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43

44  Abstract

45  Background: The identification of expression quantitative trait methylation (eQTMs), defined
46 as associations between DNA methylation levels and gene expression, might help the
47  Dbiological interpretation of epigenome-wide association studies (EWAS). We aimed to
48 identify autosomal cis eQTMs in children’s blood, using data from 832 children of the Human

49  Early Life Exposome (HELIX) project.

50 Methods: Blood DNA methylation and gene expression were measured with the lllumina
51 450K and the Affymetrix HTA v2 arrays, respectively. The relationship between methylation
52 levels and expression of nearby genes (1 Mb window centered at the transcription start site,
53 TSS) was assessed by fitting 13.6 M linear regressions adjusting for sex, age, cohort, and

54  blood cell composition.

55 Results: We identified 39,749 blood autosomal cis eQTMs, representing 21,966 unique
56 CpGs (eCpGs, 5.7% of total CpGs) and 8,886 unique transcript clusters (eGenes, 15.3% of
57 total transcript clusters, equivalent to genes). In 87.9% of these cis eQTMs, the eCpG was
58 located at <250 kb from eGene's TSS; and 58.8% of all eQTMs showed an inverse
59 relationship between the methylation and expression levels. Only around half of the
60 autosomal cis-eQTMs eGenes could be captured through annotation of the eCpG to the
61 closest gene. eCpGs had less measurement error and were enriched for active blood
62 regulatory regions and for CpGs reported to be associated with environmental exposures or
63  phenotypic traits. 40.4% of eQTMs had at least one genetic variant associated with
64  methylation and expression levels. The overlap of autosomal cis eQTMs in children’s blood
65  with those described in adults was small (13.8%), and age-shared cis eQTMs tended to be

66  proximal to the TSS and enriched for genetic variants.
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67 Conclusions: This catalogue of autosomal cis eQTMs in children’s blood can help the
68  biological interpretation of EWAS findings and is publicly available at

69 https://helixomics.isglobal.org/.
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sa Abbreviations

85  BivFInx: flanking bivalent region
86  CpG: cytosine nucleotide followed by a guanine nucleotide

87 eCpG: CpG whose methylation is associated with gene expression; thus, it is part of an

88 eQTM

89 eGene: gene whose expression is associated with CpG methylation; thus, it is part of an

90 eQTM

91 eQTM: expression quantitative trait methylation (statistically significant associations of CpG-

92  gene pairs)

93 eQTL: expression quantitative trait locus (SNP associated with gene expression)
94  Enh: enhancer
95  EnhBiv: bivalent enhancer
96 ENnhG: genic enhancer
97 EWAS: epigenome-wide association study
98 FC: fold change
99 FDR: false discovery rate
100 GO: gene ontology
101 GWAS: genome-wide association study
102  HELIX: Human Early-Life Exposome project
103  Het: heterochromatin

104 ICC: intraclass correlation coefficient
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105 IQR: interquartile range

106 meQTL: methylation quantitative trait locus (SNP associated with DNA methylation)

107 OR: odds ratio

108 Quies: quiescent region

109 ReprPC: repressed Polycomb

110 ReprPCWk: weak repressed Polycomb

111 SE: standard error

112  SNP: single nucleotide polymorphism

113  TC: transcript cluster

114  TSS: transcription start site

115  TssA: active transcription start site

116  TssAFInk: flanking active transcription start site

117  TssBiv: bivalent transcription start site

118  TSS200: proximal promoter, from TSS to 200 bp

119 TSS1500: distal promoter, from 200 bp to 1,500 bp

120  Tx: transcription region

121  TxFInk: transcription at 5’ and 3’

122  TxWKk: weak transcription region

123  3'UTR: 3’ untranslated region

124 5'UTR: 5 untranslated region
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125 ZNF.Rpts: zinc finger genes and repeats

126 Introduction

127  Cells from the same individual, although sharing the same genome sequence, differentiate
128 into diverse lineages that finally give place to specific cell types with unique functions. This is
129 orchestrated by the epigenome, which regulates gene expression in a cellltissue- and time-
130 specific manner (Cavalli and Heard, 2019; Feinberg, 2018; Lappalainen and Greally, 2017).
131 Besides its central role in regulating embryonic and fetal development, X-chromosome
132  inactivation, genomic imprinting, and silencing of repetitive DNA elements, the epigenome is
133 also responsible for the plasticity and cellular memory in response to environmental

134  perturbations (Cavalli and Heard, 2019; Feinberg, 2018; Lappalainen and Greally, 2017).

135 Massive epigenetic alterations, caused by somatic mutations, age, injury, or environmental
136  exposures, were initially described in cancer (Feinberg, 2018). The paradigm of
137  environmental factors modifying the epigenome and leading to increased disease risk was
138 then extrapolated from cancer to a wide range of common diseases. Consequently, in recent
139 vyears, a high number of epigenome-wide association studies (EWAS) have been performed,
140 investigating the relation of prenatal and postnatal exposure to environmental factors with
141  DNA methylation, and of DNA methylation with disease (Feinberg, 2018; Lappalainen and
142  Greally, 2017). EWAS findings have been inventoried in two catalogues: the EWAS catalog
143  (Battram et al., 2021) and the EWAS Atlas (Li et al.,, 2019). The latter includes 0.5 M

144  associations for 498 traits from 1,216 studies, including 155 different cells/tissues.

145  Despite the success of EWAS in identifying altered methylation patterns, various challenging
146  issues still must be solved: the role of genetic variation; the access to the target tissue/cell;
147  confounding reverse causation; and biological interpretation (Feinberg, 2018; Lappalainen
148 and Greally, 2017). Regarding the latter, most studies do not have transcriptional data to test

149 the effect of DNA methylation on gene expression. When these data are not available, a
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150 common approach is to assume that CpG DNA methylation affects the expression of the
151 closest gene (Sharp et al., 2017). Although this approach is easy to implement, it is limited.
152 Indeed, CpG DNA methylation might regulate distant genes or might not regulate any gene
153 at all (Bonder et al., 2017; Lappalainen and Greally, 2017). Another approach to elucidate
154 the effect of DNA methylation on gene expression when transcriptional data are not available
155 is to perform expression quantitative trait methylation (eQTM) studies. These are genome-
156  wide studies investigating the associations between the levels of DNA methylation and gene
157  expression (Gondalia et al., 2019; Kiipers et al., 2019). Several eQTM studies have been
158 performed in diverse cell types/tissues: whole blood (Bonder et al., 2017; Kennedy et al.,
159  2018), monocytes (Husquin et al., 2018; Kennedy et al, 2018; Liu et al., 2013),
160 lymphoblastoid cell lines, T-cells and fibroblasts derived from umbilical cords (Gutierrez-
161  Arcelus et al., 2015, 2013), fibroblasts (Wagner et al., 2014), liver (Bonder et al., 2014),
162  skeletal muscle (Leland Taylor et al., 2019), nasal airway epithelium (Kim et al., 2020), and
163 placenta (Delahaye et al., 2018). As most of the EWAS are conducted in whole blood (Felix
164 etal, 2018; Li et al., 2019), there is a need for comprehensive eQTM studies in this tissue.
165 To date, available eQTM studies in whole blood only cover samples from adults (Bonder et

166 al., 2017; Kennedy et al., 2018) and their validity in children has not been assessed.

167 In this study, we analyzed DNA methylation and gene expression data from the Human
168 Early-Life Exposome (HELIX) project to an autosomal cis eQTM catalogue in children’s

169 blood (https://helixomics.isglobal.org/). We analyzed the proportion of cis eQTMs captured

170 through annotation to the closest gene, characterized them at the functional level, assessed
171 the influence of genetic variation and compared them with eQTMs identified in adults. An
172  overview of all the analyses can be found in Figure 1. This public resource will help the

173  functional interpretation of EWAS findings in children.
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174 Methods

175 Sample of the study

176 The Human Early Life Exposome (HELIX) study is a collaborative project across 6
177  established and on-going longitudinal population-based birth cohort studies in Europe
178  (Maitre et al., 2018): the Born in Bradford (BiB) study in the UK (Wright et al., 2013), the
179  Etude des Déterminants pré et postnatals du développement et de la santé de I'Enfant
180 (EDEN) study in France (Heude et al., 2016), the INfancia y Medio Ambiente (INMA) cohort
181 in Spain (Guxens et al., 2012), the Kaunus cohort (KANC) in Lithuania (Grazuleviciene et al.,
182  2009), the Norwegian Mother, Father and Child Cohort Study (MoBa)(Magnus et al., 2016)
183 and the RHEA Mother Child Cohort study in Crete, Greece (Chatzi et al., 2017). All
184  participants in the study signed an ethical consent and the study was approved by the ethical

185 committees of each study area (Maitre et al., 2018).

186 In the present study, we selected a total of 832 children of European ancestry that had both
187 DNA methylation and gene expression data. Ancestry was determined with cohort-specific

188  self-reported questionnaires.

189 Biological samples

190 DNA was obtained from buffy coats collected in EDTA tubes at mean age 8.1 years old.
191 Briefly, DNA was extracted using the Chemagen kit (Perkin Elmer), in batches by cohort.
192 DNA concentration was determined in a NanoDrop 1000 UV-Vis Spectrophotometer
193 (Thermo Fisher Scientific) and with Quant-iT™ PicoGreen® dsDNA Assay Kit (Life

194  Technologies).

195 RNA was extracted from whole blood samples collected in Tempus tubes (Applied

196 Biosystems) using the MagMAX for Stabilized Blood Tubes RNA Isolation Kit (Thermo


https://doi.org/10.1101/2020.11.05.368076
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.05.368076; this version posted October 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

197  Fisher Scientific), in batches by cohort. The quality of RNA was evaluated with a 2100
198 Bioanalyzer (Agilent) and the concentration with a NanoDrop 1000 UV-Vis
199  Spectrophotometer (Thermo Fisher Scientific). Samples classified as good RNA quality had
200 an RNA Integrity Number (RIN) > 5, a similar RNA integrity pattern at visual inspection, and
201 a concentration >10 ng/ul. Mean values for the RIN, concentration (ng/ul) and Nanodrop

202 260/230 ratio were: 7.05, 109.07 and 2.15, respectively.

