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Abstract 

Background 

Although microRNAs (miRNAs) are involved in all hallmarks of cancer, miRNA           
dysregulation in the metastatic process remains poorly understood. We investigated          
the role of miRNAs in metastatic evolution of colorectal cancer (CRC) by analyzing             
smallRNA-seq datasets from primary CRC, metastatic locations (liver, lung and          
peritoneum), and corresponding adjacent tissues. Addressing main challenges of         
miRNA analysis, a bioinformatics pipeline was developed that contains ​bona fide           
miRNA annotations from MirGeneDB, utilizes the quality control software miRTrace,          
applies physiologically meaningful cutoffs and accounts for contribution of cell-type          
specific miRNAs and host tissue effects. 

Results 

Two hundred-and-seventy-five miRNA sequencing datasets were analyzed, and after         
adjusting for the contribution of heterogeneity in cellular composition, strong          
signatures for primary and metastatic CRC were identified. The signature for primary            
CRC contained many previously known miRNAs with known functions. Deregulation          
of specific miRNAs was associated with individual metastatic sites, but the metastatic            
signatures contained overlapping miRNAs involved in key elements of the metastatic           
process, such as epithelial-to-mesenchymal transition and hypoxia. Notably, four of          
these miRNAs (MIR-8, MIR-10, MIR-375, MIR-210) belong to deeply conserved          
families present in many other organisms, triggering questions about their          
evolutionary functions and opportunities for experimental validation. 

Conclusion: 

Applying a meticulous pipeline for the analysis of smallRNA-seq data, miRNA           
signatures for primary and metastatic CRC were identified, contributing novel          
insights into miRNA involvement in CRC metastatic evolution and site-specific          
metastatic adaptations. New datasets can easily be included in this publicly available            
pipeline to continuously improve the knowledge in the field. 

 

Keywords: microRNAs, colorectal cancer, metastases, biomarkers, bioinformatics,      

MIR-8, MIR-10, MIR-375, MIR-210 
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Background 

Colorectal cancer (CRC) is a heterogeneous disease and a leading cause of            

cancer-related deaths worldwide ​[1]​. CRC evolution is an only partially understood           

process that starts with the formation of primary tumors from epithelial cells in the              

colorectum and commonly leads to metastatic progression, which is the major cause            

of mortality. The main metastatic sites are the liver, lungs and peritoneal surface,             

emphasizing the substantial changes these cells undergo during their evolution that           

enable them to travel and establish in distant organs with very different            

microenvironments ​[2,3]​. Although the molecular landscape of primary CRC (pCRC)          

has been extensively characterized and several mechanisms for the onset of           

tumorigenesis are known ​[4]​, the genomic and transcriptomic changes in metastatic           

CRC (mCRC) are less well understood ​[5–7]​. A better understanding of these changes             

is warranted, because the adaptation to a metastatic phenotype not only represents a             

pivotal step in cancer evolution, but could be exploited as potential diagnostic,            

prognostic, and predictive biomarkers of clinical relevance. 

MicroRNAs (miRNAs) are evolutionary ancient post-transcriptional gene regulators        

involved in cell-type specification, tissue identity and development in animals ​[8]​.           

With more than 11,000 annual publications in 2019 alone they are the most studied              

RNA molecules to date ​[9]​. Because their dysregulation correlates with all hallmarks            

of cancer ​[10]​, due to their remarkable chemical stability ​[11]​, and the availability of              

sensitive detection methods, miRNAs have repeatedly been suggested as promising          

cancer biomarkers ​[12,13] ​. However, although numerous candidate biomarkers and         

miRNA signatures have been suggested, there is a striking lack of overlap between             

published results from different groups, and to date, no clinically implemented           

miRNA biomarker is available for pCRC ​[6,14–19]​. In mCRC, the absence of consistent             

data is even more apparent, and there is no consensus regarding which miRNAs are              

up- and down-regulated in mCRC, representing a major obstacle to understanding the            

role of miRNAs in metastatic progression as well as to the identification of relevant              

biomarkers ​[6]​.  
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This lack of consensus is surprising and clearly is not reflecting biology or evolution              

of CRC but might rather be due to known challenges in miRNA research. First, varying               

definitions of human miRNA genes have previously resulted in substantially different           

sets of miRNAs, and non-miRNAs, being profiled between different studies. Second, a            

uniform bioinformatics workflow tailored for smallRNA-seq analysis of bulk samples          

from different organs, tissues and pathological states was missing. Third, for           

differential expression analysis, commonly reported miRNAs did not meet         

physiologically relevant expression levels in either of the studied samples ​[20]​.           

Finally, a strategy to account for cellular composition effects when analyzing bulk            

tissue cancer specimens has usually not been applied ​[21]​.  

To overcome these challenges, our group previously showed that the majority of            

predicted human miRNAs in the most commonly used miRNA reference database,           

miRBase, were not derived from miRNA genes, and that including such sequences in             

miRNA studies could affect the results ​[22]​. For instance, in a previous study by              

Neerincx et al ​[14]​, the reported “miRNA” signature based on miRBase annotations            

for mCRC consisted solely of genes that were all not ​bona fide ​miRNAs (Mir-320 -               

miRtron ​[23]​, Mir-3117 - overlaps with protein coding gene, Mir-1246 - a U2 derived              

degradation product ​[24]​, and Mir-663 - a rRNA fragment ​[25]​. To enable more             

meaningful and comparative studies, we set up MirGeneDB, a publicly available,           

curated miRNA gene database ​[26]​. The challenge of ensuring quality and           

reproducibility when comparing smallRNA-seq data across studies was resolved by          

Kang et al who developed the miRTrace software as a universal quality control             

pipeline specifically for smallRNA-seq data ​[27]​. To ensure physiologically         

meaningful levels of miRNAs in differential expression analysis between two sample           

groups such as pCRC and mCRC, we applied a strict cutoff of 100 reads per million                

(RPM) as the minimum expression level, which also implied lower dependence on            

technical factors such as, for instance, sequencing depth ​[14]​. 

