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Abstract

Gene essentiality studies have been performed on numerous bacterial pathogens, but
essential gene sets have been determined for only a few plant-associated bacteria.
Pseudomonas protegens Pf-5 is a plant-commensal, biocontrol bacteria that can control
disease-causing pathogens on a wide range of crops. Work on Pf-5 has mostly focused on
secondary metabolism and biocontrol genes, but genome-wide approaches such as high-
throughput transposon mutagenesis have not yet been used in this species. Here we
generated a dense P. protegens Pf-5 transposon mutant library and used transposon-
directed insertion site sequencing (TraDIS) to identify 446 genes essential for growth on rich
media. Genes required for fundamental cellular machinery were enriched in the essential
gene set, while genes related to nutrient biosynthesis, stress responses and transport were
under-represented. Comparison of the essential gene sets of Pf-5 and P. aeruginosa PA14,
an opportunistic human pathogen, provides insight into the biological processes important
for their different lifestyles. Key differences include cytochrome c biogenesis, formation of
periplasmic disulfide bonds, lipid biosynthesis, ribonuclease activity, lipopolysaccharides and
cell surface structures. Comparison of the Pf-5 in silico predicted and in vitro determined
essential gene sets highlighted the essential cellular functions that are over- and
underestimated by each method. Expanding essentiality studies into bacteria with a range
of lifestyles can improve our understanding of the biological processes important for

survival and growth in different environmental niches.
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Importance

Essential genes are those crucial for survival or normal growth rates in an organism.
Essential gene sets have been identified in numerous bacterial pathogens, but only a few
plant-associated bacteria. Employing genome-wide approaches, such as transposon
insertion sequencing, allows for the concurrent analysis of all genes of a bacterial species
and rapid determination of essential gene sets. We have used transposon insertion
sequencing to systematically analyze thousands of Pseudomonas protegens Pf-5 genes and
gain insights into gene functions and interactions that are not readily available using
traditional methods. Comparing Pf-5 essential genes with those of P. aeruginosa PA14, an
opportunistic human pathogen, provides insight into differences in gene essentiality which

may be linked to their different lifestyles.

Introduction

Pseudomonas is a ubiquitous and extremely diverse genus with species occupying a range of
niches and lifestyles, spanning from opportunistic human pathogens, such as P. aeruginosa,
through to plant growth promoting strains, such as P. protegens Pf-5 (1). Pseudomonads
have a core set of common genes (2), but the mechanisms that underly their niche
specializations are not well understood (3). Determining the essential gene complement of
related microbes residing in different niches has the potential to shed light on differences in
the biochemical functions required for survival and growth in specific environments. As
observed in other bacterial taxa, each pseudomonad is expected to have a number of
common essential genes together with an additional set of strain-specific essential genes,

which may reflect differences in lifestyle (4, 5).
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Essential genes are those crucial for survival or normal growth rates in an organism (6, 7).
When bacterial genes are manipulated, essential genes are considered to be those for which
mutations cannot be made as deletion of these genes will be lethal (8). Experimentally
determining which bacterial genes are essential is important for understanding the
mechanisms that control bacterial growth, identifying the mechanisms by which microbes
specialize for their environmental niches, and can assist with validating computational
models of gene essentiality (7, 9, 10). While gene essentiality studies have been performed
on numerous bacterial pathogens, essential gene sets have been determined for only a few
plant-associated bacteria, including Herbaspirillum seropedicae SmR1, a plant growth

promoting endophyte, and three nitrogen-fixing root endosymbionts (11, 12).

P. protegens Pf-5 (hereafter referred to as Pf-5) is a plant-commensal, biocontrol bacteria
originally isolated from the roots of cotton plants (13). Pf-5 is known to produce a range of
secondary metabolites with antibacterial and antifungal activities (14) and can control
disease-causing pathogens on a wide range of crops, including cotton, wheat, cucumber and
tomatoes (15-18). Analysis of the Pf-5 genome has shed light on many potential functions
and molecular systems utilized in its rhizospheric lifestyle (14, 19). Work on specific genes
and gene networks has indicated functions for a number of Pf-5 genes, particularly
regulatory and metabolic genes involved in the production of secondary metabolites.
However, genome-wide approaches such as high-throughput transposon mutagenesis have

not yet been used to elucidate gene function or essentiality in this important organism.

Here, we define the essential genome of P. protegens Pf-5 using transposon-directed

insertion site sequencing (TraDIS). This method combines high-density random transposon
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insertion mutagenesis with high-throughput sequencing to concurrently link genotype and
phenotype for thousands of genes (20, 21). TraDIS and other transposon mutagenesis
techniques have successfully been used to determine the essential gene sets of a wide
range of bacteria (22). We also compare the Pf-5 essential gene set with that of

P. aeruginosa PA14 (hereafter referred to as PA14), an opportunistic human pathogen,

providing insight into biological processes critical for their different lifestyles.

