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Abstract

Cell atlases often include samples that span locations, labs, and conditions, leading to complex,
nested batch effects in data. Thus, joint analysis of atlas datasets requires reliable data
integration.

Choosing a data integration method is a challenge due to the difficulty of defining integration
success. Here, we benchmark 38 method and preprocessing combinations on 77 batches of
gene expression, chromatin accessibility, and simulation data from 23 publications, altogether
representing >1.2 million cells distributed in nine atlas-level integration tasks. Our integration
tasks span several common sources of variation such as individuals, species, and experimental
labs. We evaluate methods according to scalability, usability, and their ability to remove batch
effects while retaining biological variation.

Using 14 evaluation metrics, we find that highly variable gene selection improves the
performance of data integration methods, whereas scaling pushes methods to prioritize batch
removal over conservation of biological variation. Overall, BBKNN, Scanorama, and scVI
perform well, particularly on complex integration tasks; Seurat v3 performs well on simpler tasks
with distinct biological signals; and methods that prioritize batch removal perform best for
ATAC-seq data integration. Our freely available reproducible python module can be used to
identify optimal data integration methods for new data, benchmark new methods, and improve

method development.
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Introduction

The complexity of single-cell omics datasets is increasing. Current datasets often include many
samples’, generated across multiple conditions?, with the involvement of multiple labs®. Such
complexity, which is common in maps of specific tissues and organs or whole reference atlas
initiatives such as the Human Cell Atlas®, creates inevitable batch effects. Therefore, the
development of data integration methods that overcome the complex, nonlinear, nested batch
effects in these data has become a priority. Indeed, data integration has been described as one
of the grand challenges of scRNA-seq data analysis®®.

Batch effects represent unwanted technical variation in the data that affects groups (or batches)
of cells. Batch effects can arise from variations in sequencing depth, sequencing lanes, read
length, plates or flow cells, protocol, experimental labs, sample acquisition and handling, sample
composition, reagents or media, and/or sampling time. Furthermore, biological factors such as
tissues, spatial locations, species, time points, or inter-individual variation can also be regarded
as a batch effect under certain circumstances.

Appropriate data integration methods are required to deal with these batch effects. Here, we
define single-cell data integration as the process of combining datasets or samples of
high-throughput sequencing data to produce a self-consistent version of the data for
downstream analysis’. The output of these methods is either an integrated graph, a joint
embedding, or a corrected feature space. Importantly, we distinguish data integration from batch
correction according to method complexity, i.e., the complexity of the batch effect that can be

removed. Whereas batch removal is typically used to integrate samples from the same lab
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and/or experiment, data integration should be applied to tasks involving nested batch effects
from, for example, multiple labs and/or protocols.

Currently, 31 integration methods for scRNA-seq data are available® (as of February 2020;
Supplementary Table 1). Consequently, when confronted with a new data integration problem,
analysts face the difficult decision of choosing a particular method. Moreover, it is difficult to
envisage how an integrated dataset should look; thus, integration method choice can be biased
by the subjective opinion of the analyst. Benchmarking integration methods can help solve this
problem and provide an unbiased guide to method choice.

Previous studies on benchmarking methods for data integration have focused on the simpler
problem of batch effect removal in scRNA-seq®'°. These studies benchmarked methods on
simple integration tasks with low batch complexity and found that ComBat® or the linear,
principal component analysis (PCA)-based, Harmony method' outperformed more complex,
nonlinear, methods.

Here, we present the first benchmarking study in which the performance of data integration
methods in complex integration tasks (such as those now commonly required in the analysis of
tissue and organ atlases) is investigated. Specifically, we benchmark 10 popular data
integration tools on nine data integration tasks consisting of up to 23 batches and 1 million cells,
for both scRNA- and scATAC-seq data. We selected eight single-cell data integration tools
[matching mutual nearest neighbors (MNN)", Seurat v3'?, scVI', Scanorama', batch-balanced
k-nearest neighbors (BBKNN)™, LIGER', clustering on network of samples (Conos)", and
Harmony'™ ], a bulk data integration tool (ComBat'), and a perturbation modeling tool
[transformer variational autoencoder (trVAE)®]. Moreover, we use 14 metrics to evaluate the
integration methods on their ability to remove batch effects while conserving biological variation.

We focus in particular on assessing the conservation of biological variation beyond cell identity
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labels, e.g., we assess the conservation of trajectories or cell cycle effects via novel integration
metrics. Our methodology allows us to adequately assess the strengths and limitations of
nonlinear methods, which have become necessary in the atlas-level integration tasks
increasingly faced by the data analysis community. We find that BBKNN, Scanorama, and scVI
perform well, particularly on complex integration tasks. In addition, Seurat v3 performs well on
simpler tasks with distinct biological signals, and Harmony and scVI are partially effective for

scATAC-seq data integration.

Results

Single-cell integration benchmarking (sciIB)

We benchmarked 10 popular data integration methods on nine preprocessed integration tasks:
two simulation tasks, five RNA-seq tasks, and two ATAC-seq tasks (Fig. 1). Each task posed a
unique challenge (e.g., nested batch effects caused by protocols and donors, batch effects in a
different data modality, and scalability up to 1 million cells) that revolved around integrating data
on a particular tissue from multiple labs (Table 1). These real data represent complex, nested
batch-effect scenarios; therefore, careful assessment of the “ground truth” is required. Our
simulation tasks allowed us to assess the integration methods in a setting where the nature of
the batch effect could be determined and the ground truth is known. We predetermined this
ground truth by preprocessing and annotating real data from 23 publications separately for each
batch (see Methods).

Each integration method was evaluated with regards to accuracy, usability, and scalability (see

Methods). Integration accuracy was evaluated using 14 performance metrics divided into two
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categories that typically oppose each other: removal of batch effects and conservation of
biological variance (Fig. 1). Batch effect removal per cell identity label was measured via the
k-nearest neighbor batch effect test (KkBET)?', kNN graph connectivity, and the Average
Silhouette Width (ASW)?' across batches. Independently of cell identity labels, we further
measured batch removal using the graph integration Local Inverse Simpson’s Index (graph
iLISI, extended from iLISI'®) and PCA regression®'. Conservation of biological variation in
single-cell data can be captured at the scale of cell identity labels (label conservation) and
beyond this level of annotation (i.e., label-free conservation). Therefore, we used both classical
label conservation metrics [assessed using local neighborhoods (graph cLISI, extended from
cLISI®), global cluster matching (Adjusted Rand Index*, Normalized Mutual Information?®),
relative distances (cell type ASW), and two novel metrics evaluating rare cell identity
annotations (isolated label scores)] and three novel label-free conservation metrics: (1) cell
cycle variance conservation, (2) overlaps of highly variable genes (HVGs) per batch before and
after integration, and (3) conservation of trajectories (see Methods).

The diversity in output formats from data integration methods poses a challenge to fair
benchmarking®. Although input data are consistently preprocessed, requirements on scaling
and HVG selection also differ between methods. We addressed these challenges in three ways.
Firstly, all integration outputs were treated as separate integration runs. For example,
Scanorama outputs both corrected expression matrices and embeddings; these are evaluated
as two separate outputs (Scanorama gene and Scanorama embedding). Secondly, we
developed novel extensions to kBET and LISI scores that worked on graph-based outputs, joint
embeddings, and corrected data matrices in a consistent manner (Supplementary Notes 1 and
2). For instance, we sped up graph LISI scoring via a fast, parallel C++ implementation that

scales to millions of cells. Thus, multiple metrics can be computed for each category of batch
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effect removal, label conservation, and label-free conservation (Supplementary Table 2).
Overall accuracy scores were computed by taking the weighted mean of all metrics computed
for an integration run, with a 40:60 weighting of batch effect removal to biological variance
conservation (bio-conservation) irrespective of the number of metrics computed. Thirdly, while
we ran each method according to defaults provided by the authors (see Methods) and
contacted them if errors were encountered, we also included preprocessing decisions in our
benchmark to assess whether scaling or HVG selection improves output. We considered that
some methods cannot accept scaled input data (i.e., LIGER, trVAE, and scVI). Thus, we tested
38 data integration setups per integration task, resulting in 342 attempted integration runs. All
performance metrics, integration methods with parameterizations, and preprocessing functions
have been made available in our sc/B python module. Furthermore, our workflow is provided as
a reproducible Snakemake® pipeline to allow users to test and evaluate data integration

methods in their own setting.
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Figure 1: Design of single-cell integration benchmarking (scIB). Schematic diagram of the
benchmarking workflow. Here, 10 data integration methods with four preprocessing decisions
are tested on nine integration tasks. Integration results are evaluated using 14 metrics that
assess batch removal, conservation of biological variance from cell identity labels (label
conservation), and conservation of biological variance beyond labels (label-free conservation).

The scalability and usability of the methods are also evaluated.