The final challenge relates to the analysis of datasets generated from bulk tissue             

samples of varying cellular composition, such as normal tissue and primary tumor            

tissue biopsies. Although the majority of miRNAs are ubiquitously expressed in           
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various tissues, many miRNAs are exclusively expressed in particular cell types,           

tissues, organs, or at specific developmental time points ​[21,28–30]​. Such (cell-)           

specific miRNAs may confound the interpretation of results when comparing miRNA           

expression between different tissue types, such as primary and metastatic tumors           

and tumors derived from different metastatic sites. To address this we took            

advantage of previous studies on cell-type specific miRNA expression and          

incorporated the information of cell specificity of miRNAs into our analysis ​[28–31]​.  

Taking all these aspects into account and addressing each of them in a             

comprehensive, reproducible and flexible pipeline, we analyzed novel smallRNA-seq         

data from pCRC and mCRC, combined with normal adjacent tissues and existing            

smallRNA-seq datasets, altogether totaling 193 datasets. We derived a robust          

consensus miRNA signature of pCRC and mCRC that partially overlap with previous            

reports but which also includes novel miRNAs. Specifically, differential expression          

analysis revealed a set of deregulated miRNAs when comparing pCRC and multiple            

metastatic sites, including Mir-10-P1a, Mir-375, Mir-8-P1b and the hypoxamiR         

Mir-210 that was validated in independent samples and point to an evolutionary            

adaptation of metastatic tumor cells to hypoxic conditions in distant sites. 

  

 

5 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.01.127647doi: bioRxiv preprint 

https://paperpile.com/c/K4eV5v/PAWM9+07jEV+JXLJN+Kw5Jh
https://paperpile.com/c/K4eV5v/07jEV+JXLJN+Kw5Jh+YkIep
https://doi.org/10.1101/2020.06.01.127647
http://creativecommons.org/licenses/by/4.0/


 

Results 

Next generation sequencing (NGS) data collection and processing 

Sequencing samples from three paired primary CRC (pCRC) and normal colorectum           

(nCR), 9 pairs of CRC liver metastasis (CLM) and normal liver (nLi), 7 pairs of CRC                

lung metastasis (mLu) and normal lung (nLu), and 9 peritoneal metastasis (PM-CRC)            

were included in the study. Five previous studies with relevance for the discovery of              

NGS based miRNA signatures in pCRC and CLM were available for download            

[14–17,32]​, while data from four published studies (pCRC and cell lines) were not             

accessible despite repeated requests ​[33–36]​. Combined datasets consisting of 275          

NGS datasets (pCRC=141, nCR=32, CLM=38, nLi=24, mLu=11, nLu=7, PM-CRC=22)         

were processed. All datasets were run through the miRTrace quality control pipeline            

[27]​ and subsequently mapped to MirGeneDB.org ​[26]​. 

Consensus datasets 

Four of the six tissue-based datasets fulfilled the quality control criteria, yielding 193             

total NGS datasets (Additional file 1: Supplementary Methods), while two studies           

were excluded. One had low quality reads in the majority of samples ​[15] (Additional              

file 3: Supplementary Methods), and one because of presence of contamination ​[16]            

(Additional file 2: Supplementary Methods), resulting in a highly congruent group of            

datasets (‘consensus datasets’ N=193 (70.2%), pCRC=94 (66.7%), nCR=24 (75.0%),         

CLM=18 (47.4%), nLi=19 (79.2%), mLu=10 (90.9%), nLu=7 (100%), PM-CRC=19         

(86.4%)) ​[14,17,32]​, and these datasets were included in further analyses (Figure           

1A).  
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Figure 1: ​MiRNA expression profiles can distinguish normal adjacent and cancerous tissues            
at the global level independent of study. ​a Uniform Manifold Approximation and Projection             
for Dimension Reduction (UMAP) cluster plot based on global miRNA expression, normalized            
by varianceStabilizingTransformation (VST), from the DESeq2 bioconductor package, colored         
by tissue type (left) and study (right). b Correlation plot of global, VST transformed miRNA               
expression, annotated by normal or malignant tissue, as well as by tissue type of origin.               
Primary colorectal cancer (pCRC), normal colorectal tissue (nCR), CRC liver metastasis           
(CLM), normal adjacent liver tissue (nLi), CRC lung metastasis (mLu), normal adjacent lung             
tissue (nLu), CRC peritoneal metastasis (PM-CRC). 

Global miRNA expression 
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Global miRNA expression was analyzed using the dimensionality reducing technique          

UMAP (Figure 1A) and unsupervised clustering (Figure 1B). UMAP revealed that the            

consensus datasets clustered according to the tissue of origin (Figure 1A left), and not              

according to the originating study (Figure 1A right), indicating that the consensus            

datasets are representative of their respective tissue. All normal tissues (nLi, nLu and             

nCR) formed distinct clusters distant from each other and from the tumor tissues. Of              

note, the UMAP plot showed that the CLM and mLu tissues formed distinct clusters.              

Unsupervised clustering (Figure 1B) showed a clear difference between normal and           

tumor tissues. The normal tissues (nLi, nLu and nCR) formed distinct clusters (Figure             

1B), while nCR and the tumor samples (pCRC, CLM, mLu and PM-CRC), were part of a                

major cluster separate from nLi and nLu (Figure 1B).  

Cell specific miRNA expression 

McCall et al 2017 ​[28] reported a set of 45 miRNAs with cell-type specific expression.               

