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Abstract

Single-cell Assay for Transposase-Accessible Chromatin sequencing (scATAC-seq) identifies regulated
chromatin accessibility modules at the single-cell resolution. Robust evaluation is critical to the development of
scATAC-seq pipelines, which calls for reproducible datasets for benchmarking. We hereby present the simATAC
framework, an R package that generates scATAC-seq count matrices that highly resemble real scATAC-seq
datasets in library size, sparsity, and chromatin accessibility signals. simATAC deploys statistical models derived
from analyzing 90 real scATAC-seq cell groups. simATAC provides a robust and systematic approach to
generate in silico scATAC-seq samples with known cell labels for assessing analytical pipelines.
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Background
Single-cell sequencing has revolutionized and expe-
dited our understanding of the structure and func-
tion of cells at unprecedented resolution. This tech-
nology resolves a fundamental limitation of bulk se-
quencing, which averages signals over a large number
of cells resulting in obscured biological heterogeneity
among individual cells [1]. The assay for transposase-
accessible chromatin sequencing (ATAC-seq) measures
chromatin’s openness, a proxy for the activity of DNA
binding proteins [2–4]. Single-cell ATAC-seq (scATAC-
seq) has opened up vast fields of applications, includ-
ing extracting accessibility and co-accessibility pat-
terns of genomic regions to identify cell-type-specific
enhancers, chromatin heterogeneity, and transcription
factor activities.

The rapid advancement of scATAC-seq technology
has given rise to the development of computational
tools for scATAC-seq data, and the integrative anal-
ysis of transcriptomic and epigenomic profiles [5–7].
Though simulated datasets with known cell labels have
been the most common approach to benchmark the
performance of analytical pipelines, there is no ex-
isting standard practice or simulation tool available
to generate synthetic scATAC-seq datasets from real
single-cell samples. Some previous studies generated
in silico data by downsampling reads from bulk or ex-
isting scATAC-seq data, or deploying simple sampling
algorithms [8–18]. However, these simulation methods
were implemented as part of scATAC-seq analytical
tool development and were usually incompletely docu-
mented, resulting in a lack of reproducibility. Further,

*Correspondence: bowang@vectorinstitute.ai
1Peter Munk Cardiac Centre, University Health Network, Toronto, Canada

Full list of author information is available at the end of the article

due to the sparsity and noisy nature of scATAC-seq
data, generating synthetic samples that closely resem-
ble real datasets remains challenging.

Most scATAC-seq analytical pipelines consist of pre-
processing (read quality control and alignment), core
analysis (feature matrix generation) and downstream
analyses (e.g. cell type clustering). A feature ma-
trix summarizes the filtered reads from BAM files
by counting the number of aligned reads that over-
lap within the defined genomic regions. The features
represent a subset of genomic regions with specified
genomic positions, nucleotide patterns, or biological
functions [8, 19, 20]. A commonly used feature matrix
for scATAC-seq is the peak-by-cell matrix that cap-
tures the highest accessibility signals from genomic re-
gions (peaks) obtained from bulk ATAC-seq or single
cells. However, a sufficient number of cells are required
to identify such peaks, and consequently, the peak-
by-cell feature matrix usually fails to recognize the
rare cell type regulatory patterns [11]. Alternatively,
the bin-by-cell feature matrix is generated by seg-
menting the whole genome into uniformly-sized non-
overlapping “bins” and mapping the read counts to
each bin [11]. Unlike the peak-by-cell matrices, the uni-
form segmentation of the genome does not screen out
any genomic region, and thus has the potential to de-
tect rare cell groups.

We hereby propose simATAC, a scATAC-seq simu-
lation framework that generates simulated samples re-
sembling real scATAC-seq data. Given a real scATAC-
seq feature matrix as input, simATAC estimates the
statistical parameters of the mapped read distributions
by cell type, and generates a synthetic count array
that captures the unique regulatory landscape of cells
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with similar biological characteristics. We demonstrate
that the synthetic samples generated by simATAC
highly resemble real scATAC-seq datasets in library
size, sparsity (proportion of zero entries), and aver-
aged chromatin accessibility signals.