203  DNA methylation assessment

204 DNA methylation was assessed with the Infinium HumanMethylation450K BeadChip
205 (lllumina), following manufacturer’'s protocol at the National Spanish Genotyping Centre
206 (CEGEN), Spain. Briefly, 700 ng of DNA were bisulfite-converted using the EZ 96-DNA
207  methylation kit following the manufacturer's standard protocol, and DNA methylation
208 measured using the Infinium protocol. A HapMap sample was included in each plate. In
209 addition, 24 HELIX inter-plate duplicates were included. Samples were randomized
210 considering cohort, sex, and panel. Paired samples from the panel study (samples from the
211  same subject collected at different time points) were processed in the same array. Two

212  samples were repeated due to their overall low quality.

213 DNA methylation data was pre-processed using minfi R package (RRID:SCR_012830)
214  (Aryee et al., 2014). We increased the stringency of the detection p-value threshold to <le-
215 16, and probes not reaching a 98% call rate were excluded (Lehne et al.,, 2015). Two
216  samples were filtered due to overall quality: one had a call rate <98% and the other did not
217  pass quality control parameters of the MethylAid R package (RRID:SCR_002659) (van
218 lterson et al., 2014). Then, data was normalized with the functional normalization method
219  with Noob background subtraction and dye-bias correction (Fortin et al., 2014b). Then, we
220 checked sex consistency using the shinyMethyl R package (Fortin et al.,, 2014a), genetic
221  consistency of technical duplicates, biological duplicates (panel study), and other samples

222 making use of the genotype probes included in the Infinium HumanMethylation450K

10
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223  BeadChip and the genome-wide genotyping data, when available. In total four samples were
224  excluded, two with discordant sex and two with discordant genotypes. Batch effect (slide)
225 was corrected using the ComBat R package (RRID:SCR_010974) (Johnson et al., 2007).
226  Duplicated samples, one of the samples from the panel study and HapMap samples were
227 removed as well as control probes, probes in sexual chromosomes, probes designed to
228  detect Single Nucleotide Polymorphisms (SNPs) and probes to measure methylation levels

229  at non-CpG sites, giving a final number of 386,518 probes.

230 CpG annotation was conducted with the llluminaHumanMethylation450kanno.ilmn-12.hg19
231 R package (Hansen, n.d.). Briefly, this package annotates CpGs to proximal promoter (200
232  bp upstream the TSS - TSS200), distant promoter (from 200 to 1,500 bp upstream the TSS -
233 TSS1500), 5'UTR, first exon, gene body, and 3'UTR regions. CpGs farther than 1,500 bp
234  from the TSS were not annotated to any gene. Relative position to CpG islands (island,

235 shelve, shore and open sea) was also provided by the same R package.

236  Annotation of CpGs to 15 chromatin states was retrieved from the Roadmap Epigenomics

237  Project web portal (RRID:SCR_008924) (https://eqgg2.wustl.edu/roadmap/web_portal/). Each

238 CpG in the array was annotated to one or several chromatin states by taking a state as

239 present in that locus if it was described in at least 1 of the 27 blood-related cell types.

240 Gene expression assessment

241  Gene expression, including coding and non-coding transcripts, was assessed with the
242  Human Transcriptome Array 2.0 ST arrays (HTA 2.0) (Affymetrix) at the University of
243  Santiago de Compostela (USC), Spain. Amplified and biotinylated sense-strand DNA targets
244  were generated from total RNA. Affymetrix HTA 2.0 arrays were hybridized according to
245  Affymetrix recommendations using the Manual Target preparation for GeneChip Whole
246  Transcript (WT) expression arrays and the labeling and hybridization kits. In each round,

247  several batches of 24-48 samples were processed. Samples were randomized within each

11
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248  batch considering sex and cohort. Paired samples from the panel study were processed in
249 the same batch. Two different types of control RNA samples (HelLa or FirstChoice® Human
250 Brain Reference RNA) were included in each batch, but they were hybridized only in the first
251  batches. Raw data were extracted with the AGCC software (Affymetrix) and stored into CEL
252  files. Ten samples failed during the laboratory process (7 did not have enough cRNA or ss-

253  cDNA, 2 had low fluorescence, and 1 presented an artifact in the CEL file).

254  Data was normalized with the GCCN (SST-RMA) algorithm at the gene level. Annotation of
255  transcript clusters (TCs) was done with the ExpressionConsole software using the HTA-2.0
256  Transcript Cluster Annotations Release na36 annotation file from Affymetrix. After
257  normalization, several quality control checks were performed and four samples with
258  discordant sex and two with low call rates were excluded (Buckberry et al., 2014). One of the
259 samples from the panel study was also eliminated for this analysis. Control probes and
260  probes in sexual chromosomes or probes without chromosome information were excluded.
261  Probes with a DABG (Detected Above Background) p-value <0.05 were considered to have
262 an expression level different from the background, and they were defined as detected.
263  Probes with a call rate <1% were excluded from the analysis. The final dataset consisted of

264 58,254 TCs.

265  Gene expression values were log, transformed and batch effect controlled by residualizing
266 the effect of surrogate variables calculated with the sva method (RRID:SCR_012836) (Leek
267 et al., 2007) while protecting for main variables in the study (cohort, age, sex, and blood

268  cellular composition).

269 Blood cellular composition

270  Main blood cell type proportions (CD4+ and CD8+ T-cells, natural killer cells, monocytes,

271  eosinophils, neutrophils, and B-cells) were estimated using the Houseman algorithm

12
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272  (Houseman et al., 2012) and the Reinius reference panel (Reinius et al., 2012) from raw

273  methylation data.

274  Genome-wide genotyping

275  Genome-wide genotyping was performed using the Infinium Global Screening Array (GSA)
276  MD version 1 (lllumina), which contains 692,367 variants, at the Human Genomics Facility
277  (HuGe-F), Erasmus MC, The Netherlands. Genotype calling was done using the
278  GenTrain2.0 algorithm based on a custom cluster file implemented in the GenomeStudio
279 software (RRID:SCR_010973). Annotation was done with the GSAMD-24v1-
280 0_20011747_A4 manifest. Samples were genotyped in two rounds, and 10 duplicates were

281  included which confirmed high inter-round consistency.

282  Quality control was performed with the PLINK program (RRID:SCR_001757) following
283 standard recommendations (Chang et al., 2015; Purcell et al., 2007). We applied the
284  following sample quality controls: sample call rate <97% (N filtered=43), sex concordance
285 (N=8), heterozygosity based on >4 SD (N=0), relatedness with PI_HAT >0.185 (N=10,
286 including potential DNA contamination), duplicates (N=19). Then, we used the peddy tool
287 (RRID:SCR_017287) to predict ancestry from GWAS data (Pedersen and Quinlan, 2017).
288  We contrasted ancestry predicted from GWAS with ancestry recorded in the questionnaires.
289  Twelve samples were excluded due to discordances between the two variables. Overall, 93
290 (6.7%) samples, including the duplicates, were filtered out. The variant quality control
291 included the following steps: variant call rate <95% (N filtered=4,046), non-canonical PAR
292  (N=47), minor allele frequency (MAF) <1% (N=178,017), Hardy-Weinberg equilibrium (HWE)
293  p-value <le-06 (N=913). Some other SNPs were filtered out during the matching between

294  data and reference panel before imputation (N=14,436).

295 Imputation of the GWAS data was performed with the Imputation Michigan server

296 (RRID:SCR_017579) (Das et al., 2016) using the Haplotype Reference Consortium (HRC)

13
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297  cosmopolitan panel, Version r1.1 2016 (McCarthy et al., 2016). Before imputation, PLINK
298 GWAS data was converted into VCF format and variants were aligned with the reference
299 genome. The phasing of the haplotypes was done with Eagle v2.4 (RRID:SCR_017262)
300 (Loh et al., 2016) and the imputation with minimac4 (RRID:SCR_009292) (Fuchsberger et
301 al., 2015), both implemented in the code of the Imputation Michigan server. In total, we
302  retrieved 40,405,505 variants after imputation. Then, we applied the following QC criteria to
303 the imputed dataset: imputation accuracy (R2) >0.9, MAF >1%, HWE p-value >1e-06; and
304  genotype probabilities were converted to genotypes using the best guest approach. The final
305  post-imputation quality-controlled dataset consisted of 1,304 samples and 6,143,757

306  variants (PLINK format, Genome build: GRCh37/hg19, + strand).

307 ldentification of autosomal cis eQTMs in children’s blood

308 To test associations between DNA methylation levels and gene expression levels in cis (cis
309 eQTMs), we paired each Gene to CpGs closer than 500 kb from its TSS, either upstream or
310 downstream. For each Gene, the TSS was defined based on HTA-2.0 annotation, using the
311  start position for transcripts in the + strand, and the end position for transcripts in the -
312 strand. CpGs position was obtained from lllumina 450K array annotation. Only CpGs in
313  autosomal chromosomes (from chromosome 1 to 22) were tested. In the main analysis, we
314  fitted for each CpG-Gene pair a linear regression model between gene expression and
315  methylation levels adjusted for age, sex, cohort, and blood cell type composition. A second
316  model was run without adjusting for blood cellular composition and it is only reported on the
317 online web catalog, but not discussed in this manuscript. Although some of the unique
318 associations of the unadjusted model might be real, others might be confounded by the large

319  methylation and expression changes among blood cell types.

