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Abstract
The pathogen Clostridioides difficile causes toxin-mediated diarrhea and is the leading cause of
hospital-acquired infection in the US. Due to growing antibiotic resistance and recurrent infection, targeting C.
difficile metabolism presents a new approach to combat this infection. Genome-scale metabolic network
reconstructions (GENREs) have been used to identify therapeutic targets and uncover properties that
determine cellular behaviors. Thus, we constructed C. difficile GENREs for a hyper-virulent isolate (str.
R20291) and a historic strain (str. 630), validating both with in vitro and in vivo datasets. Growth simulations
revealed significant correlations with measured carbon source usage (PPV 2 92.7%), and single-gene deletion
analysis showed >89.0% accuracy. Next, we utilized each GENRE to identify metabolic drivers of both
sporulation and biofilm formation. Through contextualization of each model using transcriptomes generated
from in vitro and infection conditions, we discovered reliance on the Pentose Phosphate Pathway as well as
increased usage of cytidine and N-acetylneuraminate when virulence expression is reduced, which was

subsequently supported experimentally. Our results highlight the ability of GENRESs to identify novel metabolite

signals in bacterial pathogenesis.

Importance

Clostridioides difficile is a Gram-positive, sporulating anaerobe that has become the leading cause of
hospital-acquired infections. Numerous studies have demonstrated the importance of specific metabolic
pathways in aspects of C. difficile pathophysiology, from initial colonization to regulation of virulence factors. In
the past, genome-scale metabolic network reconstruction (GENRE) analysis of bacteria has enabled
systematic investigation of the genetic and metabolic properties that contribute to downstream virulence
phenotypes. With this in mind, we generated and extensively curated C. difficile GENREs for both a
well-studied laboratory strain (str. 630) as well as a more recently characterized hyper-virulent isolate (str.
R20291). In silico validation of both GENREs revealed high degrees of agreement with experimental gene
essentiality and carbon source utilization datasets. Subsequent exploration of context-specific metabolism

during both in vitro growth and infection revealed consistent patterns of metabolism which corresponded with
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experimentally measured increases in virulence factor expression. Our results support that differential C.
difficile virulence is associated with distinct metabolic programs related use of carbon sources and provides a

platform for identification of novel therapeutic targets.

Introduction

Clostridioides difficile is a Gram-positive, sporulating anaerobic bacterium that remains a critical
problem in healthcare facilities across the developed world (1, 2). Susceptibility to C. difficile infection (CDI) is
most frequently preceded by exposure to antibiotic therapy (3). While these drugs are life-saving they also
diminish the abundance of other bacteria in the microbiota, altering the metabolic environment of the gut,
leaving it susceptible to colonization by C. difficile (4—6). Recently, we observed that C. difficile adapts
transcription of distinct catabolic pathways to the unique conditions in susceptible gut environments following
different antibiotic pretreatments (7, 8). These transcriptional shifts indicated that C. difficile must coordinate
metabolic activity accordingly to compete within new hosts. In spite of these differences, there are known core
elements of C. difficile metabolism across different environments including carbohydrate and amino acid
fermentation (9). It is known that specific growth nutrients influence expression of virulence genes in C. difficile
(9, 10). Given these findings, targeted therapeutic strategies that alter active metabolism and downregulate
virulence may be possible without continued exposure to antibiotics. This form of treatment would be especially
beneficial as there have been stark increases in the prevalence of antibiotic resistance and hyper-virulence
among C. difficile clinical isolates (11, 12).

Genome-scale metabolic network reconstructions (GENREs) are mathematical formalizations of
metabolic reactions encoded in the genome of an organism. These models are subsequently constrained by
known biological and physical parameters such as membrane transport and enzyme kinetics. GENREs can be
utilized to interrogate the metabolic capability of a given organism, as well as providing a means to simulate
growth and assess the impact of genotype on metabolism. GENREs have been implemented in directing
genetic engineering efforts (13) and accurately predicting auxotrophies and interactions between species for
growth substrates (14, 15). These platforms also create improved context for the interpretation of omics data

(16), and have provided powerful utility for identification of novel drug and gene targets accelerating
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downstream laboratory testing (17). This concept is especially critical when delineating a complex array of
signals from communities of organisms like the gut microbiome (18). Leveraging these tools, several recent
studies have identified nodes of metabolism that promise to provide novel therapeutic targets in
clinically-relevant pathogens including Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus
mutans (17, 19, 20). However, there has been limited progress to date applying GENRESs to obtain mechanistic
understanding for metabolism during infection as they relate to colonization and virulence. Taken together,
these principles make GENREs strong platforms for deciphering novel metabolic drivers of
virulence-associated phenotypes in C. difficile.