Materials and Methods

Transposon mutant library generation and sequencing

Pseudomonas protegens Pf-5 was isolated from soil of a cotton field in Texas, USA (13) and a
complete genome sequence has been generated for this organism (19; ENA accession
number CP0O00076). Construction of a P. protegens Pf-5 dense Tn5 mutant library was
carried out using the technique previously described (20, 21). Briefly, a custom transposome
was constructed using EZ-Tn5 transposase (EpiCentre) and a transposon carrying a
kanamycin (Km) resistance cassette isolated from the plasmid pUT_Km (23). The custom
transposome was electroporated into freshly prepared electrocompetent Pf-5 cells, and the
cells were plated on LB-Km agar (16 ug mL?). Approximately 125,000 colonies were
collected from each of four independent batches, combined and stored as glycerol stocks at
-80°C. Genomic DNA was isolated from two aliquots of stock containing approximately 2.8 x
10° cells and the transposon insertion sites were sequenced using the methods described
previously (21) on an Illlumina MiSeq platform to obtain 52 bp single-end genomic DNA

reads.
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92 Bioinformatic analysis

93 The transposon insertion sites were mapped to the Pf-5 genome and statistically analyzed
94  using the Bio-Tradis pipeline (21). A 1 bp mismatch in the transposon tag was allowed and
95 insertions in the extreme 3’ end (final 10%) of each gene were discounted as they may not
96 inactivate the gene. Reads with more than one mapping location were mapped to a random
97  matching location to avoid repetitive elements artificially appearing to be essential (0.4% of
98 reads; 21). The pipeline calculates an insertion index value for each gene. This is the number
99  of transposon insertion sites per gene normalized by the length of that gene. A linear
100 regression of the gene insertion indexes of the replicates was completed in R (24). There
101  was a correlation co-efficient of R = 0.88 (p < 2.2 x 101®) between the insertion indexes of
102  the replicates which validates the reproducibility of our replicates and is consistent with the
103  high reproducibility between independent replicates in transposon insertion sequencing
104  studies (25). Essential genes are those with an insertion index lower than the essentiality
105  cut-off value determined by the Bio-Tradis pipeline (26). In this study we required essential

106  genes to have an insertion index lower than the cut-off value in both replicates.

107

108 Essential gene analysis

109 A Cluster of Orthologous Groups (COG) code (27) and Kyoto Encyclopedia of Genes and

110 Genomes (KEGG) Orthology (KO) term (28, 29) for each Pf-5 gene was gathered using

111  eggNOG mapper v1 (30, 31; Dataset S1). We used eggNOG mapper v2 (31, 32) to find this
112  information for 18 essential genes where there were no orthologs identified by eggNOG

113  mapper v1. COG functional category enrichment analysis of the essential gene set compared
114  to the whole gene set was conducted using Fisher’s exact test (p < 0.05) and corrected for

115  multiple testing using a 5% false-discovery rate (FDR; 33). The sum of all categories does not
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116  equal the total number of genes in the genome as some genes are assigned multiple COG
117  codes. The KEGG mapper tool (34) was used to map the essential genes to KEGG pathways.
118

119 The presence and type of signal peptides in essential genes were identified using SignalP
120  v5.0 (Dataset S1; 35) and the presence of transmembrane domains in proteins was

121  determined using TMHMM v2.0 (Dataset S1; 36). As a transmembrane helix close to the
122 N terminus is likely to be a signal peptide, proteins were only classed as membrane proteins
123  if transmembrane helices were detected outside the first 50 residues. Enrichment for genes
124  with signal peptides or transmembrane helices in the essential gene set compared to the
125  whole genome was tested using Fisher’s exact test (p < 0.05) with Bonferroni correction for
126  testing multiple values.

127

128  Pf-5 essential genes were also compared with PA14 essential genes determined by Poulsen
129  and colleagues, which were based on growth in LB media (5). The Poulsen study determined
130 the essential protein-coding genes using two statistical methods: the family-wise error rate
131  (FWER) method, which identified 437 genes as essential, and the false discovery rate (FDR)
132  method, which identified an additional 159 genes as essential (total of 596 essential genes).
133  Orthologs of Pf-5 essential genes in PA14 were determined using Proteinortho v5 (37) and
134  these were used to compare Pf-5 essential genes to the sets from PA14 derived from each
135  statistical method.

136

137  Insilico prediction of Pf-5 essential genes was conducted using Geptop 2.0

138  (http://cefg.uestc.cn/geptop/) with amino acid sequences and an essentiality score cutoff of

139  0.24 (38). The predicted Pf-5 essential genes were compared with the in vitro determined
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140  Pf-5 essential genes. The gene PFL_0842 was originally annotated as a pseudogene, so it
141  was not assessed by Geptop (marked ‘N/A’ in Dataset S1).

142
143  Data availability

144  All sequence data generated in this study have been submitted to the EBI European
145  Nucleotide Archive (https://www.ebi.ac.uk/ena/) under the project accession number
146  PRJEB39292, within which are the two samples analyzed here ERR4327923 and

147  ERR4327924.

148

149 Results and Discussion

150 Identification of P. protegens Pf-5 essential genes

151  Our dense mutant library of P. protegens Pf-5 was generated using random saturation

152  mutagenesis with a Tn5 transposon containing a kanamycin resistance cassette. Over

153 500,000 transposon mutants were pooled in the construction of the library and the analysis
154  of sequencing data showed there are ~256,000 unique transposon insertion sites in the

155  mutant library (Table 1). Transposon insertions occurred evenly throughout the genome

156  (Figure 1a), with an average of one transposon insertion every ~27 bp and an average of 45
157  transposon insertion sites in each non-essential protein-coding gene. Multiple insertion sites
158 in agene are independent evidence that a gene is not essential under the specific conditions
159  used (39, 40). Rarefaction analysis showed that the sequencing reached saturation in terms
160  of the number of unique transposon sites identified in the library (Figure 1c).

