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Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) has been suc-
cessfully employed to understand the organisation of the human brain. For
rs-fMRI analysis, the brain is typically parcellated into regions of interest
(ROIs) and modelled as a graph where each ROI is a node and pairwise cor-
relation between ROI blood-oxygen-level-dependent (BOLD) time series are
edges. Recently, graph neural networks (GNNs) have seen a surge in popular-
ity due to their successes in modelling unstructured relational data. The lat-
est developments with GNNs, however, have not yet been fully exploited for
the analysis of rs-fMRI data, particularly with regards to its spatio-temporal
dynamics. Herein we present a novel deep neural network architecture, com-
bining both GNNs and temporal convolutional networks (TCNs), which is
able to learn from the spatial and temporal components of rs-fMRI data in
an end-to-end fashion. In particular, this corresponds to intra-feature learn-
ing (i.e., learning temporal dynamics with TCNs) as well as inter-feature
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learning (i.e., leveraging spatial interactions between ROIs with GNNs). We
evaluate our model with an ablation study using 35,159 samples from the
UK Biobank rs-fMRI database. We also demonstrate explainability features
of our architecture which map to realistic neurobiological insights. We hope
our model could lay the groundwork for future deep learning architectures
focused on leveraging the inherently and inextricably spatio-temporal nature
of rs-fMRI data.

Keywords: deep learning, graph neural networks, UK Biobank, time series,
temporal convolutional network, rs-fMRI, spatio-temporal dynamics

1. Introduction1

Resting-state functional magnetic resonance imaging (rs-fMRI) is one of2

the most commonly used noninvasive imaging techniques employed to gain3

insight into human brain function. The use of rs-fMRI data has proven ex-4

tremely useful as an investigative tool in neuroscience and, to some extent,5

as a biomarker of brain disease diagnosis and progression [1]. Typical use of6

rs-fMRI data involves using graph-theoretical measures (such as centrality7

measures and community structure) to summarise high-dimensional, whole-8

brain data for use in downstream tasks. As part of this process, it is common9

practice to reduce the dimensionality of the data in one of three main ways:10

(1) by collapsing the temporal dimension (e.g., into brain region connectivity11

matrices based on similarity metrics between time series), (2) by reducing12

the spatial dimension (e.g., in global signal regression for physiological noise13

modelling [2]), and (3) by employing approaches that collapse both the tem-14

poral and spatial dimensions (e.g., in independent component analyses [3]).15

This feature engineering step is performed mostly due to the considerable vol-16

ume of data in a typical rs-fMRI dataset and its relatively low signal-to-noise17

ratio [4]. Although computationally beneficial, such dimensionality reduction18

steps inevitably involve disregarding large amounts of information which can19

potentially be useful depending on the analysis task. For instance, collaps-20

ing the temporal dimension of rs-fMRI data reduces the brain to a static21

volume where the interactions between different brain regions are fixed over22

time. This stands in contrast to a growing body of research showing that the23

functional connectivity of the brain is dynamic and constantly changing over24

time [5, 6]. As another example, association measures most commonly used25

are still based on linear models, while it is well known that neuromonitoring26
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data and brain signal in particular interact nonlinearly [7, 8].27