Results
simATAC framework
simATAC deploys statistical distributions to model the
properties of a bin-by-cell count matrix for a group of
cells with similar biological characteristics. The main
modelling parameters include read coverage of cells (li-
brary size), non-zero cell proportion in each bin, and
the average of read counts per bin (bin mean). Bin-by-
cell matrix quantifies the number of open chromatin
read fragments overlapping with the fixed-length bins
(5 kbp windows) across the whole genome. For each
user-input real scATAC-seq dataset, simATAC per-
forms two core simulation steps: (i) estimating the
model parameters based on the input bin-by-cell ma-
trix, including the library sizes of the cells, the non-
zero cell proportion and the read count average of each
bin; (ii) generating a bin-by-cell matrix that resem-
bles the original input scATAC-seq data by sampling
from Gaussian mixture and polynomial models with
the estimated parameters. simATAC outputs a count
matrix as a SingleCellExperiment (SCE) object [21],
with additional options to convert it to other formats
of feature matrices. Figure 1 summarizes the simula-
tion architecture of simATAC. We discuss the statis-
tical modelling of simATAC in the next sections and
Methods.

Library size
Library size refers to the number of aligned reads
per cell. simATAC models cells’ log-transformed li-
brary sizes through a Gaussian mixture model (GMM)
with two components whose parameters are estimated
based on the user-input real scATAC-seq data. With
the estimated parameters, simATAC randomly sam-
ples library sizes of C single cells based on

log2(l′i) ∼ w×N (µ1, σ
2
1)+(1−w)×N (µ2, σ

2
2), (1)

where l′i denotes simulated library size for the ith simu-
lated single-cell. See Table 1 for the detailed definition
of the Gaussian mixture model parameters.

Previous studies have shown that the library sizes of
cells significantly affect the identification of cell types
[11–13, 15, 17]. Higher sequencing coverage usually re-
sults in a larger library size, thus providing more ac-
curate chromatin accessibility information. Since the
library sizes of scATAC-seq usually vary across differ-
ent experiments, simATAC offers users the flexibility
to adjust the library sizes from low to high coverage
based on their needs.

Table 1 Input parameters to the simATAC simulation step.

Parameter Symbol Description

Library size
mean

µ1, µ2 The estimated means of two
Gaussian modals of library size.

Library size
standard
deviation

σ1, σ2 The estimated standard devia-
tions of two Gaussian modals of
library size.

Library size
weight

w The estimated weight parameter
of the first Gaussian modal.

Non-zero
cell propor-
tion

P The proportion of non-zero cells
in real bin-by-cell matrix.

Polynomial
coefficient

β The estimated coefficients of
polynomial model fitted to the
relation between bin non-zero
cell proportions and bin means.

Bin non-zero cell proportion

Sparsity is the inherent nature of scATAC-seq data
[11, 16, 17], which results in a large proportion of zero
entries in the bin-by-cell matrix. Let Mj,i denote the
number of reads that fall into the bin j of cell i for
B bins. If Mj,i > 0, it is considered as a non-zero
entry. The number of cells with non-zero entries within
a bin is associated with the chromatin accessibility in
the corresponding genomic region. Based on the user-
input real scATAC-seq bin-by-cell matrix, simATAC
first estimates the proportion of cells with non-zero
entries for the jth bin, pj , and then determines whether
an entry in the simulated count matrix is zero or not
based on a Bernoulli distribution,

Xj,i ∼ Bernoulli(pj). (2)

If Xj,i = 1, the read count of cell i at bin j is non-
zero, i.e. Mj,i > 0. If Xj,i = 0, the read count of cell
i at bin j is set to zero, i.e. Mj,i = 0. The non-zero
cell proportion of bin j, p′j , of the simulated bin-by-cell
matrix is then defined as

p′j =
C∑
i=1

Xj,i/C. (3)