320 To ensure that CpGs paired to a higher number of Genes do not have higher chances of
321 being part of an eQTM, multiple-testing was controlled at the CpG level, following a

322  procedure previously applied in the Genotype-Tissue Expression (GTEX) project (Gamazon
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323 et al., 2018). Briefly, our statistic used to test the hypothesis that a pair CpG-Gene is
324  significantly associated is based on considering the lowest p-value observed for a given CpG
325 and all its paired Gene (e.g., those in the 1 Mb window centered at the TSS). As we do not
326 know the distribution of this statistic under the null, we used a permutation test. We
327 generated 100 permuted gene expression datasets and ran our previous linear regression
328 models obtaining 100 permuted p-values for each CpG-Gene pair. Then, for each CpG, we
329 selected among all CpG-Gene pairs the minimum p-value in each permutation and fitted a
330 beta distribution that is the distribution we obtain when dealing with extreme values (e.qg.
331  minimum) (Dudbridge and Gusnanto, 2008). Next, for each CpG, we took the minimum p-
332  value observed in the real data and used the beta distribution to compute the probability of
333 observing a lower p-value. We defined this probability as the empirical p-value of the CpG.
334  Then, we considered as significant those CpGs with empirical p-values to be significant at
335 5% false discovery rate using Benjamini-Hochberg method. Finally, we applied a last step to
336 identify all significant CpG-Gene pairs for all eCpGs. To do so, we defined a genome-wide
337  empirical p-value threshold as the empirical p-value of the eCpG closest to the 5% false
338 discovery rate threshold. We used this empirical p-value to calculate a nominal p-value
339 threshold for each eCpG, based on the beta distribution obtained from the minimum
340 permuted p-values. This nominal p-value threshold was defined as the value for which the
341 inverse cumulative distribution of the beta distribution was equal to the empirical p-value.
342  Then, for each eCpG, we considered as significant all eCpG-Gene variants with a p-value

343  smaller than nominal p-value.
344 Characterization of the child blood autosomal cis eQTM

345 catalogue

346  Wilcoxon tests were run to compare continuous variables (e.g., methylation range, CpG
347  probe reliability, etc.) vs. categorical variables (e.g., low, medium, and high categories of
348 methylation levels, eCpGs vs non eCpGs, etc.). We run a linear model to test the association
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349 between the effect size and the distance between the CpG and the Gene's TSS. For this
350 test, we compared the absolute value of the effect size vs logi, of absolute value of the

351 distance,

352  Enrichment of eCpGs for regulatory elements: Enrichment of eQTMs for regulatory elements
353  were tested using Chi-square tests with non eQTMs as reference, unless otherwise stated.
354  Results with a p-value <0.05 were considered statistically significant. Annotation of eQTMs
355 to regulatory elements (gene relative positions, CpG island relative positions, and blood
356 ROADMAP chromatin states) is described in the section “DNA methylation assessment”.
357  Enrichment for CpGs classified in 3 groups based on their median methylation levels (low:

358  0.0-0.3; medium: >0.3-0.7; and high: >0.7-1.0) was tested similarly.

359  Enrichment of eCpGs for CpGs associated with phenotypic traits and exposures: We also
360 explored the enrichment of eQTMs for phenotypic traits and/or environmental exposures
361 reported in the EWAS catalog (Battram et al., 2021) and the EWAS Atlas (Li et al., 2019).
362  We used version 03-07-2019 of the EWAS catalog and selected those studies conducted in
363  whole or peripheral blood of European ancestry individuals. We downloaded EWAS Atlas
364 data on 27-11-2019 and selected those studies performed in whole blood or peripheral blood
365 of European ancestry individuals or with unreported ancestry. Enrichment was tested as

366 indicated above.

367 Enrichment of eCpGs for age-variable CpGs: We used results from the MeDALL and the
368 Epidelta projects to test whether eQTMs were enriched for CpGs variable from birth to
369 childhood and adolescence. For MeDALL we downloaded data from supplementary material
370  of the following manuscript that assesses changes from 0 to 4y and from 4y to 8y (Xu et al.,
371 2017). For Epidelta, we downloaded the full catalogue (version 2020-07-17) from their

372  website (http://epidelta.mrcieu.ac.uk/). In Epidelta, we considered a CpG as age-variable if

373 its p-value from model 1 that assesses linear changes from 0 to 17 years (variable

374  Ml.change.p) was <le-7 (Bonferroni threshold as suggested in the study). Variable CpGs
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375 were classified as increased methylation if their change estimate (variable
376  Ml.change.estimate) was >0, and as decreased methylation, otherwise. Enrichment was

377 tested as indicated above.

378  Enrichment of eGenes for Gene Ontology - Biological Processes (GO-BP): We also tested
379 whether eGenes were enriched for specific GO-BP terms using the topGO R package
380 (RRID:SCR_014798) (J, 2010) and using the genes annotated by Affymetrix in our dataset
381 as background (58,254 Genes annotated to 23,054 Gene Symbols). We applied the
382  weight01 algorithm, which considers GO-BP terms hierarchy for p-values computation. GO-

383  BP terms with g-value <0.001 were considered statistically significant.

384 Comparison of genes associated with eQTMs versus

385 annotation of eQTMs to the closest gene

386  We evaluated whether genes associated with eQTMs could be captured through the Illumina
387 annotation, which links CpGs to the closest gene in a maximum distance of 1500 bp. For
388 this, CpGs were annotated to Gene Symbols using the
389 llluminaHumanMethylation450kanno.iimn-12.hgl9 R package (Hansen, n.d.), while Genes
390 were annotated to Gene Symbols using the HTA-2.0 Transcript Cluster Annotations Release
391 na36 annotation file from Affymetrix. Given that CpGs and Genes could be annotated to
392  several genes, we considered that a CpG-Gene pair was annotated to the same gene if at
393 least one of the genes annotated to the CpG was present among the genes in the HTA-2.0
394 array. In total, we identified 327,931 CpG-Gene pairs annotated to the same gene, and thus
395 that could be compared. Then, a Chi-square test was applied to compute whether eQTMs
396  were enriched for these 327,931 comparable CpG-Gene pairs, using as background all 13M

397 CpG-Gene pairs.

398 Next, we evaluated whether the relative position of the CpG in the genic region was related

399 to the expression of the paired Gene. To do so, the comparable 327,931 CpG-Gene pairs
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400 were expanded to 383,672 entries. Each entry represented a CpG-Gene pair annotated to a
401  unique gene relative position. Thus, for instance, a CpG-Gene pair with the CpG annotated
402 to two relative gene positions of the same gene was included as two entries, each time
403 annotated to a different gene relative position. In this expanded CpG-Gene pair set, Chi-
404  square tests were run to test the enrichment of eQTMs for gene relative positions, using the

405 383,672 entries as background.

406 Evaluation of the genetic contribution on child blood autosomal

407 Ccis eQTMs

408 We used two approaches to evaluate the influence of genetic effects in child blood
409 autosomal cis eQTMs. First, we analyzed heritability estimates of CpGs computed by Van
410 Dongen and colleagues (van Dongen et al., 2016). Total additive and SNP-heritabilities were
411  compared between eCpGs and non eCpGs, using a Wilcoxon test. We also run linear
412  regressions between heritability measures (outcome) and eCpGs classified according to the

413  number of eGenes they were associated with.

414  Second, we tested whether eCpGs were more likely regulated by SNPs than non eCpGs
415  (i.e., whether they were enriched for meQTL). In order to define meQTLs in HELIX, we
416  selected 9.9 M cis and trans meQTLs with a p-value <le-7 in the ARIES dataset consisting
417  of data from children of 7 years old (Gaunt et al., 2016). Then, we tested whether this subset
418 of 9.9 M SNPs were also meQTLs in HELIX by running meQTL analyses using MatrixEQTL
419 R package (Shabalin, 2012), adjusting for cohort, sex, age, blood cellular composition and
420  the first 20 principal components (PCs) calculated from genome-wide genetic data of the
421  GWAS variability. We confirmed 2.8 M meQTLs in HELIX (p-value <le-7). Trans meQTLs
422  represented <10% of the 2.8 M meQTLs. Enrichment of eCpGs for meQTLs was computed

423  using a Chi-square test, using non eCpGs as background.
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424  Finally, we tested whether meQTLs were also eQTLs for the eGenes linked to the eCpGs.
425  To this end, we run eQTL analyses (gene expression being the outcome and 2.8 M SNPs
426  the predictors) with MatrixEQTL adjusting for cohort, sex, age, blood cellular composition
427  and the first 20 GWAS PCs in HELIX. We considered as significant eQTLs the SNP-Gene
428  pairs with p-value <le-7 and with the direction of the effect consistent with the direction of

429  the meQTL and the eQTM.

430 Comparison with adult blood eQTM catalogues: GTP and

431 MESA

432  We compared our list of child blood autosomal cis eQTMs obtained in HELIX with the cis
433  and trans eQTMs described in blood of two adult cohorts: GTP and MESA (Kennedy et al.,
434  2018). DNA methylation was assessed with the Infinium HumanMethylation450K BeadChip
435  (lllumina) in the 3 cohorts. In HELIX, gene expression was assessed with the Human
436  Transcriptome Array 2.0 ST arrays (HTA 2.0) (Affymetrix), and in GTP and MESA with the

437  HumanHT-12 v3.0 and v4.0 Expression BeadChip (lllumina).

438  For the comparison of eQTMs between adults and children, eGenes in the two studies were
439  annotated to a common gene nomenclature, by using the Gene Symbol annotation provided
440 by the authors form GTP and MESA, and the Gene Symbol provided by the Affymetrix
441  annotation in HELIX. Some eQTMs involved Genes (HELIX) or gene probes (GTP and
442  MESA) annotated to more than one gene (Gene Symbol); and also different Genes (HELIX)
443  or gene probes (GTP and MESA) were annotated to the same Gene Symbol. To handle this

444  issue, we split our comparison in two analyses.

445  First, we checked whether CpG-gene pairs reported in GTP and MESA were eQTMs
446  (significant CpG-gene pairs) in HELIX. By doing this, the comparison was restricted to cis
447  effects (as HELIX only considered cis effects). When a CpG-gene pair in GTP or MESA

448 mapped to multiple CpG-gene pairs in HELIX, we only considered the CpG-gene pair with

19


https://doi.org/10.1101/2020.11.05.368076
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.05.368076; this version posted October 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

449  the smallest p-value in HELIX. Next, Pearson’s correlations between the effect sizes of the

450  different studies were computed.