To overcome such limitations, a different approach to the analysis of rs-28

fMRI data would be to devise a model that is able to combine both feature29

engineering and the learning of a low-dimensional representation of the brain.30

In order to do this, such a model would need to be able to accommodate both31

the spatial as well as the temporal complexities of rs-fMRI data. To date,32

deep learning architectures have had great success at leveraging specific in-33

ductive biases from complex high-dimensional data. Convolutional neural34

networks (CNNs), for instance, are extremely effective at extracting shared35

spatial features such as corners and edges from grid-like data (e.g., 2D and36

3D images). These features can then be combined into more complex con-37

cepts deeper within the network architecture [9]. Recurrent neural networks38

(RNNs), on the other hand, are able to learn features from data that are39

temporally organised as a sequence of steps [10]. In contrast to both CNNs40

and RNNs, graph neural networks (GNNs) can learn from data that does not41

have a rigid structure like a grid or a sequence, and can be depicted in the42

form of unordered entities and relations such as graphs. The formulation of43

GNN models that deal with complex data structures has seen fast develop-44

ments in the past years [11, 12] and are therefore strong candidates for the45

analysis of rs-fMRI data.46

Previous work has attempted to leverage deep learning architectures in47

order to model rs-fMRI data. In particular, GNNs have been used to classify48

binary sex [13], and CNNs have been successfully employed in the diagnosis49

of cognitive impairment [14]. Other pioneering studies have devised ad-hoc50

deep learning models for fMRI data such as the classification of brain dis-51

orders using Siamese-inspired neural networks [15], but the spatial informa-52

tion was not represented using GNNs. Learning from spatial and temporal53

components of data using deep learning can also be seen in various non-54

biological domains [16, 17, 18]; such approaches, however, usually rely on a55

single spatio-temporal convolutional block that creates low-dimensional em-56

beddings at each timestep, instead of performing a prediction task for the57

entire graph at once. To improve these drawbacks, we formulate a novel deep58

neural network architecture that exploits the advantages of GNNs and CNNs59

in order to effectively model the linear and non-linear temporal and spatial60

components of rs-fMRI data. We engineered our architecture to specifically61

retain edge weights and contain elements of explainability [19, 20], in or-62

der to provide advantages when a neuroscientific explanation of the inner63

model workings is desirable. Our proposed model uses GNNs to account64
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for spatial inter-relationships between brain regions, and temporal convolu-65

tional networks (TCNs) to capture the intra-temporal dynamics of blood-66

oxygenated-level dependent (BOLD) time series. By incorporating GNNs67

and CNNs in the same end-to-end architecture we essentially combine intra-68

and inter-feature learning. In particular, GNNs can tackle a limitation of69

some graph representations of rs-fMRI data, in which association measures70

between different regions of interest (ROIs) of the brain are based on linear71

models; instead, GNNs can capture higher-order interactions between ROIs.72

A very preliminary version of this work with a 30-fold smaller dataset was73

recently presented as a conference contribution [21]. However, further work74

was needed regarding a larger dataset, wider choices of the graph threshold75

hyperparameter, and analysis on inclusion of edge weights.76

We test our architecture on the publicly available UK Biobank dataset,77

which at the time of writing provides rs-fMRI scans from more than 30,00078

distinct people. This dataset offers a unique opportunity to formulate novel79

architectures, while supporting the need of large datasets for reproducible80

findings with minimal statistical errors [22]. We also conducted an ablation81

analysis on a proof-of-concept binary sex prediction task to better evaluate82

the different contributions of each component of our model. We release all the83

code and artifacts used to develop this work in a public repository for easier84

adoption by the community (see “Data and Code Availability” section).85

2. Methods86

2.1. Problem Definition87

To represent rs-fMRI data as an undirected weighted graph, the brain88

is spatially parcellated into N regions of interest (ROIs) representing graph89

nodes indexed by the set V = {1, . . . , N}. Let xi ∈ RT represent the features90

of node i corresponding to the BOLD timeseries of length T . The connections91

between each ROI are represented by an edge set E ⊂ V × V composed92

of |E| = E unordered pairs (i, j), where for every edge k connecting two93

nodes (i, j) ∈ E the connection strength is defined as ek ∈ R. Let the tuple94

G = (V , E) denote the resulting graph. Given the graph structure G, let95

X ∈ RN×T , E ∈ RE×1, and A ∈ RN×N denote the nodes features, edge96

features and adjacency matrix, respectively.97
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2.2. Temporal Convolutional Networks98

In order to learn a representation of the temporal dynamics contained99

in rs-fMRI time series, we use temporal convolutional networks (TCNs) [23].100

These are a simplification over the original WaveNet architecture used for au-101

dio synthesis [24], which has been seen to provide significantly better results102

for sequence modelling in comparison to more traditional RNN architectures103

(e.g., LSTMs) across a range of tasks and datasets. In particular, Bai et al.104

[23] posit that convolutional networks should be seen as the natural starting105

point for sequence modelling tasks, which makes them ideal for extracting106

information from rs-fMRI time series.107

TCNs are based on dilated causal convolutions [25], which are special 1D
filters where the size of the receptive field exponentially increases over the
temporal dimension of the data as the depth of the network increases. The
padding of the convolution is ‘causal’ in the sense that an output at a specific
time step is convolved only with elements from earlier time steps from the
previous layers, thus preserving temporal order. More formally, given a single
ROI timeseries xi ∈ RT and a filter f ∈ RK , the dilated causal convolution
operation of x with f at time t is represented as

xi ∗ f(t) =
K−1∑
s=0

f(s)xi(t− d× s) (1)

where d is the dilation factor which controls the number of time steps suc-108

cessively skipped. In contrast to the original TCN architecture [23], we use109

batch normalisation instead of weight normalisation because it empirically110

provided a more stable training procedure in terms of loss evolution.111

2.3. Graph Network Block112

Battaglia et al. [26] formalise a graph network (GN) framework through113

the definition of functions that work on graph-structured representations.114

The main unit of computation in the GN framework is called the GN block,115

which contains three update functions and three aggregation functions work-116

ing on the edge, node, and global level.117

The first operation of this GN block, which can be broadly defined as the118

edge model, concerns the update function φe, which computes updated edge119

attributes for each edge k based on the original edge’s attributes ek and the120

features of the connected nodes i and j:121
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e′
k = φe (ek,xi,xj) . (2)

