

1 **Title**

2 Neonatal LPS exposure results in ATP8A2 down-regulation in the prefrontal cortex
3 and depressive-like behaviors in mice through increasing IFN- γ level

4

5 **Authors**

6 Jiapeng Deng (ORCID: 0000-0002-0332-9296)^a , Linyang Song (ORCID:
7 0000-0002-2770-9568)^b, Zhiqin Yang (ORCID: 0000-0002-3120-5944)^c, Sixie Zheng
8 (ORCID: 0000-0001-6603-7947)^d, Zhuolin Du (ORCID: 0000-0003-0928-4081)^d, Li
9 Luo^{b,e}, Jing Liu^b, Xiaobao Jin^e, Junhua Yang (ORCID: 0000-0001-8037-9644)^{b,e*}

10

11 **Affiliations**

12 ^a Class 1, Grade 2018, School of Clinical Medicine, Guangdong Pharmaceutical
13 University, Guangzhou, Guangdong, People's Republic of China.

14 ^b Department of anatomy, School of Biosciences & Biopharmaceutics, Guangdong
15 Pharmaceutical University, Guangzhou, Guangdong, People's Republic of China.

16 ^c Aviation health center, China southern airlines company limited, Guangzhou,
17 Guangdong, People's Republic of China.

18 ^d Class 4, Grade 2018, School of Clinical Medicine, Guangdong Pharmaceutical
19 University, Guangzhou, Guangdong, People's Republic of China.

20 ^e Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong
21 Pharmaceutical University, Guangzhou, Guangdong, People's Republic of China.

22 **Corresponding author**

23 *Correspondence should be addressed to Junhua Yang at the following address, phone,

24 and email address:

25 Address: Junhua Yang, Room 510#, Building of Basic Medical Sciences, School of

26 Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, No. 230,

27 East Waihuan Street, Higher Education Mega Center, Guangzhou City, Guangdong

28 Province, Postcode 510006, P. R. China.

29 Tel.: + 86 20 39352189.

30 E-mail: jhyang2018@gdpu.edu.cn.

31

32

33

34

35

36

37

38

39

40

41

42 **Abstract**

43 Neonatal lipopolysaccharide (LPS) exposure can lead to depressive-like behaviors in
44 mice through inducing pro-inflammatory cytokines including interferon(IFN)- γ .
45 ATP8A2 is a phospholipid transporter located on the cell membrane. Studies have
46 shown that the decrease in ATP8A2 expression in the prefrontal cortex (PFC) is
47 associated with depressive behavior. Moreover, it has been reported that IFN- γ could
48 reduce ATP8A2 expression in non-neuronal cells. These findings prompted us to
49 hypothesize that neonatal LPS exposure might induce ATP8A2 down-regulation in
50 PFC in mice by increasing the IFN- γ level. Mice pups consisting approximately
51 evenly of both sexes were intraperitoneally injected with 3 doses of LPS (50 μ g/kg
52 body weight for each dose) on postnatal day (PND5), PND7 and PND9. Here, we first
53 found that PFC ATP8A2 expression decreased significantly and transiently till ten
54 days after neonatal LPS exposure with the lowest level at two days after it. Moreover,
55 a negative correlation of PFC ATP8A2 expression was found with the PFC level of
56 IFN- γ , rather than the other LPS-induced pro-inflammatory cytokines. Using
57 anti-IFN- γ neutralizing mAb, IFN- γ was identified as the key mediator of
58 LPS-induced ATP8A2 down-regulation in PFC in mice. Besides, neutralizing IFN- γ
59 partially but significantly rescued the depressive-like behaviors in adulthood induced
60 by neonatal LPS exposure. In sum, the present study showed that neonatal LPS
61 exposure induced ATP8A2 down-regulation in PFC and depressive-like behaviors in
62 mice through increasing the IFN- γ level.

63

64 **Keywords:** Neonatal period; Lipopolysaccharide/LPS; Interferon- γ /IFN- γ ; ATP8A2;
65 prefrontal cortex/PFC; Depression

66

67 **Introduction**

68 ATP8A2, a member of the P4-ATPase family in mammals, is highly expressed in the
69 brain, spinal cord, testis, and retina, which flipping phosphatidylserine and
70 phosphatidylethanolamine across the cell membrane (Andersen et al., 2016). It plays
71 an important role in maintaining the stability and normal function of the cell
72 membrane (Coleman et al., 2009). Therefore, ATP8A2 in the brain is vital for normal
73 neural development and function (Coleman and Molday, 2011; Xu et al., 2012), since
74 these processes involve cell proliferation, migration, synapses pruning of neurons
75 (Brandon and Sawa, 2011). ATP8A2 expressed in the brain has received extensive
76 attention recently and researches have shown that reduced expression of ATP8A2
77 leads to axonal mutation and neurodegenerative diseases (Choi et al., 2019; Zhu et al.,
78 2012). There is also research reporting that ATP8A2 expression decreases in
79 conditions of Alzheimer's disease and bacterial infection (Aaron et al., 2018; Ross et
80 al., 2011). Moreover, depressive-like behavior has been reported to be associated with
81 decreased ATP8A2 expression in the prefrontal cortex (PFC) (Chen et al., 2017).
82 Although ATP8A2 has been widely studied, little is known about how ATP8A2
83 expression is regulated.

84 Recently, IFN- γ was shown to significantly reduce the expression of ATP8A2 in
85 non-neuron cells (Shulzhenko et al., 2018). IFN- γ produced in the periphery can

86 penetrate brain parenchyma across the immature blood-brain barrier and even increase
87 the permeability of the mature blood-brain barrier (Hansen-Pupp et al., 2005; Wong et
88 al., 2004). IFN- γ may mediate the neonatal lipopolysaccharide (LPS)
89 exposure-induced depressive-like behaviors in mice (Campos et al., 2014), which is
90 associated with the function of PFC. Besides, IFN- γ expression in PFC increased
91 more than twice after LPS treatment (Laumet et al., 2018). Based on the background
92 mentioned above, it was postulated that neonatal LPS exposure might induce ATP8A2
93 down-regulation in PFC in mice by increasing the IFN- γ level. There is yet no report
94 addressing this issue.

95 To test this hypothesis, we challenged neonatal mice with LPS and observed a
96 transiently decreased expression of ATP8A2 in PFC. Using a series of experiments,
97 we further identified IFN- γ as the key mediator of LPS-induced ATP8A2
98 down-regulation in PFC in mice. These findings may reveal a potential mechanism by
99 which early inflammation leads to impairment of the central nervous system
100 development and function.

101

102 **2. Materials and methods**

103 *2.1. Animals designing*

104 Litters of newborn C57BL6/J mice (one-day-old) consisting approximately evenly
105 of both sexes were ordered together with their mothers from Guangdong Medical
106 Laboratory Animal Center (Guangzhou, China). They were housed in a specific

107 pathogen-free condition under 12 h light-12 h dark conditions with food and water
108 available ad libitum.

109 In this study, a randomized block design was used to minimize the effects of
110 systematic error according to publications by statisticians who stated that if the
111 experimenters aim to focus exclusively on the differences between/among different
112 treatment conditions, the effects due to variations between the different blocks should
113 be eliminated by using a randomized block design ANOVA (Refer to
114 https://doi.org/10.1007/978-0-387-32833-1_344;
115 <http://www.r-tutor.com/elementary-statistics/analysis-variance/randomized-block-design>). In such design, there is only one primary factor under consideration in the
116 experiment. Similar test subjects are grouped into blocks. Then, subjects within each
117 block are randomly assigned to treatment conditions. Each block is tested against all
118 treatment levels of the primary factor at random order. Thus, possible influence by
119 other extraneous factors will be eliminated.

121 To be specific, a randomized block design was conducted for each of the
122 experiments for investigating potential differences between or among treatment
123 conditions. Each of the blocks consisted of two (for experiments reported in Fig.1 and
124 Fig.2), three (for experiment reported in Fig.5) or five (for experiments reported in
125 Fig.4 and Fig.6) same-sex pups from a same dam. The pups in each block were
126 randomly assigned to different treatment conditions (only one pup in each block for
127 receiving each kind of the different treatment conditions). The sex of n pups in
128 different blocks were same or different, while the litter background of pups in

129 different blocks were certainly different. The detailed information indicating how
130 many litters were used and how many pups from each litter were included in each
131 group of each experiment in this study were shown in Supplementary table1 to table6
132 (Supplementary Material). Pups subjected to behavioral tests were weaned on
133 postnatal day (PND)21. Pups subjected to other tests were sacrificed on PND11. This
134 study was approved by the Institutional Animal Ethics Committee of Guangdong
135 Pharmaceutical University.

136 *2.2. LPS treatment*

137 Mice were intraperitoneally injected with 3 doses of LPS dissolved in 0.1 mol
138 phosphate balanced solution (PBS) (Escherichia coli O111: B4; Sigma-Aldrich) (50
139 µg/kg bodyweight for each dose;) on PND5, PND7 and PND9. The dosage and
140 schedule for LPS injection were determined based on previous studies (Dinel et al.,
141 2014; Doosti et al., 2013; Liang et al., 2019). The experiment was controlled by
142 intraperitoneal injection of PBS. Littermates were toe-clipped for identification
143 randomly assigned to each of the groups in each experiment as described in Results.

144 *2.3 Administration of anti-IFN-γ neutralizing mAb and an isotype IgG1*

145 For experiments conducted in this study as reported in Section 3.3 and Fig.4 to
146 Fig.6, anti-IFN-γ neutralizing mAb and/or an isotype IgG1 (Invitrogen, Thermo
147 Fisher Scientific, Waltham, MA, USA) were intraperitoneally injected daily to mice
148 from PND5 to PND10. By a special experiment, the optimal dosage was first

149 determined as 0.6 mg/kg body weight of anti-IFN- γ neutralizing mAb. The dosage of
150 isotype IgG1 was determined as 0.6 mg/kg body weight accordingly.