We began by generating new GENREs for two strains of C. difficile including a highly-characterized
laboratory strain C. difficile str. 630 (21), as well as a more recently isolated hyper-virulent strain R20291 (22).
De novo reconstruction for both models was followed by extensive literature-driven manual curation of
catabolic pathways and related metabolite transport, with specific emphasis on Stickland fermentation for ATP
generation and C. difficile-specific redox maintenance (23). Additionally, both GENREs contain a tailored
biomass objective function (an in silico proxy for bacterial growth, requiring synthesis of major macromolecular
components) which accounts for codon biases and amino acid balance, and cell wall structure. Growth
simulations from both GENREs were compared against in vitro gene essentiality and carbon utilization
screens, which indicated significant levels of agreement across all validation datasets.

To assess potential mechanisms of metabolic control of virulence, we then created context-specific
models of C. difficile metabolism by integrating transcriptomic data collected from both laboratory culture and
infection conditions where differential expression of C. difficile virulence factors was observed. Overall, during
increased virulence expression both strains of C. difficile were predicted to favor increased fermentation of
amino acids and decreased reliance carbohydrate usage. Specifically in the hyper-virulent strain R20291
during states of phase variation, we found efflux of the biofilm component N-acetylglucosamine in variants
known to produce significantly more biofilm experimentally. Additionally, this state was predicted to have
increased reliance on glucose to fuel nucleotide synthesis, instead of ATP generation. When tested in vitro, we

indeed found that the colony morphology associated with this phase variant was dependent on environmental

glucose availability. Alternatively in infection-specific models of strain 630, we identified consistent patterns of
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proline and ornithine fermentation in states of both high and low sporulation, which agreed with metabolomic
analysis of each condition. However, in instances of lower spore burden our model predicted significantly
greater usage of the host-derived glycan N-Acetylneuraminate and the nucleotide precursor cytidine as primary
sources of carbon. In subsequent laboratory testing we were able to show that not only can C. difficile use the
substrates for growth, but both also lead to lower quantities of spores, which are essential for transmission of
the pathogen (24, 25). This work is the first time that contextualized GENREs of a pathogen have been utilized
to identify new metabolite signals of virulence regulation. As such, the high-quality GENREs described here
can greatly augment the discovery of novel metabolism-directed therapeutics to treat CDIl. Moreover, our

results demonstrate that GENRESs provide an advantage for delineating complex patterns in transcriptomic and

metabolomic datasets into tractable experimental targets.

Results
C. difficile metabolic network generation, gap-filling, and curation

The emergence of hypervirulent strains of C. difficile that have unique metabolism and virulence factors
highlights the importance for the in-depth study of metabolic pathways to understand and identify targets within
these isolates. Core metabolic processes also present an attractive target for novel antimicrobial measures as
they may be less likely to allow for acquired antibiotic resistance (26). With these concepts in mind, we focused
on the most well-characterized hypervirulent isolate, str. R20291. However, to maximize the utility of the bulk of
published C. difficile metabolic research, we elected to generate a reconstruction for the lab-adapted str. 630 in
parallel. This focus afforded the ability to continuously cross-reference curations between the models and to
more readily identify emergent differences that are specifically due to genomic content.

We began the reconstruction process by accessing the re-annotated genome of str. 630 (27) and the
published str. R20291 genome (22), both available on the Pathosystems Resource Integration Center
database (PATRIC) (28). Following an established protocol for creating high-quality genome-scale models (29),
and utilizing the ModelSEED framework and modified reaction database (30), we created scaffold
reconstructions for both strains. We subsequently performed complete translated proteome alignment between

str. 630 and str. R20291, resulting in 684 homologous metabolic gene products and 22 and 33 unique gene
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products, respectively (Table S2). Among the distinctive features were additional genes for dipeptides import in
str. 630 and glycogen import and utilization in str. R20291, which have both been linked to modulated levels of
virulence across strains of C. difficile (31, 32).

