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 43 

Abstract 44 

Background: The identification of expression quantitative trait methylation (eQTMs), defined 45 

as associations between DNA methylation levels and gene expression, might help the 46 

biological interpretation of epigenome-wide association studies (EWAS). We aimed to 47 

identify autosomal cis eQTMs in children’s blood, using data from 832 children of the Human 48 

Early Life Exposome (HELIX) project.  49 

Methods: Blood DNA methylation and gene expression were measured with the Illumina 50 

450K and the Affymetrix HTA v2 arrays, respectively. The relationship between methylation 51 

levels and expression of nearby genes (1 Mb window centered at the transcription start site, 52 

TSS) was assessed by fitting 13.6 M linear regressions adjusting for sex, age, cohort, and 53 

blood cell composition.  54 

Results: We identified 39,749 blood autosomal cis eQTMs, representing 21,966 unique 55 

CpGs (eCpGs, 5.7% of total CpGs) and 8,886 unique transcript clusters (eGenes, 15.3% of 56 

total transcript clusters, equivalent to genes). In 87.9% of these cis eQTMs, the eCpG was 57 

located at <250 kb from eGene’s TSS; and 58.8% of all eQTMs showed an inverse 58 

relationship between the methylation and expression levels. Only around half of the 59 

autosomal cis-eQTMs eGenes could be captured through annotation of the eCpG to the 60 

closest gene. eCpGs had less measurement error and were enriched for active blood 61 

regulatory regions and for CpGs reported to be associated with environmental exposures or 62 

phenotypic traits. 40.4% of eQTMs had at least one genetic variant associated with 63 

methylation and expression levels. The overlap of autosomal cis eQTMs in children’s blood 64 

with those described in adults was small (13.8%), and age-shared cis eQTMs tended to be 65 

proximal to the TSS and enriched for genetic variants.  66 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2020.11.05.368076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.368076
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

Conclusions: This catalogue of autosomal cis eQTMs in children’s blood can help the 67 

biological interpretation of EWAS findings and is publicly available at 68 

https://helixomics.isglobal.org/.  69 

Funding: The study has received funding from the European Community’s Seventh 70 

Framework Programme (FP7/2007-206) under grant agreement no 308333 (HELIX project); 71 

the H2020-EU.3.1.2. - Preventing Disease Programme under grant agreement no 874583 72 

(ATHLETE project); from the European Union’s Horizon 2020 research and innovation 73 

programme under grant agreement no 733206 (LIFECYCLE project), and from the European 74 

Joint Programming Initiative “A Healthy Diet for a Healthy Life” (JPI HDHL and Instituto de 75 

Salud Carlos III) under the grant agreement no AC18/00006 (NutriPROGRAM project). The 76 

genotyping was supported by the project PI17/01225, funded by the Instituto de Salud 77 

Carlos III and co-funded by European Union (ERDF, “A way to make Europe”) and the 78 

Centro Nacional de Genotipado-CEGEN (PRB2-ISCIII).  79 
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Abbreviations  84 

BivFlnx: flanking bivalent region  85 

CpG: cytosine nucleotide followed by a guanine nucleotide 86 

eCpG: CpG whose methylation is associated with gene expression; thus, it is part of an 87 

eQTM  88 

eGene: gene whose expression is associated with CpG methylation; thus, it is part of an 89 

eQTM 90 

eQTM: expression quantitative trait methylation (statistically significant associations of CpG-91 

gene pairs) 92 

eQTL: expression quantitative trait locus (SNP associated with gene expression) 93 

Enh: enhancer 94 

EnhBiv: bivalent enhancer 95 

EnhG: genic enhancer 96 

EWAS: epigenome-wide association study 97 

FC: fold change 98 

FDR: false discovery rate 99 

GO: gene ontology 100 

GWAS: genome-wide association study 101 

HELIX: Human Early-Life Exposome project 102 

Het: heterochromatin  103 

ICC: intraclass correlation coefficient 104 
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IQR: interquartile range 105 

meQTL: methylation quantitative trait locus (SNP associated with DNA methylation) 106 

OR: odds ratio 107 

Quies: quiescent region 108 

ReprPC: repressed Polycomb 109 

ReprPCWk: weak repressed Polycomb 110 

SE: standard error 111 

SNP: single nucleotide polymorphism 112 

TC: transcript cluster 113 

TSS: transcription start site 114 

TssA: active transcription start site 115 

TssAFlnk: flanking active transcription start site 116 

TssBiv: bivalent transcription start site 117 

TSS200: proximal promoter, from TSS to 200 bp 118 

TSS1500: distal promoter, from 200 bp to 1,500 bp 119 

Tx: transcription region 120 

TxFlnk: transcription at 5’ and 3’  121 

TxWk: weak transcription region 122 

3’UTR: 3’ untranslated region 123 

5’UTR: 5’ untranslated region 124 
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ZNF.Rpts: zinc finger genes and repeats 125 

Introduction 126 

Cells from the same individual, although sharing the same genome sequence, differentiate 127 

into diverse lineages that finally give place to specific cell types with unique functions. This is 128 

orchestrated by the epigenome, which regulates gene expression in a cell/tissue- and time-129 

specific manner (Cavalli and Heard, 2019; Feinberg, 2018; Lappalainen and Greally, 2017). 130 

Besides its central role in regulating embryonic and fetal development, X-chromosome 131 

inactivation, genomic imprinting, and silencing of repetitive DNA elements, the epigenome is 132 

also responsible for the plasticity and cellular memory in response to environmental 133 

perturbations (Cavalli and Heard, 2019; Feinberg, 2018; Lappalainen and Greally, 2017).  134 

Massive epigenetic alterations, caused by somatic mutations, age, injury, or environmental 135 

exposures, were initially described in cancer (Feinberg, 2018). The paradigm of 136 

environmental factors modifying the epigenome and leading to increased disease risk was 137 

then extrapolated from cancer to a wide range of common diseases. Consequently, in recent 138 

years, a high number of epigenome-wide association studies (EWAS) have been performed, 139 

investigating the relation of prenatal and postnatal exposure to environmental factors with 140 

DNA methylation, and of DNA methylation with disease (Feinberg, 2018; Lappalainen and 141 

Greally, 2017). EWAS findings have been inventoried in two catalogues: the EWAS catalog 142 

(Battram et al., 2021) and the EWAS Atlas (Li et al., 2019). The latter includes 0.5 M 143 

associations for 498 traits from 1,216 studies, including 155 different cells/tissues.  144 

Despite the success of EWAS in identifying altered methylation patterns, various challenging 145 

issues still must be solved: the role of genetic variation; the access to the target tissue/cell; 146 

confounding reverse causation; and biological interpretation (Feinberg, 2018; Lappalainen 147 

and Greally, 2017). Regarding the latter, most studies do not have transcriptional data to test 148 

the effect of DNA methylation on gene expression. When these data are not available, a 149 
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common approach is to assume that CpG DNA methylation affects the expression of the 150 

closest gene (Sharp et al., 2017). Although this approach is easy to implement, it is limited. 151 

Indeed, CpG DNA methylation might regulate distant genes or might not regulate any gene 152 

at all (Bonder et al., 2017; Lappalainen and Greally, 2017). Another approach to elucidate 153 

the effect of DNA methylation on gene expression when transcriptional data are not available 154 

is to perform expression quantitative trait methylation (eQTM) studies. These are genome-155 

wide studies investigating the associations between the levels of DNA methylation and gene 156 

expression (Gondalia et al., 2019; Küpers et al., 2019). Several eQTM studies have been 157 

performed in diverse cell types/tissues: whole blood (Bonder et al., 2017; Kennedy et al., 158 

2018), monocytes (Husquin et al., 2018; Kennedy et al., 2018; Liu et al., 2013), 159 

lymphoblastoid cell lines, T-cells and fibroblasts derived from umbilical cords (Gutierrez-160 

Arcelus et al., 2015, 2013), fibroblasts (Wagner et al., 2014), liver (Bonder et al., 2014), 161 

skeletal muscle (Leland Taylor et al., 2019), nasal airway epithelium (Kim et al., 2020), and 162 

placenta (Delahaye et al., 2018). As most of the EWAS are conducted in whole blood (Felix 163 

et al., 2018; Li et al., 2019), there is a need for comprehensive eQTM studies in this tissue. 164 

To date, available eQTM studies in whole blood only cover samples from adults (Bonder et 165 

al., 2017; Kennedy et al., 2018) and their validity in children has not been assessed.  166 

In this study, we analyzed DNA methylation and gene expression data from the Human 167 

Early-Life Exposome (HELIX) project to an autosomal cis eQTM catalogue in children’s 168 

blood (https://helixomics.isglobal.org/). We analyzed the proportion of cis eQTMs captured 169 

through annotation to the closest gene, characterized them at the functional level, assessed 170 

the influence of genetic variation and compared them with eQTMs identified in adults.  An 171 

overview of all the analyses can be found in Figure 1. This public resource will help the 172 

functional interpretation of EWAS findings in children.  173 
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Methods 174 

Sample of the study 175 

The Human Early Life Exposome (HELIX) study is a collaborative project across 6 176 

established and on-going longitudinal population-based birth cohort studies in Europe 177 

(Maitre et al., 2018): the Born in Bradford (BiB) study in the UK (Wright et al., 2013), the 178 

Étude des Déterminants pré et postnatals du développement et de la santé de l’Enfant 179 

(EDEN) study in France (Heude et al., 2016), the INfancia y Medio Ambiente (INMA) cohort 180 

in Spain (Guxens et al., 2012), the Kaunus cohort (KANC) in Lithuania (Grazuleviciene et al., 181 

2009), the Norwegian Mother, Father and Child Cohort Study (MoBa)(Magnus et al., 2016) 182 

and the RHEA Mother Child Cohort study in Crete, Greece (Chatzi et al., 2017). All 183 

participants in the study signed an ethical consent and the study was approved by the ethical 184 

committees of each study area (Maitre et al., 2018). 185 

In the present study, we selected a total of 832 children of European ancestry that had both 186 

DNA methylation and gene expression data. Ancestry was determined with cohort-specific 187 

self-reported questionnaires. 188 

Biological samples 189 

DNA was obtained from buffy coats collected in EDTA tubes at mean age 8.1 years old. 190 

Briefly, DNA was extracted using the Chemagen kit (Perkin Elmer), in batches by cohort. 191 

