800 cm⁻¹.

983 (A) Average FTIR spectra were generated from 266, 170, 123 and 170 spectra for the wild
984 type, *swt16*, *swt17* and *swt16swt17* respectively obtained using three independent plants for
985 each genotype.

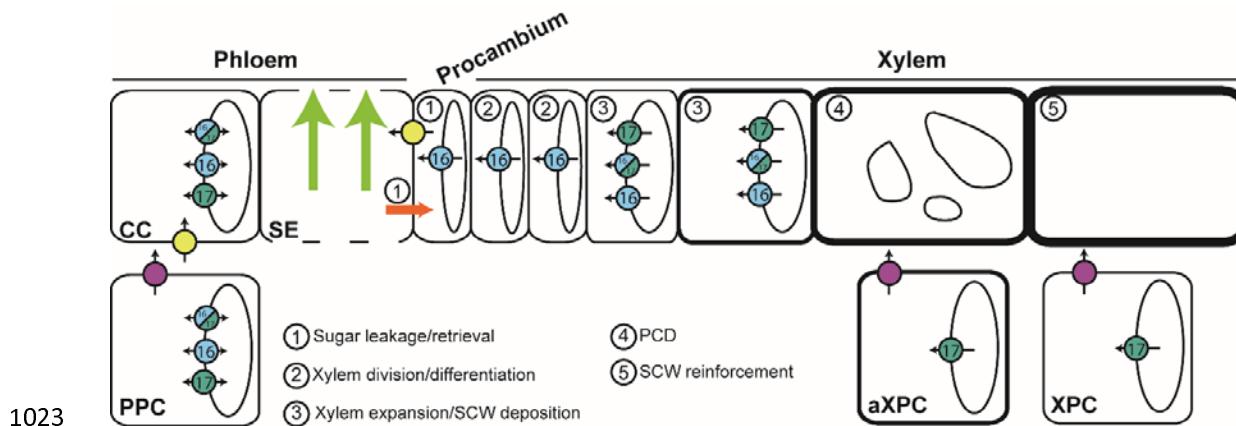
986 (B) Comparison of FTIR spectra obtained from xylem cells of the *swt16*, *swt17*, and
987 *swt16swt17* mutants. A Student's *t*-test was performed to compare the absorbances for the
988 wild type, single and double mutants. The results were plotted against the corresponding
989 wavenumbers. T-values (vertical axis) between -2 and +2 correspond to non-significant

990 differences (p -value < 0.05) between the tested genotypes (n=3). T-values above +2 or below
991 -2 correspond to, respectively, significantly weaker or stronger absorbances in the mutant
992 spectra relative to the wild type.

993 (C to E) Boxplots of the cellulose (C-O vibration band at 1050 cm^{-1}) (C), hemicellulose (C-O
994 and C-C bond stretching at 1740 cm^{-1}) (D) peak height and lignin peak height ratio
995 (1510/1595 cm^{-1}) (E). The lines represent median values, the tops and bottoms of the boxes
996 represent the first and third quartiles respectively, and the ends of the whiskers represent
997 maximum and minimum data points. The boxplots represent values (shown as colored dots)
998 from 266, 170, 123 and 170 spectra from the wild type, *swt16*, *swt17* and *swt16swt17*
999 respectively obtained from three independent plants for each genotype. A one-way analysis of
1000 variance combined with the Tukey's comparison post-hoc test were performed. Values
1001 marked with the same letter were not significantly different from each other, whereas
1002 different letters indicate significant differences ($P < 0.05$).

1003

1004 **Figure 6. Hexoses accumulate in the inflorescence stem of the *swt16swt17* double mutant.**


1005 (A and B) Multivariate analysis of the metabolomic datasets obtained from wild-type and
 1006 *swt16swt17* inflorescence stems. Metabolites were extracted and analyzed by GC-MS from
 1007 eight individual plants for each genotype. Plants were grown under long-day conditions for
 1008 seven weeks. (A) sPLS-DA score plot for wild-type (purple) and *swt16swt17* (green) samples.
 1009 The variable plot for the sPLS-DA is presented in (B) and metabolites in red are significantly
 1010 different between the wild type and the *swt16swt17* mutant according to Student's *t*-test

1011 (P<0.05) (Supplemental Table 3 and Supplemental Figure 3). ADP: adenosine-5-diphosphate;
1012 G-6-P: glucose-6-phosphate.