Note that for rs-fMRI graph representations, each edge originally con-122

tains a single value (i.e., ek ∈ R), but after this operation φe, the resulting123

dimensionality can be different: e′
k ∈ RM , where M >= 1. Then, in what124

can be broadly defined as the node model, the block computes updated node125

features. Firstly, for each node i, it aggregates the edge features per node:126

e′
i = ρe→v (E ′i) , (3)

where E ′i = {(e′
k, i, j)}

E
k=1 is the set of edges starting in node i, with node127

j connected with node i through edge k. Importantly, ρe→v needs to be128

invariant to edge permutations to account for the unordered structure of the129

data. Averaging and summation are examples of such operations invariant130

to edge permutations.131

Finally, the updated node features are computed using another aggrega-132

tion function at the node level, for each node i:133

x′
i = φv (e′

i,xi) . (4)

Although the rs-fMRI graph representation contains undirected edges, the134

GN block requires directed edges. To overcome this issue, every time there135

is a connection between any two nodes i and j, we assume the existence of136

two edges (ek, i, j) and (ek, j, i), one for each direction.137

2.4. Graph Pooling138

After the neural network processes the input as described in the previ-139

ous sections, each node in the graph will contain a node-wise representation140

(i.e., a feature vector) as a result. For the prediction task described in this141

paper, where a graph-level (as opposed to node-level) prediction is required,142

these representations need to be pooled (i.e., collated) to be used for a final143

downstream prediction task.144

To this end, it is common practice to employ a global average pooling145

mechanism, in which the nodes features are averaged across the graph, thus146

creating a final, low-dimension embedding representation of the graph itself.147
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However, assuming that distinct nodes (i.e., brain regions in this work)148

have different levels of importance for the downstream prediction task [27,149

28], we assumed that a hierarchical (as opposed to flat) pooling mechanism150

would create richer embeddings. To this end, we employ the differentiable151

pooling operator introduced by Ying et al. [29], commonly called DiffPool,152

which learns how to sequentially collapse nodes in smaller clusters until only153

a single node exists with the final embedding.154

When describing a Graph Network (GN) block, a sparse representation155

of nodes and edges is used to describe the operations that a GN block can156

have; however, DiffPool works on dense representations of a graph. In other157

words, a graph G is represented by a dense adjacency matrix A ∈ RN×N and158

a feature matrix X ∈ RN×F , where N is the number of nodes and F the159

number of features in each node.160

The DiffPool operator, at layer l, thus receives both an adjacency matrix161

and a node embedding matrix, and computes updated versions of both:162

A(l+1),X(l+1) = DiffPool
(
A(l),X(l)

)
(5)

To achieve this, the DiffPool operator uses a graph neural network (GNN)163

architecture. Specifically, the same GNN architecture is duplicated to com-164

pute two distinct representations: a new embedding Z ∈ RN(l)×F ′
and an165

assignment matrix S ∈ RN(l)×N(l+1) :166

Z(l) = GNNl,embed

(
A(l),X(l)

)
(6)

S(l) = softmax
(
GNNl,pool

(
A(l),X(l)

))
, (7)

where N(l) is the number of nodes in layer l, N(l+1) the new number of167

nodes, each corresponding to a cluster (N(l+1) < N(l)), and F ′ the number of168

features per node, which can be different from the original size F from the169

matrix X.170

The operator ends with the creation of the new node embedding matrix171

and adjacency matrix, to be inputted to the next layer:172

X(l+1) = S(l)TZ(l) (8)

A(l+1) = S(l)TA(l)S(l), (9)

where X(l+1) ∈ RN(l+1)×F ′
and A(l+1) ∈ RN(l+1)×N(l+1) .173
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3. Experiments Overview174

