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Abstract

Understanding how organisms adapt to aquatic life at high altitude is fundamental in
evolutionary biology. This objective has been addressed primarily related to hypoxia adaptation
by recent comparative studies, whereas highland fish has also long suffered extreme alkaline
environment, insight into the genomic basis of alkaline adaptation has rarely been provided.
Here, we compared the genomes or transcriptomes of 15 fish species, including two alkaline
tolerant highland fish species and their six alkaline intolerant relatives, three alkaline tolerant
lowland fish species and four alkaline intolerant species. We found putatively consistent
patterns of molecular evolution in alkaline tolerant species in a large number of shared orthologs
within highland and lowland fish taxa. Remarkably, we identified consistent signatures of
accelerated evolution and positive selection in a set of shared genes associated with ion
transport, apoptosis, immune response and energy metabolisms in alkaline tolerant species
within both highland and lowland fish taxa. This is one of the first comparative studies that
began to elucidate the consistent genomic signature of alkaline adaptation shared by highland
and lowland fish. This finding also highlights the adaptive molecular evolution changes that

support fish adapting to extreme environments at high altitude.
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Significance Statement

Little is known about how wild fish responds to extreme alkaline stress besides hypoxia at high
altitude. Comparative genomics has begun to elucidate the genomic basis of alkaline adaptation
in lowland fish, such as Kkillifish, but insight from highland fish has lagged behind. The common
role of adaptive molecular evolution during alkaline adaptation in highland and lowland fish has
rarely been discussed. We address this question by comparing 15 fish omics data. We find
numbers of shared orthologs exhibited consistent patterns of molecular evolution in alkaline
tolerant species relative to intolerant species. We further identify remarkably consistent
signatures of rapidly evolving and positive selection in a substantial shared core of genes in

both highland and lowland alkaline tolerant species.
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Introduction

Environments shape the genetic landscape of the populations that inhabit them (Witt & Huerta-
Sanchez 2019). The Tibetan Plateau had experienced continuous uplift during the India-Asia
collision since approximately 45 million years ago, that triggered numerous environmental
changes (Li & Fang 1999; Favre et al. 2015). As elevation above sea level increases, a
decrease in barometric pressure results in fewer oxygen molecules in the air, which causes
hypoxia. Besides, other harsh environments highland wildlife have encountered include the
long-term low temperature, and intensified ultraviolet radiation (An et al. 2001). Large numbers
of endemic Tibetan animals had developed unique morphological, physiological or genetic
features to tolerate such harsh conditions (Wen 2014; Tong, Tian, et al. 2017; Tong, Fei, et al.
2017). Basically, understanding how organisms adapt to extreme environment is fundamental to
address many evolutionary questions, but it remains a formidable task to fully uncover the
mechanism of adaptive process (Scheinfeldt & Tishkoff 2010; Tong, Fei, et al. 2017; Tong, Tian,
et al. 2017). Adaptation at molecular level can occur by adaptive mutation in key genes over
prolonged evolutionary time scales (Orr 2005). Recent studies employing genome-wide
approaches have identified candidate genes associated with hypoxia and long-term cold
response in Tibetan terrestrial wildlife adaptation to high altitude (Qu et al. 2013; Wu et al. 2020).
Nevertheless, the draft genomes of very few Tibetan aquatic wildlife are sequenced (Xiao et al.
2020; Liu et al. 2019), the genomic basis of highland adaptation in aquatic animals (e.g. fish)

remains largely unknown.

The schizothoracine fishes (Teleostei: Cyprinidae), the predominant fish fauna in the Tibetan
Plateau, had evolved specific phenotypic characteristics to adapt to extreme aquatic
environments, including hypoxia and long-term low temperature (Wu 1992; Cao et al. 1981).
Recent comparative studies have identified key genes showing signals of positive selection
during adaptation to such harsh environments (Yang et al. 2014; Wang et al. 2015; Kang et al.
2017), such as Hypoxia-inducible factor (HIF) (Guan et al. 2014) and Erythropoietin (EPO) (Xu
et al. 2016) associated with hypoxia response, ATPase Family AAA Domain Containing 2
(ATAD?2) (Tong, Fei, et al. 2017) and cAMP-dependent protein kinase catalytic subunit alpha
(PRKACA) that involved into energy metabolism (Tong, Fei, et al. 2017). The main focus of
previous studies in schizothoracine fishes are still on hypoxia and cold response. Notably, an

increasing number of lakes in the Tibetan Plateau have been existing or towards alkaline due to
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80 the global climate changes and human activities (Zheng 1997). Thus, the increasing alkalization
81  of fresh water has been the potential challenge to schizothoracine fishes. Among the

82  schizothoracine fishes, Gymnocypris przewalskii przewalskii and Gymnocypris przewalskii

83  kelukehuensis are the only two species inhabited extremely alkaline environment (Wu 1992).
84  Unlike other broadly distributed schizothoracine fishes, such as Gymnocypris eckloni,