451  Second, we explored whether HELIX eQTMs were also present in GTP and/or MESA. When
452  a CpG-gene pair in HELIX mapped to multiple CpG-gene pairs in GTP and/or MESA, we
453  only considered the CpG-gene pair with the smallest p-value in these cohorts. As a result,
454  HELIX eQTMs were classified in age-shared (if present in adults at p-value <l1e-05, in GTP
455 and/or MESA) and children-specific (absent in adult cohorts). For these two subsets of
456 eQTMs, enrichment for ROADMAP chromatin states, methylation measurement error, and

457  distance from the eCpG to the eGene’s TSS, was tested as explained above.
458 Data and software availability
459  The raw data used to generate the eQTM catalogue are not publicly available due to privacy

460  restrictions but are available from the corresponding author on request. Catalogue of eQTMs

461  described in this manuscript is publicly available at https://helixomics.isglobal.org/. Scripts to

462 reproduce the analysis can be found in a public GitHub repository

463  (https://github.com/yocra3/methExprsHELIX/) and as a supplementary file.

464 Results

465 Study population and molecular data

466  The study includes 823 children of European ancestry from the HELIX project with available
467 blood DNA methylation and gene expression data. These children, enrolled in 6 cohorts,
468  were aged between 6 and 11 years and the number of males and females was balanced

469 (Table 1).
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470  After quality control, our dataset consists of 386,518 CpGs and 58,254 transcript clusters
471  (TCs) in autosomal chromosomes (from 1 to 22). TCs are defined as groups of one or more
472  probes covering a region of the genome, reflecting all the exonic transcription evidence
473  known for the region, and corresponding to a known or putative gene. Thus, we will refer
474  TCs to Genes indistinctively. According to Affymetrix annotation, 23,054 of the Genes
475 encoded a protein. To detect cis effects, we paired each Gene to all CpGs closer than 0.5
476  Mb from its transcription start site (TSS), either upstream or downstream (1 Mb window
477  centered at the TSS). In total, we obtained 13.6 M CpG-Gene pairs, where each CpG was
478 paired to a median of 30 Genes; and each Gene was paired to a median of 162 CpGs

479  (Figure 1 — figure supplement 1).

480 ldentification of autosomal cis eQTMs in children’s blood

481  We tested the association between DNA methylation and gene expression levels in the
482  13.6 M autosomal CpG-Gene pairs through linear regressions adjusting for sex, age, cohort,
483  and cellular composition. After correcting for multiple testing (see Material and Methods), we
484  identified 39,749 statistically significant autosomal cis eQTMs in children’s blood (0.29% of
485  total CpG-Gene pairs). These eQTMs comprised 21,966 unique CpGs (5.7% of total CpGs)
486 and 8,886 unique Genes (15.3% of total Genes), of which 6,288 were annotated as coding
487  genes. For simplicity, we will refer to them as eQTMs (statistically significant associations of
488 CpG-Gene pairs), eCpGs (CpGs involved in eQTMs), and eGenes (Genes involved in
489 eQTMs). 23,355 eQTMs (58.8% of total) showed inverse associations, meaning that higher
490 DNA methylation was associated with lower gene expression. In eQTMs, each eGene was
491  associated with a median of 2 eCpGs, while each eCpG was associated with a median of 1
492  eGene (Figure 1 — figure supplement 2). eCpGs presented higher methylation variability in
493  the population (Figure 1 — figure supplement 3), and were measured with lower technical
494  error (Sugden et al., 2020) (Figure 1 — figure supplement 4). Indeed, 13,278 eCpGs (60.4%

495  of total) were measured with probes which had an intraclass correlation coefficient (ICC)
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496 >0.4, which is indicative of reliable measurements. Moreover, eGenes had higher call rates

497  (Figure 1 — figure supplement 5).

498 The complete catalogue of eQTMs can be downloaded from https://helixomics.isglobal.org/.

499 Overview of autosomal cis eQTMs in children’s blood
500 Distance from the eCpG to the eGene’s TSS and effect size

501 eCpGs tended to be close to the TSS of the targeted eGenes, being this distance <250Kb
502 for 87.9% of all eQTMs (Figure 2A). Globally, the median distance between an eCpG and
503 the TSS of its associated eGene was 1.1 kb (IQR = -33 kb; 65 kb), being eCpGs closer to
504 the TSS in inverse eQTMs than in positive. The observed downstream shift could be
505 explained because we chose the most upstream TSS for each Gene according to the
506  Affymetrix HTAv2 annotation. A similar shift was observed for expression quantitative trait
507 loci, eQTLs, (i.e., single nucleotide polymorphisms, SNPs, associated with gene expression)

508 in the Genotype-Tissue Expression (GTEX) project (Gamazon et al., 2018).

509 We report the effect size of eQTMs as the log, fold change (FC) of gene expression per 0.1
510 points increase in methylation (or 10 percentile increase). In absolute terms, the median
511  effect size was 0.12, being the minimum 0.002 and the maximum 16.0, with 96.3% of the
512 eQTMs with an effect size <0.5. A median effect size of 0.12 means that a change of 0.1
513 points in methylation levels was associated with around a 9% increase/decrease of gene
514  expression. We observed an inverse linear association between the eCpG-eGene's TSS
515 distance and the effect size (p-value = 7.75e-9, Figure 2B); while we did not observe
516  significant differences in effect size due to the relative orientation of the eCpG (upstream or

517  downstream) with respect to the eGene’s TSS (p-value = 0.68).
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518 Classification of eCpGs

519  As shown in Table 2, we classified eCpGs into 5 types, by following 2 criteria: (1) the number
520 of eGenes affected, distinguishing between mono eCpGs (associated with a unique eGene),
521 and multi eCpGs (associated with >= 2 eGenes); and (2) the direction of the effect,
522  distinguishing between inverse, positive and bivalent eCpGs (with inverse effects on some
523 eGenes and positive effects on others). Mono inverse eCpGs were the most abundant type
524  (36.8%) (Table 2). CpGs not associated with the expression of any Gene were named as

525 non eCpGs. We used these categories in the subsequent analyses.

526 Comparison of eGenes with the closest annotated gene

527 A standard approach to interpret EWAS findings is to assume that a CpG regulates the
528  expression of proximal genes. These genes are usually identified through the Illumina 450K
529 annotation (Hansen, n.d.), which annotates a CpG to a gene when the CpG maps into the
530 gene body, untranslated, or promoter region defined as <1,500 bp upstream the TSS. We
531 evaluated to which extent the Illumina 450K annotation captured the eQTMs identified in our

532  catalogue.

533  First, we observed that CpG-Gene pairs where CpG and Gene were annotated to the same
534  Gene Symbol were more likely eQTMs than CpG-Gene pairs annotated to different Gene
535 Symbols or without gene annotation (OR = 11.90, p-value <2e-16). Next, we assessed
536  whether the gene annotated to the eCpG with the lllumina 450K annotation was coincident
537  with the eGene found in our analysis. To answer this, we selected 14,797 eCpGs (67.4% of
538 total eCpGs) annotated to Gene Symbols also present in the Affymetrix array, and thus
539 comparable. In 7,808 out of these 14,797 eCpGs, the eCpG was associated with the
540 expression of an eGene coincident with at least one of the Gene Symbols in lllumina’s

541  annotation (52.8% of eCpGs with comparable gene annotation, 35.5% of all eCpGs).
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542  Finally, we explored whether the relative gene position of a CpG determines its association
543  with gene expression. We selected the 327,931 CpG-Gene pairs with the CpG and Gene
544  annotated to the same Gene Symbol. Within this subset, eCpGs were enriched for CpGs in
545 5'UTRs and gene body positions, while depleted for CpGs in proximal promoters and
546  3'UTRs (Figure 2 — figure supplement 1). Interestingly, we observed that inverse and
547  positive eCpGs were enriched for CpGs located in different gene regions: inverse for CpGs

548 in distal promoters (TSS1500) and 5’'UTRs; positive for CpGs in gene bodies.

549  Overall, only around half of the eGenes targeted by the eQTMs could be identified by the
550 lllumina 450K annotation. We also found that while eCpGs were enriched for TSS1500,

551  5'UTRs, and gene body positions.

552 Functional characterization of autosomal cis eQTMs in

553 children’s blood

554 Enrichment of eCpGs for genomic regulatory elements

555  We characterized eCpGs by evaluating their enrichment for diverse regulatory elements,
556 including CpG island relative positions and 15 chromatin states retrieved from 27 blood cell
557  types from the ROADMAP Epigenomics project (Roadmap Epigenomics Consortium et al.,
558  2015). First, we found that eCpGs were depleted for CpG islands, while mostly enriched for
559  CpG island shores, but also for shelves and open sea (Figure 3A). We did not observe

560 relevant differences between inverse and positive eCpGs.

561  Second, we assessed whether eCpGs were enriched for ROADMAP blood chromatin states
562 (Roadmap Epigenomics Consortium et al.,, 2015) (Figure 3B). eCpGs were enriched for
563  several active states, such as enhancers or active transcription regions. Nonetheless, we
564  observed some discrepancies between eCpGs subtypes: only inverse eCpGs were enriched

565  for proximal promoter states while only positive eCpGs were depleted for transcription at 5’
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566 and 3’ (TxFInk). In inactive chromatin states, both positive and inverse eCpGs were enriched
567  for bivalent regulatory states (BivReg), while only positive eCpGs were enriched for
568 repressed and weak repressed Polycomb regions (ReprPC, ReprPCWk) and quiescent

569 regions (Quies).

570 Third, we also analyzed whether eCpGs had different methylation levels. We found that
571  eCpGs were enriched for CpGs with medium (>0.3-0.7) methylation levels and depleted for

572  CpGs with low (0-0.3) or high (>0.7-1) methylation levels (Figure 3C).

573  Finally, we wondered whether these enrichments could be affected by the bias introduced by
574  methylation measurement error; thus, we repeated all the enrichment analyses only
575  considering 75,836 CpGs measured with reliable probes (ICC >0.4) (Sugden et al., 2020)
576  (Figure 3 — figure supplement 1). After this filtering, the enrichments for CpG island relative
577 positions and for categories of CpGs according to their methylation levels changed
578 substantially: eCpGs passed from being depleted to being enriched for CpG island positions
579  (Figure 3 — figure supplement 1A), and from being enriched for CpGs with medium
580 methylation levels to being enriched for CpGs with low methylation levels (Figure 3 — figure
581 supplement 1C). On the contrary, the magnitudes of enrichments for most of the active
582 chromatin states were increased (Figure 3 — figure supplement 1B); while enrichments of
583  positive eCpGs for inactive states (ReprPoly and Quies) were reverted. Overall, selecting
584  reliable CpG probes reduced the differences between inverse and positive eCpGs and

585 resulted in enrichments for active chromatin states and depletions for inactive states.