151 *2.4 Western blot*

152 After being over-anesthetized with 10% chloral hydrate, the mice were decapitated
153 and killed. The mouse PFC tissues were immediately taken on ice, and then
154 homogenized in RIPA lysate containing protease inhibitors (Beyotime, Wuhan,
155 China). After centrifuged at 13000g for 30 min at 4°C, the supernatant was taken. The
156 BCA protein analysis method was used to determine the total protein content of the
157 sample. After mixed with 5×SDS-PAGE loading buffer at the volume ratio of V
158 (protein sample solution): V (5×SDS-PAGE Loading Buffer) = 4:1, the samples were
159 boiled and denatured for 5 min, save for later use. The samples of each group were
160 subjected to SDS polyacrylamide gel electrophoresis. The gel used here is a
161 simplified hand-poured gradient gel, in which the ratio was 40% of the volume being
162 6% acrylamide and 60% of the volume being 12% acrylamide (using an SDS-PAGE
163 Gel Quick Preparation Kit, Beyotime, Shanghai, China). The procedure to make this
164 gradient gel was according to a previous study (Miller et al., 2016) with modification
165 with respect to the concentrations of acrylamide. When proteins were transferred to
166 PVDF membranes, the membranes were cut according to the indication of the color
167 marker (10-180 kDa, ThermoFisher, Shanghai, China). Two parts of each membrane,
168 one located in the marker's range 70-180 kDa and the other in the range 25-55 kDa,
169 containing the target proteins ATP8A2 (129 kDa) and the internal control proteins
170 β -actin (43 kDa) were subjected to the subsequent treatment. These membranes were

171 blocked with 5% skimmed milk powder at RT for 2 h. After this, these membranes
172 were put into the corresponding primary antibody incubation solutions, one
173 containing anti-ATP8A2 antibodies (1:500, Abcam, Cambridge, MA, USA) and the
174 other containing anti- β -actin antibodies (1:5000, Abcam, Cambridge, MA, USA) and
175 incubated at 4°C overnight. After rinsing with TBST, these membranes were put into
176 the corresponding secondary antibodies incubation solutions, one containing
177 horseradish peroxidase (HRP)-conjugated goat anti-rabbit antibodies (1:5000,
178 Bioworld, Atlanta, GA, USA) and the other containing HRP-conjugated goat
179 anti-rabbit antibodies (1:5000, Bioworld, Atlanta, GA, USA) and incubated at RT for
180 1 h. After rinsing with TBST, ECL luminescent solution is added on the membranes
181 in a dark room for exposure and development. Chemiluminescent images were
182 obtained with Carestream XBT X-ray Film (Rayco, Xiamen, Fujian, China), and
183 subsequently scanned and quantified by densitometry using ImageJ software.

184 *2.5 Determination of cytokines levels*

185 Forty-eight h after the last LPS injection, the mice were anesthetized deeply with
186 10% chloral hydrate before the blood was collected from the heart immediately. After
187 blood collection, it was allowed to stand at room temperature for 1 h, and after
188 centrifugation, the supernatant was taken and stored at -70°C for the experiment. Then
189 the mice were transcranial perfused with 0.9% NaCl and PFC was collected
190 immediately on ice. A mouse cytokine/chemokine magnetic bead panel
191 (MCYTOMAG-70K-06; Millipore, Billerica, MA, USA) was employed to detect the
192 levels of IFN- γ , tumor necrosis factor (TNF)- α , interleukin(IL)-1 β , IL-6 both in the

193 serum and PFC (Yang et al., 2016). Each of the serum samples was diluted at 1:2 in
194 assay buffer. PFC tissue was prepared as homogenates before assayed. The total
195 protein concentration of each sample was adjusted to 4.5 mg/ml using a BCA protein
196 assay kit (Beyotime, Shanghai, China). Then, the prepared serum and PFC samples
197 were used strictly according to the manufacturer's protocols for the multiplex assays.
198 The data were collected on a Bio-Plex-200 system (Bio-Rad, Hercules, CA, USA) and
199 analyzed using professional software (Bio-Plex Manager).

200 *2.6 Immunofluorescence and cell quantification*

201 Forty-eight h after the last LPS injection, the mice were over-anesthetized with 10%
202 chloral hydrate and transcranial perfused with 0.9% NaCl followed by 4%
203 paraformaldehyde (PFA). After removed, the brains were immediately post-fixed in 4%
204 PFA overnight at 4 °C. Then, the brains were gradient dehydrated with 10%, 20%,
205 and 30% sucrose for 24 h each at 4°C. Free-floating, serial coronal sections (40 µm)
206 were collected on a Leica SM2000R freezing microtome (Leica Microsystems,
207 Richmond Hill, Ontario, Canada) and stored at 4°C for immunostaining. Sections
208 were washed in PBS three times and then blocked in PBS containing 1% bovine
209 serum albumin (BSA) and 0.25% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA)
210 for 1 h at 37°C. The slices were then incubated in the primary antibodies overnight at
211 4°C. The primary antibodies, including rabbit anti-ATP8A2 (1:200; Abcam,
212 Cambridge, MA, USA) and mouse anti-NeuN (1:1000; Abcam, Cambridge, MA,
213 USA), were diluted in PBS containing 1% BSA and 0.25% Triton X-100. Afterward,
214 the specimens were washed three times in PBS and then were incubated with

215 secondary antibodies, including Alexa Fluor 555-conjugated goat anti-rabbit and
216 Alexa Fluor 488-conjugated donkey anti-mouse for 2 h at 37°C. Both secondary
217 antibodies (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) were diluted
218 to 1:400.

219 A Stereo Investigator stereological system (MicroBrightField, Williston, USA) was
220 used for quantitative analyses of the ATP8A2⁺ cells in the unilateral PFC of each
221 mouse. Coronal sections of the PFC were collected through the rostrocaudal axis
222 spanning approximately from +3.20 mm to +2.10 mm relative to bregma (Xiong et al.,
223 2017) to count the interested cells. Measurements were recorded from an equidistant
224 series of six coronal sections. After the actual section thickness was measured,
225 appropriate guard zones at the top and bottom of each section were defined to avoid
226 oversampling. The 40× objective of a Nikon microscope was used for all stereological
227 analyses. The numbers of ATP8A2⁺/NeuN⁺ and NeuN⁺ cells within the traced region
228 (PFC) in each of the six selected sections were straightly quantified without using a
229 grid or counting frames. A Zeiss LSM780 confocal laser-scanning microscope (Carl
230 Zeiss AG, Oberkochen, Germany) was used to capture the representative confocal
231 micrographs of the labeled cells.

232 For ATP8A2 in situ densitometric analysis, one 40-μm-thick coronal section at the
233 middle of the PFC (+2.10 mm relative to bregma) was collected from each animal.
234 Single labeling for ATP8A2 immunofluorescently was performed, rather than double
235 labeling for ATP8A2/NeuN, to minimize the possible interference with ATP8A2
236 positive immunofluorescence signal intensity during staining practice. A Zeiss

237 LSM780 confocal laser-scanning microscope (Carl Zeiss AG, Oberkochen, Germany)
238 was used to capture the micrographs of the same field as the double-labeled
239 micrographs shown in Fig.6D-F. The ATP8A2 signal was measured as a mean gray
240 value using the software ImageJ and the data were shown in Fig.6 as a relative
241 influence. The procedures were: 1) Image-Type-8bit; 2) Image-Adjust-Threshold; 3)
242 Image-Adjust-Auto Threshold; 4) Analyze-Set Measurements; 5) Analyze-Measure.

243 *2.7. Forced swim test (FST)*

244 FST is a standard test used as a screen for measuring depressive-like behaviors in
245 mice. The experiment was carried out on the PND90, the mice were brought to the
246 laboratory one week in advance to let them adapt to the environmental room. In this
247 experiment, mice were placed in a plastic cylinder (40 cm in-depth, 20 cm in diameter
248 and filled with water at $24\pm^{\circ}\text{C}$ with the water's height at 25 cm above from the
249 bottom. Each mouse was put in the plastic cylinder in the same way and forced to
250 swim for 6 min in the plastic cylinder. The first two minutes of mouse behavior was
251 not recorded. The following 4 minutes were recorded by a video tracking system
252 EthoVision (Noldus Information Technology B.V., Wageningen, Netherlands) for the
253 analysis of the total time spent by each animal in staying on the water surface without
254 any struggling or swimming during the test. At the end of the experiment, the hair of
255 the mice was blown dry to prevent them from catching a cold.

256 *2.8 Tail-suspension test (TST)*

257 TST is also one of the most commonly used experiments to evaluate
258 depressive-like behavior in rodent models. In the present study, TST was performed
259 on the second day after the FST. During this test, each mouse was held below its tail
260 to the edge of the clip and suspended 60 cm above from the floor. The performances
261 of mice were recorded by a video tracking system EthoVision (Noldus Information
262 Technology B.V., Wageningen, Netherlands) four minutes with a 2-min-gap left prior
263 to the recording. The total time spent by each animal in not struggling during the test
264 was analyzed. After all behavioral tests were done, animals were killed by
265 over-anesthetized with 10% chloral hydrate.

266 *2.9 Statistical analyses*

267 The data were statistically analyzed using the SPSS 25.0 statistical software
268 (Chicago, IL, USA). Pearson's correlation analysis was used for data shown in Fig.3.
269 Data shown in Fig.1, Fig.2, Fig.4, Fig.5 and Fig.6 were statistically analyzed using a
270 randomized block design ANOVA to account for the effects of treatment (such as LPS
271 injection and/or anti-IFN- γ neutralizing mAb injection) by modeling both litter factor
272 and sex factor as a fixed effect described as “block effect” in section Results and the
273 treatment factor as a random effect described as “treatment effect” in section Results.
274 For data obtained from more than two treatment groups, the performance of
275 randomized block design ANOVA were followed by Tukey's *post hoc* test. *P* values
276 are displayed as follows: n.s. = not significant, * *p* < 0.05, ** *p* < 0.01, *** *p* < 0.001.

278 **3. Results**

279 *3.1 Neonatal LPS exposure induced a transiently down-regulated expression of*
280 *ATP8A2 in the PFC in mice*

281 To determine whether neonatal LPS exposure influence the expression of ATP8A2
282 in the PFC in mice and how long this potential influence would last following LPS
283 exposure, the first experiment was carried out. Mice in the LPS group were injected
284 with LPS and those in the CON group with PBS of the same volume. Two groups of
285 mice were sacrificed after 1 day, 2 days, 4 days, or 10 days after the last LPS injection.
286 The left unilateral PFC tissue from every mouse was taken on ice to be homogenated
287 immediately for Western blot analyses of ATP8A2 level. The right unilateral PFC
288 tissue was taken on ice and stored at -70°C at once for ELISA analyses of
289 LPS-induced pro-inflammatory cytokines if necessary.

290 As shown in Fig.1, the ATP8A2 levels significantly decreased at the former three
291 test time points: 1 day (randomly block design ANOVA, block effect: $F_{(5,5)} = 1.122, p$
292 $= 0.451, n = 6$; treatment effect: $F_{(1,5)} = 44.815, p = 0.001, n = 6$), 2 days (randomly
293 block design ANOVA, block effect: $F_{(5,5)} = 0.785, p = 0.601, n = 6$; treatment effect:
294 $F_{(1,5)} = 77.139, p < 0.001, n = 6$) and 4 days (randomly block design ANOVA, block
295 effect: $F_{(5,5)} = 0.810, p = 0.588, n = 6$; treatment effect: $F_{(1,5)} = 37.270, p = 0.002, n =$
296 6) after the last LPS injection. However, such decrease was no longer detectable 10
297 days after the last LPS injection (randomly block design ANOVA, block effect: $F_{(5,5)}$
298 $= 0.489, p = 0.775, n = 6$; treatment effect: $F_{(1,5)} = 0.077, p = 0.792, n = 6$) (Fig.1). It

299 is worth noting that the largest extent of the decrease in PFC ATP8A2 expression was
300 observed in the sample obtained 48 h after the last LPS injection (Fig.1). These
301 findings verified the expected influence of neonatal LPS exposure on the PFC
302 ATP8A2 expression in mice and revealed the time curve of PFC ATP8A2 expression
303 following neonatal LPS exposure.

