

1 European Primary Forest Database (EPFD) v2.0

2 Authors

3 Francesco Maria Sabatini^{1,2†}; Hendrik Bluhm³; Zoltan Kun⁴; Dmitry Aksenov⁵; José A. Atauri⁶;
4 Erik Buchwald⁷; Sabina Burrascano⁸; Eugénie Cateau⁹; Abdulla Diku¹⁰; Inês Marques Duarte¹¹;
5 Ángel B. Fernández López¹²; Matteo Garbarino¹³; Nikolaos Grigoriadis¹⁴; Ferenc Horváth¹⁵;
6 Srđan Keren¹⁶; Mara Kitenberga¹⁷; Alen Kiš¹⁸; Ann Kraut¹⁹; Pierre L. Ibisch²⁰; Laurent

Affiliations

¹ German Centre for Integrative Biodiversity Research (iDiv) - Halle-Jena-Leipzig, Puschstrasse 4 04103 Leipzig, Germany. francesco.sabatini@botanik.uni-halle.de; ORCID 0000-0002-7202-7697

² Martin-Luther-Universität Halle-Wittenberg, Institut für Biologie. Am Kirchtor 1, 06108 Halle, Germany

³ Humboldt-Universität zu Berlin, Geography Department, Unter den Linden 6, 10099, Berlin, Germany. hendrik.bluhm@geo.hu-berlin.de. 0000-0001-7809-3321

⁴ Frankfurt Zoological Society

⁵ NGO "Transparent World", Rossolimo str. 5/22, building 1, 119021, Moscow, Russia. picea2k@gmail.com

⁶ EUROPARC-Spain/Fundación Fernando González Bernáldez. ICEI Edificio A. Campus de Somosaguas. E28224 Pozuelo de Alarcón, Spain. jose.atauri@redeeuroparc.org

⁷ The Danish Nature Agency, Gjøddinggård, Førstballevej 2, DK-7183 Randbøl, Denmark; ecb@nst.dk. ORCID 0000-0002-5590-6390

⁸ Sapienza University of Rome, Department of Environmental Biology, P.le Aldo Moro 5, 00185, Rome, Italy. ORCID 0000-0002-6537-3313

⁹ Réserves Naturelles de France, La Bourdonnerie, Dijon cedex, 21000, France. eugenie.cateau-rnf@espaces-naturels.fr

¹⁰ PSEDA-ILIRIA. Forestry department, Tirana 1000, Albania. adiku@hotmail.com

¹¹ Centre for Applied Ecology "Professor Baeta Neves" (CEABN), InBIO, School of Agriculture, University of Lisbon, Tapada da Ajuda 1349-017 Lisbon, Portugal. inesmarquesduarte@gmail.com; ORCID 0000-0002-1524-5487

¹² Parque Nacional de Garajonay. Avda. V Centenario, edif. Las Creces, local 1, portal3, 38800 San Sebastian de La Gomera, Tenerife, Spain. aferlop@gobiernodecanarias.org

¹³ University of Torino, Department DISAFA L.go Paolo Braccini 2, Grugliasco 10095, Italy. matteo.garbarino@unito.it, ORCID 0000-0002-9010-1731

¹⁴ Forest Research Institute, Vassilika, 57006, Thessaloniki, Greece. nikosforest@yahoo.gr

¹⁵ Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány u. 2-4., 2163 Vácrátót, Hungary. horvath.ferenc@okologia.mta.hu; ORCID 0000-0002-1317-1269

¹⁶ Faculty of Forestry, University of Agriculture in Krakow, aleja 29-Listopada 46, 31-415 Krakow, Poland. srđan.keren@urk.edu.pl; ORCID 0000-0001-6589-1295

¹⁷ Latvian State Forest Research Institute "Silava", Rigas street 111, Salaspils, Latvia, LV-2169. mara.kitenberga@gmail.com ORCID: 0000-0002-6192-988X

¹⁸ Institute for Nature Conservation of Vojvodina Province, Novi Sad, Radnička 20a, 21000, Serbia. alenakis73@gmail.com. ORCID: 0000-0002-5230-1652

¹⁹ University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, EE-51014 Tartu, Estonia; ann.kraut@ut.ee, ORCID: 0000-0002-7403-7565

²⁰ Centre for Econics and Ecosystem Management, Faculty of Forest and Environment, Eberswalde University for Sustainable Development, Alfred-Möller-Str. 1, 16225 Eberswalde, Germany, pierre.ibisch@hnee.de

7 Larrieu^{21,22}; Fabio Lombardi²³; Bratislav Matovic²⁴; Radu Nicolae Melu²⁵; Peter Meyer²⁶; Rein
8 Midteng²⁷; Stjepan Mikac²⁸; Martin Mikolás^{29, 30}; Gintautas Mozgeris³¹; Momchil Panayotov³²;
9 Rok Pisek³³; Leónia Nunes³⁴; Alejandro Ruete³⁵; Matthias Schickhofer³⁶; Bojan Simovski³⁷;
10 Jonas Stillhard³⁸; Dejan Stojanovic³⁹; Jerzy Szwagrzyk⁴⁰; Olli-Pekka Tikkannen⁴¹; Elvin
11 Toromani⁴²; Roman Volosyanchuk^{43,44}; Tomáš Vrška⁴⁵; Marcus Waldherr⁴⁶; Maxim
12 Yermokhin⁴⁷; Tzvetan Zlatanov⁴⁸; Asiya Zagidullina⁴⁹; Tobias Kuemmerle⁵⁰

²¹ Université de Toulouse, INRAE, UMR DYNAFOR, 24 Chemin de Borde-Rouge Auzetville CS 52627.

Castanet-Tolosan, 31326, France. laurent.larrieu@inrae.fr. ORCID: 0000-0002-9050-0281

²² CRPF-Occitanie, antenne de Tarbes, place du foirail, 65000 Tarbes, France

²³ Mediterranean University of Reggio Calabria, Agraria Department, Loc. Feo di Vito, 89122 Reggio Calabria, Italy. fabio.lombardi@unirc.it; ORCID: 0000-0003-3517-5890

²⁴ University of Novi Sad, Institute of Lowland Forestry and Environment, Antona Cehova 13d, Novi Sad, 21102, Serbia. bratislav.matovic@uns.ac.rs

²⁵ World Wide Fund for nature (CEE), Lunga street 190, Brasov, 500051, Romania. rmelu@wwf.ro

²⁶ Northwest German Forest Research Institute, Department Forest Nature Conservation, Professor-Oelkers-Straße 6, 34346. Hann. Münden, Germany, peter.meyer@nw-fva.de; ORCID: 0000-0003-4200-4993

²⁷ Asplan Viak A.S.Kjørboveien 20, postboks 24, N-1300 Sandvika, Norway.
rein.midteng@asplanviak.no

²⁸ University of Zagreb, Faculty of Forestry, Svetosimunska cesta 25, 10000 Zagreb, Croatia.
smikac@sumfak.hr, ORCID: 0000-0002-4470-7898

²⁹ Czech University of Life Sciences, Faculty of Forestry and Wood Sciences, Kamýcka cesta 1176, CZ-16521 Praha6-Suchdol, Czech Republic. mikolasm@fld.czu.cz

³⁰ PRALES, Odrtnovie 563, SK-01322 Rosina, Slovakia

³¹ Vytautas Magnus University, K. Donelaičio g. 58, LT-44248 Kaunas, Lithuania,
gintautas.mozgeris@vdu.lt, ORCID: 0000-0002-8480-6006

³² University of Forestry, Dendrology Department, bullevard "Sveti Kliment Ohridski" 10, 1756 Sofia, Bulgaria, panayotov.m@tu.bg; ORCID: 0000-0003-1600-9352

³³ Slovenia Forest Service, Department for forest management planning, Vecna pot 2, 1000 Ljubljana, Slovenia. rok.pisek@zgs.si; ORCID: 0000-0002-8150-1514

³⁴ Centre for Applied Ecology "Professor Baeta Neves" (CEABN), InBIO, School of Agriculture, University of Lisbon, Tapada da Ajuda 1349-017 Lisbon, Portugal. Inunes@isa.ulisboa.pt; ORCID 0000-0002-2617-0468

³⁵ Greensway AB, Ulls väg 24A. 756 51 Uppsala. Sweden. aleruete@gmail.com, ORCID 0000-0001-7681-2812

³⁶ Freelance forest expert and book author. matthias.schickhofer@supportingchange.org

³⁷ Ss. Cyril and Methodius University in Skopje, Hans Erm Faculty of Forest Sciences, Landscape Architecture and Environmental Engineering, Department of Botany and Dendrology, P.O. Box 235, MK-1000 Skopje, North Macedonia. bsimovski@sf.ukim.edu.mk; ORCID 0000-0003-2905-1971

³⁸ Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Forest Resources and Management, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland, jonas.stillhard@wsl.ch ORCID: 0000-0001-8850-4817

³⁹ University of Novi Sad, Institute of Lowland Forestry and Environment, Antona Cehova 13d, Novi Sad, 21000, Serbia. dejan.stojanovic@uns.ac.rs

⁴⁰ Department of Forest Biodiversity, University of Agriculture, Kraków, Poland,
rlszwagr@cyf-kr.edu.pl

⁴¹ University of Eastern Finland, School of forest Sciences, Yliopistonkatu 7, 80100 Joensuu, Finland. olli-pekka.tikkannen@uef.fi

⁴² Agricultural University of Tirana, Forestry Department, Kodër Kamëz, SH1, 1029 Tirana, Albania.
etoromani@ubt.edu.al

⁴³ World Wide Fund for nature (DCP) Ukraine, Mushaka 48, Lviv, 79011, Ukraine.
volosyanchuk@yahoo.com

13

14 [†]corresponding author: francesco.sabatini@botanik.uni-halle.de

15

⁴⁴ Ecosphera NGO, Kapushans'ka 82a, Uzhhorod, 88000, Ukraine. volosyanchuk@yahoo.com

⁴⁵ Silva Tarouca Research Institute, Department of Forest Ecology, Lidická 25/27, 602 00 Brno, Czech Republic, tomas.vrska@vukoz.cz

⁴⁶ Centre for Economics and Ecosystem Management, Faculty of Forest and Environment, Eberswalde University for Sustainable Development, Alfred-Möller-Str. 1, 16225 Eberswalde, Germany.
marcus.waldherr@hnee.de

⁴⁷ Institute of Experimental Botany of the National Academy of Sciences of Belarus, Laboratory of Productivity & Stability of Plant Communities, 220072, Academicheskaya St. 27, Minsk, Belarus, maxim.yermokhin@gmail.com

⁴⁸ Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria, tmzlatanov@gmail.com, ORCID: 0000-0003-4205-3429

⁴⁹ Saint-Petersburg State University, Department of Vegetation Science, University Embankment, 7/9, St Petersburg, 199034, Russia, azagidullina@gmail.com

⁵⁰ Humboldt-Universität zu Berlin, Geography Department & Integrative Research Institute on Transformation in Human-Environment Systems, Unter den Linden 6, 10099, Berlin, Germany.
tobias.kuemmerle@geo.hu-berlin.de; ORCID 0000-0002-9775-142X

