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Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) has been suc-
cessfully employed to understand the organisation of the human brain. For
rs-fMRI analysis, the brain is typically parcellated into regions of interest
(ROIs) and modelled as a graph where each ROI is a node and pairwise cor-
relation between ROI blood-oxygen-level-dependent (BOLD) time series are
edges. Recently, graph neural networks (GNNs) have seen a surge in popular-
ity due to their successes in modelling unstructured relational data. The lat-
est developments with GNNs, however, have not yet been fully exploited for
the analysis of rs-fMRI data, particularly with regards to its spatio-temporal
dynamics. Herein we present a novel deep neural network architecture, com-
bining both GNNs and temporal convolutional networks (TCNs), which is
able to learn from the spatial and temporal components of rs-fMRI data in
an end-to-end fashion. In particular, this corresponds to intra-feature learn-
ing (i.e., learning temporal dynamics with TCNs) as well as inter-feature
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learning (i.e., leveraging spatial interactions between ROIs with GNNs). We
evaluate our model with an ablation study using 35,159 samples from the
UK Biobank rs-fMRI database. We also demonstrate explainability features
of our architecture which map to realistic neurobiological insights. We hope
our model could lay the groundwork for future deep learning architectures
focused on leveraging the inherently and inextricably spatio-temporal nature

of rs-fMRI data.

Keywords: deep learning, graph neural networks, UK Biobank, time series,
temporal convolutional network, rs-fMRI, spatio-temporal dynamics

1 1. Introduction

2 Resting-state functional magnetic resonance imaging (rs-fMRI) is one of
s the most commonly used noninvasive imaging techniques employed to gain
4+ insight into human brain function. The use of rs-fMRI data has proven ex-
s tremely useful as an investigative tool in neuroscience and, to some extent,
s as a biomarker of brain disease diagnosis and progression [I]. Typical use of
7 rs-fMRI data involves using graph-theoretical measures (such as centrality
s measures and community structure) to summarise high-dimensional, whole-
o brain data for use in downstream tasks. As part of this process, it is common
10 practice to reduce the dimensionality of the data in one of three main ways:
u (1) by collapsing the temporal dimension (e.g., into brain region connectivity
12 matrices based on similarity metrics between time series), (2) by reducing
13 the spatial dimension (e.g., in global signal regression for physiological noise
11 modelling [2]), and (3) by employing approaches that collapse both the tem-
15 poral and spatial dimensions (e.g., in independent component analyses [3]).
16 This feature engineering step is performed mostly due to the considerable vol-
17 ume of data in a typical rs-fMRI dataset and its relatively low signal-to-noise
18 ratio [4]. Although computationally beneficial, such dimensionality reduction
19 steps inevitably involve disregarding large amounts of information which can
2 potentially be useful depending on the analysis task. For instance, collaps-
21 ing the temporal dimension of rs-fMRI data reduces the brain to a static
2 volume where the interactions between different brain regions are fixed over
23 time. This stands in contrast to a growing body of research showing that the
2 functional connectivity of the brain is dynamic and constantly changing over
s time [0 [6]. As another example, association measures most commonly used
2 are still based on linear models, while it is well known that neuromonitoring
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z data and brain signal in particular interact nonlinearly [7, [§].

28 To overcome such limitations, a different approach to the analysis of rs-
2 fMRI data would be to devise a model that is able to combine both feature
5 engineering and the learning of a low-dimensional representation of the brain.
s In order to do this, such a model would need to be able to accommodate both
2 the spatial as well as the temporal complexities of rs-fMRI data. To date,
13 deep learning architectures have had great success at leveraging specific in-
s ductive biases from complex high-dimensional data. Convolutional neural
55 networks (CNNs), for instance, are extremely effective at extracting shared
s spatial features such as corners and edges from grid-like data (e.g., 2D and
w 3D images). These features can then be combined into more complex con-
3 cepts deeper within the network architecture [9]. Recurrent neural networks
1 (RNNs), on the other hand, are able to learn features from data that are
w temporally organised as a sequence of steps [10]. In contrast to both CNNs
a and RNNs, graph neural networks (GNNs) can learn from data that does not
2 have a rigid structure like a grid or a sequence, and can be depicted in the
s3 form of unordered entities and relations such as graphs. The formulation of
s  GNN models that deal with complex data structures has seen fast develop-
s ments in the past years [11, [12] and are therefore strong candidates for the
s analysis of rs-fMRI data.