586 (Gene-set enrichment analysis

587  To identify which biological functions were regulated by our list of eQTMs, we ran gene-set
588 enrichment analyses using the list of eGenes. 5,503 out of the 8,886 uniqgue Gene Symbols
589 annotated to eGenes were present in Gene Ontology - Biological Processes (GO-BP),
590 leading to 52 enriched terms (g-value <0.001) (Table S1). As expected from the tissue
591 analyzed, 50% of the terms were related to immune responses (N = 26), followed by terms
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592  associated with cellular (N = 16) and metabolic (N = 10) processes. Among immune terms, 9
593 of them were part of innate immunity, 9 of adaptive response, and 8 were related to
594  general/other immune pathways. Most enriched GO-BP terms were also found when running
595 the enrichment with the list of eGenes derived from eQTMs measured with reliable CpG

596 probes (ICC >0.4) (Table S1).

597 Enrichment for CpGs reported in the EWAS catalogues

598 We assessed whether eCpGs were enriched for CpGs previously related to phenotypic traits
599 and/or environmental exposures. To this end, we retrieved CpGs from EWAS performed in
600 blood of European ancestry subjects: 143,384 CpGs from the EWAS catalog (Battram et al.,
601 2021), and 54,599 CpGs from the EWAS Atlas (Li et al., 2019). We found that eCpGs were
602  enriched for CpGs in these EWAS databases in comparison to non eCpGs. Although we
603  observed larger odds ratios (ORs) for CpGs listed in the EWAS Atlas than for CpGs in the
604 EWAS Catalog (Figure 3 — figure supplement 2A), this difference disappeared after
605 removing CpGs with less reliable measurements (ICC <0.4) (Figure 3 — figure supplement

606  2B).

607

608 Genetic contribution to autosomal cis eQTMs in children’s

600 blood

610 Additive and SNP heritability of eQTMs

611 We hypothesized that genetic variation might regulate DNA methylation and gene
612  expression in some of the autosomal cis eQTMs in children’s blood. To test this, we used
613 two measures of genetic influence: (1) heritability of blood DNA methylation levels for each

614 CpG, calculated from twin designs (total additive heritability) and from genetic relationship
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615 matrices (SNP heritability), as reported by Van Dongen and colleagues (van Dongen et al.,
616 2016); and (2) methylation quantitative trait loci (meQTLs, SNPs associated with DNA

617  methylation levels) identified in the ARIES dataset (Gaunt et al., 2016).

618  First, we found that eCpGs had higher total additive and SNP heritabilities than non eCpGs
619 (median difference of 0.31 and 0.11, respectively, p-value <2e-16 for both). Moreover, total
620 additive and SNP heritabilities were higher for eCpGs associated with a larger number of
621 eGenes (increase of 0.025 and 0.026 points per eGene, respectively, with a p-value <2e-16
622  for both) (Figure 4A and 4B). After removing CpG probes with unreliable measurements
623 (ICC <0.4), differences in median total additive heritability between eCpGs and non eCpGs
624  were still present, but smaller (0.15, p-value <2e-16); whereas differences in SNP

625  heritabilities were maintained (0.11, p-value <2e-16) (Figure 4 — figure supplement 1).

626 Overlap with methylation and expression quantitative trait loci (meQTLs

627 and eQTLS)

628  Second, we studied whether eCpGs were enriched for meQTLs, either in cis or trans. We
629 analyzed 1,078,466 meQTLs identified in blood samples of 7-year-old children in the ARIES
630 dataset and replicated in HELIX (see Material and Methods). These meQTLs affected the
631 methylation of 36,671 CpGs through a total of 2,820,145 SNP-CpG pairs. 10,187 eCpGs
632 (27.8% total eCpGs) presented at least 1 meQTL, being eCpGs enriched in CpGs
633  associated with genetic variants (OR: 11.06, p-value <2e-6). In addition, among CpGs with
634 meQTLs, eCpGs were associated with a higher number of meQTLs (median: 74, IQR: 27;
635 162) than non eCpGs (median: 32, IQR = 10; 77). Finally, eCpGs associated with a higher
636 number of eGenes are more likely to be associated with at least one meQTL (Figure 4C).
637  After removing CpG probes with unreliable measurements (ICC <0.4), we observed the
638 same trends, although the enrichment of eCpGs for CpGs with at least one meQTL was

639 reduced (OR = 3.5, p-value <2.2e-16) (Figure 4 — figure supplement 2). Finally, we observed
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640 that eCpGs with at least one meQTL were measured with higher reliability (higher ICC) than

641  eCpGs without any meQTL (Figure 4 — figure supplement 3).

642  We, then, determined whether meQTLs were also eQTLs for the eGenes. After multiple-
643  testing correction, we identified 1,368,613 SNP-CpG-Gene trios with consistent direction of
644  effect, and 12,799 with inconsistent direction. These formers comprised 16,055 unique
645 eQTMs (40.4% of significant eQTMSs); 8,503 unique eCpGs (38.7% of total eCpGs); and
646 4,098 unique eGenes (46.1% of total eGenes), of which 3,154 were coding (50.2% of total
647 coding eGenes). In these trios, eGenes were associated with a median of 2 eCpGs (IQR =
648 1; 5) and 67 SNPs (IQR = 21; 149); whereas eCpGs were associated with a median of 1
649 eGene (IQR = 1; 2) and 53 SNPs (IQR = 17; 124). One example of such a SNP-CpG-Gene
650 trio is formed by rs11585123-cg15580684-TC01000080.hg.1 (AJAP1), in chromosome 10

651  (Figure 4 — figure supplement 4).

652  Next, we run gene-set enrichment analyses with the 2,746 eGenes involved in these trios.
653  We identified 35 significant GO-BP terms (g-value <0.001). Of these, 14 were related to
654  immunity (6 innate, 4 adaptive immunity, and 4 general/other); 11 to cellular processes; and
655 10 to metabolic processes (Table S1). In comparison to all eGenes, eGenes under genetic
656 control had a reduction in the number of GO-BP terms involving immune and cellular

657  functions (Table S2).

658  Overall, we found that a substantial part of the eQTMs seems to be under genetic control,
659 and the SNPs associated with DNA methylation levels were also associated with gene

660  expression levels.

661
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662 Influence of age on autosomal cis eQTMs in children’s

663 blood

664 Enrichment for age-variable eQTMs

665 To understand the association between changes in methylation and gene expression
666  throughout life, first we evaluated whether eCpGs were enriched for CpGs with variable
667  blood methylation levels from birth to childhood/adolescence. To this end, we retrieved the
668 CpGs that vary with age from two databases: 14,150 CpGs with variable methylation levels
669 in children between 0 and 8 years (9,647 with increased and 4,503 with decreased
670 methylation) from the MeDALL project (Xu et al., 2017); and 244,283 CpGs with variable
671  methylation levels in children and adolescents between 0 and 17 years (168,314 with
672 increased and 75,969 with decreased methylation) from the Epidelta project (RH et al.,
673  2021). Of note, 90% of the CpGs identified in the MeDALL project were also reported in the
674  Epidelta. We found that eCpGs were enriched for age-variable CpGs in both MeDALL and
675 Epidelta databases, but more markedly for CpGs reported in MeDALL (Figure 5A). In both
676 databases, positive and inverse eCpGs showed stronger ORs for CpGs with increased and
677 decreased methylation levels over age, respectively. After excluding CpG probes with
678 unreliable measurements (ICC <0.4), MeDALL enrichments were reduced to the magnitude
679 of Epidelta enrichments, while the differences between positive and inverse eCpGs were

680 more evident (Figure 5 — figure supplement 1).

681 Overlap with autosomal eQTMs in adult blood

682 We evaluated whether autosomal cis eQTMs in children’s blood were consistent in adult
683  populations. For this, we used data from the study of autosomal cis and trans eQTMs in
684  adults’ blood based on two cohorts: (1) GTP, whole blood and 333 samples; and (2) MESA,
685 monocytes and 1,202 samples, by Kennedy and colleagues (Kennedy et al., 2018). The

686  catalogue contains the summary statistics of all autosomal cis (<50 kb from the TSS) and
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687 trans (otherwise) CpG-gene pairs at p-value <le-5, although only CpG-gene associations at
688  p-value <le-11 were considered significant eQTMs in their study. To compare their findings
689  with ours, we mapped Genes and gene probes to Gene Symbols and compared CpG-gene

690 pairs (see Material and Methods, Table S3).

691  We observed that 57.9% and 35.3% of eQTMs with p-value <le-5 in GTP and MESA were
692 also eQTMs in HELIX, thus age-shared eQTMs (Figure 6B). More than 90% of age-shared
693 eQTMs have the same direction in GTP/MESA than in HELIX (Table S4). In addition, effect

694  sizes in GTP/MESA were correlated with effects sizes in HELIX (Table S4).

695 Only 5,471 (13.8%) of the eQTMs identified in HELIX children were reported in adult GTP or
696 MESA catalogues at p-value <le-5 (Figure 6C). We explored whether eQTMs identified both
697 in HELIX children and in adults (age-shared eQTMs) had different characteristics compared
698 to eQTMs only found in children (child-specific eQTMs). Age-shared eQTMs involved 4,364
699 eCpGs and 1,689 eGenes, whereas children-specific eQTMs involved 19,584 eCpGs and
700 8,429 eGenes. Age-shared eCpGs had higher reliability (higher ICC) (Figure 5 — figure
701  supplement 2) and tended to be closer to the TSS than child-specific eCpGs (Figure 5 —
702  figure supplement 3). The enrichment for ROADMAP blood chromatin states (Roadmap
703  Epigenomics Consortium et al., 2015) of age-shared and child-specific eCpGs in comparison
704  to non eCpGs was quite similar (Figure 5 — figure supplement 4). Nonetheless, age-shared
705 eCpGs showed higher ORs of enrichment for proximal promoters. Both types of eCpGs were
706  enriched for meQTLs compared to non eCpGs, with the OR being stronger for age-shared

707  eCpGs (OR = 20.7) than for child-specific eCpGs (OR =10.3).