DNA concentration was determined in a NanoDrop 1000 UV-Vis Spectrophotometer 192 

(Thermo Fisher Scientific) and with Quant-iT™ PicoGreen® dsDNA Assay Kit (Life 193 

Technologies). 194 

RNA was extracted from whole blood samples collected in Tempus tubes (Applied 195 

Biosystems) using the MagMAX for Stabilized Blood Tubes RNA Isolation Kit (Thermo 196 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2020.11.05.368076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.368076
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

Fisher Scientific), in batches by cohort. The quality of RNA was evaluated with a 2100 197 

Bioanalyzer (Agilent) and the concentration with a NanoDrop 1000 UV-Vis 198 

Spectrophotometer (Thermo Fisher Scientific). Samples classified as good RNA quality had 199 

an RNA Integrity Number (RIN) > 5, a similar RNA integrity pattern at visual inspection, and 200 

a concentration >10 ng/ul. Mean values for the RIN, concentration (ng/ul) and Nanodrop 201 

260/230 ratio were: 7.05, 109.07 and 2.15, respectively. 202 

DNA methylation assessment 203 

DNA methylation was assessed with the Infinium HumanMethylation450K BeadChip 204 

(Illumina), following manufacturer’s protocol at the National Spanish Genotyping Centre 205 

(CEGEN), Spain. Briefly, 700 ng of DNA were bisulfite-converted using the EZ 96-DNA 206 

methylation kit following the manufacturer’s standard protocol, and DNA methylation 207 

measured using the Infinium protocol. A HapMap sample was included in each plate. In 208 

addition, 24 HELIX inter-plate duplicates were included. Samples were randomized 209 

considering cohort, sex, and panel. Paired samples from the panel study (samples from the 210 

same subject collected at different time points) were processed in the same array. Two 211 

samples were repeated due to their overall low quality. 212 

DNA methylation data was pre-processed using minfi R package (RRID:SCR_012830) 213 

(Aryee et al., 2014). We increased the stringency of the detection p-value threshold to <1e-214 

16, and probes not reaching a 98% call rate were excluded (Lehne et al., 2015). Two 215 

samples were filtered due to overall quality: one had a call rate <98% and the other did not 216 

pass quality control parameters of the MethylAid R package (RRID:SCR_002659) (van 217 

Iterson et al., 2014). Then, data was normalized with the functional normalization method 218 

with Noob background subtraction and dye-bias correction (Fortin et al., 2014b). Then, we 219 

checked sex consistency using the shinyMethyl R package (Fortin et al., 2014a), genetic 220 

consistency of technical duplicates, biological duplicates (panel study), and other samples 221 

making use of the genotype probes included in the Infinium HumanMethylation450K 222 
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BeadChip and the genome-wide genotyping data, when available. In total four samples were 223 

excluded, two with discordant sex and two with discordant genotypes. Batch effect (slide) 224 

was corrected using the ComBat R package (RRID:SCR_010974) (Johnson et al., 2007). 225 

Duplicated samples, one of the samples from the panel study and HapMap samples were 226 

removed as well as control probes, probes in sexual chromosomes, probes designed to 227 

detect Single Nucleotide Polymorphisms (SNPs) and probes to measure methylation levels 228 

at non-CpG sites, giving a final number of 386,518 probes. 229 

CpG annotation was conducted with the IlluminaHumanMethylation450kanno.ilmn-12.hg19 230 

R package (Hansen, n.d.). Briefly, this package annotates CpGs to proximal promoter (200 231 

bp upstream the TSS - TSS200), distant promoter (from 200 to 1,500 bp upstream the TSS - 232 

TSS1500), 5'UTR, first exon, gene body, and 3'UTR regions. CpGs farther than 1,500 bp 233 

from the TSS were not annotated to any gene. Relative position to CpG islands (island, 234 

shelve, shore and open sea) was also provided by the same R package. 235 

Annotation of CpGs to 15 chromatin states was retrieved from the Roadmap Epigenomics 236 

Project web portal (RRID:SCR_008924) (https://egg2.wustl.edu/roadmap/web_portal/). Each 237 

CpG in the array was annotated to one or several chromatin states by taking a state as 238 

present in that locus if it was described in at least 1 of the 27 blood-related cell types. 239 

Gene expression assessment 240 

Gene expression, including coding and non-coding transcripts, was assessed with the 241 

Human Transcriptome Array 2.0 ST arrays (HTA 2.0) (Affymetrix) at the University of 242 

Santiago de Compostela (USC), Spain. Amplified and biotinylated sense-strand DNA targets 243 

were generated from total RNA. Affymetrix HTA 2.0 arrays were hybridized according to 244 

Affymetrix recommendations using the Manual Target preparation for GeneChip Whole 245 

Transcript (WT) expression arrays and the labeling and hybridization kits. In each round, 246 

several batches of 24-48 samples were processed. Samples were randomized within each 247 
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batch considering sex and cohort. Paired samples from the panel study were processed in 248 

the same batch. Two different types of control RNA samples (HeLa or FirstChoice® Human 249 

Brain Reference RNA) were included in each batch, but they were hybridized only in the first 250 

batches. Raw data were extracted with the AGCC software (Affymetrix) and stored into CEL 251 

files. Ten samples failed during the laboratory process (7 did not have enough cRNA or ss-252 

cDNA, 2 had low fluorescence, and 1 presented an artifact in the CEL file). 253 

Data was normalized with the GCCN (SST-RMA) algorithm at the gene level. Annotation of 254 

transcript clusters (TCs) was done with the ExpressionConsole software using the HTA-2.0 255 

Transcript Cluster Annotations Release na36 annotation file from Affymetrix. After 256 

normalization, several quality control checks were performed and four samples with 257 

discordant sex and two with low call rates were excluded (Buckberry et al., 2014). One of the 258 

samples from the panel study was also eliminated for this analysis. Control probes and 259 

probes in sexual chromosomes or probes without chromosome information were excluded. 260 

Probes with a DABG (Detected Above Background) p-value <0.05 were considered to have 261 

an expression level different from the background, and they were defined as detected. 262 

Probes with a call rate <1% were excluded from the analysis. The final dataset consisted of 263 

58,254 TCs. 264 

Gene expression values were log2 transformed and batch effect controlled by residualizing 265 

the effect of surrogate variables calculated with the sva method (RRID:SCR_012836) (Leek 266 

et al., 2007) while protecting for main variables in the study (cohort, age, sex, and blood 267 

cellular composition). 268 

Blood cellular composition  269 

Main blood cell type proportions (CD4+ and CD8+ T-cells, natural killer cells, monocytes, 270 

eosinophils, neutrophils, and B-cells) were estimated using the Houseman algorithm 271 
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(Houseman et al., 2012) and the Reinius reference panel (Reinius et al., 2012) from raw 272 

methylation data. 273 

Genome-wide genotyping  274 

Genome-wide genotyping was performed using the Infinium Global Screening Array (GSA) 275 

MD version 1 (Illumina), which contains 692,367 variants, at the Human Genomics Facility 276 

(HuGe-F), Erasmus MC, The Netherlands. Genotype calling was done using the 277 

GenTrain2.0 algorithm based on a custom cluster file implemented in the GenomeStudio 278 

software (RRID:SCR_010973). Annotation was done with the GSAMD-24v1-279 

0_20011747_A4 manifest. Samples were genotyped in two rounds, and 10 duplicates were 280 

included which confirmed high inter-round consistency.  281 

Quality control was performed with the PLINK program (RRID:SCR_001757) following 282 

standard recommendations (Chang et al., 2015; Purcell et al., 2007). We applied the 283 

following sample quality controls: sample call rate <97% (N filtered=43), sex concordance 284 

(N=8), heterozygosity based on >4 SD (N=0), relatedness with PI_HAT >0.185 (N=10, 285 

including potential DNA contamination), duplicates (N=19). Then, we used the peddy tool 286 

(RRID:SCR_017287) to predict ancestry from GWAS data (Pedersen and Quinlan, 2017). 287 

We contrasted ancestry predicted from GWAS with ancestry recorded in the questionnaires. 288 

Twelve samples were excluded due to discordances between the two variables. Overall, 93 289 

(6.7%) samples, including the duplicates, were filtered out. The variant quality control 290 

included the following steps: variant call rate <95% (N filtered=4,046), non-canonical PAR 291 

(N=47), minor allele frequency (MAF) <1% (N=178,017), Hardy-Weinberg equilibrium (HWE) 292 

p-value <1e-06 (N=913). Some other SNPs were filtered out during the matching between 293 

data and reference panel before imputation (N=14,436). 294 

Imputation of the GWAS data was performed with the Imputation Michigan server 295 

(RRID:SCR_017579) (Das et al., 2016) using the Haplotype Reference Consortium (HRC) 296 
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cosmopolitan panel, Version r1.1 2016 (McCarthy et al., 2016). Before imputation, PLINK 297 

GWAS data was converted into VCF format and variants were aligned with the reference 298 

genome. The phasing of the haplotypes was done with Eagle v2.4 (RRID:SCR_017262) 299 

(Loh et al., 2016) and the imputation with minimac4 (RRID:SCR_009292) (Fuchsberger et 300 

al., 2015), both implemented in the code of the Imputation Michigan server. In total, we 301 

retrieved 40,405,505 variants after imputation. Then, we applied the following QC criteria to 302 

the imputed dataset: imputation accuracy (R2) >0.9, MAF >1%, HWE p-value >1e-06; and 303 

genotype probabilities were converted to genotypes using the best guest approach. The final 304 

post-imputation quality-controlled dataset consisted of 1,304 samples and 6,143,757 305 

variants (PLINK format, Genome build: GRCh37/hg19, + strand).  306 

Identification of autosomal cis eQTMs in children’s blood 307 

To test associations between DNA methylation levels and gene expression levels in cis (cis 308 

eQTMs), we paired each Gene to CpGs closer than 500 kb from its TSS, either upstream or 309 

downstream. For each Gene, the TSS was defined based on HTA-2.0 annotation, using the 310 

start position for transcripts in the + strand, and the end position for transcripts in the - 311 

strand. CpGs position was obtained from Illumina 450K array annotation. Only CpGs in 312 

autosomal chromosomes (from chromosome 1 to 22) were tested. In the main analysis, we 313 

fitted for each CpG-Gene pair a linear regression model between gene expression and 314 

methylation levels adjusted for age, sex, cohort, and blood cell type composition. A second 315 

model was run without adjusting for blood cellular composition and it is only reported on the 316 

online web catalog, but not discussed in this manuscript. Although some of the unique 317 

associations of the unadjusted model might be real, others might be confounded by the large 318 

methylation and expression changes among blood cell types.  319 

To ensure that CpGs paired to a higher number of Genes do not have higher chances of 320 

being part of an eQTM, multiple-testing was controlled at the CpG level, following a 321 

procedure previously applied in the Genotype-Tissue Expression (GTEx) project (Gamazon 322 
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et al., 2018). Briefly, our statistic used to test the hypothesis that a pair CpG-Gene is 323 

significantly associated is based on considering the lowest p-value observed for a given CpG 324 

and all its paired Gene (e.g., those in the 1 Mb window centered at the TSS). As we do not 325 

know the distribution of this statistic under the null, we used a permutation test. We 326 

generated 100 permuted gene expression datasets and ran our previous linear regression 327 

models obtaining 100 permuted p-values for each CpG-Gene pair. Then, for each CpG, we 328 

selected among all CpG-Gene pairs the minimum p-value in each permutation and fitted a 329 

beta distribution that is the distribution we obtain when dealing with extreme values (e.g. 330 

minimum) (Dudbridge and Gusnanto, 2008). Next, for each CpG, we took the minimum p-331 

value observed in the real data and used the beta distribution to compute the probability of 332 

observing a lower p-value. We defined this probability as the empirical p-value of the CpG. 333 

