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Abstract

The Wnt/B-catenin pathway is involved in development, cancer and embryonic stem
cell (ESC) maintenance; its dual role in stem cell self-renewal and differentiation is still
controversial. Here, we applied an elegant in vitro system enabling conditional B-
catenin control in B-catenin null mouse ESCs. We report that moderate induction of
exogenous (-catenin enhances epiblast stem cell (EpiSC) derivation in vitro. Using a
different genetic model and 3-catenin chemical modulation, we derived a new protocol
for ESCs to EpiSCs differentiation, based on NDiff227 and the GSK3a/B inhibitor
Chiron, that is more efficient than standard ActivinA/Fgf2-based protocols. Finally, we
report that moderate [(B-catenin levels favour early stem cell commitment towards
mesoderm if the protein is overexpressed only in the ‘ground state’ of pluripotency
conditions, or endoderm if the overexpression is maintained during the differentiation,
unravelling the controversial role of this signalling pathway at the exit from

pluripotency.

Introduction

Pluripotent Cells (PCs) are characterized by indefinite proliferative and differentiation
potential and their identity is determined by the balance between signals promoting
self-renewal and differentiation. The first step for stem cell differentiation is the exit
from the pluripotent state, tightly controlled by underlying gene regulatory network
dynamics which can drive specific lineage commitment. During murine development
in vivo, embryonic stem cells (ESCs), that represent the naive pluripotent state of the

early epiblast’3, convert into the late epiblast and finally in terminally differentiated
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somatic cells. ESCs can be derived from the pre-implantation epiblast and used to
study cell pluripotency and differentiation, providing an excellent in vitro system for
understanding signalling pathway interplay in cell fate decision making.

In serum-based cultures, mouse ESCs (hereafter called ESCs) are heterogeneous for
the expression of pluripotency genes'%41°, while, when cultured in serum-free media
supplemented with inhibitors of MEK1/2 (PD) and GSK3a/p (Chiron) and in presence
or not of the Leukaemia Inhibitory Factor-LIF (2i or 2i+LIF)3, a uniform self-renewal
condition known as ‘ground state’ of pluripotency is established; it is characterized by
homogenous gene expression'-'4, genome demethylation'>'7 and stable naive
pluripotency'®'®. Mouse epiblast stem cells (hereafter called EpiSCs) also represent
a relevant in vitro model because of their similarities with embryonic stem cells of
human origin?°. EpiSCs, derived from the post-implantation epiblast, are also capable
of differentiating in all the germ-layers®®2?'; however, they differ from ESCs in
morphology, clonogenicity, gene expression, epigenome status and, most importantly,
ability to contribute to chimaeras'#2%-22, EpiSCs require ActivinA and the fibroblast
growth factor 2 (FGF2)?%2" for in vitro expansion; of note, FGF signalling pathway
activation, while promoting EpiSC self-renewal, induces ESC differentiation?324.
FGF2 treatment, in combination or not with ActivinA and LIF/STAT3 pathway
inhibitors, has been used for ESCs differentiation into EpiSCs both in serum-based
and serum-free culture conditions?®>28, although with low efficiency. Self-renewing
EpiSCs have been recently established by simultaneous activation and inhibition of
the Wnt/B-catenin pathway?®; however, the effect of these perturbations on ESCs-

EpiSCs direct transition has not been fully explored.

The Wnt/B-catenin is a highly conserved signalling pathway involved in ESCs self-
renewal® and cell-cycle progression®'. B-catenin levels are tightly controlled by the
active transcription of negative regulators working at different levels of the signalling
cascade?®?: Axin233-3% is part of the disruption complex whereas DKK13¢ binds the Wnt
receptor complex attenuating cellular response upon activation of the pathway. These
negative feedback loops contribute to the emergence of nonlinear dynamics in the
Wnt/B-catenin pathway, proved to be important in different biological and
developmental aspects (as reviewed in®), ESCs pluripotency'® and somatic cell
reprogramming’%3-41. The role of the canonical Wnt pathway in early in vivo

developmental stages and the requirement of its activation for ESC self-renewal have
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69 been a matter of intense research, often generating contradictory results®4%47.
70  Pluripotency incompetence has been reported in two independent studies using [3-
71  catenin”’- ECSs*?%#; this phenotype was, however, contradicted in later studies with
72 newly generated B-catenin” cell lines, which normally self-renew in both serum and
73 2i+LIF (hereafter called 2i/L), but present some differentiation defects when LIF-
74 deprived*>47. Such knock-out models provide an excellent in vitro system to study B-
75  catenin function on ESC decision making.

76

77  Here, we take advantage of the B-catenin” ESC line generated by Aulicino and
78  colleagues*®, where the entire B-catenin coding sequence was removed to avoid
79  possible compensatory mechanisms from aberrant truncated isoforms, to study the
80 effect of B-catenin perturbations on the exit from pluripotency and differentiation.
81 Different B-catenin doses have been indirectly achieved in the past by mutating the
82 adenomatous polyposis coli gene (APC)*; teratomas from the mutants with the
83  highest B-catenin transcriptional activity showed major differentiation defects in the
84  neuroectoderm, dorsal mesoderm and endoderm lineages. Of note, results in*®
85 suggest that active B-catenin nuclear translocation (different across mutants) might
86 also be involved in the observed differentiation impairment. Cellular models enabling
87 direct modulation of B-catenin are necessary to systematically associate protein
88  perturbations to pluripotency and differentiation phenotypes.

89 We tuned B-catenin levels in B-catenin”- ESCs applying an improved inducible
90 system*® and measured both the global gene expression following 2i/L withdrawal,
91 and the efficiency of ESC-EpiSC transition in vitro. Comparing the response to
92  differentiation stimuli of ESCs expanded in serum/LIF or 2i/L, we demonstrated that
93 moderate B-catenin overexpression in B-catenin”- ESCs enhances the differentiation
94  efficiency into EpiSCs. Moreover, short-term expansion in 2i/L predisposes ESCs to
95  such transition, challenging the hypothesis of a synergistic effect of the ERK, Wnt/[3-
96 catenin and STAT pathways on EpiSCs derivation in vitro that would require further
97 investigation. These results were recapitulated by exposing wild-type ESCs to low
98 doses of the GSK3a/B inhibitor Chiron, further confirming our findings and providing
99 an improved protocol for fast and efficient in vitro derivation of EpiSCs. Finally, the
100  transcriptome of ESCs expressing different -catenin levels confirmed what we and

101  others reported about (-catenin dispensable requirement for pluripotency
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102  establishment*5-474° while suggesting that specific B-catenin perturbations cause a
103  bias towards the endoderm lineage.

104  Overall, our study highlights that synergistic effects of p-catenin doses and culture
105  conditions control in vitro ESC fate decision making.

106

107 Results

108

109  Wnt/B-catenin pathway perturbations control in vitro generation of EpiSC

110  To study the role of the Wnt/B-catenin pathway in EpiSC derivation in vitro, we used
111  the C1-EF1a-rtTA_TRE3G-DDmCherryB-catenins33Y (hereafter called C1) ESC line
112 we previously generated*®. Briefly, B-catenin”~ ESCs*> were modified to stably
113 express a doxycycline-inducible fusion protein comprising the conditional destabilising
114 domain (DD), the mCherry fluorescent protein and the constitutive active [-
115 cateninS3Y(Figure 1A)®°. The inducer molecule doxycycline (Doxy) enables
116 transcriptional initiation, while trimethoprim (TMP) allows protein stabilisation by
117  inactivating the DD (Figure 1A)*. The use of a constitutively active and conditional -
118  cateninS33Y form, uncoupled from upstream endogenous regulations and in a knock-
119  out background, would help in dissecting B-catenin functions in the ESC-EpiSC
120  transition, avoiding compensatory mechanisms and possible off-target effects of
121  stable over-expression and chemical compounds.