85  Schizopygopsis pylzovi and Platypharodon extremus that inhabit in the Yellow river basin (Cao
86 etal 1981; Wu 1992; Qi et al. 2012), G. p przewalskii only inhabits in saline and alkaline lake.
87  Asthe largest salt lake in China, Lake Qinghai (FIG. 1) is highly saline (up to 13%.) and alkaline
88  (upto pH 9.4) water environment, a typical salt lake with unusually high sodium, potassium and
89  magnesium concentration (Zheng 1997; Zhu & Wu 1975). In addition, G. p. kelukehuensis only
90 inhabits in a soda lake located at the Tsaidam Basin in the northeastern Tibetan Plateau. Lake
91 Keluke (FIG. 1) is also a soda lake with low salinity of 0.79%. and high pH value up to 9.3

92 (Zheng 1997). Both schizothoracine fish species had developed unique physiological or genetic
93 features to tolerate such harsh living conditions (Tong, Fei, et al. 2017). Therefore, this provides
94  an exceptional model to investigate the genetic mechanisms underlying alkaline adaptation, and
95  may provide novel insights to fully understand the mechanism of highland adaptation in fish as

96 complement.
97

98 Unlike highland alkaline tolerant fish, a huge amount of studies had explored the mechanisms of
99 high saline and high alkaline tolerance in lowland fish species, such as killifish (e.g. Fundulus
100 heteroclitus) (Wood et al. 2010;Brennan et al. 2018; Burnett et al. 2007), tilapia (e.g.
101  Oreochromis niloticus) (Zhao et al. 2020; Wood et al. 1994), and salmonids (e.g. Salmo salar)
102  (Levings 2016; Lien et al. 2016). These studies had provided insights in physiology of acid-base
103 balance in fishes response to high salinity or high pH environments, and suggested key genes,

104  such as ion transport associated genes under selection during the adaptation (Lien et al. 2016).
105

106 In this study, we generated and assembled the transcriptomes of two alkaline tolerant

107  schizothoracine fish species, G. p. przewalskii and G. p. kelukehuensis inhabited in high pH
108 environment in the northeastern Tibetan Plateau (FIG. 1). We performed a comparative

109 genomics study together with recently sequenced schizothoracine fish transcriptomes and other
110 lowland fish genomes (FIG. 2A & 2B), and sought to identify consistent genomic signature

111  associated with alkaline adaptation in highland and lowland fishes. Specifically, we focused our
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comparisons on testing whether alkaline adaptation in highland and lowland alkaline tolerant
fishes is associated with the following signatures of molecular evolution: (1) consistent patterns
of molecular evolution in protein-coding genes across the phylogeny; (2) consistent shifts in
evolutionary rates for specific genes; and (3) consistent signals of positive selection in particular

genes.

Materials and Methods
Sample collection

We collected eight adult G. p. przewalskii (FIG. 1) individuals (four males and four females, 172
+ 0.7 g) from Lake Qinghai and eight adult G. p. kelukehuensis (FIG. 1) individuals (four males
and four females, 139 + 0.3 g) from Lake Keluke using gill nets. All the fish samples were
dissected after anesthesia with MS-222 (Solarbio, Beijing, China). All individuals were classified
based on the gender and dissected after anesthesia with MS-222 (Solarbio, Beijing, China).
Tissues from gill, kidney, brain, heart and liver from each individual were collected and
immediately stored in liquid nitrogen at -80 °C. All the animal experiments were approved by the
Animal Care and Use Committees of the Northwest Institute of Plateau Biology, Chinese
Academy of Sciences (NWIPB-CY-010).

Transcriptomics

Total RNA of each tissue sample was extracted using TRIzol reagent (Invitrogen, CA, USA) in
accordance with manufacturer’s instructions, and detected for quality and quantity of RNAs with
Nanodrop 1000 (NanoDrop Technologies, DE, USA) and Agilent Bioanalyzer 2100 (Agilent
Technologies, CA, USA). Equal amount of RNA from eight individual of five tissue was pooled to
construct transcriptome library as previously described (Tong, Tian, et al. 2017; Tong, Fei, et al.

2017), and sequenced with an Illumina NovaSeq 6000 yielding 150-bp paired-end reads (FIG.2).

Sequencing reads were checked for quality using FastQC

( https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequencing adapters and reads

with a quality score < 20 were trimmed with Trimmomatic (Bolger et al. 2014). We built a de

novo transcriptome assembly based on clean reads using Trinity v2.6.5 (Grabherr et al. 2011)
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with default parameters. Next, we removed the redundant transcripts using CD-HIT (Fu et al.
2012) with the threshold of 0.90 and extracted the longest transcript as putative genes. We
predicted the open reading frame of each putative genes using TransDecoder
(https://github.com/TransDecoder/TransDecoder) (FIG.2).

Additional data retrieval

We downloaded six alkaline intolerant schizothoracine fish transcriptomes (Zhou et al. 2020)
including Oxygymnocypris stewartii, Schizopygopsis younghusbandi, Gymnocypris hamensis,
Platypharodon extremus, Schizopygopsis pylzovi and Gymnocypris eckloni from NCBI SRA

database (https://www.ncbi.nlm.nih.gov/sra) (FIG. 3B, supplementary table S1), and performed

assembly following above pipeline. In addition, we downloaded the genomes of four alkaline
intolerant fish species of Danio rerio, Ctenopharyngodon idellus, Cyprinus carpio, and Carassius
auratus, and three alkaline tolerant fish species of Fundulus heteroclitus, Oreochromis niloticus

and Salmo salar (FIG. 3A, supplementary table S1).