Bin mean

The extent of genome accessibility leads to the vari-
ations in the number of sequenced reads falling into
the fixed-length bins, and consequently, the variations
in the average of the reads in each bin. More accessi-
ble regions potentially have larger bin means, that is,
more cells with non-zero entries are mapped to that
region. Based on the modelling scATAC-seq datasets,
we observed a polynomial regression relationship be-
tween the non-zero cell proportions and the bin means
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Figure 1 The simATAC simulation framework. The red circles represent values directly extracted from the user-input bin-by-cell
matrix, the white squares represent estimated parameters, and the brown circles represent the simulated values. simATAC initially
estimates the library sizes, the non-zero cell proportions, and the bin means from the input cell group (including cells having similar
biological characteristics). simATAC generates the library sizes with a Gaussian mixture distribution, the zero and non-zero status
with a Bernoulli distribution, and the bin means with a polynomial regression model linking to the non-zero cell proportion. The
synthetic counts are sampled from a Poisson distribution whose mean is a factor of the cell library size adjusted by the bin mean.
simATAC offers optional sparsity adjustment factor γ and noise parameters to adjust the sparsity and noise level of the synthetic
counts generated from the Poisson distribution. The simATAC framework simulates synthetic scATAC-seq data using the default
values for all the parameters if no user-input real data or parameters are given.

for each cell group. simATAC simulates the average of
the read counts at bin j, m′

j , by

m′
j = β0 + β1p

′
j + β2p

′2
j , (4)

where β0, β1 and β2 are estimated based on the input

real scATAC-seq dataset.
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Bin-by-cell count matrix
simATAC generates the final count of cell i at bin j,
cj,i, using a Poisson distribution with γc′j,i as the mean
parameter, where c′j,i is the library size of cell i scaled
by the bin meanm′

j at bin j, and γ denotes the sparsity
adjustment factor with a default value of 1. When γ <
1, the simulated scATAC-seq data tend to be more
sparse, and vice versa.

c′j,i = l′i × (
m′

j∑B
k=1m

′
k

), cj,i ∼ Poisson(γc′j,i). (5)

To reproduce the high noise level of scATAC-seq
data, simATAC offers an optional step to include ad-
ditional noise to the final simulated counts by

cj,i = cj,i + int(N (mean, sd)). (6)

High noise level blurs the difference in the read dis-
tributions between different cell types, which mimics
real sequencing artifacts. However, as the noise level
increases, the distribution of the library sizes and the
sparsity of the simulated data may differ from the
input real scATAC-seq data. The default setting of
simATAC omits the optional adding noise step, but
leaves users the flexibility to set their desirable noise
level.

simATAC outputs the final simulated bin-by-cell ma-
trix as a SCE object, a container for single-cell ge-
nomics data, from the SingleCellExperiment R pack-
age [21].

Simulating feature matrices in other formats
simATAC can also generate synthetic scATAC-seq
data in other formats of feature matrices. The default
bin-by-cell output can be converted to a peak-by-cell
matrix by filtering bins enriched in aligned reads (top
bins by measuring the bin means). simATAC gener-
ates a synthetic peak-by-cell count matrix with the
“simATACgetPeakByCell” function, given a simulated
bin-by-cell matrix by simATAC and a user-specified
number of peak bins. simATAC also offers additional
functionality to extract other feature matrices given a
user-input list of regions (in a BED format) with the
“simATACgetFeatureByCell” function. Another com-
monly used feature matrix format is the binary ver-
sion, which is provided by “simATACgetBinary” func-
tion.

Evaluation
In this section, we demonstrate the resemblance of the
simulated samples generated by simATAC to the input
real scATAC-seq datasets. The simulated samples are
compared to the real samples on the distributions of

library size, sparsity and bin means. We also evaluate
the clustering performance of the simulated matrices.
The evaluations are performed on each cell group (or
cell type) from the annotated benchmark scATAC-seq
datasets, Buenrostro2018 [22], Cusanovich2018 [23],
and PBMCs [24], representing a wide range of plat-
forms, cell types, and species. See Methods and Addi-
tional file 1: Table S1 for the description of cell types
and platforms of these datasets.

Statistical evaluation
With each of the three real scATAC-seq datasets as
input, we simulate bin-by-cell matrices for each cell
group with the same number of cells as in the real
datasets. We then compare the distribution of library
size, bin means, and sparsity of the simulated datasets
to the real samples, by cell group. We present four cell
groups from each benchmark dataset to demonstrate
the similarity.

