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In situ RNA capturing has made it possible to record histology and spatial gene expression from
the same tissue section. Here, we introduce a method that combines data from both modalities to infer
super-resolved full-transcriptome expression maps. Our method unravels transcriptional heterogene-
ity in micrometer-scale anatomical features and enables image-based in silico spatial transcriptomics

without hybridization or sequencing.

Spatial transcriptomics allows researchers to study cell
behavior in the spatial domain and has been used to de-
scribe cellular organization in the hippocampus [1], to
characterize intra-tumor heterogeneity in human breast
[2], pancreatic [3], and prostate cancer [1], to analyze spa-
tial dynamics during embryonic cardiogenesis [5], and in
many other contexts.

Experimental methods for spatial transcriptomics fall
on a spectrum that trades resolution and molecular sensi-
tivity for multiplexing capacity. On one end of the spec-
trum, methods based on in situ sequencing [0, 7] or hy-
bridization [3, 9, 10] typically have high resolution and
high sensitivity but are difficult to multiplex over many
genes, limiting their usefulness in exploring transcriptome-
wide interactions. On the other end, methods based on in
situ RNA capturing (ISC) using poly(dT) probes [2, 11,

| target all poly-adenylated transcripts simultaneously
but have lower resolution and sensitivity, limiting their
usefulness in studying detailed expression patterns.

To overcome the limitations of current spatial tran-
scriptomics methods, we propose a deep generative model
of spatial expression data. Our model casts spatial gene
expression and histological image data as observable ef-
fects of a latent tissue state (Fig. la, Methods). By fusing
low-sensitivity, low-resolution ISC expression data with
high-resolution histological image data, we infer denoised
full-transcriptome spatial gene expression at the same res-
olution as the image data. Additionally, our model can
be applied to samples that lack expression data, making
it possible to predict spatial gene expression without hy-
bridization or sequencing.

We model the latent tissue state over multiple spatial
resolutions, capturing both global and local anatomical
features. Inference of the latent state and correspond-

ing high-resolution expression data is based on ideas from
the literature on variational autoencoders [13, 14]. Im-
portantly, while optimizing model parameters, we jointly
learn a recognition neural network that maps the image
data to the variational parameters of the latent state. As
a result, the inferred posterior of the latent state is not
kept in memory but recomputed for each mini-batch, al-
lowing our method to scale to arbitrarily large datasets.

To evaluate the performance of the proposed method,
we study a dataset [2] consisting of 12 sections from the
mouse olfactory bulb. First, we test in-sample perfor-
mance by dropping 50% of all measurement locations and
imputing the missing expression data. We compare the
results to a pixel-wise interpolation scheme that fills in
missing data with the expression of the closest non-missing
location and find that our method achieves a 24 % lower
median root-mean-square error (Fig. 1b).

We next test out-of-sample performance by holding
out an entire section from the training set and predict-
ing its expression data from the image data. We find
that ground truth expression patterns are faithfully repro-
duced (Fig. S1) and that accuracy approaches in-sample
performance as more sections are included in the training
set (Fig. 1c), demonstrating that our method can be ap-
plied to histological images that do not have associated
ISC data.

Finally, we compare inferred expression to in situ hy-
bridization data from the Allen Mouse Brain Atlas [15].
Overall, inferred expression closely matches the reference
data (Fig. 1d and Fig. S2). For example, expression of
Ning1 in the mitral cell layer (MCL) and of Dusp1/ in the
MCL and granule layer are accurately replicated (Fig. 1d).
In contrast, the raw data is too coarse to resolve the same
expression patterns.
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Figure 1: Conceptual overview and performance evaluation. (a) Histological image and expression data are modeled as effects of a latent spatial tissue
state. The tissue state has multiple resolutions, capturing both global and local anatomical features, and is mapped through a generator network (black
solid arrows) to histological image and high-resolution, latent expression data. The latent expression data is linked to the observed expression data by
summation (black dotted arrow). Inference is amortized using a recognition network (blue dashed arrows) that maps the observed image data to the latent
tissue state. (b), (c) Root-mean-square error (RMSE) of (b) imputation compared to pixel-wise, zero-order interpolation and (c) out-of-sample prediction
over different training set sizes. Count values are normalized to mean one in each measurement location. Asterisks (xxxx) indicate significance at
the p < 0.0001 level using a two-sided Wilcoxon signed-rank test. (d) Comparison of inferred high-resolution expression maps to in situ hybridization

reference data from the Allen Mouse Brain Atlas.