16 *Abstract*

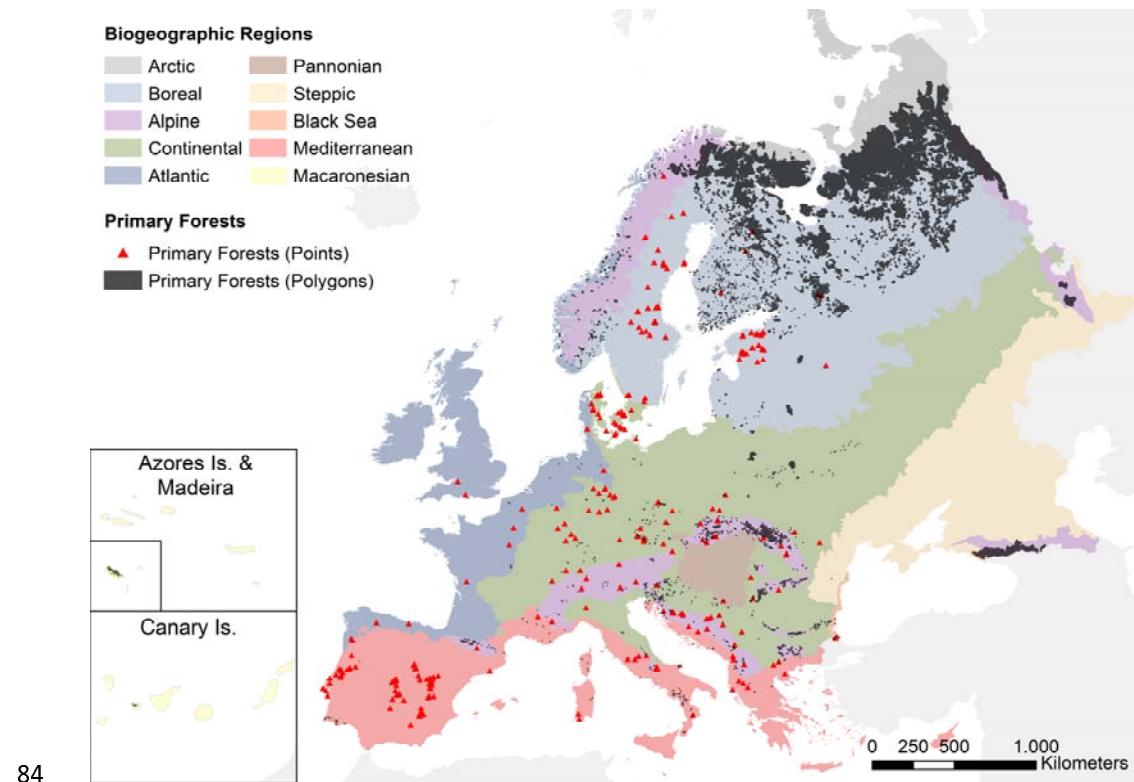
17 Primary forests are scarce in Europe and continue to disappear at an alarming rate.
18 Despite these losses, we know little about where such forests still occur. Here, we present an
19 updated geodatabase and map of Europe's known primary forests. Our geodatabase
20 harmonizes 48 different datasets of primary forests, and contains 18,411 individual patches
21 (41.1 Mha) spread across 33 countries. When available, we provide information on each
22 patch (name, location, naturalness, extent and dominant tree species) and the surrounding
23 landscape (biogeographical regions, protection status, potential natural vegetation, current
24 forest extent). To assess the robustness of our geodatabase, we checked each patch for
25 forest disturbance events using Landsat satellite-image time series (1985-2018). We estimate
26 that 94% of the patches in our database did not experience significant disturbances that
27 would alter their primary forest status in the last 30 year. Our database is the most
28 comprehensive dataset on primary forests in Europe, and will be useful for biogeographic
29 and ecological studies, and conservation planning to safeguard these unique forests.

30

31 *Background & Summary*

32 Primary forests are composed of native tree species without clearly visible
33 indications of human activity and with intact ecological processes^{1,2}. The importance of such
34 forests is widely recognized^{3,4}. First, they provide refuge to forest biodiversity⁵, and act as a
35 buffer to species loss in human-dominated landscapes⁶. Second, primary forests play an
36 important role in climate change mitigation. At the local scale, they buffer the adverse
37 effects of increasing temperature on understory biodiversity, as they often have cooler
38 forest-floor summer temperatures compared to secondary forests⁷. At the global scale they
39 contribute to climate stability by storing large quantities of carbon, both in the biomass and
40 in soils^{3,8,9}. Third, primary forests often serve as a reference for developing close-to-nature
41 forest management, or for benchmarking restoration efforts¹⁰. Finally, these forests are an
42 irreplaceable part of our natural heritage, shape the cultural identities of local communities,
43 and have a high intrinsic value¹¹.

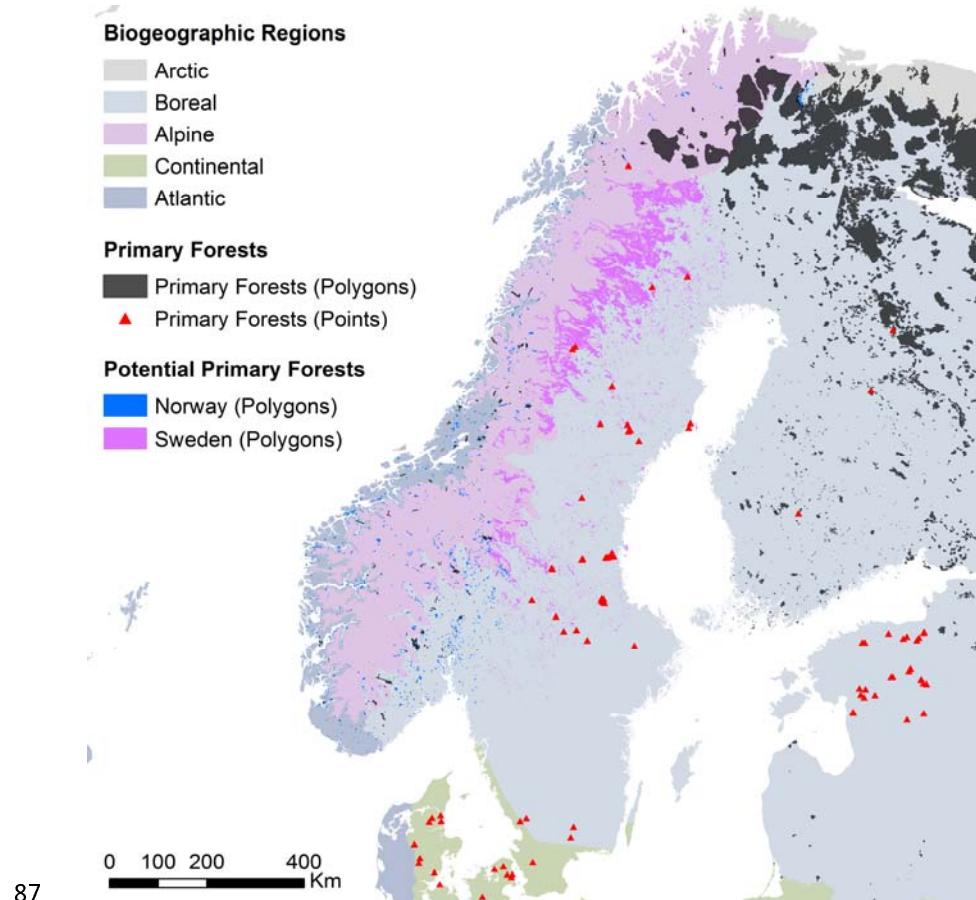
44 In Europe, as in many human-dominated regions, most forested area is currently
45 managed¹², often with increasing harvest intensities^{13,14}. As a result, despite the general
46 trend of increasing total forest area, primary forests are scarce and continue to disappear¹⁵.
47 For instance, Romania hosts some of the largest swaths of primary forest in Central Europe
48 and faced a sharp increase in logging rates since 2000. This has resulted in significant primary
49 forest loss, even within protected areas¹⁵⁻¹⁷. In Poland, the iconic Białowieża Forest was


50 recently in the spotlight after the controversial decision from the Polish National Forest
51 Holding, now nullified by the Court of Justice of the European Union¹⁸, to implement salvage
52 logging followed by tree planting after a bark beetle outbreak¹⁹. Widespread loss of primary
53 forests also occurred in Ukraine²⁰, Slovakia²¹, or in the boreal North, e.g., in the Russian
54 North-West, where 4.6 Mha of primary forest were lost since 2001^{15,22}. Effective protection
55 of Europe's primary forests is therefore urgently needed²³.

56 In the newly released 'Biodiversity Strategy for 2030', the European Commission
57 emphasized the need to define, map, monitor and strictly protect all of the EU's remaining
58 primary and old-growth forests⁴. Reaching these objectives requires complete and up-to-
59 date data on primary forests' location and protection status. Such data could inform both
60 conservation planning and research, for instance by highlighting areas where primary forests
61 are either scarce, or poorly studied. Yet, many data gaps remain on the location and
62 conservation status of EU's primary forests²³. Only a few countries conducted systematic, on-
63 the-ground inventories^{21,24}. For most countries data are either only available for a few well-
64 studied forests²⁵⁻²⁷, or are limited to the distribution of potential (=unconfirmed) primary
65 forests, typically predicted statistically or via remote sensing²⁸⁻³⁰. Despite past efforts for
66 harmonizing data^{31,32}, only recently has the first map of primary forests been released for
67 Europe³³ together with a first assessment of their conservation status²³.

68 The first version of our European Primary Forest database (EPFD v1.0) included 32
69 local-to-national datasets, plus data from a literature review and a survey, resulting in the
70 mapping of a total of ~1.4 Mha of primary forest³³. This is only about one fifth of the
71 estimated 7.3 Mha of undisturbed forest still occurring in Europe, excluding Russia¹². Here,
72 we build on those efforts to substantially progress towards a complete EPFD, as well as to
73 release the data open-access³⁴. Key improvements of this new database include (a) filling
74 major regional gaps, including European Russia, the Balkan Peninsula, the Pyrenees and the
75 Baltic region, (2) mapping 'potential' primary forests for Sweden and Norway, two key
76 regions where complete inventories are currently unavailable, and (3) updating our literature
77 review to January 2019.

78 EPFD v2.0 thus aggregates and harmonizes 48 regional-to-continental spatial
79 datasets, contains 18,411 non-overlapping primary forest patches (plus 299 point features)
80 covering an area of 41.1 Mha (37.4 Mha in European Russia alone; Figure 1) across 33
81 countries (Table 1). Potential primary forests for Sweden and Norway account for an
82 additional 16,311 polygons and 2.5 Mha (Figure 2).


83

84

85
86

Figure 1 - Overview of the primary forest patches contained in the EPFD v2.0. Both points and polygons were magnified to improve visibility.

