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Abstract 

Medulloblastoma (MB) is a heterogeneous disease in which neoplastic cells and associated 

immune cells contribute to disease progression. To better understand cellular heterogeneity in 

MB we use single-cell RNA sequencing, immunohistochemistry and deconvolution of 

transcriptomic data to profile neoplastic and immune populations in childhood MB samples. 

Neoplastic cells cluster primarily according to individual sample of origin which is in part due to 

the effect of chromosomal copy number gains and losses. Harmony alignment reveals novel MB 

subgroup/subtype-associated subpopulations that recapitulate neurodevelopmental processes 

and are associated with clinical outcomes, including discrete photoreceptor-like cells in MB 

subgroups GP3 and GP4 and nodule-associated neuronally-differentiated cells in subgroup SHH. 

We definitively chart the spectrum of MB immune cell infiltrates, which include subgroup/subtype-
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associated developmentally-related neuron-pruning and antigen presenting myeloid cells. MB 

cellular diversity is recapitulated in genetically engineered mouse subgroup-specific models of 

MB. These findings provide a clearer understanding of both the neoplastic and immune cell 

heterogeneity in MB. 

 

Introduction 

Medulloblastoma (MB) is an aggressive brain tumor arising predominantly in childhood, 

comprised of 4 consensus molecular subgroups – GP3, GP4, SHH and WNT – that have been 

defined through bulk-tumor transcriptomic, methylomic and genomic profiling studies (1). GP3 

subgroup tumors often exhibit amplification of MYC and are associated with the poorest clinical 

outcome; SHH and WNT often harbor mutations in sonic hedgehog and wingless pathway genes, 

respectively; and the genetic driver for GP4 is less clear. Subsequent studies have subdivided 

MB subgroups into finer subtypes with disparate outcomes and molecular features (2-4). 

Unfortunately, intra-tumoral cellular heterogeneity inherent in bulk-tumor samples impedes a 

clearer understanding of MB biology. Neoplastic and immune heterogeneity underlies a tumor’s 

ability to proliferate, survive and evade therapeutic interventions. The emergence of single cell 

analysis now allows us to examine the cellular diversity inherent in biological systems, resulting 

in transformative findings when applied to pediatric brain tumors including MB. Hovestadt et al. 

used SMART-seq single cell RNA-seq (scRNA-seq) to interrogate  MB, identifying cellular 

diversity within individual samples recapitulating cell cycle, progenitor and differentiated neuronal 

programs (5). Vladoiu et al. used droplet-based scRNA-seq to map mouse cerebellar 

developmental cellular lineages, and then compared these to childhood cerebellar brain tumors 

including  MB samples, identifying putative subgroup-specific cells of origin (6). In the present 

study, we add significant new knowledge by increasing the number of samples and cells per tumor 

and by adding MB genetrically-engineered mouse models (GEMMs) for cross-species analysis. . 
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Our studies identify and characterize more granular differentiation trajectories in detail, especially 

previously unnoted discrete photoreceptor and glutamatergic subpopulations across GP3 and 

GP4 tumors. Importantly we describe for the first time considerable immune cell diversity in MB 

in detail, including subgroup-specific immune populations. In preclinical models, we identify 

neoplastic subgroup-specific genetically-engineered mouse model (GEMM) subpopulations that 

correspond to those seen in human samples. Finally, we provide these data in the form of an 

interactive browser for users to interrogate MB subgroup neoplastic and immune cells and 

GEMMs at single cell resolution. 

 

Results 

Sample-specific clustering in MB scRNA-seq is an effect of chromosomal copy number 

gains and losses. 

To better understand cellular heterogeneity in MB we performed scRNA-seq on 28 primary 

childhood MB patient samples and a single matched sample from recurrence. MB samples were 

classified into subgroups (1 WNT, 9 SHH, 7 GP3 and 11 GP4) based on bulk-tumor methylome 

and pooled single cell transcriptome profiles (Supplementary Table 1). The SHH, GP3 and GP4 

samples were further assigned to more recently described subtypes (2, 4). Using the 10x 

Genomics droplet-sequencing-based platform we generated transcriptomes at the single-cell 

level as previously described (7). After excluding poor quality cells based on low unique molecular 

identifier (UMI) counts and high mitochondrial proportions, 39,946 cells (~1,300 per sample) 

remained that passed quality controls (Supplementary Fig. 1).  

Cell by gene expression matrices projected as 2D UMAP plots revealed multiple clusters 

of cells that were either unique to or shared between samples. Cell type analysis based on 

transcriptomic signatures identified 3 main categories of cell types – neoplastic, immune (myeloid 
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and lymphocyte lineages) and non-neoplastic stroma (astrocytes, oligodendrocytes and vascular 

endothelium) (Fig. 1a). The distinction between neoplastic and non-neoplastic designation was 

confirmed by examining copy number variants (CNVs) inferred from the single cell RNA-seq data 

(inferCNV)(Fig 1b). We identified numerous MB subgroup specific copy number gains and losses 

that were highly concordant with CNVs identified by methylation analysis of matched samples, 

the most common of these being isochromosome 17q in the majority of GP4 (Supplementary 

Table 1). Neoplastic cell clusters were distributed broadly according to MB subgroup, as 

determined by methylation analysis (Fig. 1a). Neoplastic clusters were most cohesive within the 

SHH subgroup, with 5 of the 7 SHH samples colocalizing, a reflection of underlying transcriptomic 

similarity. The 2 discrete SHH clusters were each patient-specific, notably from the two SHH 

patients with germline TP53 mutations and particularly extensive CNV aberrations 

(Supplementary Table 1). GP3 demonstrated the least cohesive clustering, with all patient 

samples clustering separately. In GP4 5 of 11 samples colocalized.  We mapped the sum of CNVs 

in each sample onto the UMAP which showed a that lower CNV counts were seen in those 

samples that colocalized within their respective subgroup (Fig. 1c). This finding suggests that 

sample specific clustering within MB subgroups is a function of the extent of CNV aberration (Fig. 

1c). These findings underscore the significant contribution of CNVs to the transcriptional 

landscape in MB. 

 

GP3 MB contains a differentiated subpopulation corresponding to photoreceptor 

differentiation. 

Given the observed subgroup-specific clustering, SHH, GP3 and GP4 subgroup 

neoplastic cells were individually re-clustered. We used Harmony alignment algorithm to identify 

transcriptionally similar cell types that had clustered discretely in the prior non-aligned analysis 

(8). Harmony revealed neoplastic clusters shared between multiple samples in each of the 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2021. ; https://doi.org/10.1101/2020.08.28.272021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.272021
http://creativecommons.org/licenses/by-nd/4.0/


 6 

subgroups (Fig. 2-4). SHH, GP3 and GP4 samples each formed clusters that exhibited transcript 

signatures matching those clusters identified in a recent MB single cell RNA-seq study by 

Hovestadt  et al.  namely cell cycle (program A), undifferentiated progenitors (program B) and 

neuronally-differentiated (program C)(5)(Supplementary Fig. 2). We annotated clusters 

accordingly, but with new subdivisions within these programs corresponding to distinct 

subpopulations that were identified in the present study.  Subpopulations were then characterized 

by systematic analysis of gene expression, gene ontology (GOTerm) enrichment and inference 

of active transcription factors (TFs) using pySCENIC (single-cell regulatory network inference and 

clustering)(9)(Supplementary Tables 3-5, summarized in Table 1). To address similarities of 

neoplastic subpopulations between MB subgroups, we also performed a combined comparative 

analysis (Supplementary Fig. 3a).  