We use our method to study detailed anatomical struc-
tures in the mouse olfactory bulb and in human breast
cancer. Both datasets display fine-grained expression het-
erogeneity (Figs. 2a and 2b), which can be quantified in
terms of differential expression (Methods).

First, we profile the MCL of the olfactory bulb (Fig. 2¢)
and find several strongly up- and downregulated genes
(Fig. 2d). To verify our results, we sort the genes by the
inverted coefficient of variation of their posterior logs fold
change and find that 40 out of the 100 most upregulated
genes are among 229 markers for the MCL identified in
a recent single-cell RNA-sequencing study [16] (one-sided
hypergeometric test p-value: 1.66 x 10~47). Meanwhile,
the 20-50 pm thickness of the MCL prohibits it from be-
ing isolated in the raw data, which measures expression
over areas with a diameter of 100 pm. We conclude that
the proposed method successfully deconvolves mixed ex-
pression signals by integrating expression patterns across
anatomical areas that share morphological features.

Next, we study spatial dynamics in a ductal carcinoma
in situ (DCIS) lesion from the breast cancer dataset by
profiling transcriptome gradients between the inner area
of the tumor and its outermost edge (Fig. 2¢). We find sev-
eral genes related to immune activity and tumor progres-
sion to be upregulated at the border of the tumor (Fig. 2f).
For example, the complement component 1q, composed
of the C1QA, C1QB, and C1QC subcomponents, have
been shown to promote angiogenesis and tumor growth
in the tumor microenvironment [17]. Similarly, CD74 is a
known marker for metastatic tumor growth in breast can-

cer [18] and is being investigated as a potential target for
antibody-drug conjugate therapies in blood cancers. The
proximity of CD7/ expression to the tumor edge could
have important implications for the accessibility of CD74
expressing cells in similar therapies for DCIS. However,
further studies are needed to validate this finding.

Consistent with the above results, the pathways that
are enriched for the 100 most upregulated genes at the
tumor border include, for example, extracellular structure
organization (p-value: 2.10 x 10~ !®), immune system pro-
cesses (p-value: 1.37 x 10 '), blood vessel development
(p-value: 8.51 x 1079), and cell migration regulation (p-
value: 8.98 x 10~ 6) (Table S1).

Critically, while the distance between measurement lo-
cations in the raw expression data is 100 pm, several differ-
entially expressed genes become upregulated first within
50 pm of the tumor border (Fig. 2f). We conclude that it
is only by learning a high-resolution state of the underly-
ing transcriptional anatomy of the tissue that it becomes
possible to fully resolve the detailed expression landscape
describing these genes. Determining its precise topology
is paramount to understanding cellular interactions at the
microscale and in developing effective treatments for a
wide range of diseases.

In summary, we have presented a deep generative
model for spatial data fusion. We combine ISC expression
data with histological image data to infer super-resolved
full-transcriptome spatial gene expression. The proposed
method exposes spatial contingencies that are difficult to
discern in the raw expression data and can characterize
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Figure 2: Characterization of transcriptional heterogeneity in detailed anatomical structures. (a), (b) Summarized latent gene expression in (a) the mouse
olfactory bulb and (b) a human ductal carcinoma in situ (DCIS) lesion. Colors indicate anatomical areas with distinct transcriptional phenotypes according
to the inferred tissue state (Methods). (c) Annotation of the mitral cell layer (MCL) profiled in (d). (d) Differential expression in the MCL compared to the
other layers of the mouse olfactory bulb. (e) Annotation of the DCIS lesion profiled in (f). Red dashed line: Tumor border. Black dotted line: Baseline
boundary, 200 um from the tumor border. (f) Differential expression compared to baseline as a function of proximity to the tumor border for the 10 most
up- and downregulated genes at distance zero. Lines show posterior means and ribbons indicate uncertainty (2 standard deviations).

differential expression in micrometer-scale anatomical fea-
tures. Moreover, our method can predict spatial gene ex-
pression from histology in samples that lack ISC data,
thereby providing a means for image-based in silico spa-
tial transcriptomics (ISST).

