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Abstract 16 

Understanding how organisms adapt to aquatic life at high altitude is fundamental in 17 

evolutionary biology. This objective has been addressed primarily related to hypoxia adaptation 18 

by recent comparative studies, whereas highland fish has also long suffered extreme alkaline 19 

environment, insight into the genomic basis of alkaline adaptation has rarely been provided. 20 

Here, we compared the genomes or transcriptomes of 15 fish species, including two alkaline 21 

tolerant highland fish species and their six alkaline intolerant relatives, three alkaline tolerant 22 

lowland fish species and four alkaline intolerant species. We found putatively consistent 23 

patterns of molecular evolution in alkaline tolerant species in a large number of shared orthologs 24 

within highland and lowland fish taxa. Remarkably, we identified consistent signatures of 25 

accelerated evolution and positive selection in a set of shared genes associated with ion 26 

transport, apoptosis, immune response and energy metabolisms in alkaline tolerant species 27 

within both highland and lowland fish taxa. This is one of the first comparative studies that 28 

began to elucidate the consistent genomic signature of alkaline adaptation shared by highland 29 

and lowland fish. This finding also highlights the adaptive molecular evolution changes that 30 

support fish adapting to extreme environments at high altitude. 31 

 32 

Keywords 33 

Comparative genomics; Molecular evolution; Alkaline adaptation; Schizothoracine fish 34 

35 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2021. ; https://doi.org/10.1101/2020.12.23.424241doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.23.424241
http://creativecommons.org/licenses/by-nc-nd/4.0/


Significance Statement 36 

Little is known about how wild fish responds to extreme alkaline stress besides hypoxia at high 37 

altitude. Comparative genomics has begun to elucidate the genomic basis of alkaline adaptation 38 

in lowland fish, such as killifish, but insight from highland fish has lagged behind. The common 39 

role of adaptive molecular evolution during alkaline adaptation in highland and lowland fish has 40 

rarely been discussed. We address this question by comparing 15 fish omics data. We find 41 

numbers of shared orthologs exhibited consistent patterns of molecular evolution in alkaline 42 

tolerant species relative to intolerant species. We further identify remarkably consistent 43 

signatures of rapidly evolving and positive selection in a substantial shared core of genes in 44 

both highland and lowland alkaline tolerant species. 45 

 46 

47 
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Introduction 48 

Environments shape the genetic landscape of the populations that inhabit them (Witt & Huerta-49 

Sánchez 2019). The Tibetan Plateau had experienced continuous uplift during the India-Asia 50 

collision since approximately 45 million years ago, that triggered numerous environmental 51 

changes (Li & Fang 1999; Favre et al. 2015). As elevation above sea level increases, a 52 

decrease in barometric pressure results in fewer oxygen molecules in the air, which causes 53 

hypoxia. Besides, other harsh environments highland wildlife have encountered include the 54 

long-term low temperature, and intensified ultraviolet radiation (An et al. 2001). Large numbers 55 

of endemic Tibetan animals had developed unique morphological, physiological or genetic 56 

features to tolerate such harsh conditions (Wen 2014; Tong, Tian, et al. 2017; Tong, Fei, et al. 57 

2017). Basically, understanding how organisms adapt to extreme environment is fundamental to 58 

address many evolutionary questions, but it remains a formidable task to fully uncover the 59 

mechanism of adaptive process (Scheinfeldt & Tishkoff 2010; Tong, Fei, et al. 2017; Tong, Tian, 60 

et al. 2017). Adaptation at molecular level can occur by adaptive mutation in key genes over 61 

prolonged evolutionary time scales (Orr 2005). Recent studies employing genome-wide 62 

approaches have identified candidate genes associated with hypoxia and long-term cold 63 

response in Tibetan terrestrial wildlife adaptation to high altitude (Qu et al. 2013; Wu et al. 2020). 64 

Nevertheless, the draft genomes of very few Tibetan aquatic wildlife are sequenced (Xiao et al. 65 

2020; Liu et al. 2019), the genomic basis of highland adaptation in aquatic animals (e.g. fish) 66 

remains largely unknown. 67 

 68 

The schizothoracine fishes (Teleostei: Cyprinidae), the predominant fish fauna in the Tibetan 69 

Plateau, had evolved specific phenotypic characteristics to adapt to extreme aquatic 70 

environments, including hypoxia and long-term low temperature (Wu 1992; Cao et al. 1981). 71 

Recent comparative studies have identified key genes showing signals of positive selection 72 

during adaptation to such harsh environments (Yang et al. 2014; Wang et al. 2015; Kang et al. 73 

2017), such as Hypoxia-inducible factor (HIF) (Guan et al. 2014) and Erythropoietin (EPO) (Xu 74 

et al. 2016) associated with hypoxia response, ATPase Family AAA Domain Containing 2 75 

(ATAD2) (Tong, Fei, et al. 2017) and cAMP-dependent protein kinase catalytic subunit alpha 76 

(PRKACA) that involved into energy metabolism (Tong, Fei, et al. 2017). The main focus of 77 

previous studies in schizothoracine fishes are still on hypoxia and cold response. Notably, an 78 

increasing number of lakes in the Tibetan Plateau have been existing or towards alkaline due to 79 
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the global climate changes and human activities (Zheng 1997). Thus, the increasing alkalization 80 

of fresh water has been the potential challenge to schizothoracine fishes. Among the 81 

schizothoracine fishes, Gymnocypris przewalskii przewalskii and Gymnocypris przewalskii 82 

kelukehuensis are the only two species inhabited extremely alkaline environment (Wu 1992). 83 

