

1 **Genomic signature of shifts in selection and alkaline adaptation in highland fish**

2

3 Chao Tong^{1,2}, Miao Li³, Yongtao Tang^{1,4}, Kai Zhao^{1,*}

4

5 ¹ Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau
6 Biology, Chinese Academy of Sciences, Xining, 810001, China;

7 ² Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA;

8 ³ Center for Advanced Retinal and Ocular Therapeutics, Scheie Eye Institute, University of
9 Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA;

10 ⁴ College of Fisheries, Henan Normal University, Xinxiang, 453007, China

11

12 * Corresponding author:

13 Chao Tong, tongchao1990@gmail.com, <https://orcid.org/0000-0001-5202-5507>

14 Kai Zhao, zhaokai@nwipb.cas.cn

15

16 **Abstract**

17 Understanding how organisms adapt to aquatic life at high altitude is fundamental in
18 evolutionary biology. This objective has been addressed primarily related to hypoxia adaptation
19 by recent comparative studies, whereas highland fish has also long suffered extreme alkaline
20 environment, insight into the genomic basis of alkaline adaptation has rarely been provided.
21 Here, we compared the genomes or transcriptomes of 15 fish species, including two alkaline
22 tolerant highland fish species and their six alkaline intolerant relatives, three alkaline tolerant
23 lowland fish species and four alkaline intolerant species. We found putatively consistent
24 patterns of molecular evolution in alkaline tolerant species in a large number of shared orthologs
25 within highland and lowland fish taxa. Remarkably, we identified consistent signatures of
26 accelerated evolution and positive selection in a set of shared genes associated with ion
27 transport, apoptosis, immune response and energy metabolisms in alkaline tolerant species
28 within both highland and lowland fish taxa. This is one of the first comparative studies that
29 began to elucidate the consistent genomic signature of alkaline adaptation shared by highland
30 and lowland fish. This finding also highlights the adaptive molecular evolution changes that
31 support fish adapting to extreme environments at high altitude.

32

33 **Keywords**

34 Comparative genomics; Molecular evolution; Alkaline adaptation; Schizothoracine fish

35

36 **Significance Statement**

37 Little is known about how wild fish responds to extreme alkaline stress besides hypoxia at high
38 altitude. Comparative genomics has begun to elucidate the genomic basis of alkaline adaptation
39 in lowland fish, such as killifish, but insight from highland fish has lagged behind. The common
40 role of adaptive molecular evolution during alkaline adaptation in highland and lowland fish has
41 rarely been discussed. We address this question by comparing 15 fish omics data. We find
42 numbers of shared orthologs exhibited consistent patterns of molecular evolution in alkaline
43 tolerant species relative to intolerant species. We further identify remarkably consistent
44 signatures of rapidly evolving and positive selection in a substantial shared core of genes in
45 both highland and lowland alkaline tolerant species.

46

47

48 Introduction

49 Environments shape the genetic landscape of the populations that inhabit them (Witt & Huerta-
50 Sánchez 2019). The Tibetan Plateau had experienced continuous uplift during the India-Asia
51 collision since approximately 45 million years ago, that triggered numerous environmental
52 changes (Li & Fang 1999; Favre et al. 2015). As elevation above sea level increases, a
53 decrease in barometric pressure results in fewer oxygen molecules in the air, which causes
54 hypoxia. Besides, other harsh environments highland wildlife have encountered include the
55 long-term low temperature, and intensified ultraviolet radiation (An et al. 2001). Large numbers
56 of endemic Tibetan animals had developed unique morphological, physiological or genetic
57 features to tolerate such harsh conditions (Wen 2014; Tong, Tian, et al. 2017; Tong, Fei, et al.
58 2017). Basically, understanding how organisms adapt to extreme environment is fundamental to
59 address many evolutionary questions, but it remains a formidable task to fully uncover the
60 mechanism of adaptive process (Scheinfeldt & Tishkoff 2010; Tong, Fei, et al. 2017; Tong, Tian,
61 et al. 2017). Adaptation at molecular level can occur by adaptive mutation in key genes over
62 prolonged evolutionary time scales (Orr 2005). Recent studies employing genome-wide
63 approaches have identified candidate genes associated with hypoxia and long-term cold
64 response in Tibetan terrestrial wildlife adaptation to high altitude (Qu et al. 2013; Wu et al. 2020).
65 Nevertheless, the draft genomes of very few Tibetan aquatic wildlife are sequenced (Xiao et al.
66 2020; Liu et al. 2019), the genomic basis of highland adaptation in aquatic animals (e.g. fish)
67 remains largely unknown.

68

69 The schizothoracine fishes (Teleostei: Cyprinidae), the predominant fish fauna in the Tibetan
70 Plateau, had evolved specific phenotypic characteristics to adapt to extreme aquatic
71 environments, including hypoxia and long-term low temperature (Wu 1992; Cao et al. 1981).
72 Recent comparative studies have identified key genes showing signals of positive selection
73 during adaptation to such harsh environments (Yang et al. 2014; Wang et al. 2015; Kang et al.
74 2017), such as Hypoxia-inducible factor (HIF) (Guan et al. 2014) and Erythropoietin (EPO) (Xu
75 et al. 2016) associated with hypoxia response, ATPase Family AAA Domain Containing 2
76 (ATAD2) (Tong, Fei, et al. 2017) and cAMP-dependent protein kinase catalytic subunit alpha
77 (PRKACA) that involved into energy metabolism (Tong, Fei, et al. 2017). The main focus of
78 previous studies in schizothoracine fishes are still on hypoxia and cold response. Notably, an
79 increasing number of lakes in the Tibetan Plateau have been existing or towards alkaline due to

80 the global climate changes and human activities (Zheng 1997). Thus, the increasing alkalization
81 of fresh water has been the potential challenge to schizothoracine fishes. Among the
82 schizothoracine fishes, *Gymnocypris przewalskii przewalskii* and *Gymnocypris przewalskii*
83 *kelukehuensis* are the only two species inhabited extremely alkaline environment (Wu 1992).
84 Unlike other broadly distributed schizothoracine fishes, such as *Gymnocypris eckloni*,
85 *Schizopygopsis pylzovi* and *Platypharodon extremus* that inhabit in the Yellow river basin (Cao
86 et al. 1981; Wu 1992; Qi et al. 2012), *G. p. przewalskii* only inhabits in saline and alkaline lake.
87 As the largest salt lake in China, Lake Qinghai (FIG. 1) is highly saline (up to 13‰) and alkaline
88 (up to pH 9.4) water environment, a typical salt lake with unusually high sodium, potassium and
89 magnesium concentration (Zheng 1997; Zhu & Wu 1975). In addition, *G. p. kelukehuensis* only
90 inhabits in a soda lake located at the Tsaidam Basin in the northeastern Tibetan Plateau. Lake
91 Keluke (FIG. 1) is also a soda lake with low salinity of 0.79‰ and high pH value up to 9.3
92 (Zheng 1997). Both schizothoracine fish species had developed unique physiological or genetic
93 features to tolerate such harsh living conditions (Tong, Fei, et al. 2017). Therefore, this provides
94 an exceptional model to investigate the genetic mechanisms underlying alkaline adaptation, and
95 may provide novel insights to fully understand the mechanism of highland adaptation in fish as
96 complement.

97

98 Unlike highland alkaline tolerant fish, a huge amount of studies had explored the mechanisms of
99 high saline and high alkaline tolerance in lowland fish species, such as killifish (e.g. *Fundulus*
100 *heteroclitus*) (Wood et al. 2010; Brennan et al. 2018; Burnett et al. 2007), tilapia (e.g.
101 *Oreochromis niloticus*) (Zhao et al. 2020; Wood et al. 1994), and salmonids (e.g. *Salmo salar*)
102 (Levings 2016; Lien et al. 2016). These studies had provided insights in physiology of acid-base
103 balance in fishes response to high salinity or high pH environments, and suggested key genes,
104 such as ion transport associated genes under selection during the adaptation (Lien et al. 2016).

105

106 In this study, we generated and assembled the transcriptomes of two alkaline tolerant
107 schizothoracine fish species, *G. p. przewalskii* and *G. p. kelukehuensis* inhabited in high pH
108 environment in the northeastern Tibetan Plateau (FIG. 1). We performed a comparative
109 genomics study together with recently sequenced schizothoracine fish transcriptomes and other
110 lowland fish genomes (FIG. 2A & 2B), and sought to identify consistent genomic signature
111 associated with alkaline adaptation in highland and lowland fishes. Specifically, we focused our

112 comparisons on testing whether alkaline adaptation in highland and lowland alkaline tolerant
113 fishes is associated with the following signatures of molecular evolution: (1) consistent patterns
114 of molecular evolution in protein-coding genes across the phylogeny; (2) consistent shifts in
115 evolutionary rates for specific genes; and (3) consistent signals of positive selection in particular
116 genes.

117

118 **Materials and Methods**

119 **Sample collection**

120 We collected eight adult *G. p. przewalskii* (FIG. 1) individuals (four males and four females, 172
121 ± 0.7 g) from Lake Qinghai and eight adult *G. p. kelukehuensis* (FIG. 1) individuals (four males
122 and four females, 139 ± 0.3 g) from Lake Keluke using gill nets. All the fish samples were
123 dissected after anesthesia with MS-222 (Solarbio, Beijing, China). All individuals were classified
124 based on the gender and dissected after anesthesia with MS-222 (Solarbio, Beijing, China).
125 Tissues from gill, kidney, brain, heart and liver from each individual were collected and
126 immediately stored in liquid nitrogen at -80°C . All the animal experiments were approved by the
127 Animal Care and Use Committees of the Northwest Institute of Plateau Biology, Chinese
128 Academy of Sciences (NWIPB-CY-010).