GP3 tumors (n=7) formed 5 major clusters that included two differentiated cell 

subpopulations (GP3-C2, -C1) in addition to two progenitor (GP3-B1, -B2) and a mitotic (GP3-A) 

subpopulation (Fig. 2a,b). Identification of neuronally-differentiated subpopulations in GP3 differs 

from the findings of Hovestadt et al. who reported that GP3 tumors with MYC amplification lacked 

differentiated cells altogether (5). The predominant GP3 differentiated subpopulation GP3-C1 is 

characterized by genes related to RNA processing and axo-dendritic transport (Table 1, 

Supplementary Tables 3,4). The less abundant GP3-C2 was distinguished by genes and TFs 

related to photoreceptor development (NRL, IMPG2) (Table 1, Supplementary Tables 3-5), a 

phenotype that has previously been identified and studied in GP3 (10-13). We validated the 

presence of a photoreceptor-like subpopulation in GP3 using immunohistochemistry (IHC) for 

interphotoreceptor matrix proteoglycan 2 (IMPG2), a marker of GP3-C2. In a panel of GP3, GP4 

and SHH MB formalin-fixed paraffin-embedded (FFPE) samples, IMPG2 protein expression was 

shown to be significantly higher in GP3 than GP4 and SHH (p=1.9x10-7), with an expression score 

of 2 or greater in 6/7 GP3 samples (Fig. 2c). IMPG2 was expressed in discrete clusters of cells in 
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GP3 tumors, suggesting focal areas of GP3-C2 photoreceptor differentiation (Fig. 2d). Discrete 

clusters of IMPG2 expressing cells were also observed in a smaller number of GP4 tumors (Fig. 

2e). The patchy distribution of IMPG2, and presumably other photoreceptor subpopulation-

restricted markers, across areas of tumor in both GP3 and to a lesser extent in GP4 could 

therefore introduce a confounding factor for classification techniques that employ these markers 

for GP3 (14)(Supplementary Fig. 4). 

Subpopulation proportions were estimated by deconvolution (Cibersort) of the 

Medulloblastoma Advanced Genomics International Consortium (MAGIC) dataset, a large patient 

cohort that includes transcriptomic data, subgroup/subtype classification and associated CNV and 

outcome data for the majority of samples(n=747) (2). For individual MB subgroup, estimated 

subpopulation proportions were compared between samples grouped according to subtype, 

CNVs and clinical outcome to identify significant associations. Deconvolution analysis of the GP3 

MAGIC cohort (n=141) revealed a significant association between photoreceptor-differentiated 

subpopulation GP3-C2 and subtype GP3 alpha, that has the best clinical outcome of all GP3 

subtypes per Cavalli et al. (2). The GP3-C2 proportion was 2.5-fold higher in GP3 alpha than 

other GP3 subtypes (p=2.3x10-14), being progressively less abundant in GP3 beta and GP3 

gamma (Fig. 2f). GP3 differentiated subpopulation GP3-C1 was more abundant in GP3 beta than 

others (p=0.0027)(Fig. 2g).  

 

GP3 progenitor proportions are influenced by MYC and chromosome 8 gain   

Examination of GP3 progenitor subpopulations GP3-B1 and GP3-B2 further substantiated 

the previously articulated theory that aberrant MYC activity is responsible for preventing 

differentiation of GP3 progenitor subpopulations (5). Both GP3-B1 and B2 shared GOTerm 

enrichment of translation-related genes, including ribosomal proteins and eukaryotic translation 
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elongation factors, and MYC TF activity (Table 1, Supplementary Tables 3-5). One normal 

physiological function of MYC is to directly enhance Pol I transcription of ribosomal RNA (rRNA) 

genes in response to the cellular demand for protein synthesis (15, 16). This normal physiological 

role of MYC is recapitulated in the GP3-B progenitor cells, and focal amplification of MYC or gain 

of chromosome 8 is associated with increased proportions of progenitor cells versus non-MYC 

amplified GP3 samples (p=0.013)(Fig. 2b). Deconvolution of the MAGIC GP3 cohort showed a 

significantly higher proportion of progenitor GP3-B1 and GP3-B2 cells in GP3 gamma than in 

either alpha or beta subtypes (Fig. 2h,i). GP3-gamma samples are distinguished by broad copy 

number gains on chromosome 8, focal copy number gains for MYC and the poorest clinical 

outcome of all MB subtypes (2). We compared all subpopulation proportions to broad CNVs 

reported for the MAGIC sample cohort, which showed that the strongest of these associations 

was between GP3-B2 and chromosome 8 CNVs, with GP3-B2 proportions being higher in 

samples with chromosome 8 gain than in samples with chromosome 8 WT or loss (Fig. 2j). These 

data are consistent with the higher proportions of GP3 progenitor subpopulations in our scRNA-

seq samples with gain of chromosome 8 or MYC amplification (Fig. 2b). With respect to clinical 

outcome, a higher than median proportion of GP3-B2 conferred the shortest survival of all GP3 

subpopulations (Fig. 2k, Supplementary Table 6), consistent with the poor outcome conveyed by 

Gp3-gamma subtype assignment and MYC amplification. 

The relationship between deconvoluted GP3 subpopulation proportions was examined, 

identifying a significant negative correlation between GP3-C2 and all other GP3 subpopulations 

in particular GP3-B1 (Fig. 2l, Supplementary Table 7). This analysis demonstrates a continuum 

of differentiated and progenitor cell ratios across GP3 alpha, beta and gamma subtypes, an 

important factor for correct interpretation of GP3 biological studies. 
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Chromosome 8 loss is associated with lower proportion of GP4 progenitors. 

 Six major neoplastic subpopulations were identified in 11 GP4 scRNA-seq samples, with 

some degree of similarity with subpopulations identified in GP3 (Fig. 3a,b; Table 1). Two 

subpopulations were characterized by cell cycle-related gene enrichment (GP4-A1 and A2). We 

identified 2 progenitor subpopulations (GP4-B1 and -B2) that were characterized by abundant 

ribosomal gene expression, as seen in GP3 progenitors (Table 1, Supplementary Tables 3,4). 

Deconvolution analysis of GP4 MAGIC samples (n=325) revealed that the strongest association 

between CNVs and estimated subpopulation proportions was between GP4-B1 and chromosome 

8 aberrations (Fig. 3c). This association differs from that seen with in GP3 in that GP4-B1 

proportions are significantly higher in samples with WT chromosome 8 than those with 

chromosome 8 loss (chromosome 8 gain being largely absent in GP4 MB). This finding implicates 

a role for MYC in the maintenance of a progenitor subpopulation in GP4 as well as GP3 and 

warrants further investigation. GP4 subtypes also showed variable subpopulation proportions, the 

most distinct being GP4 gamma having significantly lower GP4-B1 progenitors (p=3.2x10-18)(Fig. 