We envision future work to enable ISST on a grander
scale. Given a sufficiently large and diverse training set,
it may be possible to learn universal models that can pre-
dict spatial gene expression without hybridization or se-
quencing in any tissue. ISST could make very large spatial
transcriptomics projects economically viable, unlock spa-
tial gene expression in vast databases of histology images,
or be used to verify the integrity of data from experimental
methods.
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Methods

Statistical model

We model the spatial expression data, X,,, and histological
image data, I,,, of each sample n as effects of an under-
lying spatial tissue state, Z,. We assume the conditional
distribution of the image data I to be Gaussian, and, fol-
lowing previous work [1] on RNA bulk sequencing data, we
assume the conditional distribution of the expression data
X to be negative binomial. The rate of the latter is factor-
ized into M metagenes, parameterized by a gene loading
matrix L. The parameters of the conditional distributions
are mapped from the latent tissue state Z through a convo-
lutional generator network G with learnable parameters 6.

Formally, for all samples n, pixel coordinates (z,y),
genes ¢, and image channels ¢, we model the data gener-
ating process as follows:

Zn ~ N(0,1) (1)

Ly~ N(0,0%,1) (2)

By ~ N(0,0%,1) Q

Fy ~N(0, U%Q]I) (4)

(S, ns i, 00) = Go(Zy) ()

Tngey = myet9+ﬁ"E9 Emanmxyeng (6)

Png = S (ug + B ky) (7)

Xngay | Zns Lg; Eg, Fg ~ NB (Pngay, Png) (8)
Xngt = o.g)ed, () Xngry )

Incay | Zn ~ N (tincay, Tneay) (10)

where S is the logistic function, (,, is a row vector of in-
dicator variables specifying group membership, and X is
the observed expression data at location [ covering the area
A, (1). The fixed effects E and F' can be used to control
for batch effects or to characterize differential expression
between sample groups.

During inference, we collapse the model by integrat-
ing out the latent expression X, which replaces Eqgs. (8)
and (9) with

Xngl | Zn, Lg, Eg, Fg ~ NB (E(m,y)EAn(l)rngmyapng) . (11)

Inference

We use variational inference to approximate the posterior
of the latent variables p(Z, L, E, F| X, I) with a tractable
distribution ¢4(Z, L, E, F'). The variational parameters ¢
and the parameters 6 of the generator network are found
by minimizing the Kullback-Leibler divergence from ¢4 to
the posterior, which is equivalent to maximizing the evi-
dence lower bound (ELBO),

L(¢,0,t,u,0%,0%,0%) =Eqy, |logpe(X,I,Z,L,E,F)

—logqs(Z, L, E, F)} .
(12)

We use a mean-field diagonal Gaussian variational dis-
tribution

Q¢(Z, L, E, F) = dq¢L (L)q¢E (E)q¢F (F) H d¢z, (Zn)’
’ (13)

where the parameters ¢z, are encoded by a convolutional
recognition network R with weights ¢ applied to the im-
age data: ¢z, = Ry, (I,,).

We update the parameters ¢, 0, t, u, 0%, 0%, and 0% by
gradient ascent on the objective (12) using the Adam op-
timizer [2]. Following [3], gradient estimates are obtained
by reparameterizing the latent variables as a function of
auxiliary parameter-free noise. Briefly, letting

e~ N(0,I)
(Z,L,E,F) = hg(e),

where hy is an appropriate shift-and-scale transformation,
we can reformulate Eq. (12) as an expectation with respect
to € by relying on the law of the unconscious statistician.
This makes it straightforward to rewrite the gradient of
Eq. (12) as an expectation,

VL(¢,0,t,u,07,08, 0%)

=By [Viogpo(X,1,2,L,E,F)  (16)

—Vlogqs(Z, L, B, F)} .

We approximate (16) using a single Monte Carlo sample
for each update step and train on patches extracted from
the dataset.

The dataset is augmented with random rotations, scal-
ing, and shearing. The image data is further augmented
with random color jitter.

Architecture

To efficiently capture both global and local anatomical
features, we model the latent tissue state Z over multi-
ple resolutions. The recognition and generator networks
G and R together form an architecture similar to U-Net
[1] with the variational distribution of the latent state for
each resolution inserted at the corresponding skip connec-
tion (Fig. S3).