a7 Previous work has attempted to leverage deep learning architectures in
s order to model rs-fMRI data. In particular, GNNs have been used to classify
» binary sex [I3], and CNNs have been successfully employed in the diagnosis
o of cognitive impairment [I4]. Other pioneering studies have devised ad-hoc
51 deep learning models for fMRI data such as the classification of brain dis-
2 orders using Siamese-inspired neural networks [15], but the spatial informa-
53 tion was not represented using GNNs. Learning from spatial and temporal
s« components of data using deep learning can also be seen in various non-
s biological domains [16, 17, [I8]; such approaches, however, usually rely on a
ss single spatio-temporal convolutional block that creates low-dimensional em-
s7 beddings at each timestep, instead of performing a prediction task for the
ss entire graph at once. To improve these drawbacks, we formulate a novel deep
so neural network architecture that exploits the advantages of GNNs and CNNs
s in order to effectively model the linear and non-linear temporal and spatial
&1 components of rs-fMRI data. We engineered our architecture to specifically
2 retain edge weights and contain elements of explainability [19, 20], in or-
&3 der to provide advantages when a neuroscientific explanation of the inner
s« model workings is desirable. Our proposed model uses GNNs to account
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s for spatial inter-relationships between brain regions, and temporal convolu-
e tional networks (TCNs) to capture the intra-temporal dynamics of blood-
ev oxygenated-level dependent (BOLD) time series. By incorporating GNNs
¢ and CNNs in the same end-to-end architecture we essentially combine intra-
s and inter-feature learning. In particular, GNNs can tackle a limitation of
70 some graph representations of rs-fMRI data, in which association measures
7 between different regions of interest (ROIs) of the brain are based on linear
72 models; instead, GNNs can capture higher-order interactions between ROIs.
73 A very preliminary version of this work with a 30-fold smaller dataset was
71 recently presented as a conference contribution [21]. However, further work
s was needed regarding a larger dataset, wider choices of the graph threshold
7 hyperparameter, and analysis on inclusion of edge weights.

7 We test our architecture on the publicly available UK Biobank dataset,
7s which at the time of writing provides rs-fMRI scans from more than 30,000
70 distinct people. This dataset offers a unique opportunity to formulate novel
so architectures, while supporting the need of large datasets for reproducible
s findings with minimal statistical errors [22]. We also conducted an ablation
&2 analysis on a proof-of-concept binary sex prediction task to better evaluate
g3 the different contributions of each component of our model. We release all the
s code and artifacts used to develop this work in a public repository for easier
s adoption by the community (see “Data and Code Availability” section).

s 2. Methods

sz 2.1. Problem Definition

88 To represent rs-fMRI data as an undirected weighted graph, the brain
s is spatially parcellated into N regions of interest (ROIs) representing graph
o nodes indexed by the set V = {1,..., N}. Let &; € R” represent the features
a1 of node 7 corresponding to the BOLD timeseries of length 7. The connections
o2 between each ROI are represented by an edge set £ C V x V composed
i3 of || = FE unordered pairs (i,7), where for every edge k connecting two
o nodes (7,j) € £ the connection strength is defined as e, € R. Let the tuple
s G = (V,&) denote the resulting graph. Given the graph structure G, let
6 X € RVT E ¢ REX! and A € RY*Y denote the nodes features, edge
o features and adjacency matrix, respectively.
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w 2.2. Temporal Convolutional Networks

% In order to learn a representation of the temporal dynamics contained
o in rs-fMRI time series, we use temporal convolutional networks (TCNs) [23].
w1 These are a simplification over the original WaveNet architecture used for au-
102 dio synthesis [24], which has been seen to provide significantly better results
3 for sequence modelling in comparison to more traditional RNN architectures
0 (e.g., LSTMs) across a range of tasks and datasets. In particular, Bai et al.
s [23] posit that convolutional networks should be seen as the natural starting
ws point for sequence modelling tasks, which makes them ideal for extracting
w7 information from rs-fMRI time series.

TCNs are based on dilated causal convolutions [25], which are special 1D
filters where the size of the receptive field exponentially increases over the
temporal dimension of the data as the depth of the network increases. The
padding of the convolution is ‘causal’ in the sense that an output at a specific
time step is convolved only with elements from earlier time steps from the
previous layers, thus preserving temporal order. More formally, given a single
ROI timeseries ; € RT and a filter f € RE, the dilated causal convolution
operation of & with f at time ¢ is represented as

=

x;x f(t) = f(s)x;(t —d x s) (1)

s

Il
=)

ws where d is the dilation factor which controls the number of time steps suc-
o cessively skipped. In contrast to the original TCN architecture [23], we use
o batch normalisation instead of weight normalisation because it empirically
m  provided a more stable training procedure in terms of loss evolution.

w2 2.3. Graph Network Block

113 Battaglia et al. [20] formalise a graph network (GN) framework through
us  the definition of functions that work on graph-structured representations.
us  The main unit of computation in the GN framework is called the GN block,
us  which contains three update functions and three aggregation functions work-
uz ing on the edge, node, and global level.