129

130 **Transcriptomics**

131 Total RNA of each tissue sample was extracted using TRIzol reagent (Invitrogen, CA, USA) in
132 accordance with manufacturer's instructions, and detected for quality and quantity of RNAs with
133 Nanodrop 1000 (NanoDrop Technologies, DE, USA) and Agilent Bioanalyzer 2100 (Agilent
134 Technologies, CA, USA). Equal amount of RNA from eight individual of five tissue was pooled to
135 construct transcriptome library as previously described (Tong, Tian, et al. 2017; Tong, Fei, et al.
136 2017), and sequenced with an Illumina NovaSeq 6000 yielding 150-bp paired-end reads (FIG.2).

137

138 Sequencing reads were checked for quality using FastQC
139 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>). Sequencing adapters and reads
140 with a quality score < 20 were trimmed with Trimmomatic (Bolger et al. 2014). We built a *de*
141 *novo* transcriptome assembly based on clean reads using Trinity v2.6.5 (Grabherr et al. 2011)

142 with default parameters. Next, we removed the redundant transcripts using CD-HIT (Fu et al.
143 2012) with the threshold of 0.90 and extracted the longest transcript as putative genes. We
144 predicted the open reading frame of each putative genes using TransDecoder
145 (<https://github.com/TransDecoder/TransDecoder>) (FIG.2).

146

147 **Additional data retrieval**

148 We downloaded six alkaline intolerant schizothoracine fish transcriptomes (Zhou et al. 2020)
149 including *Oxygymnocypris stewartii*, *Schizopygopsis younghusbandi*, *Gymnocypris namensis*,
150 *Platypharodon extremus*, *Schizopygopsis pylzovi* and *Gymnocypris eckloni* from NCBI SRA
151 database (<https://www.ncbi.nlm.nih.gov/sra>) (FIG. 3B, supplementary table S1), and performed
152 assembly following above pipeline. In addition, we downloaded the genomes of four alkaline
153 intolerant fish species of *Danio rerio*, *Ctenopharyngodon idellus*, *Cyprinus carpio*, and *Carassius*
154 *auratus*, and three alkaline tolerant fish species of *Fundulus heteroclitus*, *Oreochromis niloticus*
155 and *Salmo salar* (FIG. 3A, supplementary table S1).

156

157 **Species phylogeny and gene orthology**

158 We obtained the phylogenetic tree of 15 fish species by pruning the Fish Tree of Life
159 (<https://fishtreeoflife.org/>) using R package, phangorn (Schliep 2011). To obtain phylogeny-
160 based orthology relationships between different fish taxa, we included all the predicted
161 proteomes of seven lowland fish genomes, and translated nucleotide sequences of protein-
162 coding genes from eight schizothoracine fish transcriptome assemblies into amino acid
163 sequences, and pooled these datasets as input for an orthology inference tool, OMA (Altenhoff
164 et al. 2018). In this way, we identified one-to-one, one-to-many, and many-to-many orthologs
165 among these 15 fish species. For further comparison, we restricted our analysis to 1:1 orthologs,
166 that is the geneset for which only one gene from each species representing the orthology. In
167 addition, we extracted the shared orthologs among all fish taxa. At last, gene ontology (GO)
168 terms were assigned to each ortholog using Trinotate (<https://trinotate.github.io/>) (FIG.2).

169

170 **Pattern of molecular evolution in shared orthologs**

171 To determine whether highland fish and lowland fish showing consistent patterns of molecular
172 evolution in the set of alkaline tolerant species branches across the phylogeny, we
173 characterized the rates of non-synonymous to synonymous rate (dN/dS) in each shared
174 ortholog. For this, we performed the protein sequence alignment using MUSCLE v3.8.31
175 (<https://www.ebi.ac.uk/Tools/msa/muscle>). We prepared the codon alignments of shared
176 orthologs, that derived from protein alignments and the corresponding DNA sequences using
177 PAL2NAL v.14 (Suyama et al. 2006). Then, we executed the filtration for shared ortholog
178 alignments with length of at least 50 codons.

179

180 We took advantage of HyPHY pipeline (Kosakovsky Pond, Poon, et al. 2020) to test the
181 hypotheses by comparing selective pressures (dN/dS) between *a priori* defined alkaline tolerant
182 fish species branches (focal foreground branch) and alkaline intolerant species fish branches
183 (background branch) in the specified fish phylogeny at ortholog-wide scale. Before that, a
184 common approach to test the hypothesis is to perform separate analyses on subsets of
185 sequences, and compare the parameter estimated in a *post hoc* fashion, that is one branch to
186 the rest of branches in a phylogenetic tree like which we previously described (Tong, Tian, et al.
187 2017; Tong, Fei, et al. 2017; Tong et al. 2020). While, such approach is statistically suboptimal,
188 and not always applicable (Kosakovsky Pond, Wisotsky, et al. 2020). In this way, we estimated
189 two discrete categories of dN/dS for alkaline tolerant and alkaline intolerant species under the
190 MG94 rate matrices combined with HKY85 model using HyPHY (Kosakovsky Pond, Poon, et al.
191 2020), and compared nested models with constrained relationships among them. We detected
192 the shift of dN/dS ratios between alkaline tolerant and alkaline intolerant (alternative model, H1),
193 relative to the null model that assuming all lowland fish taxa have the same dN/dS ratio (H0).
194 We constructed the log-likelihood ratio score for each ortholog ($\Delta \ln L$) as: $\Delta \ln L = 2(\ln L_{H1} - \ln L_{H0})$
195 and employed the likelihood ratio test. Additionally, we applied a correction for multiple testing to
196 a false discovery rate (FDR) < 0.20 using R package, q-value (<http://github.com/jdstorey/qvalue>).
197 In this way, we repeated this analysis with shared ortholog datasets of highland taxa.

198

199 **Analysis of accelerated evolution**

200 To determine if consistent shift in evolutionary rates (e.g. acceleration) in particular genes within
201 alkaline tolerant species across the phylogeny, we defined rapidly evolving genes with
202 significantly higher dN/dS ratio for alkaline tolerant species than alkaline intolerant species ($P <$

203 0.05, likelihood ratio test, FDR < 0.2). In this way, we identified the rapidly evolving genes in
204 alkaline tolerant species within highland and lowland based on earlier estimated dataset
205 including two discrete dN/dS ratios for each shared ortholog, respectively. In addition, these
206 sets of rapidly evolving genes were examined for GO enrichment relative to the full set of all
207 shared orthologs using R package, topGO
208 (<https://bioconductor.org/packages/release/bioc/html/topGO.html>). We finally visualized all
209 significantly enriched GO terms remaining after the REVIGO (<http://revigo.irb.hr/>) similarity filter.

210

211 **Analysis of positive selection**

212 To further determine whether consistent signals of positive selection in a set of branches
213 representing alkaline tolerant species across the phylogeny in specific genes, we used three
214 complementary branch-site models to identify the positively selected genes (FIG.2). Specifically,
215 we first used the Branch-Site Unrestricted Statistical Test for Episodic Diversification (BUSTED)
216 model (Murrell et al. 2015) to test for positive selection signal in a gene at any site on focal
217 branches. In this model, it defines a positively selected gene (LRT $P < 0.05$, FDR < 0.2) with at
218 least one site under positive selection on at least one focal foreground branch, while does not
219 specify the exact branch with positively selected site, may include false positive. Then, we used
220 an adaptive Branch-Site Random Effects Likelihood (aBSREL) model aBSREL (Smith et al.
221 2015) to test if positive selection has occurred on a proportion of branches (i.e. number of focal
222 foreground branches) at specific genes (Holm-Bonferroni corrected $P < 0.05$). This allowed us
223 to filter the false positive cases without positive selection signal on specific focal foreground
224 branches (i.e. alkaline tolerant fish) out of the gene sets determined by BUSTED (FIG.2). We
225 defined the positively selected genes that required the shift across all focal foreground branches.
226 Since the branch-site models can cause false positive in case of multinucleotide mutations
227 (MNMs, Venkat et al. 2018), we performed more conservative branch-site (BS) model test
228 covering MNM situation (BS + MNM) (github.com/JoeThorntonLab/MNM_SelectionTests). In
229 this model, an additional parameter δ represents the relative instantaneous rate of double
230 mutations compared to that of single mutations. We ran null models and alternative models in
231 BS + MNM and conducted LRTs to evaluate significance (LRT $P < 0.05$). In this way, we further
232 filter false positive cases out of the previously positively selected gene sets that determined by
233 BUSTED and aBSREL (FIG.2). In this way, we took advantage of these three models to finalize
234 the positively selected genes (i.e. gene with sites under positive selection) in alkaline tolerant

235 species within highland fish taxa and lowland fish taxa, respectively (FIG.2). We finally
236 performed GO enrichment analysis using topGO and REVIGO as earlier described.

237 **Intersection of rapidly evolving and positively selected gene repertoire**

238 To determine if there is both accelerated evolution and positive selection for specific genes, we
239 did the overlapping between rapidly evolving genes (REGs) and positively selected genes
240 (REGs) for highland and lowland alkaline tolerant fish species. In addition, we performed GO
241 enrichment analysis with topGO and REVIGO for the overlapping genes.

242

243 **Results**

244 Following *de novo* assembly and annotation, each of the eight schizothoracine fish
245 transcriptome assemblies had an average of 39,921 transcripts representing the complete or
246 partial protein-coding regions of genes (supplementary table S2). We further identified a total of
247 7,309 one-to-one orthologs shared by 15 fish species (i.e. range from 2 to 15 fish species), and
248 6,241 shared 1:1 orthologs including all 15 species (supplementary table S3).