Table 1: Integration tasks for benchmarking. Overview of the tasks used to benchmark data
integration methods. The tested feature describes the unique challenge presented by the
integration task. Donor refers to human individuals, sample is used when mice are involved, and

batches is the general term that includes dataset and sample batches.
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Integration task Cell number Batches Tested features

Pancreas 16,382 9 batches Widely used test data, protocols
Human variation, protocols, spatial
Lung 32,472 16 donors locations, high resolution subtypes,
labs
Immune (human) 33,506 10 donors Tissues, labs, similar cell types
Immune (human & Tissues, labs, similar cell types,
97,952 23 samples
mouse) species
Large dataset, spatial locations,
Mouse brain (RNA) 978,734 4 datasets
nucleus vs cell
Mouse brain small
25,960 3 datasets Different modality
(ATAC)
Mouse brain large Different modality, unbalanced
67,612 3 datasets
(ATAC) batches
Simulation 1 12,097 6 batches Variation in cellular compositions
Nested batch effects, composition
Simulation 2 19,318 16 batches

variation
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Data integration benchmarking exemplified with human immune

cells

To demonstrate our evaluation of data integration methods, we first focus on the human
immune cell integration task (Fig. 2a and Supplementary Note 3.1.1). This task comprises 10
batches representing donors from five datasets with cells from peripheral blood and bone
marrow. All integration methods successfully completed this task without exceeding time and
memory limitations. With particular preprocessing, Scanorama (using joint embeddings), Conos,
Harmony, and BBKNN performed well. By considering the embedded data plots of the
integration results (Fig. 2b,c), it is possible to understand how method performance rankings
were obtained.

All high-performing methods succeeded in removing batch effects between individuals and
platforms while conserving biological variation at the cell type and subtype levels; this is
reflected in their relatively high batch removal and bio conservation scores. In comparison to
other top-performing methods, Conos had a lower batch removal score principally due to a low
graph iLISI score. Consequently, batch structure was found within the CD4+ T cell cluster, and
there was a closer proximity between the Smart-seq2 clusters from Villani et al.?° in the Conos
output. In contrast, BBKNN exhibited a lower bio-conservation compared with its batch removal
score due to a lower isolated label F1 score. The isolated labels in this task were CD10+ B cells,
erythroid progenitors (EPs), erythrocytes, and megakaryocyte progenitors (MPs), which are
exclusive to Oetjen et al.?’” batches. BBKNN separated the MPs into two populations
independently of their batch, leading to a low F1 score. In contrast, Harmony kept each

isolated cell label together, but showed an overlap between these populations (specifically

10
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EPs, MPs, erythrocytes, and monocyte-derived dendritic cells), leading to a comparatively
low isolated label ASW score but a high isolated label F1 score.

We also focused on the conservation of trajectories. In this integration task, we assessed
erythrocyte development from hematopoietic stem and progenitor cells (HSPCs) via MPs and
EPs to erythrocytes (Supplementary Fig. 1-3). All of the top performing methods exhibited high
trajectory conservation scores, whereas LIGER and Seurat v3, produced poor conservation of
this trajectory: LIGER lost most of the trajectory structure beyond HSPCs and MPs and Seurat
v3 appeared to place the cell types in broadly the correct order in a UMAP, but did not reflect
this order in diffusion map space, in which a branching structure was produced (Supplementary

Fig. 2).
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Figure 2: Benchmarking results for the human immune cell task. (a) Overview of top and

bottom ranked methods by overall score for the human immune cell task. Metrics are divided

12


https://doi.org/10.1101/2020.05.22.111161
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.22.111161; this version posted May 27, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

into batch correction and bio-conservation (pink) categories. Overall scores are computed using
a 40:60 weighted mean of these category scores (see Methods for further visualization details
and Supplementary Fig. 4 for the full plot). (b and c¢) Visualization of the best performers on the
human immune cell integration task colored by batch (b) and cell identity annotation (c). The
plots show Force Atlas 2 (Conos) and UMAP (all other methods) layouts for the unintegrated

data (left), and the top four performers (right).

The trade-off between batch removal and conserving biological

variation

Considering the results of the five RNA-seq and two simulation tasks (Supplementary Note 3
and Supplementary Fig. 4,6-18), we found that the varying complexity of tasks affects the
ranking of integration methods. For example, Seurat v3 and Harmony perform well on
simulations, whereas BBKNN, Scanorama, and scVI tend to perform better on more complex
real data. In general, the simulations contain less nuanced biological variation but exhibit clearly
defined, often strong, batch effects. Specifically, simulation task 1 posed little difficulty to most
methods independent of preprocessing decisions (Supplementary Note 3.2). Similar to the
simulation scenarios, the widely used pancreas integration task contains distinct cell type
variation and batch effects; thus even methods which perform poorly overall, performed well on
this task (Supplementary Fig. 9 and 16, and Supplementary Note 3.4).

Particularly in more complex integration tasks we observed a trade-off between batch effect
removal and bio-conservation (Fig. 3a and Supplementary Fig. 19). While methods such as
BBKNN and Seurat v3 tend to favor the removal of batch effects over conservation of biological

variation, Scanorama and Conos make the opposite choice. This trade-off is particularly
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noticeable where biological and batch effects overlap, such as in the lung atlas task. In this task,
three datasets sample two distinct spatial locations (the airways and parenchyma). Particular
cell types such as endothelial cells perform different functions in these locations (e.g., gas
exchange in the parenchyma). While Seurat v3 integrates across the locations to merge these
cells, thereby providing a broad cell type overview, Scanorama preserves the spatial variation in
endothelial cells and other cell types that have functional differences across locations
(Supplementary Note 3.5).

Where methods were focused on the removal of strong batch effects, we found that they often
lost nuanced biological variation in cell subtypes or states. The most challenging batch effects
across the integration tasks were due to species, sampling locations, single-nucleus vs
single-cell data, and integration of microwell-seq data from the mouse cell atlas (MCA;
Supplementary Note 3). Interestingly, the strongest batch effect contributors tended to also be
interpretable as biological signals rather than technical noise. While the top performing methods
across the integration tasks were largely unable to integrate across these effects
(Supplementary Fig. 13,17,18), LIGER and Seurat v3 were successful. These integration
results, however, are often generated by the bottom four performers because biological
variation is also removed with the batch effect. This effect was particularly noticeable for the
immune cell human/mouse and mouse brain tasks. For immune cells, only LIGER and Conos
integrated across species (Seurat v3 failed to run on this task). While Conos removed the
maijority of variation in the integration process, LIGER integrated across species while retaining
broad cell type variation. Nevertheless, LIGER also merged smaller cell labels (e.g., neutrophils
and monocytes), created heterogeneous larger clusters, and removed the trajectory structure

(Supplementary Fig. 5,13 and Supplementary Note 3.1.2). Two exceptions are Scanorama

14


https://doi.org/10.1101/2020.05.22.111161
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.22.111161; this version posted May 27, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

and scVI, which integrated mouse brain data from single nuclei and single cells while retaining
biological variation on spatial locations and rare cell types (Supplementary Note 3.6).

We found that methods that favor bio-conservation tended to perform better on label-free
metrics. Indeed, Scanorama, ComBat, and MNN consistently perform well at conserving cell
cycle variance and trajectory structure in the integrated data, whereas scVI, LIGER, Harmony,
and Seurat v3 perform poorly. This effect is particularly notable from our trajectory results
(Supplementary Fig. 3-6 and Supplementary Data 1). For human immune cell data, the batch
effect is comparatively small as the cells that form the trajectory originate from one dataset; thus
Scanorama, ComBat, and MNN placed cells in the expected order per batch. These methods,
and scVI (which successfully merged MCA and Dahlin et al.?® bone marrow data), also
performed well per batch in the human/mouse immune cell task, but their results contained
individual clusters as outliers, and human and mouse erythrocyte development was not
integrated into a single trajectory; thus, while local trajectory structure was well-represented, the
global trajectory structure was not conserved. Even LIGER, which integrated datasets across
species, poorly reflected the trajectory. Overall, performing an integrated trajectory across
species is challenging due to the strong species batch effect as well as cell and cluster outliers,

for which integration was performed suboptimally.
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Figure 3: Overview of benchmarking results on all RNA integration tasks and simulations,
including usability and scalability results. (a) Scatter plot of the mean overall batch
correction score against mean overall bio-conservation score for the selected methods on RNA
tasks. Error bars indicate one standard deviation. (b) The overall scores for the best performing
methods on each task as well as their usability and scalability. Methods that failed to run for a

particular task were assigned the unintegrated ranking for that task.

Scaling improves batch removal but impairs bio-conservation
performance

Given the lack of best-practice for preprocessing raw data for data integration, we assessed
whether integration methods perform better with HVG selection or scaling. We ran every
integration method with four preprocessing combinations (see Methods), and compared the

performance between runs that only differed in one preprocessing parameter. Across RNA and
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simulation tasks, HVG selection generally outperformed data integration of the full gene set: for
HVGs, 72% of comparisons had a higher overall score; 80% had better batch removal; and 60%
had better bio-conservation scores. Notable exceptions are trajectory and cell cycle
conservation scores, which tended to favor full feature integration runs.

We also found that whether or not a method performs better with prior scaling depends on the
method of choice (Fig. 3b). Independent of the method, scaling resulted in higher batch removal
scores (63% of comparisons) but lower bio-conservation (72% of comparisons). This
observation is consistent with unscaled data performing better in our label-free conservation
metrics. A notable exception is the trajectory conservation metric in the presence of strong
batch effects (i.e., between species in the human/mouse task); such trajectories are better

captured with removal of the strong batch effect (i.e., with scaling).