87

88 *Figure 2 - Overview of the maps of potential primary forests of Sweden and Norway.*

89

90 *Table 1 - Summary of primary forest data across European countries. Dataset IDs correspond to those in Table 2.*

91 ** Some point features have no information on forest patch area.*

Country	Num. features (Polygons\ Points)	Tot. estimated area (1,000 ha)	Sources
Albania	13\6	13.36	0, 1, 47, 54
Austria	34\2	1.46	9, 35, 49
Belarus	3\0	188.29	46
Bosnia and Herzegovina	4\12	4.1	0, 2, 50, 53
Bulgaria	483\2	56.77	0, 3, 4, 35
Croatia	45\3	6.24	0, 5, 9
Czechia	86\10	9.07*	0, 6, 9
Denmark	0\24	1.68	7
Estonia	0\29	0.05*	0, 8
Finland	1,008\3	2,817.36*	0, 12, 38, 39
France	106\7	10.86*	0, 13, 14, 35, 37
Germany	25\21	13.65*	0, 9, 15, 35
Greece	5\2	1.75*	0, 16
Italy	86\12	6.84*	0, 18, 35, 55

Latvia	3\0	4.79	40
Lithuania	20\0	32.05	19
Moldova	0\1	0.03	35
Montenegro	2\0	2.85	2, 50
Netherlands	3\0	0.08	36
North Macedonia	5\1	0.81	1, 20
Norway	240\1	280.05*	0, 21, 36, 43
Poland	66\5	21.15*	0, 22, 35
Portugal	32\21	15.75*	23, 24
Romania	3,571\6	59.11*	0, 1, 25, 32, 33, 35
Russian Federation	3,082\3	37,417.69*	0, 51
Serbia	14\4	7.78	0, 35, 36, 44, 45
Slovakia	290\4	10.98	0, 9, 26
Slovenia	170\1	9.53	0, 27
Spain	44\58	9.4*	0, 41, 52
Sweden	0\51	32.81*	0, 29, 35
Switzerland	5\5	2.29	0, 30, 35
Ukraine	8,966\3	97.8*	0, 1, 32
United Kingdom	0\2	0.1	9
Total	18,411\299	41,136.53*	

92

93

94 *Methods*

95 To define primary forests, we integrated the FAO definition of primary forests¹, with
96 the framework proposed by Buchwald [³⁵]. In this framework, the term “primary forest”
97 includes all forests where the signs of former human impacts, if any, are strongly blurred due
98 to decades (at least 60-80 years) without forestry operations³⁵. ‘Primary forests’ is therefore
99 an umbrella term to include forests with different levels of naturalness, such as primeval,
100 virgin, near-virgin, old-growth and long-untouched forests³⁵. Our definition of primary
101 forests, therefore, does not imply that these forests were never cleared or disturbed by
102 humans, and includes, beside late-successional forests, also early seral stages and young
103 forests that originated after natural disturbances and natural regeneration, without
104 subsequent management. In case of large forest tracts (>250 ha) with high naturalness, our
105 definition also allows forest polygons that include land temporarily or permanently not
106 covered by trees.

107 To create the EPFD v2.0, we first expanded and updated the literature review on
108 primary forests we had originally carried out for EPFD v1.0³³, which only considered the
109 period 2000-2017, and did not consider European Russia. Specifically, we added all scientific
110 studies published between January 2000 and January 2019 for Russia, and those published in
111 2017-2019 for the rest of Europe. We identified relevant publications in the ISI Web of

112 Knowledge using the search terms “(primary OR virgin OR old-growth OR primeval) AND
113 forest*” in the title field. In line with [33], we deliberately excluded terms such as
114 “unmanaged” (meaning: not under active management), “ancient” (never cleared for
115 agriculture) or “natural” (stocked with naturally regenerated native trees). These terms
116 indicate conditions that are necessary, but not sufficient for considering a forest as primary.
117 Finally, we refined our search using geographical and subject filters. The literature search
118 returned 122 candidate papers. After screening their content, we added 23 additional
119 primary forest stands (10 in European Russia, 13 in the rest of Europe), from 13 studies (four
120 from European Russia, and nine from the rest of Europe).

121 Building the EPFD v1.0³³ involved reaching out to 134 forest experts. For v2.0 we
122 contacted an additional 75 experts with knowledge on forests or forestry, and invited them
123 to add spatially-explicit data on primary forests to our database. We focussed on experts
124 from geographical regions poorly covered in v1.0. We received 56 answers, which led to the
125 incorporation of 19 new datasets in our map. Given the context-dependency of definitions
126 used in regional mapping projects, new datasets were only included if we could find an
127 explicit equivalence between country-specific forest definitions and our definition
128 framework³⁵.

129 We integrated all data into a geodatabase, which contains primary forests either as
130 polygons (if information on the forest boundary was available) or point locations (when
131 having only a centroid). We set 0.5 hectares as minimum mapping unit. If available, we
132 included a set of basic descriptors for each patch: name, location, naturalness level (based
133 on [35]), extent, dominant tree species, disturbance history and protection status. In total,
134 our map harmonized 48 regional-to-continental datasets of primary forests (Table 2). All
135 data is open-access³⁴. Besides, we retrieved three additional datasets that we kept
136 confidential, either for conservation or copyright reasons. These datasets are: ‘Hungarian
137 Forest Reserve monitoring’ (ID 17, custodian: Ferenc Horváth); ‘Ancient and Primeval Beech
138 Forests of the Carpathians and Other Regions of Europe’^{36,37} (ID 34, custodian: UNESCO), and
139 ‘Potential OGF and primary forest in Austria’ (ID 48, custodian: Matthias Schickhofer).
140 Additional non-open access polygons also exist for the dataset ‘Strict Forest Reserves in
141 Switzerland’ (ID 30, custodian: Jonas Stillhard). These data are referred to here for
142 transparency, but are not included in the statistics and summaries reported in this paper.

Table 2 - Synthetic description of datasets retrieved. ID codes are not consecutive. * Some point features have no information on forest patch area. † Overlapping areas across different datasets are double-counted.

ID	Dataset name	Custodian	Num. features (Polygons\ Points)	Tot. estimated area (1,000 ha) [†]	Source
0	Literature Review - Primary Forest of Europe	Francesco Maria Sabatini	0\106	85.83*	³³
1	Forest Ecology Group CULS – REMOTE primary forests	Martin Mikolas	22\0	1.91	^{33,38-40}
2	LomJanPerBio	Matteo Garbarino & Renzo Motta	4\0	4.45	^{33,41-44}
3	WWF - Old-growth forests in Bulgaria	Tzvetan Zlatanov	129\0	51.93	^{33,45}
4	Coniferous Old-growth forest of Rila and Pirin NP, Bulgaria	Momchil Panayotov	363\0	3.3	^{33,46}
5	Croatian OG forests reserve	Stjepan Mikac	46\0	7.28	³³
6	Czech natural forests databank	Dušan Adam; Tomas Vrska	86\0	8.17	^{33,47}
7	Old-growth & long untouched forests of Denmark	Erik Buchwald	0\24	1.68	³³
8	Hemiboreal old-growth forests of Estonia	Ann Kraut	0\23	0.05	^{33,48}
9	High Value Beech Forest in Europe	Fabio Lombardi	0\10	0.57	^{33,49}
12	Publicly available data on OG forests of Finland	Olli-Pekka Tikkanen	681\0	2740.5	Derived from ^[50] ; ³³
13	WWF - Hauts lieux de naturalité en France	Daniel Vallauri	49\0	0.19	^{33,51,52}
14	RNF	Eugénie Cateau	7\0	5.31	^{33,53}
15	Naturwaldreservate & Weltnaturerbe Buchenwälder in Deutschland	Peter Meyer	24\7	5.81*	^{33,54}
16	World Heritage Beech Forests of Europe - Greek candidates	Nikolaos Grigoriadis	5\0	1.75	³³
18	Old-growth forests in Italian National Parks	Sabina Burrascano	67\0	3.58	[^{33,55}] + Unpublished
19	Long-untouched forests in Lithuania	Gintautas Mozgeris	20\0	32.05	³³

20	PriMaFor - Primary forests in Mavrovo NP	Bojan Simovski	4\1	0.68	³³
21	Old-growth forests in Norway outside protected areas	Rein Midteng	50\0	106.29	^{33,56}
22	Database of old-growth forests of Poland	Jerzy Szwagrzyk	66\0	20.87	³³
23	Natural forest areas in Portugal	Inês Marques Duarte	31\21	1.11*	³³
24	Natural forest areas in Portuguese Macaronesia region‡	Leónia Nunes	1\0	14.64	³³
25	WWF - Lemnocontrolat	Radu Melu	3179\0	46.68	^{33,57}
26	PRALES Database	Juraj Vysoky	290\0	10.58	^{21,33,58}
27	Graficni prikaz gozdnih rezervatov	Rok Pisek	170\0	9.51	^{33,59}
29	Dynamic edge effects on Boreal forest	Alejandro Ruete	0\31	0.97	^{33,60}
30	Strict Forest Reserves in Switzerland	Jonas Stillhard	5\0	0.73	^{33,61,62}
32	WWF - Identified old-growth forests of Ukrainian Carpathians and Polissia	Roman	9068\0	97.86	^{33,63}
		Volosyanchuk, Andriy Plyha			
33	Official Romanian catalogue of virgin and quasi-virgin forests	Romanian Ministry of Forest and Waters	1287\0	19	⁶⁴
35	European Beech Forest Network (EBFN) sites	Marcus Waldherr, Pierre Ibisch	0\32	28.29*	Unpublished
36	OGF Collection	Francesco Maria Sabatini	8\0	29.48	NL ⁶⁵ ; RS ⁶⁶ ; NO - Norwegian Environment Agency ^{67,68}
37	Inventory of both ancient and mature forests on the northern slope of the Pyrenees_GEVFP	Laurent Larrieu	51\0	3.25	
38	Kainuun vanhat metsät	Matti Liimatainen	123\0	6.43	Unpublished
39	Kansallisomaisuus turvaan	Paloma Hannonen	204\0	71.18	⁶⁹
40	Natural forests in Latvia	Mara Kitenberga	3\0	4.79	⁷⁰⁻⁷²
41	Garajonay	Ángel B. Fernández López	85\0	2.4	⁷³⁻⁷⁵
43	Foreslätte verneområder	Rein Midteng	200\0	196.73	⁷⁶
44	Serbia Beech OGF	Bratislav Matović;	5\0	0.15	⁷⁷