3c). 

 

The predominant GP4 MB differentiated subpopulation is distinguished by expression of 

glutamatergic neuron lineage markers 

The predominant differentiated GP4 subpopulation, GP4-C1, is characterized by gene 

expression similar to GP3-C1, including expression of glutamate receptor GRIA2, a key 

component of glutamatergic lineage neurons (Supplementary Table 3). In recent single cell 

analyses of the developing human cerebellum GRIA2 was a marker of glutamatergic lineage 

neurons, most notably human excitatory cerebellar nuclei (eCN)/uniopolar brush cells (UBC) (17), 

although also expressed at lower levels in Purkinje cells and cerebellar granular neurons 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2021. ; https://doi.org/10.1101/2020.08.28.272021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.272021
http://creativecommons.org/licenses/by-nd/4.0/


 10 

(CGNs)(18). We compared human cerebellar lineage scRNA-seq data (17) with our MB 

neoplastic subpopulations showing that overlap between these cerebellar cell types was largely 

restricted to MB differentiated subpopulations and absent from progenitor subpopulations 

(Supplementary Fig. 5a-c). The strongest correlation was observed between human eCN/UBC 

signatures and GP4-C1, and to a progressively lesser extent with SHH-C1 and GP3-C1 

(Supplementary Fig. 5d).  Accordingly, IHC analysis revealed that eCN/UBC marker GRIA2 

positive cells were abundantly distributed throughout the tumor parenchyma in GP4 (Fig. 3e), to 

a moderate extent in SHH and least abundant in GP3 (Fig. 3f,g). These findings are consistent 

with early MB bulk-tumor transcriptomic data that revealed a glutamatergic signature in GP4 and 

also in GP3, but to a lesser extent (10). The same study identified a GABAergic signature that 

was exclusive to GP3. Although no MB neoplastic subpopulations overlapped with GABAergic 

lineages, GABRA5, a key marker of the GP3 GABAergic signature (10) was expressed 

predominantly in GP3 progenitors and GP3-C1 (Supplementary Fig. 4a). 

 A photoreceptor differentiated subpopulation, GP4-C2, was also variably observed in 

GP4, although to a lesser extent than in GP3 (Fig. 3b, Table 1). Comparison of GP4-C2 with other 

neoplastic subpopulations confirmed the strong correlation with GP3-C3 (Supplementary Fig. 3a). 

Photoreceptor-differentiated cells in GP4 was examined by IHC (Fig. 2e), with 2/11 GP4 samples 

expressing IMPG2 with an IHC score of 2 or more, and isolated IMPG2 positive cells in the 

remainder (Fig. 2c). The presence of photoreceptor-differentiated cells in GP4 may explain those 

MB samples that are assigned to the mixed GP3/GP4 category, as illustrated by the expression 

of GP3 nanostring markers IMPG2 and NRL (14) in the GP4-C2 subpopulation (Supplementary 

Fig. 4a). By deconvolution analysis, MAGIC cohort GP4 subtypes alpha, beta and gamma also 

showed variable differentiated subpopulation proportions, with a significantly higher 

photoreceptor differentiated subpopulation GP4-C2 in GP4 gamma (11-fold higher than others, 

p=5.7x10-12)(Fig. 3h).  
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No single GP4 subpopulation was significantly correlated with survival (Supplementary 

Table 6), although the ratio of progenitor (GP4-B1 and -B2 combined) to differentiated (GP4-C1 

and -C2 combined) conveyed a shorter survival (Fig. 3i). These findings suggest that the better 

clinical survival reported for GP4-gamma compared to other GP4 subtypes (2) is likely attributable 

to a higher ratio of differentiated to progenitor cells.  

 

SHH tumors contain a unique differentiated subpopulation that comprises nodular 

regions. 

We identified six major subpopulations of neoplastic cells in SHH tumors (n=9) including 

2 cell cycle (SHH-A1 and -A2), 2 progenitor (SHH-B1 and -B2) and 2 neuronally-differentiated 

subpopulations (SHH-C1 and -C2) (Fig. 4a,b). SHH-C2 was distinct from SHH-C1 and 

differentiated subpopulations in other subgroups (Supplementary Fig. 3a) with a particularly high 

enrichment of neuron-related gene ontologies (Fig. 4c, Supplementary Table 4). SHH-C2 was 

distinguished from SHH-C1 by high expression of stathmin genes (STMN2 and STMN4) which 

are involved with neuron development and growth (19). IHC showed that SHH-C2 marker STMN2 

positive cells were predominant in SHH nodules (Fig. 4d,e). Nodules of neuronal maturation are 

a classic histologic feature of SHH that recapitulates aspects of normal cerebellar development 

(20). In the MAGIC cohort, Cavalli et al. delineated four SHH subtypes: two infant subtypes, SHH 

beta and SHH gamma (the latter largely comprised of MB with extensive nodularity (MBEN)); a 

subtype in older children, SHH alpha which harbors frequent p53 mutations; and a largely adult 

subtype, SHH delta (2). We deconvoluted the MAGIC SHH transcriptomic cohort (n=214) and 

showed that SHH-C2 was the most differential subtype distribution being significantly more 

abundant in the infant SHH beta and gamma subtypes (Fig. 4f). Consistent with SHH-C2 

representing the primary population of cells that constitute SHH nodules, this subpopulation was 

most abundant in highly nodular SHH gamma that is associated with SHH variant MBEN.  
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The most abundant neuronally-differentiated SHH subpopulation SHH-C1  was most 

closely correlated with GP4-C1 and GP3-C1 (Supplementary Fig. 3a), with enrichment of RNA 

processing and axo-dendritic transport ontologies (Table 1, Supplementary Tables 3,4) and 

overlap with human glutamatergic eCN/UBC lineage gene expression (Supplementary Fig. 5). 

SHH-C1 was the only SHH subpopulation significantly associated with outcome, its relative 

abundance being favorable for survival (Fig. 4i, Supplementary Table 6).   

SHH progenitors are distinct from GP3 and GP4 by expression of previously identified 

components of SHH biology. These include inferred TF activity of CGN progenitor specification 

gene ATOH1 (Supplementary Table 5) and high expression of genes associated with negative 

regulation of epithelial cell proliferation and WNT signaling (SFRP1, SFRP5) (Supplementary 

Tables 3,4). This is consistent with studies showing that WNT pathway activation is antagonistic 

to SHH-driven proliferation (21, 22). SHH progenitor subpopulations SHH-B1 and -B2 were similar 

to GP3 and GP4 progenitor subpopulations with respect to abundant ribosome and eukaryotic 

translation elongation factor gene expression (Supplementary Tables 3,4). The MYCN gene is 

commonly amplified in SHH, and like cMYC can upregulate ribosomal RNA expression as a 

mechanism of universal upregulation of gene expression (23). Related to this, germline elongation 

factor ELP1 mutations have recently been implicated as a major driver in SHH etiology (24), 

further supporting a potential role of transcriptional/translational dysregulation in SHH progenitor 

biology. SHH progenitor populations, in particular SHH-B1, were significantly inversely correlated 

with SHH-C2 (Supplementary Table 7), being highest in non-infant subtypes SHH alpha and delta 

(Fig. 4g).  