BBKNN, Scanorama, and scVI perform best overall for RNA-seq
integration

To evaluate overall performance of data integration methods across RNA-seq and simulation
scenarios, methods can be ranked by their overall scores. We assumed that there was a single,
optimal way in which to run an integration method, and therefore ranked methods by their top
performing preprocessing combination. Consequently, we also obtained an optimal way in
which to run each integration method (Fig. 3b). The optimal preprocessing combinations of
BBKNN, Scanorama, trVAE, and scVI were consistent across tasks. Conos, which incorporates
HVG selection and scaling within its method, performed better with HVG selection on unscaled
data but, for simpler tasks, performed better with full gene sets on scaled data. The

performance of MNN was similar on unscaled and scaled data, while ComBat performed
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similarly with HVGs and full gene sets. Interestingly, LIGER performed better with HVG sets and
unscaled data overall, but it performed slightly better in 4 of 7 tasks with full gene sets rather
than HVGs. In contrast, the performance of Seurat v3 and Harmony was not consistently better
with a particular preprocessing combination, although preprocessing did affect their
performance across tasks.

Given that the complexity of a task affects the appropriateness of a method, we ranked methods
based on real data tasks that better represent the challenges typically faced by analysts.
Overall, we found that the graph-based method BBKNN, and the embeddings output by
Scanorama and scVI, perform best, whereas LIGER performs poorly. These results are
remarkably consistent across tasks for integrating real data. However, Seurat v3 and Harmony,
which usually rank outside the top third of methods for real data, are favorable for simulations.
The methods with a higher level of abstraction tended to rank higher. This was particularly
noticeable when comparing Scanorama embeddings and Scanorama’s corrected expression
matrix output. Likewise, integrated graph methods tended to perform well; however, only a
subset of metrics can be run on their outputs, so their results may be less robust.
Autoencoder-based frameworks such as scVI and trVAE tended to perform better in tasks with
more cells and complex batch structure. This was particularly noticeable for scVI, as trVAE did

not scale to tasks of this size without GPU hardware.

Scalability and usability

We assessed the scalability of each data integration method by monitoring the CPU time and
peak memory use reported by our Snakemake pipeline (Supplementary Fig. 20). As expected,
using the full feature matrix led to both longer runtimes and higher memory usage compared to

selecting a fixed set of HVGs. In contrast, data scaling had little influence on CPU time, while
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peak memory use was increased in the scaled data scenario due to reduced sparsity upon
scaling. In particular, Conos used considerably more memory with scaled data. For unscaled
data, the memory usage of scVI was superior to other methods, while BBKNN and ComBat
performed best in terms of runtime. For scaled data, the memory usage of BBKNN was
superior, while the runtime of ComBat was slightly favorable. However, only BBKNN worked
successfully for all datasets and all preprocessing combinations. Given the runtime and memory
limitations during the benchmarking setup (see Methods), trVAE could not integrate datasets
with >67,000 cells, while Seurat v3 failed to integrate datasets >100,000 cells. Overall, Conos
had the highest memory requirements, but it succeeded in integrating 1 million cells without
prior scaling. Furthermore, MNN used most CPU time, but its memory usage hardly increased
with increasing cell numbers for a fixed number of HVGs.

We assessed the usability of methods according to criteria previously applied to evaluate the
usability of trajectory inference methods® (see Methods and Supplementary Fig. 21). Most of
the methods are easy to use because of tutorials, function documentation, and open source
code. However, the robustness of method performance and the accuracy quantification on real
and simulated data differ between published methods. Overall, Harmony, BBKNN, and Seurat
v3 have the best usability for new users. In contrast, Conos, Scanorama, and trVAE are

somewhat lacking in usability as they lack function documentation or high-quality tutorials.

scATAC-seq batch effects require strong batch correction

Several of the ten benchmarked data integration methods have been used to integrate datasets
across modalities''®. With the growing availability of datasets, removing batch effects within
scATAC-seq data is also becoming an application of interest. As the integration challenge is

similar, we asked whether method performance transfers to scATAC-seq data.
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We used non-overlapping sliding windows as the canonical, unbiased unit for processing open
chromatin data and as a basis for data integration. We evaluated the performance of the ten
integration methods on two scATAC-seq tasks (Table 1). Both tasks involve integration of cells
from the same three datasets. While the large ATAC task contains more samples and cells from
the dominant batch (ratio of cells between datasets = 5:20:75), the small ATAC task contains a
more balanced batch composition (ratio of cells between datasets = 13:57:30; Supplementary
Data 2). To restrict the feature space, we used only the most highly variable windows that
overlap between datasets (see Methods). This posed an ATAC-specific challenge, as
integration of more batches and cells leads to a lower number of shared informative windows
between datasets (Supplementary Note 3.7). Despite this large reduction of the feature space,
scaling to >50,000 cells became a challenge; trVAE and LIGER failed to run on the large ATAC
task, while MNN failed in both tasks due to its poor scalability with the number of cells and
features. In contrast, MNN could be evaluated on scRNA-seq integration tasks of <100,000
cells. Using a higher number of shared features between datasets would increase these
scalability problems.

In general, most of the methods performed poorly for batch correction in both ATAC tasks (Fig.
4 and Supplementary Fig. 22). This may be attributable to the binary nature of the scATAC-seq
input data; the benchmarked methods were designed for gene expression counts with a range
of expression values. Furthermore, high bio-conservation scores were often mediated by high
silhouette scores, which measured compact, often unintegrated, cell type clusters. We would
therefore recommend to prioritize batch correction over biological conservation for ATAC
integration. BBKNN, Harmony, and scVI were the top three performers for batch integration
(Fig. 4a). BBKNN removed batch effects at the expense of a strong loss of biological

conservation. With more compact (but partially unintegrated) cell identity clusters, Harmony’s

20


https://doi.org/10.1101/2020.05.22.111161
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.22.111161; this version posted May 27, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

bio-conservation score was higher than that of BBKNN. Finally, scVI showed a compromise
between good batch correction and moderate bio-conservation. Seurat v3 and ComBat instead
ranked top for biological conservation as they exhibited compact, but unintegrated clustering of
cell types and thus ranked only fourth and fifth for batch correction (Supplementary Fig. 22).

In general, stronger batch effects were found between datasets that shared fewer informative
windows (Supplementary Note 3.7). Furthermore, batch imbalance notably affected Seurat v3,
which was likely because it integrated datasets in a different order in the two tasks
(Supplementary Figs. 23 and 24).

Overall, in the two ATAC tasks we conclude that the best batch removal methods are BBKNN,
Harmony, and scVI, with different performance for bio-conservation (Fig. 4a). However, all
methods perform inadequately: most batches remain separated in low dimensional

visualizations of the integrated data (Fig. 4b).
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Figure 4. Benchmarking results for the large mouse brain ATAC task. (a) Benchmarking
result for the large ATAC task. Methods that failed to run due to time or memory limitations are
not shown. (b) Visualization of the best batch correction methods on the large ATAC task
coloured by batch labels (top row) and cell identity annotation (bottom row). The plots show
UMAP layouts for the unintegrated data, and the top three performers based on the average of

batch correction scores from both ATAC tasks in descending order.
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Discussion

We benchmarked ten integration methods with four pre-processing combinations on nine
integration tasks consisting of scRNA-seq, scATAC-seq, and simulated data. Method evaluation
was performed on the basis of usability, scalability, and integration performance via 14 metrics
that measure trade-offs between batch integration and conservation of biological variance.
Overall, we observed that method performance is dependent on the complexity of the
integration task for RNA and simulation scenarios. For example, the use of Seurat v3 and
Harmony is appropriate for simple integration tasks with distinct batch and biological structure;
however, these methods typically rank outside the top three when used for complex real data
scenarios, which is in agreement with recent benchmarks on simpler batch structures’?. In
contrast, on more complex integration tasks, BBKNN, Scanorama (embeddings), and scVI
performed well.

Our overall rankings were based on metrics measuring different aspects of integration success.
For example, while certain bio-conservation metrics prioritized clearly separated cell clusters,
others favored continuous cellular structures such as trajectory and cell cycle conservation.
Furthermore, metric usage depends on data output type. Even for the integrated graph outputs
generated by Conos and BBKNN, it was possible to measure three batch removal and three
bio-conservation metrics (Supplementary Table 2). Such metric diversity ensures that no
individual method only performs well because of the optimization of a single metric, e.g.,
BBKNN, for which the underlying optimization function is similar to the graph iLISI metric (and
therefore it also receives lower graph cLISI scores). Irrespective of the number of metrics used,

we computed batch removal and bio-conservation scores from the respective metrics by taking
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the mean of min-max scaled metric scores, which ensured equal discriminative power for all
metrics and produced robust overall rankings (a previously used z-score scaling alternative®
gives highly correlated overall rankings: Spearman’s R>0.94 for all tasks). Overall scores
combined batch removal and bio-conservation scores with a 40:60 weighting, which reflects the
relative importance of optimizing each score: in simplified terms, optimal batch removal maps all
cells to a single point, whereas optimal bio-conservation reflects each cell type being detectable
in a single cluster.

