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Abstract

Stroke is a debilitating condition affecting millions of people worldwide. The development of improved rehabilitation
therapies rests on finding biomarkers suitable for tracking functional damage and recovery. To achieve this goal, we
perform a spatiotemporal analysis of cortical activity obtained by wide-field calcium images in mice before and after
stroke. We compared spontaneous recovery with three different post-stroke rehabilitation paradigms, motor training alone,
pharmacological contralesional inactivation and both combined. We identify three novel indicators that are able to track
how movement-evoked global activation patterns are impaired by stroke and evolve during rehabilitation: the duration,
the smoothness, and the angle of individual propagation events. Results show that, compared to pre-stroke conditions,
propagation of cortical activity in the acute phase right after stroke is slowed down and more irregular. When comparing
rehabilitation paradigms, we find that mice treated with both motor training and pharmacological intervention, the
only group associated with generalized recovery, manifest new propagation patterns, that are even faster and smoother
than before the stroke. In conclusion, our new spatiotemporal propagation indicators act as biomarkers that are able to
uncover neural correlates not only of motor deficits caused by stroke but also of functional recovery during rehabilitation.
These insights could pave the way towards more targeted post-stroke therapies.
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1. Introduction

Stroke is a severe disease that alters cortical processing
producing long lasting motor or cognitive deficits. Treat-
ments generally include motor rehabilitation, pharmacolog-
ical therapies, brain stimulation, or combinations of them
[1]. However, the functional outcome, measured as behav-
ioral recovery, depends on multiple factors such as age,
lesion size and type, edema formation or inflammation and
is hardly predictable [2, 3]. One way to track recovery after
stroke is by monitoring cortical activity, which is known
to undergo drastic changes that have been tightly linked
to structural alterations [4, 5, 6]. Previous studies have
reported that stroke produces global widespread alterations
in cortical activity as measured by changes in resting state
functional connectivity or cortical excitability. On the one
hand, electrophysiological studies have shown that stroke
and recovery modulate both resting state and stimulus
evoked cortical oscillations in motor areas [7, 8]. On the
other hand, neuroimaging studies have shown that stroke
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alters the resting state functional connectivity, for exam-
ple it reduces the interhemispheric correlations between
motor networks, and these changes correlate with behav-
ioral deficits [9, 10]. Furthermore, these changes in resting
state functional connectivity can be used to discriminate
subjects with behavioral deficits [11, 12]. This supports
the idea that monitoring how cortical activity evolves over
time could be used to track recovery after stroke and it
could represent a powerful tool to evaluate the efficacy of
stroke treatments or better yet could lead to biomarkers of
functional recovery.

Here, we propose that damage and functional recovery
can be tracked by monitoring the spatiotemporal proper-
ties of movement-evoked widespread activation patterns or
global events. In particular, we use our recently proposed
SPIKE-order analysis [13] to identify global events and to
sort the participating regions from first to last (or leader
to follower). Additionally, in order to characterize the spa-
tiotemporal properties of each individual global event, we
extend this method and define three propagation indicators:
duration, smoothness (i.e. how ordered and consistent is
the direction of the propagation), and angle.

First, we provide a characterization of global events in

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.07.10.197509doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197509
http://creativecommons.org/licenses/by-nc-nd/4.0/


healthy controls. We show that these events are mostly as-
sociated with the exertion of force and that their duration
and direction are modulated by different behavioral events.
Then, to understand the impact of stroke on the global
events we quantify the three propagation indicators in a
group of acute stroke subjects. We provide evidence that
acute stroke alters the propagation patterns by increasing
the duration while decreasing the smoothness of the global
events. To test if global events propagation patterns can
be used to track recovery and to identify treatments that
lead to generalized recovery, we quantify the propagation
indicators in a group of subjects with untreated stroke
and in three groups of subjects with different therapeu-
tic interventions. The first therapy group received motor
training alone which leads to task-specific improvement of
the motor functions [14]. The second group was charac-
terized by a transient pharmacological inactivation of the
controlesional hemisphere without any improvement in the
motor functions. Finally, the third therapy combined both
motor training and pharmacological inactivation producing
a generalized recovery of the forelimb functionality. While
all treatments reduce the effect of stroke on the propagation
indicators, the combined rehabilitative therapy leads to
new propagation patterns defined by the shortest duration
and the highest smoothness among all experimental groups.

Methods

Experimental set-up and data collection

In this section we provide a short overview of the data
and the methods we used to analyze them. For more
technical details please refer to the section “Materials and
Methods” in the Supporting Information.

The aim of this study was to investigate changing prop-
agation patterns during motor recovery from functional
deficits caused by the induction of a focal stroke via a
photothrombotic lesion. For this purpose, we analyzed
calcium imaging signals recorded from 26 mice to com-
pare three different rehabilitative therapies, one that used
motor training alone (robot group), one based on a tran-
sient pharmacological inactivation of contralesional activity
(toxin group) and one that performed both of these two
treatments together (combined group).