Manual curation is required to ultimately produce high-quality GENREs and make meaningful biological
predictions (33). As such, we proceeded to manually incorporate 259 new reactions (with associated genes
and metabolites) and altered the conditions of an additional 312 reactions already present within each GENRE
prior to gap-filling (Table S1). Primary targets and considerations for the manual curation of the C. difficile
GENREsS included:

e Anaerobic glycolysis, fragmented TCA-cycle, and known molecular oxygen detoxification (23, 34)
e Minimal media components and known auxotrophies (35-37)

e Aminoglycan and dipeptide catabolism (38—40)

e Numerous Stickland fermentation oxidative and reductive pathways (Table S2) (41-52)

e Carbohydrate fermentation and short-chain fatty acid metabolism (41, 53-55)

e Elements of the Wood-Ljungdahl pathway (56)

e Energy metabolite reversibility (e.g. ATP, GTP, FAD, etc. (57))

e Structural components including teichoic acid, peptidoglycan, and isoprenoid biosynthesis

e Additional pathogenicity-associated metabolites (e.g. p-cresol (44) and ethanolamine (58))

Following the outlined manual additions, we created a customized biomass objective function with
certain elements tailored to each strain of C. difficile. Our biomass objective function formulation was initially
adapted from the well-curated GENRE of the close phylogenetic relative Clostridium acetobutylicum (59) with
additional considerations for tRNA synthesis and formation of cell wall macromolecules, including teichoic acid
and peptidoglycan (Table S1). Coefficients within the formulations of DNA replication, RNA replication, and
protein synthesis component reactions were adjusted by genomic nucleotide abundances and codon
frequencies to yield strain-specific biomass objective functions (60). To successfully simulate growth, we next
performed an ensemble-based pFBA gap-filling approach (61, 62), utilizing a metabolic reaction database
centered on Gram-positive anaerobic bacterial metabolism (see Materials & Methods). Gap-filling refers to the

automated process of identifying incomplete metabolic pathways due to an absence of genetic evidence that
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are necessary for in silico growth, and addition of the minimal functionality needed to achieve flux through
these pathways (63). We performed gap-filling across six distinct and progressively more limited media
conditions; complete medium, Brain-Heart Infusion (BHI (64)), C. difficile Defined Medium +/- glucose (CDM
(37)), No Carbohydrate Minimal Medium (NCMM (5)), and Basal Defined Medium (BDM (35)) (Table S1) which
added a total of 68 new reactions that allowed for robust growth across all conditions.

The final steps of the curation process were focused on limiting the directionality of reactions known to
be irreversible, extensive balancing of the remaining incorrect reaction stoichiometries, and adding annotation
data for all network components. We repeated the assessments that were performed for the earlier
reconstructions and found that our GENREs had substantial improvements in all metrics including few, if any,
flux or mass inconsistencies and now each received a cumulative MEMOTE score of 86% (Table S1). The new
network reconstructions were designated iCdG709 (str. 630) and iCdR703 (str. R20291).

C. difficile GENRE validation against laboratory measurements

A standard measurement of GENRE performance is the comparison of predicted essential genes for
growth in silico and those found to be essential experimentally through forward genetic screens (65). For a
gene to be considered essential, less than 1% of optimal biomass can be produced by a given mutant (the
equivalent of no observable growth) during single-gene knockout simulations (66). Recently a large-scale
transposon mutagenesis screen was published for str. R20291 (67), and as such we utilized the proteomic
alignment from the previous section to determine homologs in str. 630. Simulating growth in BHI rich medium
we identified essential genes for both models, which revealed overall accuracies of 89.1% and 88.9%, with
negative-predictive values as high as 90.0% for iCdR703 and 89.9% for iCdG709 (Figure S1A). This high
degree of agreement supported that metabolic pathways in the new GENREs were structured correctly, and
are more likely to provide useful downstream predictions