118 The first operation of this GN block, which can be broadly defined as the
o edge model, concerns the update function ¢¢, which computes updated edge
o attributes for each edge k based on the original edge’s attributes e, and the
11 features of the connected nodes ¢ and j:
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e, = ¢° (e, Ti, ;) . (2)

122 Note that for rs-fMRI graph representations, each edge originally con-
123 tains a single value (i.e., e, € R), but after this operation ¢¢, the resulting
14 dimensionality can be different: e} € R™ where M >= 1. Then, in what
s can be broadly defined as the node model, the block computes updated node
16 features. Firstly, for each node i, it aggregates the edge features per node:

€ =p""(E), (3)

127 where £ = {(e},7,j)}1_, is the set of edges starting in node 4, with node
s jJ connected with node ¢ through edge k. Importantly, p*~" needs to be
120 invariant to edge permutations to account for the unordered structure of the
10 data. Averaging and summation are examples of such operations invariant
1 to edge permutations.

132 Finally, the updated node features are computed using another aggrega-
133 tion function at the node level, for each node i:

T = ¢" (€, Ti). (4)

134 Although the rs-fMRI graph representation contains undirected edges, the
135 GN block requires directed edges. To overcome this issue, every time there
16 1S a connection between any two nodes ¢ and j, we assume the existence of
7 two edges (ey, 1, j) and (ey, 7,1), one for each direction.

s 2.4. Graph Pooling

130 After the neural network processes the input as described in the previ-
1o ous sections, each node in the graph will contain a node-wise representation
1 (i.e., a feature vector) as a result. For the prediction task described in this
12 paper, where a graph-level (as opposed to node-level) prediction is required,
113 these representations need to be pooled (i.e., collated) to be used for a final
s downstream prediction task.

145 To this end, it is common practice to employ a global average pooling
us mechanism, in which the nodes features are averaged across the graph, thus
w7 creating a final, low-dimension embedding representation of the graph itself.

6
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148 However, assuming that distinct nodes (i.e., brain regions in this work)
1o have different levels of importance for the downstream prediction task [27,
150 28], we assumed that a hierarchical (as opposed to flat) pooling mechanism
151 would create richer embeddings. To this end, we employ the differentiable
152 pooling operator introduced by Ying et al. [29], commonly called DiffPool,
153 which learns how to sequentially collapse nodes in smaller clusters until only
154 a single node exists with the final embedding.

155 When describing a Graph Network (GN) block, a sparse representation
155 of nodes and edges is used to describe the operations that a GN block can
157 have; however, DiffPool works on dense representations of a graph. In other
155 words, a graph G is represented by a dense adjacency matrix A € RV*Y and
150 a feature matrix X € RV*F, where N is the number of nodes and F the
1o number of features in each node.

161 The DiffPool operator, at layer [, thus receives both an adjacency matrix
12 and a node embedding matrix, and computes updated versions of both:

A(Hl), XD — DiffPool (A(l), X(Z)) (5)

163 To achieve this, the DiffPool operator uses a graph neural network (GNN)
1 architecture. Specifically, the same GNN architecture is duplicated to com-
s pute two distinct representations: a new embedding Z € RYO*F" and an
66 assignment matrix § € RNo>*Nei:

z0 — GNN; embed (A(l), X(l)) (6)
SW = softmax (GNvapool (A(l), X(l))) , (7)
167 where N is the number of nodes in layer [, N1y the new number of

s nodes, each corresponding to a cluster (N11) < Ny), and F’ the number of
1o features per node, which can be different from the original size F' from the
o matrix X.

171 The operator ends with the creation of the new node embedding matrix
12 and adjacency matrix, to be inputted to the next layer:

x ) — gOT 7@ (8)
A — gOT 40 g0 9)
173 where X (1) ¢ RNo+n*F" and A+ ¢ RNy Natn


https://doi.org/10.1101/2020.11.08.370288
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.08.370288; this version posted November 26, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