A schematic representation of the robotic system, the
M-Platform [15, 16], is shown in Fig. 1a. This system
uses passively actuated contralesional forelimb extension
on a slide to trigger active retraction movements that were
subsequently rewarded (up to 15 cycles per recording ses-
sion). The effect of the motor activity was monitored via
the discrete status of the slide and by recording the force
the mice applied to the slide. As a measure of the neural
activity itself we performed wide-field calcium imaging over
the affected hemisphere, from the somatosensory to the
visual areas. Selecting a region of interest of 2.16 x 3.78
mm and spatially downsampling by a factor 3 resulted in
calcium images of 12 x 21 pixels of size 180 µm. These are
the signals that we analyzed.

The 26 mice were divided into five groups: control (3
mice), untreated (4 mice), robot (8 mice), toxin (5 mice),
and combined treatment (6 mice). The healthy controls
had no stroke induced but underwent four weeks of motor
training on the M-Platform. The untreated mice performed
one week of motor training starting 25 days after injury.
The toxin group, which received Botulinum Neurotoxin E
(BoNT/E) injection on the contralesional hemisphere right
after the photothrombotic damage, also performed one
week of motor training starting 25 days after injury. Both
robot and combined treatment mice underwent physical
rehabilitation on the M-platform for four weeks starting
five days after injury. For toxin and combined treatment
mice the pharmacological inactivation of the primary motor
cortex in the contralesional hemisphere was carried out in
order to counterbalance the hyperexcitability of the healthy
hemisphere.

The recording schedule for all five groups is shown in
Fig. 1b. Apart from the data acquisition during the shared
training regime, 5 out of 8 robot mice were also recorded for
one week before the stroke (pre-stroke condition). We have
confirmed that this pre-stroke condition shows no statistical
difference, both qualitatively and quantitatively, with the
first week of recordings of the control group, as could be
expected for two groups of healthy mice (for details see Fig.
S2 in Supporting Information).

Fig. 1c displays a sequence of snapshots of the calcium
activity over time. The three images illustrate one pull of
the slide by the contralateral forelimb of a control mouse,
from the activation of the average calcium activity (left)
via its maximum (middle) to its tail end (right). The
Supporting Information contains a movie that covers all 36
frames for this one training cycle.

The central method of this study was a mapping of
this sequence of snapshots into the propagation pattern
shown in Fig. 1d. In this matrix the order of activation of
the individual pixels was color-coded from red (earliest) to
blue (latest). We superimposed this order matrix on the
standard atlas of brain regions [17] which illustrates that
the recording area covers the primary motor area M1 (the
location of the lesion), the primary somatosensory area,
and the primary visual cortex, as well as the retrosplenial
cortex.

Event identification, propagation analysis, and definition of
three propagation indicators: duration, angle, and smooth-
ness

Here we explain our use of the SPIKE-order framework
[13] to identify global events and assess the propagation
of activation within these events (compare Fig. 1d). In
particular, we focus again on one individual global event to
illustrate how we characterize the detailed activation pat-
terns with three propagation indicators: duration, angle,
and smoothness.

In Fig. 2 we show the activity during a complete record-
ing session of one mouse. Figure 2a depicts the status, a
discrete codification of the current phase of the passive
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Figure 1: Experimental set-up and data collection. (a) Motor-training of mice was performed on the M-Platform, which uses a movable
robotic slide for a retraction movement of the left forelimb. Motor activity was monitored via the discrete status of the slide (orange) and the
force applied by the mouse to the slide (purple). Meanwhile, the cortical activity (yellow) was recorded using wide-field calcium imaging. (b)
The control (green) and combined treatment (red) group performed four weeks of daily training; for the robot (blue) group we additionally
recorded one week before stroke induction (typically five sessions per week). Untreated (brown) and toxin (orange) groups only performed one
week of daily training starting four weeks after the lesion. Star symbols refer to the healthy condition. (c) Calcium imaging sequence of
cortical activation, superimposed on contours of brain regions according to the standard atlas. (d) Propagation pattern, from leader (red) to
follower (blue), of the event depicted in (c). Color coding is based on the SPIKE-order (for details see section “SPIKE-order” in “Materials
and Methods” (Supporting Information)). For a complete list of brain regions and their acronyms see Fig. S1 in the Supporting Information.

extension and active retraction cycle, e.g. position of the
slide and acoustic go and reward cues. Most relevant here
are the marked times of the pull completions which typi-
cally correspond to peaks in the force applied to the slide
(Fig. 2b, force events are marked at threshold crossings)
but already a quick look at the event numbers shows that
the mapping is not perfect. Indeed there are typically
more force events than rewarded pull completions (20 force
versus 13 status events in this case). The same peaks, and
some more, are also present in the calcium signal computed
by averaging the fluorescence signal over all pixels (Fig. 2c,
here 23 calcium events are marked at threshold crossings).