45	Protected virgin & old growth forests in the Pannonian biogeographical region in Serbia	Dejan Stojanović Alen Kiš	8\0	0.65	⁷⁸
46	Forest-mire ecosystems in Belovezhskaya pushcha National Park, Berezinski biosphere reserve, Olmany reserve in Belarus	Maxim Yermokhin	3\0	188.29	Unpublished
47	Albanian Primary Forests	Elvin Toromani	0\4	0.65	Unpublished
49	Suspected Primeval Forests of the Kalkalpen Nationalpark	Simone Mayrhofer	34\0	0.45	Unpublished
50	VF Montenegro	Stjepan Mikac	2\0	1.65	Unpublished
51	Primary Forests of European Russia	Dmitry Aksakov; Asiya Zagidullina	3084\0	37417.69	^{15,79,80}
52	Red de Rodales de Referencia (Network of Reference Stands)	Jose A. Atauri	0\54	0.89	⁸¹
53	Primary forests in Bosnia	Srđan Keren	0\9	0.72	Unpublished
54	Old beech forests in Albania	Abdulla Diku	13\0	12.7	⁸²
55	Network of old-growth forests in southern Apennine National Parks	Sabina Burrascano	19\0	2.78	⁸³

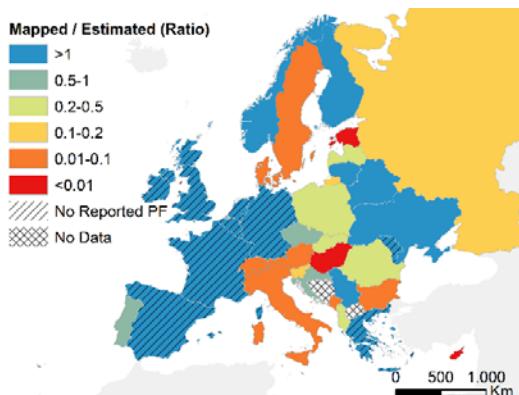
145 ‡ this dataset belongs to the Regional Forest Service of Madeira

146 *Post-Processing*

147 To provide common descriptions for all features contained in the geodatabase, we
148 integrated the basic descriptors detailed above with a range of attributes derived by
149 intersecting all polygons or points with layers of: 1) biogeographical regions, 2) protected
150 areas, 3) forest type, and 4) forest cover.

151 Overlaying the map of biogeographical region⁸⁴ returned ten classes: 1. Alpine, 2.
152 Arctic, 3. Atlantic, 4. Black Sea, 5. Boreal, 6. Continental, 7. Macaronesia, 8. Mediterranean,
153 9. Pannonian, 10. Steppic. Information on protection status and time since onset of
154 protection was based on the World Database of Protected Areas (WDPA)⁸⁵. We simplified
155 the original IUCN classification to three classes: 1. strictly protected – (IUCN category I); 2.
156 protected – (IUCN categories II-VI + not classified); 3. not protected. We considered a
157 primary forest patch as protected if >75% of its surface was within a WDPA polygon. When
158 better information on the protection status of a forest patch was available directly from data
159 contributors, we gave priority to this source. Forest type was based on the 14 forest
160 categories defined by the European Environmental Agency⁷⁵. The spatial information was
161 derived by simplifying the map of Potential Vegetation types for Europe⁸⁶, after creating a
162 cross-link table²³. The 13 categories comprise: 1. Boreal forest; 2. Hemiboreal forest and
163 nemoral coniferous and mixed broadleaved-coniferous forest; 3. Alpine coniferous forest; 4.
164 Acidophilous oakwood and oak-birch forest; 5. Mesophytic deciduous forest; 6. Lowland to
165 submountainous beech forest; 7. Mountainous beech forest; 8. Thermophilous deciduous
166 forest; 9. Broadleaved evergreen forest; 10. Coniferous forests of the Mediterranean,
167 Anatolian and Macaronesian regions; 11. Mire and swamp forest; 12. Floodplain forest; 13.
168 Non-riverine alder, birch or aspen forest. For each primary forest patch, we reported the
169 two most common forest categories. Finally, we extracted for each polygon the actual share
170 covered by forest. We did this, because larger primary forest polygons in high naturalness
171 classes can encompass land temporarily or permanently not covered by trees. We used a
172 tree cover density map for the year 2010 for these regions from [⁸⁷]. All post-processing was
173 performed in R (v3.6.1)⁸⁸.

174


175 *Data Gaps*

176 To assess the completeness of our map, we calculated the ratio between the area of primary
177 forest in our database at country level, and the estimated area of “forest undisturbed by
178 man” from the indicator 4.3 in the Forest Europe report⁸⁹. Although the definition of “forest
179 undisturbed by man” in [⁸⁹] is consistent with our definition of primary forest, it must be
180 noted that these country-level estimates stem from national inventories or studies based on

181 different interpretations, and the data quality varies from country to country. The
182 comparison presented here should, therefore, be taken with caution (Figure 3).

183 Forest Europe reports no primary forest for some western European countries
184 (Spain, France, Belgium, Netherlands, Germany, United Kingdom and Ireland), although for
185 most of these countries we did find information on at least a handful of primary forest sites.
186 The coverage of our map was also higher than expected for some Eastern European
187 countries (e.g., Ukraine, Belarus, Lithuania), as well as Norway and Finland, known for hosting
188 large areas of primary forests. Data completeness was lower for some central European
189 countries. In the case of Czechia, Slovakia, Poland and Romania, our data only accounted for
190 20-100% of the country-level estimates from [89]. For Austria, Switzerland and Hungary,
191 instead, data on primary forests exists but it is not currently open-access, and therefore not
192 considered here. The largest data gaps were in Sweden, Italy, Bulgaria, Estonia, Denmark and
193 Russia, where our map accounted for less than 10% of the primary forest reported in [89].
194 The low data completeness found for Denmark likely depends on the inclusion of minimum-
195 intervention forest reserves in [83] that were harvested until then and therefore do not
196 qualify as primary forests according to our definition.

197


200 *Figure 3 – Estimation of data completeness. Ratio between the total primary forest area in the EPFD v2.0 and the*
201 *country estimate of 'forest undisturbed by man' (indicator 4.3) from Forest Europe⁸⁹. Parallel hatching represents*
202 *countries where Forest Europe reports either no forest undisturbed by man ('No Reported PF'), or where data on*
203 *forests undisturbed by man are missing ('No Data').*

204

205 *Potential Primary forests of Sweden and Norway*

206 For Sweden and Norway, where abundant geographic information was available on forest
207 distribution, we created maps of potential (yet unconfirmed) primary forests, as a way to
208 complement our map. For Sweden, we derived a workflow to create a map of potential

209 primary forests as detailed in Figure 4. This yielded 14,300 polygons covering a total area of
210 2.4 Mha.
211

212
213 *Figure 4 - Workflow and data sources for the map of potential primary forests in Sweden. Data on woodland key*
214 *habitats derive from [90,91]; forest with conservation value from [92,93], forest core areas from [94], continuity*
215 *forests from [95,96], protected mountain coniferous forests from [97], clear cuts and fellings from [98].*

216 For Norway, even though we were able to include two datasets of confirmed primary
217 forests, additional primary forest is expected to exist. Therefore, we derived a map of
218 potential primary forests, based on the “*Viktige Naturtyper*” dataset from the Norwegian
219 Environment Agency⁹⁹, which maps different habitat types of high conservation value both
220 inside and outside forested areas. We extracted all polygons larger than 10 ha classified as
221 “*old forest types*” (=“gammelskog”), i.e., forests that have never been clearcut and are in age
222 classes of 120 years or older. This yielded 2,103 polygons covering a total area of 0.1 Mha.
223

224 *Data Records*

225 The EPFD v2.0³⁴ is composed of 48 individual datasets (Table 2), which we harmonized into
226 two aggregated feature classes, after excluding all duplicated\overlapping polygons across
227 individual datasets.

228 1) EU_PrimaryForests_Polygons_OA_v20

229 ② Composite feature class combining the forest patches classified as “primary
230 forest” based on polygon data sources described in Table 2

231 ② Data type: Polygon Feature Class

232 2) EU_PrimaryForests_Points_OA_v20

233 ② Composite feature class combining forest locations classified as “primary
234 forest”, based on point data sources described in Table 2. Only points not
235 overlapping with polygons in (1) reported.

236 ② Data type: Point Feature Class

237 The individual datasets are also included in the geodatabase, inside the feature datasets
238 ‘European_PrimaryForests’. The dataset is stored in Figshare
239 (<https://doi.org/10.6084/m9.figshare.13194095.v1>)³⁴. The file format is ESRI personal
240 geodatabase (.mdb). Each feature class in the geodatabase follows the structure described in
241 Table 3.

242

243 *Table 3 - Spatial attributes of the feature classes of primary forests. # - Only for point feature classes.*

Variable Name	Variable_type	Description and possible values
OBJECTID	Object ID	
FOREST_NAME	Text	Name of the forest stand (if applicable, otherwise can be name of the wider area)
LOCATION	Text	Municipality, Protected Area, or Region in which the primary forest remnant is located
NATURALNESS_LEVEL	Short Integer	Naturalness level according to [³⁹]: Possible values: 10 = n10 -