To then assess if GENRE requirements reflected the components of minimal medium derived
experimentally, we identified the minimum subset of metabolites necessary for growth. Through systematic
limitation of extracellular metabolites, we were able to determine the impact of each component on achieving

some level of biomass flux (Figure S1C). This analysis revealed that most metabolites found to be essential

during growth simulation have also been shown experimentally to be required for in vitro growth. Interestingly,
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while growth simulations indicated that neither iCdG709 (str. 630) nor iCdR703 (str. R20291) were auxotrophic
for methionine, the published formulation of BDM indicates methionine is found to be largely growth-enhancing
but not essential for small levels of growth (36). Additionally, it has been demonstrated in the laboratory that C.
difficile is able to harvest sufficient bioavailable sulfur from excess cysteine instead of methionine (37, 68),
further supporting growth simulation results. Similarly, the published formulation of BDM indicates that
pantothenate (vitamin B5) only appears to enhance growth rate in vitro and is not necessarily required to
support slow growth rates. Our results also indicated that iCdR703 was not auxotrophic for isoleucine relative
to iCdG709, and indeed contained additional genes coding for synthesis of a precursor
(3S)-3-methyl-2-oxopentanoate (ilvC, a ketol-acid reductoisomerase) which were not present in its counterpart
GENRE (Table S2). In summary, the in silico minimal requirements for iCdG709 and iCdR703 closely mirrored
experimental results for both strains of C. difficile in the laboratory.

We next assessed additional carbon sources that impact the growth yield predictions for both GENREs.
Utilizing previously published results for both C. difficile strains in a high-throughput screen (69), we simulated
growth for each carbon source individually in background minimal medium and calculated the shift in optimal
growth rate. Importantly, C. difficile is auxotrophic for specific amino acids (e.g. proline; Fig S1C) that it is also
able to catabolize through Stickland fermentation (70), so the background medium must be supplemented with
small concentrations of each. As such, the values are reported as the ratio of the final optical density for growth
with the given metabolite versus low levels of growth observed in the background medium alone. Through
correlation of the results from these two comparisons, we were able to assess how well in silico predictions
matched experimental results. Across all the 116 total metabolites that were in both the in vitro screen as well
as the C. difficile GENREs, we identified significant predictive correlations in the amount of growth
enhancement for iCdG709 and iCdR703 (p-values < 0.001) (Figure 1A & 1B). This relationship was even more
pronounced for carbohydrates and amino acids, the primary carbon sources for C. difficile. When these
predictions were reduced to binary interpretations of either enhancement or non-enhancement of growth, we
found that iCdG709 predicted 92.8% and iCdR703 predicted 96.6% true-positive enhancement calls (Figure

S1B). This metric is most valuable here as it indicates that each GENRE possesses the necessary machinery
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for catabolizing a given metabolite. Collectively, these data strongly indicated that both GENREs were
well-suited for prediction of growth substrate utilization in either strain of C. difficile.

Finally, we also compared our results against existing C. difficile GENREs. The primary focus of curated
C. difficile metabolic modeling efforts has been on the first fully sequenced strain of C. difficile, str. 630. The
first reconstruction effort (iIMLTC806cdf (71)) and subsequent revision (icdf834 (71, 72)), were followed by a
recent de novo creation following updated genome curation (iCN900 (73)) (27). Another GENRE was
developed for str. 630Aerm (iHD992 (74)), a strain derived from str. 630 by serial passage until erythromycin
resistance was lost (75). Four additional C. difficile strain GENREs were generated as a part of an effort to
generate numerous new reconstructions for members of the gut microbiota (76); these reconstructions
received only semi-automated curation performed without C. difficile-specific considerations. To establish a
baseline for the metabolic predictions possible with current C. difficile GENREs, we selected common criteria
with large impacts on the quality of subsequent predictions for model performance (Table S3). The first of these
metrics is the level of consistency in the stoichiometric matrix (57, 77, 78), which reflects proper conservation
of mass and that no metabolites are incorrectly created or destroyed during simulations. The next metric is a
ratio for the quantity of metabolic reactions lacking gene-reaction rules to those possessing associated genes
(79), which may indicate an overall confidence in the annotation of the reactions. These features reflect the
importance of mass conservation and deliberate gene/reaction annotation which each drive confidence in
downstream metabolic predictions, omics data integration, and likelihood for successful downstream
experimentation. We found unique challenges within each GENRE which made comparing simulation results
across models difficult. Neither iIMLTC806cdf nor iHD994 have any detectable gene annotations associated
with the reactions they contain. A high degree of stoichiometric matrix inconsistency was detected across
icdf834, iHD992, and iCN900; with iHD992 many intracellular metabolites were able to be generated without
acquiring necessary precursors from the environment. We also detected structural inconsistencies across
several GENREs. For example, those GENREs acquired from the AGORA database possessed several
intracellular metabolic products not adequately accounted for biologically (Table S3), as well as mitochondrial
compartments despite being bacteria. Additionally, several key C. difficile metabolic pathways either were