Species phylogeny and gene orthology

We obtained the phylogenetic tree of 15 fish species by pruning the Fish Tree of Life
(https://ffishtreeoflife.org/) using R package, phangorn (Schliep 2011). To obtain phylogeny-

based orthology relationships between different fish taxa, we included all the predicted
proteomes of seven lowland fish genomes, and translated nucleotide sequences of protein-
coding genes from eight schizothoracine fish transcriptome assemblies into amino acid
sequences, and pooled these datasets as input for an orthology inference tool, OMA (Altenhoff
et al. 2018). In this way, we identified one-to-one, one-to-many, and many-to-many orthologs
among these 15 fish species. For further comparison, we restricted our analysis to 1:1 orthologs,
that is the geneset for which only one gene from each species representing the orthology. In
addition, we extracted the shared orthologs among all fish taxa. At last, gene ontology (GO)

terms were assigned to each ortholog using Trinotate (https://trinotate.qgithub.io/) (FIG.2).

Pattern of molecular evolution in shared orthologs
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To determine whether highland fish and lowland fish showing consistent patterns of molecular
evolution in the set of alkaline tolerant species branches across the phylogeny, we
characterized the rates of non-synonymous to synonymous rate (dN/dS) in each shared
ortholog. For this, we performed the protein sequence alignment using MUSCLE v3.8.31

(https://www.ebi.ac.uk/Tools/msa/muscle). We prepared the codon alignments of shared

orthologs, that derived from protein alignments and the corresponding DNA sequences using
PAL2NAL v.14 (Suyama et al. 2006). Then, we executed the filtration for shared ortholog

alignments with length of at least 50 codons.

We took advantage of HyPHY pipeline (Kosakovsky Pond, Poon, et al. 2020) to test the
hypotheses by comparing selective pressures (dN/dS) between a prori defined alkaline tolerant
fish species branches (focal foreground branch) and alkaline intolerant species fish branches
(background branch) in the specified fish phylogeny at ortholog-wide scale. Before that, a
common approach to test the hypothesis is to perform separate analyses on subsets of
sequences, and compare the parameter estimated in a post hoc fashion, that is one branch to
the rest of branches in a phylogenetic tree like which we previously described (Tong, Tian, et al.
2017; Tong, Fei, et al. 2017; Tong et al. 2020). While, such approach is statistically suboptimal,
and not always applicable (Kosakovsky Pond, Wisotsky, et al. 2020). In this way, we estimated
two discrete categories of dN/dS for alkaline tolerant and alkaline intolerant species under the
MG94 rate matrices combined with HKY85 model using HyPHY (Kosakovsky Pond, Poon, et al.
2020), and compared nested models with constrained relationships among them. We detected
the shift of dN/dS ratios between alkaline tolerant and alkaline intolerant (alternative model, H1),
relative to the null model that assuming all lowland fish taxa have the same dN/dS ratio (HO).
We constructed the log-likelihood ratio score for each ortholog (AInL) as: AlnL = 2(InLH;-InLHy)
and employed the likelihood ratio test. Additionally, we applied a correction for multiple testing to
a false discovery rate (FDR) < 0.20 using R package, g-value (http://github.com/jdstorey/qvalue).

In this way, we repeated this analysis with shared ortholog datasets of highland taxa.

Analysis of accelerated evolution

To determine if consistent shift in evolutionary rates (e.g. acceleration) in particular genes within
alkaline tolerant species across the phylogeny, we defined rapidly evolving genes with

significantly higher dN/dS ratio for alkaline tolerant species than alkaline intolerant species (P <
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203  0.05, likelihood ratio test, FDR < 0.2). In this way, we identified the rapidly evolving genes in
204  alkaline tolerant species within highland and lowland based on earlier estimated dataset
205 including two discrete dN/dS ratios for each shared ortholog, respectively. In addition, these
206  sets of rapidly evolving genes were examined for GO enrichment relative to the full set of all
207  shared orthologs using R package, topGO

208  (https://bioconductor.org/packages/release/bioc/html/topGO.html). We finally visualized all

209 significantly enriched GO terms remaining after the REVIGO (http://revigo.irb.hr/) similarity filter.

210
211  Analysis of positive selection

212  To further determine whether consistent signals of positive selection in a set of branches

213  representing alkaline tolerant species across the phylogeny in specific genes, we used three
214  complementary branch-site models to identify the positively selected genes (FIG.2). Specifically,
215  we first used the Branch-Site Unrestricted Statistical Test for Episodic Diversification (BUSTED)
216  model (Murrell et al. 2015) to test for positive selection signal in a gene at any site on focal

217  branches. In this model, it defines a positively selected gene (LRT P < 0.05, FDR < 0.2) with at
218 least one site under positive selection on at least one focal foreground branch, while does not
219  specify the exact branch with positively selected site, may include false positive. Then, we used
220 an adaptive Branch-Site Random Effects Likelihood (aBSREL) modelaBSREL (Smith et al.