In the next step we looked at all individual pixels but
here we do not show all the traces but just small time
markers denoting the time of their threshold crossings
(Fig. 2d). This is very similar to a rasterplot showing in each
row the spike train of one individual neuron and accordingly
we here follow this terminology and call the threshold
crossings of individual pixels ’spikes’. The first thing to
notice is that while there are a few spikes in the background
(in black), by far most of the spikes are part of global events
(in color) matching the peaks in the average calcium activity

shown right above. To automatically identify these global
events and sort the spikes within these events from leader
to follower we used the SPIKE-order framework proposed
in [13].

After some initial denoising we first used an adaptive
coincidence detector [18] to pair spikes such that each spike
is matched with at most one spike in each of the other
pixels. By means of the symmetric and multivariate mea-
sure SPIKE-Synchronization [19] we filtered out all spikes
which were not coincident with spikes in at least three
quarters of the other spike trains. To the global events that
remained we applied the asymmetric SPIKE-order indica-
tor [13] which quantifies the leader-follower relationship
between pairs of spikes. For each event the SPIKE-order
is then color-coded from leader (red) to follower (blue).
Finally, we used the scalar Synfire Indicator [13] to also
sort the spike trains in the rasterplot from overall leader
to overall follower. Since the sorting takes into account all
global events, the first spike trains contain more leading
spikes (red) and the last spike trains more trailing spikes
(blue).

In Fig. 2e we zoom in on the fourth global event of the
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Figure 2: Event identification, propagation analysis, and definition of three propagation indicators: duration, smoothness, and angle. (a)
Status of the robotic slide. The longer horizontal plateaus at status 3 correspond to the time interval during which the mouse is allowed
to retract the slide. The orange bars refer to the time when the pull is completed and the mouse receives its reward. (b) Force applied by
the mouse during the retraction movement. (c) Average calcium signal over all pixels. The purple and yellow dashed lines below refer to
the threshold used to identify the force and global calcium events, respectively. (d) Raster plot obtained from the threshold crossings of
individual pixels versus time. Triangle indicators show the global events identified during this session, and the red triangle with dashed box
marks the event analyzed in the remaining panels below. The first (last) spike of each global event is marked by a red (blue) circle. Within
each subplot (a)-(d) we state the number of the respective events / threshold crossings. (e) Zoom of this selected event. The duration is
defined as the interval from the first to the last spike within the event. (f) The propagation matrix is obtained by projecting the relative
order of these threshold crossings onto the 2D-recording plane. (g) Singular values (red) vs. order of approximation, obtained by means of
singular value decomposition (SVD). The smoothness (black asterisk) measures the quality of the second order approximation. (h) First and
second approximations of the propagation matrix and (i) second order approximation as their weighted sum (cumulative). The angle of the
propagation, defined relative to the horizontal axis.

rasterplot. Here we define the first propagation indicator,
the event duration, as the time from the first to the last
spike of this event. The propagation matrix of this specific
event, obtained by projecting the color-coded relative order
of the spikes onto the pixels of the 2D-recording plane, is

shown in Fig. 2f. We then used singular value decompo-
sition (SVD) to calculate the two remaining propagation
indicators.

SVD [20] searches for spatial patterns by decomposing
the propagation matrix into three simple transformations:
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a rotation, a scaling along the rotated coordinate axes
and a second rotation. The scaling is a diagonal matrix
which contains along its diagonal the singular values of
the propagation matrix. In Fig. 2g we depict the (sorted)
singular values σi (rescaled to the highest value). We also
show the value of the second propagation indicator, the
smoothness S, which is defined as the relative weight of
the first two projections, their sum divided by the sum of all
singular values. Backprojecting the (sorted) singular values
one at a time resulted in various orders of approximations
for the original propagation matrix. The first two such
projections are displayed in Fig. 2h and the second order
approximation, their weighted sum, is shown in Fig. 2i.
From the weighted average of the mean gradients of these
first two projections we calculated the third propagation in-
dicator, the angle of the main propagation direction. Note
that the smoothness quantifies how well the approximation
using only the first two singular values captures the full
spatiotemporal pattern obtained by considering all singular
values. This can be verified visually by comparing the sec-
ond approximation (Fig. 2i) with the original propagation
matrix (Fig. 2f).

A comparison of Fig. 2d and Fig. 2c clearly shows that
all global events in the rasterplot can easily be matched
with a peak in the average calcium trace, in fact, these
are basically two equivalent ways to visualize a peak of
global calcium activity. However, while the vast majority
of global events are in close proximity of a peak in the
force, not all of them are. This we can use to categorize
the global events into two groups: Force (F) and non-
Force (nF). Among the Force events we can distinguish
two kinds of events, a few of them occur during the passive
extension of the arm by the slide (Passive, Pass) but most
of them do not, i.e., they occur during the active retraction
phase (Active, Act). Finally, among those active events
we can differentiate between movements which lead to a
completion of the forelimb retraction and therefore are
rewarded (Reward Pulling, RP) and movements which
are not completed and thus not rewarded (non-Reward
Pulling, nRP). The Reward Pulling events are the ones
that correspond to the vertical markers in the status trace
of Fig. 2a.