1013 (C) Boxplots showing the sucrose, glucose, fructose and starch contents of the inflorescence
1014 stems of the wild type (in purple) and the *swt16swt17* (in green) mutant grown under long-day
1015 conditions for seven weeks. The box-and-whisker plots represent values from 9 biological
1016 replicates coming from plants grown at two separate times. The lines represent median values,
1017 the tops and bottoms of the boxes represent the first and third quartiles respectively, and the
1018 ends of the whiskers represent maximum and minimum data points. Black dots are outliers.
1019 Asterisks above the boxes indicate statistical differences between genotypes according to
1020 Student's *t*-test (P<0.05).

1021

1022

1048 released by SWEET17 and then exported into the apoplastic space by SWEET11 and
1049 SWEET12. Whether it is the sugars themselves or more complex cell wall sugar-derived
1050 molecules that reach the dead xylem cells remains an open question.

1051

1052

1053 **REFERENCES**

1054 **Åkerblom M, Salmén L** (2001) Interactions between wood polymers studied by dynamic
1055 FT-IR spectroscopy. *Polymer (Guildf)* **42**: 963–969

1056 **Ambavaram MMR, Krishnan A, Trijatmiko KR, Pereira A** (2011) Coordinated activation
1057 of cellulose and repression of lignin biosynthesis pathways in rice. *Plant Physiol* **155**:
1058 916–931

1059 **Arnold JB** (2019) Ggthemes: extra themes, scales and geoms for “ggplot2.”

1060 **Baghdady A, Blervacq AS, Jouanin L, Grima-Pettenati J, Sivadon P, Hawkins S** (2006)
1061 *Eucalyptus gunnii* CCR and CAD2 promoters are active in lignifying cells during
1062 primary and secondary xylem formation in *Arabidopsis thaliana*. *Plant Physiol Biochem*
1063 **44**: 674–683

1064 **Barcelo RA** (2005) Xylem parenchyma cells deliver the H₂O₂ necessary for lignification in
1065 differentiating xylem vessels. *Planta* **220**: 747–756

1066 **van Bel AJE** (2021) The plant axis as the command centre for (re)distribution of sucrose and
1067 amino acids. *J Plant Physiol* **265**: 153488

1068 **Beleites C, Sergo V** (2020) hyperSpec: a package to handle hyperspectral data sets in R.
1069 CRAN Packag.

1070 **Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, le Bris P, Herve J, Blondet
1071 E, Balzergue S, Lapierre C, et al** (2011) Disruption of *LACCASE4* and *I7* results in
1072 tissue-specific alterations to lignification of *Arabidopsis thaliana* stems. *Plant Cell* **23**:
1073 1124–1137

1074 **Cañas RA, Yes bergenova-Cuny Z, Belanger L, Rouster J, Brulé L, Gilard F, Quilleré I,
1075 Sallaud C, Hirel B** (2020) NADH-GOGAT overexpression does not improve maize
1076 (*Zea mays* L.) performance even when pyramiding with NAD-IDH, GDH and GS. *Plants*
1077 **9**: 130

1078 **Chardon F, Bedu M, Calenge F, Klemens PAW, Spinner L, Clement G, Chietera G,
1079 Léran S, Ferrand M, Lacombe B, et al** (2013) Leaf fructose content is controlled by
1080 the vacuolar transporter SWEET17 in *Arabidopsis*. *Curr Biol* **23**: 697–702

1081 **Chen L-Q, Hou B-H, Lalonde S, Takanaga H, Hartung ML, Qu X-Q, Guo W-J, Kim J-**

1082 **G, Underwood W, Chaudhuri B, et al** (2010) Sugar transporters for intercellular
1083 exchange and nutrition of pathogens. *Nature* **468**: 527–532