Unlike other broadly distributed schizothoracine fishes, such as Gymnocypris eckloni, 84 

Schizopygopsis pylzovi and Platypharodon extremus that inhabit in the Yellow river basin (Cao 85 

et al. 1981; Wu 1992; Qi et al. 2012), G. p przewalskii only inhabits in saline and alkaline lake. 86 

As the largest salt lake in China, Lake Qinghai (FIG. 1) is highly saline (up to 13‰) and alkaline 87 

(up to pH 9.4) water environment, a typical salt lake with unusually high sodium, potassium and 88 

magnesium concentration (Zheng 1997; Zhu & Wu 1975). In addition, G. p. kelukehuensis only 89 

inhabits in a soda lake located at the Tsaidam Basin in the northeastern Tibetan Plateau. Lake 90 

Keluke (FIG. 1) is also a soda lake with low salinity of 0.79‰ and high pH value up to 9.3 91 

(Zheng 1997). Both schizothoracine fish species had developed unique physiological or genetic 92 

features to tolerate such harsh living conditions (Tong, Fei, et al. 2017). Therefore, this provides 93 

an exceptional model to investigate the genetic mechanisms underlying alkaline adaptation, and 94 

may provide novel insights to fully understand the mechanism of highland adaptation in fish as 95 

complement. 96 

 97 

Unlike highland alkaline tolerant fish, a huge amount of studies had explored the mechanisms of 98 

high saline and high alkaline tolerance in lowland fish species, such as killifish (e.g. Fundulus 99 

heteroclitus) (Wood et al. 2010;Brennan et al. 2018; Burnett et al. 2007), tilapia (e.g. 100 

Oreochromis niloticus) (Zhao et al. 2020; Wood et al. 1994), and salmonids (e.g. Salmo salar) 101 

(Levings 2016; Lien et al. 2016). These studies had provided insights in physiology of acid-base 102 

balance in fishes response to high salinity or high pH environments, and suggested key genes, 103 

such as ion transport associated genes under selection during the adaptation (Lien et al. 2016). 104 

 105 

In this study, we generated and assembled the transcriptomes of two alkaline tolerant 106 

schizothoracine fish species, G. p. przewalskii and G. p. kelukehuensis inhabited in high pH 107 

environment in the northeastern Tibetan Plateau (FIG. 1). We performed a comparative 108 

genomics study together with recently sequenced schizothoracine fish transcriptomes and other 109 

lowland fish genomes (FIG. 2A & 2B), and sought to identify consistent genomic signature 110 

associated with alkaline adaptation in highland and lowland fishes. Specifically, we focused our 111 
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comparisons on testing whether alkaline adaptation in highland and lowland alkaline tolerant 112 

fishes is associated with the following signatures of molecular evolution: (1) consistent patterns 113 

of molecular evolution in protein-coding genes across the phylogeny; (2) consistent shifts in 114 

evolutionary rates for specific genes; and (3) consistent signals of positive selection in particular 115 

genes. 116 

 117 

Materials and Methods 118 

Sample collection 119 

We collected eight adult G. p. przewalskii (FIG. 1) individuals (four males and four females, 172 120 

± 0.7 g) from Lake Qinghai and eight adult G. p. kelukehuensis (FIG. 1) individuals (four males 121 

and four females, 139 ± 0.3 g) from Lake Keluke using gill nets. All the fish samples were 122 

dissected after anesthesia with MS-222 (Solarbio, Beijing, China). All individuals were classified 123 

based on the gender and dissected after anesthesia with MS-222 (Solarbio, Beijing, China). 124 

Tissues from gill, kidney, brain, heart and liver from each individual were collected and 125 

immediately stored in liquid nitrogen at -80 °C. All the animal experiments were approved by the 126 

Animal Care and Use Committees of the Northwest Institute of Plateau Biology, Chinese 127 

Academy of Sciences (NWIPB-CY-010). 128 

 129 

Transcriptomics 130 

Total RNA of each tissue sample was extracted using TRIzol reagent (Invitrogen, CA, USA) in 131 

accordance with manufacturer’s instructions, and detected for quality and quantity of RNAs with 132 

Nanodrop 1000 (NanoDrop Technologies, DE, USA) and Agilent Bioanalyzer 2100 (Agilent 133 

Technologies, CA, USA). Equal amount of RNA from eight individual of five tissue was pooled to 134 

construct transcriptome library as previously described (Tong, Tian, et al. 2017; Tong, Fei, et al. 135 

2017), and sequenced with an Illumina NovaSeq 6000 yielding 150-bp paired-end reads (FIG.2). 136 

 137 

Sequencing reads were checked for quality using FastQC 138 

( https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequencing adapters and reads 139 

with a quality score < 20 were trimmed with Trimmomatic (Bolger et al. 2014). We built a de 140 

novo transcriptome assembly based on clean reads using Trinity v2.6.5 (Grabherr et al. 2011) 141 
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with default parameters. Next, we removed the redundant transcripts using CD-HIT (Fu et al. 142 

2012) with the threshold of 0.90 and extracted the longest transcript as putative genes. We 143 

predicted the open reading frame of each putative genes using TransDecoder 144 

(https://github.com/TransDecoder/TransDecoder) (FIG.2). 145 

 146 

Additional data retrieval 147 

We downloaded six alkaline intolerant schizothoracine fish transcriptomes (Zhou et al. 2020) 148 

including Oxygymnocypris stewartii, Schizopygopsis younghusbandi, Gymnocypris namensis, 149 