These miRNAs were used to analyze the contribution of cell specific miRNAs on             

expression data derived from bulk tissue (see Additional file 6: Supplementary           

Methods for all cell specific miRNAs used in this analysis). PCA analysis revealed that              

when including only cell specific miRNAs in the analysis, datasets still clustered into             

groups according to the biological origin of the sample, with nLu and nLi being clearly               

distinct from the tissues of colorectal origin (nCR, pCRC, CLM, mLu and PM-CRC), as              

shown in Figure 2A (left). The correlation circle (Figure 2A, right) shows to what              

extent miRNAs contribute to the variance along a dimension, focusing on the top 15              

most contributing miRNAs. Notably, the PCA analysis showed that Mir-486_5p,          

Mir-126_5p, Mir-342_3p and Mir-204-P2_5p correlated with the axis separating nLu          

and nLi from the malignant tissues, correlating with higher expression in nLu and nLi.              

Mir-8-P2b_3p, Mir-8-P2a_3p and Mir-17-P3c_5p also correlate with the axis         

separating malignant tissues from nLi and nLu, although in this case correlating with             

higher expression in the malignant tissues. Both the mesenchymal specific          

Mir-145_5p and Mir-143_3p correlated with the axis separating nCR and pCRC and            

the metastatic tissues, in addition to Mir-129-P1_5p, Mir-133-P1_3p, Mir-133-P2_3p,         
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Mir-9-P3_5p, Mir-1-P1_3p, and Mir-1-P2_3p.  

Figure 2: ​Cell specific miRNAs provide insight into cellular composition of tissue. ​a ​Left is a                
Principal Component Analysis (PCA) plot of cell-specific miRNA, VST normalized, colored by            
tissue. Transparent points are individual samples, solid points represent the mean position of             
the tissue and shade is 95% confidence of the mean. The correlation circle (Figure 2A, right)                
shows to what extent miRNAs contribute to the variance along a dimension, focusing on the               
top 15 most contributing miRNAs. For example, if the direction of an arrow in the correlation                
plot (right) is the same as the direction that separates two tissues on the PCA plot (left), it                  
means that this particular miRNA contributes to the variance separating the two tissues in              
dimension 1 and dimension 2. ​b Heatmap of cell-specific miRNAs in each tissue. Color scale is                
z-score of Reads Per Million (RPM) per miRNA. Only miRNAs with greater than 100 RPM in at                 
least one of the tissues are shown. 
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Comparing cell specific miRNA expression in the different tissues using a heatmap            

(Figure 2B), scaled by a z-score of Reads Per Million (RPM) values for each miRNA,               

cell specific miRNAs tended to be expressed at lower levels in malignant tissues             

compared to the normal tissues (Figure 2B). Not surprisingly, the hepatocyte specific            

Mir-122_5p had a much higher expression in nLi compared to nCR. While Mir-145_5p             

appeared to have a higher expression level in nCR compared to pCRC, Mir-143_3p             

could not be visually observed to be differentially expressed.  

Finally, to assess the influence of cell specific miRNAs on tissue clustering with UMAP,              

possibly representing the presence of normal adjacent tissue cells in the metastatic            

tissue samples, cell specific miRNAs were excluded from the analysis (Supplementary           

Figure 2c, Additional file 6: Supplementary Methods). Even without the cell specific            

miRNAs, tissues clustered similarly to the datasets with all miRNAs, with nLi, nLu and              

nCR forming distinct clusters. pCRC, CLM and PM-CRC formed separate clusters,           

though the CLM and PM-CRC were clearly distinct from the pCRC.  

A miRNA signature for pCRC compared to nCR 

To test which individual miRNAs are driving the observed global differences between            

nCR and pCRC, expression levels of all miRNA genes were compared between the two              

groups, annotating cell specific miRNAs, as well as miRNAs reported to be expressed             

in plasma of healthy individuals. Thirty-seven miRNAs were up-regulated and 37           

miRNAs were down-regulated; and of these, 15 up- and down-regulated miRNAs           

were cell specific miRNAs and 20 up- and down-regulated miRNAs were reported to             

be expressed at a high level in peripheral blood cells ​[37]​. Global differential             

expression results are shown as a volcano plot in Figure 3A, and the signature              

miRNAs found to be differentially expressed above the defined thresholds are shown            

in a bar plot in Figure 3B. Of the initial signature, 15 miRNAs were cell-type specific,                

including Mir-143, Mir-145, Mir-150, Mir-223, and Mir-342. Mir-143 and Mir-145          

(lower expression in pCRC) are reported to be exclusively expressed in mesenchymal            

cells, specifically fibroblasts and smooth muscle cells ​[38]​. Mir-150 and Mir-342 are            

predominantly expressed by lymphocytes, and we observed a strong reduction in           
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expression levels in the tumor samples compared to nCR. Mir-223, which is specific             

to dendritic cells and macrophages ​[28]​, was up-regulated in pCRC. 

Figure 3: ​Distinct miRNA signatures in      
primary colorectal cancer (pCRC). ​a     
Volcano plot of differentially expressed     
genes in nCR versus pCRC. The x-axis       
shows Log 2 Fold Change (LFC) while       
y-axis shows -Log 10 Benjamini-Hochberg     
adjusted P-values. Cell-specific miRNAs are     
known to be exclusively expressed in one       
or a few cell types. Signature miRNA are        
miRNA differentially expressed between    
nCR and pCRC, where expression     
thresholds are greater than 100 Reads Per       
Million (RPM) in either nCR or pCRC. Blood        
cell miRNA are miRNA that have been       
reported to be expressed in one or more        
blood cells. ​b Barplot of LFC of       
differentially expressed miRNA in pCRC     
compared to nCR.  
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Signatures for mCRC compared to pCRC, accounting for normal tissue          

expression 

Common and independent miRNA signatures were identified for CLM, mLu and           

PM-CRC, compared to pCRC. Altogether, 27 miRNAs were up-regulated and 7 miRNAs            

were down-regulated in the metastatic lesions when compared to pCRC (Figure 4).            