1084 **Chen L-Q, Qu X-Q, Hou B-H, Sosso D, Osorio S, Fernie AR, Frommer WB** (2012)
1085 Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. *Science*
1086 (80-) **335**: 207–211

1087 **Clough SJ, Bent AF** (1998) Floral dip: A simplified method for *Agrobacterium*-mediated
1088 transformation of *Arabidopsis thaliana*. *Plant J* **16**: 735–743

1089 **Curtis MD, Grossniklaus U** (2003) A gateway cloning vectors set for high-throughput
1090 functional analysis of genes in planta. *Plant Physiol* **133**: 462–469

1091 **Damari-Weissler H, Rachamilevitch S, Aloni R, German MA, Cohen S, Zwieniecki MA,**
1092 **Holbrook NM, Granot D** (2009) LeFRK2 is required for phloem and xylem
1093 differentiation and the transport of both sugar and water. *Planta* **230**: 795–805

1094 **Dinant S, Wolff N, De Marco F, Vilaine F, Gissot L, Aubry E, Sandt C, Bellini C, Le Hir**
1095 **R** (2019) Synchrotron FTIR and Raman spectroscopy provide unique spectral
1096 fingerprints for *Arabidopsis* floral stem vascular tissues. *J Exp Bot* **70**: 871–884

1097 **Etchells JP, Provost CM, Mishr L, Turner SR** (2013) WOX4 and WOX14 act downstream
1098 of the PXY receptor kinase to regulate plant vascular proliferation independently of any
1099 role in vascular organisation. *Dev* **140**: 2224–2234

1100 **Etchells JP, Smit ME, Gaudinier A, Williams CJ, Brady SM** (2016) A brief history of the
1101 TDIF-PXY signalling module: Balancing meristem identity and differentiation during
1102 vascular development. *New Phytol* **209**: 474–484

1103 **Eveland AL, Jackson DP** (2012) Sugars, signalling, and plant development. *J Exp Bot* **63**:
1104 3367–3377

1105 **Faix O** (1991) Classification of lignins from different botanical origins by FT-IR
1106 spectroscopy. *Holzforschung-International J Biol Chem Phys Technol Wood* **45**: 21–27

1107 **Fukuda H, Ohashi-Ito K** (2019) Vascular tissue development in plants. *Curr Top Dev Biol*
1108 **131**: 141–160

1109 **Fürtauer L, Küstner L, Weckwerth W, Heyer AG, Nägele T** (2019) Resolving subcellular
1110 plant metabolism. *Plant J* **100**: 438–455

1111 **Furze ME, Trumbore S, Hartmann H** (2018) Detours on the phloem sugar highway: stem
1112 carbon storage and remobilization. *Curr Opin Plant Biol* **43**: 89–95

1113 **Geng P, Zhang S, Liu J, Zhao C, Wu J, Cao Y, Fu C, Han X, He H, Zhao Q** (2020)
1114 MYB20, MYB42, MYB43, and MYB85 regulate phenylalanine and lignin biosynthesis
1115 during secondary cell wall formation. *Plant Physiol* **182**: 1272–1283

1116 **Gorzsás A, Stenlund H, Persson P, Trygg J, Sundberg B** (2011) Cell-specific chemotyping
1117 and multivariate imaging by combined FT-IR microspectroscopy and orthogonal
1118 projections to latent structures (OPLS) analysis reveals the chemical landscape of
1119 secondary xylem. *Plant J* **66**: 903–914

1120 **Gou JY, Park S, Yu XH, Miller LM, Liu CJ** (2008) Compositional characterization and
1121 imaging of “wall-bound” acylesters of *Populus trichocarpa* reveal differential
1122 accumulation of acyl molecules in normal and reactive woods. *Planta* **229**: 15–24

1123 **Gould N, Thorpe MRR, Pritchard J, Christeller JTT, Williams LEE, Roeb G, Schurr U,**
1124 **Minchin PEH** (2012) AtSUC2 has a role for sucrose retrieval along the phloem
1125 pathway: evidence from carbon-11 tracer studies. *Plant Sci* **188–189**: 97–101

1126 **Graves S, Piepho H-P, Selzer L, Dorai-Raj S** (2015) multcompView: Visualizations of
1127 paired comparisons.