The overall categorization can be visualized by means
of this branching structure:

Calcium
nF

F
Pass

Act
nRP

RP

Results

In this study, we sought a biomarker for functional recov-
ery after stroke in the neural activity propagation. To this
aim, we used global event propagation analysis to investi-
gate the spatiotemporal features of neuronal activation over
the dorsal cortex. We compared the propagation patterns
of healthy mice versus acute stroke and of untreated versus
treated mice. Here we looked at three different treatments

(robot, toxin, and combined, see Fig. 1b). We decided to
investigate three main indicators (duration, smoothness,
and angle of the propagation) to account for both temporal
and spatial propagation characteristics (compare Fig. 2).
To identify common brain dynamics associated with similar
behaviors, we dealt with each type of event separately.

Cortical propagation features discriminate event types in
healthy mice

We first wondered if neuronal activation in awake healthy
mice involved a large region of the cortex and if these global
events were related to specific classes of behavioral events
in our experimental paradigm. The results in Fig. 3 focus
on two of the three indicators introduced in Fig. 2 and
they refer to one healthy mouse during all sessions (four
weeks, five days per week, see Fig. 1b). Three different
example patterns with increasing smoothness and varying
angle are depicted in panels a-c. For low smoothness values,
the identified propagation pattern looks random, thus not
displaying a clear directionality (panel a), and therefore
measures for angle and duration are less meaningful in
those cases. On the other hand, high smoothness corre-
sponds to clear patterns (panels b-c show two cases of high
smoothness but orthogonal directionality). Panels d-f show
scatter plots of smoothness against angle for different event
types, together with the marginal histograms. While nar-
rowing down the type of event does not reduce the whole
range of values, the marginal distributions of the angle and
smoothness converge to a peak distribution for the angle
centered in 0.46, and to a distribution with mean 0.68 for
the smoothness.

Next, we performed a detailed quantitative analysis of
all three indicators (duration, smoothness and angle) for all
three healthy mice along four weeks of motor training on
the M-Platform (control group, Fig. 4). The dependency of
the three indicators was evaluated both over time and with
respect to different event types. In the beginning we ana-
lyzed if the occurrence of the global events was associated
with the application of forces or if it was unrelated. For the
four weeks of recordings in healthy mice the variation of
the number of events divided by type is depicted in Fig. 4a.
Most of these events occurred when the mouse applied a
force to the handle (1568, corresponding to 87% of the total
number of events). Furthermore, most of the force events
(1147) occurred when the mouse was actively pulling the
handle (73% of force events, 64% of the total), and 779 of
those corresponded to reward pulling events (68% of active
events, 43% of the total).

Global events last 0.59 ± 0.04 s with a smoothness of
0.63 ± 0.03, and they propagate along angles −0.3 ± 0.4,
see subplot “All” of Fig. 4b-d. The little variation in
duration (Fig. 4b), smoothness (Fig. 4c) and angle (Fig. 4d)
implies high coherence of the parameters of spatiotemporal
propagation over weeks. This suggests that longitudinal
motor training in healthy mice does not alter the number
of events or the propagation patterns.
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Figure 3: Propagation pattern varies across event types in healthy mice. (a-c) Three different patterns with increasing smoothness and varying
angle. Note that the length of the arrow is proportional to the smoothness. (a) Low smoothness identifies a poor propagation pattern without
any proper directionality. (b) High smoothness identifies a clear pattern and corresponding directionality. (c) High smoothness and horizontal
propagation in contrast with (a) low smoothness and opposite horizontal direction, and different from (b) which has still high smoothness, but
an almost orthogonal angle of −π/2. (d-f) Scatter plots and histograms of smoothness and angle of propagation for all events. The events
whose propagation patterns are shown in (a)-(c) are highlighted by larger markers. — Brown colors refer to force (F) and non-force (nF)
events, active (Act) and passive (Pass) events are in purple, reward pulling (RP) and non-reward pulling (nRP) events in green. All plots
include the events from all the sessions for one healthy mouse.

Results for duration, smoothness and angle were then
analyzed looking at specific event types. Fig. 4e shows the
event duration for the three consecutive subdivisions of the
event types. Further specifying the type of event leads to
shorter and shorter propagations with the shortest average
duration being obtained for reward pulling events. The
same argument can be made for the smoothness (Fig. 4f);
reward pulling events display the highest smoothness, on
average, among all the other events. Fig. 4g shows the
distributions of the angle; the propagation becomes more
directed when narrowing down the type of event. The
difference between event types in the angle distribution
reduces as well. Interestingly, also the bimodal nature of the
distribution is attenuated. Specifically, the peak at −π/2
(see first plot in Fig. 4g) is initially caused by non-force
events, then within force events it stands out in the passive
cases, finally it is predominant in the non-reward pulling
events. This suggests that task-specific events, such as
reward pulling, are characterized by consistent propagation
patterns.