To assess miRNAs that are differentially expressed when comparing pCRC and mCRC,            

an important consideration is the confounding effect of miRNAs derived from the            

normal tissue surrounding the metastasis, which inevitably will be present in the            

bulk metastasis tissue samples. This issue was solved by omitting miRNAs that were             

differentially expressed between nCR and nLi or nLu, as well as between pCRC and              

nLi or nLu from the signature.  
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Figure 4: ​Distinct miRNA signatures in metastatic colorectal cancer (mCRC). ​a Volcano plots             
show differentially expressed miRNAs in CLM, mLu and PM-CRC compared to pCRC.            
Cell-specific miRNAs are known to be exclusively expressed in one or a few cell types. Normal                
control miRNAs are also differentially expressed in normal tissue. Signature miRNA are            
miRNA differentially expressed between pCRC and mCRC, and where expression levels were            
greater than 100 Reads Per Million (RPM) in either the metastasis or primary tumor. ​b Venn                
diagrams show how many of the mCRC signatures overlap between the different metastatic             
sites. ​c Heatmap compares expression levels of signature miRNA in the tissue types. The color               
scale is the z-score of RPM values for each individual miRNA.  
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Five miRNAs were differentially expressed across multiple metastatic sites (Figure 4           

and Figure 5). Mir-210_3p showed strong up-regulation in both CLM and mLu, with             

more than twice as high expression levels compared to pCRC, whereas in PM-CRC, the              

increase was more modest.  

 

 

Figure 5: ​Evolutionarily deeply conserved microRNAs are commonly upregulated at          
multiple metastatic sites. ​a ​Bar plots of Log 2 Fold Changes (LFC) of miRNAs differentially               
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expressed across the normal and metastatic tissue types relative to pCRC. Error bars are 95%               
Confidence Intervals. ​b Violin plots of Log 10 Reads per Million (Log10 RPM) in the different                
tissues.  

In addition, Mir-1307_5p, Mir-8-P1b_3p (​miR-141 ​) and Mir-584_5p were        

up-regulated in all metastatic sites compared to pCRC. Mir-8-P1b_3p was          

down-regulated in the pCRC (5730 RPM) compared to nCR (8362 RPM), and yet again              

far lower in the nLi tissue (147 RPM), although it was not differentially expressed              

between pCRC and nLu. The up-regulation of Mir-8-P1b_3p in CLM tissue (9956 RPM)             

and mLu (12309 RPM) can therefore not be explained as a normal adjacent tissue              

effect. Of note, Mir-1307_5p was down-regulated in pCRC (362 RPM) compared to            

nCR (610 RPM), and again the observed increase in the metastatic sites (CLM: 681              

RPM, mLu: 820 RPM, PM-CRC: 737 RPM) cannot be explained by a normal tissue              

effect (nLi: 423 RPM and nLu: 393 RPM). 

Mir-375_3p and Mir-10-P1a_5p were up-regulated in CLM (Mir-375_3p: 7222 RPM,          

Mir-10-P1a_5p: 164107 RPM) and PM-CRC (Mir-375_3p: 7192 RPM, Mir-10-P1a_5p:         

130276 RPM), compared to pCRC (Mir-375_3p: 4500 RPM, Mir-10-P1a_5p: 89188          

RPM). Both miRNAs showed lower expression in nLi (Mir-375_3p: 2407 RPM,           

Mir-10-P1a: 29711 RPM), which means that the detected levels cannot be explained            

as a normal tissue effect. 

CLM vs pCRC specific metastatic miRNA signature 

In CLM compared to pCRC, in addition to the six miRNAs differentially expressed in              

multiple metastatic sites, five miRNAs were up-regulated: Mir-425_5p,        

Mir-338-P1_3p, Mir-592_5p, Mir-1247_5p and Mir-339_3p, and three miRNAs were         

down-regulated: Mir-451_5p, Mir-154-P12_3p and Mir-30-P1b_5p. Twenty-five      

additional miRNAs were differentially expressed between CLM and pCRC, but these           

were also differentially expressed in the corresponding normal adjacent tissues, and           

may therefore represent a confounding effect.  

mLu vs pCRC specific metastatic miRNA signature 

In ​mLu compared to pCRC, in addition to the miRNAs differentially expressed in             

multiple metastatic sites, five miRNAs were up-regulated: Mir-374-P1_5p,        
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Mir-19-P1_3p, Mir-19-P2b_3p, Mir-19-P2a_3p and Mir-155_5p, and four were        

down-regulated: Mir-423_5p, Let-7-P1b_5p, Let-7-P2c1_5p and Mir-221-P2_3p.      

Again, 35 additional miRNAs were differentially expressed between mLu and pCRC,           

but because of similar differential expression in the same direction in the normal             

adjacent tissues, these were omitted from the signature.  

PM-CRC vs pCRC specific metastatic miRNA signature 

As no normal peritoneal tissue was available, the union of nCR vs nLi and nCR vs nLu,                 

and the union of pCRC vs nLi and pCRC vs nLu, was used to control for a normal                  

adjacent tissue effect in the analysis of PM-CRC compared to pCRC. In addition to the               

differentially expressed miRNAs in multiple metastatic sites, five miRNAs were          

up-regulated in PM-CRC, including Mir-154-P36_3p, Mir-191_5p, Mir-127_3p,       

Mir-154-P9_3p and Mir-10-P1b_5p, and three miRNAs were down-regulated:        

Mir-29-P1b_3p, Mir-30-P2a_5p and Mir-30-P2b_5p. Again, 31 differentially expressed        

miRNAs when comparing PM-CRC and pCRC were excluded based on expression in            

the normal adjacent tissues. 

qPCR validation 

qPCR analysis of randomly selected CLM (n=12) and pCRC (n=12) samples not            

included in the previous NGS analysis replicated the findings from the NGS data,             

validating up-regulation of Mir-210_3p in CLM compared to pCRC, exhibiting a           

2.4-fold increase (Welch t-test p-value = 0.027, alternative hypothesis: greater in           

CLM). The result is close to the NGS data, where Mir-210_3p was 2.6-fold higher in               

CLM compared to pCRC. Data analysis is shown in (Additional file 8: Supplementary             

Methods). 
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Discussion  

We here present a rigorous pipeline for the analysis of bulk tissue smallRNA-seq data.              