3.1. Dataset - UK Biobank175

Subject-level structural T1 and T2-FLAIR data as well as ICA-FIX [30]176

denoised rs-fMRI data was obtained from UK BioBank (application 20904) [31]1.177

All data were acquired on a standard Siemens Skyra 3T scanner running178

VD13A SP4, with a standard Siemens 32-channel RF receive head coil.179

The structural data was further preprocessed with Freesurfer (v6.0)2 us-180

ing the T2-FLAIR weighted image to improve pial surface reconstruction,181

similarly to Glasser et al. [32]’s pipeline. Reconstruction included bias field182

correction, registration to stereotaxic space, intensity normalisation, skull-183

stripping, and white matter segmentation. When no T2-FLAIR data was184

available, Freesurfer reconstruction was done using the T1 weighted image185

only. Following surface reconstruction, the Desikan-Killiany atlas [33] was186

aligned to each individual structural image and and ROIs extracted. The187

same atlas was aligned to the functional denoised rs-fMRI data (490 volumes188

TR/TE = 735/39.00 ms, multiband factor 8, voxel size: 2.4×2.4×2.4, FA=52189

deg, FOV 210x210 mm) using the warping parameters from the structural to190

functional alignment obtained using FSL’s linear registration (FLIRT), and191

mean BOLD time series (490 timepoints per scan) were extracted for each192

ROI. The time series were then scaled subject-wise using the median and193

interquartile range according to the RobustScaler implementation from the194

scikit-learn [34] python package. Edge weights were defined as full correla-195

tions calculated with the Ledoit Wolf covariate estimator using the nilearn196

python package3. Figure 1 shows an example scaled time series and the re-197

sulting example graph from a single subject. The total number of subjects198

used from the UK Biobank was 35,159, in which 18,649 were females and199

16,510 were males (18, 649/16, 510 ≈ 1.13). The median age was 64 with a200

minimum age of 44 and a maximum of 81.201

3.2. Model Implementation202

The neural network architecture depicted in Figure 2 was implemented203

using Pytorch [35], and Pytorch Geometric [36] for the specific graph neural204

1https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
2http://surfer.nmr.mgh.harvard.edu/
3https://nilearn.github.io/
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Figure 1: Left: Mean BOLD time series of four brain regions from the same subject,
after scaling. Right: Graph representation of one subject’s data, at 10% threshold as
described in Section 3.2. Thicker edges represent a stronger correlation between nodes,
in this case with values between approximately 0.54 and 0.87. Each node is labelled and
coloured according to its brain region (i.e., T/F/O/P/I correspond to Temporal, Frontal,
Occipital, Parietal, and Insula).

network components. The edge feature matrix E ∈ RE×1 defined in Sec-205

tion 2.1 was implemented as two sparse matrices: a sparse representation of206

the adjacency matrix Ei ∈ R2×E, and a sparse representation of the edge207

features Ea ∈ RE×1 (i.e., there was only one feature per edge corresponding208

to the correlation value). The number of nodes N was 68 (corresponding209

to each brain region from the Desikan-Killiany atlas), the number of node210

features F was the number of timepoints (i.e., 490), and E is the number of211

edges in the graph. The number of edges depends on the threshold percent-212

age used to retain only the strongest correlations. Given the non-conclusive213

evidence on the optimal threshold percentage in the vast majority of func-214

tional connectivity literature [37], in this work this threshold was included215

in the hyperparameters to be optimised.216

The full list of hyperparameters to be optimised and respective value217

range was the following:218

• dropout: [0, 0.9] (uniform distribution)219

• threshold: {5, 10, 20, 30, 40} (categorical)220
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• learning rate: [ln(1e−7), ln(1e−2)] (log uniform distribution)221

• weight decay: [ln(1e−7), 0] (log uniform distribution)222

To extract information from the rs-fMRI time series in each node, our223

model starts by employing a strided temporal convolutional network (TCN)224

architecture. Such architecture was implemented by using two blocks where225

each contained two layers of 1D convolutions, 1D batch normalisation, ReLU226

activation, and dropout. Each block used a stride of 2, a kernel with size227

7 (i.e., K = 7 in Equation 1), and contained a skip connection. While228

the first block used no dilation, the second one used a dilation of 2. The229

four 1D convolution filters increased the numbers of output channels at each230

layer, specifically 8, 16, 32, and 64. After these two blocks (i.e., four layers),231

node features from all channels are flattened out and inputted to a linear232

transformation to reduce each node representation to a fixed embedding of233

size 128. These transformations thus reduce the original node feature matrix234

from size N × T to size N × 64× 31 after the two blocks, and finally to size235

N × 128 corresponding to the final embedding.236

Then, the Graph Network (GN) block is applied, in which the update237

functions are single-layered multi-layer perceptrons (MLPs), and aggrega-238

tion function is an edge-wise averaging around each node. The original di-239

mensions of X, Ei, and Ea right before the GN block are kept after these240

transformations.241

We employed two types of pooling mechanisms in our analysis, both of242

which reduce the node feature matrix from a size of N × 128 to 1 × 128: a243

global average pooling mechanism, and the hierarchical pooling mechanism244

(i.e., DiffPool). For DiffPool, which expects a dense graph representation,245

data is first transformed into a symmetric adjacency matrix A ∈ RN×N ,246

which is a weighted matrix when considering edge features, and binary oth-247

erwise. As recommended by the original paper [29], we employed three layers248

of GraphSAGE [38] followed by a 1D batch normalisation, with a final skip249

connection.250

A summary conceptual architecture of the whole model is shown in Fig-251

ure 2.252

3.3. Training Procedure253

In order to assess the validity of our model, we performed a proof-of-254

concept through the well-known binary sex prediction task [39, 40]. We255
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Ei