The patterns observed in healthy mice are characterized
by different spatiotemporal features when comparing force
and non-force events in terms of smoothness (p=0.001) and
angle of propagation (p=10−10), and when comparing ac-

tive and passive events in terms of duration (p=0.002) and
angle (p=10−9). Also between rewarded and non-rewarded
pulls events the observed patterns display different charac-
teristics when comparing smoothness (p=0.001) and angle
(p=10−8), see Fig. 4e-g and Table S2 (Supporting Informa-
tion) for the p-values.

In summary, in healthy mice there is a high coher-
ence of the parameters of spatiotemporal propagation over
weeks, suggesting that a simple motor task alone does
not change the duration, smoothness, and angle of events.
Moreover, the investigated spatiotemporal propagation in-
dicators discriminate between different event types when a
specific characteristic is taken into account, i.e., force versus
non-force, active versus passive, reward versus non-reward
pulling.

Acute phase after stroke is characterized by an increase of
event duration

We pondered how the spatiotemporal propagation in-
dicators were altered by cortical injury, and thus looked
at the cortical activation events as associated to classes
of behavioral events in the first week after stroke (called
acute stroke). Moreover, we compared these results with
the first week of recordings on healthy mice (Fig. 5) which
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Figure 4: Cortical propagation features discriminate event types in healthy mice. (a) Mean number of events per mouse per week, partitioned by
type of event. (b-d) Duration, smoothness, and angles distribution are preserved over weeks. (e) Event duration is a marker for discriminating
active (Act) and passive (Pass) events. (f) Smoothness discriminates force (F) and non-force (nF) events, as well as reward pulling (RP) and
non-reward pulling (nRP) events. (g) Narrowing down the type of event leads to more directed propagation patterns. — Duration and angle
are weighted by smoothness. Markers in (b,c,e,f) refer to the average value per day. Within each box in (b-f), the central mark indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. Control group n=3 mice. P-values of
statistical tests in Table S2 (Supporting Information), “?” refers to difference in variance.

consists of the first week of recordings of the control group
and the pre-stroke week in the robot group (see Fig. S2 in
the Supporting Information).

When looking at all events together, differences can be
appreciated for the duration (p=0.003) and the smooth-
ness (p=0.007) even without further splitting the events
into specific types. In particular, the duration increases
(Fig. 5a) and the smoothness decreases (Fig. 5c) during the
acute phase. The angles distribution for the acute stroke
group exhibits a flatter distribution and two secondary
peaks in −π/2 and π/2, indicating the presence of a more
heterogeneous pool of events (Fig. 5e).

When splitting the results into event types (Fig. 5b,d,f),
a common tendency for duration, smoothness and angle
is that the stroke condition attenuates differences of the
indicators between event types. For both duration and
smoothness (Fig. 5b,d), while the control group presents
significant variations with respect to the type of event
(Act-Pass p=0.04 for duration, and F-nF p=10−10 and
RP-nRP p=0.008 for smoothness), the acute stroke group
is characterized by smaller fluctuations in the mean value
(Act-Pass p=0.059 for duration, and F-nF p=0.082 and RP-
nRP p=0.51 for smoothness). For the duration (Fig. 5b),
significant differences in mean between healthy and stroke
mice are manifested for force (F, p=0.026), active (Act,

p=0.034), passive (Pass, p=0.035), reward pulling (RP,
p=0.014), and not reward pulling (nRP, p=0.028) events.
Regarding the smoothness (Fig. 5d), significant differences
can be found in the same event types as for duration,
non rewarded pulls (nRPs) excluded (p=0.004, 0.01, 0.002,
0.005). For the angle (Fig. 5f), the dissimilarities in the
control group between event types are preserved in the
acute stroke condition (F-nF and Act-Pass, control p¡0.001
and robot p¡0.05).

Altogether, our three spatiotemporal propagation indi-
cators are able to distinguish between healthy and stroke
mice. The acute phase after stroke leads to more het-
erogeneous events characterized by longer duration, lower
smoothness, and flattened distributions of the angle. More-
over, in contrast to the healthy condition, for the acute
stroke condition cortical propagation features are not able
to discriminate event types.

Combined rehabilitative treatment induces short duration
and high smoothness of cortical propagation patterns

Our previous results comparing motor, pharmacological
and combined therapy after focal stroke demonstrated that
only a rehabilitation protocol coupling motor training with
reversible inactivation of the contralesional cortex was able
to promote recovery in forelimb functionality [14]. Here we
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Figure 5: The acute phase (one week after stroke) is characterized by an increase of the event duration and decrease of smoothness. During
the acute phase, (a-b) the event duration is increased, (c-d) smoothness is decreased, and (e-f) the direction of propagation is more spread.