The pipeline was developed to address prevailing challenges in the miRNA field to             

obtain robust insights into the evolution of CRC and in particular to understand the              

role of miRNAs in the evolution of mCRC. Our analysis of clinical smallRNA-seq             

datasets produced in this study, as well as publicly available clinical smallRNA-seq            

data sets represents the most comprehensive analysis of miRNAs in CRC to date.             

Combining meticulous quality control with open science practices allows for          

increased power to detect meaningful miRNAs, along with high confidence that the            

results will be reproducible. In addition, this allows for the inclusion of additional             

datasets to the analysis as they become available in the future. Importantly, our             

analytical pipeline is not restricted to CRC and could easily be applied to other cancer               

types.  

pCRC signature miRNAs 

More than 40 deregulated miRNAs were identified in the signature for pCRC. This             

strong signal reflects major and genome-wide changes of malignant transformation          

on the transcriptional profile of these tissues (Figure 3). Among the up-regulated            

miRNAs, a subset represents well known “oncoMirs” such as Mir-21, and members of             

the three Mir-17-92 clusters (8 genes), Mir-31 and Mir-221. These miRNAs have            

validated and well-studied targets in CRC such as PTEN, TGFBR, SMAD ​[18,39,40]​.            

The majority of the remaining previously reported genes in pCRC are the MIR-15             

family member, Mir-29-P2a/b (​miR-29b ​), two MIR-96 family members, Mir-135-P3,         

Mir-130-P2a (​miR-301a ​) ​[41,42]​, Mir-181-P1c ​[43]​, and Mir-224 ​[18,39]​. Mir-95-P2         

(​miR-421 ​) was also significantly up-regulated when comparing nCR and pCRC in our            

data. These miRNAs have not been reported for CRC previously, but their            

deregulation has been demonstrated in other cancers ​[44–46]​. The remaining          

down-regulated miRNAs were all previously reported to be associated with CRC; for            

instance the tumor suppressor MIR-10 family (4 genes), MIR-15, MIR-192 and           

MIR-194 (2 genes each) ​[18,39] have been implicated in CRC progression. The fact             
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that the pCRC vs nCR miRNA signature consists of miRNAs previously reported in the              

cancer literature provides confidence in the subsequent analysis of metastatic tumor           

samples. 

mCRC signature miRNAs 

Multiple miRNAs were found to be differentially expressed between pCRC and mCRC,            

and of these, Mir-8-P1b (miR-141), Mir-375, Mir-10-P1a, Mir-210, and were          

up-regulated in multiple metastatic sites, representing key starting points for future           

studies in metastasis biology. A number of miRNAs were differentially expressed at            

single metastatic sites compared to pCRC and may represent evolutionary          

adaptations to survival at the specific site. Little is known about these miRNAs in              

mCRC and the role in organ specific metastatic adaptation, and they may represent             

new players in metastasis and novel starting points in future research. 

Several of the identified miRNAs have previously been implicated in parts of the             

metastatic process, mechanistically linking them to important evolutionary        

adaptations of metastasizing tumor cells such as the epithelial-mesenchymal         

transition (EMT) and, its reversal, the mesenchymal-epithelial transition (MET) ​[47]​.  

MIR-8 and MIR-375 

Mir-8-P1b_3p (​miR-141 ​), which is a member of the MIR-8 family , was           1

down-regulated in pCRC compared to nCR, yet up-regulated at all metastatic sites            

compared to pCRC (Figure 5). MIR-8 family members have been reported to suppress             

metastasis by targeting transcription factors ZEB1 and ZEB2, suppressing E-cadherin          

expression ​[48,49] ​. The finding therefore makes sense in terms of contributing to            

MET in the established metastasis at the distant site and is in line with previous               

reports in CRC ​[50,51]​. Increased expression of Mir-8-P1b_3p suppresses ZEB1 and           

ZEB2 expression, and thus reactivates E-cadherin expression and the epithelial          

phenotype. Further experimental evidence from an ​in vivo study of mouse breast            

cancer cell lines suggested that MIR-8 family miRNA expression was necessary for            

1 ​https://mirgenedb.org/browse/hsa?sort=pos&seed=&family=MIR-8 
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liver and lung colony formation ​[52]​, supporting the significance of the MIR-8 family             

in the evolution of metastases not only for mCRC, but metastases in general. 

Two previous studies have also suggested circulating Mir-8-P1b_3p (​miR-141 ​) to be a            

predictive biomarker of metastasis in CRC. In a study of 182 pCRC cases (stage I-IV)               

and 76 healthy controls, plasma Mir-8-P1b_3p (​miR_141 ​) levels were associated with           

stage IV CRC and poor survival outcomes ​[53]​, while no differences in expression             

levels were detected in the corresponding pCRC samples. In a more recent study,             

Meltzer et al 2019 studied plasma exosomal miRNA levels in 83 locally advanced             

rectal cancer cases collected at the time of diagnosis ​[54]​. Exosomal Mir-8-P1b_3p            

(​miR-141 ​) was elevated in patients with synchronous CLM compared to patients with            

no metastases, and Mir-8-P1b_3p (​miR-141 ​) was associated with higher risk of CLM            

development. The study also reported that high Mir-375_3p levels were associated           

with synchronous CLM. This is interesting in light of the tissue expression levels             

detected in our study, as Mir-375_3p was expressed at higher levels in both CLM and               

PM-CRC compared to pCRC. Mir-375_3p is the only member of the MIR-375 family  .  2

Both miRNAs have previously been reported to be present in circulation in other             

cancer types, including breast cancer ​[55]​, suggesting a possible association with the            

metastatic process. It is worthwhile mentioning that both the MIR-8 and the MIR-375             

family are evolutionarily deeply conserved miRNA families, ranging back more than           

650 million years to the last common ancestor of all bilaterian animals. Consequently,             

family members are also found in most other animals ​[26]​, and could be studied, for               

instance, in emerging cancer model systems such as the fruit fly ​Drosophila ​ ​[56]​. 