Platypharodon extremus, Schizopygopsis pylzovi and Gymnocypris eckloni from NCBI SRA 150 

database (https://www.ncbi.nlm.nih.gov/sra) (FIG. 3B, supplementary table S1), and performed 151 

assembly following above pipeline. In addition, we downloaded the genomes of four alkaline 152 

intolerant fish species of Danio rerio, Ctenopharyngodon idellus, Cyprinus carpio, and Carassius 153 

auratus, and three alkaline tolerant fish species of Fundulus heteroclitus, Oreochromis niloticus 154 

and Salmo salar (FIG. 3A, supplementary table S1). 155 

 156 

Species phylogeny and gene orthology 157 

We obtained the phylogenetic tree of 15 fish species by pruning the Fish Tree of Life 158 

(https://fishtreeoflife.org/) using R package, phangorn (Schliep 2011). To obtain phylogeny-159 

based orthology relationships between different fish taxa, we included all the predicted 160 

proteomes of seven lowland fish genomes, and translated nucleotide sequences of protein-161 

coding genes from eight schizothoracine fish transcriptome assemblies into amino acid 162 

sequences, and pooled these datasets as input for an orthology inference tool, OMA (Altenhoff 163 

et al. 2018). In this way, we identified one-to-one, one-to-many, and many-to-many orthologs 164 

among these 15 fish species. For further comparison, we restricted our analysis to 1:1 orthologs, 165 

that is the geneset for which only one gene from each species representing the orthology. In 166 

addition, we extracted the shared orthologs among all fish taxa. At last, gene ontology (GO) 167 

terms were assigned to each ortholog using Trinotate (https://trinotate.github.io/) (FIG.2). 168 

 169 

Pattern of molecular evolution in shared orthologs 170 
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To determine whether highland fish and lowland fish showing consistent patterns of molecular 171 

evolution in the set of alkaline tolerant species branches across the phylogeny, we 172 

characterized the rates of non-synonymous to synonymous rate (dN/dS) in each shared 173 

ortholog. For this, we performed the protein sequence alignment using MUSCLE v3.8.31 174 

(https://www.ebi.ac.uk/Tools/msa/muscle). We prepared the codon alignments of shared 175 

orthologs, that derived from protein alignments and the corresponding DNA sequences using 176 

PAL2NAL v.14 (Suyama et al. 2006). Then, we executed the filtration for shared ortholog 177 

alignments with length of at least 50 codons. 178 

 179 

We took advantage of HyPHY pipeline (Kosakovsky Pond, Poon, et al. 2020) to test the 180 

hypotheses by comparing selective pressures (dN/dS) between a prori defined alkaline tolerant 181 

fish species branches (focal foreground branch) and alkaline intolerant species fish branches 182 

(background branch) in the specified fish phylogeny at ortholog-wide scale. Before that, a 183 

common approach to test the hypothesis is to perform separate analyses on subsets of 184 

sequences, and compare the parameter estimated in a post hoc fashion, that is one branch to 185 

the rest of branches in a phylogenetic tree like which we previously described (Tong, Tian, et al. 186 

2017; Tong, Fei, et al. 2017; Tong et al. 2020). While, such approach is statistically suboptimal, 187 

and not always applicable (Kosakovsky Pond, Wisotsky, et al. 2020). In this way, we estimated 188 

two discrete categories of dN/dS for alkaline tolerant and alkaline intolerant species under the 189 

MG94 rate matrices combined with HKY85 model using HyPHY (Kosakovsky Pond, Poon, et al. 190 

2020), and compared nested models with constrained relationships among them. We detected 191 

the shift of dN/dS ratios between alkaline tolerant and alkaline intolerant (alternative model, H1), 192 

relative to the null model that assuming all lowland fish taxa have the same dN/dS ratio (H0). 193 

We constructed the log-likelihood ratio score for each ortholog (ΔlnL) as:  ΔlnL = 2(lnLH1-lnLH0) 194 

and employed the likelihood ratio test. Additionally, we applied a correction for multiple testing to 195 

a false discovery rate (FDR) < 0.20 using R package, q-value (http://github.com/jdstorey/qvalue). 196 

In this way, we repeated this analysis with shared ortholog datasets of highland taxa. 197 

 198 

Analysis of accelerated evolution 199 

To determine if consistent shift in evolutionary rates (e.g. acceleration) in particular genes within 200 

alkaline tolerant species across the phylogeny, we defined rapidly evolving genes with 201 

significantly higher dN/dS ratio for alkaline tolerant species than alkaline intolerant species (P < 202 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2021. ; https://doi.org/10.1101/2020.12.23.424241doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.23.424241
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.05, likelihood ratio test, FDR < 0.2). In this way, we identified the rapidly evolving genes in 203 

alkaline tolerant species within highland and lowland based on earlier estimated dataset 204 

including two discrete dN/dS ratios for each shared ortholog, respectively. In addition, these 205 

sets of rapidly evolving genes were examined for GO enrichment relative to the full set of all 206 

shared orthologs using R package, topGO 207 

(https://bioconductor.org/packages/release/bioc/html/topGO.html). We finally visualized all 208 

significantly enriched GO terms remaining after the REVIGO (http://revigo.irb.hr/) similarity filter. 209 