— Duration and angle are weighted by smoothness. Markers in (a-d) refer to the average value per day. Within each box in (a-d), the central
mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. Control n=8 mice,
Acute Stroke n=8 mice. See Table S3 (Supporting Information) for p-values of statistical tests, “?” refers to difference in variance and “*”
refers to difference in mean.

first analyzed the propagation patterns in spontaneously
recovered mice (untreated stroke group) one month after
the lesion (Fig. S3 in the Supporting Information). Results
show that untreated animals present only minor modu-
lations in the propagation features with respect to the
acute phase. The only statistical difference between the
two groups is found for smoothness, which is lower for the
untreated group, maintaining the same trend induced by
the stroke in the acute phase (compare Fig. 5).

We hypothesized that rehabilitative treatments alter
the spatiotemporal propagation patterns, and especially
reverse the trend observed in the acute stroke phase. In
particular, given the fact that the combined treatment is
the only treatment that leads to a generalized recovery
(see Fig. S4 in the Supporting Information), we wondered
if we can find for this treatment spatiotemporal features
of cortical propagation that reflect this unique success.
We thus compared the spatiotemporal propagation indi-

cators in treated animals with spontaneously recovering
mice (untreated stroke group). In detail, we evaluated the
consequences on the propagation patterns in mice treated
with motor training alone (robot group), pharmacological
silencing of the homotopic cortex alone (toxin group) or
a combination of both (combined treatment group), see
Fig. 6.

Indeed, the most striking result emerging from this
analysis is that the combined treatment group is greatly
separated from all the other groups. When looking at
all events together (Fig. 6a), the events of the combined
treatment group display a shorter duration compared to
untreated (p=10−4), robot (p=10−5), and toxin (p=0.006).
The biggest differences can be observed for combined treat-
ment versus untreated and robot groups; they are signifi-
cant not only for all events together but also for each event
type separately (all p<0.006 and all p< 10−4, respectively),
see Fig. 6b.
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Figure 6: Combined treatment group is characterized by higher smoothness and shorter duration than any other group. For all types of event,
combined treatment group events are the shortest (a-b) and their smoothness is the highest (c-d). For the combined treatment group the
distribution of the angles does not vary depending on the type of event (e-f). — Duration and angle are weighted by smoothness. Markers in
(a-d) refer to the average value per day. Within each box in (a-d), the central mark indicates the median, and the bottom and top edges
of the box indicate the 25th and 75th percentiles, respectively. Untreated stroke group n=4 mice, robot group n=8 mice, toxin group n=5
mice, combined treatment group n=6 mice. For P-values of statistical tests see Table S4 (Supporting Information), “?” refers to difference in
variance and “*” refers to difference in mean.

Among all the characteristics investigated, the marker
that distinguishes most clearly between the combined treat-
ment group and all the others is smoothness. The events
of the combined treatment group display a greater smooth-
ness compared to the untreated (p=10−5), robot (p=10−4),
toxin (p=0.003) groups (Fig. 6c). Again, this statement
applies not only to all events together, but also to each
event type individually (all p< 10−4 for untreated and
robot, all p<0.023 for toxin), see Fig. 6d.

Dissimilarities in the angle distributions are able to
capture the difference between the robot group and both
untreated and toxin groups (Fig. 6e,f). Note that all three
indicators of the combined treatment group appear to be
consistent when distinguishing different event types, mean-
ing force, non-force, active, passive, reward and non-reward
pulling events display similar average values. The complete
list of p-values can be found in Table S4 (Supporting In-

formation).
Additionally, we evaluated if propagation features were

restored to pre-stroke levels or if the treated condition
ended in a new state (Fig. S5-6 in the Supporting Infor-
mation). We analyzed longitudinal data starting from the
second week of recording up to one month after stroke,
by comparing motor treated (robot and combined) with
healthy mice (control group), see Fig. S5. Results show
that propagation features averaged over the training weeks
were partially restored to pre-stroke levels for the robot
group (no statistical differences were found with the control
group), while the combined treatment group ended in a
new state with very different values from both pre-stroke
and motor-treated conditions. In details, the events of
the combined treatment group display shorter duration
(p=10−4, p=10−6) and a greater smoothness (p=0.025,
p=10−4) compared to the control and robot groups. For a
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complete list of p-values refer to Table S8 (Supporting In-
formation). When looking at the temporal evolution of the
recovery (Fig. S6), in the weeks that follow the stroke the
robot group shows a significant variation: the smoothness
is lower and the duration is longer. This variation decreases
over time in both cases. While the duration reaches again
values comparable to healthy mice already after the second
week of training, the difference in smoothness seems to
oscillate without stabilizing. Interestingly, the rehab group
presents a behavior qualitatively comparable to the control
group, i.e., a stable trend, but with very different values.