incomplete or absent from the curated models including multi-step Stickland fermentation,
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membrane-dependent ATP synthase, dipeptide and aminoglycan utilization, and a variety of saccharide
fermentation pathways (23). Considering each of these factors, the C. difficile GENREs generated here correct
numerous mass and annotation inconsistencies, contain key functional capacities, and phenotypically mimic C.
difficile.

Context-specific modeling to capture virulence-associated metabolism

Following validation, we sought to utilize each GENRE to predict in situ metabolic phenotypes that
correspond with expression of known virulence traits in C. difficile. As previously stated, GENREs have
provided powerful platforms for the integration of transcriptomic data, creating greater context for the shifts
observed between conditions and capturing the potential influence of pathways not obviously connected (80).
With this application in mind, we chose to generate context-specific models for both in vitro and in vivo
experimental conditions characterized with RNA-Seq analysis utilizing a recently published unsupervised
transcriptomic data integration method (18). Briefly, the algorithm calculates the most cost-efficient usage of
the metabolic network to achieve growth given the pathway investments indicated by the transcriptomic data.
This approach is in line with the concept that natural selection generally selects against wasteful production of
cellular machinery (81). The output models contain only those metabolic reactions that are most likely to be
active under the given conditions, whose ranges of metabolic reaction activity were subsequently deeply
sampled to assess for distinct yet equally optimal combinations of active pathways. Analysis of these
distributions affords the ability to make much more fine-scale predictions of metabolic changes that C. difficile
undergoes as it activates pathogenicity. The patterns of active pathways also reveal critical elements within
context-specific metabolism that could lead to targeted strategies for intentional downregulation of virulence
factors through metabolite-focused interventions.
Phase variation in C. difficile str. R20291 is sensitive to carbohydrate availability

C. difficile is known to utilize phase variation, a reversible mechanism employed by many bacterial
pathogens to generate phenotypic and metabolic heterogeneity to maximize overall fitness of the population.
Phase variation has been shown to also influence virulence expression in C. difficile str. R20291 (82). One
aspect of this phase variation manifests as a rough or smooth-edged colony morphology on solid agar; the

morphologies can be propagated via subculture and are associated with distinct motility behaviors and altered
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virulence (83). The colony morphology variants are generated through the phase variable (on/off) expression of
the cmrRST genes. Toward understanding this phenotype, we experimentally generated rough and smooth
phase variants of C. difficile str. R20291 grown on solid BHIS rich medium for 48 hours and sequenced
transcriptomes from both groups. Utilizing these data, we generated context-specific versions of iCdR703 in
simulated rich media conditions and deeply sampled the resultant metabolic flux distributions to assess all
possible forms of metabolism given the new constraints.

While it has been previously shown that mutation of cmr-family genes does not significantly alter growth
rate in vitro (83), the contextualized models predicted significantly increased biomass flux generation (reflective
of growth rate) with smooth colony-associated metabolism (Figure S2A). This result fits with experimental
findings as the rough-edged phenotype only emerges after long periods of incubation on solid agar when
growth rate is measurably slowed (43). We moved on to evaluate structural differences between the
context-specific models and identified those metabolic reactions predicted to be active in only the Smooth or
Rough context-specific model. With this analysis we found 19 reactions that were distinctly active between
conditions (Figure 2A). We then calculated median absolute activity for each reaction which indicated the
magnitude at which each reaction contributed to optimal growth in each model. This investigation revealed
proline or ornithine fermentation were present and active in either model (Figure 2A). C. difficile is capable of
easily converting ornithine into proline (52), which is subsequently fermented to 5-aminovalerate for energy.
This finding illustrated that proline Stickland fermentation was an integral part of C. difficile metabolism across
conditions. The finding that N-acetylglucosamine transport only present within the Smooth variant
context-specific model was striking as this phase has been previously associated with significantly increased
biofilm formation (83), in which N-acetyl-D-glucosamine is the primary component (84). Observing the
predicted reaction activity, N-acetylglucosamine transport was not only present exclusively in the Smooth
variant context-specific model, but this reaction was extremely active under these conditions (Figure 2C).
Furthermore, efflux of the related metabolite D-glucosamine was also significantly increased in the Smooth