Figure 2 depicts the library size distributions of the
scATAC-seq data simulated by simATAC using 12 cell
groups from the benchmark datasets as input. The li-
brary size distributions of the simulated data highly
resemble those of the real datasets. See Additional file
1: Figure S1 for the complete comparison between the
real and simulated data for all the cell groups in the
three benchmark datasets.

simATAC synthesized bin-by-cell matrices preserve
the accessibility of genomic regions with its input real
scATAC-seq dataset. Table 2 summarizes the Pearson
correlation of the bin means and non-zero cell pro-
portions between the simulated and the input real
scATAC-seq datasets. The high correlations demon-
strate that simATAC retains the genomic region ac-
cessibility characteristics of the input real data. See
Additional file 1: Table S2 for the complete compar-
ison for all cell groups from the benchmark datasets.
All the reported Pearson correlations are averaged over
20 simulation runs.

Figure 3 illustrates the sparsity of the simulated bin-
by-cell matrices in 12 cell groups of the benchmark
datasets, which demonstrates that the synthetic sam-
ples generated by simATAC retains the sparsity of the
real samples across bins and cells. See Additional file
1: Figures S2-S3 for other cell groups comparison. To
demonstrate the bin sparsity resemblance of the sim-
ulated to the real data, we provide the bin sparsity
QQ-plots of 12 benchmark sample groups for sparsity
adjustment factor γ = {0.8, 0.9, 1} in Additional file
1: Figures S4-S6.

We further investigate the impact of the bin sparsity
adjustment parameter γ on the simulated bin-by-cell
matrices. We observe that mild changes in the spar-
sity adjustment factor do not significantly affect the
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Figure 2 Comparison of the library size distribution. Library
size box plots of the simulated (in orange) and real (in green)
scATAC-seq data are illustrated for the three benchmark
datasets: Buenrostro2018, Cusanovich2018, and PBMCs. The
library size distributions of the synthetic samples (without
additional Gaussian noise) closely resemble those of the real
samples.

distributions of cell sparsity, library sizes, or bin spar-
sity. See Additional file 1: Figure S7 for a comparison
of these distributions under different sparsity adjust-
ment factor values γ = {0.8, 0.9, 1, 1.1, 1.2} using the
LMPP cell type from the Buenrostro2018 dataset.

We also report the median absolute deviation (MAD),
mean absolute error (MAE), and root mean square
error (RMSE) of the sorted library sizes, bin means
and non-zero cell proportion of each bin between the
real and the simulated datasets in Table 3. The re-
ported metrics are averaged over 20 simulation runs.
The small values of MAD, MAE, and RMSE suggest
that the synthesized bin-by-cell matrices’ properties
closely resemble those of the real input data.

The main functionality of simATAC is to simulate
bin-by-cell scATAC-seq count matrices, yet it also of-
fers additional functionalities such as converting the
simulated bin-by-cell matrices to peak-by-cell feature
matrices using the “simATACgetPeakByCell” func-

Table 2 Pearson correlation between the simulated and real
samples’ bin means and the non-zero cell proportion of bins.

Correlation

Cell type Bin mean Non-zero cell proportion

Buenrostro2018

CMP 0.96 0.98
GMP 0.98 0.99
pDC 0.97 0.97
mono 0.92 0.94

Cusanovich2018

Heart 0.95 0.96
Kidney 0.97 0.97
LargeIntestine 0.93 0.93
Liver 0.98 0.98

PBMCs

Cell1 0.99 1
Cell3 0.99 1
Cell5 0.98 0.99
Cell7 0.99 0.99

tion. We show that the extracted peak-by-cell matri-
ces preserve the chromatin accessibility information of
the real input data. We compare the clustering per-
formance and peak overlaps of the simulated data
with those extracted from two commonly used non-
segmenting peak callers, MACS2 [25] and Genrich [26].
See Additional File 1: Figure S8, Tables S3-S4, and
Note S2 for the detailed comparison.

Clustering evaluation
The ability to cluster cells with similar biological char-
acteristics is one of the major evaluation aspects of
many scATAC-seq analytical tools. Many previous
studies reported close to perfect cell clustering per-
formance when evaluating scATAC-seq pipelines using
simulated data [11, 12, 17], which is not ideal in com-
paring the performance across different computational
tools.