s 3. Experiments Overview

s 3.1. Dataset - UK Biobank

176 Subject-level structural T1 and T2-FLAIR data as well as ICA-FIX [30]
177 denoised rs-fMRI data was obtained from UK BioBank (application 20904) [31][]
s All data were acquired on a standard Siemens Skyra 3T scanner running
1w VD13A SP4, with a standard Siemens 32-channel RF receive head coil.
10 The structural data was further preprocessed with Freesurfer (v6.0)EI us-
1 ing the T2-FLAIR weighted image to improve pial surface reconstruction,
1.2 similarly to Glasser et al. [32]’s pipeline. Reconstruction included bias field
183 correction, registration to stereotaxic space, intensity normalisation, skull-
184 stripping, and white matter segmentation. When no T2-FLAIR data was
15 available, Freesurfer reconstruction was done using the T1 weighted image
s only. Following surface reconstruction, the Desikan-Killiany atlas [33] was
17 aligned to each individual structural image and and ROIs extracted. The
s same atlas was aligned to the functional denoised rs-fMRI data (490 volumes
1o TR/TE = 735/39.00 ms, multiband factor 8, voxel size: 2.4x2.4x2.4, FA=52
1w deg, FOV 210x210 mm) using the warping parameters from the structural to
w1 functional alignment obtained using FSL’s linear registration (FLIRT), and
12 mean BOLD time series (490 timepoints per scan) were extracted for each
113 ROIL. The time series were then scaled subject-wise using the median and
14 interquartile range according to the RobustScaler implementation from the
s scikit-learn [34] python package. Edge weights were defined as full correla-
s tions calculated with the Ledoit Wolf covariate estimator using the nilearn
w7 python packagd’] Figure [1] shows an example scaled time series and the re-
108 sulting example graph from a single subject. The total number of subjects
109 used from the UK Biobank was 35,159, in which 18,649 were females and
200 16,510 were males (18,649/16,510 ~ 1.13). The median age was 64 with a
20 minimum age of 44 and a maximum of 81.

202 3.2. Model Implementation

203 The neural network architecture depicted in Figure [2| was implemented
200 using Pytorch [35], and Pytorch Geometric [36] for the specific graph neural

'https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
Zhttp://surfer.nmr.mgh.harvard.edu/
Shttps://nilearn.github.io/
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Figure 1: Left: Mean BOLD time series of four brain regions from the same subject,
after scaling. Right: Graph representation of one subject’s data, at 10% threshold as
described in Section [3:2] Thicker edges represent a stronger correlation between nodes,
in this case with values between approximately 0.54 and 0.87. Each node is labelled and
coloured according to its brain region (i.e., T/F/O/P/I correspond to Temporal, Frontal,
Occipital, Parietal, and Insula).

205 network components. The edge feature matrix E € R¥*! defined in Sec-
206 tion 2.1 was implemented as two sparse matrices: a sparse representation of
27 the adjacency matrix E; € R?*F and a sparse representation of the edge
xs features E, € RE*! (i.e., there was only one feature per edge corresponding
200 to the correlation value). The number of nodes N was 68 (corresponding
20 to each brain region from the Desikan-Killiany atlas), the number of node
a1 features F' was the number of timepoints (i.e., 490), and E is the number of
a2 edges in the graph. The number of edges depends on the threshold percent-
213 age used to retain only the strongest correlations. Given the non-conclusive
2 evidence on the optimal threshold percentage in the vast majority of func-
25 tional connectivity literature [37], in this work this threshold was included
216 in the hyperparameters to be optimised.

217 The full list of hyperparameters to be optimised and respective value
28 range was the following:

219 e dropout: [0,0.9] (uniform distribution)

220 e threshold: {5,10,20,30,40} (categorical)
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21 e learning rate: [In(le—7),In(le—2)] (log uniform distribution)

22 e weight decay: [In(le—7),0] (log uniform distribution)

223 To extract information from the rs-fMRI time series in each node, our
»¢ model starts by employing a strided temporal convolutional network (TCN)
25 architecture. Such architecture was implemented by using two blocks where
26 each contained two layers of 1D convolutions, 1D batch normalisation, ReLU
21 actwation, and dropout. Each block used a stride of 2, a kernel with size
23 7 (i.e., K = 7 in Equation , and contained a skip connection. While
29 the first block used no dilation, the second one used a dilation of 2. The
20 four 1D convolution filters increased the numbers of output channels at each
a1 layer, specifically 8, 16, 32, and 64. After these two blocks (i.e., four layers),
22 node features from all channels are flattened out and inputted to a linear
213 transformation to reduce each node representation to a fixed embedding of
2 size 128. These transformations thus reduce the original node feature matrix
235 from size N x T to size N x 64 x 31 after the two blocks, and finally to size
26 N x 128 corresponding to the final embedding.

237 Then, the Graph Network (GN) block is applied, in which the update
23 functions are single-layered multi-layer perceptrons (MLPs), and aggrega-
23 tion function is an edge-wise averaging around each node. The original di-
20 mensions of X, FE;, and E, right before the GN block are kept after these
21 transformations.

242 We employed two types of pooling mechanisms in our analysis, both of
23 which reduce the node feature matrix from a size of N x 128 to 1 x 128: a
24 global average pooling mechanism, and the hierarchical pooling mechanism
25 (i.e., DiffPool). For DiffPool, which expects a dense graph representation,
26 data is first transformed into a symmetric adjacency matrix A € RV*V,
27 which is a weighted matrix when considering edge features, and binary oth-
2 erwise. As recommended by the original paper [29], we employed three layers
20 of GraphSAGE [38] followed by a 1D batch normalisation, with a final skip
250 connection.