Across RNA and ATAC integration tasks, we observed this apparent dichotomy between
bio-conservation and batch effect removal, and each method strikes its own balance between
the two. For instance, while BBKNN and Seurat v3 tended to remove batch variation, Conos
and Scanorama prioritized bio-conservation. Interestingly, in non-graph-based methods a
stronger tendency toward batch removal was mediated in parts by a more regularized learning
of the implicit latent space representation of each batch. For example, Seurat v3 removed
variation within cells from a single batch that otherwise showed substructure in unintegrated
data (Supplementary Note 3.5). A highly regularized latent space is the likely cause of
biological variation removal with increased batch effect removal. We hypothesize that improved
latent space learning, or even projection to the “true” underlying data manifold, will enable more
methods to remove strong batch effects between species, single-nucleus and single-cell data,
or spatial locations.

Additionally, we found that preprocessing decisions strongly impact downstream integration
quality. Indeed, scaling the input data typically shifted results toward better batch removal but
worse bio-conservation, while HVG selection improved overall performance. Notably, only
metrics that measured particular functions or pathways (i.e., cell cycle and trajectory

conservation metrics) performed better with full gene sets. This suggests that biological
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functions are better captured in integrated data if the relevant gene sets are included in the
integration. For all methods except Seurat v3 and Harmony, we identified an optimal
preprocessing scheme. This finding affects the ease-of-use of Seurat v3 and Harmony, and it
lowers their position in our overall ranking (because we ranked by a single, optimal
preprocessing scheme).

We found that batch effects between ATAC datasets were a particular challenge for data
integration. Thus, BBKNN, Harmony and scVI, with the highest batch removal scores, were a
particular focus. Moreover, the overall poor integration performance resulted in our
silhouette-based metrics to favour bio-conservation as compact, unintegrated clusters, showing
a limitation of these metrics for poor integration performance. One particular batch effect issue
in scATAC-seq is substantial data sparsity, which leads to a limited overlap of informative
windows between datasets. Given the large number of total windows, this effect is likely to get
stronger when integrating more cells and datasets. Using more features for integration is limited
by the currently available methods, which often do not scale well to the number of features.
Nevertheless, integration of ATAC and RNA has previously been achieved successfully by
projecting onto gene features'. Although this feature choice represents a biased view of the
chromatin landscape, using gene features would allow ATAC input data to resemble RNA inputs
more closely. Future studies of ATAC integration, including ATAC-RNA integration using
different feature sets, may uncover suitable integration approaches for this modality.

The deep learning (DL) methods, scVI and trVAE, performed better with increasing cell numbers
and batch complexity. scVI performed particularly well when the task contained complex batch
effects (e.g., microwell-seq, single-cell and single-nuclei, or scATAC-seq data) and sufficient
numbers of cells were present to fit these effects. Similar performance has been reported for

another DL method, scGen* (not benchmarked here as it relies also on cell type information),
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on heart single-nucleus and single-cell data®'. With more tunable parameters, these methods
are more complex than other benchmarked methods and are more likely to require larger input
data and hyperparameter optimization for optimal performance; however this also gives them
the flexibility to fit complex batch effects. For scVI, a parameter set optimized for data integration
was used (extracted from the respective tutorial). In contrast, trVAE was optimized for the more
general and difficult task of perturbation modeling; this circumstance contributes to its poorer
scalability without GPU hardware and thus prevented us from benchmarking it on the larger,
complex tasks. While parameter optimization for an individual method would have biased our
benchmarking result, the scVI platform contains the hyperopt tool** for this purpose.
Interestingly, scVI also performed well integrating data from full-length protocols provided in
units of reads per kilobase million (RPKM) or transcripts per kilobase million (TPM), as well as
with binary scATAC-seq data, although these data violate a central assumption of the method
(i.e., negative binomially distributed input data). Comparatively, learning latent spaces with
neural networks is still at an early stage of development. However, as the availability of data and
accessibility of GPU hardware increases, we expect the performance of these methods to
overtake that of their counterparts, as has occurred in the field of imaging®***. Future
benchmarks of DL integration methods using millions of cells and GPU hardware will better
showcase the potential of these approaches.

An integration method should typically be chosen according to three criteria: usability,
scalability, and expected performance. All ten methods in our study can be considered usable.
For scRNA-seq data, the remaining considerations can be divided into five criteria: (1) the size
of the dataset and hardware/software limitations, (2) compositional shifts in the data, (3) the
type of output required, (4) the strength of the expected batch effect, and (5) the resolution of

the integrated dataset, i.e., does the user require a general overview of the data or nuanced
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transcriptional differences. For exploratory data analysis, given no limitations or expectations of
the batch effect size, we recommend the top-performing integration methods BBKNN,
Scanorama, and scVI. For large datasets or setups with hardware limitations, we recommend
ComBat or Harmony alongside BBKNN and scVI. However, the use of ComBat should be
restricted to cases where compositional shifts between datasets are limited (e.g., mouse brain
RNA or simulation 1; Supplementary Data 3).

Differing output formats can limit the potential downstream applications of integrated data. For
example, BBKNN and Conos return integrated graphs, which can be used for downstream
cell-level data analysis (such as clustering) but provide neither relative distances between cells
nor corrected gene expression values (e.g., Conos outputs cannot be used to generate
representative UMAPs without further processing). This limits certain methods because these
latter outputs may be required for certain trajectory inference methods or for scoring functional
gene programs. To obtain gene-expression outputs, we recommend trying Scanorama gene
(but not Scanorama embedding) and MNN for complex batch setups, ComBat for simple batch
setups, and Seurat v3 where distinct biological variation is expected.

Finally, the strength of the batch effect and the level of granularity required by the user in their
data output must also be considered. For example, methods that remove strong batch effects
(e.g., from species and single-nucleus vs single-cell data) also tend to remove nuanced
biological signals such as rare cell types. Thus, if the aim is to find rare cell types and nuanced
biological variation rather than remove strong batch effects, we recommend Scanorama.
However, if a broad overview of the data in the presence of strong batch effects is required, we
recommend Seurat v3 for smaller datasets. Given sufficient numbers of cells, scVI has shown

that it is able to remove strong batch effects while only sacrificing minimal biological variation.
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Where there are strong batch effects but the user is interested in nuanced biological
information, other approaches may be needed. In general, it is worth considering whether
removing a strong batch effect is desirable. In the present study, we have used set definitions of
batch effect and biological variation, yet the distinction between the two is not always
straightforward. Effects such as spatial location, species, or tissue could be either batch or
biology depending on subjective opinion. Moreover, in certain cases, retaining batch effects in a
dataset to preserve nuanced biological variation may be preferable. In such cases, statistical
models can be used to directly analyse raw data while also accounting for linear batch effects.
This type of modeling may also be appropriate across large, aggregated datasets®, for which
sufficiently powerful data integration methods do not yet exist.

Our benchmarking study will help analysts to navigate the space of available integration
methods and integrate their datasets more efficiently, and it will guide developers toward
building more efficient methods. Based on the trends we have reported, users can select
suitable preprocessing and integration methods for exploratory, integrated data analysis. To
enable in-depth characterization of method performance on specific tasks, we have provided a
reproducible Snakemake pipeline and the sc/B python module to users so they can easily
benchmark any preprocessing and integration method. Hence, we are supporting researchers to
find the optimal integration method for their particular integration scenario. In addition, we
expect that this work will become a reference for method developers, who can build upon the
presented scenarios and metrics to assess the performance of their newly developed atlas-level

data integration tasks.
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Methods

Datasets and preprocessing

We benchmarked data integration methods on nine integration tasks: seven real data tasks and
two simulation tasks. For the real data tasks we downloaded 23 published datasets (see
Supplementary Data 2 for per-batch overview of datasets). All scRNA-seq datasets were
quality controlled and normalized in the same way according to published best practices’.
Specifically, we used scran pooling normalization® (version 1.10.2 unless otherwise specified)
and log+1-transformation on count data. For data solely available in TPM or RPKM units we
performed log+1-transformation without any further normalization. As the datasets typically
contained different cell identity annotations; we mapped these annotations by matching
annotation names, overlaps of data-driven marker gene sets, and manual clustering and
annotation of cell identities per batch.

For the simulation tasks, data were simulated using the Splatter package® to evaluate data
integration methods in a controlled setting. All of our data processing scripts are publicly

available as Jupyter notebooks and R scripts at www.github.com/theislab/scib.

Pancreas integration task

We used six publicly available human pancreas datasets. Specifically, we used a pre-annotated
collecton  of four datasets from the  Satija lab®**'  (retrieved from
https://satijalab.org/seurat/v3.0/integration.html on  28/08/2019) with accession codes

GSE81076, GSEB85241, GSE86469 (GEO), and E-MTAB-5061 (ArrayExpress). The two
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additional human pancreas datasets were provided in a pre-annotated format by the Hemberg
lab***®  (https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/  retrieved on
28/08/2019); their GEO accession codes are GSE84133 and GSE81608. We normalized all
datasets that contained count data with scran pooling®® in a joint normalization run. This
excluded the dataset from Xin et al.*? which was provided in normalized units of RPKM. Finally,
all datasets were log+1-transformed. In total, there were 16,382 cells in the pancreas integration
task. Each dataset was treated as a batch, except for the inDrop dataset®, in which each donor

was treated as a batch.