161
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Figure 1. P. protegens Pf-5 transposon mutant library overview. (A) Distribution of
transposon insertion sites across the genome. The outermost circle in grey shows the Pf-5
genome in Mbp. The length of the blue bars in the middle circle represents the number of
sequencing reads at each unique transposon insertion location. The inner circle in orange
shows the locations of genes characterized as essential with TraDIS. Circular figure created
using the R package circlize (41). (B) Correlation of gene insertion indexes for the two
replicates of the library. Insertion index is calculated as the number of transposon insertion
sites in a gene divided by the gene length. A line through the origin with a slope of 1 is also

shown. (C) Rarefaction analysis showing the relationship between sequencing depth and the
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173 number of insertion sites in the transposon mutant library. Analysis conducted using the
174  seq_saturation_test.py script available at https://github.com/francesca-short/tradis_scripts
175 (42) and visualized using the R package ggplot2 (43). (D) A section of the Pf-5 genome

176  containing both essential (orange) and non-essential (grey) genes. The frequency of

177  sequence reads at each transposon insertion site is capped at 1 and genes are annotated
178  with Pf-5 gene names or locus tag numbers. The genes grolL and groS have very few or no
179 insertions and are essential genes. The genes PFL_4840, PFL_4841 and PFL_4842 have a
180 high transposon insertion density and are therefore classed as non-essential genes.

181  Transposon insertion sites are visualized using Artemis (44).

182

183  Table 1. Pseudomonas protegens Pf-5 transposon mutant library metrics based on Bio-Tradis

184  analysis.

Replicate No. of reads No. (%) of No. of unique Insertion index
with matching aligned reads insertion sites  for essentiality
transposon tag cut-off

1 1,320,631 1,278,951 (96.8%) 242,827 0.0076
2 1,555,998 1,504,986 (96.7%) 256,020 0.0089
185
186

187  We found 446 out of 6,109 coding sequences (7.3%) were critical for Pf-5 survival and

188  growth on LB agar (Dataset S1). Other pseudomonads that have their essential gene sets
189  characterized also have similar proportions of their genomes determined to be essential
190 genes. For example, P. aeruginosa PA14 has 596 out of 5894 protein-coding genes (10%)
191 identified as essential when grown on LB (5) and 6% of the P. aeruginosa PAO1 genome was
192  found to be essential for growth on a complex medium (45). The few plant-associated

193  bacteria that have their essential gene sets identified have similar proportions of essential

10


https://doi.org/10.1101/2020.07.16.205906
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.205906; this version posted July 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

194  genes, for example H. seropedicae SmR1, a plant endophyte, required 372 out of 4804

195 protein-coding genes (7.7%) for survival and growth on rich media (12) and 5.6% of the

196 genome of the root endophyte Rhizobium leguminosarum bv. viciae 3841 was determined
197  to be essential (11). Pf-5 and other plant-associated bacteria often have large genomes with
198 numerous stress response and biosynthetic pathways that are important for survival in their
199  highly variable environmental niches (19, 46, 47). Many of these pathways were likely not
200  critical for Pf-5 survival in this study due to the nutrient-rich and low stress conditions.

201

202  Transposon insertion density was slightly higher for genes located near the origin of

203  replication compared to genes located closer to the terminus of replication (Figure 1a). This
204  isregularly observed in genomic and transcriptomic studies due to ongoing DNA replication
205 inthe bacterial population. In keeping with this, the density of essential genes was also

206 somewhat lower towards the replication terminus (Figure 1a). Lower numbers of essential
207  genes in terminus regions may also reflect common patterns of genome arrangement; for
208 example, terminus regions of bacterial genomes are often poorly conserved and experience
209 higher rates of lateral gene transfer and rearrangement (48, 49).

210

211  The set of genes determined to be essential under the test conditions included PFL_0842,
212  previously annotated as a pseudogene. Analysis showed that this sequence likely represents
213  afunctional gene, as it has positional orthologs with the same genomic context (part of an
214 operon with nusA and infB) in numerous Pseudomonas species annotated as rimP ribosome

215  maturation factor (50). Based on this, PFL_0842 has been annotated as rimP in this study.

216

11
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217  Functions of essential genes

218 A functional overview of the Pf-5 genome was obtained by classifying the genes using

219  Clusters of Orthologous Groups (COG) categories (27). 87.3% of Pf-5 coding genes were able
220  to be assigned a COG code. Several functional categories were significantly over-

221  represented in the set of essential genes relative to the overall genome, most notably

222  translation (J); cell cycle control, cell division and chromosome partitioning (D); coenzyme
223  transport and metabolism (H); nucleotide transport and metabolism (F) as well as

224  intracellular trafficking, secretion, and vesicular transport (U); cell wall/membrane/envelope
225  biogenesis (M); and replication, recombination and repair (L; Figure 2). Other functional

226  categories were significantly under-represented in the set of essential genes including

227  secondary metabolite biosynthesis, transport and catabolism (Q); amino acid transport and
228  metabolism (E); inorganic ion transport and metabolism (P); transcription (K); and signal
229  transduction mechanisms (T; Figure 2). Genes with unknown function (S) make up a

230  significantly lower proportion of the essential gene set (10.6%) compared to the whole Pf-5
231  genome (22%; Figure 2).

232

12
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(C) Energy production and conversion

(D) Cell cycle control, cell division, chromosome partitioning
(E) Amino acid transport and metabolism

(F) Nucleotide transport and metabolism

(G) Carbohydrate transport and metabolism

(H) Coenzyme transport and metabolism

(I) Lipid transport and metabolism

(J) Translation, ribosomal structure and biogenesis

(K) Transcription

(L) Replication, recombination and repair

(M) Cell wall/membrane/envelope biogenesis

(N) Cell motility

(O) Posttranslational modification, protein turnover, chaperones
(P) Inorganic ion transport and metabolism

(Q) Secondary metabolites biosynthesis, transport and catabolism
(S) Function unknown

(T) Signal transduction mechanisms

(V) Intracellular trafficking, secretion, and vesicular transport

(V) Defense mechanisms

. Whole genome
Essential genes

I I I :
v
- i
*
T - T
*
*

*

o
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o
o
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0.10 0.15 0.20 0.25

Proportion of genes

Figure 2. Cluster of Orthologous Groups (COG) functional enrichment analysis of

P. protegens Pf-5 essential genes compared to the whole genome. COG category

enrichment was tested using Fisher’s exact test and corrected for multiple testing using a

5% false-discovery rate; * indicates significant enrichment or depletion with p < 0.05; six

COG categories are not included in the figure: categories A and B contain 2 and 5 non-

essential genes, respectively, and categories R, W, Y and Z contain no genes.