MIR-10 

Another miRNA family that has been associated with EMT is the MIR-10 family ​[57]              

and in particular its Mir-10-P1 paralogues . Levels of Mir-10-P1b_5p were elevated in            3

breast cancer cell lines with metastatic capability, compared to both human           

mammary epithelial cells, or other human breast cancer cell lines ​[58]​. Furthermore,            

2 ​https://mirgenedb.org/browse/ALL?seed=&family=MIR-375 
3 ​https://mirgenedb.org/browse/hsa?family=MIR-10 
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in vivo silencing of Mir-10-P1b_5p using antagomirs suppressed lung metastasis, but           

did not slow primary tumor growth ​[57]​. Mir-10-P1b_5p expression is induced by            

Twist​, a hypoxia inducible transcription factor involved in EMT, and it targets            

Hoxd10, which is reported to be a suppressor of metastasis ​[57]​. T​hese findings were              

further expanded to CRC showing that elevated Mir-10-P1 levels increase invasion           

and migration in CRC tumors ​[59]​. Although Mir-10-P1b_5p was not up-regulated in            

mCRC in this study, its paralogue Mir-10-P1a_5p, was strongly up-regulated. With an            

expression of around 90 000 RPM in pCRC and 165 000 RPM in CLM, its               

up-regulation in CLM was strong, both in relative and absolute terms. It was also              

up-regulated in PM-CRC, but more modestly at 130 000 RPM. Although encoded on             

two separate loci, Mir-10-P1a (chromosome 17) and Mir-10-P1b (chromosome 2),          

the seed sequences are identical (ACCCUGU), and thus have the same mRNA target             

range and similar functional roles ​[60]​. The high total expression levels suggest a             

functional role, possibly representing adaptations to survive at the distant site. Given            

that the MIR-10 family is the deepest conserved miRNA family known, found even in              

early multicellular animals such as jellyfish ​[61]​, and with high conservation in            

sequence and position in the HOX-cluster between the human and the cancer model             

the zebrafish ​Danio rerio ​[62] and the emerging model nematode ​Caenorhabditis           

elegans ​ ​[63]​, a range of interesting follow-up experiments are possible.  

MIR-210 

Hypoxia is an important feature of metastatic evolution, influencing processes such as            

metabolism, angiogenesis, cell proliferation and differentiation ​[64]​. In this context,          

our finding of up-regulation of the “hypoxamir” Mir-210_3p at all mCRC sites is of              

particular interest and we further validated the up-regulation of this miRNA by qPCR.             

The Mir-210_3p promoter has a binding site for HIF-1 and HIF-2 , transcription        α   α   

factors involved in maintaining cellular oxygen homeostasis, and Mir-210_3p is          

therefore up-regulated under hypoxic conditions ​[65]​. However, the impact of          

Mir-210_3p on the metastatic process is controversial, with studies providing          

contradictory statements about its role in different cancer types, some reporting           

functions as an oncoMir and inducer of metastatic progression, while others supports            
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a role as a tumor suppressor ​[66]​. In pCRC Mir-210_3p was shown to be up-regulated               

in a study of 193 cases comparing paired pCRC and nCR tissue samples, and high               

Mir-210_3p levels were associated with inferior prognosis ​[67]​. Higher Mir-210          

levels were also reported to enhance invasion and metastasis in cell lines ​(Mudduluru             

et al. 2015)​. We did not observe up-regulation of Mir-210_3p in pCRC compared to              

nCR; rather, our results show up-regulation at the metastatic sites, which is in             

accordance with several non-NGS studies in CRC ​[68–70]​. Our finding of increased            

Mir-210_3p expression at all mCRC sites, suggest that hypoxic stress is a common             

occurrence at the metastatic sites, and that up-regulation of Mir-210_3p may be a             

consequence of this hypoxic microenvironment. Curiously, MIR-210 also belongs to a           

group of ancient miRNA, present in most animals living today, and therefore could be              

tested in a range of previously mentioned models such as the fruit fly or zebrafish. 

the normal tissue effect and cell-type specific miRNAs 

When considering miRNA expression at the global level, our results confirmed the            

importance of analyzing mCRC sites as separate entities. The UMAP analysis (Figure            

1A) showed that the metastatic sites, in terms of global miRNA expression, were             

clearly distinct. In particular, the mLu datasets formed more distinct clusters from            

the pCRC, compared to the other mCRC samples. This may reflect the presence of host               

tissue cells in the bulk metastasis tissue, but could also represent adaptive            

expressional responses in tumor cells. Both this, and the unsupervised clustering           

analysis (Figure 1B), showed that at the global miRNA expression level of the             

adjacent tissues, nCR, nLi and nLu were clearly distinct, stressing the importance of             

controlling for adjacent tissues in the differential expression analysis to moderate the            

initial apparent large differences between nCR and pCRC, or pCRC and mCRC.  