Immune cell integration tasks (human and mouse)

The immune cell task contained immune cells from eight datasets comprising human and
mouse cells from bone marrow and peripheral blood. Bone marrow datasets were retrieved from
Oetjen et al.?’ (three human donors), Dahlin et al.?® (four mouse samples), and the Mouse Cell
Atlas** (MCA; three mouse samples). For peripheral blood data, mouse samples were
downloaded from the MCA* (six samples) and human samples were obtained from 10X
Genomics®, Freytag et al.*’, Sun et al.*’ and Villani et al.?. Details on the retrieval location of
datasets, the different protocols used, and ways in which samples were chosen for analysis can
be found in Supplementary Data 4.

Quality control was performed separately for each sample. Sample-specific thresholds were
chosen for the number of genes, the fraction of mitochondrial counts, and the number of UMI
counts per cell. Datasets for which count data were available were individually normalized by
scran pooling®. This excludes the data of Villani et al.?®, which included only TPM values. All

datasets were log+1-transformed in Scanpy (version 1.4.4 commit bd5f862)*.
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To create a consistent set of cell identity annotations across datasets, we harmonized the
existing labels and annotated cells from datasets in which no labels were available. First, the
label sets suggested by the MCA and Oetjen et al.?’, were harmonized by string matching. In
the second step, we collected a number of cell identity markers from the literature
(Supplementary Data 5) and tested them, first on the pre-annotated samples, and then on the
remaining samples. This procedure allowed us to refine the annotation by adding a second layer
of cell labels. Where necessary, we performed sub-clustering to improve the annotations.
Finally, if the annotations could not be mapped due to coarse labeling, we removed cell
populations.

We created two integration tasks from the immune cell data: one containing only human
samples, and one containing both human and mouse samples. The human task included
cross-tissue integration of immune cells from many donors; the combined task added the
complexity of cross-species integration. To integrate human and mouse data into a single data
object, we mapped mouse genes (MGI symbol) to their human counterparts (HGNC symbol)
using the R package biomaRt (version 2.38.0)*. We retained only those genes that were
mapped in all batches: 8,135 genes in total. The human integration task contained 33,506 cells,
whereas the combined task contained 97,952 cells. Sample IDs were used as batches for data
integration.

To test the conservation of trajectories following data integration, we considered the process of
erythropoiesis in the human and mouse bone marrow datasets. Specifically, we extracted
HSPCs, MPs, EPs, and mature erythrocytes for each batch. We generated a trajectory for each
sample using Scanpy’s diffusion maps®® and diffusion pseudotime® functions. The root cell for

pseudotime analysis was selected from the HSPCs cluster upon evaluation of the diffusion
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components. Specifically, we selected the cell that was assigned the maximum or minimum

value of the first three diffusion components as the root cell.

Lung atlas integration task

Single-cell expression data for the lung integration task was retrieved from the work of Vieira
Braga et al.®?, who created a lung atlas that includes samples from three labs that were
generated using Drop-seq and 10X Chromium. The Drop-seq data was available from GEO
under accession code GSE130148, while the 10X data was obtained directly from the authors in
a SoupX-corrected count matrix. We used three healthy datasets from Vieira Braga et al.>*: the
10X and Drop-seq transplant datasets, along with 10X lung biopsy data. Nasal brush and lung
brush samples were not included in the integration task, as suggested by the original authors,
due to the cell identity populations being distinct from the other three datasets. However, we did
include lung biopsy data, which comes from a distinct spatial location (the airways) relative to
the location of transplant samples (the parenchyma). Following quality control filtering, the data
contained 16 donors, with one sample per donor, and 32,472 cells.

Data were normalized by scran pooling®, which was applied to individual datasets. As the 10X
datasets and the Drop-seq dataset contained different cell annotations, the annotations were
harmonized using fuzzy string matching and overlaps of marker genes determined by a t-test
performed in Scanpy*® (version 1.4.5 commit d69832a). Where annotations could not be
mapped due to coarse labeling or where cell populations corresponded to filtered-out datasets,
the cell populations were removed (annotations: Mesothelium, Transformed epithelium, Ciliated
(Nasal), Goblet 1 (Nasal), Goblet 2 (Nasal), and Smooth Muscle Cells). Donor IDs were used as

batches for data integration.

32


https://paperpile.com/c/RC5eiR/CFpZ
https://paperpile.com/c/RC5eiR/CFpZ
https://paperpile.com/c/RC5eiR/7yVx
https://paperpile.com/c/RC5eiR/2ppan
https://doi.org/10.1101/2020.05.22.111161
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.22.111161; this version posted May 27, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Mouse brain integration task (RNA)

The mouse brain RNA task consisted of four publicly available scRNA-seq and snRNA-seq
mouse brain studies®~®, in which additional information on cerebral regions was provided. We
obtained the raw count matrix for the snRNA-seq dataset (SPLiT-seq protocol) of Rosenberg et
al.”® (GEO accession ID: GSE110823), the annotated count matrix (10X Genomics protocol)

from Zeisel et al.** (http://mousebrain.org; file name L5_all.loom, downloaded on 09/09/2019),

and the count matrices per cell type (Drop-seq protocol) from Saunders et al.*®

(http://dropviz.org/; DGE by Region section, downloaded on 30/08/2019). FACS-sorted mouse

brain tissue data (10X Genomics protocol, myeloid and non-myeloid cells, including the
annotation file “annotations_ FACS.csv”) from Tabula Muris® were obtained from figshare
(retrieved 14/02/2019).

We harmonized cluster labels via fuzzy string matching, attempting to preserve the original
annotation wherever possible. Specifically, we annotated 10 major cell types (neurons,
astrocytes, oligodendrocytes, oligodendrocyte precursor cells, endothelial cells, brain pericytes,
ependymal cells, olfactory ensheathing cells, macrophages, and microglia).

From Saunders et al.®’, we used the additional annotation data table to obtain 585 reported cell
types (annotation.BrainCellAtlas_Saunders_version_2018.04.01.txt, retrieved from

http://dropviz.org/ on 30/08/2019). Among these cell types, some were annotated as endothelial

tip, endothelial stalk and mural, which had no correspondence in other datasets. Thus, we
re-annotated these cell types as follows: Louvain clustering (default resolution parameter 1.0)
was applied to cluster cells; gene expression profiling was conducted using the

rank_genes_groups function in Scanpy (t-test); and microglia (C71qga), oligodendrocytes (Plp1),
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astrocytes (Gfap and Clu), and endothelial cells (FI/t1) were assigned using marker gene
expression.

In addition, we harmonized brain region information where possible. In total, we annotated 15
different brain regions (the amygdala, hippocampus, thalamus, hypothalamus, cortex, olfactory
bulb, striatum, cerebellum, midbrain, medulla, substantia nigra, entopeduncular nucleus, globus
pallidus and nucleus basalis, pons and spinal cord). It must be noted that Rosenberg et al.>®
inferred brain regions; thus, 66,648 cells in this dataset were not assigned to a brain region
(marked as Unknown in the data).

Finally, we applied scran normalization®® separately to each dataset and log+1-transformed the
count matrices. In total, this mouse brain integration task contained 978,734 cells. Datasets

were treated as batches for data integration.

Mouse brain integration task (ATAC)

The mouse brain ATAC task consists of three single-cell ATAC-seq datasets. We obtained
count matrices from Fang et al.’” (six samples obtained using a single nucleus ATAC-seq

protocol; retrieved from http:/renlab.sdsc.edu/r3fang/share/github/Mouse_Brain_MOp) and

Cusanovich et al.’® (four samples obtained using a combinatorial indexing ATAC-seq protocol;
GEO accession number GSE111586)* and we retrieved BAM files from 10X Genomics (one

sample retrieved from https://support.10xgenomics.com/single-cell-atac/datasets by Cell Ranger

ATAC 1.2.0 on 05/12/2019). We used pyliftover (https://github.com/konstantint/pyliftover) and
liftover chains from UCSC to convert the Cusanovich et al.®® data from the mm9 to the mm10
reference genome (Genome Reference Consortium Mouse Build 38, GRCm38). EpiScanpy®®
version 0.1.10 was used to conduct preprocessing steps. For the 10X Genomics dataset, we

first built binary count matrices, and then removed features covering fewer than 10 cells, before
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removing cells with fewer than 5000 measured features. For the Cusanovich et al.®® data, the
features with fewer than 30 cells covered and the cells with fewer than 3000 measured features
were removed. For the Fang et al.*” dataset, the features covered in fewer than 10 cells and the
cells with fewer than 500 measured features were removed. Subsequently, we selected the
150,000 most variable features across the cells in each dataset. The available annotations of
Cusanovich et al.°® and a list of differentially opened regions corresponding to marker genes
from Danese et al.*® were used to annotate cell types.

Two ATAC integration tasks were completed: the small ATAC task consisted of selected
samples from three datasets [all four samples from Cusanovich et al.’®, one sample from 10X
Genomics, and one sample from Fang et al.”” (CEMBA180305_2B)]; the large ATAC task
consisted of all samples from the three datasets. After the open chromatin matrices of the two
tasks were constructed, we filtered out the cells with fewer than 500 measured features. Finally,
we performed a library size correction and a log+1-transformation. Ultimately, the small ATAC
task contained 57,070 features and 25,960 cells from six samples; the large ATAC task

consisted of 57,447 features and 67,612 cells from 11 samples.