221  2015) to test if positive selection has occurred on a proportion of branches (i.e. number of focal
222  foreground branches) at specific genes (Holm-Bonferroni corrected P < 0.05). This allowed us
223  tofilter the false positive cases without positive selection signal on specific focal foreground

224 branches (i.e. alkaline tolerant fish) out of the gene sets determined by BUSTED (FIG.2).We
225  defined the positively selected genes that required the shift across all focal foreground branches.
226  Since the branch-site models can cause false positive in case of multinucleotide mutations

227 (MNMs, Venkat et al. 2018), we performed more conservative branch-site (BS) model test

228  covering MNM situation (BS + MNM) (github.com/JoeThorntonLab/MNM_SelectionTests). In
229 this model, an additional parameter d represents the relative instantaneous rate of double

230 mutations compared to that of single mutations. We ran null models and alternative models in
231 BS + MNM and conducted LRTSs to evaluate significance (LRT P < 0.05). In this way, we further
232 filter false positive cases out of the previously positively selected gene sets that determined by
233 BUSTED and aBSREL (FIG.2). In this way, we took advantage of these three models to finalize

234  the positively selected genes (i.e. gene with sites under positive selection) in alkaline tolerant
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species within highland fish taxa and lowland fish taxa, respectively (FIG.2). We finally

performed GO enrichment analysis using topGO and REVIGO as earlier described.
Intersection of rapidly evolving and positively selected gene repertoire

To determine if there is both accelerated evolution and positive selection for specific genes, we
did the overlapping between rapidly evolving genes (REGs) and positively selected genes
(REGS) for highland and lowland alkaline tolerant fish species. In addition, we performed GO

enrichment analysis with topGO and REVIGO for the overlapping genes.

Results

Following de novo assembly and annotation, each of the eight schizothoracine fish
transcriptome assemblies had an average of 39,921 transcripts representing the complete or
partial protein-coding regions of genes (supplementary table S2). We further identified a total of
7,309 one-to-one orthologs shared by 15 fish species (i.e. range from 2 to 15 fish species), and

6,241 shared 1:1 orthologs including all 15 species (supplementary table S3).

Consistent pattern of molecular evolution

We estimated two categories of dN/dS ratios for 5,748 shared 1:1 orthologs (after restricting to
1.1 orthologs with at least 50 codons) in lowland fish taxa and highland fish taxa, separately. We
found consistent patterns of molecular evolution showing significant (LRT, P < 0.05,FDR < 0.2)
acceleration (increased dN/dS) or deceleration (decreased dN/dS) in a set of terminal branches
of alkaline tolerant species relative to the set of terminal branches of alkaline intolerant species
in large numbers of shared orthologs within lowland fish taxa (n = 952) and highland fish taxa (n
=162) (FIG. 3C, supplementary table S4).

Consistent signature of accelerated evolution

Building on earlier dataset of two discrete categories of dN/dS ratios separately representing
branches of alkaline tolerant and alkaline intolerant species across the phylogeny, we focused
on genes with significantly higher dN/dS (LRT, P < 0.05,FDR < 0.2) in alkaline tolerant species,

that is rapidly evolving gene (REGS) repertoire in alkaline tolerant species within highland and
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264  lowland fish taxa. We identified 110 REGs in highland fishes and 470 REGs in lowland fishes
265 (FIG. 4A). Out of 11 overlapping REGs, we found a set of ion transport and transmembrane
266  functions associated genes, such as sodium-dependent phosphate transport protein 2A

267 (SLC34A1l) and sodium-dependent phosphate transporter 1-B (SLC20A1b) (FIG, 4B,

268  supplementary table S5). Besides, we identified overlapping REGs related to energy

269  metabolism process, such Ectonucleotide pyrophosphatase/phosphodiesterase family member
270 1 (ENPP1) (FIG. 4B). Given that different REGs identified in either highland or lowland alkaline
271  tolerant fish species, we found a number of ion transport and ATP synthesis related genes in
272  REGs repertoire of highland fish (FIG. 4B, supplementary table S5), such as solute carrier

273  family 35 member F4 (SLC35F4), ATP-sensitive inward rectifier potassium channel 15

274  (KCNJ15), sodium-dependent serotonin transporter (SLC6A4), and NADP-dependent malic
275 enzyme (MEL). Similarly, in lowland fish, we also identified genes like solute carrier family 45
276  member 3 (SLC45A3), Potassium Inwardly Rectifying Channel Subfamily J Member 5 (KCNJ5) ,
277  and ATP synthase FO complex subunit B1 (ATP5PB) showing rapidly evolving in alkaline

278 tolerant species (FIG. 4B, supplementary table S5).