Then, we considered as significant those CpGs with empirical p-values to be significant at 334 

5% false discovery rate using Benjamini-Hochberg method. Finally, we applied a last step to 335 

identify all significant CpG-Gene pairs for all eCpGs. To do so, we defined a genome-wide 336 

empirical p-value threshold as the empirical p-value of the eCpG closest to the 5% false 337 

discovery rate threshold. We used this empirical p-value to calculate a nominal p-value 338 

threshold for each eCpG, based on the beta distribution obtained from the minimum 339 

permuted p-values. This nominal p-value threshold was defined as the value for which the 340 

inverse cumulative distribution of the beta distribution was equal to the empirical p-value. 341 

Then, for each eCpG, we considered as significant all eCpG-Gene variants with a p-value 342 

smaller than nominal p-value.  343 

Characterization of the child blood autosomal cis eQTM 344 

catalogue 345 

Wilcoxon tests were run to compare continuous variables (e.g., methylation range, CpG 346 

probe reliability, etc.) vs. categorical variables (e.g., low, medium, and high categories of 347 

methylation levels, eCpGs vs non eCpGs, etc.). We run a linear model to test the association 348 
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between the effect size and the distance between the CpG and the Gene’s TSS. For this 349 

test, we compared the absolute value of the effect size vs log10 of absolute value of the 350 

distance, 351 

Enrichment of eCpGs for regulatory elements: Enrichment of eQTMs for regulatory elements 352 

were tested using Chi-square tests with non eQTMs as reference, unless otherwise stated. 353 

Results with a p-value <0.05 were considered statistically significant. Annotation of eQTMs 354 

to regulatory elements (gene relative positions, CpG island relative positions, and blood 355 

ROADMAP chromatin states) is described in the section “DNA methylation assessment”. 356 

Enrichment for CpGs classified in 3 groups based on their median methylation levels (low: 357 

0.0-0.3; medium: >0.3-0.7; and high: >0.7-1.0) was tested similarly. 358 

Enrichment of eCpGs for CpGs associated with phenotypic traits and exposures: We also 359 

explored the enrichment of eQTMs for phenotypic traits and/or environmental exposures 360 

reported in the EWAS catalog (Battram et al., 2021) and the EWAS Atlas (Li et al., 2019). 361 

We used version 03-07-2019 of the EWAS catalog and selected those studies conducted in 362 

whole or peripheral blood of European ancestry individuals. We downloaded EWAS Atlas 363 

data on 27-11-2019 and selected those studies performed in whole blood or peripheral blood 364 

of European ancestry individuals or with unreported ancestry. Enrichment was tested as 365 

indicated above. 366 

Enrichment of eCpGs for age-variable CpGs: We used results from the MeDALL and the 367 

Epidelta projects to test whether eQTMs were enriched for CpGs variable from birth to 368 

childhood and adolescence. For MeDALL we downloaded data from supplementary material 369 

of the following manuscript that assesses changes from 0 to 4y and from 4y to 8y (Xu et al., 370 

2017). For Epidelta, we downloaded the full catalogue (version 2020-07-17) from their 371 

website (http://epidelta.mrcieu.ac.uk/). In Epidelta, we considered a CpG as age-variable if 372 

its p-value from model 1 that assesses linear changes from 0 to 17 years (variable 373 

M1.change.p) was <1e-7 (Bonferroni threshold as suggested in the study). Variable CpGs 374 
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were classified as increased methylation if their change estimate (variable 375 

M1.change.estimate) was >0, and as decreased methylation, otherwise. Enrichment was 376 

tested as indicated above. 377 

Enrichment of eGenes for Gene Ontology - Biological Processes (GO-BP): We also tested 378 

whether eGenes were enriched for specific GO-BP terms using the topGO R package 379 

(RRID:SCR_014798) (J, 2010) and using the genes annotated by Affymetrix in our dataset 380 

as background (58,254 Genes annotated to 23,054 Gene Symbols). We applied the 381 

weight01 algorithm, which considers GO-BP terms hierarchy for p-values computation. GO-382 

BP terms with q-value <0.001 were considered statistically significant. 383 

Comparison of genes associated with eQTMs versus 384 

annotation of eQTMs to the closest gene 385 

We evaluated whether genes associated with eQTMs could be captured through the Illumina 386 

annotation, which links CpGs to the closest gene in a maximum distance of 1500 bp. For 387 

this, CpGs were annotated to Gene Symbols using the 388 

IlluminaHumanMethylation450kanno.ilmn-12.hg19 R package (Hansen, n.d.), while Genes 389 

were annotated to Gene Symbols using the HTA-2.0 Transcript Cluster Annotations Release 390 

na36 annotation file from Affymetrix. Given that CpGs and Genes could be annotated to 391 

several genes, we considered that a CpG-Gene pair was annotated to the same gene if at 392 

least one of the genes annotated to the CpG was present among the genes in the HTA-2.0 393 

array. In total, we identified 327,931 CpG-Gene pairs annotated to the same gene, and thus 394 

that could be compared. Then, a Chi-square test was applied to compute whether eQTMs 395 

were enriched for these 327,931 comparable CpG-Gene pairs, using as background all 13M 396 

CpG-Gene pairs.  397 

Next, we evaluated whether the relative position of the CpG in the genic region was related 398 

to the expression of the paired Gene. To do so, the comparable 327,931 CpG-Gene pairs 399 
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were expanded to 383,672 entries. Each entry represented a CpG-Gene pair annotated to a 400 

unique gene relative position. Thus, for instance, a CpG-Gene pair with the CpG annotated 401 

to two relative gene positions of the same gene was included as two entries, each time 402 

annotated to a different gene relative position. In this expanded CpG-Gene pair set, Chi-403 

square tests were run to test the enrichment of eQTMs for gene relative positions, using the 404 

383,672 entries as background. 405 

Evaluation of the genetic contribution on child blood autosomal 406 

cis eQTMs 407 

We used two approaches to evaluate the influence of genetic effects in child blood 408 

autosomal cis eQTMs. First, we analyzed heritability estimates of CpGs computed by Van 409 

Dongen and colleagues (van Dongen et al., 2016). Total additive and SNP-heritabilities were 410 

compared between eCpGs and non eCpGs, using a Wilcoxon test. We also run linear 411 

regressions between heritability measures (outcome) and eCpGs classified according to the 412 

number of eGenes they were associated with. 413 

Second, we tested whether eCpGs were more likely regulated by SNPs than non eCpGs 414 

(i.e., whether they were enriched for meQTL). In order to define meQTLs in HELIX, we 415 

selected 9.9 M cis and trans meQTLs with a p-value <1e-7 in the ARIES dataset consisting 416 

of data from children of 7 years old (Gaunt et al., 2016). Then, we tested whether this subset 417 

of 9.9 M SNPs were also meQTLs in HELIX by running meQTL analyses using MatrixEQTL 418 

R package (Shabalin, 2012), adjusting for cohort, sex, age, blood cellular composition and 419 

the first 20 principal components (PCs) calculated from genome-wide genetic data of the 420 

GWAS variability. We confirmed 2.8 M meQTLs in HELIX (p-value <1e-7). Trans meQTLs 421 

represented <10% of the 2.8 M meQTLs. Enrichment of eCpGs for meQTLs was computed 422 

using a Chi-square test, using non eCpGs as background.  423 
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Finally, we tested whether meQTLs were also eQTLs for the eGenes linked to the eCpGs. 424 

To this end, we run eQTL analyses (gene expression being the outcome and 2.8 M SNPs 425 

the predictors) with MatrixEQTL adjusting for cohort, sex, age, blood cellular composition 426 

and the first 20 GWAS PCs in HELIX. We considered as significant eQTLs the SNP-Gene 427 

pairs with p-value <1e-7 and with the direction of the effect consistent with the direction of 428 

the meQTL and the eQTM. 429 

Comparison with adult blood eQTM catalogues: GTP and 430 

MESA  431 

We compared our list of child blood autosomal cis eQTMs obtained in HELIX with the cis 432 

and trans eQTMs described in blood of two adult cohorts: GTP and MESA (Kennedy et al., 433 

2018). DNA methylation was assessed with the Infinium HumanMethylation450K BeadChip 434 

(Illumina) in the 3 cohorts. In HELIX, gene expression was assessed with the Human 435 

Transcriptome Array 2.0 ST arrays (HTA 2.0) (Affymetrix), and in GTP and MESA with the 436 

HumanHT-12 v3.0 and v4.0 Expression BeadChip (Illumina).  437 

For the comparison of eQTMs between adults and children, eGenes in the two studies were 438 

annotated to a common gene nomenclature, by using the Gene Symbol annotation provided 439 

by the authors form GTP and MESA, and the Gene Symbol provided by the Affymetrix 440 

annotation in HELIX. Some eQTMs involved Genes (HELIX) or gene probes (GTP and 441 