Model selection

To select the number of metagenes M in the model, we im-
plement a drop-and-split strategy that runs in parallel to
inference. Briefly, we start out with M = 1 metagenes. At
fixed intervals, we estimate the ELBO (12) with and with-
out each of the M metagenes. Metagenes that contribute
to the ELBO are split into two new metagenes that in-
herit parameters from their parent while non-contributing
metagenes are dropped.
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High-resolution gene expression maps

We infer denoised latent gene expression by estimating the
posterior distribution of

=E[X|ZL,BF =2

(17)

with NV Monte Carlo samples drawn from the variational
distribution:

(| X, 1) = / p(v| Z.L.E. F)dP(Z, L, E.F| X, 1)

~ / p(v| Z, L, E, F)dQy(Z, L, E, F)

1 N
= Y o)
i=1

where P and (), denote the cumulative distribution func-
tions of the corresponding lower-case densities and d,,¢:) is
the Dirac delta function centered at the i:th sample of v.

We compute gene expression maps as the mean of the
point-mass mixture (18),

(18)

N

Z

Elv|X, 1] ~ (19)

To predict latent gene expression in an unseen sample
n/, we approximate

p(Zn’7LaE7F|X7I7In') :p(Z’Vl' |In/)p(L7E’F|X’I)

~ qR¢(In/)(Zn’)q¢(La E.F)
(20)

and estimate E[v, | X, I, I,/] similar to Eq. (19).

Differential expression analysis

We consider the logs conditional mean expression of an
area Aj;,

€ = IOgQE |:Z(n z,y)EA; any | ZaLanF

>

(n,z,y)€A;

= log, Vnay- (21)

The posterior distribution of the normalized logs fold
change of a gene g between the areas A; and Aj,

— log, Z 219" + log, Z 262",
g’ g’

is estimated analogous to Eq. (18). Mean and variance
estimates are computed on the resultant point-mass mix-
ture:

TNg = €19 — €24 (22)

E[ng‘X7ﬂ ~

. 1 X N2 1 & ?
Var(ny | X, 1) = 3 (1) - (Nzn<z>> . (24)

Summarized expression maps

To visualize transcriptional anatomy, we estimate the pos-
terior mean metagene activity a and pixel-wise scale s sim-
ilar to Eq. (19). We project a onto its first three principal
components and append —s along the channel axis. We
then apply a channel-wise affine transformation to map
all values into [0, 1]. The resulting coordinates are used as
CMYK-encoded color values.

Pathway analysis

Pathway analyses are conducted using g:Profiler [5] with
the GO:BP database [0, 7]. Reported p-values are ad-
justed with the g:SCS procedure provided by g:Profiler.

Relationship to prior work

Our work extends previous research on spatial models of
transcriptomics data. Notably, SpatialDE [8] and SPARK
[9] model spatial transcriptomics data using Gaussian pro-
cesses to detect spatially variable genes. However, neither
method makes use of histological information or can be
used to infer high-resolution expression data. NovoSpaRc
[10] reconstructs the spatial organization of single cells by
solving an optimal transport problem. While novoSpaRc
can identify zonated genes from single-cell data, accurate
inference of spatial expression patterns requires informa-
tion about the spatial configuration of marker genes. Sev-
eral other methods [11, 12, 13, 14] exist for fusing single
cell with in situ sequencing or hybridization data.

The contribution of our work is threefold: First, we
have shown that histological image data is highly infor-
mative of spatial expression patterns in tissues. Second,
we provide an integrative model of in situ capturing spa-
tial transcriptomics. Our model fuses spatial gene expres-
sion data with high-resolution image data, thereby making
it possible to study full-transcriptome expression hetero-
geneity in detailed anatomical structures. Third, we have
demonstrated the feasibility of predicting expression in un-
squenced samples using only their histological image data.
We believe image-based in silico spatial transcriptomics to
be a promising future research topic.

Data availability

The
tained

ob-
web-

mouse olfactory bulb dataset was
from the spatial research group’s
site: https://www.spatialresearch.org. The
breast cancer dataset was obtained from 10X
Genomics: https://support.10xgenomics.com/
spatial-gene-expression/datasets/.

Code availability

We have implemented the proposed method in the Pyro
probabilistic programming language [15]. The code is
available under the MIT license at https://github.com/
ludvb/xfuse.
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