1128 **Guo W-J, Nagy R, Chen H-Y, Pfrunder S, Yu Y-C, Santelia D, Frommer WB,**
1129 **Martinoia E** (2014) SWEET17, a facilitative transporter, mediates fructose transport
1130 across the tonoplast of *Arabidopsis* roots and leaves. *Plant Physiol* **164**: 777–789

1131 **Gutbrod K, Romer J, Dörmann P** (2019) Phytol metabolism in plants. *Prog Lipid Res* **74**:
1132 1–17

1133 **Hall H, Ellis B** (2013) Transcriptional programming during cell wall maturation in the
1134 expanding *Arabidopsis* stem. *BMC Plant Biol* **13**: 14

1135 **Hasanuzzaman M, Nahar K, Anee TI, Fujita M** (2017) Glutathione in plants: biosynthesis
1136 and physiological role in environmental stress tolerance. *Physiol Mol Biol Plants* **23**:
1137 249–268

1138 **Hedrich R, Sauer N, Neuhaus HE** (2015) Sugar transport across the plant vacuolar
1139 membrane: Nature and regulation of carrier proteins. *Curr Opin Plant Biol* **25**: 63–70

1140 **Heineke D, Wildenberger K, Sonnewald U, Willmitzer L, Heldt HW** (1994)
1141 Accumulation of hexoses in leaf vacuoles: Studies with transgenic tobacco plants
1142 expressing yeast-derived invertase in the cytosol, vacuole or apoplasm. *Planta* **194**: 29–
1143 33

1144 **Le Hir R, Spinner L, Klemens PAW, Chakraborti D, De Marco F, Vilaine F, Wolff N, Lemoine R, Porcheron B, Géry C, et al** (2015) Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in *Arabidopsis*. *Mol Plant* **8**: 1687–1690

1148 **Hussey SG, Mizrahi E, Creux NM, Myburg AA** (2013) Navigating the transcriptional
1149 roadmap regulating plant secondary cell wall deposition. *Front Plant Sci* **4**: 1–21

1150 **Jiang M, Wang C, Zhang Y, Feng Y, Wang Y, Zhu Y** (2014) Sparse partial-least-squares
1151 discriminant analysis for different geographical origins of *salvia miltiorrhiza* by 1h-nmr-
1152 based metabolomics. *Phytochem Anal* **25**: 50–58

1153 **Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Wiesshaar B, Martin C** (2000) Transcriptional repression by AtMYB4 controls production of UV-
1155 protecting sunscreens in *Arabidopsis*. *EMBO J* **19**: 6150–6161

1156 **Kačuráková M, Smith AC, Gidley MJ, Wilson RH** (2002) Molecular interactions in
1157 bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR
1158 spectroscopy. *Carbohydr Res* **337**: 1145–1153

1159 **Karimi M, Inze D, Depicker A** (2002) GATEWAY((TM)) vectors for Agrobacterium-
1160 mediated plant transformation. *Trends Plant Sci* **7**: 193–195

1161 **Klemens PAW, Patzke K, Deitmer J, Spinner L, Le Hir R, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus HE** (2013) Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in *Arabidopsis*. *Plant Physiol* **163**: 1338–1352

1165 **Klemens PAW, Patzke K, Trentmann O, Poschet G, Büttner M, Schulz A, Marten I, Hedrich R, Neuhaus HE** (2014) Overexpression of a proton-coupled vacuolar glucose
1166 exporter impairs freezing tolerance and seed germination. *New Phytol* **202**: 188–197

1168 **Koch KE** (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar

1169 sensing and plant development. *Curr Opin Plant Biol* **7**: 235–246

1170 **Koncz C, Schell J** (1986) The promoter of TL-DNA gene 5 controls the tissue-specific
1171 expression of chimaeric genes carried by a novel type of Agrobacterium binary vector.
1172 *Mol Gen Genet* **204**: 383–396

1173 **Lahlali R, Karunakaran C, Wang L, Willick I, Schmidt M, Liu X, Borondics F, Forseille**