MESA) annotated to more than one gene (Gene Symbol); and also different Genes (HELIX) 442 

or gene probes (GTP and MESA) were annotated to the same Gene Symbol. To handle this 443 

issue, we split our comparison in two analyses.  444 

First, we checked whether CpG-gene pairs reported in GTP and MESA were eQTMs 445 

(significant CpG-gene pairs) in HELIX. By doing this, the comparison was restricted to cis 446 

effects (as HELIX only considered cis effects). When a CpG-gene pair in GTP or MESA 447 

mapped to multiple CpG-gene pairs in HELIX, we only considered the CpG-gene pair with 448 
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the smallest p-value in HELIX. Next, Pearson’s correlations between the effect sizes of the 449 

different studies were computed.  450 

Second, we explored whether HELIX eQTMs were also present in GTP and/or MESA. When 451 

a CpG-gene pair in HELIX mapped to multiple CpG-gene pairs in GTP and/or MESA, we 452 

only considered the CpG-gene pair with the smallest p-value in these cohorts. As a result, 453 

HELIX eQTMs were classified in age-shared (if present in adults at p-value <1e-05, in GTP 454 

and/or MESA) and children-specific (absent in adult cohorts). For these two subsets of 455 

eQTMs, enrichment for ROADMAP chromatin states, methylation measurement error, and 456 

distance from the eCpG to the eGene’s TSS, was tested as explained above. 457 

Data and software availability 458 

The raw data used to generate the eQTM catalogue are not publicly available due to privacy 459 

restrictions but are available from the corresponding author on request. Catalogue of eQTMs 460 

described in this manuscript is publicly available at https://helixomics.isglobal.org/. Scripts to 461 

reproduce the analysis can be found in a public GitHub repository 462 

(https://github.com/yocra3/methExprsHELIX/) and as a supplementary file.  463 

Results 464 

Study population and molecular data  465 

The study includes 823 children of European ancestry from the HELIX project with available 466 

blood DNA methylation and gene expression data. These children, enrolled in 6 cohorts, 467 

were aged between 6 and 11 years and the number of males and females was balanced 468 

(Table 1).  469 
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After quality control, our dataset consists of 386,518 CpGs and 58,254 transcript clusters 470 

(TCs) in autosomal chromosomes (from 1 to 22). TCs are defined as groups of one or more 471 

probes covering a region of the genome, reflecting all the exonic transcription evidence 472 

known for the region, and corresponding to a known or putative gene. Thus, we will refer 473 

TCs to Genes indistinctively. According to Affymetrix annotation, 23,054 of the Genes 474 

encoded a protein. To detect cis effects, we paired each Gene to all CpGs closer than 0.5 475 

Mb from its transcription start site (TSS), either upstream or downstream (1 Mb window 476 

centered at the TSS). In total, we obtained 13.6 M CpG-Gene pairs, where each CpG was 477 

paired to a median of 30 Genes; and each Gene was paired to a median of 162 CpGs 478 

(Figure 1 – figure supplement 1). 479 

Identification of autosomal cis eQTMs in children’s blood 480 

We tested the association between DNA methylation and gene expression levels in the  481 

13.6 M autosomal CpG-Gene pairs through linear regressions adjusting for sex, age, cohort, 482 

and cellular composition. After correcting for multiple testing (see Material and Methods), we 483 

identified 39,749 statistically significant autosomal cis eQTMs in children’s blood (0.29% of 484 

total CpG-Gene pairs). These eQTMs comprised 21,966 unique CpGs (5.7% of total CpGs) 485 

and 8,886 unique Genes (15.3% of total Genes), of which 6,288 were annotated as coding 486 

genes. For simplicity, we will refer to them as eQTMs (statistically significant associations of 487 

CpG-Gene pairs), eCpGs (CpGs involved in eQTMs), and eGenes (Genes involved in 488 

eQTMs). 23,355 eQTMs (58.8% of total) showed inverse associations, meaning that higher 489 

DNA methylation was associated with lower gene expression. In eQTMs, each eGene was 490 

associated with a median of 2 eCpGs, while each eCpG was associated with a median of 1 491 

eGene (Figure 1 – figure supplement 2). eCpGs presented higher methylation variability in 492 

the population (Figure 1 – figure supplement 3), and were measured with lower technical 493 

error (Sugden et al., 2020) (Figure 1 – figure supplement 4). Indeed, 13,278 eCpGs (60.4% 494 

of total) were measured with probes which had an intraclass correlation coefficient (ICC) 495 
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>0.4, which is indicative of reliable measurements. Moreover, eGenes had higher call rates 496 

(Figure 1 – figure supplement 5).  497 

The complete catalogue of eQTMs can be downloaded from https://helixomics.isglobal.org/. 498 

Overview of autosomal cis eQTMs in children’s blood 499 

Distance from the eCpG to the eGene’s TSS and effect size 500 

eCpGs tended to be close to the TSS of the targeted eGenes, being this distance <250Kb 501 

for 87.9% of all eQTMs (Figure 2A). Globally, the median distance between an eCpG and 502 

the TSS of its associated eGene was 1.1 kb (IQR = -33 kb; 65 kb), being eCpGs closer to 503 

the TSS in inverse eQTMs than in positive. The observed downstream shift could be 504 

explained because we chose the most upstream TSS for each Gene according to the 505 

Affymetrix HTAv2 annotation. A similar shift was observed for expression quantitative trait 506 

loci, eQTLs, (i.e., single nucleotide polymorphisms, SNPs, associated with gene expression) 507 

in the Genotype-Tissue Expression (GTEx) project (Gamazon et al., 2018).  508 

We report the effect size of eQTMs as the log2 fold change (FC) of gene expression per 0.1 509 

points increase in methylation (or 10 percentile increase). In absolute terms, the median 510 

effect size was 0.12, being the minimum 0.002 and the maximum 16.0, with 96.3% of the 511 

eQTMs with an effect size <0.5. A median effect size of 0.12 means that a change of 0.1 512 

points in methylation levels was associated with around a 9% increase/decrease of gene 513 

expression. We observed an inverse linear association between the eCpG-eGene’s TSS 514 

distance and the effect size (p-value = 7.75e-9, Figure 2B); while we did not observe 515 

significant differences in effect size due to the relative orientation of the eCpG (upstream or 516 

downstream) with respect to the eGene’s TSS (p-value = 0.68).  517 
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Classification of eCpGs 518 

As shown in Table 2, we classified eCpGs into 5 types, by following 2 criteria: (1) the number 519 

of eGenes affected, distinguishing between mono eCpGs (associated with a unique eGene), 520 

and multi eCpGs (associated with >= 2 eGenes); and (2) the direction of the effect, 521 

distinguishing between inverse, positive and bivalent eCpGs (with inverse effects on some 522 

eGenes and positive effects on others). Mono inverse eCpGs were the most abundant type 523 

(36.8%) (Table 2). CpGs not associated with the expression of any Gene were named as 524 

non eCpGs. We used these categories in the subsequent analyses.  525 

Comparison of eGenes with the closest annotated gene 526 

A standard approach to interpret EWAS findings is to assume that a CpG regulates the 527 

expression of proximal genes. These genes are usually identified through the Illumina 450K 528 

annotation (Hansen, n.d.), which annotates a CpG to a gene when the CpG maps into the 529 

gene body, untranslated, or promoter region defined as <1,500 bp upstream the TSS. We 530 

evaluated to which extent the Illumina 450K annotation captured the eQTMs identified in our 531 

catalogue.  532 

First, we observed that CpG-Gene pairs where CpG and Gene were annotated to the same 533 

Gene Symbol were more likely eQTMs than CpG-Gene pairs annotated to different Gene 534 

Symbols or without gene annotation (OR = 11.90, p-value <2e-16). Next, we assessed 535 

whether the gene annotated to the eCpG with the Illumina 450K annotation was coincident 536 

with the eGene found in our analysis. To answer this, we selected 14,797 eCpGs (67.4% of 537 

total eCpGs) annotated to Gene Symbols also present in the Affymetrix array, and thus 538 

comparable. In 7,808 out of these 14,797 eCpGs, the eCpG was associated with the 539 

expression of an eGene coincident with at least one of the Gene Symbols in Illumina’s 540 

annotation (52.8% of eCpGs with comparable gene annotation, 35.5% of all eCpGs).  541 
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Finally, we explored whether the relative gene position of a CpG determines its association 542 

with gene expression. We selected the 327,931 CpG-Gene pairs with the CpG and Gene 543 

annotated to the same Gene Symbol. Within this subset, eCpGs were enriched for CpGs in 544 

5’UTRs and gene body positions, while depleted for CpGs in proximal promoters and 545 

3’UTRs (Figure 2 – figure supplement 1). Interestingly, we observed that inverse and 546 

positive eCpGs were enriched for CpGs located in different gene regions: inverse for CpGs 547 

in distal promoters (TSS1500) and 5’UTRs; positive for CpGs in gene bodies.  548 

Overall, only around half of the eGenes targeted by the eQTMs could be identified by the 549 

Illumina 450K annotation. We also found that while eCpGs were enriched for TSS1500, 550 

5’UTRs, and gene body positions.  551 

Functional characterization of autosomal cis eQTMs in 552 

children’s blood 553 

Enrichment of eCpGs for genomic regulatory elements 554 

We characterized eCpGs by evaluating their enrichment for diverse regulatory elements, 555 

including CpG island relative positions and 15 chromatin states retrieved from 27 blood cell 556 

types from the ROADMAP Epigenomics project (Roadmap Epigenomics Consortium et al., 557 

2015). First, we found that eCpGs were depleted for CpG islands, while mostly enriched for 558 

CpG island shores, but also for shelves and open sea (Figure 3A). We did not observe 559 

relevant differences between inverse and positive eCpGs.  560 

Second, we assessed whether eCpGs were enriched for ROADMAP blood chromatin states 561 

(Roadmap Epigenomics Consortium et al., 2015) (Figure 3B). eCpGs were enriched for 562 

several active states, such as enhancers or active transcription regions. Nonetheless, we 563 

observed some discrepancies between eCpGs subtypes: only inverse eCpGs were enriched 564 

for proximal promoter states while only positive eCpGs were depleted for transcription at 5’ 565 
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and 3’ (TxFlnk). In inactive chromatin states, both positive and inverse eCpGs were enriched 566 

for bivalent regulatory states (BivReg), while only positive eCpGs were enriched for 567 

repressed and weak repressed Polycomb regions (ReprPC, ReprPCWk) and quiescent 568 

regions (Quies).  569 

Third, we also analyzed whether eCpGs had different methylation levels. We found that 570 

eCpGs were enriched for CpGs with medium (>0.3-0.7) methylation levels and depleted for 571 