In summary, the combined treatment group is signifi-
cantly different from all the other groups. In particular, it
is characterized by the shortest duration and the highest
smoothness. These differences can not only be observed for
all events together, but also for all event types (force, non-
force, active, passive, reward pulling, non-reward pulling)
separately. Once more, this confirms that the combined
therapy, the only one leading to generalized recovery, is
associated with a state different from pre-stroke conditions
which shows new and unique propagation features.

Discussion and conclusions

In this study we employed an improved version of our
recently proposed SPIKE-order analysis [13] to sequences
of wide-field fluorescence calcium images from the dorsal
cortex of awake behaving mice. We defined three propa-
gation indicators that characterize the duration, the angle
of propagation and the smoothness of movement-evoked
global events. This new way of quantifying variations in the
spatiotemporal propagation patterns allowed us to track
damage and functional recovery following stroke.

We found that in healthy mice all three indicators of
spatiotemporal propagation display a very high degree
of consistency over time. For animals with acute stroke
the propagation patterns of the global events through the
injured hemisphere are altered. The most prominent con-
sequence is a large increase in global event duration and
a decrease in smoothness over the ipsilesional hemisphere.
We compared spontaneous recovery with three different
rehabilitation therapies, motor training, transient phar-
macological silencing of the homotopic cortex and a com-
bination of both. While all of these treatments have an
impact on the spatiotemporal propagation patterns, the
combined therapy, promoting a generalized recovery of
forelimb functionality, leads to an increased propagation
efficacy, different from pre-stroke conditions, with very fast
and smooth patterns.

Comparison with existing methods

Most analysis tools for wide-field optical images per-
form simple correlation and time lag analysis (Pearson
correlation and phase synchrony), which are window- and
not event-based as in this study (e.g. [21, 22, 23]). Di-
rectionality is explored by using Granger causality in [24],

which is dependent on a priori selection of regions of in-
terest (ROIs). Since commonly used analyses tools are
based on averaged activity under resting state, important
information on single events is missing. This is especially
important when considering motor evoked activity, which
is directly associated with the execution of single move-
ments (active forelimb pulling in our case). The detailed
propagation analysis we showed here would not be possible
with the widely used optical flow techniques [25, 26] which
instead focus on velocity vector fields and their complex
patterns (e.g. sources and sinks) but do not deal explicitly
with temporal order. Our methods used here contain some
similarities but also crucial differences with a very recent
analysis performed on cortical slow waves in anesthetized
mice [27]. On the one hand, both algorithms apply exactly
the same criteria of unicity and globality in the identifica-
tion of the spatiotemporal patterns. On the other hand,
the core of our global event detection is automated spike
matching (via adaptive coincidence detection) while the
wavehunt pipeline relies on an iterative procedure to cut the
time series into distinctive waves. Apart from the different
types of data, the two studies are also complementary in
scope: while the focus of [27] lies on the excitability of the
neuronal population, the dominant origin points and the
velocity of the slow waves, we perform a thorough inves-
tigation of the spatial propagation pattern of each global
event.

As a final remark on the methods, we would like to
stress that the approach used here is universal and could
easily be adapted to functional techniques (including elec-
troencephalography and functional Magnetic Resonance
Imaging) in many other clinical settings. For example, it
could be extended to disorders of the central nervous system
similarly associated with alterations in the spatiotemporal
propagation of brain activity, from traumatic brain injury
to autism.

Cortical propagation features in healthy mice

We first tested the discrimination capabilities of this
approach for different classes of behavioral events and used
it to characterize global events over most of the dorsal cor-
tex. Results show that under our experimental paradigm,
in all conditions, global events are occurring predominantly
when the mouse is actively applying force during either
active retraction or passive extension of the affected fore-
limb. Angle, duration and smoothness of the global events
change with behavioral event type (e.g. if the event is
associated with the application of force or not) in healthy
subjects. This finding is in line with a recent study showing
different propagation patterns across the cortex for mice
engaged in a visual task depending on the type of the be-
havioral event (active vs passive, hit vs misses, ipsilesional
vs controlesional) [28].

The drastic change observed in the angle distribution
of global events between force and non force events implies
that activity propagates from medial to lateral regions.
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This is in accordance with previous findings based on space-
frequency single value decomposition analysis showing that
at the naive stage, the activity propagated from retros-
plenial cortex in a radial direction [29]. The mediolateral
propagation of the global events suggests the progressive
involvement of the retrosplenial cortex during the exertion
of the reward pull. Indeed, it has been previously reported
that retrosplenial cortex is more correlated with sensory
cortices during locomotion vs quiescence [30] suggesting
the presence of a network switch to allow the processing of
sensory information during locomotion. In this view, the
higher accumulation of angles at 0 degrees observed when
comparing force vs non force events could represent the
hallmark of such network switch. Interestingly, a similar
propagation pattern has been observed applying optical
flow analysis to calcium imaging over the same cortical ar-
eas when windowing cortical activity around hippocampal
sharp wave ripples during sleep [31] and corresponds to
one of the two major propagation patterns observed during
slow wave sleep [32]. Our findings extend these results to
the awake condition during motor execution.