model (Figure 2D; p-value < 0.001). These results supported that the differences in context-specific model

structure seen between phase variants likely represented real variation in active metabolism.
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To then compare metabolic activity effectively between context-specific models, we next focused our
analysis on shared non-biomass associated reactions across context-specific models which we referred to as
“core” metabolism within each subsequent analysis. We first employed unsupervised machine learning for flux
samples from core reactions using Non-Metric Multidimensional Scaling (NMDS) ordination of Bray-Curtis
dissimilarities (Figure S2B). This analysis revealed significantly different patterns of core metabolic activity
between smooth and rough context-specific models (p-value = 0.001). To further explore the specific
differences within active metabolism between phase variants, we utilized a supervised machine learning
approach with Random Forest to discriminate between Rough and Smooth core metabolic activity (Figure 2B).
Several of the metabolic reactions with highest mean decrease accuracies are involved in alanine transport
and utilization. Further examination of alanine transport reaction fluxes revealed that import and utilization of
alanine was only predicted in the Smooth context (Figure 2E). Alanine has been previously identified as having
a strong impact on C. difficile life cycle physiology (85), and has also been shown to be essential for proper
biofilm formation in other Gram-positive pathogens (86). Our results indicate that utilization of alanine may also
play a role in biofilm formation and phase variation in C. difficile.

Both the network topology and metabolic activity-based analyses indicated that a large number of
reactions relating to glycolysis were differentially active. To more closely investigate the relative importance of
these metabolic pathways between phase variants, we performed gene essentiality analysis for both models
and cross-referenced the results for metabolic reactions associated with the uptake and utilization of glucose
(Fig 3A). Through this comparison, we found numerous reactions that were essential only in the Smooth
context-specific model which included multiple steps in the Pentose Phosphate Pathway (involved in
nucleotide synthesis and NADPH balance) as well the reactions bridging Glycolysis with Fatty Acid Synthesis.
Strikingly, no reactions in either pathway were found to be uniquely essential in the rough context-specific
model. Although some components of Glycolysis were essential in both contexts, including pyruvate kinase,
the penultimate step with the bulk of the ATP production, was detected at the transcriptional level at nearly
identical levels between the rough and smooth isolates (Table S4). These findings together signified that ATP

generation from Glycolysis was important in both contexts, but the nucleotide precursors and redox potential

generated from the Pentose Phosphate Pathway were necessary for the Smooth variant-specific metabolism.
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In line with this observation, the Rough context-specific model indeed generated a greater fraction of NADH
from Stickland fermentation (Table S4). Based on these data, we hypothesized that this additional dependence
on glucose was critical in the Smooth variants and without glucose colony morphology would transition toward
a more Rough phenotype.

To test this hypothesis, we generated colonies of either Rough or Smooth morphology using C. difficile
str. R20291, grown anaerobically for 48 hours on BHIS agar (Figure S3A). We found that the hallmark metric of
Rough morphology is a significant increase in colony perimeter (Figure 3D), and used this measurement for
determining subsequent shifts between the phenotypes. Both phase variants were subcultured onto BDM agar
plates both with and without 2 mg/ml glucose (Figure 3B, 3C). Following anaerobic incubation for 48 hours we
found that rough variants maintained their morphology across both media, with the rough phenotype even
exacerbated on the minimal medium. However, while the Smooth variant largely maintained its colony
morphology upon subculture onto BDM + glucose, the colonies became significantly Rough when glucose was
absent (Figure 3E). The inverse was also true in that the Rough colonies maintained their morphology in the
absence of glucose, but significantly decreased in perimeter on BDM + glucose, appearing more Smooth
(Figure 3F). Further subculture of each altered morphology from minimal media back onto rich BHI medium
also appeared to support consistent switching between the respective morphologies (Figure S3B). Our data
supported that the Smooth phase variants relied on glucose for more than strictly ATP generation, and that the
Rough morphology is apparent only after extended incubation when C. difficile may be locally activating
starvation responses and switching toward alternative energy sources. Additionally, when glucose is available
C. difficile will opt to generate redox potential more efficiently through the Pentose Phosphate Pathway.
Furthermore, these results are consistent with the hypothesis that carbohydrate availability impacts phase
variation in C. difficile, and that environmental stress due to limited nutrients may be a key factor in driving the
shift between phases.