CpGs with low (0-0.3) or high (>0.7-1) methylation levels (Figure 3C).  572 

Finally, we wondered whether these enrichments could be affected by the bias introduced by 573 

methylation measurement error; thus, we repeated all the enrichment analyses only 574 

considering 75,836 CpGs measured with reliable probes (ICC >0.4) (Sugden et al., 2020) 575 

(Figure 3 – figure supplement 1). After this filtering, the enrichments for CpG island relative 576 

positions and for categories of CpGs according to their methylation levels changed 577 

substantially: eCpGs passed from being depleted to being enriched for CpG island positions 578 

(Figure 3 – figure supplement 1A), and from being enriched for CpGs with medium 579 

methylation levels to being enriched for CpGs with low methylation levels (Figure 3 – figure 580 

supplement 1C). On the contrary, the magnitudes of enrichments for most of the active 581 

chromatin states were increased (Figure 3 – figure supplement 1B); while enrichments of 582 

positive eCpGs for inactive states (ReprPoly and Quies) were reverted. Overall, selecting 583 

reliable CpG probes reduced the differences between inverse and positive eCpGs and 584 

resulted in enrichments for active chromatin states and depletions for inactive states.  585 

Gene-set enrichment analysis  586 

To identify which biological functions were regulated by our list of eQTMs, we ran gene-set 587 

enrichment analyses using the list of eGenes. 5,503 out of the 8,886 unique Gene Symbols 588 

annotated to eGenes were present in Gene Ontology - Biological Processes (GO-BP), 589 

leading to 52 enriched terms (q-value <0.001) (Table S1). As expected from the tissue 590 

analyzed, 50% of the terms were related to immune responses (N = 26), followed by terms 591 
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associated with cellular (N = 16) and metabolic (N = 10) processes. Among immune terms, 9 592 

of them were part of innate immunity, 9 of adaptive response, and 8 were related to 593 

general/other immune pathways. Most enriched GO-BP terms were also found when running 594 

the enrichment with the list of eGenes derived from eQTMs measured with reliable CpG 595 

probes (ICC >0.4) (Table S1).  596 

Enrichment for CpGs reported in the EWAS catalogues  597 

We assessed whether eCpGs were enriched for CpGs previously related to phenotypic traits 598 

and/or environmental exposures. To this end, we retrieved CpGs from EWAS performed in 599 

blood of European ancestry subjects: 143,384 CpGs from the EWAS catalog (Battram et al., 600 

2021), and 54,599 CpGs from the EWAS Atlas (Li et al., 2019). We found that eCpGs were 601 

enriched for CpGs in these EWAS databases in comparison to non eCpGs. Although we 602 

observed larger odds ratios (ORs) for CpGs listed in the EWAS Atlas than for CpGs in the 603 

EWAS Catalog (Figure 3 – figure supplement 2A), this difference disappeared after 604 

removing CpGs with less reliable measurements (ICC <0.4) (Figure 3 – figure supplement 605 

2B).  606 

 607 

Genetic contribution to autosomal cis eQTMs in children’s 608 

blood 609 

Additive and SNP heritability of eQTMs 610 

We hypothesized that genetic variation might regulate DNA methylation and gene 611 

expression in some of the autosomal cis eQTMs in children’s blood. To test this, we used 612 

two measures of genetic influence: (1) heritability of blood DNA methylation levels for each 613 

CpG, calculated from twin designs (total additive heritability) and from genetic relationship 614 
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matrices (SNP heritability), as reported by Van Dongen and colleagues (van Dongen et al., 615 

2016); and (2) methylation quantitative trait loci (meQTLs, SNPs associated with DNA 616 

methylation levels) identified in the ARIES dataset (Gaunt et al., 2016).  617 

First, we found that eCpGs had higher total additive and SNP heritabilities than non eCpGs 618 

(median difference of 0.31 and 0.11, respectively, p-value <2e-16 for both). Moreover, total 619 

additive and SNP heritabilities were higher for eCpGs associated with a larger number of 620 

eGenes (increase of 0.025 and 0.026 points per eGene, respectively, with a p-value <2e-16 621 

for both) (Figure 4A and 4B). After removing CpG probes with unreliable measurements 622 

(ICC <0.4), differences in median total additive heritability between eCpGs and non eCpGs 623 

were still present, but smaller (0.15, p-value <2e-16); whereas differences in SNP 624 

heritabilities were maintained (0.11, p-value <2e-16) (Figure 4 – figure supplement 1). 625 

Overlap with methylation and expression quantitative trait loci (meQTLs 626 

and eQTLs) 627 

Second, we studied whether eCpGs were enriched for meQTLs, either in cis or trans. We 628 

analyzed 1,078,466 meQTLs identified in blood samples of 7-year-old children in the ARIES 629 

dataset and replicated in HELIX (see Material and Methods). These meQTLs affected the 630 

methylation of 36,671 CpGs through a total of 2,820,145 SNP-CpG pairs. 10,187 eCpGs 631 

(27.8% total eCpGs) presented at least 1 meQTL, being eCpGs enriched in CpGs 632 

associated with genetic variants (OR: 11.06, p-value <2e-6). In addition, among CpGs with 633 

meQTLs, eCpGs were associated with a higher number of meQTLs (median: 74, IQR: 27; 634 

162) than non eCpGs (median: 32, IQR = 10; 77). Finally, eCpGs associated with a higher 635 

number of eGenes are more likely to be associated with at least one meQTL (Figure 4C). 636 

After removing CpG probes with unreliable measurements (ICC <0.4), we observed the 637 

same trends, although the enrichment of eCpGs for CpGs with at least one meQTL was 638 

reduced (OR = 3.5, p-value <2.2e-16) (Figure 4 – figure supplement 2). Finally, we observed 639 
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that eCpGs with at least one meQTL were measured with higher reliability (higher ICC) than 640 

eCpGs without any meQTL (Figure 4 – figure supplement 3). 641 

We, then, determined whether meQTLs were also eQTLs for the eGenes. After multiple-642 

testing correction, we identified 1,368,613 SNP-CpG-Gene trios with consistent direction of 643 

effect, and 12,799 with inconsistent direction. These formers comprised 16,055 unique 644 

eQTMs (40.4% of significant eQTMs); 8,503 unique eCpGs (38.7% of total eCpGs); and 645 

4,098 unique eGenes (46.1% of total eGenes), of which 3,154 were coding (50.2% of total 646 

coding eGenes). In these trios, eGenes were associated with a median of 2 eCpGs (IQR = 647 

1; 5) and 67 SNPs (IQR = 21; 149); whereas eCpGs were associated with a median of 1 648 

eGene (IQR = 1; 2) and 53 SNPs (IQR = 17; 124). One example of such a SNP-CpG-Gene 649 

trio is formed by rs11585123-cg15580684-TC01000080.hg.1 (AJAP1), in chromosome 10 650 

(Figure 4 – figure supplement 4).  651 

Next, we run gene-set enrichment analyses with the 2,746 eGenes involved in these trios. 652 

We identified 35 significant GO-BP terms (q-value <0.001). Of these, 14 were related to 653 

immunity (6 innate, 4 adaptive immunity, and 4 general/other); 11 to cellular processes; and 654 

10 to metabolic processes (Table S1). In comparison to all eGenes, eGenes under genetic 655 

control had a reduction in the number of GO-BP terms involving immune and cellular 656 

functions (Table S2).  657 

Overall, we found that a substantial part of the eQTMs seems to be under genetic control, 658 

and the SNPs associated with DNA methylation levels were also associated with gene 659 

expression levels. 660 

 661 
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Influence of age on autosomal cis eQTMs in children’s 662 

blood 663 

Enrichment for age-variable eQTMs 664 

To understand the association between changes in methylation and gene expression 665 

throughout life, first we evaluated whether eCpGs were enriched for CpGs with variable 666 

blood methylation levels from birth to childhood/adolescence. To this end, we retrieved the 667 

CpGs that vary with age from two databases: 14,150 CpGs with variable methylation levels 668 

in children between 0 and 8 years (9,647 with increased and 4,503 with decreased 669 

methylation) from the MeDALL project (Xu et al., 2017); and 244,283 CpGs with variable 670 

methylation levels in children and adolescents between 0 and 17 years (168,314 with 671 

increased and 75,969 with decreased methylation) from the Epidelta project (RH et al., 672 

2021). Of note, 90% of the CpGs identified in the MeDALL project were also reported in the 673 

Epidelta. We found that eCpGs were enriched for age-variable CpGs in both MeDALL and 674 

Epidelta databases, but more markedly for CpGs reported in MeDALL (Figure 5A). In both 675 

databases, positive and inverse eCpGs showed stronger ORs for CpGs with increased and 676 

decreased methylation levels over age, respectively. After excluding CpG probes with 677 

unreliable measurements (ICC <0.4), MeDALL enrichments were reduced to the magnitude 678 

of Epidelta enrichments, while the differences between positive and inverse eCpGs were 679 

more evident (Figure 5 – figure supplement 1).  680 

Overlap with autosomal eQTMs in adult blood 681 

We evaluated whether autosomal cis eQTMs in children’s blood were consistent in adult 682 

populations. For this, we used data from the study of autosomal cis and trans eQTMs in 683 

adults’ blood based on two cohorts: (1) GTP, whole blood and 333 samples; and (2) MESA, 684 

monocytes and 1,202 samples, by Kennedy and colleagues (Kennedy et al., 2018). The 685 

catalogue contains the summary statistics of all autosomal cis (<50 kb from the TSS) and 686 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2020.11.05.368076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.368076
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

trans (otherwise) CpG-gene pairs at p-value <1e-5, although only CpG-gene associations at 687 

p-value <1e-11 were considered significant eQTMs in their study. To compare their findings 688 

with ours, we mapped Genes and gene probes to Gene Symbols and compared CpG-gene 689 

pairs (see Material and Methods, Table S3).  690 

We observed that 57.9% and 35.3% of eQTMs with p-value <1e-5 in GTP and MESA were 691 

also eQTMs in HELIX, thus age-shared eQTMs (Figure 6B). More than 90% of age-shared 692 

eQTMs have the same direction in GTP/MESA than in HELIX (Table S4). In addition, effect 693 

sizes in GTP/MESA were correlated with effects sizes in HELIX (Table S4).   694 

Only 5,471 (13.8%) of the eQTMs identified in HELIX children were reported in adult GTP or 695 