304 *3.2 PFC ATP8A2 level was only significantly correlated to IFN- γ level among all four
305 elevated pro-inflammatory cytokines both in serum and in the PFC*

306 Given the initial finding that PFC ATP8A2 expression was reduced to the largest
307 extent 48 h after the last LPS injection (Fig.1), the prepared serum and PFC samples
308 ($n = 6$) obtained at the same time point in the last experiment were then subjected to
309 ELISA analyses for the levels of LPS-induced pro-inflammatory cytokines, including
310 IFN- γ , IL-1 β , IL-6 and TNF- α .

311 Moreover, another experiment was performed in which the animal was treated all
312 the same way and the levels of PFC ATP8A2 as well as the levels pro-inflammatory
313 cytokines both in the serum and PFC were detected specifically 48 h after the last LPS
314 injection, using a larger sample size ($n = 9$) so as both to provide a repetitive
315 verification of the very novel finding of ATP8A2 in the brain and to make the total
316 sample size up to $n = 15$ (together with $n = 6$) for this chosen test time point.

317 Pearson's correlation analysis between PFC ATP8A2 level and the level of each of
318 the LPS-induced pro-inflammatory cytokines would get good confidence in the case
319 of $n = 15$.

320 As shown in Fig.2A-B, the PFC ATP8A2 level decreased by more than 90% in LPS
321 group (randomly block design ANOVA, block effect: $F_{(8,8)} = 1.166, p = 0.417, n = 9$;
322 treatment effect: $F_{(1,8)} = 3.993, p < 0.001, n = 9$). All the detected cytokines, whether
323 in serum (Fig.2C-F) or in PFC (Fig.2G-J), showed a dramatically increased
324 expression (Serum IL-6: randomly block design ANOVA, block effect: $F_{(8,8)} = 0.999$,
325 $p = 0.500, n = 9$; treatment effect: $F_{(1,8)} = 212.013, p < 0.001, n = 9$. serum IFN- γ :
326 randomly block design ANOVA, block effect: $F_{(8,8)} = 1.098, p = 0.449, n = 9$;
327 treatment effect: $F_{(1,8)} = 37.708, p < 0.001, n = 9$; serum IL-1 β : randomly block design
328 ANOVA, block effect: $F_{(8,8)} = 1.053, p = 0.472, n = 9$; treatment effect: $F_{(1,8)} = 93.958$,
329 $p < 0.001, n = 9$; serum TNF- α : randomly block design ANOVA, block effect: $F_{(8,8)} =$
330 $0.952, p = 0.527, n = 9$; treatment effect: $F_{(1,8)} = 181.681, p < 0.001, n = 9$; PFC IFN- γ :
331 randomly block design ANOVA, block effect: $F_{(8,8)} = 1.145, p = 0.427, n = 9$;
332 treatment effect: $F_{(1,8)} = 134.25, p < 0.001, n = 9$; PFC IL-1 β : randomly block design
333 ANOVA, block effect: $F_{(8,8)} = 1.668, p = 0.243, n = 9$; treatment effect: $F_{(1,8)} = 62.695$,
334 $p < 0.001, n = 9$; PFC IL-6: randomly block design ANOVA, block effect: $F_{(8,8)} =$
335 $0.990, p = 0.505, n = 9$; treatment effect: $F_{(1,8)} = 184.902, p < 0.001, n = 9$; PFC
336 TNF- α : randomly block design ANOVA, block effect: $F_{(8,8)} = 0.995, p = 0.503, n = 9$;
337 treatment effect: $F_{(1,8)} = 105.007, p < 0.001, n = 9$)
338 Taken all the data from 48 h time point samples from LPS-treated mice together,
339 Pearson's correlation analysis was performed between PFC ATP8A2 level and the
340 level of each of the LPS-induced pro-inflammatory cytokines ($n = 15$). There was a
341 significant negative correlation between ATP8A2 expression in PFC and IFN- γ level

342 both in serum ($p < 0.01$, Pearson's correlation analysis, $n = 15$) (Fig.3 A) and in PFC
343 ($p < 0.001$, Pearson's correlation analysis, $n = 15$) (Fig.3E). No significant
344 correlations were found between ATP8A2 level and all the other pro-inflammatory
345 cytokines (all p values > 0.05) (Fig.3 B-D, F-H). These results suggest that IFN- γ
346 plays an important role in the PFC ATP8A2 down-regulation caused by neonatal LPS
347 exposure.

348 *3.3 IFN- γ mediated the PFC ATP8A2 down-regulation caused by neonatal LPS*
349 *exposure*

350 To further explore the potential role of IFN- γ in mediating the PFC ATP8A2
351 down-regulation following neonatal LPS exposure, an IFN- γ -blocking experiment
352 was conducted using anti-IFN- γ neutralizing mAb and an isotype IgG1. Before this
353 IFN- γ -blocking experiment, another experiment was carried out to determine the
354 optimal dosage of anti-IFN- γ neutralizing mAb. The dosage of 0.6 mg/kg body weight
355 restored the IFN- γ levels to normal physiological levels both in serum (randomly
356 block design ANOVA, block effect: $F_{(7,35)} = 0.449$, $p = 0.864$, $n = 8$; treatment effect:
357 $F_{(5,35)} = 78.511$, $p < 0.001$, $n = 8$; *post hoc test*, LPS+anti-IFN- γ (0.6) group vs. CON
358 group: $p = 1.000$) (Fig.4A) and in PFC (randomly block design ANOVA, block effect:
359 $F_{(7,35)} = 0.718$, $p = 0.657$, $n = 8$; treatment effect: $F_{(5,35)} = 35.571$, $p < 0.001$, $n = 8$;
360 *post hoc test*, LPS+anti-IFN- γ (0.6) group vs. CON group: $p = 0.835$) (Fig.4B). Then,
361 we proceeded to the IFN- γ -blocking experiment and five groups of mice were set. To
362 be specific, the CON group and LPS group were set as above. LPS+anti-IFN- γ (0.6)
363 group was set by injecting LPS combined with anti-IFN- γ neutralizing mAb. The

364 LPS+IgG1 group was set by injecting LPS combined with an isotype IgG1. The last
365 group was set by injecting mere anti-IFN- γ neutralizing mAb (anti-IFN- γ (0.6)).

366 Randomly block design ANOVA revealed significant differences in IFN- γ levels
367 among five groups (Fig.4C, serum IFN- γ level: randomly block design ANOVA,
368 block effect: $F_{(7,28)} = 0.611, p = 0.742, n = 8$; treatment effect: $F_{(4,28)} = 52.664, p <$
369 0.001, $n = 8$) (Fig.4D, PFC IFN- γ level: randomly block design ANOVA, block effect:
370 $F_{(7,28)} = 0.276, p = 0.958, n = 8$; treatment effect: $F_{(4,28)} = 95.875, p < 0.001, n = 8$).

371 We first confirmed that administration of anti-IFN- γ neutralizing mAb blocked the
372 increase of IFN- γ levels both in systemic blood (LPS+anti-IFN- γ (0.6) group vs. CON
373 group: $p = 0.998$) (Fig.4C) and PFC (LPS+anti-IFN- γ (0.6) group vs. CON group: $p =$
374 0.903) (Fig. 4D), while isotype IgG1 failed to block the LPS-induced IFN- γ increase
375 either in serum (LPS+IgG1 group vs. CON group: $p < 0.001$; LPS+IgG1 group vs.
376 LPS group: $p = 0.976$) (Fig.4C) or in PFC (LPS+IgG1 group vs. CON group: $p <$
377 0.001; LPS+IgG1 group vs. LPS group: $p = 0.563$) (Fig.4D). In the absence of LPS
378 exposure, the anti-IFN- γ neutralizing mAb significantly neutralized the physiological
379 IFN- γ both in blood (anti-IFN- γ (0.6) group vs. CON group: $p = 0.013$; LPS+IgG1
380 group vs. LPS group: $p = 1$) (Fig.4C) and in brain of mice (anti-IFN- γ (0.6) vs. CON
381 group: $p < 0.001$; LPS+IgG1 group vs. LPS group: $p = 1$) (Fig.4D).

382 Randomly block design ANOVA of Western blot data revealed significant
383 differences in PFC ATP8A2 levels among five groups (Fig.4E, randomly block design
384 ANOVA, block effect: $F_{(7,28)} = 1.273, p = 0.099, n = 8$; treatment effect: $F_{(4,28)} =$
385 122.582, $p < 0.001, n = 8$). We found that neutralization of IFN- γ blocked the

386 LPS-induced ATP8A2 decrease in PFC (LPS+anti-IFN- γ (0.6) group vs. CON group:
387 $p = 1$) (Fig.4E-F), while the isotype IgG1 showed no significant blocking effect on the
388 LPS-induced ATP8A2 decrease in PFC (LPS+IgG1 group vs. LPS group: $p = 0.923$;
389 LPS+IgG1 group vs. LPS+anti-IFN- γ (0.6) group: $p < 0.001$) (Fig.4E-F). Interestingly,
390 in the absence of LPS exposure, mere anti-IFN- γ neutralizing mAb administration led
391 to no significant influence on the PFC ATP8A2 level (anti-IFN- γ (0.6) group vs. CON
392 group: $p = 1$) (Fig.4E-F), although it neutralized the physiological IFN- γ both in the
393 blood (Fig.4C) and in the brain of mice (Fig.4D).