The pattern of enrichment in essential genes belonging to COG categories for fundamental

cellular machinery, such as translation and ribosome structure, coenzyme transport and

metabolism and cell envelope biogenesis, reflects the fact that these functions are critical

for survival and growth. In contrast, genes belonging to the COG category of transcription

were notably under-represented in the essential gene set, presumably as transcriptional

regulatory genes are typically required under changing environmental conditions (51), and

therefore were not essential during growth in stable laboratory conditions with rich media.

13
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248

249 At the metabolic pathway level, most of the key pathways were essential in Pf-5, including
250 the TCA cycle, fatty acid biosynthesis, gluconeogenesis, peptidoglycan biosynthesis and

251  heme biosynthesis, with all or most of the genes within each of these pathways observed
252  within the essential gene set. Genes required for glycolysis, however, were not essential in
253  this study, presumably as the mutant library was grown on LB media which contains high
254  concentrations of peptides and amino acids which feed into other metabolic pathways.

255  Similarly, under-representation of genes required for amino acid and inorganic ion transport
256  and metabolism was observed, likely due to these biosynthetic pathways not being required
257  for growth on rich media; this has also been observed in other gene essentiality studies

258  across a wide range of bacterial taxa (52). Secondary metabolite biosynthesis, transport and
259 catabolism genes were also under-represented in the essential gene set, potentially due to
260 the limitation of TraDIS methodology in the detection of genes related to public goods (53).
261

262  Although Pf-5 encodes 780 transporter proteins (54), only four transport systems were

263  essential: the LptBFG, MsbA, LolCDE, and CcmABC complexes. The first three of these

264  transport systems are involved in the biogenesis of the outer membrane, while CcmABC is a
265 heme chaperone-release system required for the biogenesis of cytochrome c (55, 56). The
266  non-essentiality of other transporters was likely due to functional redundancy, the presence
267  of gene duplicates, or that they were superfluous for growth in rich media.

268

269 Among the set of essential genes, a number remain annotated as hypothetical genes (35
270  genes or 7% of the essential gene set). The essentiality of these hypothetical genes indicates

271  they are associated with as yet unknown functions that are critical for Pf-5 survival and

14
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272  growth on rich media. Given this, characterization of these genes would be of particular
273 interest and may provide further useful insights into fundamental biological processes in
274  this plant-associated bacteria.

275
276  Essential genes associated with mobile genetic elements

277  The Pf-5 genome contains six prophage regions (Prophage 01-06) and two large genomic
278  islands (PFGI-1 and -2), together comprising a total of 226 genes (57). Ten of the essential
279  Pf-5 genes reside within these genome regions (Dataset S1). This includes PFL_4679,

280  encoding type IV pilus biogenesis protein PilR which is located within ICE-type genomic

281  island PFGI-1. This gene is part of a pil cluster, orthologs of which in PA14 are also located
282  within a genomic island and have been found to be involved with conjugative transfer of the
283  excised island to recipients (58, 59), but were not found to be essential in PA14 Tn-Seq

284  experiments using rich medium (5). As pilR was the sole essential gene from this cluster in
285  Pf-5, it may be that mutants of this gene were not viable due to accumulation of a toxic

286 intermediate product such as non-polymerized pilin monomers, rather than due to impaired
287  pilus formation capacity, which would presumably select against mutation of genes for the
288  other pilus components.

289

290  The F-pyocin-like Prophage 01 contains the essential gene PFL_1210 which encodes the

291  transcriptional regulator PrtR (57), a Cro/Cl-like repressor of pyocin production, which has
292  been previously found to be essential for P. aeruginosa PAO1 in rich media (45, 60).

293  Essentiality of the prtR gene was presumably important for control of production of these
294  polypeptide toxins to prevent self-lysis. Other prophage regions contain additional

295  regulators observed to be essential, including two more Cro/C1-type transcriptional
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296  repressors (PFL_2126 in Prophage 04 and PFL_3780 in Prophage 06) and a peptidase

297  S24-like protein/LexA-like repressor (PFL_1986 in Prophage 03; 57), which may similarly be
298 required to prevent production of toxins or phage lytic conversion.

299

300 Of the remaining five MGE-associated essential genes, two have only predicted functions:
301 the putative ATP-dependent nuclease PFL_1842 in Prophage 02 and the putative nuclease
302  PFL_4984 within PFGI-2 (57); the remainder are conserved hypothetical proteins and

303  potentially important targets for future characterization efforts. The presence of multiple
304  essential genes within these MGE regions shows the capacity for such horizontally inherited
305  material to acquire critical functions within bacterial cells, either in aiding stability of the
306  MGE within the genome (for example, toxin/antitoxin systems) or contributing other

307  conditionally essential functions.

308
309 Protein subcellular localization of essential genes

310  Enrichment analysis for genes containing signal peptide sequences showed that genes that
311 encode proteins containing lipoprotein and general secretion (sec) signal peptides were
312  significantly under-represented in the essential gene set when compared to the Pf-5

313 genome as a whole (Table 2). Similarly, genes encoding proteins with transmembrane

314  helices were significantly under-represented in the Pf-5 essential gene set (Table 2). This
315 under-representation in the essential gene set is consistent with the subcellular localization
316  of essential genes of 20 other gram-negative bacteria (61). As transmembrane proteins and
317 those containing signal peptides are secreted outside cells or anchored in cell membranes
318 they are often involved in interactions with other microorganisms and hosts (62) and

319  therefore may not have been required under axenic conditions.
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Table 2. Bioinformatic prediction of genes with signal peptide and transmembrane helices

in the Pf-5 essential gene set and the whole Pf-5 genome.