251 A summary conceptual architecture of the whole model is shown in Fig-
2 ure 2

3 3.3. Training Procedure

254 In order to assess the validity of our model, we performed a proof-of-
255 concept through the well-known binary sex prediction task [39, 40]. We

10
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Figure 2: Three main working blocks of the spatio-temporal model. The temporal model
creates an initial representation from original node features X (i.e., temporal dynamics).
It is followed by transformations in the Graph Network Block which leverages the structure
of data represented in edge features E, and sparse connectivity E;. Finally, a Pooling
mechanism (either DiffPool or global averaging) creates a final graph representation which
is flatten for a final prediction task.

6 used a H-fold stratified cross validation procedure: the UK Biobank dataset
7 was divided into training and test sets five times, in which each test set
s corresponds to 20% of the original size, and a sample would only belong to
20 a test set once (i.e., all test sets are mutually exclusive). This division was
w0 done in a stratified fashion considering the sex label, bucketised age, and
261 bucketised BMI measures (for each variable we created 8 equal-sized buckets
22 based on sample quantiles). For each test set, the training set is further
%3 divided once to generate a single inner training and validation sets, using the
e same stratification strategy as for the training/test case.

265 The neural network was trained over 100 epochs with the Adam opti-
26 miser [41] and Binary Cross Entropy loss function. The training procedure
%7 was set to stop earlier if the validation loss did not reduce further after
%8 33 consecutive epochs. A hyperparameter search was included in the inner
20 training/validation sets, in which 25 random runs were launched exploring
o0 random values of dropout, edge threshold, learning rate, and weight decay
o (see Section for values range). In each random run, the model with the
o2 smallest validation loss was saved, and the model with the smallest validation
213 loss across the 25 runs was selected to be evaluated in the test set. This pro-
aa cedure is done separately for each test set, and metrics are averaged across
s the five test sets.

276 We used Weights € Biases [42] to log our training procedure and generate
o7 the random hyperparameters for all the 25 models in each inner sweep. These
s inner sweeps were run across two different servers, and each model took
279 between 20 minutes and 11 hours to train depending on GPU type and early
20 stopping. All these details are stored using Weights €5 Biases, and can be

11
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Figure 3: Values of hyperparameters corresponding to each validation loss achieved for
one illustrative inner sweep of one fold. For each one of the 25 training runs (represented
by each curved line), a set of random values is chosen for dropout, learning rate, edge
threshold and weight decay, which ultimately will result in the model’s validation loss.

21 accessed through our public repository (see “Data and Code Availability”).
2 Figure[3|shows the results for the inner sweep of one of the folds for illustrative
23 purposes. While a certain amount of variability is visible, some trends are
20 evident in this particular split: the best models (i.e., with lower validation
25 loss) tend to be achieved with higher edge thresholds, higher learning rates,
286 smaller weight decays, and smaller dropout rates. We highlight that different
27 sweeps could result in very different trends.

w8 3.4. Fvaluation

289 As shown in Figure [2 our model consists of (1) a TCN block that learns
200 intra-temporal features from the mean BOLD time series of each ROI, fol-
201 lowed by (2) a GN block which leverages the spatial inter-relationships be-
22 tween ROIs, and finally (3) a hierarchical pooling mechanism which leverages
203 all the information in the input, from the temporal rs-fMRI dynamics, to the
2 graph structure and the edge features of that graph.

205 In order to understand the inner workings of this combination, we con-
26 ducted an ablation analysis to quantify the contributions of each component
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207 of our model for the specific prediction task. Firstly, we consider two cases
208 where the GN block is not used, hence practically evaluating the importance
200 Of edge weights for this prediction task. In one case the graph structure is
20 completely ignored (i.e., no GN block and global average pooling), and in
;0 another case a binary graph is used only for the final hierarchical pooling
32 part (i.e., no GN block and DiffPool applied to a binary graph).

303 In order to investigate the influence of the different GN components, we
sa  consider not only the case where both node model and edge model are used
ss in the GN Block, but also a case where only the node model is applied. For
w6 each one of these two cases, we consider both a global average pooling, as
s7 - well as DiffPool with a weighted adjacency matrix.

ss 4. Results

0 4.1. General Results

310 Table [If shows the results of our ablation analysis across three differ-
sn - ent backbones - no graph block, only node model, and full graph network
a2 block - each with two different aggregators (i.e., global average pooling and
a3 DiffPool). For notation purposes, we identify each one of these cases using
s “Backbone — Aggregator”, in which Aggregator can be “Average” or “Diff-
s Pool”, and Backbone can be “N” for only node model, “N + E” for both node
ns  model and edge model (i.e., full GN Block), and empty otherwise.