394 We next performed another experiment to observe the role of IFN- γ using
395 immunofluorescence detection, with a total of three groups set, CON group, LPS
396 group, and LPS+anti-IFN- γ (0.6) group. The groups by giving isotype IgG1 or mere
397 anti-IFN- γ neutralizing mAb were no longer set due to the confirmed results shown
398 above. The results of randomly block design ANOVA of immunofluorescence
399 detection of PFC ATP8A2 levels showed similar findings to Western blot.
400 Neutralization of IFN- γ blocked the LPS-induced ATP8A2 decrease in PFC, indicated
401 by the mean fluorescence intensity (randomly block design ANOVA, block effect:
402 $F_{(5,10)} = 0.472$, $p = 0.789$, $n = 6$; treatment effect: $F_{(2,10)} = 47.016$, $p < 0.001$, $n = 6$;
403 *post hoc test*, LPS+anti-IFN- γ (0.6) group vs. CON group: $p = 0.849$) (Fig.5K) and
404 ATP8A2⁺/NeuN⁺ cells (randomly block design ANOVA, block effect: $F_{(5,10)} = 0.121$,
405 $p = 0.985$, $n = 6$; treatment effect: $F_{(2,10)} = 47.016$, $p < 0.001$, $n = 6$; *post hoc test*,
406 LPS+anti-IFN- γ (0.6) group vs. CON group: $p = 0.532$) (Fig.5L). Besides, there were
407 no significant differences among three groups in the number of neurons (NeuN⁺ cells)

408 in PFC (data are not shown) although nearly all patchy ATP8A2⁺ signals were
409 co-located with NeuN⁺ signals (Fig.5G-I). The findings shown in this section
410 identified IFN- γ as the key mediator of the PFC ATP8A2 down-regulation caused by
411 neonatal LPS exposure. Moreover, ATP8A2 alterations were not accompanied by a
412 detectable change in the number of neurons (NeuN⁺ cells) in PFC.

413 *3.4 IFN- γ plays an important role in depressive-like behaviors in adulthood induced*
414 *by neonatal LPS exposure*

415 Abnormality in PFC, especially during the critical development period, is an
416 important pathophysiological basis of depression and it has been verified that
417 *neonatal LPS exposure* could result in depression in adulthood (Dinel et al., 2014;
418 Walker et al., 2013). Therefore, we investigated whether neutralization of IFN- γ
419 affects the behavioral performances in the FST and TST of the LPS-treated mice. The
420 floating immobility time was partially restored toward the levels of CON group both
421 in FST task (randomly block design ANOVA, block effect: $F_{(11,44)} = 0.825, p = 0.616,$
422 $n = 12$; treatment effect: $F_{(4,44)} = 36.675, p < 0.001, n = 12$; *post hoc test*,
423 LPS+anti-IFN- γ (0.6) group vs. CON group: $p < 0.001$) (Fig.6A) and in TST task
424 (randomly block design ANOVA, block effect: $F_{(11,44)} = 0.949, p = 0.504, n = 12$;
425 treatment effect: $F_{(4,44)} = 35.619, p < 0.001, n = 12$; *post hoc test*, LPS+anti-IFN- γ (0.6)
426 group vs. CON group: $p < 0.001$) (Fig.6B).

427 The isotype IgG1 failed to block the LPS-induced behavioral alterations either in
428 FST (LPS+IgG1 group vs. CON group: $p < 0.001$; LPS+IgG1 group vs. LPS group: p

429 = 0.240) (Fig.6A) or in TST (LPS+IgG1 group vs. CON group: $p < 0.001$; LPS+IgG1
430 group vs. LPS group: $p = 0.770$) (Fig.6B). In the absence of LPS exposure, the
431 anti-IFN- γ neutralizing mAb led to no significant behavioral alterations in FST
432 (anti-IFN- γ (0.6) group vs. CON group: $p = 0.984$; LPS+IgG1 group vs. LPS group: p
433 = 0.770) (Fig.6A) or in TST (anti-IFN- γ (0.6) vs. CON group: $p = 0.617$) (Fig.6B).
434 These results suggested an important role of IFN- γ in depressive-like behaviors in
435 adulthood induced by neonatal LPS exposure.

436 *3.5 No sex dimorphism in ATP8A2 levels despite a sex dimorphism in depressive-like*
437 *behaviors in mice*

438 All the analyses described above were intended to exclusively detect the effects of
439 different treatment conditions to test the hypothesis that neonatal LPS exposure might
440 influence PFC ATP8A2 expression in mice involving an increased IFN- γ level and
441 therefore the sex factor was not under consideration as stated in section 2.1. However,
442 previous studies showed that sex may affect immune activation (Cai et al., 2016). So,
443 we also analyzed the data collected from the experiments in section 3.1 and 3.2 shown
444 in Fig.2 as well as in the bars in Fig.1 indicated as day2 using another statistical
445 method to observe whether there were significant differences in PFC ATP8A2
446 expression and the levels of proinflammatory cytokines between two sexes either in
447 the presence of LPS challenge or not. The results showed no significant differences in
448 the levels of these molecules between male and female animals either in the presence
449 of LPS challenge or not (all p values > 0.05 , see details in Supplementary Fig.1 and
450 its legend). Furthermore, data collected from behavioral tests and shown in section 3.4

451 (Fig.6) were also subjected to additional analysis for differences between two sexes.

452 The results showed no significant differences in the behavioral task performances

453 between male and female animals either in the presence of LPS challenge or not (all p

454 values > 0.05 , see details in Supplementary Fig.2 and its legend).

455

456 **Discussion**

457 Our research revealed that the neonatal LPS exposure induced ATP8A2

458 down-regulation in PFC and depressive-like behaviors in mice by increasing the

459 IFN- γ level. This finding, based on a series of studies concerning the influence of LPS

460 on brain development and behavior (Bilbo and Schwarz, 2012; Doosti et al., 2013), is

461 the first to report the change of ATP8A2 in the PFC in this animal model and the

462 mechanism underlying how LPS affects PFC ATP8A2 expression. Moreover, this

463 study further extends our understanding of the mechanism underlying behavioral

464 effects of early immune activation.

465 Intraperitoneal LPS injection has been shown to cause a range of acute

466 physiological, pathological, and psychological disorders in rodents. Impairments both

467 in food intake and social exploratory behavior in rodents have been demonstrated in

468 rodents administered intraperitoneally with LPS (Haba et al., 2012; O'Reilly et al.,

469 1988). It has also been reported that LPS exposure can induce depressive and

470 anxiety-like behaviors (Depino, 2015; Doosti et al., 2013). Moreover, LPS may

471 reduce acutely the level of prefrontal cortical neurogenesis in adult rodents (Wang et

472 al., 2016). The data from the LPS-treated mice in the present study enriched these

473 widely reported neurobehavioral impairments.

474 LPS challenge may induce a large extent release of cytokines both in the periphery
475 and brain, particularly pro-inflammatory cytokines, including IFN- γ , IL-1 β , IL-6, and
476 TNF- α (Klimstra et al., 1999). These pro-inflammatory cytokines not only play an
477 important role in immunity but also may affect brain function and mediate
478 disease-like behaviors. For example, these pro-inflammatory factors have been shown
479 to cause depressive-like behavior in mice (Gupta et al., 2016; Hashimoto, 2015;
480 Kohler et al., 2014; Pokryszko-Dragan et al., 2012). The results of cytokines in our
481 study showed clearly that their levels in the periphery and the brain were highly
482 consistent. this fact may partially due to the immature blood-brain barrier or increased
483 permeability of it during inflammation.

484 ATP8A2 is a protein located in the membrane, functioning to transport
485 phosphatidylserine into the inner layer of membrane, and thus it is important to
486 maintain the structural stability and normal function of the membrane (Andersen et al.,
487 2016; Coleman et al., 2009). Since the distribution of ATP8A2 in the brain has been
488 determined recently (Andersen et al., 2016), little has been known about the potential
489 factors involved in the regulation of its expression. ATP8A2 expression
490 down-regulation has been observed in certain pathological conditions including
491 Alzheimer's disease and bacterial infection (Aaron et al., 2018; Ross et al., 2011).
492 However, the study reported a mechanism underlying such regulation could not be
493 seen so far. Decreased level of ATP8A2 in the PFC also occurs in the presence of
494 stress and depressive situation (Chen et al., 2017), but the causal relationship between

495 ATP8A2 change and behavior change is unclear. The current study revealed that
496 ATP8A2 expression in the PFC could be down-regulated by a high concentration of
497 IFN- γ , which is consistent with another study verifying that IFN- γ down-regulated the
498 expression of ATP8A2 in non-neuron cells (Shulzhenko et al., 2018). This finding
499 deepens the understanding of how depression is induced during infections by
500 LPS-producing gram-negative bacteria.

501 LPS exposure can induce neuroinflammation in various brain regions and result in
502 functional abnormalities, such as hippocampal neuroinflammation and impaired
503 learning and memory (Lee et al., 2008; Shaw et al., 2001). In this study, the animal
504 model that simulates a depressive-like phenotype caused by early bacterial infection
505 was used to investigate whether LPS caused alteration in ATP8A2 expression.
506 Therefore, PFC was selected as the brain region to observe ATP8A2 expression that
507 it's the area of the brain mostly focused on by studies about depressive-like behavior
508 (Myers-Schulz and Koenigs, 2012). In future studies, we will investigate the
509 expression of ATP8A2 in other pathological conditions and/or in other brain zones
510 such as the hippocampus.

511 As well-known, LPS-induced inflammation is transient. Likewise, the first
512 experiment in this study has shown the ATP8A2 levels decreased transiently and
513 restored within 10 days after the end of LPS administration (Fig.1). Therefore, the
514 animals were killed after finishing behavioral tasks by over-anesthetized without
515 investigating their PFC ATP8A2 levels or peripheral/cerebral cytokines in adulthood.
516 Understandably, a transient ATP8A2 decrease in PFC might mediate a delayed

517 depressive-like behavior phenotype due to the existing theory of early-life
518 programming (Dinel et al., 2014; Karrow, 2006), saying that the brain is susceptible to
519 external stimuli, such as immune activation, which modulates the course of normal
520 brain development.

521 It has been reported that sex could affect the outcomes in behavior development by
522 itself or combining neonatal immune activation (Cai et al., 2016), which is confirmed
523 by the current study due to the observed between-sexes effects in FST and TST tasks
524 performances (Supplementary Fig.2). However, the PFC ATP8A2 expression and
525 cytokine levels both in blood and in PFC have not been significantly influenced by the
526 sex factor tested at PND11 (Supplementary Fig.1). This may be because the sex factor
527 exerts its effects mainly by gonadal hormones. These endocrine sex differences often
528 come to be obvious from the beginning of puberty and these hormonal disparities
529 contribute to the emerging sex differences in the brain (Cai et al., 2016). Further study
530 is required to address whether the sex factor makes a difference in ATP8A2
531 expression in the brain during puberty as well as adulthood.

532 In sum, our current research demonstrates that neonatal LPS exposure induces
533 ATP8A2 down-regulation in PFC and depressive-like behaviors in mice through
534 increasing the IFN- γ level.

535

536 **Competing interests**

537 The authors declare that there are no conflicts of interest.

538

539 **Acknowledgments**

540 We thank Mr. Taoqi Tao (ORCID: 0000-0002-2770-9568, from GDPU), Mrs.
541 Yinyin Xie (ORCID: 0000-0002-5858-3873, from GDPU) for their valuable
542 discussions and help with this investigation. The work was supported by the starting
543 fund for high-level talent introduction into Guangdong Pharmaceutical University
544 (No.51355093), the National Natural Science Foundation of China (No.31600836),
545 the Innovation and University Promotion Project of Guangdong Pharmaceutical
546 University Through No. 2017KCXTD020, the National Natural Science Foundation
547 of China (No.81901524), the Natural Science Foundation of Guangdong Province
548 (No.2018A030313579).