X ′

Ea

Ei

X ′

Ea
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X X ′
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Pooling
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Averaging

Flatten

Sigmoid

Graph Network Block

(
RN×T

) (
RN×128

)(
RN×128

) (
RN×128

)

Temporal Model

Figure 2: Three main working blocks of the spatio-temporal model. The temporal model
creates an initial representation from original node features X (i.e., temporal dynamics).
It is followed by transformations in the Graph Network Block which leverages the structure
of data represented in edge features Ea and sparse connectivity Ei. Finally, a Pooling
mechanism (either DiffPool or global averaging) creates a final graph representation which
is flatten for a final prediction task.

used a 5-fold stratified cross validation procedure: the UK Biobank dataset256

was divided into training and test sets five times, in which each test set257

corresponds to 20% of the original size, and a sample would only belong to258

a test set once (i.e., all test sets are mutually exclusive). This division was259

done in a stratified fashion considering the sex label, bucketised age, and260

bucketised BMI measures (for each variable we created 8 equal-sized buckets261

based on sample quantiles). For each test set, the training set is further262

divided once to generate a single inner training and validation sets, using the263

same stratification strategy as for the training/test case.264

The neural network was trained over 100 epochs with the Adam opti-265

miser [41] and Binary Cross Entropy loss function. The training procedure266

was set to stop earlier if the validation loss did not reduce further after267

33 consecutive epochs. A hyperparameter search was included in the inner268

training/validation sets, in which 25 random runs were launched exploring269

random values of dropout, edge threshold, learning rate, and weight decay270

(see Section 3.2 for values range). In each random run, the model with the271

smallest validation loss was saved, and the model with the smallest validation272

loss across the 25 runs was selected to be evaluated in the test set. This pro-273

cedure is done separately for each test set, and metrics are averaged across274

the five test sets.275

We used Weights & Biases [42] to log our training procedure and generate276

the random hyperparameters for all the 25 models in each inner sweep. These277

inner sweeps were run across two different servers, and each model took278

between 20 minutes and 11 hours to train depending on GPU type and early279

stopping. All these details are stored using Weights & Biases, and can be280
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Figure 3: Values of hyperparameters corresponding to each validation loss achieved for
one illustrative inner sweep of one fold. For each one of the 25 training runs (represented
by each curved line), a set of random values is chosen for dropout, learning rate, edge
threshold and weight decay, which ultimately will result in the model’s validation loss.

accessed through our public repository (see “Data and Code Availability”).281

Figure 3 shows the results for the inner sweep of one of the folds for illustrative282

purposes. While a certain amount of variability is visible, some trends are283

evident in this particular split: the best models (i.e., with lower validation284

loss) tend to be achieved with higher edge thresholds, higher learning rates,285

smaller weight decays, and smaller dropout rates. We highlight that different286

sweeps could result in very different trends.287

3.4. Evaluation288

As shown in Figure 2, our model consists of (1) a TCN block that learns289

intra-temporal features from the mean BOLD time series of each ROI, fol-290

lowed by (2) a GN block which leverages the spatial inter-relationships be-291

tween ROIs, and finally (3) a hierarchical pooling mechanism which leverages292

all the information in the input, from the temporal rs-fMRI dynamics, to the293

graph structure and the edge features of that graph.294

In order to understand the inner workings of this combination, we con-295

ducted an ablation analysis to quantify the contributions of each component296
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of our model for the specific prediction task. Firstly, we consider two cases297