Table 1: Ablation analysis, with metrics averaged across the five test sets, with standard
deviation in parenthesis. Aggregator on the right-hand side of the arrow, “N” corresponds
to only mode model, and “N + E” corresponds to full Graph Network block. Params
stands for number of parameters.

Model AUC Accuracy Sensitivity Specificity Params
N + E — Average 0.83 (0.013) 0.76 (0.012) 0.74 (0.035) 0.77 (0.032) 474,639
N + E — DiffPool 0.84 (0.009) 0.76 (0.010) 0.78 (0.042) 0.74 (0.055) 849,057
N — Average 0.80 (0.006) 0.73 (0.007) 0.71 (0.037) 0.74 (0.030) 441,486
N — DiffPool 0.84 (0.009) 0.76 (0 008) 0.77 (0.014) 0.75 (O 016) 815,904
S DiffPool 081 (0.021) 0.73 (0.019) 0.73 (0.085) 0.73 (0.049) 648,979
— Average 0.77 (0.004) 0.70 (0.005) 0.68 (0.004) 0.73 (0.008) 274,561
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317 Using a GNN component achieves better results overall when compared
ns with the “— Average” case (i.e., no GNN), with clearer gains for AUC and
a9 accuracy metrics. Using DiffPool as an aggregator appears to deliver the
»0  best averaged metrics for AUC, accuracy, and sensitivity. The simplest GNN
21 model in terms of number of parameters (i.e., “N — Average”) yields com-
32 parable results to other models, thus likely being the best compromise in
13 terms of model complexity and performance power. Using the edge model
»4 did not bring significantly better results when compared to only using the
25 node model, thus indicating that the information contained in the edge at-
w6 tributes is successfully leveraged by the node model alone for this particular
37 prediction task.

328 The results presented so far consider an adjacency matrix threshold be-
20 low 50% as a hyperparameter at training time, a common data reduction
10 practice in the connectivity analysis field. We further analysed the results
s of using no threshold at all, and explored the type of activation function as
s a hyperparameter instead (i.e., ReLU or tanh activations). This choice was
;13 made explicitly since retaining 100% of the adjacency matrix elements results
;4 in a share of negative correlation elements, whose physiological significance is
s likely to be important in brain connectivity [43]. The results of this analysis
1 are presented in Table

Table 2: Results with no thresholded graphs, with metrics averaged across the five test
sets, with standard deviation in parenthesis. Aggregator on the right-hand side of the
arrow, “N” corresponds to only node model, and “N + E” corresponds to full Graph
Network block. Params stands for number of parameters.

Model AUC Accuracy Sensitivity Specificity Params

N + E — Average 0.79 (0.017) 0.72 (0.013) 0.71 (0.039) 0.73 (0.027) 474,639

N + E — DiffPool 0.79 (0.045) 0.69 (0.077) 0.55 (0.264) 0.81 (0.098) 849,057

N — Average 0.80 (0.032) 0.72 (0.028) 0.68 (0.077) 0.76 (0.059) 441,486

N — DiffPool 0.81 (0.009) 0.74 (0.009) 0.73 (0.060) 0.74 (0.042) 815,904

337 The performance was lower for all cases which did not implement a thresh-

18 old. A possible explanation would be the excessive “noise” not allowing the
130 dominating spatial structure of the graph to be successfully leveraged in a
a0 practical timeframe, possibly generating some overfitting. However, metrics
s are still comparable to the ones in Table |1}, suggesting that these models are
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sz still able to extract some information from the data within only 100 epochs
s of training.

s 4.2. Fxplainability

5 Although deep neural networks are usually regarded as “black boxes”, in
us this paper we strived to inject some elements of explainability by inspecting
a7 selected learnt mechanisms after training. For instance, the weights of the
us  TCN layers can be visually inspected. We visualised the first two layers of one
s of the trained N + E — DiffPool model trained on unthresholded matrices.
s For example, Figure [d] shows the weights learnt from the first TCN layer
31 (each row corresponding to one of the 8 output channels of that layer), while
32 Figure [5|depicts the same for the second TCN layer (each row corresponding
353 to one of the 16 output channels and the columns corresponding to the 8
s kernels of size 7 coming from the previous 8 channels).