Simulations

We generated synthetic datasets using an extended version of the Splat simulation method
available in the Splatter package®’. The standard Splat model produces batches with equal cell
group proportions and expected library sizes. In order to modify these factors, we first generated
a larger dataset in which each batch had an equal number of cells and each group was present
in equal proportions. We then used a downsampling procedure to remove cells from each batch
until the desired cell group proportions were obtained. The desired difference in the number of

counts per cell between batches was achieved using the downsampleMatrix function from the
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DropletUtils package®®'; counts were downsampled in the resulting counts matrix. Basic quality
control, involving the removal of cells >2 median absolute deviations below the median of
counts per cell or number of expressed genes per cell within each batch, was then performed
on the simulated data using the quickPerCellQC function in the Scater package®’. Genes
expressed in <1% of cells in the whole simulation were also removed. This resulted in an
integration task consisting of 12,097 cells and six batches.

To create the nested batch effect simulation scenario, we added a step between adjusting cell
group proportions and downsampling counts in order to create a sub-batch structure. For each
sub-batch, we used the Splat model to simulate a second count matrix with the same number of
cells as the sub-batch but a lower expected library size and no cell group structure. We then
added this noise matrix to the counts for cells in that sub-batch. Quality control for the nested
batch scenario was performed at the sub-batch level, and sub-batches were used as batch IDs
for integration. The nested batch integration task consisted of 19,318 cells and 16 nested

sub-batches (four sets of four sub-batches).

Integration methods

ComBat

ComBat' is a batch correction method developed for bulk gene expression microarray data. It
uses a linear mixed effect model that fits the batch effect’s contribution both to the mean
expression and the variance in expression. We ran ComBat as it is implemented in Scanpy
(version 1.4.5 commit d69832a) via the combat function. ComBat returns a corrected gene

expression or open chromatin matrix.
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Matching mutual nearest neighbors (MNN)

MNN first detects mutual nearest neighbors in two datasets (or batches) and then infers a
projection of the second dataset into the first dataset, which serves as a reference hyperplane”.
This integrated dataset serves as a new reference to iteratively integrate more datasets. We ran
MNN using the mnn_correct function from mnnpy (https://github.com/chriscainx/mnnpy version
0.1.9.5). The default parameters were used, including an additional cosine normalization of the

input matrix. MNN returns a corrected gene expression or open chromatin matrix.

scVI

The scVI model combines a variational autoencoder (a neural network) with a hierarchical

Bayesian model™

. The negative binomial distribution is used to describe the gene expression of
each cell, conditioned on the batch variable and unobserved factors such as differences in
sensitivity between measurements. Thus, scVI takes into account fixed and random effects in
the data. The output of scVI is a low-dimensional representation in latent space (an embedding).
Notably, scVI expects a raw count matrix as input; this was not always available in our

integration tasks. We ran scVI (version 0.5.0) using the parameterizations from the

scanpy_pbmc3k (https://scvi.readthedocs.io/en/stable/tutorials/scanpy.html) and the

harmonization (https://scvi.readthedocs.io/en/stable/tutorials/harmonization.html) tutorial

notebooks. This parameterization includes a model with negative binomial reconstruction loss, a
30-dimensional latent space, 128 nodes in the hidden layer, and n_layers = 2. After consulting
with the authors, the model was trained for 400%(20,000/N) epochs where N is the size of the
dataset, while implementing a maximum of 400 epochs for small datasets. scVI returns a joint

embedding of cells from all batches.
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Scanorama

The Scanorama algorithm is based on the concept of panoramic stitching. It finds similar cells
across datasets using a k-nearest neighbor search, and then reduces the connections to a set
of mutual nearest neighbors™. Subsequently, all data points are embedded in a joint
hyperplane. In the absence of a clear tutorial, we ran Scanorama (version 1.4) via the
correct_scanpy function with the option return_dimred=True to obtain a joint embedding as well

as a corrected expression matrix.

Batch-balanced k-nearest neighbors (BBKNN)

BBKNN™ first computes a k-nearest neighbor graph within each batch. It then computes the
k-nearest neighbors of all cells to all other batches. The resulting graph contains a number of
irrelevant connections across cell types; therefore, BBKNN computes a connectivity score for
each pair of cells similar to the UMAP algorithm®. The symmetrized connectivity score
represents the connection of each pair of cells. Thus, BBKNN ultimately returns a weighted
neighborhood graph. Notably, BBKNN requires at least some cell types to be shared across
batches. We ran BBKNN (version 1.3.5) using the bbknn function with mainly default
parametrization. Following previous comparison runs with BBKNN from the Harmony paper'®,
we used k = 15 as the number of neighbors within each batch and t = 20 as trim parameter for
data scenarios with <100,000 cells. This parametrization prevents the global network from
becoming too large. For integration tasks with 2100,000 cells, we used k = 30 and f = 30

instead.
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Clustering on network of samples (Conos)

The Conos model constructs a joint graph of all batches in a two step process'’. First, Conos
creates pairwise connections across batches to initialize connections between identical cell
types. Specifically, common principal component analysis or joint non-negative matrix
factorization is used to create a joint space for cell-cell similarity computation. The cell-cell
similarity scores serve as weights of the connections across datasets. Second, the number of
inter-batch connections is reduced by a mutual nearest neighbor approach, and connections
within a batch are down-weighted by 0.1 to account for the inherently higher cell-cell similarities
of cells from the same cell type within a dataset. Ultimately, Conos returns a corrected
neighborhood graph. We ran Conos (version 1.2.1) as described in the online tutorial
scanpy_integration

(https://github.com/hms-dbmi/conos/blob/master/vignettes/scanpy_integration.md). This tutorial
includes HVG selection, scaling, and PCA runs per batch in Seurat. Given that Conos objects
require these slots filled in order to run, we regarded the aforementioned steps as part of the
Conos method. Any preprocessing combinations that we benchmark were conducted prior to

the HVG selection and scaling performed within the function.

Seurat v3

The Seurat v3 algorithm uses canonical correlation analysis to construct a shared subspace of
two batches'. The algorithm then identifies mutual nearest neighbors across the two datasets,
which are called “anchor points”. A projection vector is then inferred from the anchor points to
integrate the two datasets in a common reference hyperplane. The same projection vectors

serve to integrate new cell populations without mutual neighbors. Integrating multiple datasets
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involves pairwise computation of anchor points followed by hierarchical clustering based on the
distance between the datasets. The resulting tree defines the integration order to iteratively
construct the common corrected data matrix. We ran Seurat v3 (version 3.1.1) according to
Seurat’s integration tutorial (https://satijalab.org/seurat/v3.0/integration.html). After discussion
with the method’s authors, modifications were made to the standard parametrization to allow the
passage of HVGs from Scanpy directly to the method. Seurat v3 returns a corrected gene

expression or open chromatin matrix.

Harmony

The Harmony'® algorithm initializes all datasets in PCA space along with the batch variable and
alternately iterates over two complementary concepts until convergence. First, it employs
maximum diversity clustering, which penalizes overcorrection and pushes clusters with the
same cells apart. Second, batch effects are accounted for by a linear mixture model. Thus,
Harmony returns a corrected embedding. We ran Harmony (version 1.0) according to its tutorial
(http://ntmipreview.github.io/?https://github.com/immunogenomics/harmony/blob/master/docs/S
euratV3.html). As Harmony requires scaling and PCA to be run within Seurat, we regarded
these steps as part of the Harmony method. Thus, any scaling or HVG selection we
benchmarked occurred upstream of the scaling performed by Harmony as part of its standard

workflow.

LIGER

LIGER performs integrative non-negative matrix factorization to integrate diverse batches. This
approach consists of factorizing each batch expression matrix into a dataset-specific factor

matrix and a shared factor matrix. The shared factor matrix is used as a joint embedding for
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cells across batches. We ran LIGER (version 0.4.2) with the default parameters (k = 20 and
lambda = 5), as suggested in the online tutorial
(https://macoskolab.github.io/liger/walkthrough_pbmc.html). This LIGER tutorial includes scaling
without zero-centering and HVG selection. The custom scaling function is used as LIGER
cannot accept negative input values; thus, testing our preprocessing decisions for scaling would
go against the best practices for the tool. As LIGER does not give the user the flexibility to easily
run alternative data scaling, we considered the LIGER scaling function to be part of the method;

consequently, we only assessed the effect of HVG selection with this method.

Transformer Variational Autoencoder (trVAE)

The trVAE model is a conditional variational autoencoder developed for out-of-sample prediction
specifically on perturbations®. Specifically, it uses the maximum mean discrepancy measure for
distribution matching in the first decoding layer. Thus, trVAE returns both an embedding and a
corrected data matrix. We ran trVAE (version 0.0.1) according to the trVAE Haber example
notebook
(https:/Inbviewer.jupyter.org/github/theislab/trVAE/blob/master/examples/trVAE_Haber.ipynb).
As trVAE cannot take negative values as input, we omitted scaling when testing our
preprocessing decisions for this method. trVAE returns a joint embedding of cells from all
batches. It can also output a corrected gene expression or open chromatin matrix, but this

output was not tested here.