We here show that the simulated data by simATAC
produce realistic downstream analysis results. Further,
if the data is simulated based on an input real scATAC-
seq dataset, the clustering performance based on the
simulated data closely resemble those based on the
real input data. Table 4 summarizes the clustering
metrics, normalized mutual information (NMI), ad-
justed mutual information (AMI), and adjusted Rand
index (ARI) evaluated on the simulated datasets by
simATAC. We adopt the SnapATAC graph-based clus-
tering algorithm, and all the reported metrics are av-
eraged over 20 simulation runs [11].

We vary the Gaussian noise levels (mean = 0, SD
= 0; mean = -0.3, SD = 0.3; mean = -0.4, SD = 0.4)
added to the simulated data, representing no noise to
high noise levels. We compare the clustering metrics
using the simulated data with those using the input
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Figure 3 Comparison of the bin sparsity and cell sparsity distributions. Bin sparsity QQ-plots and cell sparsity box plots of the
simulated (in green) and real (in purple) scATAC-seq data are illustrated for the three benchmark datasets: Buenrostro2018,
Cusanovich2018, and PBMCs. The sparsity of the synthetic data generated by simATAC (without additional Gaussian noise) closely
resembles that of the corresponding real scATAC-seq input data.

real scATAC-seq data, which is listed on the “Real-
input data” row. The clustering results in Table 4 show
that the simulated data by simATAC maintain the
chromatin accessibility information of each cell group
reasonably close to the real data. The clustering met-
rics of the synthetic data can get very close to the real
data when adding Gaussian noise, and achieve realistic
clustering performance in contrary to existing simula-
tion methods. We further assess the distributions of
the simulated counts under these three recommended
noise levels in Additional file 1: Figures S9-S14 and
Tables S5-S6, which suggests that there is a trade-off
between the closeness in clustering performance and
the closeness in the distributions of library size and
the sparsity parameters between the simulated and
real samples. We also note that the impact of Gaussian
noise level on clustering metrics may vary across differ-

ent cell types, and thus simATAC offers the flexibility
for users to adjust their desirable noise level.

In Table 4, we assume the sparsity parameter γ = 1
when simulating all the data. We show in Additional
file 1: Table S7 the impact of γ on the downstream
clustering performance of the simulated data. With all
other parameters fixed, the clustering results are gen-
erally consistent across different values of γ. Hence, we
set the default value of γ to 1 in simATAC.

Discussion and conclusions
The rapid development of scATAC-seq technology led
to a surge of scATAC-seq analytical tools. However,
the lack of systematic simulation frameworks hin-
ders the consistent evaluation of the computational
tools and reproducibility of the analytical results. To
meet this need, we developed simATAC, a system-
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Table 3 Median absolute deviation (MAD), mean absolute error (MAE), and root mean square error (RMSE) average for sorted real
and sorted simulated library sizes, real and simulated bin means, and real and simulated non-zero cell proportions across all cell groups
in the associated dataset. The reported values are the averages of these metrics ± the corresponding standard deviations based on 20
simulation runs. The unit of the values is 0.1%.

Buenrostro2018 Cusanovich2018 PBMCs

MAD MAE RMSE MAD MAE RMSE MAD MAE RMSE

Non-zero cell proportion 2.4 ± 2.8 6.5 ± 1.7 15.2 ± 3.8 4.0 ± 1.4 5.8 ± 1.7 8.6 ± 2.3 5.8 ± 9.1 9.0 ± 14 13.9 ± 18

Bin mean 2.4 ± 2.8 9.0 ± 2.5 531.9 ± 21 4.4 ± 1.6 6.6 ± 2.0 32.2 ± 16 7.2 ± 12 13.1 ± 20 57.8 ± 59

Library size 90 ± 46 111.6 ± 47 150.2 ± 60 50.0 ± 18 63.3 ± 17 88.2 ± 23 72.6 ± 38 107.8 ± 44 169 ± 45

Table 4 Clustering evaluation results. The NMI, AMI, and ARI
scores are the cell type clustering results using SnapATAC
software. “Real-input data” refers to the clustering results using
the input real scATAC-seq data. Metrics for simATAC’s simulated
bin-by-cell matrices for different noise levels are also compared
presented for each of the Buenrostro2018, Cusanovich2018 and
PBMCs datasets.