249

250 **Consistent pattern of molecular evolution**

251 We estimated two categories of dN/dS ratios for 5,748 shared 1:1 orthologs (after restricting to
252 1:1 orthologs with at least 50 codons) in lowland fish taxa and highland fish taxa, separately. We
253 found consistent patterns of molecular evolution showing significant (LRT, $P < 0.05$, FDR < 0.2)
254 acceleration (increased dN/dS) or deceleration (decreased dN/dS) in a set of terminal branches
255 of alkaline tolerant species relative to the set of terminal branches of alkaline intolerant species
256 in large numbers of shared orthologs within lowland fish taxa ($n = 952$) and highland fish taxa (n
257 = 162) (FIG. 3C, supplementary table S4).

258

259 **Consistent signature of accelerated evolution**

260 Building on earlier dataset of two discrete categories of dN/dS ratios separately representing
261 branches of alkaline tolerant and alkaline intolerant species across the phylogeny, we focused
262 on genes with significantly higher dN/dS (LRT, $P < 0.05$, FDR < 0.2) in alkaline tolerant species,
263 that is rapidly evolving gene (REGs) repertoire in alkaline tolerant species within highland and

264 lowland fish taxa. We identified 110 REGs in highland fishes and 470 REGs in lowland fishes
265 (FIG. 4A). Out of 11 overlapping REGs, we found a set of ion transport and transmembrane
266 functions associated genes, such as sodium-dependent phosphate transport protein 2A
267 (SLC34A1) and sodium-dependent phosphate transporter 1-B (SLC20A1b) (FIG, 4B,
268 supplementary table S5). Besides, we identified overlapping REGs related to energy
269 metabolism process, such Ectonucleotide pyrophosphatase/phosphodiesterase family member
270 1 (ENPP1) (FIG. 4B). Given that different REGs identified in either highland or lowland alkaline
271 tolerant fish species, we found a number of ion transport and ATP synthesis related genes in
272 REGs repertoire of highland fish (FIG. 4B, supplementary table S5), such as solute carrier
273 family 35 member F4 (SLC35F4), ATP-sensitive inward rectifier potassium channel 15
274 (KCNJ15), sodium-dependent serotonin transporter (SLC6A4), and NADP-dependent malic
275 enzyme (ME1). Similarly, in lowland fish, we also identified genes like solute carrier family 45
276 member 3 (SLC45A3), Potassium Inwardly Rectifying Channel Subfamily J Member 5 (KCNJ5) ,
277 and ATP synthase F0 complex subunit B1 (ATP5PB) showing rapidly evolving in alkaline
278 tolerant species (FIG. 4B, supplementary table S5).

279
280 Further, we did GO enrichment analysis for both REGs datasets, showing 112 significantly
281 enriched GO terms (biological process) in highland fish ($P < 0.05$, fisher's exact test) and 189
282 significantly enriched GO terms in lowland fish. After the filtration by semantic similarity of GO
283 terms, we found a set of enriched dominant GO terms in highland fish were related to ion
284 transport and transmembrane functions (FIG. 4C, supplementary table S6), such as ion
285 transport (GO:0006811), regulation of calcium ion transport (GO:0051924), anion transport
286 (GO:0006820). In addition, in lowland fish, we observed a set of enriched dominant GO terms
287 associated with ion transport function (FIG. 4D, supplementary table S6), such as phosphate ion
288 transport (GO:0006817) and response to salt stress (GO:0009651). Finally, we found 5
289 overlapping GO terms related to ion transport and metabolism, including glycogen biosynthetic
290 process (GO:0005978), phosphate ion transport (GO:0006817), inorganic anion transport
291 (GO:0015698), negative regulation of ion transport (GO:0043271), regulation of glycogen
292 metabolic process (GO:0070873) and anion transport (GO:0006820) (supplementary table S6).
293 Collectively, this finding suggested the consistent signature of accelerated evolution in alkaline
294 tolerant species within highland taxa and lowland taxa.

295

296 **Consistent signature of positive selection**

297 After two rounds of filtration with the use of BUSTED, aBSREL and BS+MNM models, we
298 identified 162 positively selected genes in highland alkaline tolerant fish (FIG. 5A,
299 supplementary table S7), and 156 PSGs in lowland alkaline tolerant fish species (FIG. 5A,
300 supplementary table S7). Out of 7 overlapping PSGs, we found these genes were mainly
301 related to apoptosis (cell death), ion transport and immune response, such as vitamin K-
302 dependent protein C precursor (PROC), E3 ubiquitin-protein ligase SH3RF1 (SH3RF1), 14-3-3
303 protein beta/alpha-A (YWHABA) and cadherin-related family member 2 (Cdhr2). Besides, we
304 found PSGs in highland alkaline tolerant species were also mainly involved in similar functional
305 categories as overlapping PSGs (FIG. 5B, supplementary table S7), such as transmembrane
306 protein 268 (TMEM268), transmembrane protein 266 (TMEM266), solute carrier family 35
307 member F4 (SLC35F4), solute carrier family 7, member 3 (SLC35F4) and solute carrier family 7,
308 member 3 (SLC7A3) involved in ion transport or transmembrane functions, probable
309 phospholipid-transporting ATPase VD (ATP10D) involved in energy metabolism, apoptosis-
310 inducing factor 1 (AIFM1) involved in apoptosis, interleukin-2 receptor subunit beta (IL2RB)
311 related to immune response. Similarly, in lowland alkaline tolerant fish species, these PSGs
312 were involved in four main categories (FIG. 5B, supplementary table S7), such as solute carrier
313 family 2 member 15b (SLC2A15b) and potassium voltage-gated channel subfamily E member 4
314 (KCNE4) associated with ion transport function, phosphoinositide 3-kinase regulatory subunit 4
315 (PIK3R4) and lysosomal-associated membrane protein 1 (LAMP1) associated with apoptosis,
316 CD22 antigen (CD22) and immunoglobulin-like domain containing receptor 1b precursor (ILDR1)
317 involved in immune response, and plasma membrane calcium-transporting ATPase 3 (ATP2B3)
318 associated with energy metabolism.

319

320 Further, GO enrichment results showed that a number of significantly enriched GO terms ($P <$
321 0.05, fisher's exact test) are related to immune response, apoptosis, protein metabolisms for
322 PGSSs in highland alkaline tolerant species, such as inflammatory response (GO:0006954),
323 natural killer cell activation (GO:0030101), cell killing (GO:0001906), muscle cell apoptotic
324 process (GO:0010656), regulation of innate immune response (GO:0045088), immune
325 response (GO:0006955), ion transport (GO:0006811), sphingolipid metabolic process
326 (GO:0006665) and thyroid hormone metabolic process (GO:0042403) (FIG. 5C, supplementary
327 table S8). Similarly, in lowland alkaline tolerant species, the significantly enriched GO terms
328 were mainly related to four categories as well, such as T cell mediated cytotoxicity

329 (GO:0001913) related to immune response, negative regulation of transport (GO:0051051) and
330 negative regulation of ion transport (GO:0043271) related to transport function, macroautophagy
331 (GO:0016236) related to apoptosis (cell death), regulation of phospholipid metabolic process
332 (GO:1903725) and sulfur amino acid metabolism (GO:0000096) (FIG. 5D, supplementary table
333 S8). Collectively, this finding suggested the consistent signature of positive selection in alkaline
334 tolerant species within highland taxa and lowland taxa.

335

336 **Genes with evidence for both accelerated evolution and positive selection**

337 We sought to find the intersection of REGs and PSGs repertoires, we found 29 overlapping
338 genes in highland alkaline tolerant fish (FIG.6A), mainly related to ion transport, apoptosis (cell
339 death), and energy metabolism, such as SLC35F4, SLC7A3, SLC6A4, TMEM266, CLDN15 and
340 ALDH16A1 and ATP6V1C1 (supplementary table S9). GO enrichment also suggested that
341 overlapping genes were mainly enriched in three main functional categories, such ion transport
342 (GO:0006811), anion transport (GO:0006820), regulation of calcium ion import (GO:0090279),
343 alditol phosphate metabolic process (GO:0052646), oxoacid metabolic process (GO:0043436)
344 and regulation of muscle cell apoptotic process (GO:0010660) (FIG.6B, supplementary table
345 S10). Similarly, we observed 26 shared REG/PSG genes in lowland alkaline tolerant fish (FIG.
346 6C, supplementary table S9). The additional GO enrichment result showed that the overlapping
347 genes mainly enriched into transport and metabolic process, such as negative regulation of ion
348 transport (GO:0043271), negative regulation of potassium ion transmembrane transporter
349 activity (GO:1901017) and GTP metabolic process (GO:0046039) (FIG. 6D, supplementary
350 table S10). Thus, this finding emphasized the consistent signatures of accelerated evolution and
351 positive selection in alkaline tolerant species.

352

353 **Discussion**

354 Our results support above three hypotheses that alkaline tolerant species shared the consistent
355 patterns of molecular evolution in protein-coding genes (dN/dS) and consistent signatures of
356 accelerated evolution (rapidly evolving gene) and positive selection (positively selected gene) in
357 highland and lowland fish. Specifically, these signatures include: genes experienced consistent
358 acceleration in evolutionary rates (increased dN/dS) in alkaline tolerant species, which are
359 mainly involved in ion transport, transmembrane and energy metabolism functions; genes

360 showing consistent signals of positive selection in alkaline tolerant species within highland and
361 lowland fish taxa, these are mainly associated with ion transport/transmembrane, apoptosis (cell
362 death), immune response and energy metabolism processes. Altogether, this study provides
363 insights in understanding the common role of adaptive molecular evolution in fish adaptation to
364 alkaline environment, as well as adaptation to extreme environment at high-altitude.