Protein subcellular Number in Proportion Number in Proportion
localization essential of essential whole of all genes
gene set genes genome

SP 19 4.3%' 673 11.0%
TAT 3 0.7% 55 0.9%
LIPO 8 1.8%" 260 4.3%
Total signal peptides 30 6.7% 988 16.2%
Transmembrane +

. 40 9.0% 1089 17.8%
proteins®

SP = Sec signal peptide; TAT = Tat signal peptide; LIPO = Lipoprotein signal peptide
Enrichment of these genes in essential gene set was tested using Fisher’s exact test with
Bonferroni correction for testing multiple values.

" indicates significant underrepresentation in the essential gene set with p < 0.05

A one or more transmembrane helices detected outside the first 50 residues

Comparison of essential genes in P. protegens Pf-5 and P. aeruginosa PA14

Based on our analysis, there were 446 essential protein-coding genes in Pf-5 when grown on
LB media. A similar Tn-Seq study in PA14 has recently investigated essential protein-coding
genes for this opportunistic human pathogen on LB media (5). This paper utilized two
statistical methods to identify essential genes, the first based on the family-wise error rate
(FWER) method which identified 437 genes as essential and the second using a false
discovery rate (FDR) method which identified 596 genes as essential. We compared our set
of Pf-5 essential genes with both sets from Poulsen et al. (5) and found the FDR set more

closely aligned with our essential gene calls (Dataset S1). The FDR set also included genes
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338 expected to be essential, such as FoF1 ATPase, cell division and ribosomal protein genes,
339  which were not identified by the family-wise error rate analysis (5).

340

341  Using the FDR set from Poulsen et al. (5) we investigated the similarities and differences
342  between the essential gene sets of Pf-5 and PA14, finding that most (80%) of Pf-5 essential
343  genes overlap with those of PA14, while each species also had a number of unique essential
344  genes (Figure 3). The majority of the 357 overlapping essential genes relate to basic cellular
345  functions, such as translation, cell envelope biogenesis, co-enzyme transport and

346  metabolism, energy production, replication and recombination, and lipid transport and

347 metabolism.

348
PA14 Pf-5
38 non-essential in PA14
141 non-essential in Pf-5
— 239 357 89 . 44 no PA14 ortholog
98 no Pf-5 ortholog
7 not assessed in PA14
349 - -

350  Figure 3. Comparison of the essential protein-coding genes of P. protegens Pf-5 with the
351 essential genes of P. aeruginosa PA14 determined using a false discovery rate adjustment
352 method (5). The PA14 orthologs of seven Pf-5 essential genes did not have their essentiality
353 assessed by Poulsen et al. (5). Venn diagram created using Multiple List Comparator

354  (www.molbiotools.com/listcompare.html).

355

18


https://doi.org/10.1101/2020.07.16.205906
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.205906; this version posted July 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

356  Genes essential only in Pf-5

357  There were 38 genes within the Pf-5 essential set which were not flagged as essential in
358  PA14 (Figure 3). This set included genes related to energy generation (cytochrome ¢

359 biogenesis), formation of periplasmic disulfide bonds, three ribosomal proteins, amino acid
360  biosynthesis, cell surface structures and hypothetical proteins.

361

362  Two-thirds of the genes in the cytochrome ¢ maturation pathway are essential in Pf-5

363  (ccmACEF), but this pattern was not observed in PA14, where only one of these was in the
364  essential set (ccmB). The ccmABCDEF genes encode proteins that carry out post-

365 translational modifications on c-type cytochromes to facilitate their binding to heme (63).
366  The essentiality of this set of genes in Pf-5 is consistent with the importance of generating
367  cytochrome c to facilitate heme production.

368

369  Two of the genes essential only in Pf-5 encode proteins involved in the formation of

370  disulfide bonds (dsbD and trxB_1). DsbD is a thiol:disulfide interchange protein which is the
371  sole provider of periplasmic reducing power and has a role in cytochrome ¢ maturation (64).
372  In Escherichia coli DsbD is important, but not essential for cytochrome ¢ maturation as

373  developing cytochromes can use either the DsbD-independent or dependent pathways (64).
374  The PA14 dsbD ortholog dipZ2 and its paralog dipZ were both determined to be non-

375  essential when grown on rich media (5). The essentiality of dsbD in Pf-5, but not in PA14,
376  may reflect a different balance in the proportion of maturing c-type cytochromes that pass
377  through each pathway. The Pf-5 gene trxB_1 that encodes thioredoxin reductase was

378  essential, but its paralog trxB_2 was non-essential. In PA14 there are also two paralogs,

379  trxB_1 and trxB_2, but both of these genes were non-essential (5). Trx genes in bacteria
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380  supply reducing power to DsbD and play a role in stress responses, such as oxidative stress
381  in Pseudomonas syringae pv. tomato (65). The difference in essentiality of the two Pf-5 trxB
382  paralogs suggests that TrxB_1 may be the main provider of reducing power to DsbD and
383  that TrxB_2 may be required under stress or other conditions.