Mean Standard deviation NMI AMI ARI

Buenrostro2018

0 0 0.71 0.83 0.54
-0.3 0.3 0.72 0.83 0.54
-0.4 0.4 0.67 0.78 0.50
Real-input data 0.54 0.62 0.36

Cusanovich2018

0 0 0.96 0.97 0.94
-0.3 0.3 0.79 0.85 0.69
-0.4 0.4 0.62 0.71 0.40
Real-input data 0.41 0.46 0.22

PBMCs

0 0 0.78 0.87 0.71
-0.3 0.3 0.61 0.73 0.47
-0.4 0.4 0.56 0.67 0.44
Real-input data 0.45 0.54 0.28

atic scATAC-seq simulator that generates synthetic
samples that closely resemble real scATAC-seq data.
simATAC builds upon Gaussian mixture distribution
to model cells’ library size, and polynomial regression
model to represent the relationship between the av-
erage of bin counts and the non-zero cell proportion
of bins. Moreover, simATAC grants users the flexibil-
ity to adjust parameters manually. simATAC generates
a synthetic bin-by-cell matrix given a real scATAC-
seq dataset as input. If there are no user-specified
count matrix or parameters available, simATAC sim-
ulates samples using the default parameters derived
from real scATAC-seq data. A list of estimated val-
ues for library size Gaussian mixture distribution and
polynomial function parameters are provided in Addi-
tional file 2. simATAC also offers additional functions
to transform the bin-by-cell matrix into feature matri-
ces in other formats.

The statistical modelling framework of simATAC is
built upon 90 real scATAC-seq cell groups from vari-
ous sequencing platforms, species, and cell types. We
demonstrated the distributions of the library sizes, bin

means, and sparsity parameters of the simATAC syn-
thetic datasets resembling those of the real input ex-
amples. simATAC offers additional options to modify
the noise levels to mimic the artifacts in real scATAC-
seq data and generate samples with various difficulty
levels for downstream analyses assessment.

Quality control steps in most scATAC-seq pipelines
apply filters on the raw feature matrices, such as re-
moving cells with a library size less than a fixed thresh-
old or filtering out regions based on the number of
mapped reads. As the denoising thresholds may affect
the downstream analyses, simATAC offers users the
flexibility to manually set the quality control filtration
thresholds on the simulated raw count matrix.

The feature matrices generated by simATAC cover
regions spanning the whole genome without discard-
ing the off-peak reads, enabling the identification of
rare cell types in complex tissues. While the peak-by-
cell matrix has been the common version of scATAC-
seq feature matrix to be analyzed, recent studies chal-
lenged this strategy and proposed the bin-by-cell ver-
sion for downstream analyses. Peak calling pipelines
perform differently in defining accessible genomic re-
gions based on the approach they deploy. Therefore,
we believe genome binning is an optimal approach to
simulate scATAC-seq data, providing a standard rep-
resentation for samples from different sources.

simATAC generates count matrices using a 5 kbp bin
window, and at this resolution, each human cell spans
∼600,000 bins. However, there is no standard agree-
ment on the optimal bin size for all samples, and bin
size selection induces a trade-off between the ability
to capture chromatin accessibility signals and compu-
tational cost. We assessed the runtime of simATAC
on a desktop workstation (Intel(R) Xeon(R) CPU @
3.60GHz processor). Simulating 1,000 human cells at
5 kbp window size on average took 43 seconds in five
simulation runs. See Additional file 1: Table S8 for the
running time of all benchmark datasets.

To our best knowledge, simATAC is the first scATAC-
seq simulator that directly simulates bin-by-cell count
matrices that are reproducible and closely resemble
real data. Though the availability of real scATAC-
seq data has been increasing, real scATAC-seq data

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2021. ; https://doi.org/10.1101/2020.08.14.251488doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.14.251488
http://creativecommons.org/licenses/by-nc-nd/4.0/


Navidi et al. Page 8 of 11

with annotated labels (“ground truth”) remains lack-
ing. simATAC offers users the convenience to generate
scATAC-seq data with known cell types and desirable
number of single cells, yet closely resemble the real
data. Further, simATAC provides users the flexibility
to adjust the library size, bin sparsity and noise level
of the simulated data. We envision that simATAC em-
powers users to develop scATAC-seq analytical tools
effectively and reproducibly.