365

366 **Acid-base balance and osmoregulation**

367 In freshwater fish, Na^+ and Cl^- are actively taken up across the gill epithelium to counter the
368 passive loss of osmolytes to the more dilute environment. After transition to saline or alkaline
369 water, fish must increase its rate to balance the osmotic loss of water to the more solute-
370 concentrated environment and actively excrete Na^+ and Cl^- from the gill to maintain ionic and
371 osmoregulation (Marshall 2005). Thus, alkaline tolerant species requires enhanced
372 physiological abilities including acid-base balance and osmoregulation to respond the elevation
373 in alkalinity or salinity of freshwater (Evans et al. 2005; Marshall 2005). Extremely alkaline
374 environment may accelerate the evolution of genes associated with osmoregulation in these
375 species survived in such harsh environment (Xu et al. 2017; Tong, Fei, et al. 2017). In this study,
376 we identified a set of genes associated with ion transport and transmembrane that tended to
377 evolve rapidly in alkaline tolerant species than their alkaline intolerant relatives (FIG. 4). This
378 result echoed our previous finding in *G. przewalskii* compared with other teleost fishes (alkaline
379 intolerance) (Tong, Fei, et al. 2017), also was in line with the rapidly evolving gene repertoire of
380 a wild fish, Amur ide (*Leuciscus waleckii*) that survived in extremely alkaline environment (Xu et
381 al. 2017). Interestingly, osmoregulation related genes including three solute carrier (SLC) genes
382 and one transient receptor potential cation channel (TRPV) gene exhibited consistent signature
383 of accelerated evolution in both highland and lowland alkaline tolerant fishes. SLC genes
384 encode transmembrane transporters for inorganic ions, amino acids, neurotransmitters, sugars,
385 purines and fatty acids, and other solute substrates (Dorwart et al. 2008). Recent evidences
386 indicted that adaptive evolution of SLC genes contributed to fish adaptation to high salinity and
387 high pH environment (Wang & Guo 2019; Tong, Fei, et al. 2017; Xu et al. 2017). Besides, we
388 also identified numbers of ion transport and transmembrane genes under positive selection in
389 alkaline tolerant fish species, such as potassium voltage-gated channel (KCN) genes. In killifish,
390 an excellent model to study extreme environment adaptation, recent genome-wide studies also
391 found KCN genes have been implicated in freshwater adaptation (transition from marine to
392 freshwater environment) (Brennan et al. 2018).) Besides a set of same rapidly evolving and

393 positively selected genes identified in both highland and lowland alkaline tolerant fish species,
394 we found a large number of different genes under selection but involved in similar functions,
395 such as anion transport (GO:0006820) and phosphate ion transport (GO:0006817), indicating
396 the common role of adaptive molecular evolution during alkaline adaptation in fish.

397

398 **Apoptosis and cell death**

399 Extremely alkaline stress may cause extensive damage to fish, such as inducing cell apoptosis
400 (Monteiro et al. 2009; Zhao et al. 2016, 2020). However, several fish species can survive in this
401 harsh environment, such as schizothoracine (*Gymnocypris przewalskii*) (Tong, Fei, et al. 2017;
402 Tong & Li 2020), Magadi tilapia (*Alcolapia grahami*) (Wilkie & Wood 1996), and Amur ide
403 (*Leuciscus waleckii*) (Xu et al. 2017). This may also pose a barrier for alkaline tolerant fish as
404 compared with alkaline intolerant fish. Significantly, positively selected *AIFM1*, *SH3RF1*,
405 *YWHABA*, *PIK3R4* and *LAMP1* of alkaline tolerant species relative to alkaline intolerant species
406 have enrichment in a set of apoptosis pathways, such regulation of apoptotic signaling pathway
407 (GO:1902253) and macroautophagy (GO:0016236)(FIG. 5). Apoptosis is a form of programmed
408 cell death that occurs in multicellular organisms, it plays a significant role in the biochemical
409 events lead to characteristic cell changes (morphology) and death (Green 2011). Few direct
410 evidence suggested the roles of these candidate genes in response to extreme alkaline stress
411 in fish, but numerous studies had defined their functions in tolerance to harsh environments.
412 *AIFM1* is a ubiquitous mitochondrial oxidoreductase involved in apoptosis, involved in sea
413 bream (*Sparus aurata*) response to acute environmental stress (Bermejo-Nogales et al. 2014).
414 *YWHABA* (14-3-3 protein beta/alpha-A) is an important gene showing the ability to bind a
415 multitude of functionally diverse signaling proteins, such as transmembrane receptors (Fu et al.
416 2000), that involved in spotted sea bass (*Lateolabrax maculatus*) tolerance to saline stress
417 (Zhang et al. 2019). In addition, *LAMP1* plays an important role in lysosome biogenesis and
418 autophagy (Eskelinien 2006), which involved in common carp (*Cyprinus carpio*) response to
419 hydrogen peroxide environment. Collectively, the presence of apoptosis related genes under
420 positive selection may contribute to the alkaline adaptation of fish, how these adaptive
421 molecular changes affect the ability programmed cell death remains unknown.

422

423 **Immune response**

424 Extreme environments (including high pH) impact on the physiology of animals in a wide variety
425 of ways. Recent advances in the understanding of environmental impacts were identified in
426 relation to specific areas of immune function, such as increase in pH resulted in a general
427 increase in immune function (Bowden 2008; Sridhar et al. 2020). Intriguingly, we identified
428 different immune genes under positive selectin in alkaline tolerant species within highland
429 (IL2RB, TLR8, IF144) and lowland (ILDR1 and CD44), but they all involved similar immune
430 functions, such as inflammatory response (GO:0006954), natural killer cell activation
431 (GO:0030101), and T cell mediated cytotoxicity (GO:0001913). In another word, we found
432 different genes but conserved pathways may underlie fish adaptation to alkaline environment.
433 IF144, IL2RB and ILDR1 are important components of toll-like receptor (TLR) signaling pathway
434 that play key roles in the innate immune system (Rebl et al. 2010). For instance, our previous
435 comparative studies in alkaline tolerant fish, *G. przewalskii* identified key genes involved in TLR
436 pathway under selection (Tong, Fei, et al. 2017; Tong et al. 2015). In Nile tilapia (*Oreochromis*
437 *niloticus*), another alkaline tolerant species and stands as ideal model to study extreme
438 environment adaptation, a most recent comparative study identified numbers of immune genes
439 involved in natural killer cell mediated cytotoxicity and NF-kappa B signaling pathway in
440 response to alkalinity stress (up to pH = 8.9) (Zhao et al. 2020), and echoes our present results.
441 Thus, it is possible that adaptive evolution changes (e.g. positive selection) acting on innate
442 immune genes in alkaline tolerant species contribute to their adaptation to extremely alkaline
443 environment.

444

445 **Energy metabolism**

446 It is not surprising that we identified a set of genes under either accelerated evolution or positive
447 selection, that enriched in diverse metabolisms, such as glucose metabolism, phosphate
448 metabolism, sulfur amino acid metabolism and protein metabolism in alkaline tolerant species
449 compared with their alkaline intolerant relatives. In general, metabolism processes were
450 involved in fish response to varies environmental stresses (including alkaline stress) by a huge
451 amount of research (Wood 1991). A most recent study highlights the genes involved in
452 conserved mitochondrial pathways under selection in adaptation to extreme environment
453 (Greenway et al. 2020). In addition to our previous studies in highland alkaline tolerant fish, we
454 found a number of genes associated with energy metabolism processes under selection as well,
455 such as mitochondrial function and protein metabolism (Tong, Fei, et al. 2017). Moreover,
456 increasing studies on alkaline tolerant fish species (e.g. killifish) pointed out the roles of varied

457 metabolisms in extreme environment (e.g. high pH) adaptation (Scott et al. 2019; Zhao et al.
458 2020; Wang & Guo 2019; Xu et al. 2017). Altogether, our analysis infer that the adaptive
459 molecular evolution of metabolism associated genes may be indispensable and common
460 features to alkaline adaptation as well as extreme environment adaptation in fish.

461

462 **Conclusion**

463 In summary, this comparative genomics study of 15 fish species suggests the common role of
464 alkaline adaptation in fish, regardless of highland or lowland background environments. Our
465 results also highlight that the adaptive evolution of protein-coding genes are likely to play a
466 crucial role in fish response to extreme environment, such as extremely high PH. Notably, this
467 study provides putative genomic signatures of shift in selection and alkaline adaptation in
468 several alkaline tolerant fish species, further study should include large scale of omics data of
469 more alkaline tolerant fish species and their intolerant relatives as multiple pairs to demonstrate
470 the genetic basis of alkaline adaptation in fish at genome-wide scale.

471

472 **Author Contributions**

473 C.T. and K.Z. conceived this project. C.T. designed the project. C.T., Y.T. and K.Z. collected the
474 samples. C.T. and M.L. performed the comparative genomics analyses. C.T. wrote the paper.
475 All authors read and approved the final manuscript.

476

477 **Acknowledgments**

478 We would like to thank four anonymous reviewers for helpful comments on this manuscript.

479

480 **Funding**

481 This work was supported by grants from the National Natural Science Foundation of China
482 (31870365), Joint Grant from Chinese Academy of Sciences -People's Government of Qinghai
483 Province on Sanjiangyuan National Park (LHZX-2020-01), China Biodiversity Observation and
484 Research Network, Sino BON-Inland Water Fish Diversity Observation Network.

485

486 **Conflicts of Interest**

487 The authors declare no conflict of interest.

488

489 **Data Availability Statement**

490 The Illumina sequencing reads have been deposited at NCBI Sequence Read Archive under the
491 NCBI BioProject accession PRJNA684806.

492

493 **Literature Cited**

494 Altenhoff AM et al. 2018. The OMA orthology database in 2018: retrieving evolutionary
495 relationships among all domains of life through richer web and programmatic interfaces. Nucleic
496 Acids Res. 46:D477–D485.

497 An Z, John K, Warren P, Stephen P. 2001. Evolution of Asian monsoons and phased uplift of
498 the Himalaya–Tibetan plateau since Late Miocene times. Nature. 411:62–66.