CNVs were not as strongly correlated with SHH subpopulations as in GP3 or GP4, the 

most significant being an increase (2.1-fold higher) in cell cycle subpopulation SHH-A1 in those 

samples with 10q loss (Fig. 4h). This supports a role of PTEN loss in upregulation of cell cycle in 

SHH that has was also observed in a PTEN-deficient SHH mouse model (25). SHH-A 
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subpopulations, and GP3-A and GP4-A, were enriched for cells in both G2M and S-phase, 

although we note that other subpopulations contain proliferating cells to a lesser extent 

(Supplementary Fig. 3b).  

 

The immune cell compartment of MB contains diverse myeloid cell subpopulations 

associated with neurodevelopment. 

ScRNA-seq provided us with an opportunity to comprehensively chart tumor infiltrating 

immune cell subpopulations in MB. Cells identified as lymphocyte or myeloid (n=4669), were 

separated out from neoplastic cells and re-clustered, revealing four lymphocyte, six myeloid cell 

and a single cell cycle-related cluster (Fig. 5a). Myeloid and immune cells from multiple patients’ 

samples strongly co-clustered and therefore did not require Harmony alignment.  

An unexpected degree of myeloid cell diversity was observed in the majority of MB 

samples analyzed (Fig. 5a). This finding is consistent with other scRNA-seq analyses of tumor 

infiltrating and CNS immune subpopulations that showed a greater degree of diversity than was 

previously assumed (26, 27). Despite apparent transcriptional overlap between subpopulations 

identified in these recent studies no consensus nomenclature yet exists. Accordingly, immune 

subpopulations described in the present populations are annotated with names descriptive of 

transcriptional signatures. Myeloid populations in the CNS are separated into two main lineages 

-  tissue-resident microglia and peripheral bone marrow-derived myeloid cells – and both of these 

play roles in both immune response and neurodevelopment (28). These shared functional roles 

have hindered the identification of distinguishing markers for the two etiological lineages. 

Consequently, we describe MB myeloid subpopulations according to neurodevelopmental or 

immune processes inferred from transcriptomic signatures (Supplementary Table 8) and cannot 

for the most part reliably assign subpopulations to resident or peripheral myeloid origins.  
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The most abundant myeloid subpopulation exhibited signatures associated with 

neurodevelopmental roles. Specifically this subpopulation demonstrated particularly high 

expression of all complement component 1q subunits (C1QA, C1QB and C1QC) (Supplementary 

Table 8), that are responsible for the initiation of the classic complement cascade that is involved 

in neurodevelopmental synapse elimination (29). This population was thus termed complement 

myeloid (Complement-M). A second myeloid neurodevelopment-associated subpopulation was 

characterized by expression of phagocytosis receptors MRC1 (CD206), CD163, and MERTK that 

are crucial for microglia-mediated clearance of apoptotic cell debris from the developing 

neurogenic niche (30). MRC1 and CD163 are widely recognized markers of anti-inflammatory or 

immunoregulatory M2 myeloid polarization and this population was therefore named M2-activated 

myeloid (M2-M). M2-M cells showed the strongest subgroup association, being more abundant 

(8.8-fold) in SHH than GP3 and GP4 combined in scRNA-seq samples (Fig. 5b). Myeloid cell 

scRNA-seq subpopulation signatures were used to deconvolute the MAGIC dataset (GP3, GP4, 

SHH and WNT; n=748) which corroborated the observation that M2-M were more abundant in 

SHH that other subgroups (2.2-fold; p=2.0x10-15) (Fig. 5c). Further, M2-M abundance was 

significantly higher in infant subtypes SHH beta and gamma than older subtypes SHH alpha and 

delta (1.8-fold; p=3.7x10-6)(Fig. 5c). IHC for M2-M marker MRC1 (CD206), stained cells with an 

amoeboid morphology that frequently lined SHH nodules (Fig. 5d). The co-localization of M2-M 

with nodules, which are comprised of the strongly neuronally-differentiated SHH-C2 

subpopulation cells support the hypothesis that this myeloid subpopulation is programmed for 

developmental activity, such as synaptic pruning and elimination of apoptotic neuron debris, 

rather than an immune role. This hypothesis is also supported by age restriction of M2-M, being 

significantly more abundant in infant SHH subtypes that are likely more developmentally 

influenced. 
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A single myeloid subpopulation could confidently be designated as microglia, expressing 

widely established microglial markers (P2RY12, TMEM119, SALL1, CX3CR1)(Supplementary 

Table 8). Due to the relatively low expression of myeloid cell immune activation markers (including 

HLA class II and cytokines/chemokines) this myeloid population was classified as non-activated 

microglia (NA-microglia). In contrast to M2-M, NA-microglia trended toward being less abundant 

in SHH compared to GP3 and GP4 in scRNAseq samples and were significantly less abundant 

in SHH in the larger MAGIC cohort (4-fold, p=9.4x10-16)(Fig. 5e). These findings are congruent 

with prior studies that identified a less activated immune phenotype in GP3 and GP4 than SHH 

(31, 32).  

Two further myeloid subpopulations exhibited transcriptomic profiles associated with 

antigen presentation, both expressing MHC class II genes, suggesting an active immune 

functional role as opposed to the developmental/homeostatic roles inferred for the prior myeloid 

subpopulations. The first of these was distinguished from previous myeloid subpopulations by 

expression of chemokines (CCL3, CCL4, CXCL8 and IL1B) and MHC class II (HLA-DRB1, HLA-

DRA, HLA-DPA)(Supplementary Table 8), suggesting immune cell recruitment and antigen 

presentation functions, respectively, and is referred to as chemokine myeloid (Chemokine-M). A 

second antigen presenting myeloid subpopulation was distinguished by C-lectins (CLEC10A, 

CLEC4A, CLEC12A), CD1 subunits (CD1C, CD1D and CD1E) and MHC class II (HLA-DQA1, 

HLA-DQB1) all of which are associated with antigen presentation by macrophages and/or 

dendritic cells, and was therefore named dendritic cell-like myeloid (DC-M). Outcome analysis of 

deconvoluted myeloid immune subpopulation factions did not identify any significant association 

with survival for antigen presentation-associated myeloid subpopulations Chemokine-M or DC-M 

(Supplementary Table 6). A survival advantage was instead observed in those GP3 and GP4 with 

a higher than median proportion of complement-M cells, suggesting a significant role for myeloid 

cells associated with putative neurodevelopmental processes in MB biology. 
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Analysis of lymphocytes in MB was limited by their rarity in this tumor type compared to 

other pediatric brain tumors, including glioblastoma, as has previously been observed (33). The 

most abundant MB lymphocyte population was identified as T-cells (CD3D, TRAC), constituting 

~80% of lymphocytes, with no separation of CD4 from CD8 T-cells at this level of resolution (Fig. 