Methods
simATAC statistical modelling
We compiled and processed each of the 90 scATAC-
seq cell groups as well as each of the eight datasets
(considering all cell groups together) to model the li-
brary size parameter. We conducted the Kolmogorov-
Smirnov test and the Chi-squared test to test the good-
ness of fit of the log-transformed library sizes to the
Gaussian probability distribution, using the stats and
fitdistrplus R packages [27, 28]. The p-values of the
goodness of fitness tests showed that non-10xG sam-
ples generally follow a Gaussian distribution. Our pre-
liminary statistical analysis of the 10xG scATAC-seq
data showed that many of them are sampled from a
mixture of probability distributions. We tested the null
hypothesis if the 10xG samples’ library sizes are sam-
pled from a unimodal probability distribution using
Hartigan’s dip test from the diptest R package [29].
In most of the modelling datasets, the null hypothesis
is rejected at a significance level of α = 0.05. Con-
sidering the probability density function and the cu-
mulative distribution function plots, we modelled the
log-transformed library sizes with a Gaussian mixture
model with two modes and estimated the parameters
using the mixtools R package [30]. Statistical param-
eters of the aforementioned tests for library size mod-
elling are provided in Additional file 3.

We observed a significant difference in the distri-
bution of library sizes between the real scATAC-seq
data generated by the 10xG platform and other plat-
forms. Library sizes of the non-10xG samples gener-
ally fit a unimodal Gaussian model, while those of
the 10xG samples fit a bimodal GMM. All the sta-
tistical analyses results are provided in the Additional
file 3. simATAC simulates the library size using a bi-
modal GMM for samples from all platforms, and for
non-10xG samples, the weight of the second Gaussian
distribution can be set to zero.

To recover the scATAC-seq data sparsity, simATAC
first assigns zero or non-zero labels to the bin-by-cell
matrix using a Bernoulli distribution for each bin. The
probability that a cell at bin j is non-zero is the es-
timated non-zero cell proportion at the corresponding
bin of the input real scATAC-seq dataset.

Based on the 90 real scATAC-seq modelling cell
groups, we observed a polynomial relationship between
the non-zero cell proportions and the bin means in the
normalized real bin-by-cell arrays. The input matrix
is normalized by dividing primary counts by the cells’
library size and multiplying by the median of library
sizes. The quadratic relation between bin means and
non-zero cell proportions for the 12 sampled cell groups
of benchmark datasets are provided in Additional file
1: Figure S15. simATAC estimates the regression pa-
rameters using the lm function from the stats pack-
age [27], and calculates bin means based on equation
4. Note that the parameters in equation 4 are esti-
mated by cell types/groups, as the chromatin accessi-
bility patterns of different cell types vary biologically.

Evaluation metrics
We assessed the simulated feature matrices by calcu-
lating the absolute differences between sorted real and
sorted simulated library size vectors, real and simu-
lated bin means, and non-zero cell proportion vectors
of original and synthetic count matrices. The MAD,
MAE, and RMSE of these vectors are computed by
the following equations, where R are the real values
and S are the simulated values:

MAD = median(|R− S|), (7)

MAE = mean(|R− S|), (8)

RMSE =
√
mean((R− S)2). (9)

We used three metrics to evaluate the clustering per-
formance, normalized mutual information (NMI), ad-
justed mutual information (AMI), and adjusted Rand
index (ARI). Considering gt and pred as the ground
truth and predicted labels, NMI is calculated using

NMI(gt, pred) =
MI

max(H(gt), H(pred))
, (10)

where MI = MI(gt, pred) is the mutual information
(MI) between gt and pred, and H is the entropy.

AMI is defined as

AMI(gt, pred) =
MI − E[MI]

mean(H(gt), H(pred))− E[MI]
, (11)

where E(·) is the expectation function.
Using the same notations, ARI is defined as