1174 **L, Fobert PR, Tanino K, et al** (2015) Synchrotron based phase contrast X-ray imaging
1175 combined with FTIR spectroscopy reveals structural and biomolecular differences in
1176 spikelets play a significant role in resistance to Fusarium in wheat. *BMC Plant Biol* **15**:
1177 24

1178 **Lê Cao KA, Boitard S, Besse P** (2011) Sparse PLS discriminant analysis: Biologically
1179 relevant feature selection and graphical displays for multiclass problems. *BMC*
1180 *Bioinformatics* **12**: 253

1181 **Lee LY, Fang MJ, Kuang LY, Gelvin SB** (2008) Vectors for multi-color bimolecular
1182 fluorescence complementation to investigate protein-protein interactions in living plant
1183 cells. *Plant Methods* **4**: 1–11

1184 **Li E, Bhargava A, Qiang W, Friedmann MC, Forneris N, Savidge RA, Johnson LA,**

1185 **Mansfield SD, Ellis BE, Douglas CJ** (2012) The Class II KNOX gene KNAT7
1186 negatively regulates secondary wall formation in *Arabidopsis* and is functionally
1187 conserved in *Populus*. *New Phytol* **194**: 102–115

1188 **Li Z, Omranian N, Neumetzler L, Wang T, Herter T, Usadel B, Demura T, Giavalisco P,**

1189 **Nikoloski Z, Persson S** (2016) A transcriptional and metabolic framework for secondary
1190 wall formation in *Arabidopsis*. *Plant Physiol* **172**: 1334–1351

1191 **Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ,**

1192 **Fukuda H, Kang J, Brady SM, et al** (2013) The plant vascular system: evolution,
1193 development and functions. *J Integr Plant Biol* **55**: 294–388

1194 **Mahboubi A, Ratke C, Gorzsás A, Kumar M, Mellerowicz EJ, Niittylä T** (2013) Aspen
1195 SUCROSE TRANSPORTER3 allocates carbon into wood fibers. *Plant Physiol* **163**:
1196 1729–1740

1197 **Marriott PE, Gómez LD, Mcqueen-Mason SJ** (2016) Unlocking the potential of

1198 lignocellulosic biomass through plant science. *New Phytol* **209**: 1366–1381

1199 **Martinoia E** (2018) Vacuolar transporters - Companions on a longtime journey. *Plant Physiol*
1200 **176**: 1384–1407

1201 **Minchin PEH, McNaughton GS** (1987) Xylem transport of recently fixed carbon within
1202 lupin. *Aust J Plant Physiol* **14**: 325–329

1203 **Mohebby B** (2008) Application of ATR infrared spectroscopy in wood acetylation. *J Agric*
1204 *Sci Technol* **10**: 253–259

1205 **Öhman D, Demedts B, Kumar M, Gerber L, Gorzsás A, Goeminne G, Hedenström M,**
1206 **Ellis B, Boerjan W, Sundberg B** (2013) MYB103 is required for FERULATE-5-
1207 HYDROXYLASE expression and syringyl lignin biosynthesis in *Arabidopsis* stems.
1208 *Plant J* **73**: 63–76

1209 **Payyavula RS, Tay KHC, Tsai C-J, Harding SA** (2011) The sucrose transporter family in
1210 *Populus*: the importance of a tonoplast PtaSUT4 to biomass and carbon partitioning.
1211 *Plant J* **65**: 757–770

1212 **Poschet G, Hannich B, Raab S, Jungkunz I, Klemens PAW, Krueger S, Wic S, Neuhaus**
1213 **HE, Buttner M** (2011) A novel *Arabidopsis* vacuolar glucose exporter is involved in
1214 cellular sugar homeostasis and affects the composition of seed storage compounds. *Plant*
1215 *Physiol* **157**: 1664–1676

1216 **Pradhan Mitra P, Loqué D** (2014) Histochemical staining of *Arabidopsis thaliana* secondary
1217 cell wall elements. *J Vis Exp* 1–11

1218 **R Core Team** (2017) R: a language and environment for statistical computing.