MESA catalogues at p-value <1e-5 (Figure 6C). We explored whether eQTMs identified both 696 

in HELIX children and in adults (age-shared eQTMs) had different characteristics compared 697 

to eQTMs only found in children (child-specific eQTMs). Age-shared eQTMs involved 4,364 698 

eCpGs and 1,689 eGenes, whereas children-specific eQTMs involved 19,584 eCpGs and 699 

8,429 eGenes. Age-shared eCpGs had higher reliability (higher ICC) (Figure 5 – figure 700 

supplement 2) and tended to be closer to the TSS than child-specific eCpGs (Figure 5 – 701 

figure supplement 3). The enrichment for ROADMAP blood chromatin states (Roadmap 702 

Epigenomics Consortium et al., 2015) of age-shared and child-specific eCpGs in comparison 703 

to non eCpGs was quite similar (Figure 5 – figure supplement 4). Nonetheless, age-shared 704 

eCpGs showed higher ORs of enrichment for proximal promoters. Both types of eCpGs were 705 

enriched for meQTLs compared to non eCpGs, with the OR being stronger for age-shared 706 

eCpGs (OR = 20.7) than for child-specific eCpGs (OR = 10.3).  707 

Overall, we found that eQTMs were enriched for CpGs whose methylation levels changed 708 

from birth to adolescence. The overlap between child and adult eQTMs was small: only 709 

13.8% of HELIX eQTMs had also been described in adults. Age-shared eCpGs tended to be 710 

proximal to the TSS, enriched for promoter chromatin states, and with stronger signals of 711 

genetic regulation.  712 
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Discussion 713 

In this work, we present a blood autosomal cis eQTM catalogue in children. We identified 714 

39,749 eQTMs, representing 21,966 unique eCpGs and 8,886 unique eGenes (6,288 of 715 

which were coding). 23,355 eQTMs (58.8% of all eQTMs) showed inverse associations. A 716 

substantial fraction was influenced by genetic variation, and the overlap with eQTMs 717 

reported in adults was small. 718 

The characteristics of the autosomal cis eQTMs in children’s blood were highly consistent 719 

with patterns previously described in other studies. Most of the eCpGs tended to be proximal 720 

to the eGene’s TSS (Kennedy et al., 2018; Leland Taylor et al., 2019). The magnitude of the 721 

effect seemed to be proportional to the distance between the eCpG and the eGene’s TSS, 722 

but this association was weak. Although higher DNA methylation is assumed to lead to lower 723 

expression, we found that around 40% of eQTMs were positively associated with gene 724 

expression. This percentage is in line with previous results from different tissues (Gutierrez-725 

Arcelus et al., 2015, 2013; Küpers et al., 2019). Inverse and positive eCpGs tended to be 726 

localized in enhancers and other active regulatory regions and not in CpG islands, a pattern 727 

that was also previously reported (Gutierrez-Arcelus et al., 2015; Küpers et al., 2019). 728 

Despite these common locations, inverse eCpGs were specifically found around active TSSs 729 

(including the distal promoter and the 5’UTR), while positive eCpGs were localized in gene 730 

body regions. These results highlight the importance of the genomic context to infer the 731 

direction of the association between DNA methylation and gene expression (Kennedy et al., 732 

2018). We want to point out that the causal relationship between DNA methylation and gene 733 

expression cannot be definitely inferred from our study. Indeed, there is some evidence 734 

suggesting that DNA methylation could be a consequence of gene expression, as opposed 735 

to the often assumed concept that regulation of gene expression is mediated by DNA 736 

methylation (Gutierrez-Arcelus et al., 2013; Jones, 2012).  737 
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eQTMs can be influenced by genetic variation (Lu et al., 2019). In HELIX, eCpGs linked to 738 

the expression of several eGenes had higher heritabilities and were associated with a higher 739 

number of meQTLs than non eCpGs. This could suggest that eCpGs that regulate the 740 

expression of several genes, the so-called master regulators, are more prone to be 741 

themselves regulated by genetic variation. We, then, searched for SNPs simultaneously 742 

associated with DNA methylation (meQTLs) and gene expression (eQTLs) in our data. We 743 

identified 1.3 M SNP-CpG-Gene trios with consistent direction of the effect. Interestingly, the 744 

number of GO-BP terms related to immune and cellular functions was reduced for eGenes 745 

under genetic control, in comparison to all eGenes; on the contrary, the number of GO-BP 746 

terms involving metabolic processes was maintained. This may suggest that the influence of 747 

environmental factors is more relevant for immune pathways, while genetic factors might be 748 

more determinant in regulating metabolic processes in blood cells. Given the non-negligible 749 

effect of genetics in eQTMs, we would advise studying the effect of genetic variants on the 750 

association between environmental factors or phenotypic traits and DNA methylation. 751 

In order to know how eQTMs behave along life-course, we compared blood autosomal cis 752 

eQTMs identified in HELIX children with cis and trans eQTMs reported by Kennedy and 753 

colleagues in whole blood and monocytes from adult populations (Kennedy et al., 2018). We 754 

found that only 13.8% of the autosomal eQTMs in children’s blood were also reported in 755 

adults. Similarly, a modest proportion of adult blood eQTMs was present in children (58% 756 

from GTP and 35% from MESA). This small overlap between adult and child eQTMs has 757 

different explanations: methodological issues, such as gene expression platforms with low 758 

overlap; statistical methods and statistical power; cohort-specific environmental exposures; 759 

and cellular composition. Unsurprisingly, HELIX and MESA presented the highest 760 

divergence, as HELIX assessed eQTMs in whole blood and MESA in monocytes. Despite 761 

the effect of these methodological and confounding factors, it is known that DNA methylation 762 

and gene expression change with age (Melé et al., 2015; RH et al., 2021; Xu et al., 2017); 763 

consequently, we could expect only partial overlap between adult and child eQTMs. The 764 
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short list of age-shared eCpGs tended to encompass CpGs located in promoters and 765 

regulated by genetic variants. Moreover, the overall location of eQTMs in regulatory 766 

elements was similar between adults and children (Gutierrez-Arcelus et al., 2015; Küpers et 767 

al., 2019). This could represent a specific characteristic of eQTMs that are persistent over 768 

time. An alternative explanation is that this kind of eQTMs (genetically regulated and close to 769 

the TSS) are easier to be detected and shared among any two studies because they show 770 

stronger effects. Finally, we observed that HELIX eQTMs usually involved CpGs whose 771 

methylation varied between birth and childhood/adolescence, and they tended to activate 772 

rather than inactivate transcription over this period. Also, they were enriched for CpGs found 773 

to be related to environmental factors and phenotypic traits in the EWAS Atlas and EWAS 774 

Catalog. 775 

As previously described (Sugden et al., 2020), CpG probes have different measurement 776 

error and thus different reliability and reproducibility. Consequently, CpGs measured with 777 

less error have more chances of being found associated with traits and thus reported in 778 

EWAS catalogues. In HELIX, we found that CpG probe ICC was higher for these different 779 

cases: for eCpGs, in comparison to non eCpGs; for age-shared eCpGs, in comparison to 780 

children-specific eCpGs; and for eCpGs with meQTLs, in comparison to eCpGs without 781 

meQTLs. In this line, enrichments of eCpGs for CpGs listed in the EWAS Atlas or in the 782 

MeDALL project were markedly attenuated when only considering CpGs measured with 783 

good reliability. Moreover, CpG probe reliability is dependent on DNA methylation level and 784 

variance (highly unmethylated or highly methylated CpGs, which tend to have low variances, 785 

are measured with more error); and genomic regulatory elements are characterized by 786 

particular methylation levels. Therefore, this biased the enrichments for regulatory elements. 787 

For instance, after considering only reliable probes, the distribution of eQTMs in CpG island 788 

relative positions changed completely (Figure 3 – figure supplement 1). Moreover, the 789 

enrichments for active chromatin states were amplified and differences between inverse and 790 

positive eCpGs attenuated.  791 
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Our study of autosomal cis eQTMs in children’s blood has several strengths compared to 792 

previous eQTM studies. First, we report all CpG-gene pairs we tested in our analysis, as 793 

opposed to existing blood eQTM catalogues which only reported pairs passing a given p-794 

value threshold (Bonder et al., 2017; Kennedy et al., 2018). Reporting all pairs tested allows 795 

replication and meta-analyses, reducing publication bias. Second, we report which eQTMs 796 

are influenced by genetic variation, and researchers can take this into account when 797 

exploring the relationship between methylation and expression in their data. Finally, as 798 

others (Wu et al., 2018), we describe that only around half of the CpG-Gene relationships 799 

are captured through annotation to the closest gene. Therefore, our eQTM catalogue 800 

becomes an essential and powerful tool to help researchers interpret their EWAS, with a 801 

particular focus on childhood.  802 

The catalogue also has some limitations. First, it only covers a fraction of all CpG-Gene 803 

pairs, as both the methylation and gene expression arrays have limited resolution. 804 

Nonetheless, the catalogue will be useful for most researchers as the methylation array is 805 

widely used, and the gene expression array covers almost all the coding genes. Second, the 806 

catalogue does not include sex chromosomes which require more complex analyses to 807 

address X-inactivation and sex-specific effects that will be addressed in future studies. Third, 808 

due to statistical power limitations, only cis effects were tested. Despite that, we observed 809 

that eCpGs tended to be close to the gene they regulate, so the catalogue is expected to 810 

cover most of the CpG-Gene associations. Fourth, effect sizes should be considered with 811 

caution as the association between DNA methylation and gene expression might be non-812 

linear, and the effect of outlier values was not systematically explored (Johnson et al., 2017). 813 

Fifth, models were adjusted for blood cell type composition and, while this has allowed us to 814 

control for major differences in methylation and gene expression among blood cell types, it 815 

might also have resulted in over-adjustment in some CpG-Gene pairs. Moreover, the 816 

analysis of bulk data might have limited the identification of eQTMs specific to a subset of 817 

blood cell types, the identification of which would need more sophisticated statistical and/or 818 
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experimental methods. Finally, we acknowledge that the catalogue will be useful for 819 

biological interpretation of EWAS if it is true that DNA methylation is not a mere mark of cell 820 

memory to past exposures (without transcriptional consequences or with time-limited ones) 821 

(Tsai et al., 2018). 822 

In summary, besides characterizing child blood autosomal cis eQTMs and reporting how 823 

they are affected by genetics and age, we provide a unique public resource: a catalogue with 824 