708  Overall, we found that eQTMs were enriched for CpGs whose methylation levels changed
709 from birth to adolescence. The overlap between child and adult eQTMs was small: only
710 13.8% of HELIX eQTMs had also been described in adults. Age-shared eCpGs tended to be
711  proximal to the TSS, enriched for promoter chromatin states, and with stronger signals of

712  genetic regulation.
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713 Discussion

714  In this work, we present a blood autosomal cis eQTM catalogue in children. We identified
715 39,749 eQTMs, representing 21,966 unique eCpGs and 8,886 unigue eGenes (6,288 of
716  which were coding). 23,355 eQTMs (58.8% of all eQTMs) showed inverse associations. A
717  substantial fraction was influenced by genetic variation, and the overlap with eQTMs

718  reported in adults was small.

719  The characteristics of the autosomal cis eQTMs in children’s blood were highly consistent
720  with patterns previously described in other studies. Most of the eCpGs tended to be proximal
721  to the eGene’s TSS (Kennedy et al., 2018; Leland Taylor et al., 2019). The magnitude of the
722  effect seemed to be proportional to the distance between the eCpG and the eGene’s TSS,
723  but this association was weak. Although higher DNA methylation is assumed to lead to lower
724  expression, we found that around 40% of eQTMs were positively associated with gene
725  expression. This percentage is in line with previous results from different tissues (Gutierrez-
726  Arcelus et al., 2015, 2013; Kipers et al., 2019). Inverse and positive eCpGs tended to be
727 localized in enhancers and other active regulatory regions and not in CpG islands, a pattern
728 that was also previously reported (Gutierrez-Arcelus et al., 2015; Kipers et al.,, 2019).
729  Despite these common locations, inverse eCpGs were specifically found around active TSSs
730  (including the distal promoter and the 5’UTR), while positive eCpGs were localized in gene
731  body regions. These results highlight the importance of the genomic context to infer the
732  direction of the association between DNA methylation and gene expression (Kennedy et al.,
733  2018). We want to point out that the causal relationship between DNA methylation and gene
734  expression cannot be definitely inferred from our study. Indeed, there is some evidence
735  suggesting that DNA methylation could be a consequence of gene expression, as opposed
736 to the often assumed concept that regulation of gene expression is mediated by DNA

737 methylation (Gutierrez-Arcelus et al., 2013; Jones, 2012).
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738 eQTMs can be influenced by genetic variation (Lu et al., 2019). In HELIX, eCpGs linked to
739 the expression of several eGenes had higher heritabilities and were associated with a higher
740  number of meQTLs than non eCpGs. This could suggest that eCpGs that regulate the
741  expression of several genes, the so-called master regulators, are more prone to be
742  themselves regulated by genetic variation. We, then, searched for SNPs simultaneously
743  associated with DNA methylation (meQTLs) and gene expression (eQTLS) in our data. We
744  identified 1.3 M SNP-CpG-Gene trios with consistent direction of the effect. Interestingly, the
745  number of GO-BP terms related to immune and cellular functions was reduced for eGenes
746 under genetic control, in comparison to all eGenes; on the contrary, the number of GO-BP
747  terms involving metabolic processes was maintained. This may suggest that the influence of
748  environmental factors is more relevant for immune pathways, while genetic factors might be
749  more determinant in regulating metabolic processes in blood cells. Given the non-negligible
750 effect of genetics in eQTMs, we would advise studying the effect of genetic variants on the

751  association between environmental factors or phenotypic traits and DNA methylation.

752  In order to know how eQTMs behave along life-course, we compared blood autosomal cis
753 eQTMs identified in HELIX children with cis and trans eQTMs reported by Kennedy and
754  colleagues in whole blood and monocytes from adult populations (Kennedy et al., 2018). We
755  found that only 13.8% of the autosomal eQTMs in children’s blood were also reported in
756  adults. Similarly, a modest proportion of adult blood eQTMs was present in children (58%
757  from GTP and 35% from MESA). This small overlap between adult and child eQTMs has
758  different explanations: methodological issues, such as gene expression platforms with low
759  overlap; statistical methods and statistical power; cohort-specific environmental exposures;
760 and cellular composition. Unsurprisingly, HELIX and MESA presented the highest
761  divergence, as HELIX assessed eQTMs in whole blood and MESA in monocytes. Despite
762  the effect of these methodological and confounding factors, it is known that DNA methylation
763 and gene expression change with age (Melé et al., 2015; RH et al., 2021; Xu et al., 2017);

764  consequently, we could expect only partial overlap between adult and child eQTMs. The
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765  short list of age-shared eCpGs tended to encompass CpGs located in promoters and
766 regulated by genetic variants. Moreover, the overall location of eQTMs in regulatory
767  elements was similar between adults and children (Gutierrez-Arcelus et al., 2015; Kupers et
768 al., 2019). This could represent a specific characteristic of eQTMs that are persistent over
769 time. An alternative explanation is that this kind of eQTMs (genetically regulated and close to
770 the TSS) are easier to be detected and shared among any two studies because they show
771  stronger effects. Finally, we observed that HELIX eQTMs usually involved CpGs whose
772  methylation varied between birth and childhood/adolescence, and they tended to activate
773  rather than inactivate transcription over this period. Also, they were enriched for CpGs found
774  to be related to environmental factors and phenotypic traits in the EWAS Atlas and EWAS

775  Catalog.

776  As previously described (Sugden et al., 2020), CpG probes have different measurement
777  error and thus different reliability and reproducibility. Consequently, CpGs measured with
778 less error have more chances of being found associated with traits and thus reported in
779  EWAS catalogues. In HELIX, we found that CpG probe ICC was higher for these different
780 cases: for eCpGs, in comparison to non eCpGs; for age-shared eCpGs, in comparison to
781  children-specific eCpGs; and for eCpGs with meQTLs, in comparison to eCpGs without
782  meQTLs. In this line, enrichments of eCpGs for CpGs listed in the EWAS Atlas or in the
783  MeDALL project were markedly attenuated when only considering CpGs measured with
784  good reliability. Moreover, CpG probe reliability is dependent on DNA methylation level and
785  variance (highly unmethylated or highly methylated CpGs, which tend to have low variances,
786 are measured with more error); and genomic regulatory elements are characterized by
787  particular methylation levels. Therefore, this biased the enrichments for regulatory elements.
788  For instance, after considering only reliable probes, the distribution of eQTMs in CpG island
789  relative positions changed completely (Figure 3 — figure supplement 1). Moreover, the
790 enrichments for active chromatin states were amplified and differences between inverse and

791  positive eCpGs attenuated.
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792  Our study of autosomal cis eQTMs in children’s blood has several strengths compared to
793  previous eQTM studies. First, we report all CpG-gene pairs we tested in our analysis, as
794  opposed to existing blood eQTM catalogues which only reported pairs passing a given p-
795  value threshold (Bonder et al., 2017; Kennedy et al., 2018). Reporting all pairs tested allows
796  replication and meta-analyses, reducing publication bias. Second, we report which eQTMs
797 are influenced by genetic variation, and researchers can take this into account when
798 exploring the relationship between methylation and expression in their data. Finally, as
799  others (Wu et al., 2018), we describe that only around half of the CpG-Gene relationships
800 are captured through annotation to the closest gene. Therefore, our eQTM catalogue
801 becomes an essential and powerful tool to help researchers interpret their EWAS, with a

802  particular focus on childhood.

803 The catalogue also has some limitations. First, it only covers a fraction of all CpG-Gene
804  pairs, as both the methylation and gene expression arrays have limited resolution.
805 Nonetheless, the catalogue will be useful for most researchers as the methylation array is
806  widely used, and the gene expression array covers almost all the coding genes. Second, the
807 catalogue does not include sex chromosomes which require more complex analyses to
808 address X-inactivation and sex-specific effects that will be addressed in future studies. Third,
809 due to statistical power limitations, only cis effects were tested. Despite that, we observed
810 that eCpGs tended to be close to the gene they regulate, so the catalogue is expected to
811 cover most of the CpG-Gene associations. Fourth, effect sizes should be considered with
812 caution as the association between DNA methylation and gene expression might be non-
813 linear, and the effect of outlier values was not systematically explored (Johnson et al., 2017).
814  Fifth, models were adjusted for blood cell type composition and, while this has allowed us to
815 control for major differences in methylation and gene expression among blood cell types, it
816 might also have resulted in over-adjustment in some CpG-Gene pairs. Moreover, the
817 analysis of bulk data might have limited the identification of eQTMs specific to a subset of

818  Dblood cell types, the identification of which would need more sophisticated statistical and/or
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819 experimental methods. Finally, we acknowledge that the catalogue will be useful for
820  biological interpretation of EWAS if it is true that DNA methylation is not a mere mark of cell
821 memory to past exposures (without transcriptional consequences or with time-limited ones)
822 (Tsaietal., 2018).
823 In summary, besides characterizing child blood autosomal cis eQTMs and reporting how
824  they are affected by genetics and age, we provide a unique public resource: a catalogue with
825 13.6 M CpG-gene pairs and of 1.3 M SNP-CpG-gene trios (https://helixomics.isglobal.org/).
826  This information will improve the biological interpretation of EWAS findings.
g27 Tables
828 Table 1. Descriptive of the study population.
829  BIB: Born in Bradford study (UK). EDEN: Etude des Déterminants pré et postnatals du
830 développement et de la santé de I'Enfant (France). KANC: Kaunus cohort (Lithuania). MoBa:
831 Norwegian Mother, Father and Child Cohort Study (Norway). RHEA: Mother Child Cohort
832  study (Greece). INMA: INfancia y Medio Ambiente cohort (Spain).