279

280  Further, we did GO enrichment analysis for both REGs datasets, showing 112 significantly

281  enriched GO terms (biological process) in highland fish (P < 0.05, fisher's exact test) and 189
282  significantly enriched GO terms in lowland fish. After the filtration by semantic similarity of GO
283  terms, we found a set of enriched dominant GO terms in highland fish were related to ion

284  transport and transmembrane functions (FIG. 4C, supplementary table S6), such as ion

285  transport (GO:0006811), regulation of calcium ion transport (GO:0051924), anion transport

286 (G0:0006820). In addition, in lowland fish, we observed a set of enriched dominant GO terms
287  associated with ion transport function (FIG. 4D, supplementary table S6), such as phosphate ion
288  transport (GO:0006817) and response to salt stress (GO:0009651). Finally, we found 5

289  overlapping GO terms related to ion transport and metabolism, including glycogen biosynthetic
290 process (G0O:0005978), phosphate ion transport (GO:0006817), inorganic anion transport

291 (GO:0015698), negative regulation of ion transport (GO:0043271), regulation of glycogen

292  metabolic process (G0O:0070873) and anion transport (GO:0006820) (supplementary table S6).
293  Collectively, this finding suggested the consistent signature of accelerated evolution in alkaline

294  tolerant species within highland taxa and lowland taxa.

295
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Consistent signature of positive selection

After two rounds of filtration with the use of BUSTED, aBSREL and BS+MNM models, we
identified 162 positively selected genes in highland alkaline tolerant fish (FIG. 5A,
supplementary table S7), and 156 PSGs in lowland alkaline tolerant fish species (FIG. 5A,
supplementary table S7). Out of 7 overlapping PSGs, we found these genes were mainly
related to apoptosis (cell death), ion transport and immune response, such as vitamin K-
dependent protein C precursor (PROC), E3 ubiquitin-protein ligase SH3RF1 (SH3RF1), 14-3-3
protein beta/alpha-A (YWHABA) and cadherin-related family member 2 (Cdhr2). Besides, we
found PSGs in highland alkaline tolerant species were also mainly involved in similar functional
categories as overlapping PSGs (FIG. 5B, supplementary table S7), such as transmembrane
protein 268 (TMEM268), transmembrane protein 266 (TMEMZ266), solute carrier family 35
member F4 (SLC35F4), solute carrier family 7, member 3 (SLC35F4) and solute carrier family 7,
member 3 (SLC7A3) involved in ion transport or transmembrane functions, probable
phospholipid-transporting ATPase VD (ATP10D) involved in energy metabolism, apoptosis-
inducing factor 1 (AIFM1) involved in apoptosis, interleukin-2 receptor subunit beta (IL2RB)
related to immune response. Similarly, in lowland alkaline tolerant fish species, these PSGs
were involved in four main categories (FIG. 5B, supplementary table S7), such as solute carrier
family 2 member 15b (SLC2A15b and potassium voltage-gated channel subfamily E member 4
(KCNE4) associated with ion transport function, phosphoinositide 3-kinase regulatory subunit 4
(PIK3R4) and lysosomal-associated membrane protein 1 (LAMP1) associated with apoptosis,
CD22 antigen (CD22) and immunoglobulin-like domain containing receptor 1b precursor (ILDR1)
involved in immune response, and plasma membrane calcium-transporting ATPase 3 (ATP2B3)

associated with energy metabolism.

Further, GO enrichment results showed that a number of significantly enriched GO terms (P <
0.05, fisher's exact test) are related to immune response, apoptosis, protein metabolisms for
PGSs in highland alkaline tolerant species, such as inflammatory response (GO:0006954),
natural killer cell activation (GO:0030101), cell killing (GO:0001906), muscle cell apoptotic
process (GO:0010656), regulation of innate immune response (G0O:0045088), immune
response (GO:0006955), ion transport (GO:0006811), sphingolipid metabolic process
(G0:0006665) and thyroid hormone metabolic process (G0:0042403) (FIG. 5C, supplementary
table S8). Similarly, in lowland alkaline tolerant species, the significantly enriched GO terms

were mainly related to four categories as well, such as T cell mediated cytotoxicity
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329 (G0:0001913) related to immune response, negative regulation of transport (GO:0051051) and
330 negative regulation of ion transport (GO:0043271) related to transport function, macroautophagy
331 (GO:0016236) related to apoptosis (cell death), regulation of phospholipid metabolic process
332 (G0:1903725) and sulfur amino acid metabolism (GO:0000096) (FIG. 5D, supplementary table
333  S8). Collectively, this finding suggested the consistent signature of positive selection in alkaline

334 tolerant species within highland taxa and lowland taxa.
335
336  Genes with evidence for both accelerated evolution and positive selection

337  We sought to find the intersection of REGs and PSGs repertoires, we found 29 overlapping

338 genes in highland alkaline tolerant fish (FIG.6A), mainly related to ion transport, apoptosis (cell
339 death), and energy metabolism, such as SLC35F4, SLC7A3, SLC6A4, TMEM266, CLDN15 and
340 ALDH16A1 and ATP6V1C1 (supplementary table S9). GO enrichment also suggested that