5a). The remaining lymphocyte clusters were NK cells (NKG7, GNLY), B-cells (MS4A1, CD79A) 

and regulatory T-cells (FOXP3, CTLA4). None of these lymphocyte subpopulations was 

significantly differentially distributed across MB subgroups in the scRNA-seq cohort. 

Deconvolution of the larger MAGIC cohort did not yield usable results, likely due to the scarcity of 

lymphocyte specific transcripts in bulk transcriptomic data. 

 

Genetically engineered mouse models of MB contain subpopulations corresponding to 

human subgroup-specific subpopulations 

Genetically engineered mouse models (GEMMs) for GP3 and SHH MB provide valuable 

in vivo experimental models. We sought to define the cellular heterogeneity present in these with 

respect to identified human MB subpopulations, which is critical for correct interpretation of GEMM 

experimental results. Two GP3 models, the first (termed MP) driven by overexpression of cMyc 

and dominant negative Trp53 (34, 35), and the second driven by co-expression of Myc and Gfi1 

(and termed MG)(36, 37), and one SHH model driven by mutant Smo activated in the Atoh1 

lineage (Math1-Cre/SmoM2 - termed MS)(38) were examined using scRNA-seq. Harmony was 

used to align GEMM with human MB subgroup scRNA-seq data, revealing that GEMM cells 

clustered most closely their intended corresponding human MB subgroups (Fig. 6a,b). 

Both GP3 GEMMs were generated by retroviral overexpression of oncogenes in neural 

progenitors, and transplantation of these progenitors into the cerebellum of adult NSG mice. In 

model MP, scRNA-seq of 5,422 cells identified 7 neoplastic and 2 non-neoplastic subpopulations 
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(immune and fibroblast) (Fig. 6c). The 7 neoplastic GEMM subpopulations were compared to 

human GP3 neoplastic subpopulations using three methods: (i) comparison of the top 200 marker 

genes for GEMM neoplastic subpopulations (Supplementary Table 9) compared to corresponding 

subgroup subpopulations (Fig. 6d) as used previously to compare neoplastic subpopulations 

between subgroups; (ii) UMAPs of GEMM cells labeled with human neoplastic subpopulation 

metagene signatures (Supplementary Fig. 6a); and (iii) correlation of the genome-wide mean 

expression of each GEMM neoplastic subpopulation with human neoplastic subpopulations which 

are then visualized using a directed bipartite graph (Supplementary Fig. 6b)(39). Results of these 

analyses were used to assign GEMM subpopulations to cell cycle (A), progenitor (B) and 

differentiated (C) phenotypes. This approach identified MP subpopulations corresponding to 

human GP3 cell cycle (MP-A1, -2), progenitor (MP-B1,-B2, -B3) and differentiated neoplastic 

subpopulations (MP-C1, -C2) (Fig. 6c). Similarly, the second GP3 GEMM MG harbored neoplastic 

and non-neoplastic subpopulations (8,144 cells) (Fig. 6e), which were comprised of 9 neoplastic 

clusters that grossly corresponded to progenitor (MG-B1, -B2, -B3, -B4) and differentiated 

subpopulations (MB-C1, -C2, -C3) (Fig. 6f, Supplementary Fig. 7, Supplementary Table 9), but 

with two subpopulations with no apparent human equivalent (MB-N1, -N2) and no apparent cell 

cycle subpopulations. Both GP3 GEMMs harbored subpopulations corresponding to the 

neuronally-differentiated human GP3-C1, but with only a very minor subpopulation of cells that 

were enriched for photoreceptor differentiated GP3-C2 metagenes (Supplementary Fig. 6a, 7a). 

Collectively, these data suggest that the MP GEMM caries more fidelity to human GP3 tumors 

SHH GEMM model MS was comprised of subpopulations that also corresponded to 

human SHH neoplastic subpopulations. Five neoplastic subpopulations and 8 non-neoplastic 

subpopulations were revealed by scRNA-seq analysis (12,421 cells; Fig. 6g). Neoplastic cells 

showed strong concordance with human SHH neoplastic subpopulations, comprising 2 cell cycle 

(MS-A1, -2), 1 progenitor (MS-B1) and 2 differentiated subpopulations (MS-C1, -C2). (Fig. 6h, 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2021. ; https://doi.org/10.1101/2020.08.28.272021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.272021
http://creativecommons.org/licenses/by-nd/4.0/


 18 

Supplementary Fig. 8, Supplementary Table 9), including a neuronally-differentiated 

subpopulation (MS-C2) corresponding to the human SHH nodule-associated SHH-C2 

subpopulation. Cumulatively we show that the GEMM MB models are consistent with human MB 

and can be used to test therapeutic response and resistance to novel agents. 

 
 

Human and mouse MB cell atlas browser 

We have created a publicly available scRNA-seq resource, the Pediatric Neuro-oncology 

Cell Atlas (pNeuroOncCellAtlas.org). This interactive resource allows users to study expression 

of transcripts at the single cell level for neoplastic and immune cells in human samples and GEMM 

models, with extensive annotations.  

 

Discussion 

Recognition of the inherent intra-tumoral cellular heterogeneity in MB is critical for the 

correct interpretation of MB cancer biology, an aggressive childhood brain tumor that has seen 

few treatment advances in 20 years. The present study addresses this problem using scRNA-seq 

to study childhood MB, revealing neoplastic and immune subpopulations that had not previously 

been identified. We characterize these novel neoplastic and immune subpopulations to provide 

deeper insights into a broad range of aspects of MB biology. 

Our study identifies associations between chromosomal aberrations both with single cell 

clustering patterns and progenitor proportions. We show that separation of sample-specific cell 

clusters is driven in part by the extent of chromosomal copy number gain and loss. Copy number 

variance of chromosome 8 correlated with the proportion of progenitor populations in GP3, as 

previously observed, but this association is also observed in GP4. These findings underscore the 
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important role that CNVs play in MB cellular heterogeneity and their potential impact on 

subgroup/subtype assignment. MB cellular heterogeneity may confound tumor sub-classifications 

that are based on sequencing of bulk-tumor samples. Several international consortium studies 

have interogated MB bulk-tumor samples, identifying consensus molecular subgroups with further 

subdivision of these into multiple subtypes (2-4). Our study reveals differential subpopulation 

proportions between MB subgroups and subtypes, and restriction of a number of consensus 

subgroup transcriptional markers to discrete subpopulations. These findings underscore the 

significant contribution of MB cellular heterogeneity to subgroup/subtype assignment.  