where the GN block is not used, hence practically evaluating the importance298

of edge weights for this prediction task. In one case the graph structure is299

completely ignored (i.e., no GN block and global average pooling), and in300

another case a binary graph is used only for the final hierarchical pooling301

part (i.e., no GN block and DiffPool applied to a binary graph).302

In order to investigate the influence of the different GN components, we303

consider not only the case where both node model and edge model are used304

in the GN Block, but also a case where only the node model is applied. For305

each one of these two cases, we consider both a global average pooling, as306

well as DiffPool with a weighted adjacency matrix.307

4. Results308

4.1. General Results309

Table 1 shows the results of our ablation analysis across three differ-310

ent backbones - no graph block, only node model, and full graph network311

block - each with two different aggregators (i.e., global average pooling and312

DiffPool). For notation purposes, we identify each one of these cases using313

“Backbone → Aggregator”, in which Aggregator can be “Average” or “Diff-314

Pool”, and Backbone can be “N” for only node model, “N + E” for both node315

model and edge model (i.e., full GN Block), and empty otherwise.316

Table 1: Ablation analysis, with metrics averaged across the five test sets, with standard
deviation in parenthesis. Aggregator on the right-hand side of the arrow, “N” corresponds
to only node model, and “N + E” corresponds to full Graph Network block. Params
stands for number of parameters.

Model AUC Accuracy Sensitivity Specificity Params

N + E → Average 0.83 (0.013) 0.76 (0.012) 0.74 (0.035) 0.77 (0.032) 474,639

N + E → DiffPool 0.84 (0.009) 0.76 (0.010) 0.78 (0.042) 0.74 (0.055) 849,057

N → Average 0.80 (0.006) 0.73 (0.007) 0.71 (0.037) 0.74 (0.030) 441,486

N → DiffPool 0.84 (0.009) 0.76 (0.008) 0.77 (0.014) 0.75 (0.016) 815,904

→ DiffPool 0.81 (0.021) 0.73 (0.019) 0.73 (0.035) 0.73 (0.049) 648,979

→ Average 0.77 (0.004) 0.70 (0.005) 0.68 (0.004) 0.73 (0.008) 274,561
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Using a GNN component achieves better results overall when compared317

with the “→ Average” case (i.e., no GNN), with clearer gains for AUC and318

accuracy metrics. Using DiffPool as an aggregator appears to deliver the319

best averaged metrics for AUC, accuracy, and sensitivity. The simplest GNN320

model in terms of number of parameters (i.e., “N → Average”) yields com-321

parable results to other models, thus likely being the best compromise in322

terms of model complexity and performance power. Using the edge model323

did not bring significantly better results when compared to only using the324

node model, thus indicating that the information contained in the edge at-325

tributes is successfully leveraged by the node model alone for this particular326

prediction task.327

The results presented so far consider an adjacency matrix threshold be-328

low 50% as a hyperparameter at training time, a common data reduction329

practice in the connectivity analysis field. We further analysed the results330

of using no threshold at all, and explored the type of activation function as331

a hyperparameter instead (i.e., ReLU or tanh activations). This choice was332

made explicitly since retaining 100% of the adjacency matrix elements results333

in a share of negative correlation elements, whose physiological significance is334

likely to be important in brain connectivity [43]. The results of this analysis335

are presented in Table 2.336

Table 2: Results with no thresholded graphs, with metrics averaged across the five test
sets, with standard deviation in parenthesis. Aggregator on the right-hand side of the
arrow, “N” corresponds to only node model, and “N + E” corresponds to full Graph
Network block. Params stands for number of parameters.

Model AUC Accuracy Sensitivity Specificity Params

N + E → Average 0.79 (0.017) 0.72 (0.013) 0.71 (0.039) 0.73 (0.027) 474,639

N + E → DiffPool 0.79 (0.045) 0.69 (0.077) 0.55 (0.264) 0.81 (0.098) 849,057

N → Average 0.80 (0.032) 0.72 (0.028) 0.68 (0.077) 0.76 (0.059) 441,486

N → DiffPool 0.81 (0.009) 0.74 (0.009) 0.73 (0.060) 0.74 (0.042) 815,904

The performance was lower for all cases which did not implement a thresh-337

old. A possible explanation would be the excessive “noise” not allowing the338

dominating spatial structure of the graph to be successfully leveraged in a339

practical timeframe, possibly generating some overfitting. However, metrics340

are still comparable to the ones in Table 1, suggesting that these models are341
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still able to extract some information from the data within only 100 epochs342

of training.343

4.2. Explainability344

Although deep neural networks are usually regarded as “black boxes”, in345

this paper we strived to inject some elements of explainability by inspecting346

selected learnt mechanisms after training. For instance, the weights of the347

TCN layers can be visually inspected. We visualised the first two layers of one348

of the trained N + E → DiffPool model trained on unthresholded matrices.349

For example, Figure 4 shows the weights learnt from the first TCN layer350

(each row corresponding to one of the 8 output channels of that layer), while351

Figure 5 depicts the same for the second TCN layer (each row corresponding352

to one of the 16 output channels and the columns corresponding to the 8353

kernels of size 7 coming from the previous 8 channels).354

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Figure 4: Weights of the kernels in the first
TCN convolutional layer in a N + E → Diff-
Pool model trained on unthresholded graphs.
Rows correspond to the 8 output channels of
this layer, and each column is a position in
the kernel array of size 7