384

385  Three ribosomal protein genes romE_2, romF and rom/ were essential in Pf-5, but not in
386  PA14.In Pf-5 rpomE_2 codes for a C+ form of the 50S ribosomal protein L31 which is stable
387  when bound to a zinc ion; in contrast, romE_1 encodes a C- form of the protein which lacks
388  metal chelating capacity (66). The essentiality of romE_2 in Pf-5 reflects the zinc replete
389  conditions in this study, while romE_1 has been found to be conditionally essential for Pf-5
390 inzinc limited conditions (66). In PA14, both of the genes annotated as romE were non-
391  essential when grown on LB (PA14_66710 and PA14_17700; 5). The genes that encode 50S
392  ribosomal proteins L32 (rpomF) and L35 (rpml), whilst not essential in PA14 (5), have been
393 found to be essential in a number of other bacteria. For example, romF was essential in
394  Burkholderia thailandensis E264 (67) and both genes were essential in Acinetobacter baylyi
395 ADP1 (68).

396

397  Genes encoding three proteins responsible for the formation of homoserine and its

398  conversion to threonine (thrBC and hom) were essential in Pf-5, but not in PA14. These
399 amino acids are important intermediates in amino acid biosynthesis and are precursors for
400 the formation of methionine, serine, glycine and cysteine (69). These results suggest that
401  PA14 was better able to take up threonine from the media in these conditions than Pf-5.

402
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403  The gene eda which encodes 2-dehydro-3-deoxyphosphogluconate aldolase/4-hydroxy-2-
404  oxoglutarate aldolase was essential in Pf-5 but its PA14 ortholog PA14_23090 was non-

405 essential. Eda performs a key role in the catabolism of glucose and conversion into pyruvate
406  through the Entner-Doudoroff pathway (70). This difference in essentiality is likely due to
407  redundancy for this function in PA14; an eda paralog kdgA (PA14_23620) was also non-

408  essential.

409

410 Three genes related to lipopolysaccharide formation (kdsC, PFL_0526, PFL_0563) were

411  essential only in Pf-5. Similarly, in PA14 there are a number of essential genes that encode
412  proteins important for lipopolysaccharide formation and other cell surface features that
413  were not essential in Pf-5 (htrB, omlA, wbpLV, rfbACD, pstB, wecB). This difference in

414  essential genes related to the cell membrane and cell surface likely reflects species-specific
415  differences in many of these components, such as O-antigen, the polysaccharide component
416  of lipopolysaccharide that extends from the surface of Gram-negative cells (71).

417

418 There were also differences in the essentiality of some conserved hypothetical proteins that
419  are homologous in Pf-5 and PA14. The proteins encoded by PFL_1792 and PFL_2999 were
420  essential in Pf-5, whereas their orthologs PA14_25620 and PA14_01220, respectively, were
421  non-essential in PA14. Likewise, there were 16 essential conserved hypothetical proteins in
422  PA14 but their orthologs were non-essential in Pf-5 (Dataset S1).

423

424  Pf-5 essential genes with no PA14 orthologs

425 There were 43 genes essential in Pf-5 that do not have homologs in PA14 (Figure 3),

426  including genes related to cell membrane and surface structures, pyoluteorin biosynthesis, a
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427  TonB complex, and 25 conserved hypothetical proteins. The unique nature of the seven
428  genes related to the cell surface and cell membrane (PFL_2356, PFL_5099-5103 and

429  PFL_5030) is consistent with the species specificity of these components. The essential gene
430  pltL from the pyoluteorin biosynthesis gene cluster has no PA14 homolog as this cluster is
431 not present in PA14.

432

433  Genes that encode TonB complexes in both species were essential, but the genes that form
434  some of the TonB systems are unique to Pf-5 and PA14. In Pf-5 the TonB1 complex (tonB1,
435 exbB1 and exbD1) was essential and there is no homologous TonB complex in PA14. In PA14
436  tonB (no Pf-5 homolog) and exbD2 (homolog to PFL_2822) were essential. Many bacterial
437  species only have one TonB system, but some species have multiple TonB systems with

438 different functional specificities, for example Vibrio cholerae CA401S (72) and P. aeruginosa
439  PAO1 (73). Both Pf-5 and PA14 possess multiple TonB complexes; Pf-5 has six annotated
440  TonB complexes, while PA14 has two. This difference in essentiality of TonB systems of Pf-5
441 and PA14is consistent with the differing functionalities of TonB systems observed in other
442  species.

443

444  Genes essential only in PA14

445  There are 240 PA14 essential genes unique to PA14; only 141 of these have Pf-5 orthologs
446  (Figure 3). This includes genes that encode proteins involved in four biosynthetic pathways
447  (aromatic amino acids, biotin, lysine and lipids), cell division, homologous recombination,
448  ribonuclease activity and 16 conserved hypothetical proteins.

449
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450  Six genes in the aromatic amino acid biosynthetic pathway were essential in PA14, whereas
451  all genes in this pathway were non-essential in Pf-5. This pathway, known as the shikimate
452  pathway, produces chorismate which is the last common precursor of the aromatic amino
453  acids tryptophan, tyrosine and phenylalanine as well as vitamins E and K and some

454  siderophores (74, 75). The essentiality of aroABCEK and pheA show that chorismate is an
455  important branch-point metabolite for PA14 survival and growth. In contrast, the non-

456  essentiality of these genes in Pf-5 suggests that this pathway was not required under these
457  experimental conditions and Pf-5 obtained aromatic amino acids from the media.

458

459  Genes encoding five proteins in the biotin biosynthesis pathway (bioABCDF) and its

460 transcriptional repressor (birA) were essential in PA14, but non-essential in Pf-5. Biotin, also
461  known as vitamin H, is a cofactor for enzymes involved in central metabolism carboxylation
462  reactions (76). These results suggest that Pf-5 was better able to take up biotin from the
463  media than PA14.