Variable BiB EDEN KANC MoBa RHEA INMA Al

N (%) 80 (9.7%) | 80 (9.7%) | 143 188 154 178 823

(17.4%) (22.9%) (18.7%) (21.6%) (100%)

Female (%) | 36 (45%) | 35 (43.8%) | 64 (44.8%) | 88 (46.8%) | 69 (44.8%) | 80 (44.9%) | 372
(45.2%)
Male (%) 44 (55%) | 45 (56.2%) | 79 (55.2%) | 100 85 (55.2%) | 98 (55.1%) | 451
(53.2%) (54.8%)
Age, in 6.65 (6.44- | 10.76 6.40 (6.12- | 8.53 (8.17- | 6.45 (6.36- | 8.84 (8.44- | 8.06 (6.49-
years (IQR) | 6.84) (10.37- 6.88) 8.83) 6.62) 9.21) 8.86)
11.22)
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Natural 0.01 (0.00- | 0.02 (0.00- | 0.04 (0.01- | 0.02 (0.00- | 0.01 (0.00- | 0.03 (0.01- | 0.02 (0.00-
Killer cells | 0.03) 0.04) 0.07) 0.07) 0.03) 0.05) 0.05)
(IQR)
B-cell (IQR) | 0.12 (0.11- | 0.09 (0.07- | 0.11 (0.09- | 0.11 (0.09- | 0.14 (0.11- | 0.10 (0.08- | 0.11 (0.09-
0.15) 0.11) 0.13) 0.14) 0.16) 0.13) 0.14)
CD4+ T-cell | 0.21(0.18- | 0.16 (0.14- | 0.17 (0.14- | 0.21(0.17- | 0.20 (0.16- | 0.17 (0.14- | 0.19 (0.15-
(IQR) 0.25) 0.20) 0.21) 0.25) 0.26) 0.21) 0.23)
CD8+ T-cell | 0.13(0.11- | 0.11 (0.08- | 0.13 (0.10- | 0.14 (0.11- | 0.14 (0.11- | 0.12 (0.09- | 0.13 (0.10-
(IQR) 0.17) 0.13) 0.16) 0.17) 0.16) 0.14) 0.16)
Monocytes | 0.09 (0.07- | 0.09 (0.07- | 0.08 (0.06- | 0.08 (0.07- | 0.09 (0.07- | 0.09 (0.07- | 0.08 (0.07-
(IQR) 0.10) 0.11) 0.09) 0.10) 0.10) 0.11) 0.10)
Granulocyte | 0.41 (0.35- | 0.52 (0.47- | 0.46 (0.40- | 0.41(0.32- | 0.41 (0.34- | 0.48 (0.42- | 0.44 (0.37-
s (IQR) 0.47) 0.56) 0.53) 0.48) 0.48) 0.55) 0.52)
833  Continuous variables are expressed as mean and interquartile range (IQR).
834
835 Table 2. Classification of eCpGs by type.
836  Percentages refer to the total number of eCpGs.
Inverse (N, %) Positive (N, %) Bivalent (N, %) Total (N, %)
Mono 8,084 (36.8%) 5,681 (25.9%) 0, by definition 13,765 (62.7%)
Multi 3,738 (17.0%) 2,400 (10.9%) 2,063 (9.4%) 8,201 (37.3%)
Total 11,822 (53.8%) 8,081 (36.8%) 2,063 (9.4%) 21,966 (100%)
837
838 Figure legends
839 Figure 1. Analysis workflow. The figure summarizes the analyses conducted in this study. The first
840 step was (1) the identification of blood autosomal cis eQTMs (1 Mb window centered at the
841  transcription start site, TSS, of the gene) in 823 European ancestry children from the HELIX project,
842 by a linear model adjusted for age, sex, cohort, and blood cell type proportions. All the associations
843  are reported in the web catalogue (www.helixomics.isglobal.org). Then, (2) we explored the distance
844  from the eCpG (CpG involved in an eQTM) to eGene’s TSS (gene involved in an eQTM), the effect
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845  size of the association, and classified eCpGs in different types. Next, (3) we evaluated the proportion
846  of eGenes potentially inferred through annotation of eCpGs to the closest gene. Finally, (4) we
847  functionally characterized eCpGs and eGenes; (5) assessed the contribution of genetic variants; and
848  (6) evaluated the influence of age.

849  Figure 1 — figure supplement 1. Distribution of Genes and CpGs in all CpG-Gene pairs. A)
850 Distribution of the number of Genes paired with each CpG. The y-axis represents the number of CpGs
851 that are paired with a given number of Genes, indicated in the x-axis. The vertical line marks the
852 median of the distribution. Each CpG was paired to a median of 30 Genes (IQR: 20; 46). B)
853 Distribution of the number of CpGs paired with each Gene. The y-axis represents the number of
854  Genes that are paired with a given number of CpGs, indicated in the x-axis. The vertical line marks
855  the median of the distribution. Each Gene was paired to a median of 162 CpGs (IQR: 93; 297).

856  Figure 1 —figure supplement 2. Distribution of eGenes and eCpGs in autosomal cis eQTMs. A)
857 Distribution of the number of eGenes paired with each eCpG in eQTMs. The y-axis represents the
858 number of eCpGs that are paired with a given number of eGenes, indicated in the x-axis. Each eCpG
859  was associated with a median of 1 eGene (IQR = 1; 2). B) Distribution of the number of eCpGs paired
860  with each eGenes in eQTMs. The y-axis represents the number of eGenes that are paired with a
861 given number of eCpGs, indicated in the x-axis. Each eGene was associated with a median of 2
862 eCpGs (IQrR=1;5).

863  Figure 1 — figure supplement 3. DNA methylation range by CpG type. CpGs were classified in:
864  eCpGs (CpGs associated with gene expression, N=21,966, in grey) and non eCpGs (N=364,452, in
865  white). Methylation range was computed as the difference between the methylation values in
866  percentile 1 and percentile 99 (Lin et al., 2017).

867  Figure 1 — figure supplement 4. Probe reliability by CpG type. CpGs were classified in: eCpGs
868  (CpGs associated with gene expression, N=21,966, in grey) and non eCpGs (N=364,452, in white).
869 Probe reliability was based on intraclass correlation coefficients (ICC) obtained from (Sugden et al.,
870  2020).

871 Figure 1 —figure supplement 5. Genes call rate distribution by Gene type. Genes were classified
872 in: eGenes (Genes associated DNA methylation, N=8,886, in grey) and non eGenes (N=51,806, in
873  white). For a given Gene, call rate is the proportion of children with gene expression levels over the
874  background noise.

875 Figure 2. Distance between CpG and Gene’s TSS and effect size in child blood autosomal cis
876 eQTMs. A) Distribution of the distance between CpG and Gene's TSS by eQTM type. CpG-Gene
877  pairs were classified in non eQTMs (black); inverse eQTMs (yellow); and positive eQTMs (green). The
878  x-axis represents the distance between the CpG and the Gene's TSS (kb). Non eQTMs median
879  distance: -0.013 kb (interquartile range - IQR = -237; 236). Positive eQTMs median distance: -4.9 kb
880 (IQR =-38; 79). Inverse eQTMs median distance: -0.7 kb (IQR = -29; 54). B) Effect size versus eCpG-
881 Gene’s TSS distance in eQTMs. The x-axis represents the distance between the eCpG and the
882 eGene’s TSS (kb). The y-axis represents the effect size as the log2 fold change in gene expression
883 produced by a 0.1 increase in DNA methylation (or 10 percentile increase). To improve visualization,
884  a 99% winsorization has been applied to log2 fold change values: values more extreme than 99%
885 percentile (in absolute value) have been changed for the 99% quantile value (in absolute value).
886  eQTMs are classified in inverse (yellow) and positive (green). Each eQTM is represented by one dot.
887  The darker the color, the more dots overlapping, and so the higher the number of eQTMs with the
888  same effect size and eCpG-eGene’s TSS distance.

889  Figure 2 — figure supplement 1. Enrichment of eCpGs for gene relative positions. We selected
890 the subset of 327,931 CpG-Gene pairs where the CpG and the Gene were annotated to the same
891 gene. Enrichment was computed for all eCpGs in this subset, and for inverse and positive eCpGs.
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892  Genic regions are classified in distal promoter from 200 to 1,500 bp (TSS1500); proximal promoter up
893 to 200 bp (TSS200), 5’ untranslated region (5’'UTR); 1st exon; gene body; and 3’ untranslated region
894  (3'UTR). The y-axis represents the odds ratio (OR) of the enrichment. For all gene relative positions,
895  the enrichment was computed against CpG-Gene pairs with CpG and Gene annotated to the same
896  gene that were not eQTMs.

897 Figure 3. Enrichment of cis autosomal eCpGs in children’s blood for different regulatory
898 elements. eCpGs were classified in all (grey), inverse (yellow), and positive (green). The y-axis
899 represents the odds ratio (OR) of the enrichment. In all cases, the enrichment was computed against
900 non eCpGs. A) Enrichment for CpG island relative positions: CpG island, N- and S-shore, N- and S-
901  shelf, and open sea. B) Enrichment for ROADMAP blood chromatin states (Roadmap Epigenomics
902  Consortium et al., 2015): active TSS (TssA); flanking active TSS (TssAFInk); transcription at 5" and 3’
903 (TxFInk); transcription region (Tx); weak transcription region (TxWKk); enhancer (Enh); genic enhancer
904 (EnhG); zinc finger genes and repeats (ZNF.Rpts); flanking bivalent region (BivFInx); bivalent
905 enhancer (EnhBiv); bivalent TSS (TssBiv); heterochromatin (Het); repressed Polycomb (ReprPC);
906  weak repressed Polycomb (ReprPCWK); and quiescent region (Quies). Chromatin states can be
907  grouped in active transcription start site proximal promoter states (TssProxProm), active transcribed
908 states (ActTrans), enhancers (Enhancers), bivalent regulatory states (BivReg), and repressed
909 Polycomb states (ReprPoly). C) Enrichment for categories of CpGs with different median methylation
910 levels: low (0-0.3), medium (0.3-0.7), and high (0.7-1) (Huse et al., 2015).