499 Bermejo-Nogales A et al. 2014. Metabolic and transcriptional responses of gilthead sea bream
500 (*Sparus aurata* L.) to environmental stress: new insights in fish mitochondrial phenotyping. Gen.
501 Comp. Endocrinol. 205:305–315.

502 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence
503 data. Bioinformatics. 30:2114–2120.

504 Bowden TJ. 2008. Modulation of the immune system of fish by their environment. Fish Shellfish
505 Immunol. 25:373–383.

506 Brennan RS., et al. 2018. Integrative population and physiological genomics reveals
507 mechanisms of adaptation in killifish. Mol. Biol. Evol. 35.11: 2639-2653.

508 Burnett KG et al. 2007. Fundulus as the premier teleost model in environmental biology:
509 opportunities for new insights using genomics Comp. Biochem. Physiol. Part D Genomics
510 Proteomics. 2.4: 257-286.

511 Cao W, Chen Y, Wu Y, Zhu S, Others. 1981. Origin and evolution of schizothoracine fishes in
512 relation to the upheaval of the Qinghai-Tibetan Plateau. Science Press: Beijng.

513 Dorwart MR, Shcheynikov N, Yang D, Muallem S. 2008. The solute carrier 26 family of proteins
514 in epithelial ion transport. *Physiology* . 23:104–114.

515 Eskelinen E-L. 2006. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy.
516 *Mol. Aspects Med.* 27:495–502.

517 Evans DH, Piermarini PM, Choe KP. 2005. The multifunctional fish gill: dominant site of gas
518 exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. *Physiol.*
519 *Rev.* 85:97–177.

520 Favre A et al. 2015. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of
521 Tibetan biotas. *Biol. Rev. Camb. Philos. Soc.* 90:236–253.

522 Fu H, Subramanian RR, Masters SC. 2000. 14-3-3 proteins: structure, function, and regulation.
523 *Annu. Rev. Pharmacol. Toxicol.* 40:617–647.

524 Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation
525 sequencing data. *Bioinformatics*. 28:3150–3152.

526 Grabherr MG et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a
527 reference genome. *Nat. Biotechnol.* 29:644–652.

528 Green DR. 2011. Means to an end: apoptosis and other cell death mechanisms. *Cold Spring*
529 *Harbor Laboratory Press.*

530 Greenway R et al. 2020. Convergent evolution of conserved mitochondrial pathways underlies
531 repeated adaptation to extreme environments. *Proc. Natl. Acad. Sci. U. S. A.* 117:21822–21822.

532 Guan L, Chi W, Xiao W, Chen L, He S. 2014. Analysis of hypoxia-inducible factor alpha
533 polyploidization reveals adaptation to Tibetan Plateau in the evolution of schizothoracine fish.
534 *BMC Evol. Biol.* 14:192.

535 Kang J, Ma X, He S. 2017. Evidence of high-altitude adaptation in the glyptosternoid fish,
536 *Creteuchiloglanis macropterus* from the Nujiang River obtained through transcriptome analysis.
537 *BMC Evol. Biol.* 17:229.

538 Kosakovsky Pond SL, Poon AFY, et al. 2020. HyPhy 2.5—A Customizable Platform for
539 Evolutionary Hypothesis Testing Using Phylogenies. *Mol. Biol. Evol.* 37:295–299.

540 Kosakovsky Pond SL, Wisotsky SR, Escalante A, Magalis BR, Weaver S. 2020. Contrast-FEL--
541 a test for differences in selective pressures at individual sites among clades and sets of
542 branches. *Mol. Biol. Evol.* 38.3: 1184-1198. .

543 Levings CD. 2016. Ecology of Salmonids in Estuaries around the World: Adaptations, Habitats,
544 and Conservation. UBC Press.

545 Lien S et al. 2016. The Atlantic salmon genome provides insights into rediploidization. *Nature.*
546 533:200–205.

547 Li J, Fang X. 1999. Uplift of the Tibetan Plateau and environmental changes. *Chinese science
bulletin.* 44:2117–2124.

549 Liu H-P et al. 2019. The sequence and de novo assembly of *Oxygymnocypris stewartii* genome.
550 *Scientific Data.* 6:190009.

551 Marshall WS. 2005. Ion transport, osmoregulation, and acid-base balance. *The physiology of
fishes.* CRC Press.

553 Monteiro SM, dos Santos NMS, Calejo M, Fontainhas-Fernandes A, Sousa M. 2009. Copper
554 toxicity in gills of the teleost fish, *Oreochromis niloticus*: effects in apoptosis induction and cell
555 proliferation. *Aquat. Toxicol.* 94:219–228.

556 Murrell B et al. 2015. Gene-wide identification of episodic selection. *Mol. Biol. Evol.* 32:1365–
557 1371.

558 Orr HA. 2005. The genetic theory of adaptation: a brief history. *Nat. Rev. Genet.* 6:119–127.

559 Qi D et al. 2012. Convergent, parallel and correlated evolution of trophic morphologies in the
560 subfamily schizothoracinae from the Qinghai-Tibetan plateau. *PLoS One.* 7:e34070.

561 Qu Y et al. 2013. Ground tit genome reveals avian adaptation to living at high altitudes in the
562 Tibetan plateau. *Nat. Commun.* 4:2071.

563 Rebl A, Goldammer T, Seyfert H-M. 2010. Toll-like receptor signaling in bony fish. *Vet.
564 Immunol. Immunopathol.* 134:139–150.

565 Scheinfeldt LB, Tishkoff SA. 2010. Living the high life: high-altitude adaptation. *Genome Biol.*
566 11:133.

567 Schliep KP. 2011. phangorn: phylogenetic analysis in R. *Bioinformatics*. 27:592–593. Scott WC
568 et al. 2019. Influence of salinity and pH on bioconcentration of ionizable pharmaceuticals by the
569 gulf killifish, *Fundulus grandis*. *Chemosphere*. 229:434–442.

570 Smith MD et al, 2015. Less is more: an adaptive branch-site random effects model for efficient
571 detection of episodic diversifying selection. *Molecular biology and evolution* 32.5: 1342-1353.

572 Sridhar A et al. 2020. Activity profile of innate immune-related enzymes and bactericidal of
573 freshwater fish epidermal mucus extract at different pH. *Environ. Sci. Pollut. Res. Int.* doi:
574 10.1007/s11356-020-11173-5.

575 Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence
576 alignments into the corresponding codon alignments. *Nucleic Acids Res.* 34:W609–12.

577 Tong C et al. 2015. Transcriptome-wide identification, molecular evolution and expression
578 analysis of Toll-like receptor family in a Tibet fish, *Gymnocypris przewalskii*. *Fish Shellfish
579 Immunol.* 46:334–345.

580 Tong C, Fei T, Zhang C, Zhao K. 2017. Comprehensive transcriptomic analysis of Tibetan
581 Schizothoracinae fish *Gymnocypris przewalskii* reveals how it adapts to a high altitude aquatic
582 life. *BMC evolutionary biology*. 17:74.

583 Tong C, Li M. 2020. Genomic signature of accelerated evolution in a saline-alkaline lake-
584 dwelling Schizothoracine fish. *Int. J. Biol. Macromol.* 149:341–347.

585 Tong C, Najm GM, Pinter-Wollman N, Pruitt JN, Linksvayer TA. 2020. Comparative Genomics
586 Identifies Putative Signatures of Sociality in Spiders. *Genome Biol. Evol.* 12:122–133.

587 Tong C, Tian F, Zhao K. 2017. Genomic signature of highland adaptation in fish: a case study in
588 Tibetan Schizothoracinae species. *BMC Genomics*. 18:948.

589 Venkat A, Matthew H, Joseph T. 2018. Multinucleotide mutations cause false inferences of
590 lineage-specific positive selection. *Nature ecology & evolution* 2.8: 1280-1288.

591 Wang Y et al. 2015. Evidence for Adaptation to the Tibetan Plateau Inferred from Tibetan Loach
592 Transcriptomes. *Genome Biol. Evol.* 7:2970–2982.

593 Wang Y, Guo B. 2019. Adaption to extreme environments: a perspective from fish genomics.
594 Rev. Fish Biol. Fish. 29:735–747.

595 Wen LY. 2014. Uplift of the tibetan plateau influenced the morphological evolution of animals. J.
596 Agric. Sci. 6:244.

597 Wilkie MP, Wood CM. 1996. The adaptations of fish to extremely alkaline environments. Comp.
598 Biochem. Physiol. B Biochem. Mol. Biol. 113:665–673.

599 Witt KE, Huerta-Sánchez E. 2019. Convergent evolution in human and domesticate adaptation
600 to high-altitude environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374:20180235.

601 Wood C et al. 1994. Urea production, acid-base regulation and their interactions in the Lake
602 Magadi tilapia, a unique teleost adapted to a highly alkaline environment. Journal of
603 Experimental Biology. 189:13–36.

604 Wood CM. 1991. Acid-Base and Ion Balance, Metabolism, and their Interactions, after
605 Exhaustive Exercise in Fish. J. Exp. Biol. 160:285–308.

606 Wood CM, Bucking C, Grosell M. 2010. Acid-base responses to feeding and intestinal Cl--
607 uptake in freshwater-and seawater-acclimated killifish, *Fundulus heteroclitus*, an agastric
608 euryhaline teleost. J. Exp. Biol. 213:2681–2692.

609 Wu DD, Yang CP, Wang MS, Dong KZ. 2020. Convergent genomic signatures of high-altitude
610 adaptation among domestic mammals. National Science Review. 7:952–963.

611 Wu Y. 1992. The Fishes of the Qinghai-Tibetan Plateau. Sichuan Publishing House of Science
612 & Technology.

613 Xiao S et al. 2020. Genome of Tetraploid Fish *Schizothorax o'connori* Provides Insights into
614 Early Re-diploidization and High-Altitude Adaptation. iScience. 23:101497.