13.6 M CpG-gene pairs and of 1.3 M SNP-CpG-gene trios (https://helixomics.isglobal.org/). 825 

This information will improve the biological interpretation of EWAS findings. 826 

Tables 827 

Table 1. Descriptive of the study population.  828 

BiB: Born in Bradford study (UK). EDEN: Étude des Déterminants pré et postnatals du 829 

développement et de la santé de l’Enfant (France). KANC: Kaunus cohort (Lithuania). MoBa: 830 

Norwegian Mother, Father and Child Cohort Study (Norway). RHEA: Mother Child Cohort 831 

study (Greece). INMA: INfancia y Medio Ambiente cohort (Spain). 832 

Variable BiB EDEN KANC MoBa RHEA INMA All 

N (%) 80 (9.7%) 80 (9.7%) 143 
(17.4%) 

188 
(22.9%) 

154 
(18.7%) 

178 
(21.6%) 

823 
(100%) 

Female (%) 36 (45%) 35 (43.8%) 64 (44.8%) 88 (46.8%) 69 (44.8%) 80 (44.9%) 372 
(45.2%) 

Male (%) 44 (55%) 45 (56.2%) 79 (55.2%) 100 
(53.2%) 

85 (55.2%) 98 (55.1%) 451 
(54.8%) 

Age, in 
years (IQR) 

6.65 (6.44-
6.84) 

10.76 
(10.37-
11.22) 

6.40 (6.12-
6.88) 

8.53 (8.17-
8.83) 

6.45 (6.36-
6.62) 

8.84 (8.44-
9.21) 

8.06 (6.49-
8.86) 
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Natural 
Killer cells 
(IQR) 

0.01 (0.00-
0.03) 

0.02 (0.00-
0.04) 

0.04 (0.01-
0.07) 

0.02 (0.00-
0.07) 

0.01 (0.00-
0.03) 

0.03 (0.01-
0.05) 

0.02 (0.00-
0.05) 

B-cell (IQR) 0.12 (0.11-
0.15) 

0.09 (0.07-
0.11) 

0.11 (0.09-
0.13) 

0.11 (0.09-
0.14) 

0.14 (0.11-
0.16) 

0.10 (0.08-
0.13) 

0.11 (0.09-
0.14) 

CD4+ T-cell 
(IQR) 

0.21 (0.18-
0.25) 

0.16 (0.14-
0.20) 

0.17 (0.14-
0.21) 

0.21 (0.17-
0.25) 

0.20 (0.16-
0.26) 

0.17 (0.14-
0.21) 

0.19 (0.15-
0.23) 

CD8+ T-cell 
(IQR) 

0.13 (0.11-
0.17) 

0.11 (0.08-
0.13) 

0.13 (0.10-
0.16) 

0.14 (0.11-
0.17) 

0.14 (0.11-
0.16) 

0.12 (0.09-
0.14) 

0.13 (0.10-
0.16) 

Monocytes 
(IQR) 

0.09 (0.07-
0.10) 

0.09 (0.07-
0.11) 

0.08 (0.06-
0.09) 

0.08 (0.07-
0.10) 

0.09 (0.07-
0.10) 

0.09 (0.07-
0.11) 

0.08 (0.07-
0.10) 

Granulocyte
s (IQR) 

0.41 (0.35-
0.47) 

0.52 (0.47-
0.56) 

0.46 (0.40-
0.53) 

0.41 (0.32-
0.48) 

0.41 (0.34-
0.48) 

0.48 (0.42-
0.55) 

0.44 (0.37-
0.52) 

Continuous variables are expressed as mean and interquartile range (IQR). 833 

 834 

Table 2. Classification of eCpGs by type.   835 

Percentages refer to the total number of eCpGs.  836 

 
Inverse (N, %) Positive (N, %) Bivalent (N, %) Total (N, %) 

Mono 8,084 (36.8%) 5,681 (25.9%) 0, by definition  13,765 (62.7%) 

Multi 3,738 (17.0%) 2,400 (10.9%) 2,063 (9.4%) 8,201 (37.3%) 

Total 11,822 (53.8%) 8,081 (36.8%) 2,063 (9.4%) 21,966 (100%) 

 837 

Figure legends 838 

Figure 1. Analysis workflow. The figure summarizes the analyses conducted in this study. The first 839 
step was (1) the identification of blood autosomal cis eQTMs (1 Mb window centered at the 840 
transcription start site, TSS, of the gene) in 823 European ancestry children from the HELIX project, 841 
by a linear model adjusted for age, sex, cohort, and blood cell type proportions. All the associations 842 
are reported in the web catalogue (www.helixomics.isglobal.org). Then, (2) we explored the distance 843 
from the eCpG (CpG involved in an eQTM) to eGene’s TSS (gene involved in an eQTM), the effect 844 
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size of the association, and classified eCpGs in different types. Next, (3) we evaluated the proportion 845 
of eGenes potentially inferred through annotation of eCpGs to the closest gene. Finally, (4) we 846 
functionally characterized eCpGs and eGenes; (5) assessed the contribution of genetic variants; and 847 
(6) evaluated the influence of age.  848 

Figure 1 – figure supplement 1. Distribution of Genes and CpGs in all CpG-Gene pairs. A) 849 
Distribution of the number of Genes paired with each CpG. The y-axis represents the number of CpGs 850 
that are paired with a given number of Genes, indicated in the x-axis. The vertical line marks the 851 
median of the distribution. Each CpG was paired to a median of 30 Genes (IQR: 20; 46). B) 852 
Distribution of the number of CpGs paired with each Gene. The y-axis represents the number of 853 
Genes that are paired with a given number of CpGs, indicated in the x-axis. The vertical line marks 854 
the median of the distribution. Each Gene was paired to a median of 162 CpGs (IQR: 93; 297).  855 

Figure 1 – figure supplement 2. Distribution of eGenes and eCpGs in autosomal cis eQTMs. A) 856 
Distribution of the number of eGenes paired with each eCpG in eQTMs. The y-axis represents the 857 
number of eCpGs that are paired with a given number of eGenes, indicated in the x-axis. Each eCpG 858 
was associated with a median of 1 eGene (IQR = 1; 2). B) Distribution of the number of eCpGs paired 859 
with each eGenes in eQTMs. The y-axis represents the number of eGenes that are paired with a 860 
given number of eCpGs, indicated in the x-axis. Each eGene was associated with a median of 2 861 
eCpGs (IQR = 1; 5). 862 

Figure 1 – figure supplement 3. DNA methylation range by CpG type. CpGs were classified in: 863 
eCpGs (CpGs associated with gene expression, N=21,966, in grey) and non eCpGs (N=364,452, in 864 
white). Methylation range was computed as the difference between the methylation values in 865 
percentile 1 and percentile 99 (Lin et al., 2017).  866 

Figure 1 – figure supplement 4. Probe reliability by CpG type. CpGs were classified in: eCpGs 867 
(CpGs associated with gene expression, N=21,966, in grey) and non eCpGs (N=364,452, in white). 868 
Probe reliability was based on intraclass correlation coefficients (ICC) obtained from (Sugden et al., 869 
2020). 870 

Figure 1 – figure supplement 5. Genes call rate distribution by Gene type. Genes were classified 871 
in: eGenes (Genes associated DNA methylation, N=8,886, in grey) and non eGenes (N=51,806, in 872 
white). For a given Gene, call rate is the proportion of children with gene expression levels over the 873 
background noise. 874 

Figure 2. Distance between CpG and Gene’s TSS and effect size in child blood autosomal cis 875 
eQTMs. A) Distribution of the distance between CpG and Gene’s TSS by eQTM type. CpG-Gene 876 
pairs were classified in non eQTMs (black); inverse eQTMs (yellow); and positive eQTMs (green). The 877 
x-axis represents the distance between the CpG and the Gene’s TSS (kb). Non eQTMs median 878 
distance: -0.013 kb (interquartile range - IQR = -237; 236). Positive eQTMs median distance: -4.9 kb 879 
(IQR = -38; 79). Inverse eQTMs median distance: -0.7 kb (IQR = -29; 54). B) Effect size versus eCpG-880 
Gene’s TSS distance in eQTMs. The x-axis represents the distance between the eCpG and the 881 
eGene’s TSS (kb). The y-axis represents the effect size as the log2 fold change in gene expression 882 
produced by a 0.1 increase in DNA methylation (or 10 percentile increase). To improve visualization, 883 
a 99% winsorization has been applied to log2 fold change values: values more extreme than 99% 884 
percentile (in absolute value) have been changed for the 99% quantile value (in absolute value). 885 
eQTMs are classified in inverse (yellow) and positive (green). Each eQTM is represented by one dot. 886 
The darker the color, the more dots overlapping, and so the higher the number of eQTMs with the 887 
same effect size and eCpG-eGene’s TSS distance.  888 

Figure 2 – figure supplement 1. Enrichment of eCpGs for gene relative positions. We selected 889 
the subset of 327,931 CpG-Gene pairs where the CpG and the Gene were annotated to the same 890 
gene. Enrichment was computed for all eCpGs in this subset, and for inverse and positive eCpGs. 891 
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Genic regions are classified in distal promoter from 200 to 1,500 bp (TSS1500); proximal promoter up 892 
to 200 bp (TSS200), 5’ untranslated region (5’UTR); 1st exon; gene body; and 3’ untranslated region 893 
(3’UTR). The y-axis represents the odds ratio (OR) of the enrichment. For all gene relative positions, 894 
the enrichment was computed against CpG-Gene pairs with CpG and Gene annotated to the same 895 
gene that were not eQTMs.  896 

Figure 3. Enrichment of cis autosomal eCpGs in children’s blood for different regulatory 897 
elements. eCpGs were classified in all (grey), inverse (yellow), and positive (green). The y-axis 898 
represents the odds ratio (OR) of the enrichment. In all cases, the enrichment was computed against 899 
non eCpGs. A) Enrichment for CpG island relative positions: CpG island, N- and S-shore, N- and S-900 
shelf, and open sea. B) Enrichment for ROADMAP blood chromatin states (Roadmap Epigenomics 901 
Consortium et al., 2015): active TSS (TssA); flanking active TSS (TssAFlnk); transcription at 5’ and 3’ 902 
(TxFlnk); transcription region (Tx); weak transcription region (TxWk); enhancer (Enh); genic enhancer 903 
(EnhG); zinc finger genes and repeats (ZNF.Rpts); flanking bivalent region (BivFlnx); bivalent 904 
enhancer (EnhBiv); bivalent TSS (TssBiv); heterochromatin (Het); repressed Polycomb (ReprPC); 905 
weak repressed Polycomb (ReprPCWk); and quiescent region (Quies). Chromatin states can be 906 
grouped in active transcription start site proximal promoter states (TssProxProm), active transcribed 907 
states (ActTrans), enhancers (Enhancers), bivalent regulatory states (BivReg), and repressed 908 
Polycomb states (ReprPoly). C) Enrichment for categories of CpGs with different median methylation 909 
levels: low (0-0.3), medium (0.3-0.7), and high (0.7-1) (Huse et al., 2015).  910 