1219 **Roach M, Arrivault S, Mahboubi A, Krohn N, Sulpice R, Stitt M, Niittylä T** (2017)
1220 Spatially resolved metabolic analysis reveals a central role for transcriptional control in
1221 carbon allocation to wood. *J Exp Bot* **68**: 3529–3539

1222 **Rohart F, Gautier B, Singh A, Lê Cao KA** (2017) mixOmics: An R package for ‘omics
1223 feature selection and multiple data integration. *PLoS Comput Biol* **13**: 1–19

1224 **Rstudio Team** (2015) RStudio: Integrated Development for R.

1225 **Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia M-D, Ogé L, Hamama L, Atanassova**

1226 **R** (2018) The sugar-signaling hub: overview of regulators and interaction with the
1227 hormonal and metabolic network. *Int J Mol Sci* **19**: 2506

1228 **Schuetz M, Smith R, Ellis B** (2012) Xylem tissue specification, patterning, and
1229 differentiation mechanisms. *J Exp Bot* **64**: 11–31

1230 **Sellami S, Le Hir R, Thorpe MR, Vilaine F, Wolff N, Brini F, Dinant S** (2019) Salinity
1231 effects on sugar homeostasis and vascular anatomy in the stem of the *Arabidopsis*
1232 *thaliana* inflorescence. *Int J Mol Sci* **20**: 3167

1233 **Shi D, Jouannet V, Agustí J, Kaul V, Levitsky V, Sanchez P, Mironova V V, Greb T**
1234 (2021) Tissue-specific transcriptome profiling of the *Arabidopsis* inflorescence stem
1235 reveals local cellular signatures. *Plant Cell* **33**: 200–223

1236 **Sibout R, Plantegenet S, Hardtke CS** (2008) Flowering as a condition for xylem expansion
1237 in *Arabidopsis* hypocotyl and root. *Curr Biol* **18**: 458–463

1238 **Smetana O, Mäkilä R, Lyu M, Amiryousefi A, Rodríguez FS, Wu M, Solé-gil A,**
1239 **Gavarrón ML, Siligato R, Miyashima S, et al** (2019) High levels of auxin signalling
1240 define the stem-cell organizer of the vascular cambium. *Nature* **565**: 485–491

1241 **Smit M, McGregor S, Sun H, Gough C, Bågman A-M, Soyars CL, Kroon JTM,**
1242 **Gaudinier A, Williams CJ, Yang X, et al** (2019) A PXY-mediated transcriptional
1243 network integrates signaling mechanisms to control vascular development in
1244 *Arabidopsis*. *Plant Cell* **32**: 319–335

1245 **Smith RA, Schuetz M, Karlen SD, Bird D, Tokunaga N, Sato Y, Mansfield SD, Ralph J,**
1246 **Samuels AL** (2017) Defining the diverse cell populations contributing to lignification in
1247 *Arabidopsis thaliana* stems. *Plant Physiol* **174**: 1028–1036

1248 **Smith RA, Schuetz M, Roach M, Mansfield SD, Ellis B, Samuels L** (2013) Neighboring
1249 parenchyma cells contribute to *Arabidopsis* xylem lignification, while lignification of
1250 interfascicular fibers is cell autonomous. *Plant Cell* **25**: 3988–3999

1251 **Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion**
1252 **C, Vaucheret H, Sandberg G, et al** (2005) Auxin and light control of adventitious
1253 rooting in *Arabidopsis* require ARGONAUTE1. *Plant Cell Online* **17**: 1343–1359

1254 **Spicer R** (2014) Symplasmic networks in secondary vascular tissues: Parenchyma

1255 distribution and activity supporting long-distance transport. *J Exp Bot* **65**: 1829–1848

1256 **Stein O, Avin-Wittenberg T, Krahnen I, Zemach H, Bogol V, Daron O, Aloni R, Fernie**
1257 **AR, Granot D** (2017) Arabidopsis fructokinases are important for seed oil accumulation
1258 and vascular development. *Front Plant Sci* **7**: 1–16