911 Figure 3 — figure supplement 1. Enrichment of eCpGs with reliable measurement for different
912 regulatory elements. Only eCpGs with reliable measurements (ICC >0.4) were considered (Sugden
913 et al, 2020). eCpGs were classified in all (grey), inverse (yellow), and positive (green). The y-axis
914  represents the odds ratio (OR) of the enrichment. In all cases, the enrichment was computed against
915 non eCpGs. A) Enrichment for CpG island relative positions: CpG island, N- and S-shore, N- and S-
916  shelf, and open sea. B) Enrichment for ROADMAP blood chromatin states (Roadmap Epigenomics
917  Consortium et al., 2015): active TSS (TssA), flanking active TSS (TssAFInk), transcription at 5’ and 3'
918 (TxFInk), transcription region (Tx), weak transcription region (TxWKk), enhancer (Enh); genic enhancer
919 (EnhG), zinc finger genes and repeats (ZNF.Rpts), flanking bivalent region (BivFInx), bivalent
920 enhancer (EnhBiv), bivalent TSS (TssBiv), heterochromatin (Het), repressed Polycomb (ReprPC),
921  weak repressed Polycomb (ReprPCWKk), and quiescent region (Quies). Chromatin states can be
922  grouped in active transcription start site proximal promoter states (TssProxProm), active transcribed
923  states (ActTrans), enhancers (Enhancers), bivalent regulatory states (BivReg) and repressed
924 Polycomb states (ReprPoly). C) Enrichment for groups of CpGs with different median methylation
925  levels: low (0-0.3), medium (0.3-0.7), and high (0.7-1) (Huse et al., 2015).

926 Figure 3 — figure supplement 2. Enrichment of autosomal cis eCpGs in children’s blood for
927  CpGs reported to be associated with phenotypic traits and/or environmental exposures.
928  Enrichment for CpGs present in EWAS datasets: the EWAS Atlas (Li et al., 2019), and the EWAS
929  Catalog (Battram et al., 2021). eCpGs were classified in all (grey), inverse (yellow), and positive
930 (green). In all cases, the enrichment was computed against non eCpGs. The y-axis represents the
931  odds ratio (OR) of the enrichment. A) Enrichment considering all CpGs. B) Enrichment considering
932  only CpGs measured with reliable probes (ICC >0.4) (Sugden et al., 2020). intraclass correlation
933  coefficient.

934 Figure 4. Genetic contribution to autosomal cis eQTMs in children’s blood. CpGs were grouped
935 by the number of Genes they were associated with, where 0 means that a CpG was not associated
936  with any Gene (non eCpG). A) Total additive heritability and B) SNP heritability as inferred by Van
937 Dongen and colleagues (van Dongen et al., 2016). The y-axis represents heritability and the x-axis
938  each group of CpGs associated with a given number of Genes. C) Proportion of CpGs having a
939 meQTL (methylation quantitative trait locus), by each group of CpGs associated with a given number
940  of Genes.
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941  Figure 4 — figure supplement 1. Heritability of methylation levels in CpGs with reliable
942 measurements. Only CpGs measured with reliable probes (ICC >0.4) were considered (Sugden et
943  al., 2020). CpGs were grouped by the number of Genes they were associated with, where 0 means
944  that a CpG was not associated with any Gene (non eCpGs, in white). A) Total additive heritability as
945 inferred by Van Dongen and colleagues (van Dongen et al., 2016), by each group of CpGs associated
946  with a given number of Genes. B) SNP heritability as inferred by Van Dongen and colleagues (van
947  Dongen et al., 2016), by each group of CpGs associated with a given number of Genes.

948  Figure 4 —figure supplement 2. Proportion of CpGs having a meQTL (methylation quantitative
949  trait loci) among CpGs with reliable measurements. Only CpGs measured with reliable probes
950 (ICC >0.4) were considered (Sugden et al., 2020). CpGs were grouped by the number of Genes they
951  were associated with.

952  Figure 4 — figure supplement 3. Probe reliability in autosomal cis eCpGs according to
953  association with genetic variants. eCpGs were classified in two groups, depending on whether their
954  methylation values were associated with any genetic variant. Probe reliabilities were based on
955 intraclass correlations (ICCs) obtained from (Sugden et al., 2020).

956 Figure 4 — figure supplement 4. Example of a trio of SNP-CpG-Gene. A) Methylation levels
957  (cg15580684) by SNP genotypes (rs11585123). B) Gene expression levels (TC01000080.hg.1,
958 AJAP1 gene) by SNP genotypes (rs11585123). C) Correlation between gene expression
959  (TC01000080.hg.1, AJAP1 gene) and methylation levels (cg15580684).

960 Figure 5. Influence of age on autosomal cis eQTMs in children’s blood. A) Enrichment of eCpGs
961 for CpGs with age-variable methylation levels, in comparison to non eCpGs. eCpGs were classified in
962  all (grey); inverse (yellow); and positive (green). Age-variable CpGs were retrieved from the MeDALL
963  project (from birth to childhood (Xu et al., 2017)) and from the Epidelta project (from birth to
964 adolescence (RH et al., 2021)). They were classified in variable (CpGs with methylation levels that
965 change with age); decreased (CpGs with methylation levels that decrease with age); and increased
966  (CpGs with methylation levels that increase with age). The y-axis represents the odds ratio (OR) of
967  the enrichment. B) Overlap between autosomal cis/trans eQTMs identified in adults (GTP: whole
968  blood; MESA: monocytes) (Kennedy et al., 2018) with cis eQTMs identified in children (HELIX: whole
969  blood). All CpG-gene pairs reported at p-value <le-5 in GTP or MESA that could be compared with
970 pairs in HELIX are shown. C) Overlap between blood autosomal cis eQTMs identified in HELIX
971  children with cis/trans eQTMs identified in adults (GTP: whole blood; MESA: monocytes) (Kennedy et
972  al, 2018). All CpG-gene pairs in HELIX that could be compared with pairs in GTP or MESA are
973  shown. Note: The comparison has been split into two plots because one eGene in HELIX can be
974  mapped to different expression probes in GTP and MESA, and vice-versa. Only comparable CpG-
975  Gene pairs are shown (see Material and Methods).

976 Figure 5 — figure supplement 1. Enrichment of eCpGs with reliable measurements for CpGs
977  with age-variable methylation levels. Only CpGs with reliable measurements (ICC >0.4) were
978  considered (Sugden et al., 2020). eCpGs were classified in all (grey), inverse (yellow); and positive
979 (green). Age-variable CpGs were retrieved from the MeDALL project (from birth to childhood (Xu et
980 al, 2017)) and the Epidelta project (from birth to adolescence (RH et al., 2021)), and they were
981 classified in: variable (CpGs with methylation levels that change with age), decreased (CpGs with
982 methylation levels that decrease with age), and increased (CpGs with methylation levels that increase
983 with age). The y-axis represents the odds ratio (OR) of the enrichment. For all eCpG types, the
984  enrichment was computed against non eCpGs.

985  Figure 5 — figure supplement 2. Probe reliability in eCpGs according to overlap with adult
986 eQTMs. eCpGs were classified in age-shared eCpGs (eCpGs identified in HELIX children and also in
987  adults from MESA and/or GTP studies, in red); and child-specific eCpGs (eCpGs only identified in
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988 HELIX children and not in the adult cohorts, in blue). Probe reliabilities were based on intraclass
989  correlation coefficients (ICCs) obtained from (Sugden et al., 2020).

990 Figure 5 —figure supplement 3. Distribution of the distance between CpG-Gene’s TSS by eQTM
991 type. eQTMs were classified in age-shared (eQTMs identified in HELIX children and also in adults
992  from MESA or GTP studies, in red); and child-specific (e¢QTMs only identified in HELIX children and
993 not in adult cohorts, in blue). Distance between eCpG and eGene’'s TSS is expressed in kb. Age-
994  shared eQTMs median distance: 1.2 kb (IQR: -2.4; 35.4 kb). Child-specific eQTMs median distance: -
995  1.1kb (IQR:-39.4; 70.7 kb).

996 Figure 5 — figure supplement 4. Enrichment of age-shared and child-specific eCpGs for blood

997 ROADMAP blood chromatin states. eCpGs were classified in age-shared (eCpGs identified in

998  HELIX children and also in adults from MESA or GTP studies, in red); and child-specific (eCpGs only

999  identified in HELIX children and not in adult cohorts, in blue). ROADMAP blood chromatin states
1000 (Roadmap Epigenomics Consortium et al., 2015) are: active TSS (TssA), flanking active TSS
1001  (TssAFInk), transcription at 5 and 3’ (TxFInk), transcription region (Tx), weak transcription region
1002 (TXWKk), enhancer (Enh); genic enhancer (EnhG), zinc finger genes and repeats (ZNF.Rpts), flanking
1003 bivalent region (BivFInx), bivalent enhancer (EnhBiv), bivalent TSS (TssBiv), heterochromatin (Het),
1004  repressed Polycomb (ReprPC), weak repressed Polycomb (ReprPCWKk), and quiescent region
1005 (Quies). Chromatin states can be grouped in active transcription start site proximal promoter states
1006  (TssProxProm), active transcribed states (ActTrans), bivalent regulatory states (BivReg) and
1007 repressed Polycomb states (ReprPoly). The y-axis represents the odds ratio (OR) of the enrichment.
1008 For each regulatory element, the enrichment was computed against non eCpGs.

1009

1010 File legends

1011  Supplementary tables (HELIX_MethExpr_SupTables.xIsx): File with supplementary tables S1-S4.

1012  Source code file (SuplementaryCode.zip): compressed file with the code used to run the analyses
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the closest annotated gene Classification of eCpGs
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Functional characterization

Genetic contribution Enrichment of eCpGs for genomic regula-
Additive and SNP heritability tory elements
Overlap with meQTLs and eQTLs Gene-set enrichment analysis

Enrichment with CpGs in EWAS catalogues
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Influence of age

- Enrichment for age-variable eCpGs
Overlap with adult eQTMs
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