122 We confirmed, in C1 cells, the correct induction (Figure 1A, inset and*®), intracellular
123 distribution and functionality of the exogenous protein upon input administration*®. We
124 previously confirmed the dispensable role of 3-catenin in pluripotent culture conditions
125 and showed, using Alkaline Phosphatase Staining, that moderate B-catenin
126  overexpression (i.e., TMP10uM_Doxy10ng/mL) can protect cells from exiting
127  pluripotency in the absence of both serum and LIF*°. Following these results, we
128 measured the efficiency of EpiSCs derivation when different doses of exogenous [3-
129 catenin are overexpressed in pluripotent conditions and/or during differentiation,
130 adapting an existing differentiation protocol?®®! (see Methods for details). To
131  appreciate cellular response changes depending on the culture condition, C1 ESCs
132 were expanded either in serum/LIF (hereafter called FBS/L) or in 2i/L. ESCs in the
133 ‘ground state’ media (i.e. 2i/L)> have been extensively characterised for their
134  transcriptional and epigenetic homogeneity'?'* and resemblance of the pre-

135 implantation epiblast'"'5'8. However, prolonged culture in 2i/L results in epigenetic
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136  changes impairing normal differentiation in vitro and development in vivo®?. Therefore,
137 we opted for a short-term culture in 2i/L (3 passages), sufficient to obtain cell
138  homogeneity while avoiding possible aberrations.

139 ESCs from FBS/L or 2i/L (Figure 1B, C) were cultured for 48 hrs either in DMSO
140  (Figure 1B) or in presence of maximum TMP (10pM) combined with low (10ng/mL) or
141  saturating (100ng/mL) Doxy (Figure 1C). The concentrations of Doxy were
142  extrapolated from flow cytometry measurements of the mCherry signal to provide two
143  doses (moderate and high) of the exogenous protein (Figure 1A, inset). We next
144  seeded 1.5x10* cells/cm? on fibronectin-coated plates in NDiff227%¢ supplemented
145  with ActivinA, FGF2?° and different combinations of DMSO, TMP and Doxy (Figure
146 1B, C and Methods). Cells kept under these conditions for 4 days, with media
147  refreshed after the first 2 culture days, were subsequently analysed for the expression
148  of the Epiblast marker Fgf5 by qPCR (Figure 1B, C).

149  TMP/Doxy pre-treatment before differentiation (Figure 1C) did not alter the basal Fgf5
150 expression of FBS/L ESCs (TO samples in Figure 1D), whereas that of
151 TMP10uM_Doxy10ng/mL treated ESCs from 2i/L culture was higher compared to the
152 TMP10uM_Doxy100ng/mL and the TMP10uM treated samples (TO samples in Figure
153 1E).

154  Upon 4 days of differentiation, in all Doxy/TMP treated conditions, Fgf5 levels were
155  higher when C1 ESCs were pre-cultured in 2i/L, suggesting that the latter predisposes
156 cells to more efficiently differentiate into EpiSCs (Figure 1E). In both scenarios (i.e.,
157 from FBS/L or 2i/L), B-catenin overexpression in pluripotent conditions only (i.e.,
158  “Before” in Figure 1D, E), or both before and during differentiation (i.e., “Always” in
159  Figure 1D, E), did not increase Fgf5 levels as compared to the control (i.e. TMP10uM-
160 treated C1 ESCs, Figure 1D, E). Interestingly, FBS/L pre-cultured C1 ESCs induced
161  with a low amount of Doxy (TMP10uM_Doxy10ng/mL “During Differentiation” sample,
162  Figure 1D) converted into EpiSCs more efficiently as compared to all other treatments
163  from FBS/L (Figure 1D).

164  Altogether, these results indicate that both the cell culture media and the doses of
165 exogenous [B-catenin strongly influence how cells respond to the ActivinA/FGF2
166 differentiation stimulus, with the 2i/L pre-culture enabling more homogeneous
167 differentiation towards Epiblast, and moderate B-catenin overexpression in FBS/L-
168  derived ESCs during the differentiation protocol only improving EpiSCs establishment

169 in vitro.
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Figure 1. Dual-input control of B-catenin doses in EpiSC derivation in vitro.
A Dual-input regulation system consisting of the doxycycline responsive element and the

S33Y module. Doxycycline (Doxy) and trimethoprim

conditionally destabilised mCherryB-catenin
(TMP) allow mCherryB-catenin®*®" transcription initiation and protein stabilisation,
respectively. (A, inset) Flow cytometry profile of C1 ESCs treated for 24 hrs with TMP10uM
and the indicated concentrations of Doxy. B, C Experimental scheme ESC to EpiSC
differentiation. FBS/L and 2i/L C1 ESCs were pre-treated either with DMSO (B) or TMP10uM
and Doxy10-100ng/mL (C). Following 48 hrs of treatment, cells were seeded on fibronectin in
NDiff227 and exposed to ActvinA/FGF2 and different combination of DMSO, Doxy and TMP
for 4 days before being collected for RNA extraction. After 2 days, the media was changed,
and the drugs were refreshed. D, E Fgf5 mRNA levels measured in FBS/L (D) and 2i/L (E)
C1 ESCs, after 4 days of differentiation in NDiff227+ActivinA/FGF2 and different combination
of DMSO, Doxy and TMP. Data are means+SEM (n=7, D (TO, Doxy10-100ng/mL “During
Differentiation”, Doxy10ng/mL TO, Doxy100ng/mL TO, Doxy100ng/mL “Before” ad
Doxy100ng/mL “Always”); n=6, D (Doxy10ng/mL “Before”); n=5, D (TMP10uM “During
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sample with C1 TMP10uM “During Differentiation” are shown, *p<0.05, **p<0.01, ***p<0.001,
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p<0.0001. Dots represent individual data with similar values overlapping.

Chemical modulation of the canonical Wnt pathway enhances Epiblast
derivation from ESCs

The above results (Figure 1) and the need to define a protocol for efficient derivation
of EpiSCs in vitro motivated us to explore the differentiation potential of wild-type ESCs
when deprived of pluripotency factors and exposed to different chemical perturbations
of the Wnt/B-catenin pathway (Figure 2A). We took advantage of the miR-290-
mCherry/miR-302-eGFP> ESC line (hereafter called dual reporter ESCs), which
allows fluorescent tracking of the exit from pluripotency. Specifically, naive dual
reporter ESCs express the mCherry reporter only, and progressively start expressing
also the GFP reporter when allowed to differentiate into EpiSCs®3.

We measured the transition from ESCs to EpiSCs using flow cytometry in at least 2
independent 4-day time-courses (Figure 2A). Before differentiation, dual reporter
ESCs were cultured in FBS/L and treated for 48 hrs with DMSO (Figure 2B) or with
Chiron (1-3uM, Figure 2C, D respectively) to pre-activate the canonical Wnt pathway,
or were maintained in 2i/L for 3 passages (i.e., 1 week; Figure 2E). At Day 0, 1.5x10*
cells’cm? were seeded on fibronectin-coated plates and exposed to different
combination of drugs added to the NDiff227%¢: ActivinA+FGF2+DMSO (AFD);
ActivinA+FGF2+Ch1uM (AFC1); ActivinA+FGF2+Ch3uM (AFC3); Ch1uM (C1);
Ch1uM+XAV2uM (C1X2); Ch3uM (C3); Ch3uM+XAV2uM?°® (C3X2) (Figure 2A). The
GFP signal was analyzed using flow cytometry every day for 4 days and the media
changed after the first 2 culture days (Figure 2A).

Dual reporter ESCs pre-cultured in FBS/L in absence of B-catenin activation showed,
already at Day 1, a GFP+ cell percentage increase in all but AFD treatment; AFD-
treated cells efficiently transited towards the Epi state later in the experiment, but they
were unable to rich other treatment GFP+ percentage levels (Figure 2B).