Our analysis revealed the presence of a photoreceptor-differentiated subpopulation that 

was seen predominantly in GP3 and to a lesser extent in GP4 tumor samples. This finding in GP3 

samples is concordant with numerous prior studies that had identified a photoreceptor gene 

signature in MB (12) and more recently as a defining feature of GP3 (10, 11). The proportion of 

photoreceptor differentiated cells was variable in GP3, being inversely proportional to MYC-

associated progenitor subpopulations. In the MAGIC transcriptomic dataset, the photoreceptor 

subpopulation was estimated to be significantly greater in the GP3 alpha than GP3 gamma MYC-

associated subtype, and consequently is associated with a comparatively favorable clinical 

outcome. The presence of photoreceptor subpopulation in a subset of GP4 samples runs counter 

to the prior understanding of photoreceptor differentiation as a hallmark of GP3 and serves as an 

example of the underlying biological commonalities between GP3 and GP4 that confound 

subgroup assignment based on bulk-tumor sample analysis. 

  We show that neuronally-differentiated subpopulation SHH-C2 is the major cell type that 

constitutes SHH nodules. The SHH-C2 subpopulation was estimated to be the most abundant in 

infant subtypes SHH beta and  gamma, further supporting the association of nodule formation 

with early neurodevelopment. SHH-C2 is particular abundant in the SHH gamma subtype that is 

largely composed of the MBEN histological type that carries a particularly favorable prognosis. 
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Functional analyses of the molecular pathways driving differentiation toward the SHH-C2 is 

feasible now that this subpopulation has been molecularly defined and may reveal therapeutically 

relevant insights. This approach can explored by application of scRNA-seq to in vivo GEMM 

models, that we and others have shown to recapitulate the cellular heterogeneity of SHH MB (40).  

The spectrum of MB infiltrating myeloid subpopulations revealed by our study is 

significantly greater than what was previously understood using flow and histological studies. A 

number of these myeloid subpopulations are distinguished either by neurodevelopment or 

antigen-presenting gene signatures. During early development, myeloid cells guide neural 

development, in part by interacting with developing neurons, phagocytosing apoptotic cells, 

pruning synapses, modulating neurogenesis, and regulating synapse plasticity and myelin 

formation (41). Two MB myeloid subpopulations exhibited neurodevelopmental-related 

characteristics, which differs from the immune role that has been assumed for MB tumor infiltrating 

immune cells. In SHH we identified an M2-myeloid subpopulation that was particularly abundant 

in nodular linings. In GP3 and GP4, we identified a complement-expressing myeloid 

subpopulation with potential neurodevelopmental roles that was associated with survival. These 

neurodevelopmentally-related myeloid subpopulations may be either subgroup or age restricted, 

M2-myeloid cells being specific to SHH that is predominant in infants. We identified a number of 

subpopulations harboring gene expression profiles indicative of active immune roles, in particular 

chemokine- and DC-like myeloid subpopulations that are both characterized by MHC class-II 

expression. Conversely, the presence of naïve microglia is consistent with previous observations 

of a particularly immunosuppressed microenvironment in MB (33). As this “cold” 

immunophenotype is likely to impede immunotherapy in MB, strategies targeting the specific 

immunophenotype of MB are necessary and can be advanced based on the findings of the 

present study. 
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Collectively, our study provides further insight into the neoplastic and immune cellular 

heterogeneity of the most common medulloblastoma subgroups and how this intra-tumoral 

heterogeneity is reflected in GEMM models of MB. These data show that tumor cells present a 

range of differentiation states that varies with each subgroup, and also show subgroup-specific 

interaction of the tumors with their immune microenvironments. We also provide interactive 

browsers for each of the described datasets that will facilitate the on-going interpretation of 

complex childhood MB biological data.  

Materials and methods 

Patient sample tumor cell preparation 

MB samples for the scRNA-seq study were dissociated and viably banked at the time of 

surgery at our institution over a 10-year period. Patient material was collected at the time of 

surgery with consent (COMIRB 95-500). Samples were collected into PBS for subsequent 

scRNA-seq analysis and snap frozen for bulk-tumor methylome analysis (28 primary and 1 

matched recurrence sample) (Supplementary Table 1). ScRNA-seq samples were rapidly 

dissociated into single cells using a mechanical process as described previously (33), viably 

cryopreserved and banked at <80oC for later use. In this way we were able to batch samples and 

thus limit experimental variance without compromising sample quality, as DMSO cryopreservation 

has been shown to match and in some cases exceed the quality of fresh samples with respect to 

scRNA-seq analysis (42). 

 

Methods for MP and MG GP3 MB GEMM models Tumor Generation and Tumor Cell 

Preparation 

Cerebellar stem/progenitor cells (Prominin1+ cells) were purified by fluorescence 

activated cell sorting (FACS) from the cerebella of postnatal day 5–7 (P5–P7) C57BL/6J pups as 
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previously described (34, 36). To generate MP or MG tumors, cells were infected with viruses 

produced from pMSCV-MycT58A-IRES-Luc and pMSCV-DNp53-IRES-GFP (for MP tumors) or 

pMSCV-GFI1-IRES-GFP (for MG tumors). After overnight infection, cells were washed and 

10,000 cells were stereotactically injected into the cerebellum of 6- to 8-week-old NOD-SCID-

IL2R-gamma  (NSG) mice. Animals were monitored weekly and euthanized when they showed 

signs of tumor. Tumors were then enzymatically dissociated and viably cryopreserved prior to 

scRNA-seq analysis. 

 

Method for Math1-Cre/SmoM2 SHH GEMM tumor generation and tumor cell preparation 

To generate mice with SHH-driven MB, we crossed SmoM2 mice (Jackson Labs, stock # 

005130) with Math1-Cre (Jackson Labs, stock #011104) to generate M-Smo mice. All mice were 

of species Mus musculus and crossed into the C57BL/6 background through at least five 

generations. All animal studies were carried out with the approval of the University of North 

Carolina Institutional Animal Care and Use Committee under protocols (19-098). Mice were raised 

until P15 and then tumors were harvested under general anesthesia. Tumor samples were 

dissociated using the Papain Dissociation System (Worthington Biochemical) as previous 

described (18). Briefly, tumor samples were incubated in papain at 37°C for 15 min, then triturated 

and the suspended cells were spun through a density gradient of ovomucoid inhibitor. Pelleted 

cells were then cryopreserved prior to scRNA-seq analysis. 

 

Single-cell capture, RNA library preparation and sequencing 

ScRNA-seq was performed as previously described (7). Samples were thawed in batches 

and flow sorted (Astrios EQ) to obtain viable single cells based on propidium iodide (PI) exclusion. 

With the study goal of performing scRNA-seq on 2,000 cells per sample, we utilized a Chromium 
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Controller in combination with Chromium Single Cell V2 and V3 Chemistry Library Kits, Gel Bead 

& Multiplex Kit and Chip Kit (10X Genomics). Transcripts were converted to cDNA, barcoded and 

libraries were sequenced on Illumina NovaSeq6000 to obtain approximately 50 thousand reads 

per cell.  

 

ScRNA-seq data analysis 

Raw sequencing reads were demultiplexed, mapped to the human reference genome 

(build GRCh38) and gene-expression matrices were generated using CellRanger (version 3.0.1). 