355 In both figures, and with just a
. -0.03
0.02
0.01
0.00
-0.01
-0.02
-0.03

6 few exceptions, it can be seen that
557 the output channels in the first two
s TCN convolutional layers are a non-
30 trivial weighted multiplication of in-
w0 put channels. Given the qualitative
1 variability observed in these learnt
w2 weights, we argue that these kernels

53 are likely filtering and selecting dif-

ss  ferent, non-mutually redundant pat-

w5 terns presented in the original time

s6  series. One possible counterexample

xe el m, the first TCN convoluthnal Figure 4: Weights of the kernels in the first
%o layer illustrated in Figure [, which, 1cN convolutional layer in a N + E — Diff-
w0 in practice, is applying a simple 1ow  Pool model trained on unthresholded graphs.
sn pass filter by smoothing the original Rows correspond to the 8 output channels of
sz time series from the input channel. this layer, and each'column is a position in
sz We posit that quantitative analysis the kernel array of size 7
s and comparison of the kernel weights
ws across time series (which is out of the scope of the present paper), has the
s potential to yield interpretable information on which brain dynamics may
sz contribute the most to the final prediction. It can also potentially high-
s light what frequency components (likely attached to different physiological

s7 18 the kernel for the 7th output chan-
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o significance [44]) are selected most often.

Figure 5: Weights of the kernels in the second TCN convolutional layer in a N + E — Diff-
Pool model trained on unthresholded graphs. Rows correspond to the 16 output channels
of this layer, and each column is a position in the 8 kernels of size 7 that come from the 8
input channels (56 columns in total).

380 We further designed a strategy to inspect the hierarchical spatial pooling
ss1 - mechanism provided by the DiffPool architecture. To this end, we analysed
w2 the assignment matrices from the first Diffpool layer S (see Equation EI),
3 over all participants across all test sets. This is of particular interest be-
;4 cause it corresponds to an aggregation of subsets of brain regions which our
;s architecture has considered optimal while learning a particular prediction
ss  task. These aggregations can therefore be considered “optimal” for that task
;7 within this architecture, and provide hints to merge with neurophysiological
;s knowledge. An assignment matrix corresponds to how the original nodes in
;9 the graph will be mapped into new nodes, thus, a direct way of summarising
300 this effect across individuals is to count how many times two ROIs have ended
;1 up in the same cluster, regardless of cluster size and number. More formally,
w2 we create an association matrix 87 € R%*%, where each element S} ; is the
33 number of times brain regions ¢ and j have been aggregated in the same
4 DiffPool cluster. This means that the higher the value of S} ;, the more often
35 information from brain regions ¢ and j is pooled when learning to predict
w6 binary sex. It is important to point out that, given that matrix thresholding
57 can potentially disconnect nodes from the rest of the graph and hence yield
;8 subject-wise graphs with variable numbers of connected nodes, this inspec-
10 tion strategy is only possible when working with unthresholded matrices (i.e.,
wo N — DiffPool and N + E — DiffPool models, see “Experiments Overview”
w1 section).

402 Figure [6] depicts the association matrix S’ for the N + E — DiffPool
w03 model trained on unthresholded matrices, with dendrograms resulting from
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hierarchical clustering of the summary association matrix elements itself.
For visualisation purposes in a more traditional brain connectivity style, we
selected the four main clusters defined by the dendrograms for the N +
E — DiffPool model and overlaid these clusters on a brain surface in Figure[7]
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Figure 6: Upper-triangle of the association matrix S’ for N + E — DiffPool model gen-
erated when predicting binary sex on unthresholded matrices, with dendrograms from
hierarchical clustering. Each element S ;,; indicates how many times brain regions ¢ and
j are pooled together. On the lower left corner, a graph representation of the same as-
sociation matrix S’, thresholded at 50% with nodes identified and coloured according to
their general brain region (i.e., T/F/O/P/I correspond to Temporal, Frontal, Occipital,
Parietal, and Insula); thicker edges represent a higher Sz’»7 ; value, in this graph represen-
tation ranging from 20, 256 to 34, 565.
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408 An advantage of
w0 an explainability con-
a0 structing using the
a1 association matrix S’
a2 is the flexibility given
a3 to define the gran-
aa  ularity used to se-
a5 lect the clusters from
a6 the hierarchical clus-
a7 tering. When choos-
s ing big clusters (e.g.,
a9 four like in Figure [7)
220 one can illustrate the
21 more general pat-
w22 terns, but by select-

.Cluster 1 .Cluster 3

23 ing smaller clusters Figure 7: Four main brain clusters on association matrix S’
2 (e.g. twelve clusters) generated from N + E — DiffPool model predicting binary sex
425 one can reveal more on unthresholded matrices. Each colour corresponds to one

26 local patterns in the cluster.

w7 data. We consider

«s that these different levels of granularity are an advantage of using DiffPool to
a0 help explain the model, in practice revealing different scales of explainability.
a0 In Figure |8 we depict the brain clusters for the N + E — DiffPool model
s with the remaining different granularities (i.e., 8 and 12).