464

465  Four genes that encode proteins involved in cell division were essential in PA14, but non-
466  essential in Pf-5 (ftsk, minCD, mreD, PFL_0438). Cell division proteins are essential for the
467  normal replication and viability of bacterial cells; for example, minCD encodes proteins that
468  ensure that cell division occurs in the middle of the cell not at a polar site (77) and mreD
469 encodes a shape protein which is involved in the rod shape of cells. When mreD is knocked
470  out cells take on a spherical form (78). Other rod-shaped bacteria, such as A. baylyi ADP1,
471  have been able to dispense with these genes under lab conditions in essentiality studies (68)
472  but ftsK and mreD have been reported to be essential in other studies in P. aeruginosa (45).

473  The non-essentiality of these genes in Pf-5 suggests that cells without these proteins
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474  survived in the short timeframe of this experiment, albeit presumably with abnormal

475  morphologies.

476

477  Five genes that code for lipid metabolism proteins were essential in PA14, but not Pf-5. The
478 genes fadA and fadB encode the two peptides that form the fatty acid oxidation complex.
479  This complex is part of the B-oxidation cycle which is responsible for the degradation of long
480 chain fatty acids into acetyl-coenzyme A (79). In Pf-5 there is a single copy of fadA, but

481  multiple copies of fadB (fadB, fadB1x and fadB2x). In P. aeruginosa PAO1 expression of each
482  of the fadAB operon homologues is induced by the presence of different fatty acids (80, 81).
483 There are also three acyl-CoA dehydrogenase family proteins (PFL_0245, PFL_2615 and

484  PFL_5687) that were essential in PA14, but non-essential in Pf-5. The difference in the

485  essentiality of these five genes in PA14 and Pf-5 suggests that the two species have different
486  availabilities of fatty acids and maintain different balances in their lipid metabolism to

487  achieve membrane homeostasis.

488

489  Genes recBCD and ruvA that encode homologous recombination enzymes were essential in
490  PA14 but non-essential in Pf-5. A relatively small number of bacterial essential gene studies
491 have identified these genes as essential (22), despite the importance of Rec-mediated repair
492  of double stranded DNA breaks. The non-essentiality of recBCD and ruvA suggests this

493  function is not essential for Pf-5 under laboratory conditions and timescales.

494

495  Genes that encode four ribonucleases were essential in PA14, but non-essential in Pf-5 (rnc,
496  rne, rnt and PFL_3322). Ribonucleases (or RNases) have dual functions: they are involved in

497  both the maturation and degradation of rRNAs, tRNAs, sSRNAs and mRNAs (82). In E. coli
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498 there is evidence to suggest these ribonucleases may have overlapping functionalities (83),
499  sothese may have been non-essential in Pf-5 due to redundancy.

500

501 The genes dapA_1 and dapF_2 encoding proteins in the lysine biosynthetic pathway (84)
502  were in the essential set in PA14 but not Pf-5. This difference in essentiality may occur as
503 PA14 has a single copy of each gene, whereas Pf-5 has redundancy for these functions (two
504  copies of each gene). A similar pattern is observed with the gene fabF which codes for beta-
505  ketoacyl-acyl-carrier-protein synthase Il, a part of the fatty acid biosynthesis pathway and a
506 vital enzyme in the biogenesis of phospholipid membranes (85). The two copies of this gene
507 in Pf-5, fabF 1 and fabF_2, were non-essential. Of the two PA14 copies of this gene fabF1
508  was essential and fabF2 was non-essential (5).

509
510 Comparison of in vitro determined and in silico predicted essential genes

511 In parallel with the development of transposon library-based approaches for determining
512  gene essentiality, computational tools have been developed to predict essential gene sets
513  based on information such as gene orthology and phylogeny (38). Here we compared the
514  set of essential genes identified in vitro by TraDIS with computational predictions by Geptop
515 2.0(38). Geptop 2.0 identified 406 protein-coding genes as essential for growth and survival
516  of Pf-5 (Dataset S1). When compared with the 446 essential protein-coding genes identified
517 by TraDIS on rich media there were 308 genes in common, 138 genes only identified by

518 TraDIS, and 98 genes that were only in the computationally predicted set (Figure 4). The 308
519 genes identified as essential by both methodologies include core cellular functions such as
520 the processing of information (replication, translation and transcription), energy production,

521  cell division and maintenance of the cell envelope.
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TraDIS Geptop

138 308 98

522

523  Figure 4. Comparison of P. protegens Pf-5 essential protein-coding genes identified in vitro
524 by TraDIS and the essential genes predicted in silico by Geptop 2.0 (38). Venn diagram

525  created using Multiple List Comparator (www.molbiotools.com/listcompare.html).

526

527  Out of the 138 essential genes identified only by TraDIS, 14 are related to lipopolysaccharide
528  biosynthesis and cell surface structures, including rfaCF, waaGP and a range of lipoprotein,
529  O-antigen and glycosyltransferase genes. The absence of these genes from the predicted
530 essential gene set is consistent with the species-specific nature of these pathways and the
531 use of evolutionary conservation in the Geptop computational approach (38). Thirty-two
532  essential genes identified only by TraDIS are annotated as hypothetical proteins. As Geptop
533  uses orthology and phylogeny to predict essential genes it is unsurprising that hypothetical
534  genes were not included in the predicted essential gene set.