In both figures, and with just a355

few exceptions, it can be seen that356

the output channels in the first two357

TCN convolutional layers are a non-358

trivial weighted multiplication of in-359

put channels. Given the qualitative360

variability observed in these learnt361

weights, we argue that these kernels362

are likely filtering and selecting dif-363

ferent, non-mutually redundant pat-364

terns presented in the original time365

series. One possible counterexample366

is the kernel for the 7th output chan-367

nel in the first TCN convolutional368

layer illustrated in Figure 4, which,369

in practice, is applying a simple low370

pass filter by smoothing the original371

time series from the input channel.372

We posit that quantitative analysis373

and comparison of the kernel weights374

across time series (which is out of the scope of the present paper), has the375

potential to yield interpretable information on which brain dynamics may376

contribute the most to the final prediction. It can also potentially high-377

light what frequency components (likely attached to different physiological378
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significance [44]) are selected most often.379

0.06

0.04

0.02

0.00

0.02

0.04

Figure 5: Weights of the kernels in the second TCN convolutional layer in a N + E→ Diff-
Pool model trained on unthresholded graphs. Rows correspond to the 16 output channels
of this layer, and each column is a position in the 8 kernels of size 7 that come from the 8
input channels (56 columns in total).

We further designed a strategy to inspect the hierarchical spatial pooling380

mechanism provided by the DiffPool architecture. To this end, we analysed381

the assignment matrices from the first Diffpool layer S(1) (see Equation 7),382

over all participants across all test sets. This is of particular interest be-383

cause it corresponds to an aggregation of subsets of brain regions which our384

architecture has considered optimal while learning a particular prediction385

task. These aggregations can therefore be considered “optimal” for that task386

within this architecture, and provide hints to merge with neurophysiological387

knowledge. An assignment matrix corresponds to how the original nodes in388

the graph will be mapped into new nodes, thus, a direct way of summarising389

this effect across individuals is to count how many times two ROIs have ended390

up in the same cluster, regardless of cluster size and number. More formally,391

we create an association matrix S′ ∈ R68×68, where each element S ′i,j is the392

number of times brain regions i and j have been aggregated in the same393

DiffPool cluster. This means that the higher the value of S ′i,j, the more often394

information from brain regions i and j is pooled when learning to predict395

binary sex. It is important to point out that, given that matrix thresholding396

can potentially disconnect nodes from the rest of the graph and hence yield397

subject-wise graphs with variable numbers of connected nodes, this inspec-398

tion strategy is only possible when working with unthresholded matrices (i.e.,399

N → DiffPool and N + E → DiffPool models, see “Experiments Overview”400

section).401

Figure 6 depicts the association matrix S′ for the N + E → DiffPool402

model trained on unthresholded matrices, with dendrograms resulting from403
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hierarchical clustering of the summary association matrix elements itself.404

For visualisation purposes in a more traditional brain connectivity style, we405

selected the four main clusters defined by the dendrograms for the N +406

E→ DiffPool model and overlaid these clusters on a brain surface in Figure 7.407

Figure 6: Upper-triangle of the association matrix S′ for N + E → DiffPool model gen-
erated when predicting binary sex on unthresholded matrices, with dendrograms from
hierarchical clustering. Each element S′i,j indicates how many times brain regions i and
j are pooled together. On the lower left corner, a graph representation of the same as-
sociation matrix S′, thresholded at 50% with nodes identified and coloured according to
their general brain region (i.e., T/F/O/P/I correspond to Temporal, Frontal, Occipital,
Parietal, and Insula); thicker edges represent a higher S′i,j value, in this graph represen-
tation ranging from 20, 256 to 34, 565.

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2020. ; https://doi.org/10.1101/2020.11.08.370288doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.08.370288
http://creativecommons.org/licenses/by/4.0/


Figure 7: Four main brain clusters on association matrix S′

generated from N + E → DiffPool model predicting binary sex
on unthresholded matrices. Each colour corresponds to one
cluster.