ARI(gt, pred) =
RI − E[RI]

max(RI)− E[RI]
, (12)

where the Rand index (RI) is a similarity measure be-
tween two lists of labels. See more details of NMI, AMI
and ARI in Additional file 1: Note S2 [31].
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Availability of data and materials
We built the simATAC statistical model and esti-
mated the default input parameters based on 90 cell
groups from eight publicly available real scATAC-seq
datasets from various platforms, including Fluidigm
C1, 10x Genomics Chromium (10xG), single-cell com-
binatorial indexing ATAC-seq (sciATAC-seq), multi-
index single-cell ATAC-seq (MI-ATAC), and single-
nucleus ATAC-seq (snATAC-seq) to ensure a gener-
alizable simulation framework. The datasets support-
ing the modelling and evaluation of this article are
all available publicly. All datasets used in this study
are available from GEO accessions: (1) 63 10xG sam-
ple groups from GSE129785 [32], (2) GSE99172 [8],
(3) GSE74310 [33], (4) GSE65360 [34], (5) GSE68103
(GSM1647122) [35], (6) GSE68103 (GSM1647123)
[35], (7) GSE112091 (series GSE112245) [36], and (8)
GSE100033 (GSM2668124) [37].

The benchmark datasets used for evaluating simATAC
framework are:

• The Buenrostro2018 dataset contains 1974 cells
generated from the Fluidigm C1 platform. Sam-
ples are from 9 FACS-sorted cell populations from
CD34+ human bone marrow, namely, hematopoi-
etic stem cells (HSCs), multipotent progeni-
tors (MPPs), lymphoid-primed multipotent pro-
genitors (LMPPs), common myeloid progeni-
tors (CMPs), granulocyte-macrophage progen-
itors (GMPs), megakaryocyte-erythrocyte pro-
genitors (MEPs), common lymphoid progenitors
(CLPs), plasmacytoid dendritic cells (pDCs), and
monocytes (mono) [22].

• The Cusanovich2018 dataset is a subset of mouse
tissues with 12178 cells from 13 different sources
[17]. Sequenced cells are from bone marrow,
cerebellum, heart, kidney, large intestine, liver,
lung, prefrontal cortex, small intestine, spleen,
testes, thymus, and whole brain, generated using
a sciATAC-seq protocol [23].

• The PBMCs dataset is produced by the 10x Ge-
nomics Chromium (10xG) droplet-based platform
and comprises 5335 cells from human peripheral
blood mononuclear cells (PBMCs) [24]. There are
no true cell type labels for PBMCs cells. How-
ever, we used 10x Genomics Cell Ranger ATAC’s
[24, 38] clustering labels as ground truth and per-
formed simulation on each cluster. Although exist-
ing labels are not perfect, we included this data to
evaluate how simATAC mimics features of a group
of cells with similar biological characteristics from
a droplet-based platform [17].

All the aforementioned datasets are publicly avail-
able. The detailed information of all samples with cell
groups and numbers are provided in the Additional file

1: Table S1. We also provide a table of abbreviations
in Additional file 1: Table S9.

Dataset pre-processing
The raw FASTQ or BAM files were downloaded from
the links provided, and bin-by-cell matrices used in
simATAC development were generated using the Snap-
Tools (version: 1.4.6) [11, 39]. SnapTools is a Python
module that pre-processes scATAC-seq data. Snap-
Tools aligns raw FASTQ files to a reference genome
using the Burrows-Wheeler aligner. Reads that were
properly paired according to the SAM flag value,
uniquely mapped with mapping quality > 30, and had
a length less than 1,000 base pairs were filtered for
further analyses. SnapTools groups the reads with the
same barcode and removes PCR duplicate reads in
each group. SnapTools outputs a .snap file, which is
an hdf5 file that stores the input scATAC-seq data,
including cell-by-bin matrix used in the development
and analyses of simATAC modelling [11]. For 10xG
samples, we started from the fragment.tsv file provided
by 10x website, which is a barcoded and aligned frag-
ment file processed, with an implemented option by
SnapTools for 10xG samples. The rest of the samples
were processed from FASTQ or provided BAM files,
and unique randomly generated barcodes were added
to the samples that did not have barcodes themselves.

We used samtools (version 1.10) for some of our pre-
processing [40]. Bedtools (version 2.27.1) was used for
generating peak-by-cell matrices [41], and Picard tool
(version 2.23.3) for removing duplicate reads [42]. Sna-
pATAC (version 1.0.0) R package was used for data
pre-processing, loading bin-by-cell matrices, and clus-
tering analysis [39]. We also used Signac R package
(version 1.0.0), which is an extension of Seurat for the
clustering analysis of peak-by-cell matrices [43].

The code and dataset files used for benchmarking are
available at https://github.com/bowang-lab/simATAC
[44].
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