Important in this perspective, exclusion of cell-type specific miRNAs (Figure 2A),           

from the analysis did not appear to influence the clustering analyses. In particular,             

mLu samples still clustered close to nLu, and not to the other malignant tissues,              

pointing to the presence of additional global miRNA expression differences in these            

organs and tissues. Nevertheless, when comparing tissues, it is important to account            
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for miRNAs that are exclusively expressed in specific cell types. For instance,            

Mir-143/145 was previously reported to be down-regulated in pCRC compared to           

nCR, and was therefore suggested as a biomarker of CRC ​[71]​. However, it has since               

been conclusively shown that Mir-143/145 are expressed in mesenchymal cells only,           

and not in epithelial cells ​[72,73]​. Therefore, the observed “down-regulation” of           

Mir-143/145 must be caused by differences in cellular composition of the tissues, and             

not in expression changes in epithelial cancer cells. It is therefore necessary to             

account for the cellular composition of tissues when analyzing bulk tissue samples.            

Similarly, the down-regulation of platelet and red blood cell specific Mir-486 was            

previously associated with tumor stage in pCRC ​[74]​, but is probably not directly             

related to tumor progression. Another example is the hepatocyte specific Mir-122           

[75]​, where a very strong up-regulation in CLM likely reflects presence of hepatocytes             

in the bulk CLM tissue. Not surprisingly, therefore, these cell-type specific miRNAs            

appear to have lower expression in malignant tissues compared to the normal tissues             

(Figure 2B). This is an important consideration for future research as the biomarker             

potential of a miRNA abnormally expressed in diseased tissue must be tightly            

controlled.  
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Conclusion 

In conclusion, using a consistent pipeline for analysis of bulk tissue smallRNA-seq            

data across datasets from multiple studies, a set of miRNAs implicated in mCRC             

evolution was revealed. Interestingly, three of the miRNAs up-regulated in mCRC are            

among the evolutionary most deeply conserved miRNAs which could be interpreted           

as a reactivation of early gene regulatory programs and as a support of the previously               

suggested devolution hypothesis of cancer  ​[76–78]​. 

A limitation of the study is that the datasets originated from heterogeneous studies,             

trials and time points and included few paired pCRC and mCRC samples. This may              

have resulted in under reporting of some relevant miRNAs, but the consensus            

signatures still represent a solid foundation for future research. By setting up a             

publicly available bioinformatics pipeline for processing and analyzing smallRNA-seq         

data, we have ensured that it will be straightforward to add new datasets when they               

become available.  

Accounting for known cell-type specific miRNAs is a novel effort in the field, which              

has contributed to remove false signals and identify a robust signature. However, the             

effort was limited to available knowledge from cell type profiling ​in vitro and in bulk               

[28–30,37]​, and does not account for all cell-type specific expression differences,           

particularly where the differences in miRNA expression levels are more subtle or            

unknown. Cell deconvolution of bulk tissue sequencing data based on gene           

expression is in itself a large and rapidly developing field ​[79–81]​. As of yet,              

development of rigorous miRNA expression profiles on the cellular level is still in its              

infancy ​[82]​. The use of bulk tissue data does not allow for direct analysis of tumor                

heterogeneity, and tumors are not homogenous entities, but made up of distinct sub             

clonotypes and cell types ​[83]​. Therefore, single cell approaches, which have led to a              

number of encouraging findings in CRC ​[84,85]​, hold promise for future progress in             

the miRNA field  ​[86,87] ​. 
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Materials and Methods 

Patient samples 

Tumor tissue and corresponding adjacent colorectal tissue samples (nCR) of patients           

with pCRC were obtained from the tumor biobank of the LARC-EX trial            

(ClinicalTrials.gov Identifier: NCT02113384). CLM and corresponding adjacent tissue        

samples were retrieved from the tumor biobank of the OSLO-COMET trial           

(ClinicalTrials.gov Identifier: NCT01516710) and prepared and processed as        

described in ​[88]​. mLu and corresponding adjacent tissue samples and PM-CRC           

samples were retrieved from our lung metastasis biobank (S-06402b) and peritoneal           

metastasis biobank (2010/2390), respectively. The studies were approved by the          

Regional Ethics Committee of Southh-East Norway, and patients were included in the            

respective studies following written informed consent. Patient samples were         

collected at the time of surgery and were snap frozen in liquid nitrogen at the time of                 

collection and stored at -80°C. Cryo sections were haematoxylin and eosin stained            

and a pathologist confirmed the presence of >60% tumor content in the tumor             

samples. 

RNA extraction and next generation sequencing 

RNA was extracted using Qiagen Allprep DNA/RNA/miRNA universal kit, which          

simultaneously isolates genomic DNA and total RNA. RNA concentration was          

evaluated using ThermoFisher NanoDrop spectrophotometer and RNA integrity was         

evaluated by Agilent Technologies Bioanalyzer RNA 6000 Nano kit. Samples with           

sufficient quality were then used to prepare small RNA NGS libraries (RIN > 6), using               

TruSeq Small RNA Library preparation protocol. Successfully prepared libraries were          

sequenced using Illumina HiSeq 2500 High Throughput Sequencer using single end           

sequencing (50bp). 

Collection of available NGS datasets 

A ​literature search was conducted for the terms “microRNA + CRC + next generation              

sequencing” in different variations, and reviews were studied ​[18,39]​. Publicly          
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available data were downloaded from European Genome-phenome Archive (EGA),         

the Sequence Read Archive (SRA) and the Gene Expression Omnibus (GEO). For            

download, the latest version of sRNAbench was used ​[89]​. Corresponding SRA data            

files were automatically downloaded and converted into FASTQ files.  

Data processing 

All datasets were processed using the same pipeline. miRTrace ​[27] was used for             

preprocessing and quality control of raw data (FASTQ files). In brief, low quality             

reads, defined as reads where less than 50% of nucleotides had a Phread quality              

score greater than 20 were discarded. 3p adapter sequences were trimmed, and            

reads made up of repetitive elements and reads that are shorter than 18nt were              

removed. The output of miRTrace quality control statistics included read length           

distribution, percentage sequences where adapter was detected, reads < 18 nt, low            

complexity or low Phred score, percentage of reads miRTrace determined to be            

miRNA, rRNA, tRNA, artifacts or unknown, number of unique miRNA genes detected            

in each sample, and degree of contamination of miRNAs derived from other species             

than human. Samples where either less than 25% of reads were between 20 and 25               

nt, or where more than 75% of reads were discarded, or where less than 10% of                

reads were determined to be miRNA, were excluded. Studies where more than half of              

datasets failed the QC criteria, or where significant contamination was detected, were            

excluded from the study. 