 210 

Analysis of positive selection 211 

To further determine whether consistent signals of positive selection in a set of branches 212 

representing alkaline tolerant species across the phylogeny in specific genes, we used three 213 

complementary branch-site models to identify the positively selected genes (FIG.2). Specifically, 214 

we first used the Branch-Site Unrestricted Statistical Test for Episodic Diversification (BUSTED) 215 

model  (Murrell et al. 2015) to test for positive selection signal in a gene at any site on focal 216 

branches. In this model, it defines a positively selected gene (LRT P < 0.05, FDR < 0.2) with at 217 

least one site under positive selection on at least one focal foreground branch, while does not 218 

specify the exact branch with positively selected site, may include false positive. Then, we used 219 

an adaptive Branch-Site Random Effects Likelihood (aBSREL) modelaBSREL (Smith et al. 220 

2015) to test if positive selection has occurred on a proportion of branches (i.e. number of focal 221 

foreground branches) at specific genes (Holm-Bonferroni corrected P < 0.05). This allowed us 222 

to filter the false positive cases without positive selection signal on specific focal foreground 223 

branches (i.e. alkaline tolerant fish) out of the gene sets determined by BUSTED (FIG.2).We 224 

defined the positively selected genes that required the shift across all focal foreground branches. 225 

Since the branch-site models can cause false positive in case of multinucleotide mutations 226 

(MNMs, Venkat et al. 2018), we performed more conservative branch-site (BS) model test 227 

covering MNM situation (BS + MNM) (github.com/JoeThorntonLab/MNM_SelectionTests). In 228 

this model, an additional parameter δ represents the relative instantaneous rate of double 229 

mutations compared to that of single mutations. We ran null models and alternative models in 230 

BS + MNM and conducted LRTs to evaluate significance (LRT P < 0.05). In this way, we further 231 

filter false positive cases out of the previously positively selected gene sets that determined by 232 

BUSTED and aBSREL (FIG.2). In this way, we took advantage of these three models to  finalize 233 

the positively selected genes (i.e. gene with sites under positive selection) in alkaline tolerant 234 
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species within highland fish taxa and lowland fish taxa, respectively (FIG.2). We finally 235 

performed GO enrichment analysis using topGO and REVIGO as earlier described. 236 

Intersection of rapidly evolving and positively selected gene repertoire 237 

To determine if there is both accelerated evolution and positive selection for specific genes, we 238 

did the overlapping between rapidly evolving genes (REGs) and positively selected genes 239 

(REGs) for highland and lowland alkaline tolerant fish species. In addition, we performed GO 240 

enrichment analysis with topGO and REVIGO for the overlapping genes. 241 

 242 

Results 243 

Following de novo assembly and annotation, each of the eight schizothoracine fish 244 

transcriptome assemblies had an average of 39,921 transcripts representing the complete or 245 

partial protein-coding regions of genes (supplementary table S2). We further identified a total of 246 

7,309 one-to-one orthologs shared by 15 fish species (i.e. range from 2 to 15 fish species), and 247 

6,241 shared 1:1 orthologs including all 15 species (supplementary table S3). 248 

 249 

Consistent pattern of molecular evolution 250 

We estimated two categories of dN/dS ratios for 5,748 shared 1:1 orthologs (after restricting to 251 

1:1 orthologs with at least 50 codons) in lowland fish taxa and highland fish taxa, separately. We 252 

found consistent patterns of molecular evolution showing significant (LRT, P < 0.05,FDR < 0.2) 253 

acceleration (increased dN/dS) or deceleration (decreased dN/dS) in a set of terminal branches 254 

of alkaline tolerant species relative to the set of terminal branches of alkaline intolerant species 255 

in large numbers of shared orthologs within lowland fish taxa (n = 952) and highland fish taxa (n 256 

= 162) (FIG. 3C, supplementary table S4). 257 

 258 

Consistent signature of accelerated evolution 259 

Building on earlier dataset of two discrete categories of dN/dS ratios separately representing 260 

branches of alkaline tolerant and alkaline intolerant species across the phylogeny, we focused 261 

on genes with significantly higher dN/dS (LRT, P < 0.05,FDR < 0.2) in alkaline tolerant species, 262 

that is rapidly evolving gene (REGs) repertoire in alkaline tolerant species within highland and 263 
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lowland fish taxa. We identified 110 REGs in highland fishes and 470 REGs in lowland fishes 264 

(FIG. 4A). Out of 11 overlapping REGs, we found a set of ion transport and transmembrane 265 

functions associated genes, such as sodium-dependent phosphate transport protein 2A 266 

(SLC34A1) and sodium-dependent phosphate transporter 1-B (SLC20A1b) (FIG, 4B, 267 

supplementary table S5). Besides, we identified overlapping REGs related to energy 268 

metabolism process, such Ectonucleotide pyrophosphatase/phosphodiesterase family member 269 

1 (ENPP1) (FIG. 4B). Given that different REGs identified in either highland or lowland alkaline 270 

tolerant fish species, we found a number of ion transport and ATP synthesis related genes in 271 

REGs repertoire of highland fish (FIG. 4B, supplementary table S5), such as solute carrier 272 

family 35 member F4 (SLC35F4), ATP-sensitive inward rectifier potassium channel 15 273 