Acute phase after stroke

Stroke strongly affects the spatial propagation within
the cortex during the execution of a pulling task. The
analysis of spatiotemporal propagation patterns evoked
by stimulation or voluntary movements represents a fun-
damental means to investigate functional remapping in
order to better understand post stroke reorganization. In
our study, acute stroke is characterized by less coherent
direction of the propagation, lower smoothness, and longer
duration than healthy animals. Also, cortical propagation
properties are very heterogeneous across global events and
the differences between behavioral event types are lost. In a
previous work Murphy and collaborators [33], by applying
intrinsic optical signal and fluorescence imaging, described
modifications in spatiotemporal propagation elicited by
sensory forelimb stimulation both in acute and chronic
phase after stroke in the forelimb cortex. In agreement
with Brown et al., who observed during the acute phase an
increase of time to peak cortical signal evoked by sensory
stimulation, our results revealed an increment of duration
of motor-evoked cortical response, showing a delayed acti-
vation of cortical regions neighboring the stroke core due to
the damage. The comparison between these results reveals
that though applying opposite approaches (i.e. bottom-up
for sensory stimulation and top-down for motor task exe-
cution) a similar cortical response was observed. Moreover,
an fMRI study in the acute phase by Dijkhuizen and col-
leagues [34] showed that the stimulation of the unpaired
forelimb induces a small response detected in the ipsile-
sional hemisphere in M1 and sFL cortex and in more distal
regions both in rostral and caudal direction. A similar
observation was made by Harrison and collaborators [35]
revealing that motor maps were more diffuse after motor-
targeted stroke during sensory stimulation, with a decrease

in correlation between neighboring pixels. The diffuse acti-
vation in response to forelimb stimulation observed in those
previous works is in agreement with our results that reveal
the absence of a clear pattern of cortical propagation, as
highlighted by low smoothness, in the acute phase after
stroke.

Comparison of different rehabilitation paradigms

Different rehabilitative paradigms result in different
rehabilitative outcomes; in particular, not all treatments
promote generalized recovery of forelimb functionality. In
this study, we purposely selected three rehabilitative treat-
ments (robot, toxin, and combined treatment) that all
induced changes in the neural signals but only the com-
bined treatment leads to generalized recovery. Combined
rehabilitation profoundly altered the propagation of global
events as compared to both healthy (control) and post-
stroke single treated (toxin and robot) mice. The differ-
ences in the propagation features induced by stroke in the
acute phase decline during weeks of motor training in the
robot group, in fact already by the second week of train-
ing duration reaches values comparable to healthy mice.
Also the smoothness was on average comparable to healthy
mice after robotic training. Our findings on the chronic
phase of the robot group are in agreement with what we
observed in [36] where repetitive motor training induced a
task-dependent spatial segregation similar to healthy mice
though unaccompanied by functional recovery [14]. Each
treatment had an impact on separate propagation features.
In fact, while during the chronic phase only robot mice
showed significant differences in the direction of cortical
propagation (angle) compared to untreated stroke mice,
the toxin group had peculiar (and significantly different)
features in smoothness. Combination of the two treatments
results in profound global changes in all indicators, with
new features completely different from all the other groups.
More in detail, combined treatment mice show a decrease
of duration and greater smoothness with respect to control
and robot mice, indicating the emergence of faster and
more directed patterns of propagation. Such temporally
compressed and reliable cortical activity sequences may
be associated with a more effective trigger of subcortical
movement machinery [29].

In addition, the substantial increase in smoothness after
combined rehabilitation finds a nice correlate in the segre-
gation of motor representation illustrated in preclinical [6]
and clinical studies [37]. In these works, improved motor
functionality induced by post-stroke combined rehabilita-
tion is associated with a more focused brain activation
during the execution of a motor task [36]. Importantly,
generalized recovery of forelimb functionality in combined
treatment mice (see [14, 6]) is not necessarily associated
with recovery of pre-stroke spatiotemporal propagation fea-
tures. Indeed, the results on all motor-evoked spatiotempo-
ral propagation indicators suggest that the combination of
contralesional inactivation and motor training acts towards
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the establishment of new propagation patterns rather than
the restoration of pre-stroke features.

In summary, our detailed spatiotemporal analysis of
global activation patterns during longitudinal motor train-
ing provides a powerful non-invasive tool to quantify the
success of different state-of-the-art rehabilitation paradigms.
The propagation-based biomarkers deliver new and unfore-
seen information about the brain mechanisms underlying
motor recovery which could pave the way towards a much
more targeted post-stroke therapy.

Source Codes

The main method used here, SPIKE-Order, is imple-
mented in three free and publicly available software pack-
ages. Results in this study were obtained using cSPIKE2

(Matlab command line with MEX-files). A Matlab-based
graphical user interface, SPIKY3 [19], and a Python library,
PySpike4 [38], are available as well.
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