Read alignment 

Reads were mapped to MirGeneDB2.0 (mirgenedb.org) precursor sequences        

consisting of the pre-miRNA sequence as well as 30 nt upstream and downstream of              

the Drosha cut site ​[26] using bowtie1.2 ​[90]​, requiring an 18 nucleotide seed             

sequence of zero mismatches to avoid cross-mapping, and up to five mismatches            

outside the seed. Mapped reads were counted using the featureCounts          

‘summarizeOverlaps()’ function from the ‘GenomicAlignments’ Bioconductor package       

[91,92]​.  
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Data exploration 

For data exploration, read counts were normalized using the         

varianceStabilizingTransformation() (VST) function from the DESeq2 package ​[93]​.        

Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP),         

and hierarchical clustering, was used to visualize the similarity of datasets on the             

global miRNA expression level. UMAP is a dimensionality-reducing algorithm used to           

reduce the numbers of dimensions in each dataset, here 537 miRNA genes, onto a              

more easily interpretable two dimensions, while retaining the relationship between          

datasets ​[94]​. The umap R package was used, and datasets were annotated by tissue              

and by study (Figure 1A, left and right panels, respectively). Hierarchical clustering            

was performed with the hclust() R function using the complete linkage clustering            

method on a distance matrix of all datasets computed with the dist() R function using               

maximum distance measure. Datasets were annotated according to tissue origin. 

Analysis of influence of cell specific miRNA 

Principal Component Analysis (PCA) was used to analyze the influence of the 45             

cell-type specific miRNAs upon global miRNA expression. PCA plots were made with            

the FactoMineR PCA() function, on the VST transformed datasets, subset to include            

the 45 miRNAs reported by McCall et al ​[28] to be cell-type specific. Two plots were                

made, one visualizing the relationship between datasets in PCA dimension 1 and 2             

with the cell specific miRNAs (Figure 2A left). Datasets were annotated by tissue.             

Plots of each individual dataset are transparent, while the mean values for each tissue              

were plotted in full color. 95% confidence intervals for the mean are also shown. To               

analyze the influence of individual cell specific miRNAs, a correlation circle was            

plotted to illustrate the contribution of each of the top 15 miRNAs to the variance               

between datasets in each dimension (Figure 2A, right panel). In addition, a heatmap             

of the 45 cell specific miRNAs, scaled by z-score of RPM values for each individual               

miNRA, was made to visualize their relative expression in each tissue. Furthermore,            

another UMAP analysis was done, discarding the 45 cell specific miRNAs from the             
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analysis, in order to assess clustering when these miRNAs are not present in the              

datasets.  

Differential expression analysis 

The differential expression analysis can be viewed in the supplementary          

R-markdown file, (Additional file 7: Supplementary Methods) 

Differential expression analysis was performed using DESeq2 ​[93]​. Multiple testing          

was corrected using Benjamin-Hochberg, with a false discovery rate (FDR), threshold           

of 0.05. The Log 2 Fold Change (LFC) shrinkage function in DESeq2, lfcShrink(), was              

enabled. This shrinks fold changes for miRNAs with higher variance. In addition,            

miRNAs were filtered if they had a LFC > 0.58 or LFC < -0.58, and where at least one                   

tissue had mean expression >100 Reads Per Million (RPM) a level previously            

suggested as cutoff for physiological activity ​[20]​, and MiRNAs known to be cell-type             

specific ​[28] were labelled in each signature. Also, miRNAs that have been reported to              

be present at high levels in one or more blood cell types were annotated as such,                

[37]​. When comparing metastatic tissue samples, normal adjacent tissues were used           

to control for the confounding effect of surrounding normal tissue.  

qPCR validation 

To validate the NGS finding of increased expression of Mir-210_3p in CLM compared             

to pCRC, 12 new randomly chosen CLM and pCRC tissue samples were selected for              

qPCR validation. RNA was isolated with Qiagen Allprep DNA/RNA/miRNA universal          

kit (Qiagen Cat. No. 80224). Synthetic RNA Spike-Ins UniSp2, UniSp4 and UniSp5            

(Qiagen Cat. No. 339390) were added pre-isolation. RNA integrity, RIN, was assessed            

with Agilent Technologies Bioanalyzer RNA 6000 Nano. RNA was diluted to 5ng/uL.            

RT-PCR was done with miRCURY LNA RT Kit (Qiagen Cat. No. 339340), adding             

UniSp6 and cel-miR-39-3p RNA Spike-Ins (Qiagen Cat. No 339390). qPCR was done            

using Qiagen miRCURY SYBR Green Kit (Qiagen Cat. No. 339345) and miRCURY LNA             

miRNA PCR Assays (Qiagen Cat. No. 339306). Two miRNAs were used for reference,             

Mir-191 and Mir-103 (Qiagen primer Cat. No. YP00204063 and Cat. No.           
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YP00204306), while the Mir-210_3p primer was Qiagen Cat. No. YP00204333. Two           

PCR replicates were run per primer assay. Mir-210_3p Cq values were normalized to             

the mean of the reference miRNAs, to obtain the dCq value. Welch t-test was used to                

test if the expression levels were different between CLM and pCRC, alternative being             

greater in CLM. LFC between CLM and pCRC was obtained with the 2^(-ddCq)             

method. Calculations are shown in (Additional file 8: Supplementary Methods). 
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