(KCNJ15), sodium-dependent serotonin transporter (SLC6A4), and NADP-dependent malic 274 

enzyme (ME1). Similarly, in lowland fish, we also identified genes like solute carrier family 45 275 

member 3 (SLC45A3), Potassium Inwardly Rectifying Channel Subfamily J Member 5 (KCNJ5) , 276 

and ATP synthase F0 complex subunit B1 (ATP5PB) showing rapidly evolving in alkaline 277 

tolerant species (FIG. 4B, supplementary table S5). 278 

 279 

Further, we did GO enrichment analysis for both REGs datasets, showing 112 significantly 280 

enriched GO terms (biological process) in highland fish (P < 0.05, fisher's exact test) and 189 281 

significantly enriched GO terms in lowland fish. After the filtration by semantic similarity of GO 282 

terms, we found a set of enriched dominant GO terms in highland fish were related to ion 283 

transport and transmembrane functions (FIG. 4C, supplementary table S6), such as ion 284 

transport (GO:0006811), regulation of calcium ion transport (GO:0051924), anion transport 285 

(GO:0006820). In addition, in lowland fish, we observed a set of enriched dominant GO terms 286 

associated with ion transport function (FIG. 4D, supplementary table S6), such as phosphate ion 287 

transport (GO:0006817) and response to salt stress (GO:0009651). Finally, we found 5 288 

overlapping GO terms related to ion transport and metabolism, including glycogen biosynthetic 289 

process (GO:0005978), phosphate ion transport (GO:0006817), inorganic anion transport 290 

(GO:0015698), negative regulation of ion transport (GO:0043271), regulation of glycogen 291 

metabolic process (GO:0070873) and anion transport (GO:0006820)  (supplementary table S6). 292 

Collectively, this finding suggested the consistent signature of accelerated evolution in alkaline 293 

tolerant species within highland taxa and lowland taxa. 294 

 295 
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Consistent signature of positive selection 296 

After two rounds of filtration with the use of BUSTED, aBSREL and BS+MNM models, we 297 

identified 162 positively selected genes in highland alkaline tolerant  fish (FIG. 5A, 298 

supplementary table S7), and 156 PSGs in lowland alkaline tolerant fish species (FIG. 5A, 299 

supplementary table S7). Out of 7 overlapping PSGs, we found these genes were mainly 300 

related to apoptosis (cell death), ion transport and immune response, such as vitamin K-301 

dependent protein C precursor (PROC), E3 ubiquitin-protein ligase SH3RF1 (SH3RF1), 14-3-3 302 

protein beta/alpha-A (YWHABA) and cadherin-related family member 2 (Cdhr2). Besides, we 303 

found PSGs in highland alkaline tolerant species were also mainly involved in similar functional 304 

categories as overlapping PSGs (FIG. 5B, supplementary table S7), such as transmembrane 305 

protein 268 (TMEM268), transmembrane protein 266 (TMEM266), solute carrier family 35 306 

member F4 (SLC35F4), solute carrier family 7, member 3 (SLC35F4) and solute carrier family 7, 307 

member 3 (SLC7A3) involved in ion transport or transmembrane functions, probable 308 

phospholipid-transporting ATPase VD (ATP10D) involved in energy metabolism, apoptosis-309 

inducing factor 1 (AIFM1) involved in apoptosis, interleukin-2 receptor subunit beta (IL2RB) 310 

related to immune response. Similarly, in lowland alkaline tolerant fish species, these PSGs 311 

were involved in four main categories (FIG. 5B, supplementary table S7), such as solute carrier 312 

family 2 member 15b (SLC2A15b and potassium voltage-gated channel subfamily E member 4 313 

(KCNE4) associated with ion transport function, phosphoinositide 3-kinase regulatory subunit 4 314 

(PIK3R4) and lysosomal-associated membrane protein 1 (LAMP1) associated with apoptosis, 315 

CD22 antigen (CD22) and immunoglobulin-like domain containing receptor 1b precursor (ILDR1) 316 

involved in immune response, and plasma membrane calcium-transporting ATPase 3 (ATP2B3) 317 

associated with energy metabolism. 318 

 319 

Further, GO enrichment results showed that a number of significantly enriched GO terms (P < 320 

0.05, fisher's exact test) are related to immune response, apoptosis, protein metabolisms for 321 

PGSs in highland alkaline tolerant species, such as inflammatory response (GO:0006954), 322 

natural killer cell activation (GO:0030101), cell killing (GO:0001906), muscle cell apoptotic 323 

process (GO:0010656), regulation of innate immune response (GO:0045088), immune 324 

response (GO:0006955), ion transport (GO:0006811), sphingolipid metabolic process 325 

(GO:0006665) and thyroid hormone metabolic process (GO:0042403) (FIG. 5C, supplementary 326 

table S8). Similarly, in lowland alkaline tolerant species, the significantly enriched GO terms 327 

were mainly related to four categories as well, such as T cell mediated cytotoxicity 328 
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(GO:0001913) related to immune response, negative regulation of transport (GO:0051051)  and 329 

negative regulation of ion transport (GO:0043271) related to transport function, macroautophagy 330 

(GO:0016236) related to apoptosis (cell death), regulation of phospholipid metabolic process 331 

(GO:1903725) and sulfur amino acid metabolism (GO:0000096) (FIG. 5D, supplementary table 332 

S8). Collectively, this finding suggested the consistent signature of positive selection in alkaline 333 

tolerant species within highland taxa and lowland taxa. 334 

 335 

Genes with evidence for both accelerated evolution and positive selection 336 

We sought to find the intersection of REGs and PSGs repertoires, we found 29 overlapping 337 

genes in highland alkaline tolerant fish (FIG.6A), mainly related to ion transport, apoptosis (cell 338 

death), and energy metabolism, such as SLC35F4, SLC7A3, SLC6A4, TMEM266, CLDN15 and 339 