FBS/L Ch1uM pre-cultured dual reporter ESCs showed an overall increased
percentage of GFP+ cells compared to DMSO-treated ESCs (compare Figure 2B, C).
However, the fold-increase at Day 4 with respect to Day 0 of the best performing
conditions (i.e., C1 and C1X2; Figure 2C) was lower in Ch1uM pre-treated cells (13-
and 12-fold increase, respectively; Figure 2C) in comparison with the DMSO (23- and
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22-fold increase, respectively; Figure 2B). This suggests, as in the experiments
performed in a B-catenin null background (Figure 1), that the ESC to EpiSC conversion
is favoured by B-catenin activation during the differentiation only, while its prolonged
stimulation might reduce the differentiation efficiency. This was confirmed in Ch3uM
pre-treated cells, where the best performing conditions (i.e., C3 and C3X2; Figure 2D)
also showed an overall lower percentage of GFP+ cells as compared to DMSO-treated
ESCs. Moreover, the simultaneous activation/inhibition of the pathway (i.e., C3X2
condition) had opposite effects given cells pre-culture conditions: the percentage of
GFP+ cells increased over-time in DMSO pre-treated cells (20-fold increase at Day 4
with respect to Day 0; Figure 2B), while GFP expression was quite low at the end of
the time-course in Ch3uM pre-treated ESCs (3.6-fold increase at Day 4 with respect
to Day 0; Figure 2D). Interestingly, Chiron pre-treatment had no positive effect on the
differentiation efficiency using the standard differentiation protocol (AFD), as the GFP+
percentage increase in AFD-treated cells at Day 4, as compared to Day 0, was almost
the same in Ch1uM pre-cultured cells (7.4-fold increase; Figure 2C) and lower in
Ch3uM (1.9-fold increase; Figure 2D) and 2i/L (1.1-fold increase; Figure 2E) pre-
cultured cells as compared to the DMSO condition (7.4-fold increase; Figure 2B). In
ESCs pre-cultured in 2i/L, there was not much difference across the differentiation
protocols, as can be seen by the overall higher p-values computed through a one-way
ANOVA test (compare Figure 2B-E). Finally, the combined treatment with ActivinA,
FGF2 and Chiron (AFC1 and AFC3; Figure 2B-E) did not change EpiSCs derivation
efficiency, as compared to the standard ActivinA/FGF2 treatment (Figure 2B-E).

The ESC-EpiSC transition was proven to be a highly heterogeneous process involving
massive cell death%4. Although we did not observe significant changes in cell viability
across experiments, we noticed strong variability in the efficiency of in vitro EpiSCs
derivation: in Supplementary Figure 2, we show the average of at least 2 experiments
where the overall percentage of GFP+ cells was almost halved across conditions, as
compared to data in Figure 2. Still, results in Supplementary Figure 2 confirm that the
addition of Chiron during differentiation, in combination or not with XAV2uM (C1 and
C1X2 or C3 and C3X2; Supplementary Figure 2A-D), enables a much more efficient
conversion towards EpiSCs as compared to the other protocols. Also, we confirmed
that, if pre-cultured in FBS/L, no pre-activation of the Wnt/B-catenin pathway and
differentiation in media enriched with Ch1uM or Ch1uM+XAV2uM enables efficient
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Figure 2. Chemical perturbation of the Wnt/B-catenin in EpiSC derivation in vitro.
A Experimental scheme of Epiblast differentiation. Dual reporter ESCs cultured in FBS/L and
pre-treated for 48 hrs with DMSO and Chiron (1-3 uM), or in 2i/L for 3 passages, were seeded
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on fibronectin in NDiff227 supplemented with different combination of drugs
(ActivinA+FGF2+DMSO (AFD); ActivinA+FGF2+Ch1uM (AFC1); ActivinA+FGF2+Ch3uM
(AFC3); Ch1uM (C1); Ch1uM+XAV2uM (C1X2); Ch3uM (C3); Ch3uM+XAV2uM (C3X2)). The
GFP signal from the EpiSC marker was measured by flow cytometry every 24 hrs for 4
consecutive days. After the first 2 days, the media was changed, and the drugs were
refreshed. B-E Percentage of GFP+ cells calculated over the total amount of living cells in
DMSO (B), Ch1uM (C), Ch3uM (D) and 2i/L (E) pre-cultured dual reporter ESCs. Histograms
from Day 0 and Day 4 of each condition are shown as insets. Data are means+SEM (n=2, B
(Day1, Day3 AFD, Day4 AFD), C (Day 1), D (Day1, Day3 AFC3), E (Day0, Day1 AFC3-C3X2);
n=3, B (Day0O, Day2, Day3 AFC1-AFC3-C1-C1X2-C3-C3X2, Day4 AFC1-AFC3-C1-C1X2-
C3-C3X2), C (Day0, Day2 AFD-AFC1-C1X2, Day3, Day4), D (Day0, Day2 AFD-AFC3-C3X2,
Day3 AFD-C3-C3X2, Day4), E (Day1 AFD, Day2 AFD-AFC3-C3X2, Day3, Day4); n=6, C
(Day2 C1), D (Day2 C3), E (Day1 C3, Day2 C3). p-values from one-way ANOVA are shown
across samples for each day. Dots represent individual data with similar values overlapping.
Colour-blind safe combinations were selected using colorbrewer2

(https://colorbrewer2.org/#ttype=sequential&scheme=BuGn&n=3).

To confirm these results at single cell level, we monitored single-cell ESC-EpiSC
transition in 71 hrs time-lapse microscopy experiments (Supplementary Movies 1-3;
see Methods for details). FBS/L pre-cultured dual reporter ESCs were imaged every
60 minutes while constantly stimulated with AFD (Supplementary Movie 1) or Chiron
1-3uM (Supplementary Movies 2 and 3, respectively). In the AFD condition, a few
GFP+ cells started to appear after 57 hrs (Supplementary Movie 1), whereas in the
C1 and C3 culture conditions the transition started already after 10-14 hrs, with a peak
around 40-43 hrs (Supplementary Movies 2 and 3). The GFP signal from cells
differentiated in the presence of Chiron3uM was weaker as compared to the
Chiron1uM treatment (compare Supplementary Movies 2 and 3).

These results confirm that strength and time of B-catenin stabilization are important to
tip the balance between cell fates. In agreement with our previous observations in
FBS/L pre-cultured knock-out cells (see TMP10uM_Doxy10ng/ml “During
Differentiation” sample in Figure 1D), data collected using the dual reporter cell line
confirm that high levels of B-catenin can be detrimental to efficiently derive EpiSCs in
vitro. Indeed, a moderate activation or the simultaneous treatment with both an

activator (i.e., Chiron) and an inhibitor (i.e., XAV) of the Wnt/B-catenin pathway
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improve ESC direct differentiation into EpiSC, effectively replacing ActivinA and FGF2
requirement (Figure 2B, Supplementary Figure 2A).

Transcriptome and WGCNA analysis of ESC exit from pluripotency with varying
B-catenin doses

Next, we studied C1 ESCs exit from the ‘ground state’ of pluripotency, i.e., upon 2i/L
withdrawal, by RNA-sequencing; such monolayer differentiation protocol does not
induce a specific cell fate and is ideal to observe any B-catenin dependent
differentiation bias.

C1 ESCs cultured in 2i/L for 3 passages were treated for 48 hrs with saturating
concentrations of Doxy and TMP (100ng/mL and 10uM, respectively) to induce the
expression of the exogenous fusion protein (Figure 3A). Taking advantage of the
mCherry-tag for exogenous [-catenin overexpression, Doxy/TMP treated C1 ESCs
were sorted into two different subpopulations: C1 with Middle and High B-catenin
levels (hereafter called C1M and C1H samples, respectively; Figure 3A and
Supplementary Figure 3A). Cells were then seeded at 1.5x10* cells/cm? on gelatin-
coated plates and cultured in NDiff227 mediatinducers for 4 days before being
transcriptionally profiled (see Methods for details; Figure 3A). Sequencing provided
snapshots of the C1, C1M and C1H samples transcriptome in pluripotent condition,
and of the differentiated counterparts (Day 4 samples) cultured in NDiff227 and DMSO
(i.e., upon Doxy/TMP withdrawal; hereafter called C1DMV and C1DHYV), or in NDiff227
and TMP/Doxy (hereafter called C1DMDT and C1DHDT) during differentiation. The
C1 and C1D samples refer to cells treated only with TMP10uM in the pluripotent and

differentiated states, respectively.

Principal Components Analysis (PCA, Figure 3B) showed three main clusters: one
group included C1, C1M and C1H in the ‘ground state’ of pluripotency, another group
included C1D ESCs and the final group contained all perturbed samples (C1DMV,
C1DHV, C1DMDT and C1DHDT) after 4 days of differentiation.