Metrics

We grouped the metrics into two broad categories: (1) removal of batch effects and (2)

conservation of biological variance. The latter category is further divided into conservation of
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variance from cell identity labels, and conservation of variance beyond cell identity labels.
Scores from the first category include principal component (PC) regression (batch), ASW
(batch), graph connectivity, graph iLISI, and kBET. In the second category, label conservation
metrics include NMI, ARI, ASW (cell type), graph cLISI, isolated label F1 and isolated label
silhouette; label-free conservation metrics include cell cycle (CC) conservation, HVG
conservation, and trajectory conservation.

The metrics were run on different output types (Supplementary Table 2). For example, metrics
that run on k-nearest neighbor (kNN) graphs can be run on all output types after preprocessing.
Similarly, metrics that run on joint embeddings can also be run on corrected feature outputs.
Preprocessing was performed in Scanpy (version 1.4.5 commit d69832a). kNN graphs were
computed using the neighbors function where k = 15 unless otherwise specified. Where a joint
embedding was available, this graph was computed using Euclidean distances on this
embedding, whereas distances were computed on the top 50 PCs where a corrected feature

matrix was output.

Normalised mutual information (NMI)

NMI compares the overlap of two clusterings. We used NMI to compare the cell type labels with
Louvain clusters computed on the integrated dataset. The overlap was scaled using the mean of
the entropy terms for cell type and cluster labels. Thus, NMI scores of 0 or 1 correspond to
uncorrelated clustering or a perfect match, respectively. We performed optimized Louvain
clustering for this metric to obtain the best match between clusters and labels. Louvain
clustering was performed at a resolution range of 0.1 to 2 in steps of 0.1, and the clustering
output with the highest NMI with the label set was used. We used the scikit-learn®® (version

0.22.1) implementation of NMI.
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Adjusted Rand Index (ARI)

The Rand index compares the overlap of two clusterings; it considers both correct clustering
overlaps while also counting correct disagreements between two clusterings®. Similar to NMI,
we compared the cell type labels with the NMI-optimized Louvain clustering computed on the
integrated dataset. The adjustment of the Rand index corrects for randomly correct labels. An
ARI of 0 or 1 corresponds to random labelling or a perfect match, respectively. We also used

the scikit-learn® (version 0.22.1) implementation of the ARI.

Average silhouette width (ASW)

The silhouette width measures the relationship between the within-cluster distances of a cell
and the between-cluster distances of that cell to the closest cluster®®. Averaging over all
silhouette widths yields the ASW, which ranges between -1 and 1. Originally, ASW was used to
determine the separation of clusters where 1 represents dense and well-separated clusters.
Furthermore, an ASW of 0 or -1 corresponds to overlapping clusters (caused by equal between-
and within-cluster variability) or strong misclassification, respectively. We used the classical
definition of ASW to determine the silhouette of the cell labels (cell type ASW). For this
bio-conservation score, ASW was linearly scaled to a value between 0 and 1 using the equation
cell type ASW = (ASW +1)/2, where larger values indicate denser clusters. Furthermore, we
also used ASW to describe the mixing of batches within cell clusters (batch ASW®). In this
usage, an ASW of 0 indicates that batches are well-mixed, which is preferable. To obtain the

batch ASW, we scaled ASW scores via the equation batch ASW = 1—abs(ASW); thus, batch

ASWs of 1 and 0 represent ideally mixed cases and strongly separated clusters, respectively.
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We computed the ASW based on the PCA embedding of corrected expression data or on the

integrated embedding output using the scikit-learn® (version 0.22.1) implementation.

Principal component regression (PC regression)

PC regression, derived from PCA, has previously been used to quantify batch removal®. Briefly,
the R? was calculated from a linear regression of the covariate of interest (e.g., the batch
variable B) onto each PC. The variance contribution of the batch effect per PC was then
calculated as the product of the variance explained by the / PC and the corresponding

Rz(PCl.|B). The sum across all variance contributions by the batch effects in all PCs gives the

total variance explained by the batch variable as follows:

G
Var(C|B)= Y. Var(C|PC,) * R*(PC,B),
=1

where Var(C|PC;)is the variance of the data matrix C explained by the /" PC.

Graph connectivity

The graph connectivity metric assesses whether the kNN graph representation, G, of the
integrated data directly connects all cells with the same cell identity label. For each cell identity
label ¢, we created the subset kNN graph G(N_E,) to contain only cells from a given label. Using
these subset kNN graphs, we computed the graph connectivity score using the equation:

ILCC(GINGE))|

_ 1
8¢ =T Vo]

lcEC

Here, C represents the set of cell identity labels, |LCC()| is the number of nodes in the largest

connected component of the graph, and [N_| is the number of nodes with cell identity ¢. The
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resultant score has a range of (0;1], where 1 indicates that all cells with the same cell identity
are connected in the integrated kNN graph, and the lowest possible score indicates a graph
where no cell is connected. As this score is computed on the kNN graph, it can be used to

evaluate all integration outputs.

K-nearest neighbor batch effect test (kKBET)

The kBET algorithm (version 0.99.6, release 4c9dafa) determines whether the label composition
of a k-nearest neighborhood of a cell is similar to the expected (global) label composition®. The
test is repeated for a random subset of cells, and the results are summarized as a rejection rate
over all tested neighborhoods. Thus, kBET works on a k-nearest neighbor (kNN) graph.

We computed kNN graphs where k = 50 for joint embeddings and corrected feature outputs via
the Scanpy preprocessing steps (previously described). To test for technical effects and to
account for cell type frequency shifts across datasets, we applied kBET separately on the batch
variable for each cell identity label. Using the KBET defaults, a k equal to the median of the
number of cells per batch within each label was used for this computation. Additionally, we set
the minimum and maximum thresholds of k to 10 and 100, respectively. As kNN graphs that
have been subset by cell identity labels may no longer be connected, we computed kKBET per
connected component. If >25% of cells were assigned to connected components too small for
kBET computation (smaller than k*3), we assigned a kBET score of 1 to denote poor batch
removal. Subsequently, kBET scores for each label were averaged and subtracted from 1 to
give a final KBET score.

We noted that k-nearest neighborhood sizes can differ between graph-based integration
methods (e.g., Conos and BBKNN) and methods in which the kNN graph is computed on an

integrated embedding. This difference can affect the test outcome because of differences in
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statistical power across neighborhoods. Thus, we implemented a diffusion-based correction to
obtain the same number of nearest neighbors for each cell irrespective of integration output type
(Supplementary Note 1). This extension of KBET allowed us to compare integration results on

kNN graphs irrespective of integration output format.

Graph local inverse Simpson’s Index (graph LISI)

The LISI, a diversity score, was proposed to assess both batch mixing (iLISI) and cell type
separation (cLISI)'. LISI scores are computed from neighborhood lists per node from integrated
kNN graphs. Specifically, the inverse Simpson’s index is used to determine the number of cells
that can be drawn from a neighbor list before one batch is observed twice. Thus, LISI scores
range from 1 to N, where N is the total number of batches in the dataset.

Typically, neighborhood lists to compute LISI scores are extracted from weighted kNN graphs
with k = 90 nearest neighbors at a fixed perplexity of p = ; k. These nearest neighbor graphs
are constructed using Euclidean distances on PCA or other embeddings. In contrast, integrated
graphs that are output by methods such as Conos or BBKNN typically contain far fewer than k =
90 neighbors. Running LISI metrics with differing numbers of nearest neighbors per node
showed a bias of LISI scores toward graph-based integration outputs (data not shown). Thus,
the original LISI score is not applicable to graph-based outputs.

To extend LISI graph-based integration outputs, we developed graph LISI, which uses the
integrated graph structure as an embedded space for distance calculation. The calculated graph
distances are then used to determine a consistent number of nearest neighbors per node. We
used the shortest path lengths computed via Dijkstra’s algorithm® as a graph-based distance

metric (see Supplementary Note 2 for details). Our graph LISI extension produces consistent
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metric values with the standard LISI implementation for non-graph-based integration outputs
(Supplementary Fig. 24).

As LISI scores range from 1 to N, indicating perfect separation and perfect mixing respectively,
we rescaled them to the range 0 to 1. For iLISI and cLISI this involved a three-step process.
First, we used scalings for cLISI and iLISI as follows: cLIST : f(x) = 2 —x, where a low value
corresponds to low cell type separation; iLISI : g(x) = x — 1, where a low value corresponds to
low batch integration. Second, we computed the median across neighborhoods per method:

cLISI = median f(x), x € X ; iLISI = median g(x), x € X. Finally, we rescaled the LISI scores

by the minimum and maximum observed median scores across tasks.

Isolated label scores

We developed two isolated label scores to evaluate how well the data integration methods dealt
with cell identity labels shared by few batches. Specifically, we identified isolated cell labels as
the labels present in the least number of batches in the integration task. The score evaluates
how well these isolated labels separate from other cell identities.