341 overlapping genes were mainly enriched in three main functional categories, such ion transport
342  (G0:0006811), anion transport (GO:0006820), regulation of calcium ion import (GO:0090279),
343  alditol phosphate metabolic process (GO:0052646), oxoacid metabolic process (G0O:0043436)
344  and regulation of muscle cell apoptotic process (G0O:0010660) (FIG.6B, supplementary table
345  S10). Similarly, we observed 26 shared REG/PSG genes in lowland alkaline tolerant fish (FIG.
346  6C, supplementary table S9). The additional GO enrichment result showed that the overlapping
347  genes mainly enriched into transport and metabolic process, such as negative regulation of ion
348  transport (G0O:0043271), negative regulation of potassium ion transmembrane transporter

349  activity (GO:1901017) and GTP metabolic process (G0O:0046039) (FIG. 6D, supplementary

350 table S10). Thus, this finding emphasized the consistent signatures of accelerated evolution and

351 positive selection in alkaline tolerant species.

352
353 Discussion

354  Our results support above three hypotheses that alkaline tolerant species shared the consistent
355  patterns of molecular evolution in protein-coding genes (dN/dS) and consistent signatures of
356 accelerated evolution (rapidly evolving gene) and positive selection (positively selected gene) in
357 highland and lowland fish. Specifically, these signatures include: genes experienced consistent
358 acceleration in evolutionary rates (increased dN/dS) in alkaline tolerant species, which are

359  mainly involved in ion transport, transmembrane and energy metabolism functions; genes
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showing consistent signals of positive selection in alkaline tolerant species within highland and
lowland fish taxa, these are mainly associated with ion transport/transmembrane, apoptosis (cell
death), immune response and energy metabolism processes. Altogether, this study provides
insights in understanding the common role of adaptive molecular evolution in fish adaptation to

alkaline environment, as well as adaptation to extreme environment at high-altitude.

Acid-base balance and osmoregulation

In freshwater fish, Na* and CI™ are actively taken up across the gill epithelium to counter the
passive loss of osmolytes to the more dilute environment. After transition to saline or alkaline
water, fish must increase its rate to balance the osmotic loss of water to the more solute-
concentrated environment and actively excrete Na® and CI™ from the gill to maintain ionic and
osmoregulation (Marshall 2005). Thus, alkaline tolerant species requires enhanced
physiological abilities including acid-base balance and osmoregulation to respond the elevation
in alkalinity or salinity of freshwater (Evans et al. 2005; Marshall 2005). Extremely alkaline
environment may accelerate the evolution of genes associated with osmoregulation in these
species survived in such harsh environment (Xu et al. 2017; Tong, Fei, et al. 2017). In this study,
we identified a set of genes associated with ion transport and transmembrane that tended to
evolve rapidly in alkaline tolerant species than their alkaline intolerant relatives (FIG. 4). This
result echoed our previous finding in G. przewalskii compared with other teleost fishes (alkaline
intolerance) (Tong, Fel, et al. 2017), also was in line with the rapidly evolving gene repertoire of
a wild fish, Amur ide (Leuciscus waleckii) that survived in extremely alkaline environment (Xu et
al. 2017). Interestingly, osmoregulation related genes including three solute carrier (SLC) genes
and one transient receptor potential cation channel (TRPV) gene exhibited consistent signature
of accelerated evolution in both highland and lowland alkaline tolerant fishes. SLC genes
encode transmembrane transporters for inorganic ions, amino acids, neurotransmitters, sugars,
purines and fatty acids, and other solute substrates (Dorwart et al. 2008). Recent evidences
indicted that adaptive evolution of SLC genes contributed to fish adaptation to high salinity and
high pH environment (Wang & Guo 2019; Tong, Fei, et al. 2017; Xu et al. 2017). Besides, we
also identified numbers of ion transport and transmembrane genes under positive selection in
alkaline tolerant fish species, such as potassium voltage-gated channel (KCN) genes. In Killifish,
an excellent model to study extreme environment adaptation, recent genome-wide studies also
found KCN genes have been implicated in freshwater adaptation (transition from marine to

freshwater environment) (Brennan et al. 2018). ) Besides a set of same rapidly evolving and
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393 positively selected genes identified in both highland and lowland alkaline tolerant fish species,
394  we found a large number of different genes under selection but involved in similar functions,
395  such as anion transport (GO:0006820) and phosphate ion transport (GO:0006817), indicating

396 the common role of adaptive molecular evolution during alkaline adaptation in fish.
397
398 Apoptosis and cell death

399 Extremely alkaline stress may cause extensive damage to fish, such as inducing cell apoptosis
400 (Monteiro et al. 2009; Zhao et al. 2016, 2020). However, several fish species can survive in this
401 harsh environment, such as schizothoracine (Gymnocypris przewalskii) (Tong, Fei, et al. 2017;
402  Tong & Li 2020), Magadi tilapia (Alcolapia grahami) (Wilkie & Wood 1996), and Amur ide

403  (Leuciscus waleckii) (Xu et al. 2017). This may also pose a barrier for alkaline tolerant fish as
404  compared with alkaline intolerant fish. Significantly, positively selected AIFM1, SH3RF1,