We next performed the Weighted Gene Correlation Network Analysis (WGCNA) to
pinpoint the processes associated with B-catenin perturbations. The WGCNA'® is a
computational approach that allows the identification of gene modules based on their

correlation and network-derived topological properties. We applied the WGCNA to our
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sequencing data and identified 13 different modules (Supplementary Figure 3B; see
Methods for details). We then defined the principal component of each module (i.e.,
eigenmodule, ME) and calculated the Pearson Correlation Coefficient (r) of each
eigenmodule with time (Supplementary Figure 3C) or B-catenin doses (Figure 3C).
Next, for each module, we performed a functional annotation analysis on the genes
with a module membership |KME| = 0.8 (Methods) to identify the biological processes
and pathways enriched (Supplementary Table 1), focusing the attention on the
modules having r > 0.5 and p-value < 0.05 with the examined traits (Figure 3C,
Supplementary Figure 3C, Methods).

We found four modules significantly correlating (i.e., Green r = 0.92/p-value = 9e-14,
Blue r = 0.82/p-value = 1e-08 , Black r = 0.67/p-value = 3e-05 and Brown r =0.57/p-
value = 7e-04; Supplementary Figure 3C, Supplementary Table 1) and three anti-
correlating (i.e., Turquoise r = -0.99/p-value = 2e-24, yellow r = -0.75/p-value = 1e-06
and Pink r = -0.56/p-value = 8e-04; Supplementary Figure 3C, Supplementary Table
1) with time, meaning that these modules were regulated during the differentiation.
The biological processes (list of genes with a KME > 0.8; Supplementary Table 1)
related to these modules with a FDR < 0.05 showed an enrichment of genes involved
in translation, rRNA processing, ribosomal biogenesis and stem cell division
(Supplementary Figure 3D, F Supplementary Table 1, Green and Brown), protein
transport and processes associated with cellular respiration (Supplementary Figure
3E, Supplementary Table 1, Blue), positive regulation of growth, ncRNA processing
and neuronal tube formation and development (Supplementary Figure 3F,
Supplementary Table 1, Brown), regulation of tissue remodelling, embryonic and
forebrain development, stem cell population maintenance and cell homeostasis
(Supplementary Figure 3G, Supplementary Table 1, Turquoise), nuclear division and
meiosis and organelle fission (Supplementary Figure 3H, Supplementary Table 1,
Pink). For the pathway analysis, we found an enrichment in ribosome (Supplementary
Table 1, Green and Blue), Hedgehog signalling pathway (Supplementary Table 1,
Green), oxidative phosphorylation and diseases associated with oxidative stress
(Supplementary Table 1, Blue and Turquoise), cancer (Supplementary Table 1, Brown
and Turquoise) and regulation of the actin cytoskeleton (Supplementary Table 1,
Yellow). Of note, there were no significantly enriched BPs and/or pathways for the
genes from the Black, Yellow and Pink modules (Supplementary Table 1, Black,
Yellow and Pink).

12
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To gain more information about the effects of 3-catenin at the exit from pluripotency,
we correlated the eigenmodule of each module with B-catenin doses (Figure 3C, see
Methods for details) and found three modules correlating with 3-catenin doses (i.e.,
Tan r = 0.81/p-value = 2e-8, Purple r = 0.71/p-value = 7e-6 and Yellow/Green r =
0.69/p-value =1 e-5; Figure 3C, Supplementary Table 1). The biological processes (list
of genes with a KME > 0.8; Supplementary Table 1) corresponding to these modules
with a FDR < 0.05 showed enrichment in cell division (Figure 3D, Supplementary
Table 1, Tan), metabolism and negative regulation of neuronal death (Figure 3E,
Supplementary Table 1, Purple). Finally, the pathways analysis showed a significant
enrichment only in Lysosome and N-Glycan biosynthesis from the Purple module,
whereas pentose phosphate pathways and autophagy from the Green/Yellow
(Supplementary Table 1, Purple and GreenYellow).

Overall, the WGCNA analysis confirmed the expected major transcriptional and
metabolic changes associated with the exit from the pluripotent status, and confirmed

previously reported B-catenin functions on cell survival and proliferation®'.
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Figure 3. Transcriptome analysis of monolayer differentiation experiments upon
B-catenin perturbations and WGCNA of the genes correlating with B-catenin doses.

A Experimental scheme of the monolayer differentiation protocol. 2i/L C1 ESCs were pre-
treated with TMP10uM and Doxy100ng/mL for 48 hrs; living cells were then sorted from the
Dapi negative fraction of TMP-treated cells (C1), whereas 3-catenin overexpressing cells from
Doxy/TMP-treated samples were FACS-sorted from the mCherry fraction and divided into
Middle (C1M) and High (C1H) subpopulations. 1.5x10* cells/cm? from each individual
population were then seeded on gelatin in NDiff227 supplemented with DMSO or
TMP+Doxy100ng/mL. After 4 days of differentiation in NDiff227, cells were collected and
processed for the RNA sequencing. During the protocol, the media was changed, and the
drugs refreshed after 2 culture days. B Principal Component Analysis (PCA) of all samples;
the average of biological replica is shown. C Eigenmodules correlating with B-catenin doses;
the Pearson Correlation Coefficient (r) and relative p-value are shown. D, E Bar-chart of the
top-ten enriched biological processes (BP) with FDR < 0.05 from genes belonging to the Tan
(D) and Purple (E) WGCNA modules.

Next, to look at comparisons between specific pairs of samples, we performed a Gene

Ontology (GO) and Functional Annotation analysis on the differentially expressed
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genes filtered for the false discovery rate (FDR < 0.05) and log fold change (logFC <
-2 or > 2; see Methods for details). To identify gene ontologies specific for each
experimental perturbation, we focused on the Biological Processes (BPs) enriched
only in one comparison (red bars in Figure 4A-D, Supplementary Figure 4A, B).
Starting from the pluripotent condition, when comparing C1M and C1H with C1 we
found that the first 10 biological processes with a FDR < 0.05 were mainly enriched in
cell cycles and metabolism (Supplementary Figure 4A, B, Supplementary Tables 2,
3). Interestingly, the genes exclusively upregulated in C1H compared to C1 were
related to tissue differentiation (i.e., eye morphogenesis and urogenital system
development) and DNA methylation involved in gamete generation (Supplementary
Figure 4B, Supplementary Table 3). Only a few signalling pathways were enriched in
C1M ESCs compared to the control cell line C1 (Supplementary Tables 2, 3). These
results, together with the PCA in Figure 3B, confirm previous observations about the
dispensable function B-catenin has in pluripotent culture conditions*>-474° and suggest
a bias towards differentiation in C1H ESCs (Supplementary Figure 4B, Supplementary
Table 3).

We then analysed the genes differentially expressed at Day 4 upon [(-catenin
perturbation as compared to C1D ESCs. Upregulated genes mostly contributed to the
BPs significantly enriched (Figure 4A-D, Supplementary Tables 4-7), while
downregulated genes only contributed to enrich a few processes, namely general
metabolic processes (e.g., regulation of transporter and cation channel activity) and
mesenchymal to epithelial transition (Figure 4A-D, Supplementary Tables 4-7). Genes
exclusively upregulated in the C1DMV vs C1D comparison belonged to the mesoderm
lineage (i.e., cardiovascular system development; Figure 4A and Supplementary
Table 4), while, in the C1DMDT vs C1D comparison, upregulated genes were enriched
for the endoderm lineage (i.e., urogenital system; Figure 4B and Supplementary Table
5). Nevertheless, mesoderm and endoderm lineages were represented in both
comparisons. GO performed on the C1DHV and C1DHDT comparisons with C1D
showed only a few differences in the enriched BPs, that indeed did not define a bias
toward a specific lineage (Figure 4C, D, Supplementary Tables 6, 7).