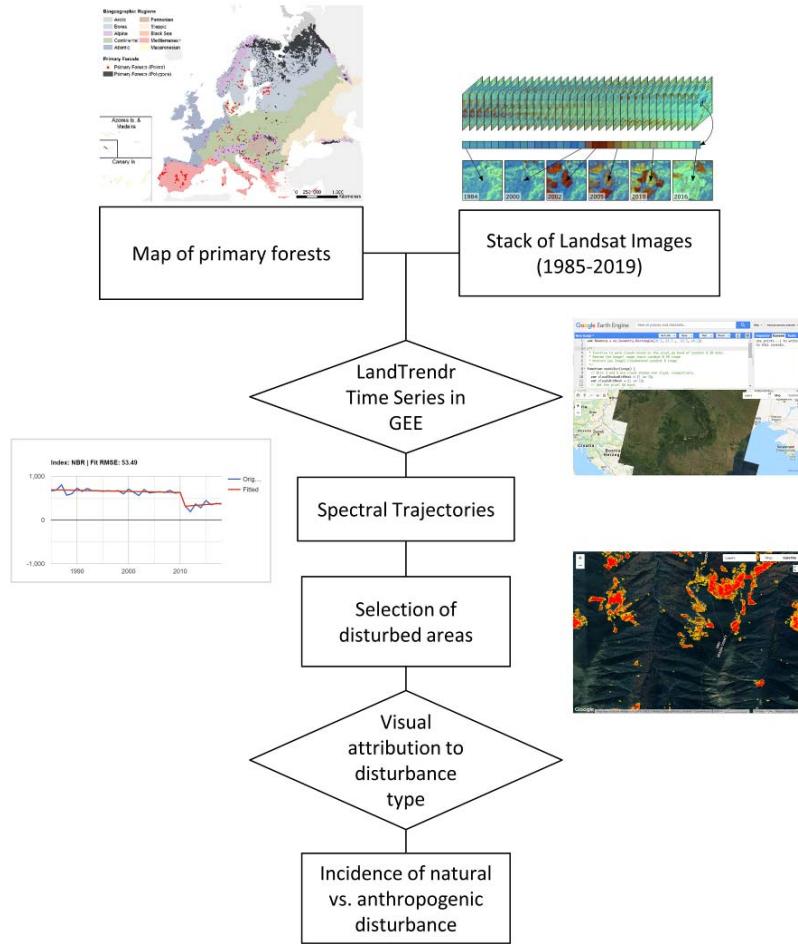
		Primeval Forest; 9 = n9 - Virgin Forest; 8 = n8 - Frontier Forest; 7 = n7 - Near-virgin Forest; 6 = n6 - Old-growth Forest; 5 = n5 - Long Untouched Forest; 0 = UNKNOWN
FOREST_EXTENT_MEASURED[‡]	Float	The total extent of the primary forest patch in hectares. This field is only relevant when a polygon feature IS NOT available for the forest patch.
FOREST_EXTENT_ESTIMATED[‡]	Short Integer	The order of magnitude of the extent of a primary forest remnant patch. This field is only relevant when a polygon feature IS NOT available for the forest patch and no precise measurement of the total extent of the forest remnant is available. Possible values: 1 = 1-10 ha; 2 = 11-100 ha; 3 = 101-1000 ha; 4 = >1001 ha
DOMINANT_TREE_SPECIES1	Text	Species (latin name) of the dominant tree species of the overstorey
DOMINANT_TREE_SPECIES2	Text	Species (latin name) of the second dominant tree species of the overstorey (if any)
DOMINANT_TREE_SPECIES3	Text	Species (latin name) of the third dominant tree species of the overstorey (if any)
THREAT_1	Short Integer	Threat (if any) that is most likely to endanger the primary forest remnant. Possible values: 1 = Plantation development; 2 = Anthropogenic Fires; 3 = Tourism/recreation; 4 = Infrastructure development (including touristic); 5 = Mismanagement; 6 = Illegal logging; 7 = Timber and fuelwood extraction; 8 = Non-Timber Forest Products extraction; 9 = Urbanization and housing construction; 10 = Climate change; 11 = Biodiversity loss
THREAT_2	Short Integer	Threat (if any) that is most likely to endanger the primary forest remnant. See above for possible values.
LAST_DISTURBANCE1_TYPE	Text	If known, type of the last disturbance event. Possible values: 1 = Fire, 2 = Windthrow; 3 = Flood; 4 = Landslide Avalanche; 5 = Logging\harvesting; 6 = Diseases\insect outbreak; 7 = OTHER natural; 8 = OTHER anthropogenic
LAST_DISTURBANCE1_YEAR	Short Integer	Year when disturbance event 1 happened
LAST_DISTURBANCE1_INTENSITY	Short Integer	Intensity of disturbance event 1. Possible values: 1 = Light (<20% of the stand disturbed); 2 = Moderate (20-70% of the stand disturbed); 3 = Stand replacing (>70% of the stand disturbed)
LAST_DISTURBANCE2_TYPE	Text	If known, type of the penultimate disturbance event Possible values: see above
LAST_DISTURBANCE2_YEAR	Short Integer	Year of disturbance event 2
LAST_DISTURBANCE2_INTENSITY	Short Integer	Intensity of disturbance event 2 – Possible values: see above

PROTECTION_STATUS	Short Integer	Legal protection status of the forest stand as derived from the World Database of Protected ⁷⁴ . The original IUCN classification was simplified to three classes: Strictly protected (IUCN category I); Protected (IUCN categories II-VI + not classified); Not protected. In case more updated/precise information was available from our data contributors, these were given priority. Possible values: 0 = Not protected; 1 = Protected; 2 = Strictly protected
PROTECTED_SINCE	Short Integer	Year since the onset of legal protection, derived the same way as PROTECTION_STATUS, see above
RELEVANT_LITERATURE	Text	Any relevant sources of information describing the forest remnant (including journal articles, local reports and websites)
CONTACT_PERSON	Text	Name of the contact person providing the information on the stand
Notes	Text	optional additional remarks to the forest polygon
Source	Text	Directly attributable source/ownership attribution of the forest remnant data
ID_Dataset	Text	ID of the data set (Table 2)
Priority	Integer	An integer number describing the priority of the polygon in case of overlap across individual datasets. For polygons of lower priority, only the portion of polygon not overlapping with polygons with higher priority was included in the composite dataset. Polygons with priority=99 were not included in the composite dataset
Area_ha	Float	area of the forest polygon in ha
BIOGEOGRAPHIC_REGION	Text	as defined by the European Environmental Agency ³⁸
FOREST_TYPE1	Short Integer	Main forest type according to the forest categories defined by the European Environmental Agency ⁷⁵ , based on the map of Potential Vegetation type for Europe ⁷⁶ . Possible values: 1 = Boreal; 2 = Hemiboreal-nemoral; 3 = Alpine coniferous; 4 = Acidophilus oak-birch; 5 = Mesophytic deciduous; 6 = Lowland beech; 7 = Montane beech; 8 = Thermophilus deciduous; 9 = Broadleaved evergreen; 10 = Coniferous Mediterranean; 11 = Mire and swamp; 12 = Floodplain; 13 = Non-riverine Alder-birch-aspen
FOREST_TYPE2	Short Integer	Second main forest type according to the forest categories defined by the European Environmental Agency ⁷⁵ , based on the map of Potential Vegetation types for Europe ⁷⁶ . See FOREST_TYPE1 for legend

FOREST_SHARE	Float	Actual share of the polygon covered by forest, assuming that primary forests in high naturalness classes, and having a large extent, may encompass land temporarily or permanently not covered by forest. Derived from high resolution maps of forest cover based on [^{77,78}].
---------------------	-------	--

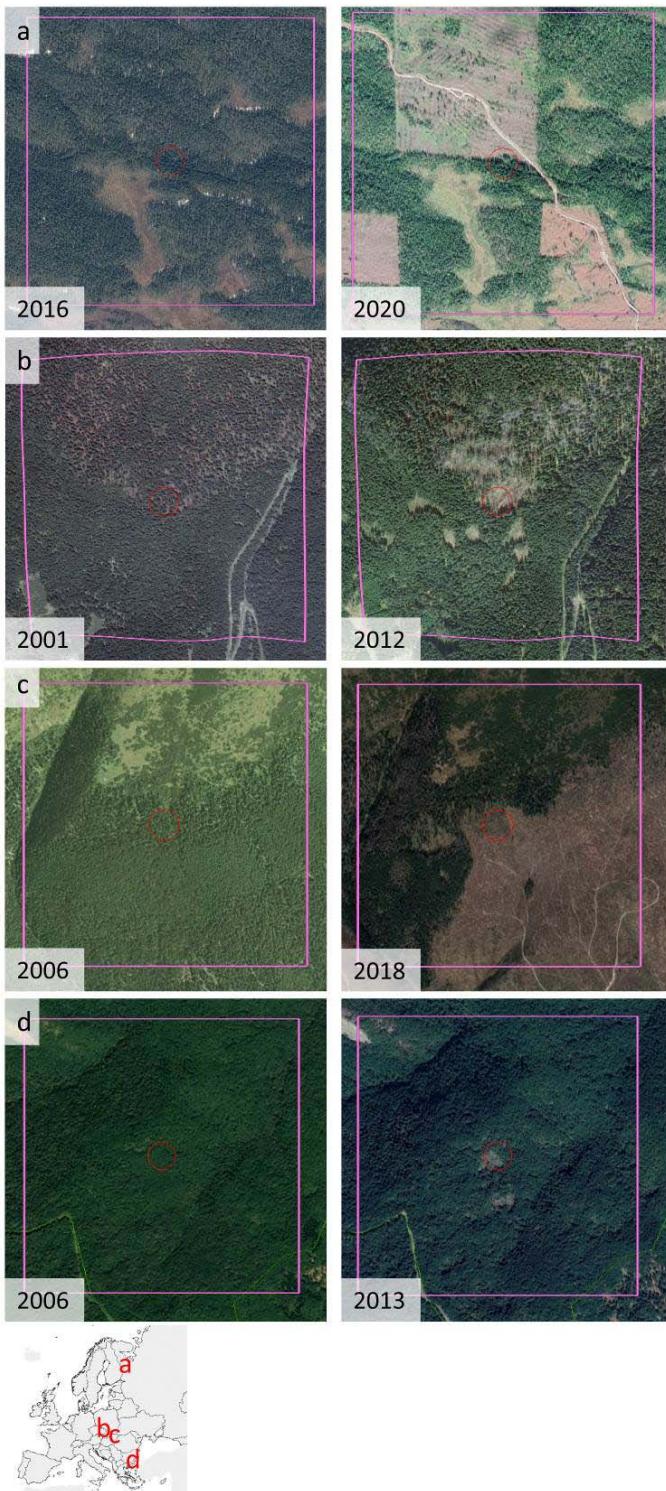
244

245 *Technical Validation*


246 Although we had no direct control of the raw data contained in our database, the
247 fact that all our information on primary forest locations derives either from peer-reviewed
248 scientific literature, or were field-checked by trained researchers and/or professionals
249 suggests high data reliability. We made sure to have a common understanding with data
250 contributors about forest definitions [i.e., ^{1,35}], and only included a dataset in the EPFD if we
251 could find an explicit equivalence with the forest definitions we used.

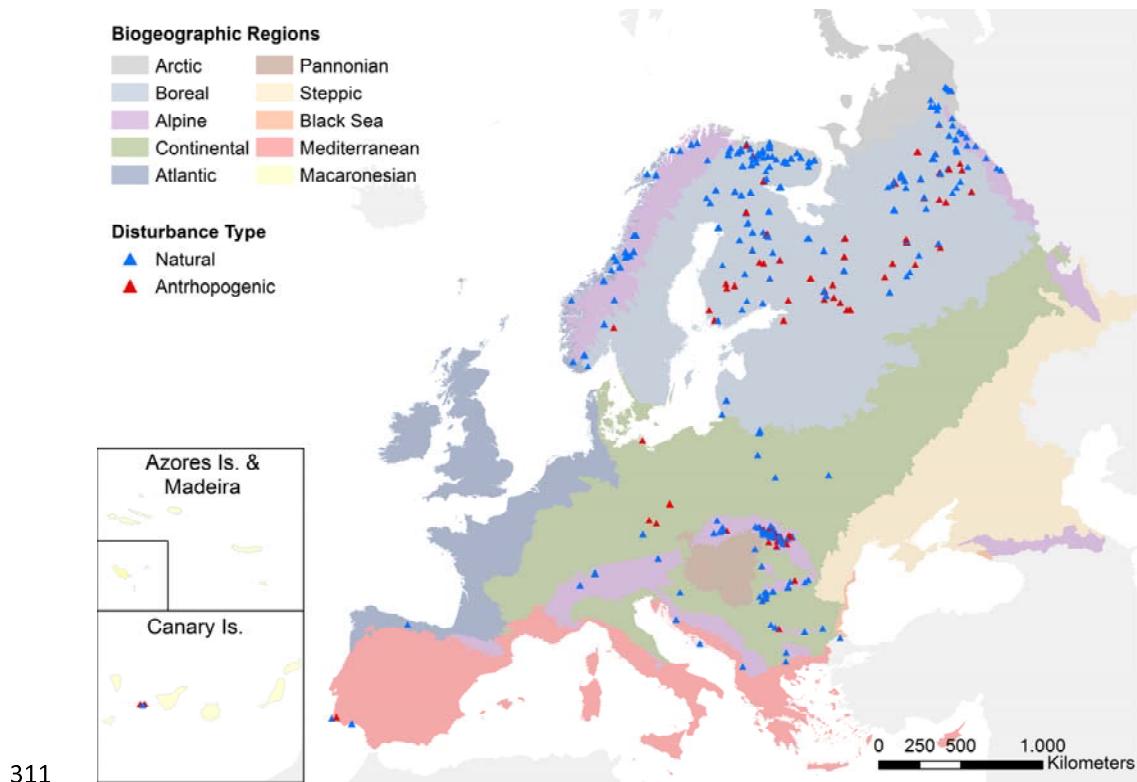
252 To further assess data reliability, we carried out a robustness check using the open-
253 access Landsat archive and the LandTrendr disturbance detection algorithm^{100,101}, both
254 implemented in Google Earth Engine¹⁰² (Figure 5). Specifically, we 1) quantified the
255 proportion of polygons in our map, which underwent disturbance between 1985 and 2018,
256 i.e., Landsat 5 operating time, 2) visually checked a subset of these disturbed polygons, to
257 quantify the prevalence of anthropogenic vs. natural disturbance, and 3) extrapolated these
258 results to the whole database to provide an estimation of the proportion of polygons in our
259 map not meeting the necessary, but not sufficient, condition for being classified as primary
260 (i.e. not being affected by anthropogenic disturbance within the last 35 years).