An advantage of408

an explainability con-409

structing using the410

association matrix S′
411

is the flexibility given412

to define the gran-413

ularity used to se-414

lect the clusters from415

the hierarchical clus-416

tering. When choos-417

ing big clusters (e.g.,418

four like in Figure 7)419

one can illustrate the420

more general pat-421

terns, but by select-422

ing smaller clusters423

(e.g. twelve clusters)424

one can reveal more425

local patterns in the426

data. We consider427

that these different levels of granularity are an advantage of using DiffPool to428

help explain the model, in practice revealing different scales of explainability.429

In Figure 8 we depict the brain clusters for the N + E → DiffPool model430

with the remaining different granularities (i.e., 8 and 12).431

When looking at how the GNNs clustered the brain regions to optimise432

and achieve best sex prediction, we found that a clustering into 4 sets of433

brain regions showed interesting properties in terms of neurobiological inter-434

pretability. More specifically, the brain regions were grouped in a manner435

that mirrors to a certain degree the well-known cytoarchitectural and func-436

tional properties of the cerebral cortex. For example, in Figure 7 cluster 1437

(dark green) included high order associative brain areas such the prefrontal438

and temporal cortices that have been consistently involved in complex cog-439

nitive functions such as language, working memory, and decision-making. In440

cluster 2, represented by the light blue colour, the GNN grouped together441

the left and right posterior parietal cortices which have a well-known role in442

visuo-spatial processing and navigation skills, amongst many other cognitive443

functions. Cluster 3 (in dark blue) included midline cortical areas which444

are part of the classic limbic or emotional system. The final cluster 4, in445
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Figure 8: Main brain clusters on association matrix S′ generated from N + E → DiffPool
model predicting binary sex on unthresholded matrices. Each colour corresponds to one
cluster. Left: Eight main clusters. Right: Twelve main clusters.

light green, was mainly localised in the right hemisphere and in part in the446

left visual cortex; it grouped together sensory-motor cortices and the right447

dorsolateral prefrontal cortex.448

We do not wish to overinterpret our results or make “reverse neuro-449

science” inferences in the sense of interpreting post hoc the behavioural mean-450

ing of a set of regions without having directly analysed their behavioural rel-451

evance. However, we speculatively note that the clusters that discriminated452

binary sex the most may have some neurobiological relevance in terms of ex-453

plaining the well-known behavioural differences between males and females454

in terms of cognitive, motor and emotional skills [45, 46]. Future work, par-455

ticularly directly at investigating the links between brain and behavioural456

measures, is warranted to confirm whether the clustering of regions that our457

model has performed to achieve optimal sex classification is fully relevant to458

mechanistically describe the sex differences that are seen at the behavioural459

level.460

These results demonstrate the explainability capacity of our model when461

using the DiffPool aggregator, which is able to cluster brain regions in a462

specific way for the classification task at hand.463
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5. Conclusion464

In this paper we presented a novel deep learning architecture which can465

successfully use the high-dimensional and noisy rs-fMRI data, by leveraging466

not only their temporal dynamics, but also their spatial associations repre-467

sented by what is commonly called the connectivity between brain locations.468

In contrast to previous work, we use TCNs to model temporal intra-relations469

and combine them with GNNs to model inter-regional relations. We illus-470

trated and analysed the effectiveness of our model in a proof-of-concept bi-471

nary sex prediction task which also included an ablation analysis with vari-472

ations of the spatial pooling mechanisms. This work is, to the best of our473

knowledge, the first to leverage both the spatial and temporal information474

in rs-fMRI data in a single, end-to-end framework which includes temporal475

convolutions and graph neural networks, while also providing the flexibil-476

ity to extract human readable explainability. Importantly, we included edge477

features (i.e., weights) when leveraging the graph structure in the network.478

This information is often ignored in the few papers which currently apply479

GNNs to the study of fMRI data [47]. Our ablation study showed how the480

graph network block was successful in leveraging the weights of the spatial481

dynamics, indicating the importance of designing an architecture specifically482

targeted for spatio-temporal rs-fMRI data. We also showed the explainabil-483

ity capacities of our models by analysing the clusters created by the graph484

hierarchical pooling mechanism, and the non-linear patterns learnt from the485

rs-fMRI time series.486

We hope this paper can lay future groundwork on exploring flexible ar-487

chitectures which are able to leverage the entirety of neuromonitoring data488

that arise from the extremely complex spatio-temporal interplay of groups of489

firing neurons. Our architecture can very easily include other types of data490

for future work (e.g., multimodal structural and temporal data), and be ex-491

tended to include possible confounds that could drive the prediction task in492

other brain disorders. Another exciting recent trend that can be included in493

our architecture is to allow the network to learn the underlying connectivity494

from scratch [48, 49] instead of computing associations or other handcrafted495

features like the ones used in this and other works [50, 51].496

Data and Code Availability497

The code used to process the data from the UK Biobank is publicly498

available at https://github.com/ucam-department-of-psychiatry/UKB.499
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The code used to conduct the analysis described in this paper is publicly500

available at https://github.com/tjiagoM/spatio-temporal-brain.501
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