These results suggest that the major changes in the differentiation program initiated
upon 2i/L withdrawal are induced by moderate B-catenin doses and are influenced by
the timing of protein overexpression. The pathway enrichment analysis showed the

upregulation of protein metabolism in C1DMV and C1DHV (Supplementary Tables 4,
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6), MAPK signalling pathway (Supplementary Table 4) in C1DMV, and ECM-receptor
interaction and PI3K-AKT signalling pathway in C1DHV (Supplementary Table 6).

To gauge insights into specific differentiation programs, we selected sets of markers
for naive and general pluripotency, early post-implantation epiblast, ectoderm,
mesoderm, endoderm, germ cell and trophectoderm®', and clustered our samples
according to the expression of these gene sets.

Naive pluripotency genes were downregulated during differentiation in all samples,
indicating the successful exit of cells from pluripotency (Figure 4E). Pluripotent C1M
and C1H samples clustered together (Figure 4E) although close to C1 ESCs, in
agreement with previous observations (Figure 3B). ESCs differentiated in presence of
DMSO (i.e., C1DMV and C1DHV; Figure 4E) clustered together, similarly to samples
differentiated in presence of Doxy and TMP (i.e., C1IDMDT and C1DHDT, Figure 4E);
still, a large number of genes (e.g., KIf5, Tcl1, KIf2 and NrOb1) showed a different
pattern among C1D, C1DMV, and C1DHV, discriminating ESCs with different (3-
catenin doses (Figure 4E). These results support the hypothesis of a (B-catenin-
dependent effect on transcriptional changes.

The clustering across samples was similar for general pluripotency markers (Figure
4F). In accordance with previous reports about the transition to primed pluripotency®>
%8 in the maijority of differentiated samples Sox2 was downregulated and Utf1, Zfp281
and Lin28 were upregulated (Figure 4F). Moreover, almost all the genes were lower
in C1DMV, C1DMDT, C1DHV and C1DHDT as compared to C1D (exceptions were
Lin28a, higher in C1DHDT and Sox2, higher in C1DHV; Figure 4F), and showed
different behaviours in DMSO- (i.e., C1DMV and C1DHV; Figure 4F) vs Doxy/TMP-
treated samples (i.e., C1IDMDT, C1DHDT,; Figure 4F), confirming that the duration of
B-catenin overexpression has an influence on cell identity. Zfp281, Zic2 and Utf1
showed a similar pattern in 3-catenin overexpressing cells as compared to C1D ESCs,
all being downregulated (Figure 4F). Zfp281 is a Zinc finger transcription factor
implicated in regulating stem cell pluripotency®®%°, and recently reported as a
bidirectional regulator of the ESC-EpiSC transition in cooperation with Zic2, another
zinc finger protein®'. The undifferentiated embryonic cell transcription factor 1 (Utf1) is
expressed in ESCs and is involved in many aspects of gene expression control (e.g.,
transcription factor? and epigenome organization®4), playing an important

regulatory role during the exit of ESCs from pluripotency®3%4. The concomitant
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reduction of Zfp281, Zic2 and Urf1 suggests a global change in the chromatin
organization of 3-catenin overexpressing ESCs en route to differentiation (Figure 4F).
Early post-implantation epiblast genes were mostly upregulated in primed ESCs
compared to the pluripotent condition with no evident differences across treatments in
naive ESCs (Figure 4G). The exception was Foxd3, downregulated in both naive and
primed B-catenin overexpressing cells as compared to the controls C1 and C1D ESCs
(Figure 4G). Interestingly, Dnmt3a levels, although similar at TO, were very different at
Day 4, with C1DMV/C1DHV and C1DMDT/C1DHDT showing 80% and 70% gene
expression reduction as compared to the control C1D, respectively (Figure 4G); also,
samples constantly exposed to Doxy/TMP (i.e., C1IDMDT and C1DHDT) showed
higher Dnmt3a expression than DMSO-treated ESCs (i.e., C1DMV and C1DHYV;
Figure 4G). Similar observations hold for Dnmt3b, where the reduction compared to
C1D was of about 60% for C1DMV/C1DHV and 10% for C1IDMDT/C1DHDT (Figure
4G). Dnmt3a, b and Foxd3 are DNA and chromatin remodelling factors, respectively;
Dnmt enzymes methylate genomic regions, whereas Foxd3 reduces active and
enhances inactive histone marks by recruiting the Lysine-specific demethylase 1
(Lsd1)8. The reduced expression of those genes in B-catenin overexpressing cells,
including the pluripotent markers Utf1 discussed above, supports the hypothesis of
differentially methylated DNA.

We then screened for a large panel of lineage-priming factors. Clustering based on
the ectoderm lineage genes showed that pluripotent C1 and C1M are more similar
than C1H (Figure 4H); following 2i/L withdrawal, the clustering resembled those of
previous sets (Figure 4E-G), with C1DMV/C1DHV and C1DMDT/C1DHDT grouping
together (Figure 4H). Genes from this lineage had different and sometimes opposite
expression across samples, making difficult to identify a clear pattern associated with
B-catenin perturbations. Nevertheless, we distinguished two groups of genes: one
group (i.e., DIx3, Pou3f2, Otx1 and Pou3f3) was mainly downregulated during
differentiation, whereas the other group (i.e., Nes, Ascl1, Cdh2 and Pax6) had the
opposite trend (Figure 4H).

When looking at mesoderm markers (Figure 4l), differentiated samples clustered
similarly to the previous data set; however, C1DMV/C1DHV were more similar to C1D
than in the previous comparisons (Figure 4E-H) and genes showed different
expression patterns across conditions. Lhx1, Lefty1/2, Meox1, Hoxb1 and Bmp4 were

mainly upregulated upon differentiation and no major differences were observed
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across samples in pluripotent conditions. The exception in this group was Lhx1 that
was higher in [-catenin overexpressing cells depending on the timing of
overexpression (compare C1DMV/C1DHV with C1DMDT/C1DHDT in Figure 4l). In
contrast, genes such as Nodal, Kdr, MixI1, Gsc, Foxf1 and Zic1 got downregulated
when exiting pluripotency and the levels across conditions were not significantly
changing (Figure 4l). Of note, although the behaviour of individual genes is hard to
interpret, C1D ESCs were very different from all differentiated samples with
perturbations of B-catenin, stressing the relevance of the latter for mesoderm
specification?®.

The endoderm lineage was the one most influenced by B-catenin perturbations: C1D
cells were unable to induce the expression of endoderm-related genes (compare C1
and C1D in Figure 4J), whereas in all perturbed ESCs their expression increased over
time. As previously observed (Figure 4E-I), samples clustered together based on the
duration of B-catenin overexpression rather than on its dose (i.e., C1DMV/C1DHV and
C1DMDT/C1DHDT, Figure 4J). Moreover, because of their impaired differentiation,
C1D clustered together with pluripotent samples (Figure 4J). The C1DHDT showed
the highest expression of the 50% of the endoderm-associated genes (namely, Cxcr4,
Gata4 and Sox7) as compared to all other differentiated samples (i.e., C1D, C1DMV,
C1DMDT and C1DHYV). Slightly different was the behaviour of Cxcr4, that decreased
over time; however, its expression is indicative of definitive endoderm differentiation®®
that most probably is not happening in the short protocol we applied. These
observations, together with the incapability of C1D cells to embark differentiation
toward this lineage, strongly support previous knowledge about the [(-catenin
requirement for endoderm organization6-67.

In the analysis of the germ cell lineage markers, all genes showed a rather
heterogeneous expression pattern across samples (Figure 4K). Pluripotent C1M and
C1H clustered together and close to C1, and differentiated samples clustered based
on the duration of p-catenin perturbation (i.e., C1DMV/C1DHV and
C1DMDT/C1DHDT). Dazl, Prdm1 and Ddx4 showed a clearer pattern in pluripotent
conditions, being upregulated in C1M and C1H compared to C1 ESCs (Figure 4K).
Finally, when looking at trophectoderm markers, clustering showed similarity of C1
and C1M, as for the ectoderm and endoderm lineages (Figure 4H, J, respectively).
C1DMDT and C1DHDT were similar for the expression of trophectoderm genes,

whereas C1DMV was part of a different branch clustering with C1D; C1DHV was more
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closely related to C1DMDT and C1DHDT (Figure 4L). Moreover, 90% of
trophectoderm genes got downregulated during differentiation (namely, Eomes, EIf3
and Cdx1) in all the conditions; the only exception was Cdx2 that was upregulated in
C1D, C1MDV and C1DMDT in comparison with the corresponding TO (Figure 4L).
Eomes was recently reported to control the exit from pluripotency by acting on the
chromatin status®®; its behaviour in naive C1M and C1H ESCs support the theory of a
different chromatin conformation in pluripotent -catenin overexpressing cells (Figure
4L).