We implemented two versions of the isolated label metric: the isolated label F1 and isolated
label ASW. The F1 score metric first determines the cluster with the largest number of an
isolated label; the F1-score of the cells of the isolated label is then computed against the cells
within the cluster. Specifically, the F1 score is a weighted mean of precision and recall given by

the equation:

_ precision * recall
F| = 2% e
precision + recall

It returns a value between 0 and 1, where 1 shows that all of the isolated label cells and no

others are captured in the cluster. The isolated label ASW score computes the ASW on the PCA
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embedding subset to the isolated labels (see ASW metric above). This score is scaled to
between 0 and 1 as described for the ASW score. For both functions, in cases of multiple

isolated labels, the mean score of all isolated labels is returned as the final score.

HVG conservation

The HVG conservation score is a proxy for the preservation of the biological signal. If the data
integration method returned a corrected data matrix, we computed the number of HVGs before
and after correction for each batch via Scanpy’s highly variable _genes function (using flavor =
“cell ranger”). If available, we computed 500 HVGs per batch. If fewer than 500 genes were
present in the integrated object for a batch, the number of HVGs was set to half the total genes

in that batch. The overlap coefficient is as follows:

XNy

overlap(X,Y) = min(XT]YT) ’

where X and Y denote the fraction of preserved informative genes. The overall HVG score is the

mean of the per-batch HVG overlap coefficients.

Cell cycle conservation

The cell cycle conservation score evaluates how well the cell cycle effect can be scored before
and after integration. We computed cell cycle scores using Scanpy’s score_cell_cycle function
with a reference gene set from Tirosh et al.?” for the respective cell cycle phases. We used the
same set of cell cycle genes for mouse and human data (using capitalization to convert between
the gene symbols). We then computed the variance contribution of the resulting S and G2/M

phase scores using PC regression (see Principal Component regression), which was performed
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for each batch separately. The differences in variance before, Var,,,., and after, Var,,,,,

integration were aggregated into a final score between 0 and 1, using the equation:

. \Var,,—Var,. .l
CC conservation = 1 — M
arbqﬂ?re

In this equation values close to 0 indicate lower conservation and 1 indicates complete
conservation of the variance explained by cell cycle. In other words, the variance remains
unchanged within each batch for complete conservation, while any deviation from the

pre-integration variance contribution reduces the score.

Trajectory conservation

The trajectory conservation score is a proxy for the conservation of the biological signal. We
compared trajectories computed after integration for certain clusters that had been manually
selected during the data preprocessing step. Trajectories were computed using diffusion
pseudotime implemented in Scanpy (sc.tl.dpf). We assumed that trajectories found in the
unintegrated data for each batch gave the most accurate biological signal. Therefore, the
starting cell of the trajectory, post-integration, was defined by selecting the most extreme cell
from the cell type cluster that contained the starting cells of the pre-integration diffusion
pseudotime, which was based on the first three diffusion components (see the immune cell task
description for more details). Only cells from the largest connected component of the
neighborhood graph were considered.

We computed Spearman’s rank correlation coefficient, s, between the pseudotime values before
and after integration. The final score was scaled to a value between 0 and 1 using the equation

trajectory conservation = (s+1)/2. Values of 1 or 0 correspond to the same order of cells on the

trajectory before and after integration or the reverse order, respectively.
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Benchmarking setup

All integration runs were performed using our Snakemake pipeline. Methods were tested with
scaled and unscaled data as input, using the full feature (gene/open chromatin window) set or
only HVGs. Where HVGs were used, the top 2000 were selected using a custom method, which
selected HVGs in a manner unaffected by batch variance. Specifically, we initially built the
hvg batch function on top of the highly variable _genes function from Scanpy. Using the
standard function from Scanpy, we obtained the top 2000 HVGs per batch with the cell_ranger
flavor. The list of HVGs was ranked first by the number of batches in which the genes were
highly variable and second by the mean dispersion parameter across batches; the top 2000
were then selected. This hvg batch function is freely available as part of the sc/B module.
Scaled data have zero mean and unit variance per gene; this was performed by calculating
z-scores of the expression data using Scanpy’s scale function applied separately to each batch
(scale_batch function in scIB). HVG selection and scaling were not applied in the ATAC tasks,
as these are not typical steps in an ATAC workflow.

Data integration runs were performed with 12 cores and 24 threads available to each method;
16 GB of memory per core and 131 GB of shared swap memory were available. Thus, up to 323
GB of memory was available for each run. The runtime limit was set to four days (96 hours).
Some methods ran out of time or memory and were assigned NA values for the respective
integration task. The integration methods were run in separate conda environments for R and
Python methods to ensure no clashes in dependencies. Details on how to set up these
environments can be found on the sc/B GitHub repository (www.github.com/theislab/scib). We
converted between R and Python data formats using anndataZri

(www.github.com/theislab/anndata2ri) and conversion functions in LIGER and Seurat.
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Metrics were run on the integrated and unintegrated AnnData*® objects. We selected the metrics
for evaluating performance based on the type of output data (Supplementary Table 2). For
example, metrics based on corrected embeddings (Silhouette scores, PC regression, and cell
cycle conservation) were not run where only a corrected graph was output. We calculated an
overall score per integration run by taking the weighted mean of the batch removal and
bio-conservation scores (weights of 0.4 for batch removal and 0.6 for bio-conservation). In turn,
these scores were computed by taking the weighted mean of all metrics that were computed in
this category. Weighting was performed by min-max scaling of the score across all integration
runs within each task, so that each metric was equally discriminative between all integration
runs. Notably, scaling via z-scores (previously used for trajectory benchmarking®) instead of
min-max gives similar overall rankings (Spearman’s R >0.94 for all tasks). Using this method,
we were able to compute comparable overall performance scores even when different numbers

of metrics were computed per run.

Usability assessment

We assessed the usability of integration methods, via an adapted objective scoring system. A
set of nine categories were defined (adapted from Saelens et al.?’) to comprehensively evaluate
the user-friendliness of each method (Supplementary Fig. 21 and Supplementary Data 6).
The first five categories (open source, version control, unit testing, tutorial and function
documentation) assessed the quality of the code, its availability, the presence of a tutorial to
guide users through one or more examples, and (ideally) usage in a non-native language (i.e.,
from Python to R or vice versa). The other four categories (peer-review, evaluation of accuracy,
evaluation of robustness, and benchmarking) assessed whether the method was published in a

peer-reviewed journal, how the paper evaluated the accuracy and robustness of the method,
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and the inclusion of benchmarking with other published algorithms in the paper. The mean value
for each category was calculated to obtain a partial score that was then averaged over all
categories; this led to one final usability score. Each category was considered to be equally
important. Supplementary Data 6 reports scores and references collected, to the best of our
knowledge, for each usability term considered. In particular, we sought information from multiple
sources, such as GitHub repositories, Bioconductor vignettes, Readthedocs documentation,

original manuscripts, and supplementary material.

Scalability assessment

The scalability of all data integration tools was assessed according to CPU time and peak
memory use. For each run of the Snakemake pipeline, we used the Snakemake benchmarking
function to measure time and peak memory use (max RSS). To score time and memory usage,
we used a linear regression model to fit time and memory vs. the number of cells on a log-scale
separately for each method and each preprocessing combination (completed with curve_fit from
scipy.optimize, scipy version 1.3.0). The fit results are shown in Supplementary Fig. 19. Each
fit had a slope and an intercept calculated as follows:

fx) = a-log(x) +b + €.

These values were used to compute each area under the curve (AUC) where 4=10* and
B =10°, which corresponded to the approximate range of data task sizes in our study. To derive
a scalability score from these areas, we scaled all AUCs by the area of the rectangle that

covered all curves. Specifically, we chose the width as the difference of the log-scaled bounds

and the height C as 10% s (= 3 years) and 10° MB (=1 PB), respectively:
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_ 0.5-(log(B)—log(A)-(f(B)Hf(A) _ 1. [B)HA)
AUC yjoq = (log(B)-Tog(A)) - 10g(C) 2" Tlog(C) -
Methods that scale well have a low AUC and, consequently, a low scaled AUC. To obtain a
consistent scoring scheme, we inverted the scaled AUCs:
s =1 -AUC, 104 -
Finally, we reported the scalability scores for CPU time and peak memory use per method and

preprocessing combination.

Visualization

Inspired by the code of Saelens et al.?

, we implemented two plotting functions in R. The first
visualization displays each integration task separately and shows the complete list of tested
integration runs ranked by the overall performance score. Individual and aggregated scores are
represented by circles and bars, respectively. The color scheme indicates the overall ranking of
each method.

The second visualization provides an overall view of the best performing flavors of each
integration method. To obtain this, we first calculated the overall score over metrics for each
method in each task (considering only real scRNA-seq data integration tasks). Subsequently,
we ranked the methods in each real scRNA-seq task and computed an average rank over
scenarios. Importantly, methods that could not be run for a particular task were assigned the
same rank as unintegrated data on this task. Finally, we chose the best performing combination
of features (HVG or full features) and scaling flavors for each integration method, and then

ranked these from best- to worst-performing. Moreover, we displayed an average usability

score, two scalability scores related to time and memory consumption, and the overall scores
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obtained in the two simulation tasks (although these scores were not used for the ranking).

Again bar lengths represented scores and the color scheme indicated the ranking.

Data and Code availability

The data used in this paper is publicly available and retrievable as described in the data section.
Notebooks and R scripts used to preprocess the data, and all of the preprocessing and
integration functions, evaluation metrics, and workflows used, are available at

www.github.com/theislab/scib.
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