261 For each polygon contained in the map of primary forests, we extracted the whole
262 stack of available Landsat images (~1985-today), and ran the LandTrendr¹⁰³ algorithm.
263 LandTrendr identifies breakpoints in spectral time series, separates periods of disturbance or
264 stability, and records the years in which disturbances occurred. To avoid problems due to
265 cloud cover, changes in illumination, and atmospheric condition, we used all available
266 images from the growing season of each year (1 May through 15 September) to derive yearly
267 composite images¹⁰⁴. As our spectral index, we used Tasseled Cap Wetness (TCW), as this
268 index is particularly sensitive to forest structure¹⁰⁵, is robust to spatial and temporal
269 variations in canopy moisture¹⁰⁶, and consistently outperforms other spectral indices,
270 including Normalized Difference Vegetation Index¹⁰³, for detecting forest
271 disturbance^{100,107,108}.


272 After running LandTrendr, we eliminated noise by applying a minimum disturbance
273 threshold (2 ha). We then visually inspected a subset of primary forest polygons highlighted
274 as 'disturbed' by LandTrendr. Based on the spectral and physical characteristics of the

275 disturbed patch (brightness, shape, size), and on ancillary information derived from very-
276 high-resolution images available in Google Earth, we assigned disturbance agents as either
277 anthropogenic (i.e., forest harvest, infrastructure development) or natural (e.g., windstorm,
278 bark beetle outbreak, fire; Figure 6, Figure 7).
279

280


281 *Figure 5 – Workflow of the data robustness check.*

282

283 *Figure 6 - Examples of disturbed polygons, as detected by LandTrendr, before (left) and after (right)*
284 *disturbance. a) clearcuts in the Russian Republic of Karelia; b) natural disturbance in Babia Gora, Slovakia; c)*
285 *clear-cuts in Tatra National Park in Slovakia; d) natural disturbance in the southern Bourgas Province of Bulgaria.* Red circles have a
286 *radius of 50 m; pink squares have a side of 1 km. Image credits: Google Earth.*

287 Out of the 17,309 polygons we checked, LandTrendr returned 4,734 polygons (27.3%
288 of total) which experienced major disturbances between 1985 and 2018. The proportion of
289 disturbed area was greater than 10% in 2,904 polygons. We visually checked 20% of the
290 disturbed polygons in each biogeographic region, up to a maximum of 100 polygons.
291 Depending on the size of the polygons, we inspected up to 5 pixels with a minimum distance
292 of 1km. As a result, we visually inspected a total of 712 pixels across 268 primary forest
293 polygons, therefore validating 1.5% of the total number of polygons and 5.7% of the
294 disturbed polygons. We attributed a total of 149 pixels, across 61 primary forest polygons, to
295 anthropogenic disturbance, (i.e., 22.7%, standard error = 2.5%) of the polygons we checked
296 (Table 4, Figure 7). We thus estimated the total number of primary forest polygons being
297 anthropogenically disturbed by multiplying the total number of polygons by the proportion
298 of disturbed polygons (27.3%) and the share of these disturbed polygons attributed to
299 anthropogenic causes (22.7%). This suggests our map contains 1,077 anthropogenically
300 disturbed polygons (95% CIs [847, 1323]), which corresponds to 6.2% (95% CIs [4.9%, 7.6%])
301 of the total number of polygons. Disturbed polygons were concentrated in the Russian
302 Federation (especially in Archangelsk region, Karelia and Komi republics), Southern Finland,
303 and the Carpathians (Figure 7; Table 4). The Boreal and Alpine biogeographical regions had
304 the highest number of disturbed polygons (both in total, and when considering only those
305 with evident anthropogenic disturbance). The regions with the highest share of
306 anthropogenically disturbed polygons was the Macaronesian, followed by the Continental
307 and Boreal. Please note, that this robustness check should be considered as a low estimate,
308 because only the disturbance events with a magnitude sufficient to be captured with
309 LandTrendr and occurring in 1985-2018 could be identified.
310

312 *Figure 7 - Geographical distribution of naturally vs. anthropogenically disturbed polygons, as resulting from a*
 313 *visual check of 712 disturbed polygons.*

314

315 *Table 4 - Results of robustness check, summarized by biogeographical region. † The number of disturbed polygons*
 316 *is higher than the number of polygons because some polygons expanding over more than one biogeographical*
 317 *region are double counted. PF – Primary Forest.*

Biogeographic region	Num. PF polygons (1)	Num. disturbed PF polygons (2)	Num. disturbed PF polygons checked (3)	Num. of (3) with evident anthropogenic disturbance (4)	Share of (3) anthropogenically disturbed (4/3) %
Alpine	11,734	1,096	102	23	22.55
Arctic	96	105 [†]	20	0	0.00
Atlantic	83	48	13	0	0.00
Black Sea	19	6	1	0	0.00
Boreal	4,074	3,334	110	30	27.27
Continental	1,100	105	21	6	28.57
Macaronesia	27	8	2	1	50.00
Mediterranean	132	27	5	1	20.00
Pannonic	39	4	1	0	0.00
Steppic	5	1	0	0	0.00

318

319 *Usage Notes*

320 All data files are referenced in a geographic coordinate system (lat/long, WGS 84 - EPSG
321 code: 4326). The provided files are in a personal geodatabase, and can be accessed and
322 displayed using standard GIS software such as: QGIS (www.qgis.org/en).

323 All datasets listed in Table 2 are freely available in Figshare
324 (<https://doi.org/10.6084/m9.figshare.13194095.v1>)³⁴ with a Creative Commons CC BY 4.0
325 license. Three additional non open-access datasets are available on request after approval of
326 the respective copyright holders. These datasets are: 'Hungarian Forest Reserve monitoring'
327 (ID 17, custodian: Ferenc Horváth); 'Ancient and Primeval Beech Forests of the Carpathians
328 and Other Regions of Europe'^{36,37} (ID 34, Custodian: UNESCO), and 'Potential OGF and
329 primary forest in Austria' (ID 48, custodian: Matthias Schickhofer). The same conditions
330 apply for additional data from the dataset 'Strict Forest Reserves in Switzerland' (ID 30,
331 custodian: Jonas Stillhard). Comments and requests of updates for the dataset are collected
332 and discussed in the GitHub forum: <https://github.com/fmsabatini/PrimaryForestEurope>.

333

334 *Code Availability*

335 The code to reproduce the post-processing is available in Figshare
336 (<https://doi.org/10.6084/m9.figshare.13194095.v1>)³⁴. The dataset contains five scripts:
337

- *00_ComposeMap.R* – Identifies overlapping polygons across individual datasets
- *01_CreateComposite_Points.py* – creates the composite point feature class.
- *02_CreateComposite_Polygons.py* – creates the composite polygon feature class.
- *03_PostProcessing.R* – Extract additional information on each primary forest
- *04_Add_Postprocessing.py* – Imports post-processing output into the geodatabase
- *05_Summary_stats.R* – Calculates summary statistics of primary forests

338 Python (.py) scripts were run in ESRI ArcGIS (v10.5) and are available also as ArcGIS Models
339 inside the Geodatabase. The remaining (.R) scripts were run using R (v4.0).

340

341

342 *Acknowledgements*

343 This project was funded by Frankfurt Zoological Society (FZS; project ETN-WIE-FZS-001) and
344 the European Commission (Marie Skłodowska-Curie fellowship to FMS, project FORESTS &
345 CO, #658876). The Italian dataset was supported by funding from the Department for Nature
346 Protection of the Italian Ministry of the Environment, Land and Sea Protection. The GEVFP's
347 French dataset was supported by funding from EU, RF and 'Conseil Régional Midi-Pyrénées'.

353 MM gratefully acknowledges the institutional project EVA No.CZ.02.1.01/
354 0.0/0.0/16_019/0000803 and MŠMT project LTT20016. This work would not have been
355 possible without all those who responded to the questionnaires and those who collected all
356 the data presented here. A special thanks goes to all data contributors, especially those who
357 are not coauthors of this paper (in alphabetic order): Paloma Hannonen (Dataset 39), Matti
358 Liimatainen (Dataset 38), Simone Mayrhofer (Dataset 49), Daniel Vallauri (Dataset 13) and
359 Juraj Vysoky (Dataset 26). We also thank Teresa De Marzo for support during the validation
360 process.

361

362 *Author contributions*

363 The original idea for the database is from FMS, TK and ZK. FMS and HB harmonized the
364 datasets, and conducted the literature review. DA, JAA, EB, SB, EC, AD, IMD, ABF, MG, NG,
365 FH, SK, MK, AKi, AKr, PLI, LL, FL, BM, RNM, PM, SM, RM, MM, GM, MP, RP, LN, AR, MS, BS, JS,
366 DS, JS, O-PT, ET, RV, TV, MW, MY, TZ, AZ contributed data. FMS, HB, and TK created the first
367 draft of the manuscript and all co-authors contributed substantially to its revision.