535

536  There are a number of genes our work indicates are essential that have not been identified
537 by Geptop. For example, fbp encoding frustose-1,6-bisphosphatase, cell division genes (zipA,
538  ftsB and minE), fis encoding the DNA binding protein Fis, cytochrome c biogenesis

539  (ccmABCEF), genes encoding proteins involved in the maintenance of membrane stability
540  (pal and tolABQR), sulfur relay genes (tusABCDE) and iron-sulfur cluster genes (hscAB, iscA

541  and ferrodoxin genes fdx and PFL_5869). These genes have been found to be essential in
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542  other organisms such as E. coli, Haemophilus influenzae and Shewanella oneidensis (86-88).
543  This suggests there may be functional categories of genes that are systematically missed by
544  Geptop.

545

546  Ninety-eight Pf-5 protein-coding genes were identified as essential by Geptop but not found
547  to be essential in vitro by TraDIS. There are three major reasons these genes were not

548 identified as essential in the in vitro data. Firstly, there is some redundancy in the genome
549  for essential functions. For example, the genes dd/AB encode D-alanine--D-alanine ligases
550  which condense two molecules of D-alanine, an essential step in peptidoglycan biosynthesis
551 (89, 90), yet neither gene was essential in vitro, presumably as loss of function of each single
552  gene can be tolerated. Similarly, map_1 and map_2 both encode methionine

553  aminopeptidases which perform the essential function of cleaving methionine residues from
554  the N-terminal of nascent proteins (91), but loss of either of these genes did not preclude
555  growth in vitro. Many of the genes encoding subunits of NADH-quinone oxidoreductase

556  were non-essential in Pf-5 in vitro (huoBDGHIJKLMN) but were predicted to be essential by
557  Geptop. In addition to the nuo complex, which encodes a type | NADH dehydrogenase,

558 there are two other NADH dehydrogenases encoded in the Pf-5 genome (92). These three
559  NADH dehydrogenases provide Pf-5 with respiratory flexibility, such as in P. aeruginosa

560  where two NADH dehydrogenases were redundant in aerobic conditions (93). As TraDIS
561 library construction generates single knockout mutants there is limited capacity to identify
562  essential genes where there is functional redundancy in the genome, which is a recognized
563 limitation of this technique (94).

564
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565  Secondly, some genes encode products with essential functions in bacterial cells, but these
566  functions are only performed under certain conditions. For example, the highly conserved
567  Clp proteolytic system degrades misfolded and abnormal proteins which accumulate in
568 response to environmental stresses (95). This essential function is reflected in the Geptop
569 prediction of c/pP and clpX as essential, but these genes were not identified as essential by
570  TraDIS, presumably as environmental stresses were low under our library growth

571  conditions. This pattern is also observed with dnaJ which encodes a molecular chaperone
572  which helps to ensure the correct folding of proteins, particularly under heat shock (96, 97),
573  and the highly conserved gene polA encoding DNA Polymerase | which repairs damaged
574  DNA during replication (98). These proteins perform important functions but were not

575  essential under the stable conditions and short duration of this study. The media and

576  growth conditions under which transposon libraries are created also influences the

577  essentiality of genes (7). The rich media used in our in vitro experiments may have resulted
578 in some genes that were predicted to be essential in silico not being identified as essential
579 by TraDIS. For example, three amino acid biosynthetic genes (aroBCK) were predicted to be
580 essential by Geptop, but were non-essential in vitro, likely due to the ability of Pf-5 to

581  acquire amino acids from the media.

582

583 Lastly, the experimental timeframe is likely also a factor in some genes being identified by
584  TraDIS as non-essential. These genes may have important roles at certain stages of cell or
585  population growth and therefore are identified as essential based on the phylogenetic

586  approach used by Geptop. For example, the genes ftsHKX and parAB perform important
587  roles in cell division (99) and were predicted to be essential by Geptop, but they were

588 determined to be non-essential by TraDIS. This indicates cells with these individual gene
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589  disruptions may undergo abnormal cell division, potentially resulting in aberrant
590 morphologies, but the cells were not lost completely from the population. It is likely that
591  such altered morphologies may become problematic in a longer-term study.

592

593 Conclusion

594  Inthis study we created a saturated transposon mutant library and used TraDIS to

595  successfully identify 446 genes that were essential for P. protegens Pf-5, a plant-associated
596  bacteria, to survive and grow on rich media. The essential gene set showed enrichment of
597  genes required for fundamental cellular machinery, which is consistent with the

598 composition of essential gene sets in other bacteria. Genes related to nutrient biosynthesis,
599  stress responses and transport were under-represented, potentially due to the specific

600 growth conditions used in this study as well as functional redundancy within the genome.
601

602  We identified key differences between the essential gene sets of the plant-associated

603 pseudomonad Pf-5 and the well-studied opportunistic pathogen PA14. These include genes
604 related to energy generation (cytochrome c biogenesis), formation of periplasmic disulfide
605  bonds, lipid biosynthesis, ribonuclease activity, lipopolysaccharides and cell surface

606  structures. This information highlights differences in the processes required for survival and
607  growth of pseudomonads that occupy different environmental niches.

608

609  Our comparison of the essential gene sets determined in silico and via the in vitro TraDIS
610 approach shows that the prediction of essential genes by Geptop on the basis of

611 conservation through evolutionary time overestimates the essentiality of some cellular

612  functions and underestimates others. Despite this, there is still substantial overlap in the
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613 genes identified as essential by these two methods. While both techniques have recognized
614 limitations, the information from TraDIS studies could be used to evaluate and improve in
615  silico predictive models for essential genes.

616

617  Using TraDIS to systematically analyze thousands of genes provides insights into gene

618 functions and interactions that are not readily available using traditional methods. The Pf-5
619 transposon mutant library will enable high-throughput studies in a range of growth

620 conditions, such as competition with soil microbes or stress tolerance. Expanding

621 essentiality studies beyond bacterial pathogens improves our understanding of the

622  biological processes important for survival and growth in different environmental niches.
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