Accounting for the fact that ectoderm is a default linage of the monolayer differentiation
protocol we applied®®, sequencing results suggest that B-catenin overexpression in a
knock-out background favours rescuing defects in differentiation towards endoderm
more than mesoderm. Indeed, mesodermal genes were mostly downregulated when
B-catenin was overexpressed, whereas endodermal genes were all upregulated as
compared to the control (Figure 4, J). Moreover, we observed that lineage
differentiation was influenced by the duration of protein overexpression rather than the
dose. According to that, there was a transition from mesoderm to endoderm following
moderate but constant 3-catenin overexpression (compare C1DMV and C1DMDT in
Figure 4A, B). Nevertheless, endoderm was an enriched gene ontology in all
considered comparisons (Figure 4A-D). Finally, the observed expression of
pluripotency markers Zfp281, Zic2 and Utf1, the early post-implantation markers
Dnmt3a-b and Foxd3 and the trophectoderm marker Eomes suggests a reorganization
of the epigenome in naive C1M and C1H ESCs and upon monolayer differentiation of
C1DMV, C1DMDT, C1DHV and C1DHDT ESCs.
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Figure 4. Gene ontology and clustergram of the differential expressed genes in control
and perturbed ESCs.

A-D Bar-chart of the top-ten enriched biological processes (BP) with FDR < 0.05 from
differentially expressed genes in C1DMV (A), C1DMDT (B), C1DHV (C) and C1DHDT (D)

compared to C1D ESCs. Black and grey bars represent upregulated and downregulated BPs,
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respectively. In red bars, the BPs exclusively enriched in the indicated condition. E-L
Clustergram over heatmaps of Naive (E) and general pluripotency (H), early post-implantation
(G), ectoderm (H), mesoderm (I), endoderm (J), germ cell (K) and trophectoderm (L) lineages
from pluripotent and differentiated ESCs expressing different $-catenin amount. Each column

is the average of 4 biological replicates.

Discussion

The role of the Wnt/B-catenin pathway as a pluripotency gatekeeper has been matter
of many studies and debates®0424871-74: while modulation of the canonical Wnt
pathway has been extensively proved to be important for EpiSC in vivo derivation”>78,
self-renewal’” and in vitro lineage differentiation’®®0, its relevance for the exit from
pluripotency and for ESC-EpiSC direct transition have not been explored thoroughly.
In this work, we proved that genetic B-catenin manipulation or chemical perturbation
of the canonical Wnt pathway controls ESC fate at the exit from pluripotency.

Using two different cellular models, we found that moderate (3-catenin doses in B-
catenin”- ESCs or its stabilization in wild-type ESCs increases the differentiation
efficiency of ESCs into EpiSCs, similarly to what was reported for EpiSCs self-
renewal®®: EpiSCs can be maintained in Chiron3uM/XAV2uM cultures, with self-
renewal regulated by both Axin2 and B-catenin?®; here we found that, in absence of
pre-activation of the canonical Wnt pathway, the Chiron3uM/XAV2uM treatment has
a better effect than Chiron3uM alone on ESC-EpiSC transition at the end of the
differentiation experiments (Day 3 and 4 in Figure 2B and Supplementary 2A), while
the opposite was observed in the early phases of the protocol (Day 1 and 2 in Figure
2B and Supplementary 2A). This could be explained by the fact that Axin2 expression
is B-catenin-dependent, and 3-catenin stabilization gets induced by Chiron treatment;
therefore, the effect of XAV might be relevant only upon Axin2 stabilisation.
Alternatively, it might also suggest a switch in the effect of Chiron3uM/XAV2uM
stimulation in a specific moment during the differentiation process, probably when
ESCs start to acquire a more stable EpiSC identity (as in?°). Although both hypotheses
are in agreement with what was reported by Kim and colleagues?®, the first one seems
to be more plausible looking at the response in Ffg5 (Figure 1) and GFP expression
(Figure 2B, Supplementary Figure 2A), i.e., when a moderate activation of the Wnt/(3-
catenin pathway was induced. Indeed, both B-catenin”- exposed to a low concentration

of the input Doxy (i.e., TMP10 uM _Doxy10ng/mL, “During Differentiation” in Figure
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1D) and the dual reporter ESCs treated with Chiron1uM (i.e., C1 in Figure 2B) showed
the highest differentiation efficiency, suggesting that Chiron1uyM treatment alone is
enough to keep B-catenin doses within a range that would instead require XAV
treatment if using higher doses of Chiron (i.e., 3uM), and that Chiron1uM is mimicking
the effect obtained by (B-catenin genetic manipulation. Furthermore, XAV treatment in
combination with Chiron1uM reduced the percentage of differentiated cells at Day 1
(Figure 2B and Supplementary 2A); this could be due to the stoichiometry between (3-
catenin, Ainx2 and the two inhibitors. We reason that, in Chiron1uM/XAV2uM, XAV is
in excess with respect to the amount of transcribed Axin2, therefore all the translated
protein gest stabilised, and the final effect is a strong inhibition of the signalling
pathway. Nevertheless, this effect might get attenuated with time, probably when a
balance between the drug and the target is achieved. This theory seems to be
supported by the behaviour of cells treated with Chiron1uM or Chiron3uM; the first
showed a GFP peak within the first 2 days followed by GFP stabilisation, while the
second showed the opposite trend (i.e., GFP reduction over time), suggesting that
prolonged B-catenin stabilization in FBS/L can impair ESCs differentiation towards
EpiSCs. These results pose the question of what would have happened if cells were
stimulated for longer with Chiron1yM. There are two possible scenarios; in the first,
EpiSCs, derived from ESCs, would self-renew in Chiron1yM as well as in
Chiron3uM/XAV2uM. In the second scenario, the transition from Chiron1uM to Chiron
3uM would be preferred for the maintenance of established EpiSCs. However, the
latter scenario would be in contrast with the results showed in?°, where it was proved
immediate differentiation or death of EpiSCs expanded in Chiron3uM+PD1uM. Of
note, the basal medium used in?® for EpiSC self-renewal is based on minimal essential
medium (GMEM) supplemented with 10% FBS?°, therefore differences might be
expected. Finally, we found that 2i/L pre-cultured ESCs better differentiate into
EpiSCs, regardless of further modulation of the pathway during differentiation. It has
been shown that, during the differentiation process, ESCs downregulate Oct4
expression and undergo a temporary cell cycle arrest>*; when differentiation has been
accomplished, Oct4 levels and cell cycle progression are restored to support the clonal
expansion of the EpiSC population. However, rare Oct4-/Cdx2+ cells might appear
during the initial phase of the differentiation process; this cellular fraction does not
respond to the cell cycle arrest, and therefore has a proliferative advantage®*. The

simultaneous elimination of differentiating incompetent cells (i.e., Oct4-/Cdx2+) and
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the re-established proliferation of differentiated cells (i.e., Oct4+/Cdx2-) ensure a
homogenous population of EpiSCs®*.

We and others reported a reduced proliferation rate of ESCs stimulated with Chiron
both in FBS/L3' and 2i/L'3. In agreement with these observations, we hypothesise that
Chiron treatment might reduce the proliferation of Oct4-/Cdx2+ cells, establishing a
balance between differentiating competent (i.e., Oct4-/Cdx2-) and incompetent (i.e.,
Oct4-/Cdx2+) cells. The 2i/L pre-culture might additionally homogenise the expression
of various genes, including Oct48' and reduce the appearance of Cdx2+ cells.
Overall, these results confirm the effect B-catenin has on preparing cells to
appropriately respond to the differentiation stimuli and suggest that both the duration
and the dose of B-catenin overexpression control cell differentiation in vitro. Moreover,
they enabled us to define an improved protocol for EpiSCs derivation in vitro, based
on NDiff227 and Chiron1uM.