368

369 *Competing interests*

370 The authors declare no competing financial interests.

371

372 *References*

- 373 1 FAO. *Global Forest Resources Assessment 2015. Terms and definitions*. (FAO, 2015).
- 374 2 Lansstyrelsen. Formellt skyddad skog i Norrbottens län. Report No. 0283-9636,
375 (2018).
- 376 3 Watson, J. E. M. *et al.* The exceptional value of intact forest ecosystems. *Nat. Eco.*
377 *Evo.*, 1 (2018).
- 378 4 European Commission. in *COM(2020) 380 final* (Brussels, 2020).
- 379 5 Vandekerckhove, K. *et al.* Reappearance of Old-Growth Elements in Lowland
380 Woodlands in Northern Belgium: Do the Associated Species Follow? *Silva Fenn.* **45**,
381 909-935, doi:10.14214/sf.78 (2011).
- 382 6 Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. Wilderness
383 areas halve the extinction risk of terrestrial biodiversity. *Nature*, 1-4 (2019).
- 384 7 Frey, S. J. K. *et al.* Spatial models reveal the microclimatic buffering capacity of old-
385 growth forests. *Science Advances* **2**, e1501392, doi:10.1126/sciadv.1501392 (2016).
- 386 8 Zhou, G. Y. *et al.* Old-growth forests can accumulate carbon in soils. *Science* **314**,
387 1417-1417, doi:10.1126/science.1130168 (2006).
- 388 9 Burrascano, S., Keeton, W. S., Sabatini, F. M. & Blasi, C. Commonality and variability
389 in the structural attributes of moist temperate old-growth forests: A global review.
390 *For. Ecol. Manag.* **291**, 458-479, doi:<http://dx.doi.org/10.1016/j.foreco.2012.11.020>
391 (2013).
- 392 10 Bauhus, J., Puettmann, K. & Messier, C. Silviculture for old-growth attributes. *For.*
393 *Ecol. Manag.* **258**, 525-537, doi:10.1016/j.foreco.2009.01.053 (2009).

394 11 Moore, K. D. In the shadow of the cedars: the spiritual values of old-growth forests.
395 *Conserv. Biol.* **21**, 1120-1123 (2007).

396 12 FOREST EUROPE. State of Europe's Forests 2015. (Ministerial Conference on the
397 Protection of Forests in Europe, Madrid, 2015).

398 13 Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015.
399 *Nature* **583**, 72-77, doi:10.1038/s41586-020-2438-y (2020).

400 14 Levers, C. et al. Drivers of forest harvesting intensity patterns in Europe. *For. Ecol.*
401 *Manag.* **315**, 160-172 (2014).

402 15 Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest
403 landscapes from 2000 to 2013. *Science Advances* **3**, doi:10.1126/sciadv.1600821
(2017).

405 16 Schickhofer, M. & Schwarz, U. *Inventory of Potential Primary and Old-Growth Forest*
406 *Areas in Romania (PRIMOFARO). Identifying the largest intact forests in the*
407 *temperate zone of the European Union.* (Euronatur Foundation, 2019).

408 17 Knorn, J. et al. Continued loss of temperate old-growth forests in the Romanian
409 Carpathians despite an increasing protected area network. *Environ. Conserv.* **40**, 182-
410 193 (2013).

411 18 Court of Justice of the European Union. C-441/17 - Commission v Poland (Forêt de
412 Białowieża) *Judgment of the Court (Grand Chamber) of 17 April 2018* (2018).

413 19 Chylarecki, P. & Selva, N. Ancient forest: spare it from clearance. *Nature* **530**, 419-
414 419 (2016).

415 20 Earthsight. Complicit in corruption. How billion-dollar firms and EU governments are
416 failing Ukraine's forests. (EarthSight, 2018).

417 21 Mikoláš, M. et al. Primary forest distribution and representation in a Central
418 European landscape: Results of a large-scale field-based census. *For. Ecol. Manag.*
419 **449**, 117466, doi:<https://doi.org/10.1016/j.foreco.2019.117466> (2019).

420 22 Hance, J. & But, S. s. IKEA Logging Old-growth Forest for Low-price Furniture in
421 Russia. (2012). <<https://news.mongabay.com/2012/05/ikea-logging-old-growth-forest-for-low-price-furniture-in-russia/>>.

423 23 Sabatini, F. M. et al. Protection gaps and restoration opportunities for primary
424 forests in Europe. *Divers. Distrib.* **n/a**, doi:10.1111/ddi.13158 (2020).

425 24 Adam, D. & Vrška, T. in *Landscape Atlas of the Czech Republic* (eds T Hrnčiarová, P
426 Mackovčin, & I Zvara) 209 (Ministry of Environment and Silva Tarouca Research
427 Institute, Prague–Silva Tarouca Research Institute for Landscape and Ornamental
428 Gardening, 2009).

429 25 Bernadzki, E., Bolibok, L., Brzeziecki, B., Zajączkowski, J. & Zybara, H. Compositional
430 dynamics of natural forests in the Białowieża National Park, northeastern Poland. *J.*
431 *Veg. Sci.* **9**, 229-238 (1998).

432 26 Hobi, M. L., Commarmot, B. & Bugmann, H. Pattern and process in the largest
433 primeval beech forest of Europe (Ukrainian Carpathians). *J. Veg. Sci.* **26**, 323-336
434 (2015).

435 27 Kral, K. et al. Local variability of stand structural features in beech dominated natural
436 forests of Central Europe: Implications for sampling. *For. Ecol. Manag.* **260**, 2196-
437 2203, doi:10.1016/j.foreco.2010.09.020 (2010).

438 28 Veen, P. et al. Virgin forests in Romania and Bulgaria: results of two national
439 inventory projects and their implications for protection. *Biodivers. Conserv.* **19**, 1805-
440 1819, doi:10.1007/s10531-010-9804-2 (2010).

441 29 Ibisch, P. L. & Ursu, A. (Greenpeace CEE Romania; Centre for Econics and
442 Ecosystem Management, Eberswalde University for Sustainable Development;
443 Geography Department, A. I. Cuza University of Iași, 2017).

444 30 Spracklen, B. D. & Spracklen, D. V. Identifying European Old-Growth Forests using
445 Remote Sensing: A Study in the Ukrainian Carpathians. *Forests* **10**, 127 (2019).

446 31 Daci, J. in *Proceedings of the invited lecturers' reports presented at the COST E4*
447 *management committee and working groups meeting in Ljubljana, Slovenia.*
448 (Department of Forestry and Renewable Forest Resources Biotechnical Faculty).
449 32 Frank, G. et al. *COST Action E27. Protected Forest Areas in Europe-analysis and*
450 *harmonisation (PROFOR): results, conclusions and recommendations.* (Federal
451 Research and Training Centre for Forests, Natural Hazards and Landscape (BFW),
452 2007).
453 33 Sabatini, F. M. et al. Where are Europe's last primary forests? *Divers. Distrib.* **24**,
454 1426-1439, doi:10.1111/ddi.12778 (2018).
455 34 Sabatini, F. M. et al. *European Primary Forest Database. figshare*,
456 <<https://doi.org/10.6084/m9.figshare.13194095.v1>> (2020).
457 35 Buchwald, E. in *Proceedings: Third expert meeting on harmonizing forest-related*
458 *definitions for use by various stakeholders* (Food and Agriculture Organization of the
459 United Nations, 2005).
460 36 Britz, H. et al. Nomination of the "Ancient Beech Forests of Germany" as Extension to
461 the World Natural heritage "Primeval Beech Forests of the Carpathians". *Nationale*
462 *Naturlandschaften, Federal Republic of Germany. Nieden-stein: Specialised editing*
463 *Cognitio Kommunikation & Planung* (2009).
464 37 UNEP-WCMC & IUCN. *Protected Planet: Ancient and Primeval Beech Forests of the*
465 *Carpathians and Other Regions of Europe in Albania, Austria, Belgium, Bulgaria,*
466 *Croatia, Germany, Italy, Romania, Slovakia, Slovenia, Spain and Ukraine, The World*
467 *Database on Protected Areas (WDPA)/The Global Database on Protected Areas*
468 *Management Effectiveness (GD-PAME)*, <<https://www.protectedplanet.net/903141>>
469 (2019).
470 38 Trotsiuk, V. et al. A mixed severity disturbance regime in the primary *Picea abies* (L.)
471 Karst. forests of the Ukrainian Carpathians. *For. Ecol. Manag.* **334**, 144-153,
472 doi:<http://dx.doi.org/10.1016/j.foreco.2014.09.005> (2014).
473 39 Kozák, D. et al. Profile of tree-related microhabitats in European primary beech-
474 dominated forests. *For. Ecol. Manag.* **429**, 363-374 (2018).
475 40 Svoboda, M. et al. Landscape-level variability in historical disturbance in primary
476 *Picea abies* mountain forests of the Eastern Carpathians, Romania. *J. Veg. Sci.* **25**,
477 386-401, doi:10.1111/jvs.12109 (2014).
478 41 Garbarino, M. et al. Gap disturbances and regeneration patterns in a Bosnian old-
479 growth forest: a multispectral remote sensing and ground-based approach. *Ann. For.*
480 *Sci.* **69**, 617-625, doi:10.1007/s13595-011-0177-9 (2012).
481 42 Keren, S. et al. Comparative Structural Dynamics of the Janj Mixed Old-Growth
482 Mountain Forest in Bosnia and Herzegovina: Are Conifers in a Long-Term Decline?
483 *Forests* **5**, 1243-1266 (2014).
484 43 Motta, R. et al. Structure, spatio-temporal dynamics and disturbance regime of the
485 mixed beech-silver fir-Norway spruce old-growth forest of Biogradska Gora
486 (Montenegro). *Plant Biosyst.* **149**, 966-975, doi:10.1080/11263504.2014.945978
487 (2015).
488 44 Motta, R. et al. Development of old-growth characteristics in uneven-aged forests of
489 the Italian Alps. *Eur. J. For. Res.* **134**, 19-31, doi:10.1007/s10342-014-0830-6 (2015).
490 45 WWF Bulgaria. *Forests in Bulgaria - Old growth forests*,
491 <<https://gis.wwf.bg/mobilz/en/#>>.
492 46 Panayotov, M. et al. *Mountain coniferous forests in Bulgaria – structure and natural*
493 *dynamics.* (University of Forestry and Geosoft, 2016).
494 47 Blue Cat Team. *Czech Natural Forests Databank*,
495 <<https://www.naturalforests.cz/czech-natural-forests-databank>>.
496 48 Löhman, A. & Kraut, A. Stand structure of hemiboreal old-growth forests:
497 Characteristic features, variation among site types, and a comparison with FSC-

498 certified mature stands in Estonia. *For. Ecol. Manag.* **260**, 155-165,
499 doi:<http://dx.doi.org/10.1016/j.foreco.2010.04.018> (2010).

500 49 EEA. *Developing a forest naturalness indicator for Europe. Concept and methodology*
501 for a high nature value (HNV) forest indicator. (EEA Technical report No 13/2014,
502 Luxembourg: Publications Office of the European Union, 2014).

503 50 SYKE. *Finnish Environment Institute*, <http://www.syke.fi/en-US/Open_information>.

504 51 Rossi, M., Bardin, P., Cateau, E. & Vallauri, D. Forêts anciennes de Méditerrané e et
505 des montagnes limitrophes: références pour la naturalité régionale. *WWF France,*
506 *Marseille, France*, 144 (2013).

507 52 WWF France. *Hauts lieux de naturalité en France*,
508 <<http://www.foretsanciennes.fr/proteger-mieux/france/>>.