Figure 3 – figure supplement 1. Enrichment of eCpGs with reliable measurement for different 911 
regulatory elements. Only eCpGs with reliable measurements (ICC >0.4) were considered (Sugden 912 
et al., 2020). eCpGs were classified in all (grey), inverse (yellow), and positive (green). The y-axis 913 
represents the odds ratio (OR) of the enrichment. In all cases, the enrichment was computed against 914 
non eCpGs. A) Enrichment for CpG island relative positions: CpG island, N- and S-shore, N- and S-915 
shelf, and open sea. B) Enrichment for ROADMAP blood chromatin states (Roadmap Epigenomics 916 
Consortium et al., 2015): active TSS (TssA), flanking active TSS  (TssAFlnk), transcription at 5’ and 3’ 917 
(TxFlnk), transcription region (Tx), weak transcription region (TxWk), enhancer (Enh);  genic enhancer 918 
(EnhG), zinc finger genes and repeats (ZNF.Rpts), flanking bivalent region (BivFlnx), bivalent 919 
enhancer (EnhBiv), bivalent TSS (TssBiv), heterochromatin (Het), repressed Polycomb (ReprPC), 920 
weak repressed Polycomb (ReprPCWk), and quiescent region (Quies). Chromatin states can be 921 
grouped in active transcription start site proximal promoter states (TssProxProm), active transcribed 922 
states (ActTrans), enhancers (Enhancers), bivalent regulatory states (BivReg) and repressed 923 
Polycomb states (ReprPoly). C) Enrichment for groups of CpGs with different median methylation 924 
levels: low (0-0.3), medium (0.3-0.7), and high (0.7-1) (Huse et al., 2015). 925 

Figure 3 – figure supplement 2. Enrichment of autosomal cis eCpGs in children’s blood for 926 
CpGs reported to be associated with phenotypic traits and/or environmental exposures. 927 
Enrichment for CpGs present in EWAS datasets: the EWAS Atlas (Li et al., 2019), and the EWAS 928 
Catalog (Battram et al., 2021). eCpGs were classified in all (grey), inverse (yellow), and positive 929 
(green). In all cases, the enrichment was computed against non eCpGs. The y-axis represents the 930 
odds ratio (OR) of the enrichment. A) Enrichment considering all CpGs. B) Enrichment considering 931 
only CpGs measured with reliable probes (ICC >0.4) (Sugden et al., 2020). intraclass correlation 932 
coefficient. 933 

Figure 4. Genetic contribution to autosomal cis eQTMs in children’s blood. CpGs were grouped 934 
by the number of Genes they were associated with, where 0 means that a CpG was not associated 935 
with any Gene (non eCpG). A) Total additive heritability and B) SNP heritability as inferred by Van 936 
Dongen and colleagues (van Dongen et al., 2016). The y-axis represents heritability and the x-axis 937 
each group of CpGs associated with a given number of Genes. C) Proportion of CpGs having a 938 
meQTL (methylation quantitative trait locus), by each group of CpGs associated with a given number 939 
of Genes.  940 
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Figure 4 – figure supplement 1. Heritability of methylation levels in CpGs with reliable 941 
measurements. Only CpGs measured with reliable probes (ICC >0.4) were considered (Sugden et 942 
al., 2020). CpGs were grouped by the number of Genes they were associated with, where 0 means 943 
that a CpG was not associated with any Gene (non eCpGs, in white). A) Total additive heritability as 944 
inferred by Van Dongen and colleagues (van Dongen et al., 2016), by each group of CpGs associated 945 
with a given number of Genes. B) SNP heritability as inferred by Van Dongen and colleagues (van 946 
Dongen et al., 2016), by each group of CpGs associated with a given number of Genes.  947 

Figure 4 – figure supplement 2. Proportion of CpGs having a meQTL (methylation quantitative 948 
trait loci) among CpGs with reliable measurements. Only CpGs measured with reliable probes 949 
(ICC >0.4) were considered (Sugden et al., 2020). CpGs were grouped by the number of Genes they 950 
were associated with.  951 

Figure 4 – figure supplement 3. Probe reliability in autosomal cis eCpGs according to 952 
association with genetic variants. eCpGs were classified in two groups, depending on whether their 953 
methylation values were associated with any genetic variant. Probe reliabilities were based on 954 
intraclass correlations (ICCs) obtained from (Sugden et al., 2020).  955 

Figure 4 – figure supplement 4. Example of a trio of SNP-CpG-Gene. A) Methylation levels 956 
(cg15580684) by SNP genotypes (rs11585123). B) Gene expression levels (TC01000080.hg.1, 957 
AJAP1 gene) by SNP genotypes (rs11585123). C) Correlation between gene expression 958 
(TC01000080.hg.1, AJAP1 gene) and methylation levels (cg15580684).   959 

Figure 5. Influence of age on autosomal cis eQTMs in children’s blood. A) Enrichment of eCpGs 960 
for CpGs with age-variable methylation levels, in comparison to non eCpGs. eCpGs were classified in 961 
all (grey); inverse (yellow); and positive (green). Age-variable CpGs were retrieved from the MeDALL 962 
project (from birth to childhood (Xu et al., 2017)) and from the Epidelta project (from birth to 963 
adolescence (RH et al., 2021)). They were classified in variable (CpGs with methylation levels that 964 
change with age); decreased (CpGs with methylation levels that decrease with age); and increased 965 
(CpGs with methylation levels that increase with age). The y-axis represents the odds ratio (OR) of 966 
the enrichment. B) Overlap between autosomal cis/trans eQTMs identified in adults (GTP: whole 967 
blood; MESA: monocytes) (Kennedy et al., 2018) with cis eQTMs identified in children (HELIX: whole 968 
blood). All CpG-gene pairs reported at p-value <1e-5 in GTP or MESA that could be compared with 969 
pairs in HELIX are shown. C) Overlap between blood autosomal cis eQTMs identified in HELIX 970 
children with cis/trans eQTMs identified in adults (GTP: whole blood; MESA: monocytes) (Kennedy et 971 
al., 2018). All CpG-gene pairs in HELIX that could be compared with pairs in GTP or MESA are 972 
shown. Note: The comparison has been split into two plots because one eGene in HELIX can be 973 
mapped to different expression probes in GTP and MESA, and vice-versa. Only comparable CpG-974 
Gene pairs are shown (see Material and Methods). 975 

Figure 5 – figure supplement 1.  Enrichment of eCpGs with reliable measurements for CpGs 976 
with age-variable methylation levels. Only CpGs with reliable measurements (ICC >0.4) were 977 
considered (Sugden et al., 2020). eCpGs were classified in all (grey), inverse (yellow); and positive 978 
(green). Age-variable CpGs were retrieved from the MeDALL project (from birth to childhood (Xu et 979 
al., 2017)) and the Epidelta project (from birth to adolescence (RH et al., 2021)), and they were 980 
classified in: variable (CpGs with methylation levels that change with age), decreased (CpGs with 981 
methylation levels that decrease with age), and increased (CpGs with methylation levels that increase 982 
with age). The y-axis represents the odds ratio (OR) of the enrichment. For all eCpG types, the 983 
enrichment was computed against non eCpGs. 984 

Figure 5 – figure supplement 2. Probe reliability in eCpGs according to overlap with adult 985 
eQTMs. eCpGs were classified in age-shared eCpGs (eCpGs identified in HELIX children and also in 986 
adults from MESA and/or GTP studies, in red); and child-specific eCpGs (eCpGs only identified in 987 
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HELIX children and not in the adult cohorts, in blue). Probe reliabilities were based on intraclass 988 
correlation coefficients (ICCs) obtained from (Sugden et al., 2020). 989 

Figure 5 – figure supplement 3. Distribution of the distance between CpG-Gene’s TSS by eQTM 990 
type. eQTMs were classified in age-shared (eQTMs identified in HELIX children and also in adults 991 
from MESA or GTP studies, in red); and child-specific (eQTMs only identified in HELIX children and 992 
not in adult cohorts, in blue). Distance between eCpG and eGene’s TSS is expressed in kb. Age-993 
shared eQTMs median distance: 1.2 kb (IQR: -2.4; 35.4 kb). Child-specific eQTMs median distance: -994 
1.1 kb (IQR: -39.4; 70.7 kb).  995 

Figure 5 – figure supplement 4. Enrichment of age-shared and child-specific eCpGs for blood 996 
ROADMAP blood chromatin states. eCpGs were classified in age-shared (eCpGs identified in 997 
HELIX children and also in adults from MESA or GTP studies, in red); and child-specific (eCpGs only 998 
identified in HELIX children and not in adult cohorts, in blue). ROADMAP blood chromatin states 999 
(Roadmap Epigenomics Consortium et al., 2015) are: active TSS (TssA), flanking active TSS 1000 
(TssAFlnk), transcription at 5’ and 3’ (TxFlnk), transcription region (Tx), weak transcription region 1001 
(TxWk), enhancer (Enh);  genic enhancer (EnhG), zinc finger genes and repeats (ZNF.Rpts), flanking 1002 
bivalent region (BivFlnx), bivalent enhancer (EnhBiv), bivalent TSS (TssBiv), heterochromatin (Het), 1003 
repressed Polycomb (ReprPC), weak repressed Polycomb (ReprPCWk), and quiescent region 1004 
(Quies). Chromatin states can be grouped in active transcription start site proximal promoter states 1005 
(TssProxProm), active transcribed states (ActTrans), bivalent regulatory states (BivReg) and 1006 
repressed Polycomb states (ReprPoly). The y-axis represents the odds ratio (OR) of the enrichment. 1007 
For each regulatory element, the enrichment was computed against non eCpGs. 1008 

 1009 

File legends 1010 

Supplementary tables (HELIX_MethExpr_SupTables.xlsx): File with supplementary tables S1-S4. 1011 

Source code file (SuplementaryCode.zip): compressed file with the code used to run the analyses 1012 
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