1259 **Tolivia D, Tolivia J** (1987) Fasga: A new polychromatic method for simultaneous and
1260 differential staining of plant tissues. *J Microsc* **148**: 113–117

1261 **Truernit E, Sauer N** (1995) The promoter of the *Arabidopsis thaliana* SUC2 sucrose-H⁺
1262 symporter gene directs expression of B-glucuronidase to the phloem: evidence for
1263 phloem loading and unloading by SUC2. *Planta* **196**: 564–570

1264 **Turner S, Sieburth LE** (2002) Vascular patterning. *Arab. B.* pp 1–23

1265 **Valifard M, Le Hir R, Müller J, Scheuring D, Neuhaus HE, Pommerrenig B** (2021)
1266 Vacuolar fructose transporter SWEET17 is critical for root development and drought
1267 tolerance. *Plant Physiol.* doi: <https://doi.org/10.1093/plphys/kiab436>

1268 **Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, F. S** (2002)
1269 Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of
1270 multiple internal control genes. *Genome Biol* **3**: research0034.1-0034.11

1271 **Verbančič J, Lunn JE, Stitt M, Persson S** (2018) Carbon supply and the regulation of cell
1272 wall synthesis. *Mol Plant* **11**: 75–94

1273 **Weiszmann J, Fürtauer L, Weckwerth W, Nägele T** (2018) Vacuolar sucrose cleavage
1274 prevents limitation of cytosolic carbohydrate metabolism and stabilizes photosynthesis
1275 under abiotic stress. *FEBS J* **285**: 4082–4098

1276 **Wickham H** (2016) *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag, New
1277 York

1278 **Wilke CO** (2019) Cowplot: streamlined plot theme and plot annotation for “ggplot2.”

1279 **Wingenter K, Schulz A, Wormit A, Wic S, Trentmann O, Hoermiller II, Heyer AG,**
1280 **Marten I, Hedrich R, Neuhaus HE** (2010) Increased activity of the vacuolar
1281 monosaccharide transporter TMT1 alters cellular sugar partitioning, sugar signaling, and
1282 seed yield in *Arabidopsis*. *Plant Physiol* **154**: 665–677

1283 **Xuan YH, Hu YB, Chen L-Q, Sosso D, Ducat DC, Hou B-H, Frommer WB** (2013)
1284 Functional role of oligomerization for bacterial and plant SWEET sugar transporter
1285 family. *Proc Natl Acad Sci* **110**: E3685–E3694

1286 **Yamada K, Osakabe Y, Mizoi J, Nakashima K, Fujita Y, Shinozaki K, Yamaguchi-
1287 Shinozaki K** (2010) Functional analysis of an *Arabidopsis thaliana* abiotic stress-
1288 inducible facilitated diffusion transporter for monosaccharides. *J Biol Chem* **285**: 1138–
1289 1146

1290 **Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, Fukuda H, Demura T**
1291 (2010) VND-INTERACTING2, a NAC domain transcription factor, negatively regulates
1292 xylem vessel formation in *Arabidopsis*. *Plant Cell* **22**: 1249–1263

1293 **Yoo SD, Cho YH, Sheen J** (2007) *Arabidopsis* mesophyll protoplasts: A versatile cell system
1294 for transient gene expression analysis. *Nat Protoc* **2**: 1565–1572

1295 **Zheng M, Liu X, Lin J, Liu X, Wang Z, Xin M, Yao Y, Peng H, Zhou DX, Ni Z, et al**
1296 (2019) Histone acetyltransferase GCN5 contributes to cell wall integrity and salt stress
1297 tolerance by altering the expression of cellulose synthesis genes. *Plant J* **97**: 587–602

1298 **Zhong R, Demura T, Ye Z-H** (2006) SND1, a NAC domain transcription factor, is a key
1299 regulator of secondary wall synthesis in fibers of *Arabidopsis*. *Plant Cell Online* **18**:
1300 3158–3170

1301 **Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z-H** (2008) A battery of transcription factors
1302 involved in the regulation of secondary cell wall biosynthesis in *Arabidopsis*. *Plant Cell*
1303 **20**: 2763–2782

1304

1305