Utilization of N-acetylneuraminic acid and cytidine decreases sporulation in C. difficile str. 630
While laboratory conditions are highly informative, it is even more critical to examine metabolism for this

pathogen during infection as it can more readily lead to novel therapeutic interventions. It has been previously

shown that different classes of antibiotics have distinct impacts on the structure of the gut microbiota while
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inducing similar sensitivity to colonization by C. difficile (87). Along these lines, one published study assessed
differential transcriptional activity of C. difficile str. 630 in the gut during infection in a mouse model pretreated
with the antibiotics cefoperazone or clindamycin. Crucially, these treatments resulted in highly dissimilar levels
of sporulation (another phenotype linked to C. difficile virulence) where cefoperazone had largely undetectable
spore Colony forming units (CFUs), clindamycin had significantly higher levels at the same time point (7).
These experiments included paired, untargeted metabolomic analysis of intestinal content to correlate the
transcriptional activity of metabolic pathways with changes in the abundance of their respective substrates.
Included in the analysis were both mock-infected and C. difficile-colonized groups (both treated by the
respective antibiotics) to extract the specific impact of the infection on the gut environment, making this dataset
extremely valuable.

We first compared predicted biomass objective flux in the sampled context-specific flux distributions
(Figure S4A) which revealed no significant difference between high and low sporulation conditions. However,
ordination analysis, performed as in the previous section, indeed revealed significant differences in predicted
core metabolic activity (Figure 4A; p-value = 0.001). In agreement with these findings, supervised machine
learning analysis indicated numerous differences in reactions associated with metabolizing host-derived
glycans and nucleotide precursors (Figure S4B). To focus this assessment on growth substrates that may be
differentially impacting the observed levels of sporulation we assessed each context-specific model by
sequentially limiting the ability to import or export each extracellular metabolite to 1% of its optimal rate and
measured the impact on overall biomass production (Figure 4B & 4C). Paired metabolomic analysis of each
metabolite identified this way were then compared within each condition for relative change in concentration
following infection, represented as colored squares along the right margin. Many metabolites had no effect on
biomass when their exchange rates were limited, and simply rerouted metabolism elsewhere to achieve similar
levels of growth which indicated a high degree of metabolic plasticity remaining in each context-specific model.
All metabolites highlighted by this analysis that were measured by the metabolomics screen followed the
model-predicted directional change in concentration, supporting the hypothesis that C. difficile itself is

responsible for the observed differences (Figure 4B & 4C). The peptides proline, ornithine, and serine were

found to have an impact on the ability to grow across both context-specific models. Of this subset of amino
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acids, only proline is an auxotrophy and all are usable by C. difficile in Stickland fermentation. Following the
catabolism of proline, its Stickland fermentation byproduct 5-aminovalerate was predicted to be an important
efflux metabolite in both conditions and had concordant significant increases in concentration following
infection in each group (Figure S4C). Alternatively, isovalerate efflux was found to only be critical in higher
sporulation context (Figure 4B). This short-chain fatty acid has been primarily associated with leucine
fermentation in C. difficile, supporting an elevated dependence on Stickland fermentation as sporulation
increases. Intestinal concentrations of leucine have indeed been shown to significantly decrease following
infection by C. difficile in vivo (7), supporting its importance during infection. The most distinguishing features
were the importance of N-acetylneuraminate (Neu5Ac) and cytidine only in the lower sporulation
context-specific model (Figure 4C). N-acetylneuraminate is a host-derived component of sialic acid that C.
difficile readily uses as a carbon source for growth (7), and cytidine is an integral component of RNA synthesis.
However, neither had been previously associated with directly influencing virulence factor expression in C.
difficile. Furthermore, while N-acetylneuraminate significantly decreases during infection in the lower
sporulation context (7), cytidine also appears to decrease under these conditions implying consumption by C.
difficile (Figure S4D & S4E).