405 YWHABA, PIK3R4 and LAMP1 of alkaline tolerant species relative to alkaline intolerant species
406  have enrichment in a set of apoptosis pathways, such regulation of apoptotic signaling pathway
407  (G0:1902253) and macroautophagy (G0:0016236)(FIG. 5). Apoptosis is a form of programmed
408 cell death that occurs in multicellular organisms, it plays a significant role in the biochemical
409 events lead to characteristic cell changes (morphology) and death (Green 2011). Few direct
410 evidence suggested the roles of these candidate genes in response to extreme alkaline stress
411 in fish, but numerous studies had defined their functions in tolerance to harsh environments.
412  AIFML1 is a ubiquitous mitochondrial oxidoreductase involved in apoptosis, involved in sea

413 bream (Sparus aurata) response to acute environmental stress (Bermejo-Nogales et al. 2014).
414  YWHABA (14-3-3 protein beta/alpha-A) is an important gene showing the ability to bind a

415  multitude of functionally diverse signaling proteins, such as transmembrane receptors (Fu et al.
416  2000), that involved in spotted sea bass (Lateolabrax maculatus) tolerance to saline stress

417  (Zhang et al. 2019). In addition, LAMP1 plays an important role in lysosome biogenesis and
418  autophagy (Eskelinen 2006), which involved in common carp (Cyprinus carpio) response to
419  hydrogen peroxide environment. Collectively, the presence of apoptosis related genes under
420  positive selection may contribute to the alkaline adaptation of fish, how these adaptive

421  molecular changes affect the ability programmed cell death remains unknown.
422

423 Immune response
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Extreme environments (including high pH) impact on the physiology of animals in a wide variety
of ways. Recent advances in the understanding of environmental impacts were identified in
relation to specific areas of immune function, such as increase in pH resulted in a general
increase in immune function (Bowden 2008; Sridhar et al. 2020). Intriguingly, we identified
different immune genes under positive selectin in alkaline tolerant species within highland
(IL2RB, TLRS, IF144) and lowland (ILDR1 and CD44), but they all involved similar immune
functions, such as inflammatory response (G0O:0006954), natural killer cell activation
(GO:0030101), and T cell mediated cytotoxicity (GO:0001913). In another word, we found
different genes but conserved pathways may underlie fish adaptation to alkaline environment.
IF144, IL2RB and ILDR1 are important components of toll-like receptor (TLR) signaling pathway
that play key roles in the innate immune system (Rebl et al. 2010). For instance, our previous
comparative studies in alkaline tolerant fish, G. przewalskii identified key genes involved in TLR
pathway under selection (Tong, Feli, et al. 2017; Tong et al. 2015). In Nile tilapia (Oreochromis
niloticus), another alkaline tolerant species and stands as ideal model to study extreme
environment adaptation, a most recent comparative study identified numbers of immune genes
involved in natural Killer cell mediated cytotoxicity and NF-kappa B signaling pathway in
response to alkalinity stress (up to pH = 8.9) (Zhao et al. 2020), and echoes our present results.
Thus, it is possible that adaptive evolution changes (e.g. positive selection) acting on innate
immune genes in alkaline tolerant species contribute to their adaptation to extremely alkaline

environment.

Energy metabolism

It is not surprising that we identified a set of genes under either accelerated evolution or positive
selection, that enriched in diverse metabolisms, such as glucose metabolism, phosphate
metabolism, sulfur amino acid metabolism and protein metabolism in alkaline tolerant species
compared with their alkaline intolerant relatives. In general, metabolism processes were
involved in fish response to varies environmental stresses (including alkaline stress) by a huge
amount of research (Wood 1991). A most recent study highlights the genes involved in
conserved mitochondrial pathways under selection in adaptation to extreme environment
(Greenway et al. 2020). In addition to our previous studies in highland alkaline tolerant fish, we
found a number of genes associated with energy metabolism processes under selection as well,
such as mitochondrial function and protein metabolism (Tong, Fei, et al. 2017). Moreover,

increasing studies on alkaline tolerant fish species (e.g. Killifish) pointed out the roles of varied
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metabolisms in extreme environment (e.g. high pH) adaptation (Scott et al. 2019; Zhao et al.
2020; Wang & Guo 2019; Xu et al. 2017). Altogether, our analysis infer that the adaptive
molecular evolution of metabolism associated genes may be indispensable and common

features to alkaline adaptation as well as extreme environment adaptation in fish.

Conclusion

In summary, this comparative genomics study of 15 fish species suggests the common role of
alkaline adaptation in fish, regardless of highland or lowland background environments. Our
results also highlight that the adaptive evolution of protein-coding genes are likely to play a
crucial role in fish response to extreme environment, such as extremely high PH. Notably, this
study provides putative genomic signatures of shift in selection and alkaline adaptation in
several alkaline tolerant fish species, further study should include large scale of omics data of
more alkaline tolerant fish species and their intolerant relatives as multiple pairs to demonstrate

the genetic basis of alkaline adaptation in fish at genome-wide scale.
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636 Figure legend

637  FIG. 1. Overview of geographic distributions of two alkaline tolerant schizothoracine fish species
638 and their habitats in the northeastern Tibetan Plateau. Map depicting the geographic

639  distributions of G. p. przewalskii in Lake Qinghai, and G. p. kelukehuensis in Lake Keluke.