RNA sequencing performed in ESCs during the exit from the naive ‘ground state’ of
pluripotency®! showed that, in B-catenin overexpressing cells (in particular in C1DMV),
Dnmt3a and b had an expression pattern similar to the one observed in Rex1-high
ESCs differentiated using a similar protocol®', indicating that moderate B-catenin
overexpression in naive ESCs influences DNA methylation associated with the exit
from pluripotency. Interestingly, we observed a significant upregulation of endodermal
genes in 3-catenin overexpressing cells, indicating a requirement of 3-catenin for this
specific fate. This phenotype was previously reported in the B-catenin null cell line
generated by Lyashenko and colleagues*®, where the defect in endoderm lineage
differentiation was rescued by overexpressing both wild-type or transcriptional
incompetent B-catenin®é; in contrast, mesoderm and ectoderm induction seemed to
not require B-catenin*®. With our approach that enables dose- and time-controlled -
catenin overexpression, we were able to define the amount of protein and the optimal
window of overexpression to facilitate mesoderm (i.e., C1DMV; Figure 4A,
Supplementary Table 4) or endoderm (i.e., C1DMDT,; Figure 4B, Supplementary Table
5) differentiation, and confirmed that the ectoderm lineage is not affected by -catenin
loss and therefore is not influenced by its overexpression.

In the future, it will be of great interest to use our inducible system to interrogate the
effect of more complex [B-catenin dynamics on stem-cell identity and to further
investigate the role of the B-catenin transcriptional activity in pluripotent and

differentiated cells of both murine and human origin.
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Methods

Cell line derivation

C1 cell lines were previously derived in*® by a double lentiviral infection of B-catenin™-
ESCs* with the EF1a-rtTA (Neomycin) plasmid followed by the pLVX_TrE3G-
DDmCherryB-cateninS33Y(Puromycin). Cells were selected with Neomycin after the
first round and with Puromycin after the last infection. The dual reporter ESCs were a
gift from Dr Blelloch®3.

ESCs were cultured on gelatin-coated dishes in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 15% fetal bovine serum (FBS, Sigma), 1 x nonessential
amino acids, 1 x GlutaMax, 1 x2-mercaptoethanol and 1000 U/mL LIF (Peprotech). To
note, that for the 2i/L culture, cells were kept for 3 passages (around 1week) in serum-
free NDIiff227-based media supplemented with 1000 U/mL LIF, 3uM of the GSK-3a/3
inhibitor Chiron-99021 (Selleck, S1263) and 1uM of the MEK inhibitor PD0325901
(Selleck, S1036).
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Epiblast Differentiation

For EpiSC derivation in vitro, FBS/L and 2i/L 1.5x10* cells/cm? were seeded on
10pug/mL  Fibronectin-coated 12-well plates in NDiff227 (Takara, Y40002) and,
according to the experiment, stimulated with DMSO, TMP10uM (Sigma, T7883), Doxy
10-100ng/mL (Sigma, D9891), human ActivinA 10ng/mL (Peptrotech, 120-14E),
human FGF2 10ng/mL (Peptrotech, 100-18B) Chiron1-3uM and the XAV939 2uM
(Sigma, 575545) for 4 days with the media and drugs refreshed after the first 2 culture
days (Figures 1B, C and 2A).

Monolayer differentiation

Sorted C1, C1M and C1H ESCs were plated at 1.5x10* cells/cm? on gelatin-coated
12-well plates in plain NDiff227 and stimulated with DMSO or TMP10uM+Doxy10-
100ng/mL for 4 days with the media and drugs refreshed after the first 2 culture days
(Figure 3A).

Drugs pre-treatment

Some experimental conditions required pre-treatment of cells. For B-catenin
overexpression in Figure 1C, C1 ESCs were stimulated for 48 hrs with TMP10uM and
Doxy10-100ng/mL before the EpiSC differentiation, whereas for pre-activation of the
canonical Wnt pathway in Figure 2A, C-E and Supplementary Figure 2B-D, dual
reported ESCs were exposed to Chiron1-3uM (Figure 2C, Supplementary Figure 2B
and Figure 2D, Supplementary Figure 2C, respectively) for 48 hrs or cultured for 3
passages in 2i/L (Figure 2E, Supplementary Figure 2D), before the differentiation.

Flow cytometry analysis

ESCs from a 12-well plate were washed with sterile Phosphate-Buffered Saline (PBS,
Gibco), incubated with 80 pL of trypsin for 2—-3' at room temperature and collected with
120 pL of PBS 2% FBS containing DAPI as cell viability marker. Cell suspension was
analysed using the BD LSR Fortessa and 10,000 living cells were recorded for each
sample. The % of GFP positive cells was calculated over living cells, gated as DAPI

negative, using the FlowJo V10 software.

Flow activated cell sorting (FACS)
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ESCs were washed with sterile phosphate-buffered saline (PBS, Gibco), trypsinised
for 2-3' at room temperature and centrifuged at 1000 x g for 5'. Pelleted cells were
resuspended in 500 uyL of plain NDiff227 media supplemented with DAPI. The
mCherry positive fraction was sorted from DAPI negative using the BD Influx high-

speed 16-parameter fluorescence activated cell sorter.

qPCR

For quantitative PCR, the total RNA, extracted from cells using the RNeasy kit
(Qiagen), was retrotranscribed (Thermo Fischer, RevertAid Reverse Transcriptase
EP0441) and the cDNA used as template for each qPCR reaction in a 15 L reaction
volume. iTaq Universal SYBR Green Supermix (1725120, Bio-Rad) was used with the
Qiagen Rotor-Gene System. To eliminate the contamination from genomic DNA, the
RNeasy Plus Mini Kit (Qiagen, 74134) was used to purify the total RNA used for the

RNA Sequencing. The primers used were: Actin-Fwd:
ACGTTGACATCCGTAAAGACCT, Actin-Rev: GCAGTAATCTCCTTCTGCATCC;
Fgf5-Fwd: AAAACCTGGTGCACCCTAGA, Fgf5-Rev:
CATCACATTCCCGAATTAAGC).

Time-lapse experiments

1.5x10% cells were seeded on 10ug/mL fibronectin-coated p-Slide 8 Well Glass Bottom
(Ibidi, 80827) and imaged with a Leica DMIG00O0 inverted epifluorescence microscope
equipped with the Photometrics Prime 95B sCMOS camera (1200x1200 11um pixels,
8 ,12 bit or 16 bit, 70 fps full frame) and an environmental control chamber (Solent)
for long- term temperature control and CO2 enrichment. The Adaptive Focus Control
(AFC) ensures focus is maintained during multiple acquisition cycles. Images were
acquired from two channels (phase contrast and green fluorescence) with a 20X
objective every 60min for 71 hrs. ImagedJ version: 2.0.0-rc-69/1.52p was used to
improve the GFP signal, apply a Gaussian blur filter (Sigma radius 2) and combine

channels.

QuantSeq 3’ RNA sequencing library preparation.
Preparation of libraries was performed with a total of 100ng of RNA from each sample
using QuantSeq 3'mRNA-Seq Library prep kit (Lexogen, Vienna, Austria) according

to manufacturer's instructions. Total RNA was quantified using the Qubit 2.0
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fluorimetric Assay (Thermo Fisher Scientific). Libraries were prepared from 100ng of
total RNA using the QuantSeq 3' mRNA-Seq Library Prep Kit FWD for lllumina
(Lexogen GmbH). Quality of libraries was assessed by using screen tape High
sensitivity DNA D1000 (Agilent Technologies). Libraries were sequenced on a
NovaSeq 6000 sequencing system using an S1, 100 cycles flow cell (lllumina Inc.).
Amplified fragmented cDNA of 300 bp in size were sequenced in single-end mode with
a read length of 100 bp.

lllumina novaSeq base call (BCL) files are converted in fastq file through bcl2fastq
[http://femea.support.illumina.com/content/dam/illuminasupport/documents/document
ation/software_documentation/bcl2fastg/bcl2fastq2-v2-20-software-guide-15051736-
03.pdf] (version v2.20.0.422).