549

550 **References**

551 Aaron, P.A., Jamklang, M., Uhrig, J.P., and Gelli, A. (2018). The blood-brain barrier
552 internalises *Cryptococcus neoformans* via the EphA2-tyrosine kinase receptor. *Cell Microbiol*
553 20.

554 Andersen, J.P., Vestergaard, A.L., Mikkelsen, S.A., Mogensen, L.S., Chalat, M., and Molday,
555 R.S. (2016). P4-ATPases as Phospholipid Flippases-Structure, Function, and Enigmas. *Front*
556 *Physiol* 7, 275.

557 Bilbo, S.D., and Schwarz, J.M. (2012). The immune system and developmental programming
558 of brain and behavior. *Front Neuroendocrinol* 33, 267-286.

559 Brandon, N.J., and Sawa, A. (2011). Linking neurodevelopmental and synaptic theories of
560 mental illness through DISC1. *Nat Rev Neurosci* 12, 707-722.

561 Cai, K.C., van Mil, S., Murray, E., Mallet, J.F., Matar, C., and Ismail, N. (2016). Age and sex
562 differences in immune response following LPS treatment in mice. *Brain Behav Immun* *58*,
563 327-337.

564 Campos, A.C., Vaz, G.N., Saito, V.M., and Teixeira, A.L. (2014). Further evidence for the role
565 of interferon-gamma on anxiety- and depressive-like behaviors: involvement of hippocampal
566 neurogenesis and NGF production. *Neurosci Lett* *578*, 100-105.

567 Chen, J., Wang, Z., Zhang, S., Ai, Q., Chu, S., and Chen, N.-h. (2017). Possible target-related
568 proteins of stress-resistant rats suggested by label-free proteomic analysis. *RSC Advances* *7*,
569 40957-40964.

570 Choi, H., Andersen, J.P., and Molday, R.S. (2019). Expression and functional characterization
571 of missense mutations in ATP8A2 linked to severe neurological disorders. *Hum Mutat* *40*,
572 2353-2364.

573 Coleman, J.A., Kwok, M.C., and Molday, R.S. (2009). Localization, purification, and functional
574 reconstitution of the P4-ATPase Atp8a2, a phosphatidylserine flippase in photoreceptor disc
575 membranes. *J Biol Chem* *284*, 32670-32679.

576 Coleman, J.A., and Molday, R.S. (2011). Critical role of the beta-subunit CDC50A in the stable
577 expression, assembly, subcellular localization, and lipid transport activity of the P4-ATPase
578 ATP8A2. *J Biol Chem* *286*, 17205-17216.

579 Depino, A.M. (2015). Early prenatal exposure to LPS results in anxiety- and
580 depression-related behaviors in adulthood. *Neuroscience* *299*, 56-65.

581 Dinel, A.L., Joffre, C., Trifilieff, P., Aubert, A., Foury, A., Le Ruyet, P., and Laye, S. (2014).
582 Inflammation early in life is a vulnerability factor for emotional behavior at adolescence and for

583 lipopolysaccharide-induced spatial memory and neurogenesis alteration at adulthood. *J*

584 *Neuroinflammation* *11*, 155.

585 Doosti, M.H., Bakhtiari, A., Zare, P., Amani, M., Majidi-Zolbanin, N., Babri, S., and Salari, A.A.

586 (2013). Impacts of early intervention with fluoxetine following early neonatal immune activation

587 on depression-like behaviors and body weight in mice. *Prog Neuropsychopharmacol Biol*

588 *Psychiatry* *43*, 55-65.

589 Gupta, R., Gupta, K., Tripathi, A.K., Bhatia, M.S., and Gupta, L.K. (2016). Effect of Mirtazapine

590 Treatment on Serum Levels of Brain-Derived Neurotrophic Factor and Tumor Necrosis

591 Factor-alpha in Patients of Major Depressive Disorder with Severe Depression. *Pharmacology*

592 *97*, 184-188.

593 Haba, R., Shintani, N., Onaka, Y., Wang, H., Takenaga, R., Hayata, A., Baba, A., and

594 Hashimoto, H. (2012). Lipopolysaccharide affects exploratory behaviors toward novel objects

595 by impairing cognition and/or motivation in mice: Possible role of activation of the central

596 amygdala. *Behav Brain Res* *228*, 423-431.

597 Hansen-Pupp, I., Harling, S., Berg, A.C., Cilio, C., Hellstrom-Westas, L., and Ley, D. (2005).

598 Circulating interferon-gamma and white matter brain damage in preterm infants. *Pediatr Res*

599 *58*, 946-952.

600 Hashimoto, K. (2015). Inflammatory biomarkers as differential predictors of antidepressant

601 response. *Int J Mol Sci* *16*, 7796-7801.

602 Karrow, N.A. (2006). Activation of the hypothalamic-pituitary-adrenal axis and autonomic

603 nervous system during inflammation and altered programming of the neuroendocrine-immune

604 axis during fetal and neonatal development: lessons learned from the model inflammagen,

605 lipopolysaccharide. *Brain Behav Immun* 20, 144-158.

606 Klimstra, W.B., Ryman, K.D., Bernard, K.A., Nguyen, K.B., Biron, C.A., and Johnston, R.E.

607 (1999). Infection of neonatal mice with sindbis virus results in a systemic inflammatory

608 response syndrome. *J Virol* 73, 10387-10398.

609 Kohler, O., Benros, M.E., Nordentoft, M., Farkouh, M.E., Iyengar, R.L., Mors, O., and Krogh, J.

610 (2014). Effect of anti-inflammatory treatment on depression, depressive symptoms, and

611 adverse effects: a systematic review and meta-analysis of randomized clinical trials. *JAMA*

612 *Psychiatry* 71, 1381-1391.

613 Laumet, G., Edralin, J.D., Chiang, A.C., Dantzer, R., Heijnen, C.J., and Kavelaars, A. (2018).

614 Resolution of inflammation-induced depression requires T lymphocytes and endogenous brain

615 interleukin-10 signaling. *Neuropsychopharmacology* 43, 2597-2605.

616 Lee, J.W., Lee, Y.K., Yuk, D.Y., Choi, D.Y., Ban, S.B., Oh, K.W., and Hong, J.T. (2008).

617 Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through

618 enhancement of beta-amyloid generation. *J Neuroinflammation* 5, 37.

619 Liang, M., Zhong, H., Rong, J., Li, Y., Zhu, C., Zhou, L., and Zhou, R. (2019). Postnatal

620 Lipopolysaccharide Exposure Impairs Adult Neurogenesis and Causes Depression-like

621 Behaviors Through Astrocytes Activation Triggering GABA_A Receptor Downregulation.

622 *Neuroscience* 422, 21-31.

623 Miller, A.J., Roman, B., and Norstrom, E. (2016). A method for easily customizable gradient

624 gel electrophoresis. *Anal Biochem* 509, 12-14.

625 Myers-Schulz, B., and Koenigs, M. (2012). Functional anatomy of ventromedial prefrontal

626 cortex: implications for mood and anxiety disorders. *Mol Psychiatry* 17, 132-141.

627 O'Reilly, B., Vander, A.J., and Kluger, M.J. (1988). Effects of chronic infusion of
628 lipopolysaccharide on food intake and body temperature of the rat. *Physiol Behav* **42**, 287-291.

629 Pokryszko-Dragan, A., Frydecka, I., Kosmaczewska, A., Ciszak, L., Bilinska, M., Gruszka, E.,
630 Podemski, R., and Frydecka, D. (2012). Stimulated peripheral production of interferon-gamma
631 is related to fatigue and depression in multiple sclerosis. *Clin Neurol Neurosurg* **114**,
632 1153-1158.

633 Ross, A.E., Marchionni, L., Vuica-Ross, M., Cheadle, C., Fan, J., Berman, D.M., and Schaeffer,
634 E.M. (2011). Gene expression pathways of high grade localized prostate cancer. *Prostate* **71**,
635 1568-1577.

636 Shaw, K.N., Commins, S., and O'Mara, S.M. (2001). Lipopolysaccharide causes deficits in
637 spatial learning in the watermaze but not in BDNF expression in the rat dentate gyrus. *Behav
638 Brain Res* **124**, 47-54.

639 Shulzhenko, N., Dong, X., Vyshenska, D., Greer, R.L., Gurung, M., Vasquez-Perez, S.,
640 Peremyslova, E., Sosnovtsev, S., Quezado, M., Yao, M., *et al.* (2018). CVID enteropathy is
641 characterized by exceeding low mucosal IgA levels and interferon-driven inflammation
642 possibly related to the presence of a pathobiont. *Clin Immunol* **197**, 139-153.

643 Walker, A.K., Budac, D.P., Bisulco, S., Lee, A.W., Smith, R.A., Beenders, B., Kelley, K.W., and
644 Dantzer, R. (2013). NMDA receptor blockade by ketamine abrogates
645 lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice.
646 *Neuropsychopharmacology* **38**, 1609-1616.

647 Wang, Z., Li, W., Chen, J., Shi, H., Zhao, M., You, H., Rao, C., Zhan, Y., Yang, Y., and Xie, P.
648 (2016). Proteomic analysis reveals energy metabolic dysfunction and neurogenesis in the

649 prefrontal cortex of a lipopolysaccharide-induced mouse model of depression. *Mol Med Rep*
650 13, 1813-1820.

651 Wong, D., Dorovini-Zis, K., and Vincent, S.R. (2004). Cytokines, nitric oxide, and cGMP
652 modulate the permeability of an in vitro model of the human blood-brain barrier. *Exp Neurol*
653 190, 446-455.

654 Xiong, B., Li, A., Lou, Y., Chen, S., Long, B., Peng, J., Yang, Z., Xu, T., Yang, X., Li, X., *et al.*
655 (2017). Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain.
656 *Front Neuroanat* 11, 128.

657 Xu, Q., Yang, G.Y., Liu, N., Xu, P., Chen, Y.L., Zhou, Z., Luo, Z.G., and Ding, X. (2012).
658 P4-ATPase ATP8A2 acts in synergy with CDC50A to enhance neurite outgrowth. *FEBS Lett*
659 586, 1803-1812.

660 Yang, J., Qi, F., Gu, H., Zou, J., Yang, Y., Yuan, Q., and Yao, Z. (2016). Neonatal BCG
661 vaccination of mice improves neurogenesis and behavior in early life. *Brain Res Bull* 120,
662 25-33.