615 Xu J et al. 2017. Genomic Basis of Adaptive Evolution: The Survival of Amur Ide (*Leuciscus*
616 *waleckii*) in an Extremely Alkaline Environment. Mol. Biol. Evol. 34:145–159.

617 Xu Q et al. 2016. Analysis of the erythropoietin of a Tibetan Plateau schizothoracine fish
618 (*Gymnocypris dobula*) reveals enhanced cytoprotection function in hypoxic environments. BMC
619 Evol. Biol. 16:11.

620 Yang L, Wang Y, Zhang Z, He S. 2014. Comprehensive transcriptome analysis reveals
621 accelerated genic evolution in a Tibet fish, *Gymnoptychus pachycheilus*. *Genome Biol. Evol.*
622 7:251–261.

623 Zhang K-Q et al. 2019. 14-3-3 gene family in spotted sea bass (*Lateolabrax maculatus*):
624 Genome-wide identification, phylogenetic analysis and expression profiles after salinity stress.
625 *Comp. Biochem. Physiol. A Mol. Integr. Physiol.* 235:1–11.

626 Zhao Y et al. 2020. Transcriptome changes for Nile tilapia (*Oreochromis niloticus*) in response
627 to alkalinity stress. *Comp. Biochem. Physiol. Part D Genomics Proteomics.* 33:100651.

628 Zhao Y, Wu J-W, Wang Y, Zhao J-L. 2016. Role of miR-21 in alkalinity stress tolerance in
629 tilapia. *Biochem. Biophys. Res. Commun.* 471:26–33.

630 Zheng M. 1997. An Introduction to Saline Lakes on the Qinghai—Tibet Plateau. Springer
631 Science & Business Media.

632 Zhou C et al. 2020. Comprehensive transcriptome data for endemic Schizothoracinae fish in the
633 Tibetan Plateau. *Sci Data.* 7:28.

634 Zhu S, Wu Y. 1975. Study of fish fauna in Qinghai Lake. Science Press: Beijing.

635

636 **Figure legend**

637 **FIG. 1.** Overview of geographic distributions of two alkaline tolerant schizothoracine fish species
638 and their habitats in the northeastern Tibetan Plateau. Map depicting the geographic
639 distributions of *G. p. przewalskii* in Lake Qinghai, and *G. p. kelukehuensis* in Lake Keluke.
640 Photos showing the representative specimens of *G. p. przewalskii* and *G. p. kelukehuensis*.
641 Photo credit: Chao Tong and Kai Zhao.

642

643 **FIG.2.** The flowchart represents the analysis pipeline: (1) sample collection and transcriptomics;
644 (2) data assembling and annotation; (3) gene ortholog; (4) phenotype data and (5) molecular
645 evolution analysis.

646

647 **FIG. 3.** Consistent patterns of molecular evolution in alkaline tolerant fish species.
648 (A-B) Species trees for lowland and highland fish taxa were pruned from the Fish Tree of Life
649 (<https://fishtreeoflife.org/>). Alkaline tolerant taxa and alkaline intolerant taxa are depicted in
650 orange and sky blue, respectively. Two schematic diagrams depicting the comparisons made
651 between alkaline tolerant and alkaline intolerant fish species, ω_1 representing the rate of
652 molecular evolution of alkaline tolerant species and ω_2 for the alkaline intolerant species (C)
653 Number of tested orthologs ($N = 5,748$), and number of orthologs under consistent shifts in
654 rates of molecular evolution in alkaline tolerant relative to alkaline intolerant species within
655 highland fish taxa and lowland fish taxa ($P < 0.05$, likelihood ratio test; false discovery rate <
656 0.2).

657

658 **FIG. 4.** Consistent signature of accelerated evolution in alkaline tolerant species within highland
659 and lowland fish taxa.

660 (A) Venn diagram depicting numbers of rapidly evolving genes (REGs) in highland alkaline
661 tolerant species, lowland alkaline tolerant species and both.

662 (B) Highland fish specific REGs, lowland fish specific REGs and overlapping REGs mainly
663 related to ion transport, transmembrane and energy metabolism functions. The table showing
664 the representative REGs under each category.

665 (C) REVIGO plot depicting the dominant enriched GO terms for REGs in highland alkaline
666 tolerant fish. The scale of dark dot indicating the number of included enriched GO terms under
667 a dominant GO term, the color scale representing the P value transformed by log10.

668 (D) REVIGO plot depicting the dominant enriched GO terms for REGs in lowland alkaline
669 tolerant fish.

670

671 **FIG. 5.** Consistent signature of positive selection in alkaline tolerant species within highland and
672 lowland fish taxa.

673 (A) Venn diagram depicting numbers of positively selected genes (PSGs) in highland alkaline
674 tolerant species, lowland alkaline tolerant species and both.

675 (B) Highland fish specific PSGs, lowland fish specific PSGs and overlapping PSGs mainly
676 related to four categories, including ion transport/transmembrane, apoptosis/cell death, immune
677 response and energy metabolism. The table showing the representative PSGs under each
678 category.

679 (C) REVIGO plot depicting the dominant enriched GO terms for PSGs in highland alkaline
680 tolerant fish. The dark dot scale indicating the number of included GO terms under a dominant
681 GO term, the color scale representing the *P* value transformed by log10.

682 (D) REVIGO plot depicting the dominant enriched GO terms for PSGs in lowland alkaline
683 tolerant fish.

684

685 **FIG.6.** The intersection of rapidly evolving genes (REGs) and positively selected genes (PSGs)
686 in alkaline tolerant species within highland and lowland fish taxa.

687 (A) Venn diagram depicting numbers of REGs, PSGs and their overlapping genes in highland
688 alkaline tolerant species.

689 (B) REVIGO plot depicting the dominant enriched GO terms for overlapping genes in highland
690 alkaline tolerant species.

691 (C) Venn diagram depicting numbers of REGs, PSGs and their overlapping genes in lowland
692 alkaline tolerant species.

693 (D) REVIGO plot depicting the dominant enriched GO terms for overlapping genes in lowland
694 alkaline tolerant species.

695

696

697 **Supplementary table capture**

698 supplementary table S1: Information for additional omics data.

699 supplementary table S2: Statistics of transcriptome assembly and protein-coding genes.

700 supplementary table S3: Statistics of orthologs in 15 fish species.

701 supplementary table S4: Patterns of molecular evolution in alkaline tolerant and alkaline

702 intolerant species within lowland fish taxa and highland fish taxa.

703 supplementary table S5: Rapidly evolving gene repertoires in highland alkaline tolerant and

704 lowland alkaline tolerant species.

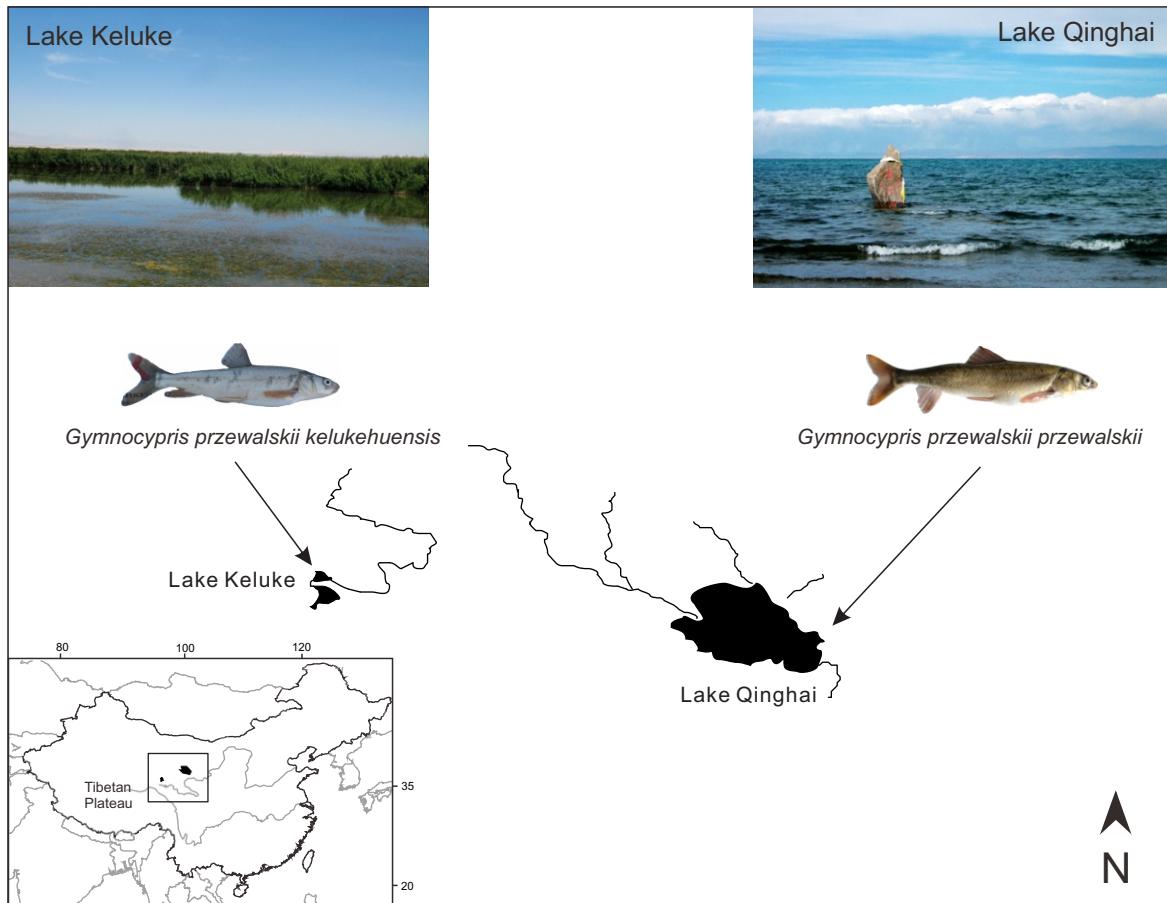
705 supplementary table S6: Significantly enriched GO terms for rapidly evolving gene of highland