QuantSeq 3’ RNA sequencing data processing and analysis.

For analysis, sequence reads were trimmed wusing bbduk software
(https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/usage-guide/) (bbmap
suite 37.31) to remove adapter sequences, poly-A tails and low-quality end bases
(regions with average quality below 6). Alignment was performed with STAR 2.6.0a3%?
on mm10 reference assembly obtained from cellRanger website
(https://support.10xgenomics.com/single-cell-gene-expression/software/release-
notes/build#mm10_3.0.0; Ensembl assembly release 93). Expression levels of genes
were determined with htseq-count® using Gencode/Ensembl gene model. We have
filtered out all genes having < 1 cpm in less than n_min samples and Perc MM reads
> 20% simultaneously. Differential expression analysis was performed using edgeR®4,
a statistical package based on generalized linear models, suitable for multifactorial
experiments. The threshold for statistical significance chosen was False Discovery
Rate (FDR) < 0.05 (GSE148879). The lists of differentially expressed genes (DEGs),
for each comparison, with a threshold of logFC > 2 for the induced and logFC < -2 for
the inhibited transcripts (Supplementary Tables 2-7) were used for the Functional
Annotation analysis.

The data were deposited in GEO with the accession number GSE148879.

Weighted Gene Correlation Network Analysis (WGCNA)
Quant-seq 3' mMRNA data of 32 samples was used to construct a gene co-expression

network by applying Weighted Gene Correlation Network Analysis (WGCNA)"® from
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the WGCNA package in the R statistical environment version 3.6. Briefly, we first
computed the Pearson correlation coefficient among all pairs of expressed genes and
then an appropriate value of the soft-thresholding power (3=6) giving a scale-free
topology fitting index (R?) = 0.85 was selected to build the weighted adjacency matrix.
The weighted adjacency matrix was further transformed into a topological overlap
matrix (TOM)®® and the resulting dissimilarity matrix used for hierarchical clustering.
Gene modules were finally identified by cutting the hierarchical dendrogram with the
dynamic tree cut algorithm from dynamicTreeCut package in R® statistical
environment with standard parameters, except for cutHeight we set equal to 0.25 and
deepSplit we set equal to 1. The value of deepSplit parameter was selected after
performing a cluster stability analysis. Briefly, for each possible value of deepSplit
parameter (i.e., 0, 1, 2, 3 or 4), modules were identified for both the full dataset and
50 resampled datasets. Then, the clustering solution obtained for the full dataset was
compared with each resampled solution by mean of Adjusted Rand Index (ARI)®. The
solution giving the highest average ARI was used for the clustering analysis as
described above. Finally, to identify which clusters were correlated with B-catenin
expression doses or differentiation time we correlated the first principal component of
each gene module (i.e., the eigenmodule) with the traits of interest. The eigenmodule
can be considered as a “signature” of the module gene expression. Modules correlated
with the traits with a p-value < 0.01 were considered statistically significant and used

for further analyses.

Functional Annotation Analysis

Differentially expressed genes (either logFC > 2 or logFC < -2) and module “hubs”
having high module membership (also known as |KME| > 0.8) within the module were
analysed for the enrichment in GO Biological Processes® and KEGG Pathways®® via
the clusterProfiler package in R statistical environment®. The threshold for statistical
significance was FDR < 0.05, the top-ten BPs were represented as -log10 (FDR;
Figure 3D-E, Supplementary Figure 3D-H, and Figure 4A-D, Supplementary Figure
4A, B).

Statistical analysis
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Differences between samples were analysed by two-tailed unpaired t tstest and one-
way ANOVA using Matlab (MathworksMatlab R2019a, update 9.6.0.1307630). A p-
value lower than 0.05 was considered statistically significant.

Clustergram over heatmaps were generated using the clustergram function in Matlab
(MathworksMatlab R2019a, update 9.6.0.1307630) that applies the Euclidean
distance metric and average linkage. The data have been standardized across all

samples for each gene and have 0 as mean and 1 as standard deviation.
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Supplementary Figure 2. Replica of in vitro ESC-EpiSC differentiation

experiments upon chemical B-catenin perturbations

A-D Percentage of GFP+ cells calculated over the total amount of leaving cells in
DMSO (B), Ch1uM (C), Ch3uM (D) and 2i/L (E) pre-cultured dual reporter ESCs.
Histograms from Day 0 and Day 4 of each condition are shown as inset. Data are
meanstSEM (n=2, A (Day1 C1, Day3 AFC1, Day4 AFD-AFC3), B (Day 1 AFC1), D
(Day4 AFD); n=3, A (Day1 AFD-AFC1-AFC3-C1X2-C3-C3X2, Day2, Day3 AFD-
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Colour-blind  safe = combinations  were  selected using colorbrewer2

(https://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3).
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Supplementary Figure 3. FACS gating strategy and WGCNA of the genes

correlating with time.
A Gating strategy used to sort C1M and C1H ESCs, following 48 hrs treatment with
TMP10uM and Doxy100ng/mL. C1 ESCs treated with TMP10uM were used as

negative control. B Clustering dendrogram of genes, with dissimilarity based on
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topological overlap, together with the assigned module colours; grey genes are
unassigned to any module. C Eigenmodules correlating with time; the Pearson
correlation coefficient (r) and relative p-value are shown. D-H Bar-chart of the top-ten
enriched biological processes (BP) with FDR < 0.05 from genes belonging to the
Green (D), Blue (E), Brown (F), turquoise (G) and Pink (H) WGCNA modules.
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Supplementary Figure 4. Gene ontology of the differential expressed genes in
pluripotent ESCs.
A, B Bar-chart of the top-ten enriched biological processes (BP) with FDR < 0.05 from
differentially expressed genes inin C1M (A) and C1H (B) compared to C1 ESCs. Black
and grey bars represent upregulated and downregulated BPs, respectively. In red

bars, the BPs exclusively enriched in the indicated condition.

Supplementary Table 1
List of identified module genes correlating with time (Supplementary Figure 3) or B-
catenin doses (Figure 3) before and after the filtering for the |kKME| = 0.8; GO and

pathway analysis.

Supplementary Table 2

List of differentially expressed genes before and after the filtering for the FDR (< 0.05)
and log fold change (-2 > log > 2); GO and pathway analysis in pluripotent C1M vs C1
ESCs.

Supplementary Table 3
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List of differentially expressed genes before and after the filtering for the FDR (< 0.05)
and log fold change (-2 > log > 2); GO and pathway analysis in pluripotent C1H vs C1
ESCs.

Supplementary Table 4

List of differentially expressed genes before and after the filtering for the FDR (< 0.05)
and log fold change (-2 > log > 2); GO and pathway analysis in differentiated C1DMV
vs C1D ESCs.

Supplementary Table 5

List of differentially expressed genes before and after the filtering for the FDR (< 0.05)
and log fold change (-2 > log > 2); GO and pathway analysis in differentiated C1DMDT
vs C1D ESCs.

Supplementary Table 6

List of differentially expressed genes before and after the filtering for the FDR (< 0.05)
and log fold change (-2 > log > 2); GO and pathway analysis in differentiated C1HV vs
C1D ESCs.

Supplementary Table 7

List of differentially expressed genes before and after the filtering for the FDR (< 0.05)
and log fold change (-2 > log > 2); GO and pathway analysis in differentiated C1IDHDT
vs C1D ESCs.

Supplementary Movie 1

71 hrs time-lapse of dual reporter ESCs without pre-activation of the canonical Wnt
pathway, differentiated in NDiff227 supplemented with ActivinA+Fgf2+DMSO.
Supplementary Movie 2

71 hrs time-lapse of dual reporter ESCs without pre-activation of the canonical Wnt

pathway, differentiated in NDiff227 supplemented with Chiron 1uM.

Supplementary Movie 3
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1310 71 hrs time-lapse of dual reporter ESCs without pre-activation of the canonical Wnt
1311  pathway, differentiated in NDiff227 supplemented with Chiron 3uM.
1312
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