663 Zhu, X., Libby, R.T., de Vries, W.N., Smith, R.S., Wright, D.L., Bronson, R.T., Seburn, K.L.,
664 and John, S.W. (2012). Mutations in a P-type ATPase gene cause axonal degeneration. *PLoS*
665 *Genet* 8, e1002853.

666

667

668

669

670

671 **Legends**

672 **Fig.1. Neonatal LPS exposure induced a transiently down-regulated expression**

673 **of ATP8A2 in the PFC in mice. (A)** Representative results for the Western blot

674 analysis of ATP8A2. **(B)** The relative quantification of ATP8A2 in each group of mice

675 was normalized using the level of β -actin. Data are expressed as means \pm SEM.

676 Randomly block design ANOVA; $n = 6$ /group; * $p < 0.05$; *** $p < 0.001$.

677 **Fig.2. Neonatal LPS exposure induced a down-regulated expression of ATP8A2**

678 **accompanied by inflammation both in periphery and in PFC in mice.**

679 **(A)** Representative results for the Western blot analysis of ATP8A2. **(B)** The relative

680 quantification of ATP8A2 in each group of mice was normalized using the level of

681 β -actin. **(C-J)** The bars represent the average levels of IFN- γ , IL-1 β , IL-6, TNF- α in

682 the serum and IFN- γ , IL-1 β , IL-6, TNF- α in the PFC. Data are expressed as means \pm

683 SEM. Randomly block design ANOVA; $n = 9$ /group; * $p < 0.05$; ** $p < 0.01$; *** $p <$

684 0.001.

685 **Fig.3. The correlation of PFC ATP8A2 level with the serum and PFC levels of**

686 **pro-inflammatory cytokines in mice. (A)** The positive negative correlation of the

687 PFC IFN- γ level with the ATP8A2 expression level in LPS-treated mice. **(B-D)**

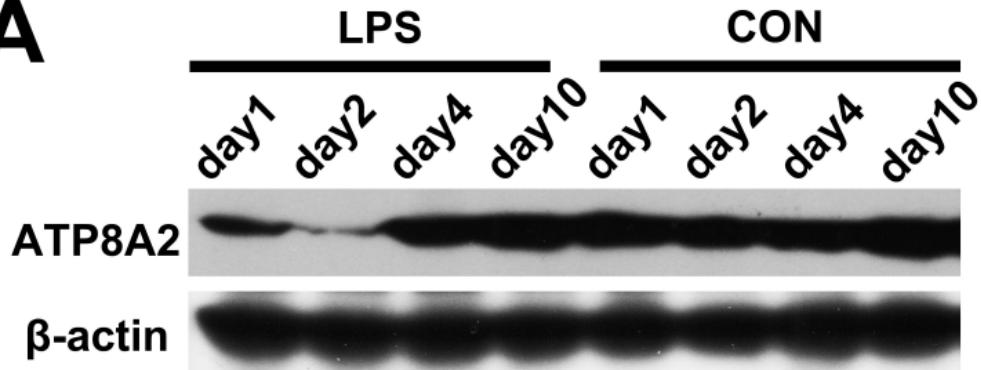
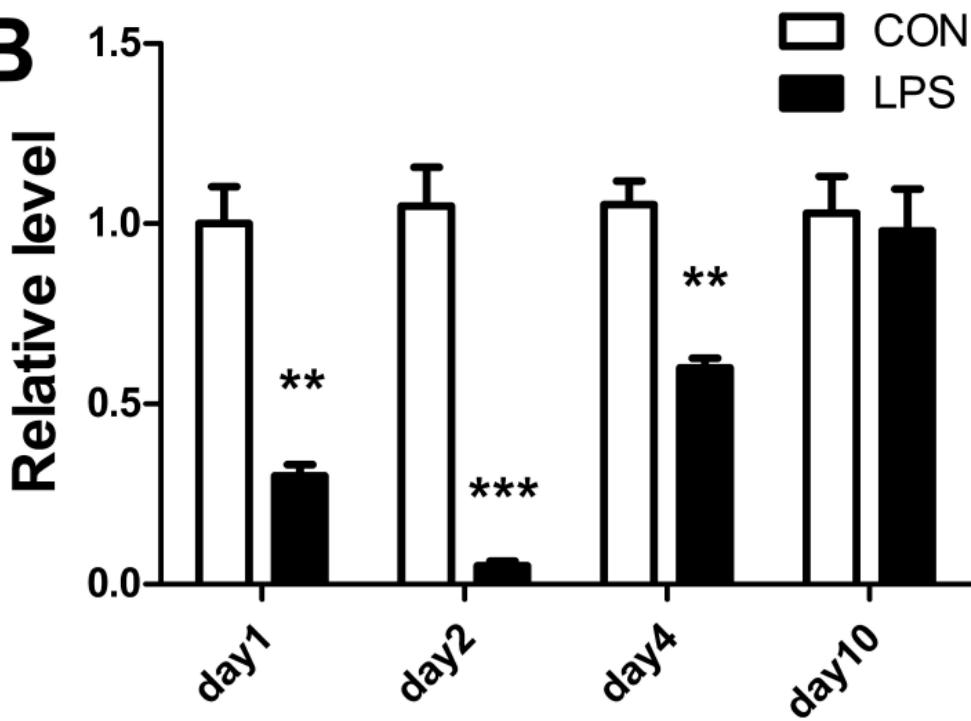
688 Correlation analyses between the PFC IL-1 β , IL-6 and TNF- α levels and the level of

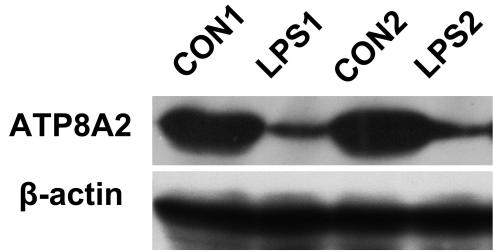
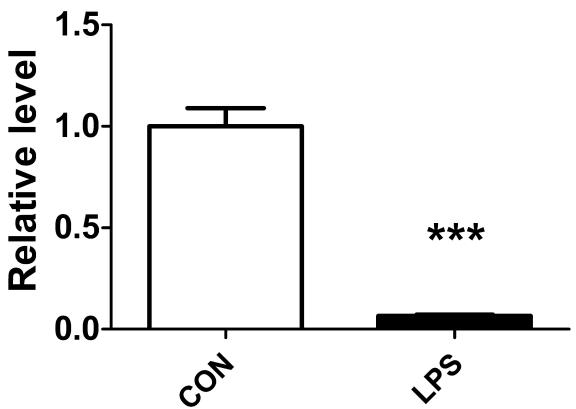
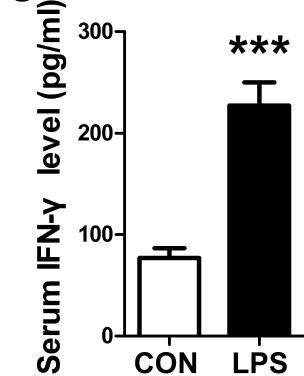
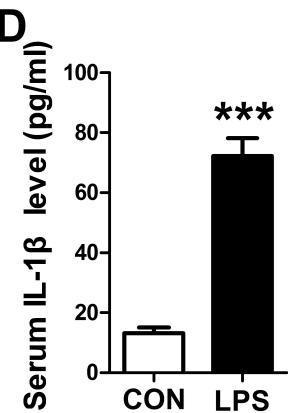
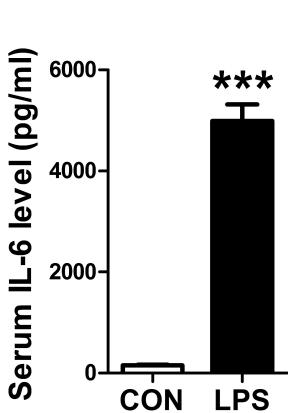
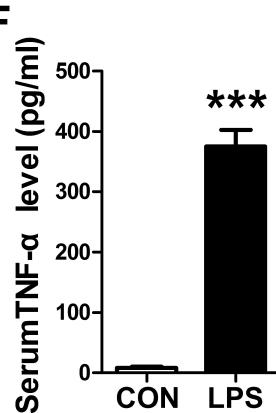
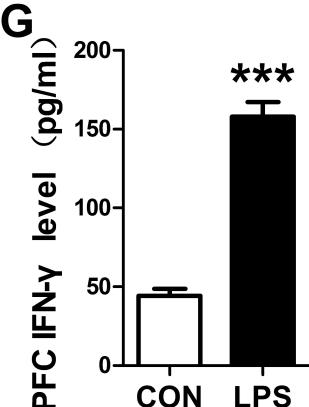
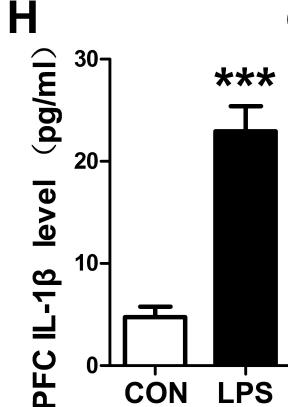
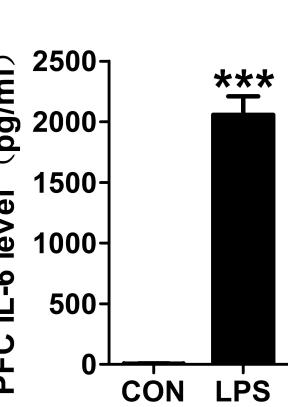
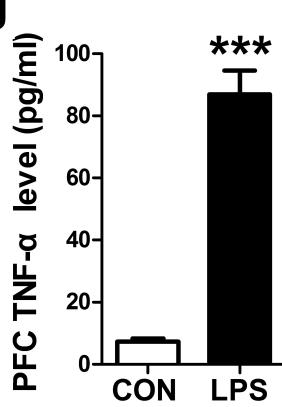
689 ATP8A2 LPS-treated mice. **(E)** The positive negative correlation of the serum IFN- γ