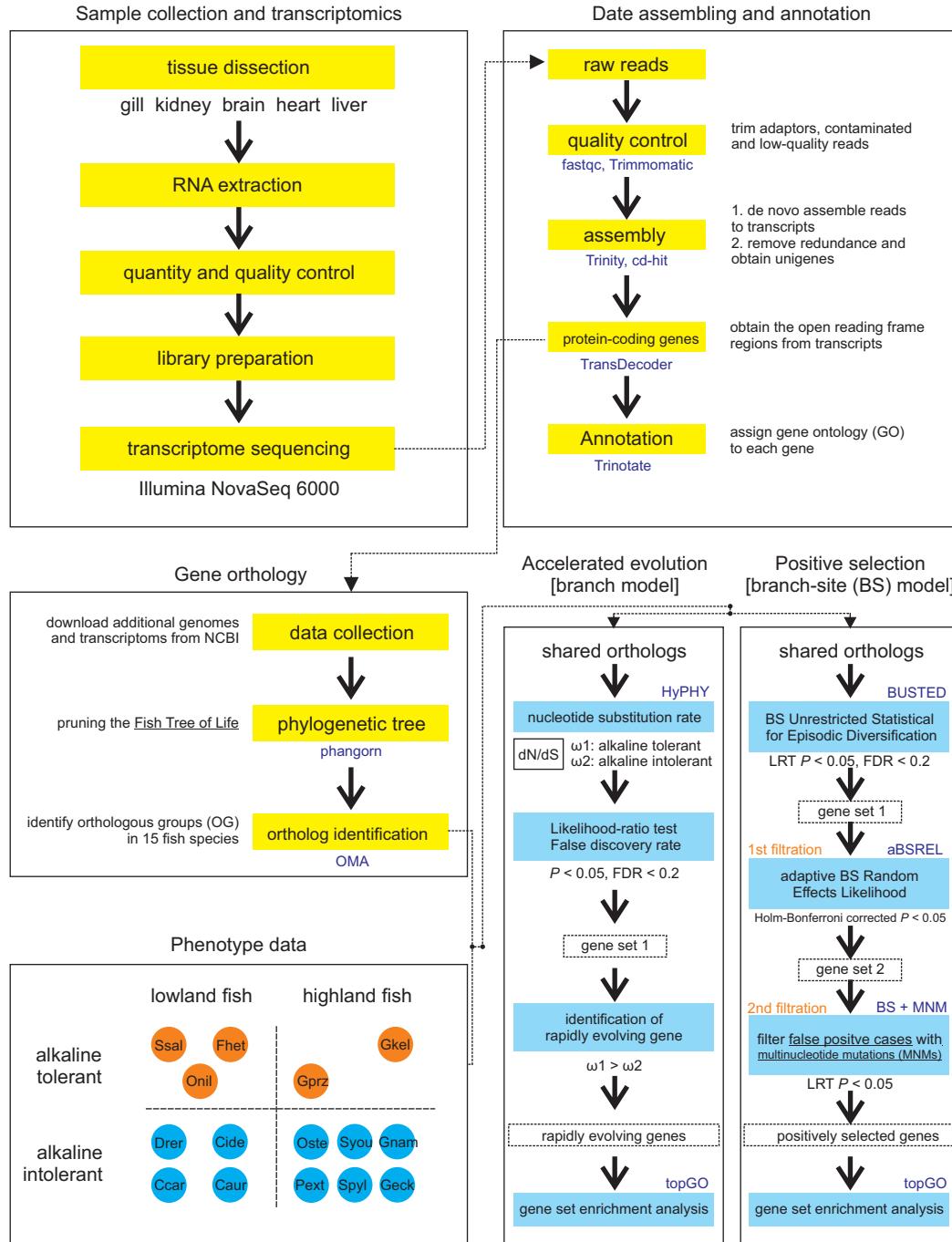
706 alkaline tolerant and lowland alkaline tolerant species.

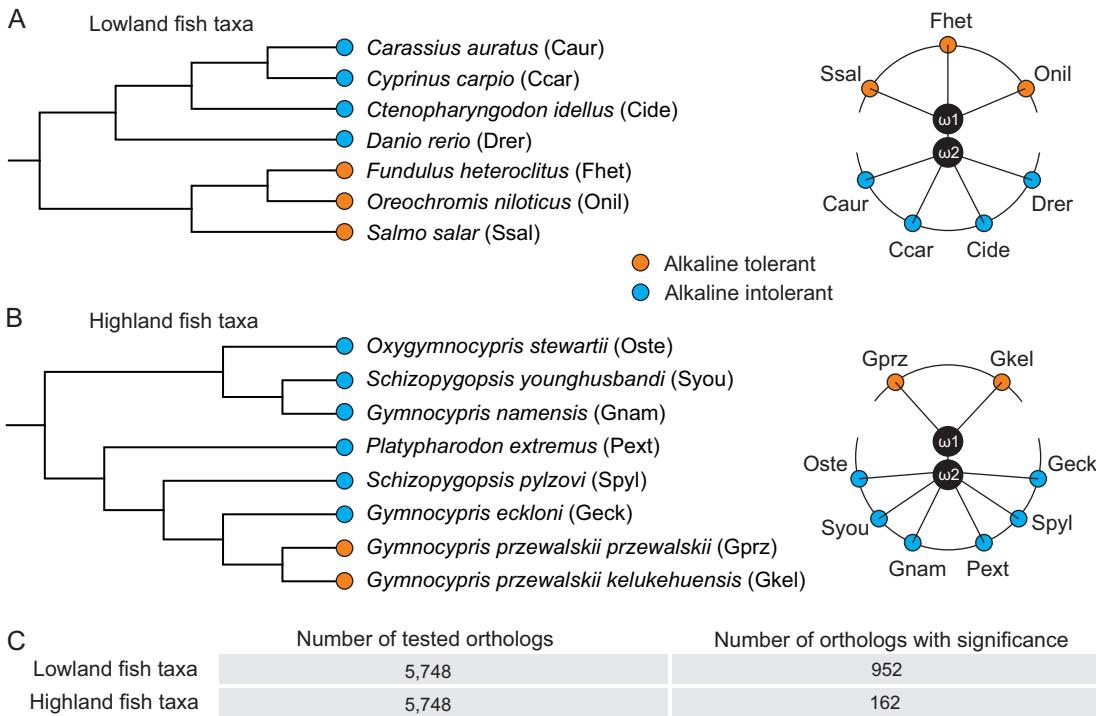
707 supplementary table S7: Positively selected gene repertoires in highland alkaline tolerant and

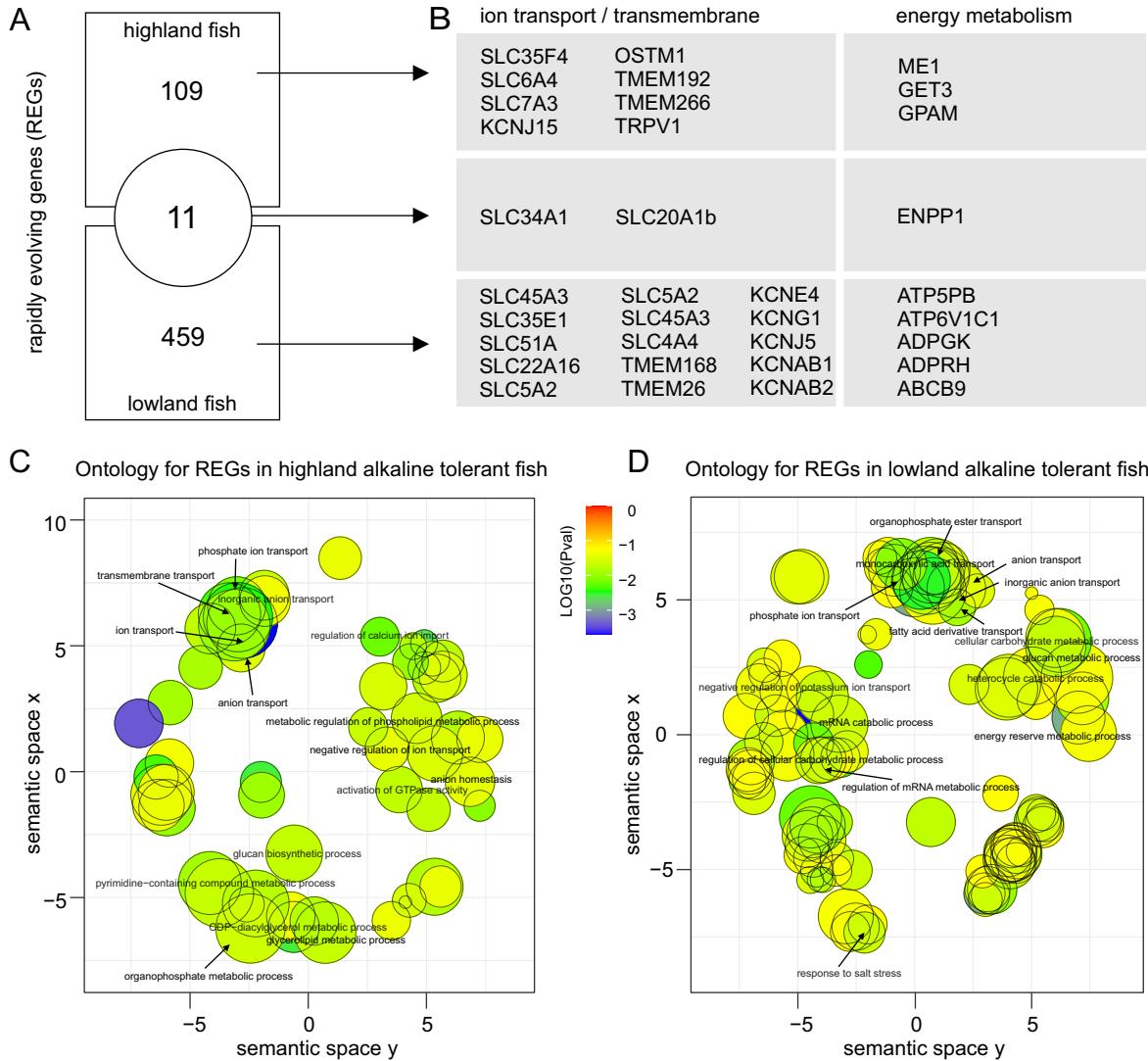
708 lowland alkaline tolerant species.