432 When looking at how the GNNs clustered the brain regions to optimise
a3 and achieve best sex prediction, we found that a clustering into 4 sets of
s brain regions showed interesting properties in terms of neurobiological inter-
.5 pretability. More specifically, the brain regions were grouped in a manner
s that mirrors to a certain degree the well-known cytoarchitectural and func-
a7 tional properties of the cerebral cortex. For example, in Figure [7] cluster 1
s (dark green) included high order associative brain areas such the prefrontal
a0 and temporal cortices that have been consistently involved in complex cog-
w0 nitive functions such as language, working memory, and decision-making. In
a1 cluster 2, represented by the light blue colour, the GNN grouped together
w2 the left and right posterior parietal cortices which have a well-known role in
w3 visuo-spatial processing and navigation skills, amongst many other cognitive
se functions. Cluster 3 (in dark blue) included midline cortical areas which
ws are part of the classic limbic or emotional system. The final cluster 4, in
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Figure 8: Main brain clusters on association matrix S’ generated from N + E — DiffPool
model predicting binary sex on unthresholded matrices. Each colour corresponds to one
cluster. Left: Eight main clusters. Right: Twelve main clusters.

ws light green, was mainly localised in the right hemisphere and in part in the
a7 left visual cortex; it grouped together sensory-motor cortices and the right
us  dorsolateral prefrontal cortex.

449 We do not wish to overinterpret our results or make “reverse neuro-
w0 science” inferences in the sense of interpreting post hoc the behavioural mean-
s1 ing of a set of regions without having directly analysed their behavioural rel-
2 evance. However, we speculatively note that the clusters that discriminated
ss3 binary sex the most may have some neurobiological relevance in terms of ex-
sss plaining the well-known behavioural differences between males and females
5 in terms of cognitive, motor and emotional skills [45] 46]. Future work, par-
w6 ticularly directly at investigating the links between brain and behavioural
w7 easures, is warranted to confirm whether the clustering of regions that our
s model has performed to achieve optimal sex classification is fully relevant to
ss0  mechanistically describe the sex differences that are seen at the behavioural
w0 level.

a61 These results demonstrate the explainability capacity of our model when
w2 using the DiffPool aggregator, which is able to cluster brain regions in a
w3 specific way for the classification task at hand.
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s H. Conclusion

465 In this paper we presented a novel deep learning architecture which can
s successfully use the high-dimensional and noisy rs-fMRI data, by leveraging
w7 not only their temporal dynamics, but also their spatial associations repre-
w8 sented by what is commonly called the connectivity between brain locations.
w0 In contrast to previous work, we use TCNs to model temporal intra-relations
a0 and combine them with GNNs to model inter-regional relations. We illus-
a1 trated and analysed the effectiveness of our model in a proof-of-concept bi-
a2 nary sex prediction task which also included an ablation analysis with vari-
a3 ations of the spatial pooling mechanisms. This work is, to the best of our
ws  knowledge, the first to leverage both the spatial and temporal information
a5 in rs-fMRI data in a single, end-to-end framework which includes temporal
a6 convolutions and graph neural networks, while also providing the flexibil-
ar ity to extract human readable explainability. Importantly, we included edge
ws features (i.e., weights) when leveraging the graph structure in the network.
a0 This information is often ignored in the few papers which currently apply
0 GNNs to the study of fMRI data [47]. Our ablation study showed how the
w1 graph network block was successful in leveraging the weights of the spatial
s> dynamics, indicating the importance of designing an architecture specifically
w3 targeted for spatio-temporal rs-fMRI data. We also showed the explainabil-
s ity capacities of our models by analysing the clusters created by the graph
a5 hierarchical pooling mechanism, and the non-linear patterns learnt from the
a5 rs-fMRI time series.

a87 We hope this paper can lay future groundwork on exploring flexible ar-
w8 chitectures which are able to leverage the entirety of neuromonitoring data
s that arise from the extremely complex spatio-temporal interplay of groups of
w0 firing neurons. Our architecture can very easily include other types of data
s for future work (e.g., multimodal structural and temporal data), and be ex-
w2 tended to include possible confounds that could drive the prediction task in
w03 other brain disorders. Another exciting recent trend that can be included in
sa our architecture is to allow the network to learn the underlying connectivity
a5 from scratch [48] 49)] instead of computing associations or other handcrafted
w6 features like the ones used in this and other works [50, [51].

w7 Data and Code Availability

408 The code used to process the data from the UK Biobank is publicly
w0 available at https://github.com/ucam-department-of-psychiatry/UKB.
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so0 The code used to conduct the analysis described in this paper is publicly
so0 available at https://github.com/tjiagoM/spatio-temporal-brain.
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