ALDH16A1 and ATP6V1C1 (supplementary table S9). GO enrichment also suggested that 340 

overlapping genes were mainly enriched in three main functional categories, such ion transport 341 

(GO:0006811), anion transport (GO:0006820), regulation of calcium ion import (GO:0090279), 342 

alditol phosphate metabolic process (GO:0052646), oxoacid metabolic process (GO:0043436) 343 

and regulation of muscle cell apoptotic process (GO:0010660) (FIG.6B, supplementary table 344 

S10). Similarly, we observed 26 shared REG/PSG genes in lowland alkaline tolerant fish (FIG. 345 

6C, supplementary table S9). The additional GO enrichment result showed that the overlapping 346 

genes mainly enriched into transport and metabolic process, such as negative regulation of ion 347 

transport (GO:0043271), negative regulation of potassium ion transmembrane transporter 348 

activity (GO:1901017) and GTP metabolic process (GO:0046039) (FIG. 6D, supplementary 349 

table S10). Thus, this finding emphasized the consistent signatures of accelerated evolution and 350 

positive selection in alkaline tolerant species. 351 

 352 

Discussion 353 

Our results support above three hypotheses that alkaline tolerant species shared the consistent 354 

patterns of molecular evolution in protein-coding genes (dN/dS) and consistent signatures of 355 

accelerated evolution (rapidly evolving gene) and positive selection (positively selected gene) in 356 

highland and lowland fish. Specifically, these signatures include: genes experienced consistent 357 

acceleration in evolutionary rates (increased dN/dS) in alkaline tolerant species, which are 358 

mainly involved in ion transport, transmembrane and energy metabolism functions; genes 359 
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showing consistent signals of positive selection in alkaline tolerant species within highland and 360 

lowland fish taxa, these are mainly associated with ion transport/transmembrane, apoptosis (cell 361 

death), immune response and energy metabolism processes. Altogether, this study provides 362 

insights in understanding the common role of adaptive molecular evolution in fish adaptation to 363 

alkaline environment, as well as adaptation to extreme environment at high-altitude. 364 

 365 

Acid-base balance and osmoregulation 366 

In freshwater fish, Na+ and Cl− are actively taken up across the gill epithelium to counter the 367 

passive loss of osmolytes to the more dilute environment. After transition to saline or alkaline 368 

water, fish must increase its rate to balance the osmotic loss of water to the more solute-369 

concentrated environment and actively excrete Na+ and Cl− from the gill to maintain ionic and 370 

osmoregulation (Marshall 2005). Thus, alkaline tolerant species requires enhanced 371 

physiological abilities including acid-base balance and osmoregulation to respond the elevation 372 

in alkalinity or salinity of freshwater (Evans et al. 2005; Marshall 2005). Extremely alkaline 373 

environment may accelerate the evolution of genes associated with osmoregulation in these 374 

species survived in such harsh environment (Xu et al. 2017; Tong, Fei, et al. 2017). In this study, 375 

we identified a set of genes associated with ion transport and transmembrane that tended to 376 

evolve rapidly in alkaline tolerant species than their alkaline intolerant relatives (FIG. 4). This 377 

result echoed our previous finding in G. przewalskii compared with other teleost fishes (alkaline 378 

intolerance) (Tong, Fei, et al. 2017), also was in line with the rapidly evolving gene repertoire of 379 

a wild fish, Amur ide (Leuciscus waleckii) that survived in extremely alkaline environment (Xu et 380 

al. 2017). Interestingly, osmoregulation related genes including three solute carrier (SLC) genes 381 

and one transient receptor potential cation channel (TRPV) gene exhibited consistent signature 382 

of accelerated evolution in both highland and lowland alkaline tolerant fishes. SLC genes 383 

encode transmembrane transporters for inorganic ions, amino acids, neurotransmitters, sugars, 384 

purines and fatty acids, and other solute substrates (Dorwart et al. 2008). Recent evidences 385 

indicted that adaptive evolution of SLC genes contributed to fish adaptation to high salinity and 386 

high pH environment (Wang & Guo 2019; Tong, Fei, et al. 2017; Xu et al. 2017). Besides, we 387 

also identified numbers of ion transport and transmembrane genes under positive selection in 388 

alkaline tolerant fish species, such as potassium voltage-gated channel (KCN) genes. In killifish, 389 

an excellent model to study extreme environment adaptation, recent genome-wide studies also 390 

found KCN genes have been implicated in freshwater adaptation (transition from marine to 391 

freshwater environment) (Brennan et al. 2018). ) Besides a set of same rapidly evolving and 392 
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positively selected genes identified in both highland and lowland alkaline tolerant fish species, 393 

we found a large number of different genes under selection but involved in similar functions, 394 

such as anion transport (GO:0006820) and phosphate ion transport (GO:0006817), indicating 395 

the common role of adaptive molecular evolution during alkaline adaptation in fish.  396 

 397 

Apoptosis and cell death 398 

Extremely alkaline stress may cause extensive damage to fish, such as inducing cell apoptosis 399 

(Monteiro et al. 2009; Zhao et al. 2016, 2020). However, several fish species can survive in this 400 

harsh environment, such as schizothoracine (Gymnocypris przewalskii) (Tong, Fei, et al. 2017; 401 

Tong & Li 2020), Magadi tilapia (Alcolapia grahami) (Wilkie & Wood 1996), and Amur ide 402 

(Leuciscus waleckii) (Xu et al. 2017). This may also pose a barrier for alkaline tolerant fish as 403 

compared with alkaline intolerant fish. Significantly, positively selected AIFM1, SH3RF1, 404 