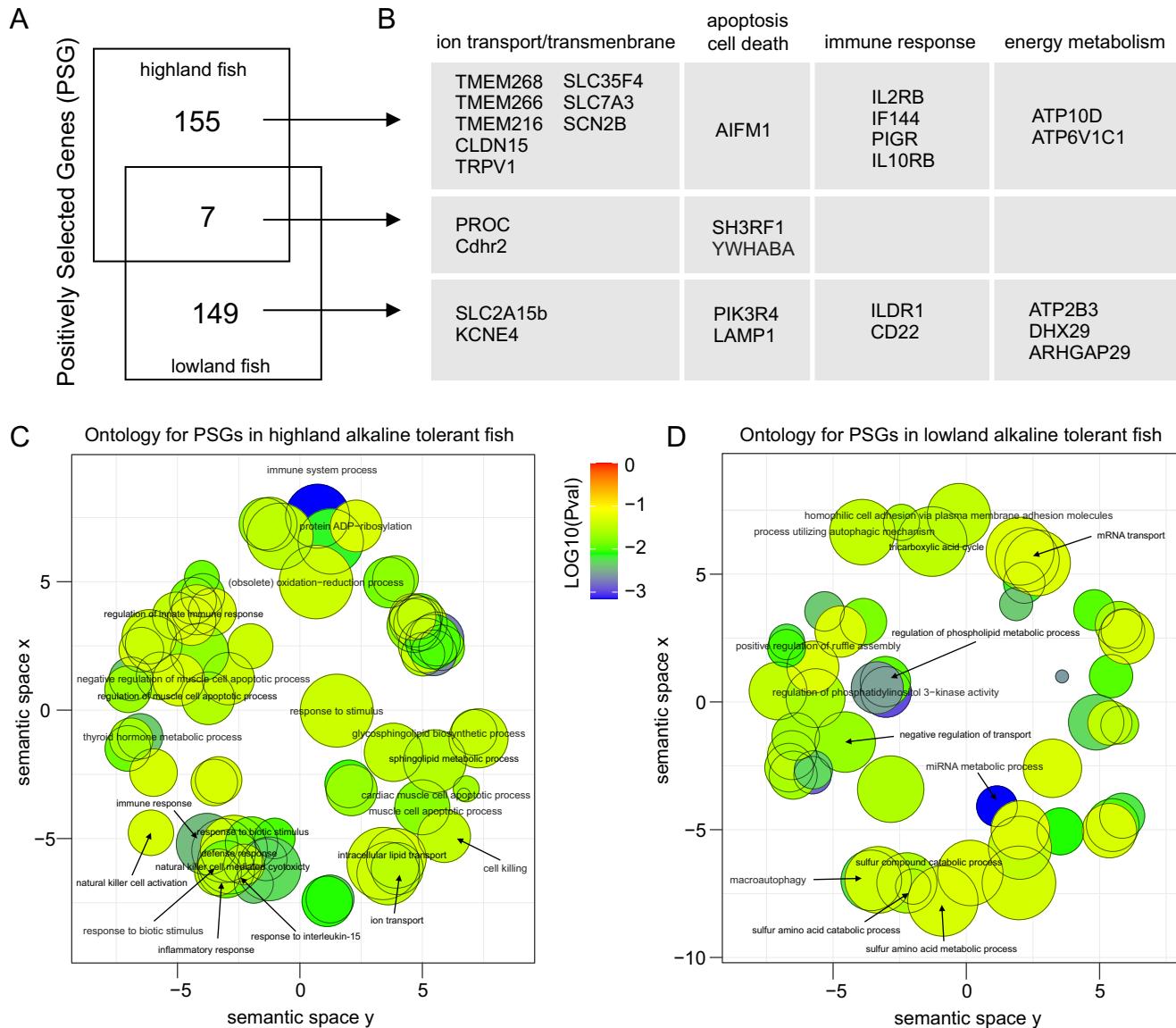
709 supplementary table S8: Significantly enriched GO terms for positively selected gene of

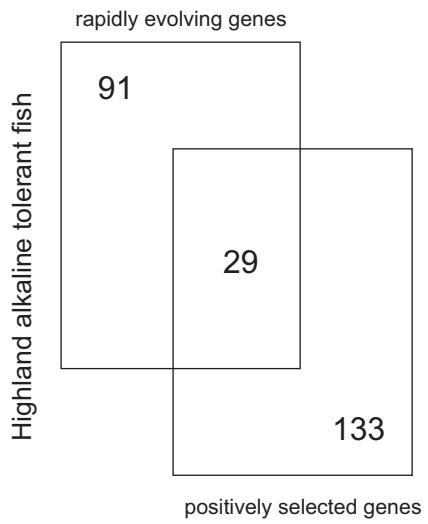

710 highland alkaline tolerant and lowland alkaline tolerant species.

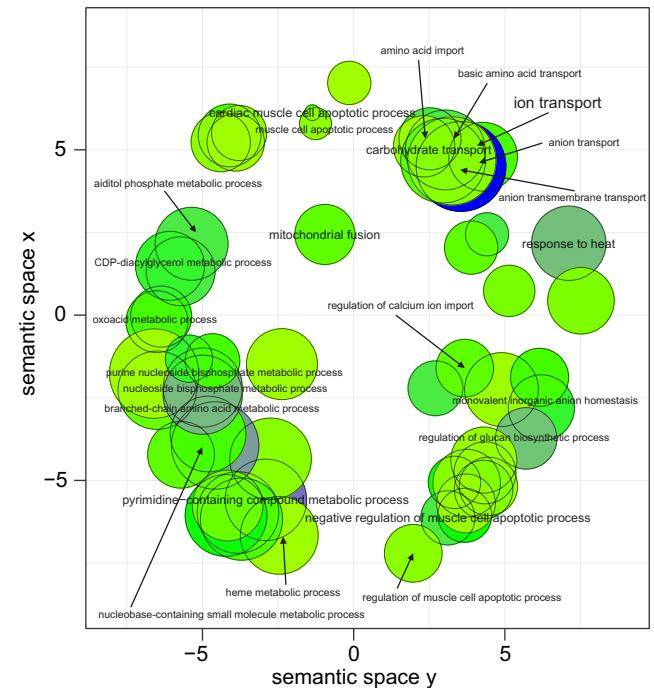

711 supplementary table S9: Shared REG/PSG repertoires in highland alkaline tolerant and lowland


712 alkaline tolerant species.

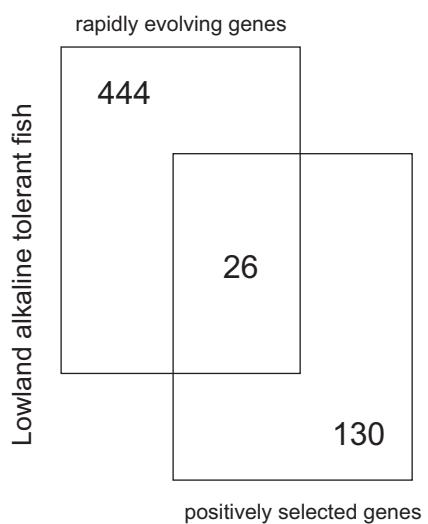

713 supplementary table S10: significantly enriched GO terms for shared REG/PSG of highland


714 alkaline tolerant and lowland alkaline tolerant species.



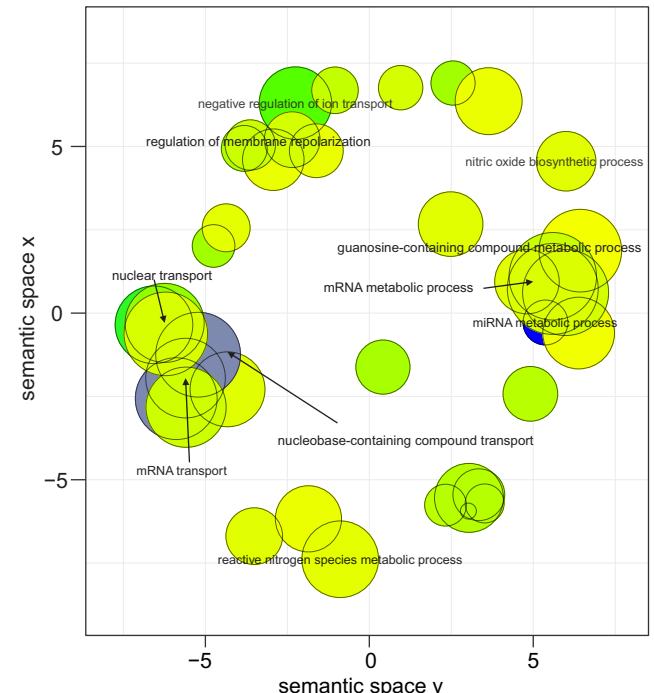


A



B

Ontology for shared REG/PSG in highland alkaline tolerant fish



C

D

Ontology for shared REG/PSG in lowland alkaline tolerant fish