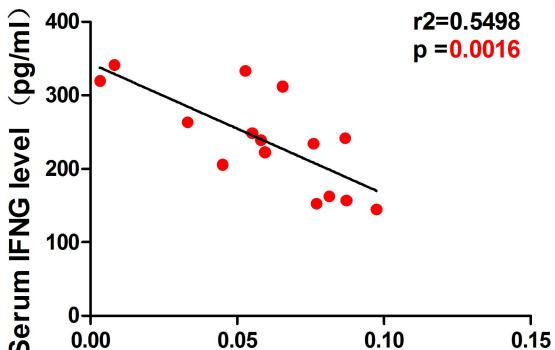
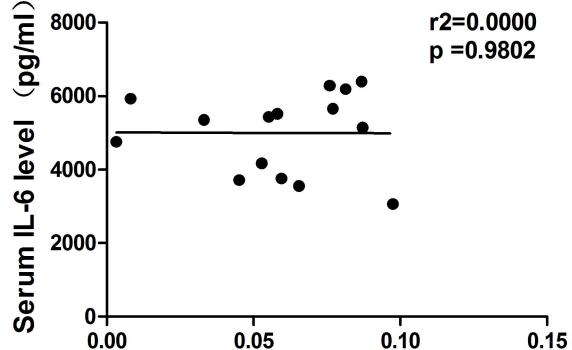
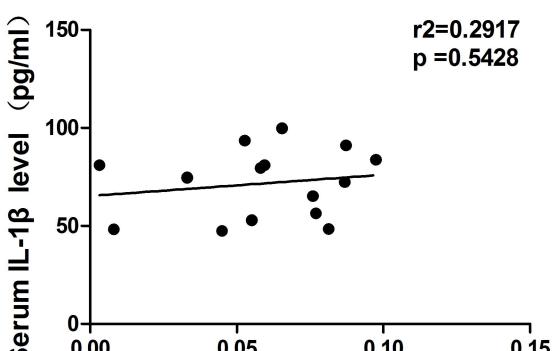
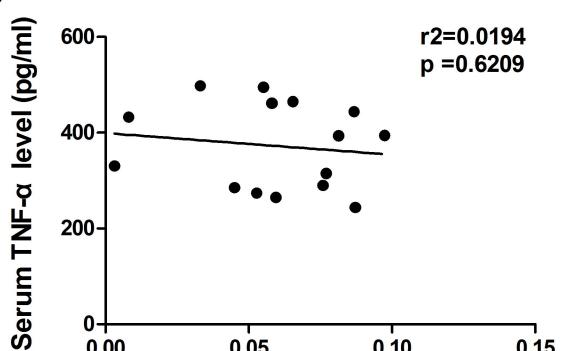
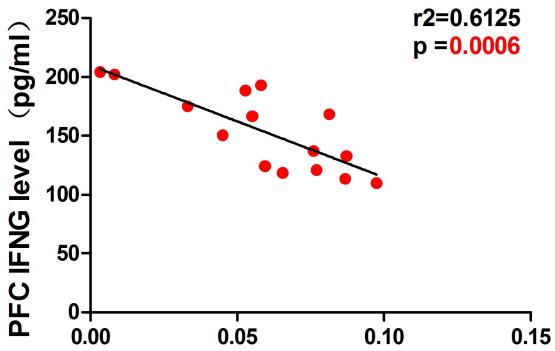
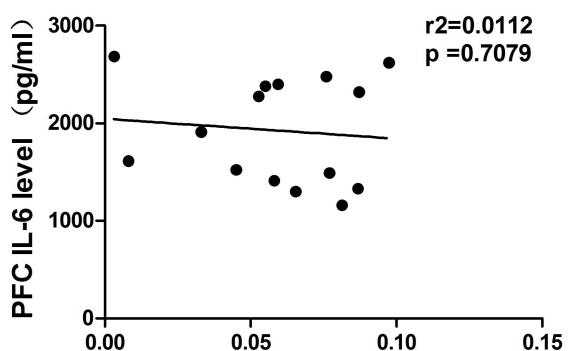
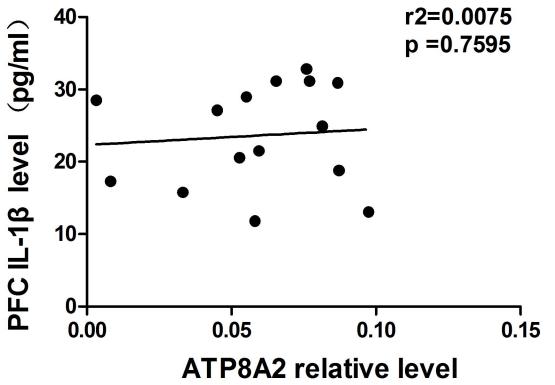
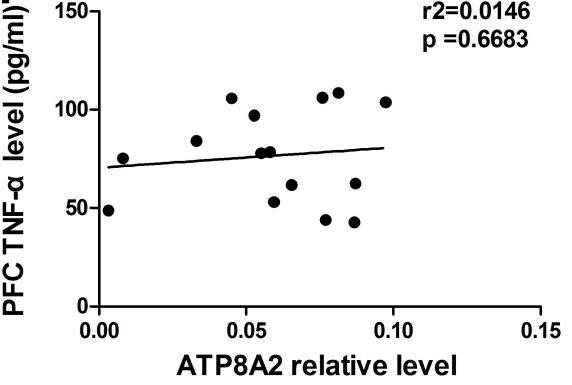
690 level with the ATP8A2 expression level in LPS-treated mice. **(F-H)** Correlation

691 analyses between the serum IL-1 β , IL-6 and TNF- α levels and the level of ATP8A2

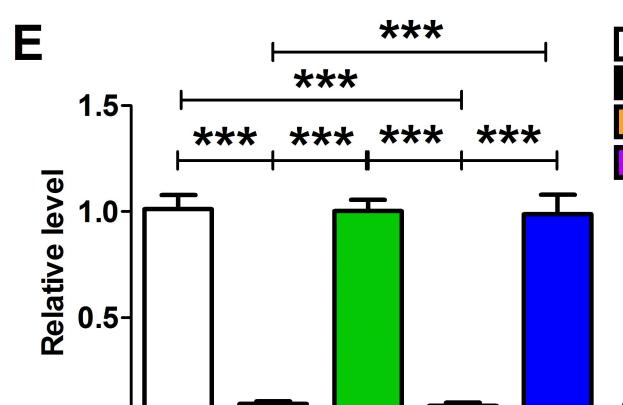
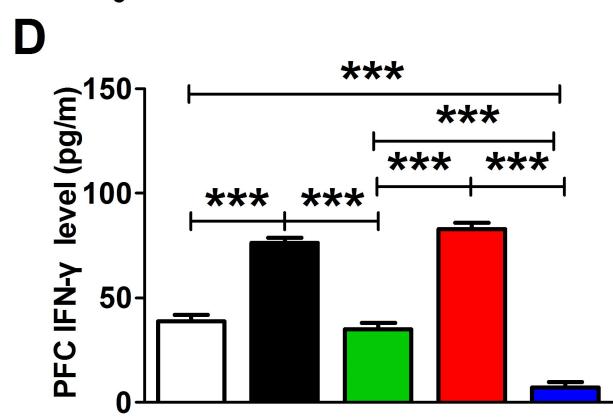
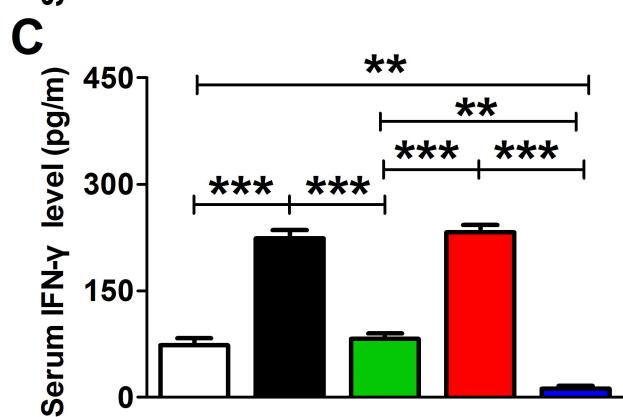
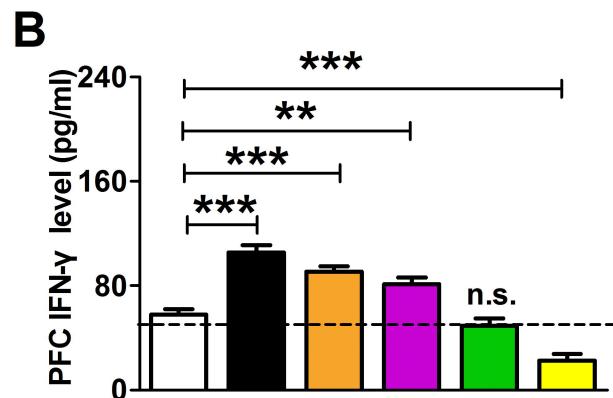
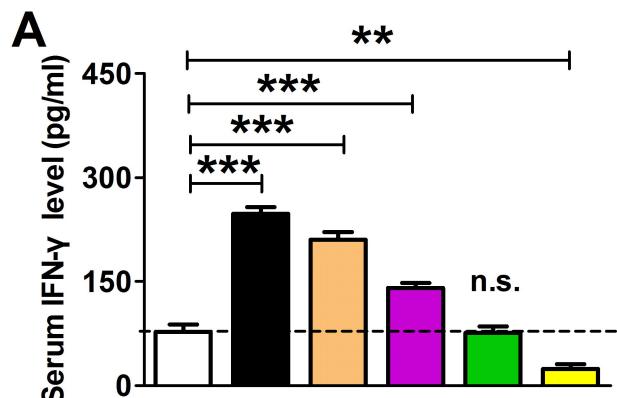
692 LPS-treated mice. $n = 15$ per analysis ; Pearson's correlation analysis.



693 **Fig.4. Western blot analyses showed that IFN- γ mediated the PFC ATP8A2**
694 **down-regulation caused by neonatal LPS exposure.**

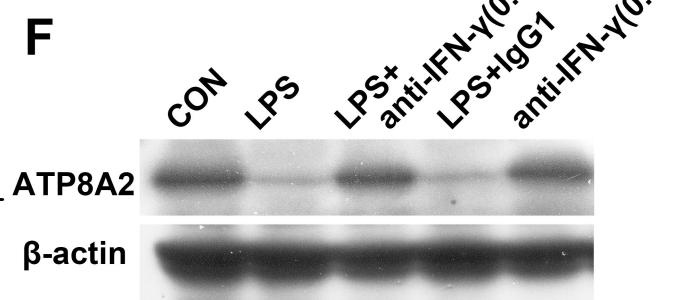










695 **(A-B)** The mean levels of IFN- γ in the serum and PFC were shown from the
696 experiment carried out to determine the optimal dosage of anti-IFN- γ neutralizing
697 mAb. **(C-D)** The mean levels of IFN- γ in the serum and PFC were shown from the
698 IFN- γ -blocking experiment. **(E)** The relative quantification of ATP8A2 in each group
699 of mice was normalized using the level of β -actin. **(F)** Representative results for the
700 Western blot analysis of ATP8A2. Data are expressed as means \pm SEM. Randomly
701 block design ANOVA followed by Tukey's *post hoc* test; $n = 8$ /group; ** $p < 0.01$;
702 *** $p < 0.001$; n.s., no significant. anti-IFN- γ (0.6), the anti-IFN- γ dosage of 0.6
703 mg/kg body weight.