YWHABA, PIK3R4 and LAMP1 of alkaline tolerant species relative to alkaline intolerant species 405 

have enrichment in a set of apoptosis pathways, such regulation of apoptotic signaling pathway 406 

(GO:1902253) and macroautophagy (GO:0016236)(FIG. 5). Apoptosis is a form of programmed 407 

cell death that occurs in multicellular organisms, it plays a significant role in the biochemical 408 

events lead to characteristic cell changes (morphology) and death (Green 2011). Few direct 409 

evidence suggested the roles of these candidate genes in response to extreme alkaline stress 410 

in fish, but numerous studies had defined their functions in tolerance to harsh environments. 411 

AIFM1 is a ubiquitous mitochondrial oxidoreductase involved in apoptosis, involved in sea 412 

bream (Sparus aurata) response to acute environmental stress (Bermejo-Nogales et al. 2014). 413 

YWHABA (14-3-3 protein beta/alpha-A) is an important gene showing the ability to bind a 414 

multitude of functionally diverse signaling proteins, such as transmembrane receptors (Fu et al. 415 

2000), that involved in spotted sea bass (Lateolabrax maculatus) tolerance to saline stress 416 

(Zhang et al. 2019). In addition, LAMP1 plays an important role in lysosome biogenesis and 417 

autophagy (Eskelinen 2006), which involved in common carp (Cyprinus carpio) response to 418 

hydrogen peroxide environment. Collectively, the presence of apoptosis related genes under 419 

positive selection may contribute to the alkaline adaptation of fish, how these adaptive 420 

molecular changes affect the ability programmed cell death remains unknown. 421 

 422 

Immune response 423 
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Extreme environments (including high pH) impact on the physiology of animals in a wide variety 424 

of ways. Recent advances in the understanding of environmental impacts were identified in 425 

relation to specific areas of immune function, such as increase in pH resulted in a general 426 

increase in immune function (Bowden 2008; Sridhar et al. 2020). Intriguingly, we identified 427 

different immune genes under positive selectin in alkaline tolerant species within highland 428 

(IL2RB, TLR8, IF144) and lowland (ILDR1 and CD44), but they all involved similar immune 429 

functions, such as inflammatory response (GO:0006954), natural killer cell activation 430 

(GO:0030101), and T cell mediated cytotoxicity (GO:0001913). In another word, we found 431 

different genes but conserved pathways may underlie fish adaptation to alkaline environment. 432 

IF144, IL2RB and ILDR1 are important components of toll-like receptor (TLR) signaling pathway 433 

that play key roles in the innate immune system (Rebl et al. 2010). For instance, our previous 434 

comparative studies in alkaline tolerant fish, G. przewalskii identified key genes involved in TLR 435 

pathway under selection (Tong, Fei, et al. 2017; Tong et al. 2015). In Nile tilapia (Oreochromis 436 

niloticus), another alkaline tolerant species and stands as ideal model to study extreme 437 

environment adaptation, a most recent comparative study identified numbers of immune genes 438 

involved in natural killer cell mediated cytotoxicity and NF-kappa B signaling pathway in 439 

response to alkalinity stress (up to pH = 8.9) (Zhao et al. 2020), and echoes our present results. 440 

Thus, it is possible that adaptive evolution changes (e.g. positive selection) acting on innate 441 

immune genes in alkaline tolerant species contribute to their adaptation to extremely alkaline 442 

environment. 443 

 444 

Energy metabolism 445 

It is not surprising that we identified a set of genes under either accelerated evolution or positive 446 

selection, that enriched in diverse metabolisms, such as glucose metabolism, phosphate 447 

metabolism, sulfur amino acid metabolism and protein metabolism  in alkaline tolerant species 448 

compared with their alkaline intolerant relatives. In general, metabolism processes were 449 

involved in fish response to varies environmental stresses (including alkaline stress) by a huge 450 

amount of research (Wood 1991). A most recent study highlights the genes involved in 451 

conserved mitochondrial pathways under selection in adaptation to extreme environment 452 

(Greenway et al. 2020). In addition to our previous studies in highland alkaline tolerant fish, we 453 

found a number of genes associated with energy metabolism processes under selection as well, 454 

such as mitochondrial function and protein metabolism (Tong, Fei, et al. 2017). Moreover, 455 

increasing studies on alkaline tolerant fish species (e.g. killifish) pointed out the roles of varied 456 
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metabolisms in extreme environment (e.g. high pH) adaptation (Scott et al. 2019; Zhao et al. 457 

2020; Wang & Guo 2019; Xu et al. 2017). Altogether, our analysis infer that the adaptive 458 

molecular evolution of metabolism associated genes may be indispensable and common 459 

features to alkaline adaptation as well as extreme environment adaptation in fish. 460 

 461 

Conclusion 462 

In summary, this comparative genomics study of 15 fish species suggests the common role of  463 

alkaline adaptation in fish, regardless of highland or lowland background environments. Our 464 

results also highlight that the adaptive evolution of protein-coding genes are likely to play a 465 

crucial role in fish response to extreme environment, such as extremely high PH. Notably, this 466 

study provides putative genomic signatures of shift in selection and alkaline adaptation in 467 

several alkaline tolerant fish species, further study should include large scale of omics data of 468 

more alkaline tolerant fish species and their intolerant relatives as multiple pairs to demonstrate 469 

the genetic basis of alkaline adaptation in fish at genome-wide scale.  470 
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Figure legend 636 