509 53 Cateau, E. et al. *Le patrimoine forestier des réserves naturelles. Focus sur les forêts à*
510 *caractère naturel*. Vol. cahier rnf 7 (Réserves Naturelles de France, 2017).

511 54 Bundesanstalt für Landwirtschaft und Ernährung. *Datenbank Naturwaldreservate in*
512 *Deutschland*, <<https://www.naturwaelder.de/index.php?tpl=home>>.

513 55 Blasi, C., Burrascano, S., Maturani, A. & Sabatini, F. M. *Old-growth forests in Italy*.
514 (Palombi Editori, 2010).

515 56 Myhre, T. Skogkur 2020. redningsplan for Norges unike skoger. *WWF Verdens*
516 *villmarksfond, Norges naturvernforbund*, SABIMA (2012).

517 57 WWF Romania. *Harta ariilor protejate din Romania*,
518 <<http://www.lemncontrolat.ro/en/home/>>.

519 58 PRALESY.SK. *Mapovanie pralesov Slovenska*, <<http://en.pralesy.sk/>>.

520 59 Slovenia Forest Service. *Gozdni rezervati*,
521 <http://www.zgs.si/gozdovi_slovenije/o_gozdovih_slovenije/gozdni_rezervati/index.html>.

522 60 Ruete, A., Snäll, T. & Jönsson, M. Dynamic anthropogenic edge effects on the
523 distribution and diversity of fungi in fragmented old-growth forests. *Ecol. Appl.* **26**,
524 1475-1485, doi:10.1890/15-1271 (2016).

525 61 Heiri, C., Wolf, A., Rohrer, L., Brang, P. & Bugmann, H. Successional pathways in
526 Swiss mountain forest reserves. *Eur. J. For. Res.* **131**, 503-518 (2012).

527 62 Brang, P., Heiri, C. & Bugmann, H. *Waldreservate: 50 Jahre natürliche*
528 *Waldentwicklung in der Schweiz*. (Haupt, 2011).

529 63 WWF Ukraine. *Virgin, Old-Growth and Natural Forests of Ukraine*, <<http://gis-wwf.com.ua/>>.

530 64 Ministerului Apelor și Pădurilor. *Catalogul pădurilor virgine și cvasivirgine din*
531 *România*, <<http://apepaduri.gov.ro/paduri-virgine/>>.

532 65 Alterra. *Forest reserves*, <<https://www.wur.nl/en/Research-Results/Projects-and-programmes/Humus-forms/Publications-Humus-forms/Forest-reserves.htm>>
533 (2000).

534 66 Pantić, D. et al. Structural, production and dynamic characteristics of the strict forest
535 reserve'Račanska šljivovica' on Mt. Tara. *Glasnik Šumarskog fakulteta*, 93-114 (2011).

536 67 Savoie, J. M. et al. *Vieilles forêts pyrénées de Midi-Pyrénées. Deuxième phase*.
537 *Evaluation et cartographie des sites. Recommandations. Rapport final*. (Ecole
538 d'Ingénieurs de PURPAN/DREAL Midi-Pyrénées, 2015).

539 68 Savoie, J. M. et al. Forêts pyrénées anciennes de Midi-Pyrénées. Rapport
540 d'Etude de projet FEDER 2008-2011. 320 (Ecole d'Ingénieurs de PURPAN/DREAL
541 Midi-Pyrénées, 2011).

540 69 WWF Finland. *Kansallisomaisuus turvaan - valtion omistamia suojelun arvoisia*
541 *metsä- ja suoalueita*, (WWF Suomen raportteja, 2012).

542 70 Kitenberga, M. et al. A mixture of human and climatic effects shapes the 250-year
543 long fire history of a semi-natural pine dominated landscape of Northern Latvia. *For.*
544 *Ecol. Manag.* **441**, 192-201 (2019).

550 71 Baders, E., Senhofa, S., Purina, L. & Jansons, A. Natural succession of Norway spruce
551 stands in hemiboreal forests: case study in Slitere national park, Latvia. *Baltic*
552 *Forestry* **23**, 522-528 (2017).
553 72 Kokarēviča, I. *et al.* Vegetation changes in boreo-nemoral forest stands depending
554 on soil factors and past land use during an 80 year period of no human impact. *Can.*
555 *J. For. Res.* **46**, 376-386 (2016).
556 73 Fernandez López, A. B. Parque Nacional de Garajonay, Patrimonio Mundial.
557 (Organismo Autonomo Parques Nacionales, 2009).
558 74 TRAGSATEC. Segundo inventario ecológico del Parque Nacional de Garajonay.
559 (Parque Nacional de Garajonay, 2006).
560 75 Fernández, A. B. & Gómez, L. Qué son los bosques antiguos de laurisilva. Su valor y
561 situación en Canarias. *La Gomera, entre bosques y taparuchas*, 177-236 (2016).
562 76 BIO FOKUS. *Narin lokalitetsdatabase*, <<https://biofokus.no/narin/>>.
563 77 Matović, B. *et al.* Comparison of stand structure in managed and virgin european
564 beech forests in Serbia. *Šumarski list* **142**, 47-57 (2018).
565 78 Kiš, A., Stojšić, V., & Dinić, A. in *2nd International Symposium on Nature*
566 *Conservation. Proceedings* 373-382 (Institute for Nature Conservation of Vojvodina
567 Province, Novi Sad, 2016).
568 79 Potapov, P. *et al.* Mapping the world's intact forest landscapes by remote sensing.
569 *Ecol. Soc.* **13** (2008).
570 80 Kobyakov, K. & Jakolev, J. Atlas of high conservation value areas, and analysis of gaps
571 and representativeness of the protected area network in northwest Russia. *Finnish*
572 *Environment Institute* (2013).
573 81 Europarc Spain. *Mapa de rodales de referencia RedBosques*, <www.redbosques.eu> (2016).
574 82 Diku, A. & Shuka, L. *Pyjet e vjetër të ahut në shqipëri (Old Beech forests in Albania)*.
575 (PSEDA - ILIRIA <<http://iliria-al.org/publications/>>, 2017).
576 83 Burrascano, S. *et al.* It's a long way to the top: Plant species diversity in the transition
577 from managed to old-growth forests. *J. Veg. Sci.* **29**, 98-109, doi:10.1111/jvs.12588
578 (2018).
579 84 EEA. (ed Directorate-General for Environment (DG ENV) Council of Europe (CoE))
580 (2016).
581 85 UNEP-WCMC & IUCN. *Protected Planet: The World Database on Protected Areas*
582 (WDPA) <www.protectedplanet.net> (2019).
583 86 Bohn, U. *et al.* Map of the natural vegetation of Europe. Explanatory text with CD-
584 ROM., (German Federal Agency for Nature Conservation, Bonn, Germany, 2003).
585 87 Hansen, M. C. *et al.* High-resolution global maps of 21st-century forest cover change.
586 *Science* **342**, 850-853, doi:10.1126/science.1244693 (2013).
587 88 R: A language and environment for statistical computing v. 3.6.1 (R Foundation for
588 Statistical Computing, Vienna, Austria., 2019).
589 89 FOREST EUROPE. *Quantitative Indicators Country reports 2015*,
590 <<https://foresteurope.org/state-europes-forests-2015-report/#1476295965372-d3bb1dd0-e9a0>> (2015).
592 90 Skogsstyrelsen. *Key Woodland Habitats*, <<https://www.skogsstyrelsen.se>> (2003).
593 91 Frank, A. *Inventering av nyckelbiotoper: resultat till och med 2003*. (Skogsstyr.,
594 2004).
595 92 Länsstyrelsen Västerbotten. *LstAC Skogar med höga naturvärden ovan gränsen för*
596 *fjällnära skog 2003-2015*, <<https://ext-geodatakatalog.lansstyrelsen.se/GeodataKatalogen/>> (2019).
598 93 Naturvårdsverket. *Skyddsvärda statliga skogar*, <<http://mdp.vic-metria.nu/miljodataportalen/GetMetaDataById?UUID=3919E66E-2E09-440D-9171-B5074DFOCOED>> (2017).
600

601 94 Naturvårdsverket. *Skogliga värdekarnor*, <http://gpt.vic-metria.nu/data/land/skogliga_vardekarnor_2016.zip> (2016).

602 95 Naturvårdsverket. *Preciserad kartering av kontinuitetsskog i Jämtlands län*, <http://gpt.vic-metria.nu/data/land/Preciserad_kskog_jamtland.zip> (2019).

603 96 Ahlkrona, E., Giljam, C. & Wennberg, S. Kartering av kontinuitetsskogi boreal region. Metria AB på uppdrag av Naturvårdsverket., (2017).

604 97 Naturvårdsverket. *Skyddad fjällbarrskog*, <https://gpt.vic-metria.nu/data/land/NMD/Skyddad_Fjallbarrskog.zip> (2019).

605 98 Skogsstyrelsen. *Utförda avverkningar*, <<https://www.skogsstyrelsen.se/>> (2014).

606 99 Miljödirektoratet. (2016).

607 100 Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E. & Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance detection. *Remote Sens. Environ.* **205**, 131-140 (2018).

608 101 Kennedy, E. R. *et al.* Implementation of the LandTrendr Algorithm on Google Earth Engine. *Remote Sensing* **10**, doi:10.3390/rs10050691 (2018).

609 102 Gorsevski, V., Geores, M. & Kasischke, E. Human dimensions of land use and land cover change related to civil unrest in the Imatong Mountains of South Sudan. *Appl. Geogr.* **38**, 64-75, doi:10.1016/j.apgeog.2012.11.019 (2013).

610 103 Kennedy, R. E., Yang, Z. & Cohen, W. B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. *Remote Sens. Environ.* **114**, 2897-2910 (2010).

611 104 Griffiths, P., Van Der Linden, S., Kuemmerle, T. & Hostert, P. A pixel-based landsat compositing algorithm for large area land cover mapping *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* **6**, 2088-2101 (2013).

612 105 Cohen, W. B. & Spies, T. A. Estimating structural attributes of Douglas-fir/western hemlock forest stands from Landsat and SPOT imagery. *Remote Sens. Environ.* **41**, 1-17 (1992).

613 106 Czerwinski, C. J., King, D. J. & Mitchell, S. W. Mapping forest growth and decline in a temperate mixed forest using temporal trend analysis of Landsat imagery, 1987–2010. *Remote Sens. Environ.* **141**, 188-200 (2014).

614 107 Cohen, W. B., Yang, Z. & Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation. *Remote Sens. Environ.* **114**, 2911-2924 (2010).

615 108 Grogan, K., Pflugmacher, D., Hostert, P., Kennedy, R. & Fensholt, R. Cross-border forest disturbance and the role of natural rubber in mainland Southeast Asia using annual Landsat time series. *Remote Sens. Environ.* **169**, 438-453 (2015).

616 109

617 110

618 111

619 112

620 113

621 114

622 115

623 116

624 117

625 118

626 119

627 120

628 121

629 122

630 123

631 124

632 125

633 126

634 127

635 128

636 129

637 130