The resulting count matrices were further filtered in Seurat 3.1.0 (https://satijalab.org/seurat/) to 

remove cell barcodes with less than 200 genes or 500 UMIs, more than 30% of UMIs derived 

from mitochondrial genes, or more than 40,000 UMIs. This filtering resulted in 39,946 single cells 

across all samples (Supplementary Fig. 1). After normalization, these cells were clustered using 

the Seurat workflow based on dimensionality reduction by PCA using the 4,000 most variable 

genes. Coarse cell types were defined (immune, myeloid, and stroma cells) were assigned based 

on marker gene expression. Tumor cells were readily identified based on their discrete clustering 

patterns, and the presence of CNVs generated using inferCNV(v.1.3.6). Tumor cells from each 

subgroup were then reanalyzed separately. We applied Harmony alignment (theta = 1.5) to 

correct for inter-sample variation due to experimental or sequencing batch effects (8).  After 

assessment of clustering using a variety of dimensions, we used 50 harmony dimensions to 

cluster the data and perform dimensionality reduction using Uniform Manifold Approximation and 

Projection (UMAP).  Differential expression and marker gene identification was performed using 

Presto (43).  

Chromosomal CNVs of single cells from scRNA-seq were inferred on the basis of average 

relative expression in variable genomic windows using inferCNV 
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(https://github.com/broadinstitute/inferCNV). Cells classified as non-neoplastic were used to 

define a baseline of normal karyotype such that their average copy number value was subtracted 

from all cells.  

Neoplastic subpopulations were characterized by direct examination of neoplastic-

subpopulation specific gene lists, GO-term enrichment analysis, and inference of transcription 

factor regulatory networks. GO-term enrichments were calculated by gProfiler2 (v.0.1.9). Module 

scores for each subpopulation gene signature were generated using the top 200 markers from 

each subpopulation ranked by adjusted p-value, then secondarily ranked by positive fold change. 

Modules were calculated based on the methods in Tirosh  et al., as implemented in the Seurat 

function AddModuleScore (44). Single-cell regulatory network inference and clustering 

(pySCENIC) was used to identify transcription factor regulatory networks at the single cell level 

(9) . Bipartite graphs were generated, using iGraph, between subpopulations using the correlation 

of normalized gene expression of shared variable genes as edge weights (39). Edges were 

removed if adjusted p-values were < 0.05 or if the correlations were less than 0.2 (GEMM to 

human comparisons) or less than 80% of the maximum correlations for human to human 

comparisons. One-to-one orthologs were used when comparing human and mouse single cell 

datasets and gene signatures. Harmony alignment (theta = 2) was performed to generate a UMAP 

projection containing mouse and human neoplastic subpopulations.   

 

Bulk-tumor methylome analyses 

DNA was extracted from snap frozen EPN-PF surgical tumor samples (Qiagen, Allprep 

DNA/RNA mini kit). Twenty-eight surgical tumor samples were from initial presentation and 1 

matched sample from a metastatic first recurrence. Methylome analysis of DNA from presentation 

samples was performed using the Illumina 850K methylation array. Resulting IDAT files were 
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uploaded to MolecularNeuropathology.org (https://www.molecularneuropathology.org/mnp) 

which provided subgrouping into MB molecular subgroups/subtypes, and chromosomal copy 

number variants (CNVs) (Supplementary Table 1).  

 

Deconvolution 

Cibersort was used to perform deconvolution of bulk-tumor MB transcriptomes using 

scRNA-seq subpopulation signature genes (45). The combined MAGIC transcriptomic dataset 

(n=747) was unlogged and used as the mixture file. A signature gene input matrix was generated 

from log2 values of normalized raw scRNA-seq expression data averaged for neoplastic and 

immune clusters (Supplementary Table 2). Cibersort was run using these datasets with 100 

permutations.   

 

Immunohistochemistry 

Immunohistochemistry was performed on 5-µm formalin-fixed, paraffin-embedded (FFPE) 

tumor tissue sections using a Ventana autostainer. Antigen retrieval was performed by incubation 

in citrate solution pH 6.0 for 10 min at 110oC. Slides were treated with primary antibodies for 

GRIA2 (Abcam (clone EP929Y), 1:200 dilution), IMPG2 (Novus (Cat# NBP2-58919), 1:400), 

MRC1 (Sigma (clone 5C11), 1:500) and STMN2 (Novus (Cat#NBP1-49461), 1:1000) for 32 

minutes at 37oC. All immunostained sections were counterstained with hematoxylin. 

Neuropathological review of staining and blinded IHC scoring was then performed (N.W., A.M.D.).  

 

Survival studies 
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Survival data was obtained for a subset of the MAGIC transcriptomic cohort (n=539). 

Survival analyses were performed using Prism (GraphPad) software, with outcome censored at 

5 years. Hazard ratios (HRs) for progression free survival (PFS) and overall survival (OS) were 

estimated using log-rank (Mantel–Cox) analysis of high versus low (i) expression of each 

subpopulation as defined by median deconvoluted subpopulation fractions, and (ii) IHC as defined 

by median score or present versus absent.  

 

Data and Code Availability.  

Custom code used in this study is available at https://github.com/rnabioco/medulloblast. 

ScRNAseq and methylation data have been deposited in the National Center for Biotechnology 

Information Gene Expression Omnibus (GEO) database and are publicly accessible through GEO 

SuperSeries accession number GSE156053 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156053). All MB scRNAseq data is 

also available as a browsable webresource at the Pediatric Neuro-oncology Cell Atlas 

(pneuroonccellatlas.org). 

 

Statistics 

Statistical analyses were performed using R, Prism (GraphPad), and Excel (Microsoft) 

software. Details of statistical tests performed are included in Fig. legends. For all tests, statistical 

significance was defined as P < 0.05.  
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Figure titles and legends 

Fig. 1. Sample specific clustering in MB scRNA-seq is a function of the extent of 

chromosomal copy number gain and loss. a Unaligned UMAP projection of single-cell 

expression data of 28 MB patient samples reveals neoplastic clusters and non-neoplastic 

lymphocyte and myeloid clusters. b Inference of CNVs in scRNA-seq data. c Copy number gain 

or loss event count overlaid onto unaligned UMAP projection of MB cells. Abbreviations: astro, 

astrocyte; oligo, oligodendrocyte; vasc, vascular endothelium. 
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Fig. 2. GP3 MB are comprised of progenitor and differentiated neoplastic subpopulations 

including a photoreceptor-differentiated cluster. a Harmony alignment of GP3 neoplastic cells 

colored by identified clusters. b Subpopulation proportions in each GP3 sample. c GP3-C2 

photoreceptor differentiated subpopulation marker IMPG2 IHC score in MB (GP3, n=7; GP4, 

n=11; SHH, n=10). Representative IHC staining pattern of IMPG2 (brown) in d GP3 (IHC score = 

3) and e GP4 (IHC score = 2) patient samples (scale bars = 20µm). Deconvoluted f GP3-C2 

photoreceptor, g GP3-C1 neuronally-differentiated, h GP3-B2 and i GP3-B1 progenitor 

subpopulation fractions in the MAGIC GP3 cohort (GP3-alpha, n=67; GP3-beta, n=37; GP3-

gamma, n=37). Association of j chromosome 8 gain, and k patient survival with proportion of GP3-

B2 (MAGIC GP3 cohort). l Subpopulation fraction correlation (Pearson) between GP3-C2 and 

GP3-B1 (MAGIC GP3 cohort) colored by subtype. 