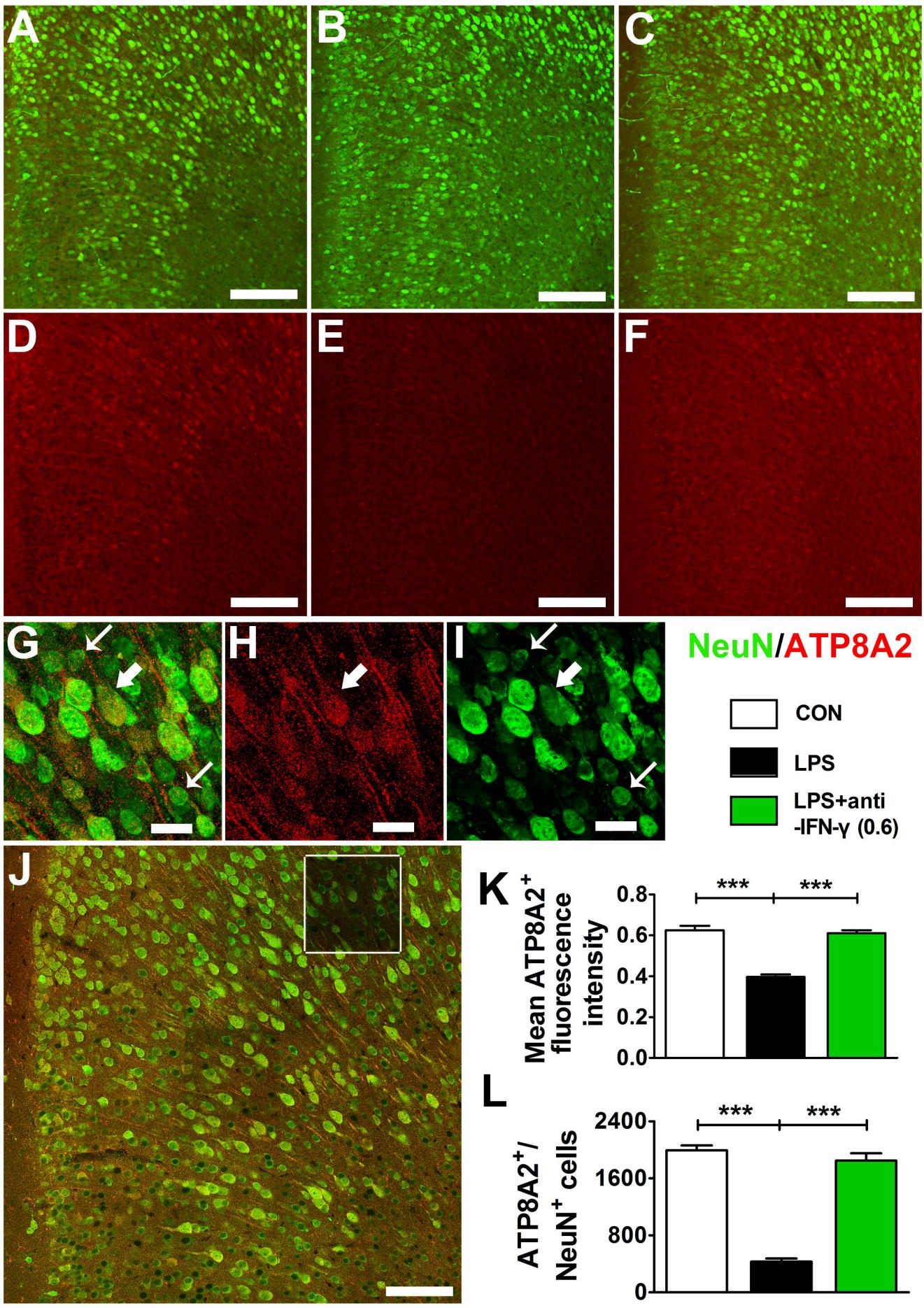








704 **Fig.5. Immunofluorescence analyses showed that IFN- γ mediated the PFC**
705 **ATP8A2 down-regulation caused by neonatal LPS exposure. (A-C)** Representative
706 immunofluorescence staining results in the PFC for ATP8A2(red)/NeuN(green)
707 co-labeling in CON group (A), LPS group (B) and LPS+anti-IFN- γ (0.6) group (C).
708 **(E-F)** Exhibition of the single red channel that shows ATP8A2 signal of the same
709 micrographs shown in (A), (B), (C), respectively. **(G-I)** Representative high
710 magnification photos show the immunofluorescence staining results in the PFC for
711 ATP8A2/NeuN co-labeling. Thick arrows indicate ATP8A2/NeuN co-labeling cells.
712 Thin arrows indicate NeuN single labeling cells. **(J)** The larger scope shows the

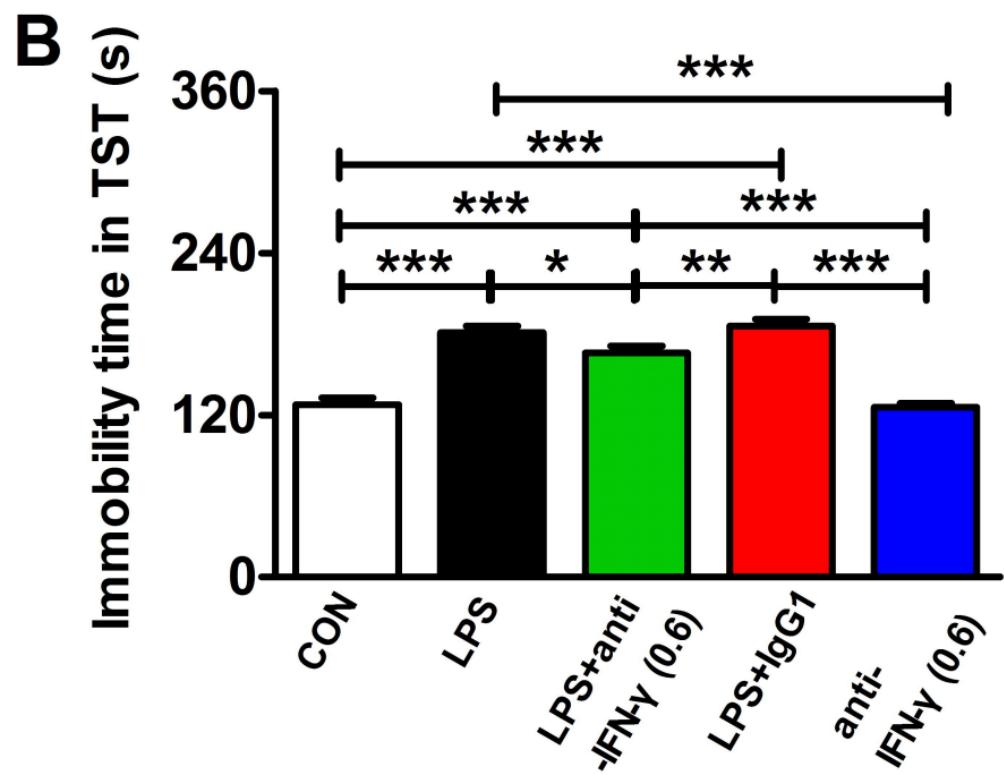
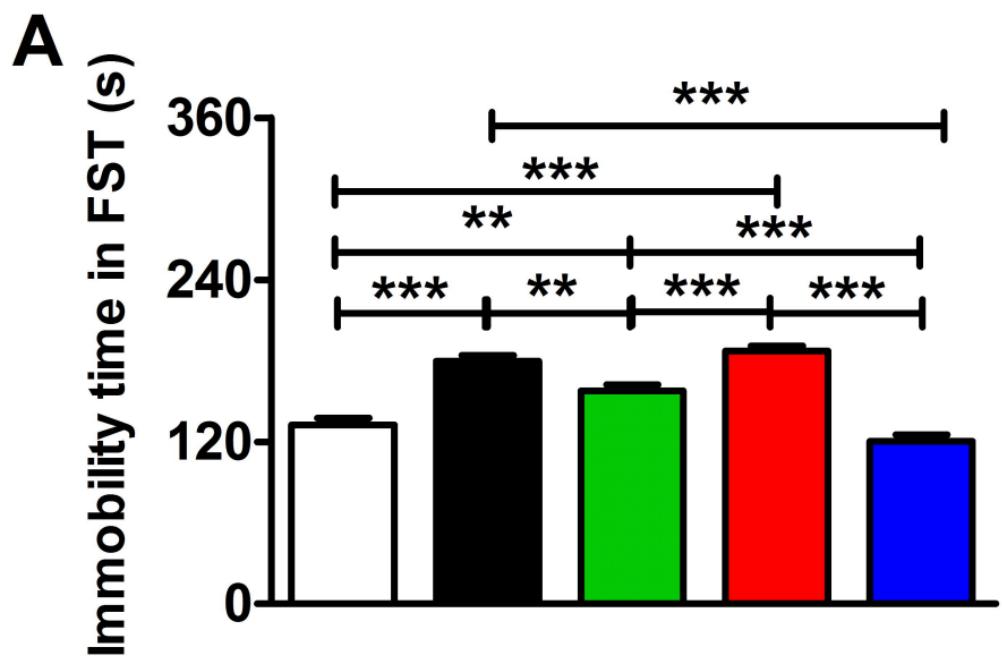
713 location in PFC where the photos shown in (G-I) come from. **(K)** Bars represent mean
714 fluorescence intensity of the signal of immunofluorescence staining for ATP8A2 in
715 each group. **(I)** Bars represent mean numbers of ATP8A2/NeuN co-labeling cells in
716 unilateral PFC in each group. Data are expressed as means \pm SEM. Randomly block
717 design ANOVA followed by Tukey's *post hoc* test; $n = 6$ /group; *** $p < 0.001$;
718 anti-IFN- γ (0.6), the anti-IFN- γ dosage of 0.6 mg/kg body weight. Scale bar in (A-F),
719 300 μ m; in (G-I), 10 μ m; in (J), 200 μ m.






720 **Fig.6. IFN- γ plays an important role in depressive-like behaviors in adulthood**
721 **induced by neonatal LPS exposure.** **(A)** Bars represent the mean immobility time of
722 mice in FST of each group. **(I)** Bars represent the mean immobility time of TST in
723 each group. The data represent the mean \pm SEM; randomly block design ANOVA
724 followed by Tukey's *post hoc* test; $n = 12$ /group; * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$;
725 anti-IFN- γ (0.6), the anti-IFN- γ dosage of 0.6 mg/kg body weight.

A**B**


A**B****C****D****E****F****G****H****I****J**


A**B****C****D****E****F****G****H**



ATP8A2 relative level

CON
LPS
LPS+anti-IFN- γ (2.4)
LPS+anti-IFN- γ (1.2)
LPS+anti-IFN- γ (0.6)
LPS+anti-IFN- γ (0.3)
LPS+IgG1
anti-IFN- γ (0.6)