FIG. 1. Overview of geographic distributions of two alkaline tolerant schizothoracine fish species 637 

and their habitats in the northeastern Tibetan Plateau. Map depicting the geographic 638 

distributions of G. p. przewalskii in Lake Qinghai, and G. p. kelukehuensis in Lake Keluke. 639 

Photos showing the representative specimens of G. p. przewalskii and G. p. kelukehuensis. 640 

Photo credit: Chao Tong and Kai Zhao. 641 

 642 

FIG.2. The flowchart represents the analysis pipeline: (1) sample collection and transcriptomics; 643 

(2) data assembling and annotation; (3) gene ortholog; (4) phenotype data and (5) molecular 644 

evolution analysis. 645 

 646 

FIG. 3. Consistent patterns of molecular evolution in alkaline tolerant fish species.  647 

(A-B) Species trees for lowland and highland fish taxa were pruned from the Fish Tree of Life 648 

(https://fishtreeoflife.org/). Alkaline tolerant taxa and alkaline intolerant taxa are depicted in 649 

orange and sky blue, respectively. Two schematic diagrams depicting the comparisons made 650 

between alkaline tolerant and alkaline intolerant fish species, ω1 representing the rate of 651 

molecular evolution of alkaline tolerant species and ω2 for the alkaline intolerant species (C) 652 

Number of tested orthologs (N = 5,748), and number of orthologs under consistent shifts in 653 

rates of molecular evolution in alkaline tolerant relative to alkaline intolerant species within 654 

highland fish taxa and lowland fish taxa (P < 0.05, likelihood ratio test; false discovery rate < 655 

0.2). 656 

 657 

FIG. 4. Consistent signature of accelerated evolution in alkaline tolerant species within highland 658 

and lowland fish taxa. 659 

(A) Venn diagram depicting numbers of rapidly evolving genes (REGs) in highland alkaline 660 

tolerant species, lowland alkaline tolerant species and both. 661 

(B) Highland fish specific REGs, lowland fish specific REGs and overlapping REGs mainly 662 

related to ion transport, transmembrane and energy metabolism functions. The table showing 663 

the representative REGs under each category. 664 

(C) REVIGO plot depicting the dominant enriched GO terms for REGs in highland alkaline 665 

tolerant fish. The scale of dark dot  indicating the number of included enriched GO terms under 666 

a dominant GO term, the color scale representing the P value transformed by log10. 667 

(D) REVIGO plot depicting the dominant enriched GO terms for REGs in lowland alkaline 668 

tolerant fish. 669 
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 670 

FIG. 5. Consistent signature of positive selection in alkaline tolerant species within highland and 671 

lowland fish taxa. 672 

(A) Venn diagram depicting numbers of positively selected genes (PSGs) in highland alkaline 673 

tolerant species, lowland alkaline tolerant species and both. 674 

(B) Highland fish specific PSGs, lowland fish specific PSGs and overlapping PSGs mainly 675 

related to four categories, including ion transport/transmembrane, apoptosis/cell death, immune 676 

response and energy metabolism. The table showing the representative PSGs under each 677 

category. 678 

(C) REVIGO plot depicting the dominant enriched GO terms for PSGs in highland alkaline 679 

tolerant fish. The dark dot scale indicating the number of included GO terms under a dominant 680 

GO term, the color scale representing the P value transformed by log10. 681 

(D) REVIGO plot depicting the dominant enriched GO terms for PSGs in lowland alkaline 682 

tolerant fish. 683 

 684 

FIG.6. The intersection of rapidly evolving genes (REGs) and positively selected genes (PSGs) 685 

in alkaline tolerant species within highland and lowland fish taxa. 686 

(A) Venn diagram depicting numbers of REGs, PSGs and their overlapping genes in highland 687 

alkaline tolerant species. 688 

(B) REVIGO plot depicting the dominant enriched GO terms for overlapping genes in highland 689 

alkaline tolerant species.  690 

(C) Venn diagram depicting numbers of REGs, PSGs and their overlapping genes in lowland 691 

alkaline tolerant species. 692 

(D) REVIGO plot depicting the dominant enriched GO terms for overlapping genes in lowland 693 

alkaline tolerant species. 694 

 695 

696 
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Supplementary table capture 697 

supplementary table S1: Information for additional omics data. 698 

supplementary table S2: Statistics of transcriptome assembly and protein-coding genes. 699 

supplementary table S3: Statistics of orthologs in 15 fish species. 700 

supplementary table S4: Patterns of molecular evolution in alkaline tolerant and alkaline 701 

intolerant species within lowland fish taxa and highland fish taxa. 702 

supplementary table S5: Rapidly evolving gene repertoires in highland alkaline tolerant and 703 

lowland alkaline tolerant species. 704 

supplementary table S6: Significantly enriched GO terms for rapidly evolving gene of highland 705 

alkaline tolerant and lowland alkaline tolerant species. 706 

supplementary table S7: Positively selected gene repertoires in highland alkaline tolerant and 707 

lowland alkaline tolerant species. 708 

supplementary table S8: Significantly enriched GO terms for positively selected gene of 709 

highland alkaline tolerant and lowland alkaline tolerant species. 710 

supplementary table S9: Shared REG/PSG repertoires in highland alkaline tolerant and lowland 711 

alkaline tolerant species. 712 

supplementary table S10: significantly enriched GO terms for shared REG/PSG of highland 713 

alkaline tolerant and lowland alkaline tolerant species. 714 
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