 

Fig. 3. GP4 MB neoplastic cell heterogeneity. a Harmony alignment of GP4 neoplastic cells 

colored by identified clusters. b Subpopulation proportions in each GP4 sample. c Association of 

chromosome 8 loss, and d subtype with deconvoluted proportion of GP4-B1 (MAGIC GP4 cohort: 

GP4-alpha, n=97; GP4-beta, n=109; GP4-gamma, n=11). Representative IHC staining pattern of 

neuron differentiated subpopulation marker GRIA2 (brown) in e a GP4 patient sample (IHC score 

= 2.5) and f a GP3 patient sample (IHC score = 0.75)(scale bars = 20µm). g GP4-C2 

subpopulation marker GRIA2 IHC score in a cohort of MB (GP3, n=7; GP4, n=11; SHH, n=10). h 

Deconvoluted GP4-C2 photoreceptor subpopulation fractions (MAGIC GP4 cohort). i Association 

of patient survival with ratio of progenitor to differentiated deconvoluted fractions (MAGIC GP4 

cohort).  
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Fig. 4. SHH MB neoplastic subpopulations include a nodule-associated neuronally-

differentiated subpopulation. a Harmony alignment of SHH neoplastic cells colored by identified 

clusters. b Subpopulation proportions in each SHH sample. c Heatmap showing enrichment of 

top neuron-related GOTerms across differentiated subpopulations. d,e Representative IHC 

staining patterns of SHH-C2 subpopulation marker STMN2 (brown) in a SHH patient samples 

(scale bars = d 40µm and e 20µm). Deconvoluted f SHH-C2 nodule-associated, and g SHH-B1 

progenitor subpopulation fractions (MAGIC SHH cohort: SHH-alpha, n=62; SHH-beta, n=33; 

SHH-delta, n=75; SHH-gamma, n=44).  h Association of chromosome 10q loss with deconvoluted 

proportion of GP4-A1 (MAGIC SHH cohort). i Association of patient survival with deconvoluted 

SHH-C1 neuron-differentiated fraction (MAGIC SHH cohort). 

 

Fig. 5. The immune landscape of MB. a non-harmonized alignment of MB tumor infiltrating 

immune cells colored by identified clusters. b M2-myeloid subpopulation fractions (scRNA-seq 

cohort; GP3, n=7; GP4, n=11; SHH, n=9). c Deconvoluted M2-myeloid (M2-M) subpopulation in 

MB subtypes (MAGIC cohort). d Representative IHC staining pattern of M2-myeloid 

subpopulation marker MRC1 (brown) in an SHH patient sample showing accumulation at nodule 

linings (scale bar = 100µm). e Deconvoluted non-activated microglia subpopulation in all MB 

subtypes (MAGIC cohort).  

 

Fig. 6. GEMM cellular heterogeneity and fidelity with human MB subpopulations Alignment 

of GEMM with human MB subgroup scRNA-seq data, revealing that GEMM cells clustered most 

closely their intended human MB subgroups. a UMAP projection of Harmony aligned (theta=2) 

GEMM and human MB scRNA-seq data. b Hierarchical clustering of GEMM and human MB 

scRNA-seq data. c Non-harmonized alignment of GEMM model MP single cells colored by 
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identified clusters, and labelled according to corresponding subgroup human neoplastic 

subpopulations, and d Jaccard index for the top 200 marker genes between GEMM model MP 

and human GP3 neoplastic subpopulations. This was repeated for e,f GP3 GEMM model MG, 

and g,h SHH model MS.  Abbr: MP, GP3 GEMM Myc/Trp53; MG, GP3 GEMM Myc/GFI1; MS, 

SHH GEMM Math-1/SmoM2; vasc., vascular; oligo, oligodendrocyte.  
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Table 1. Summary of MB subgroup neoplastic subpopulation characteristics.  

program  GP3 GP4 SHH 

A-cell cycle 

 GP3-A GP4-A1 SHH-A1 

GOTerm cell cycle cell cycle, G2M, cell cycle, G2M 

inferred TF 
activity 

MYBL2 FOXM1, MYBL2 MYBL2 

marker 
genes 

CENPF, TOP2A, 
TUBA1B, HMGB2, 
MKI67 

TOP2A, HMGB2, 
CENPF, TUBA1B, 
MKI67 

CENPF, TOP2A, 
HMGB2, MKI67 

proportion 12.5% 7.5% 12.1% 

  GP4-A2 SHH-A2 

GOTerm  cell cycle, S phase cell cycle: S phase 

inferred TF 
activity 

 ZNF492,  E2Fs E2Fs 

marker 
genes 

 HELLS, XRCC2, 
ATAD5, BRCA1 

RRM2, POLQ, 
FANCA, XRCC2, 
BRCA1, HELLS 

proportion  4.6% 10% 

B-progenitor 

 GP3-B1 GP4-B1 SHH-B1 

GOTerm translation/oxidative 
respiration 

oxidative 
phosphorylation/ 
translation 

translation/oxidative 
respiration/neg. reg. 
of epithelial cell 
differentiation 

inferred TF 
activity 

HMGA1, MYC, MAX BARHL1, NEUROD2, 
SOX4, JUNB, JUND 

ATOH1, ZEB1, HES6 

marker 
genes 

ribosomal STMN2, ribosomal SFRP1, CXCR2,  
ribosomal 

proportion 33.3% 25.9% 28.7% 

 GP3-B2 GP4-B2 SHH-B2 

GOTerm translation/oxidative 
respiration 

translation translation/oxidative 
respiration 

inferred TF 
activity 

HLX, ATF4, MYC HEY1, TEAD2, ELK1 ELK1, THAP11, MAX 

marker 
genes 

ribosomal, MYC STMN2, ribosomal ribosomal 

proportion  1.9% 17.3% 17.1% 
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C-neuronally 
differentiated 

 GP3-C1 GP4-C1 SHH-C1 

GOTerm RNA processing/ axo-
dendritic transport 

RNA processing/ axo-
dendritic transport 

RNA processing/ axo-
dendritic transport 

inferred TF 
activity 

ARNT ONECUT2, LHX4 POU2F2, KMT2A 

marker 
genes 

LUC7L3, DST GRIA2, LUC7L3, DST GRIA2, LUC7L3, DST 

proportion 37.6% 32.7% 28.2% 

 GP3-C2 GP4-C2 SHH-C2 

GOTerm photoreceptor photoreceptor neuron development 

inferred TF 
activity 

SHOX2, CRX MEIS1, CRX SOX4, NEUROD1 

marker 
genes 

NRL, IMPG2 NRL, IMPG2 STMN4, STMN2 

proportion 14.6% 6.9% 3.6% 

 

Abbreviations: TF, transcription factor. 
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