640 Photos showing the representative specimens of G. p. przewalskii and G. p. kelukehuensis.
641  Photo credit: Chao Tong and Kai Zhao.

642

643  FIG.2. The flowchart represents the analysis pipeline: (1) sample collection and transcriptomics;
644  (2) data assembling and annotation; (3) gene ortholog; (4) phenotype data and (5) molecular
645  evolution analysis.

646

647  FIG. 3. Consistent patterns of molecular evolution in alkaline tolerant fish species.

648 (A-B) Species trees for lowland and highland fish taxa were pruned from the Fish Tree of Life

649  (https://fishtreeoflife.org/). Alkaline tolerant taxa and alkaline intolerant taxa are depicted in

650 orange and sky blue, respectively. Two schematic diagrams depicting the comparisons made
651  between alkaline tolerant and alkaline intolerant fish species, w1l representing the rate of

652  molecular evolution of alkaline tolerant species and w2 for the alkaline intolerant species (C)
653  Number of tested orthologs (N = 5,748), and number of orthologs under consistent shifts in
654 rates of molecular evolution in alkaline tolerant relative to alkaline intolerant species within

655  highland fish taxa and lowland fish taxa (P < 0.05, likelihood ratio test; false discovery rate <
656 0.2).

657

658 FIG. 4. Consistent signature of accelerated evolution in alkaline tolerant species within highland
659 and lowland fish taxa.

660 (A) Venn diagram depicting numbers of rapidly evolving genes (REGS) in highland alkaline
661 tolerant species, lowland alkaline tolerant species and both.

662 (B) Highland fish specific REGs, lowland fish specific REGs and overlapping REGs mainly

663 related to ion transport, transmembrane and energy metabolism functions. The table showing
664 the representative REGs under each category.

665 (C) REVIGO plot depicting the dominant enriched GO terms for REGs in highland alkaline

666 tolerant fish. The scale of dark dot indicating the number of included enriched GO terms under
667 adominant GO term, the color scale representing the P value transformed by log10.

668 (D) REVIGO plot depicting the dominant enriched GO terms for REGs in lowland alkaline

669 tolerant fish.
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670

671 FIG. 5. Consistent signature of positive selection in alkaline tolerant species within highland and
672 lowland fish taxa.

673  (A) Venn diagram depicting numbers of positively selected genes (PSGs) in highland alkaline
674 tolerant species, lowland alkaline tolerant species and both.

675 (B) Highland fish specific PSGs, lowland fish specific PSGs and overlapping PSGs mainly

676 related to four categories, including ion transport/transmembrane, apoptosis/cell death, immune
677 response and energy metabolism. The table showing the representative PSGs under each

678  category.

679 (C) REVIGO plot depicting the dominant enriched GO terms for PSGs in highland alkaline

680 tolerant fish. The dark dot scale indicating the number of included GO terms under a dominant
681 GO term, the color scale representing the P value transformed by log10.

682 (D) REVIGO plot depicting the dominant enriched GO terms for PSGs in lowland alkaline

683 tolerant fish.

684

685 FIG.6. The intersection of rapidly evolving genes (REGs) and positively selected genes (PSGSs)
686 in alkaline tolerant species within highland and lowland fish taxa.

687  (A) Venn diagram depicting numbers of REGs, PSGs and their overlapping genes in highland
688 alkaline tolerant species.

689 (B) REVIGO plot depicting the dominant enriched GO terms for overlapping genes in highland
690 alkaline tolerant species.

691 (C) Venn diagram depicting numbers of REGs, PSGs and their overlapping genes in lowland
692  alkaline tolerant species.

693 (D) REVIGO plot depicting the dominant enriched GO terms for overlapping genes in lowland
694  alkaline tolerant species.

695

696


https://doi.org/10.1101/2020.12.23.424241
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424241; this version posted April 16, 2021. The copyright holder for this preprint (which

697

698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplementary table capture

supplementary table S1: Information for additional omics data.

supplementary table S2: Statistics of transcriptome assembly and protein-coding genes.
supplementary table S3: Statistics of orthologs in 15 fish species.

supplementary table S4: Patterns of molecular evolution in alkaline tolerant and alkaline
intolerant species within lowland fish taxa and highland fish taxa.

supplementary table S5: Rapidly evolving gene repertoires in highland alkaline tolerant and
lowland alkaline tolerant species.

supplementary table S6: Significantly enriched GO terms for rapidly evolving gene of highland
alkaline tolerant and lowland alkaline tolerant species.

supplementary table S7: Positively selected gene repertoires in highland alkaline tolerant and
lowland alkaline tolerant species.

supplementary table S8: Significantly enriched GO terms for positively selected gene of
highland alkaline tolerant and lowland alkaline tolerant species.

supplementary table S9: Shared REG/PSG repertoires in highland alkaline tolerant and lowland
alkaline tolerant species.

supplementary table S10: significantly enriched GO terms for shared REG/PSG of highland

alkaline tolerant and lowland alkaline tolerant species.
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