We first sought to measure if C. difficile str. 630 could utilize both N-acetylneuraminate and cytidine as
carbon sources, and if together they exerted a combined effect on growth. Both N-acetylneuraminate and
cytidine were supplemented (10 mg/ml each) in liquid BDM in parallel with liquid BDM with no additional
substrate and BDM + D-glucose (10 mg/ml) controls, into which C. difficile str. 630 was inoculated and
incubated for 18 hours and OD600 was measured every 5 minutes (Figure 5A). This assay revealed that C.
difficile str. 630 could indeed use N-acetylneuraminate and cytidine as carbon sources independently, as each
condition allowed for significantly more growth than background BDM alone (p-values < 0.05). Additionally,
there was no discernible effect on growth when both substrates were added simultaneously. Utilization of the
nucleotide precursor cytidine as a carbon source during infection has never been previously described in C.
difficile, which further supported the utility of our models as a platform for augmenting discovery.

To then assess the effect of N-acetylneuraminate and cytidine on sporulation in C. difficile str. 630, we

performed a growth and sporulation assay targeting these substrates using the same defined medium
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conditions described previously (Figure 5B). Following 18 hours of anaerobic growth, cultures were plated on
BHIS-agar plates lacking a germination agent to quantify specifically vegetative cell CFU abundance.
Remaining liquid cultures were then treated with a final concentration of 50% ethanol for 60 minutes to
eliminate vegetative cells, and then plated on BHIS-agar with 1% taurocholate added to quantify exclusively
spore CFU. The resultant abundances were then converted to an overall spore to vegetative cell ratio to
suggest the fraction of the population undergoing sporulation. After overnight incubation, the group that
received any combination of N-acetylneuraminate or cytidine had significantly decreased levels of sporulation
ratios relative to the no additive control (p-values < 0.05), but no significant change when compared to the
glucose-added control (Figure 5B). Importantly, there were significantly more vegetative cells in all additive
conditions relative to BDM alone (Figure S5; p-values < 0.05). As was the case in the growth curve results,
there was no difference between N-acetylneuraminate and cytidine when added alone versus their combined
effect. Collectively, these results support that both N-acetylneuraminate and cytidine utilization by C. difficile

inhibit progression through its lifecycle toward spore formation. More broadly, our results support these

GENRESs as an advantageous discovery platform for novel elements of C. difficile metabolism and physiology.

Discussion

The control for much of C. difficile’s physiology and pathogenicity is subject to a coalescence of
metabolic signals from both inside and outside of the cell. Historically, C. difficile research has suffered from a
shortage of molecular tools and high-quality predictive models for highlighting new potential therapies. Over
the previous decade, GENREs have become powerful tools for connecting genotype with phenotype and
provided platforms for defining novel metabolic targets in biotechnology and improving interpretability of
high-dimensional omics data. These factors make GENRE-based analyses extremely promising for directing
and accelerating identification of possible therapeutic targets as well as a deeper understanding of the
connections between C. difficile virulence and metabolism. Furthermore, as much of bacterial pathogenicity is
now being attributed to shifts in metabolism the analyses described here may provide large benefits to the
identification of possible treatment targets in C. difficile and other recalcitrant pathogens (88). In the current

study, we develop and validate two highly-curated genome-scale metabolic network reconstructions for a
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well-described laboratory strain (str. 630) in addition to a more recently characterized hyper-virulent strain (str.
R20291) of C. difficile. Validation results from both models indicated significant agreement with both gene
essentiality and carbon utilization screens, indicating a high degree of confidence in subsequent predictions for
active metabolism.

We next employed a recently published technique for transcriptome contextualization with datasets
from in vitro and in vivo systems to evaluate potential emergent metabolic drivers of virulence. These
combined analyses revealed differential reliance on glycolysis-related metabolism during periods of increased
virulence expression. Specifically, in states of elevated biofilm formation C. difficile str. R20291 we found that
glucose is necessary for nucleotide synthesis and redox balance through the Pentose Phosphate Pathway,
despite still being utilized for ATP in conditions associated with reduced biofilm. These findings were
subsequently supported by direct testing in vitro, and agreed with recent work which supports that access to
glycolysis intermediates actually induces C. difficile biofilm formation (89). Alternatively, during infection with
str. 630 we identified patterns of host-derived glycan (N-acetylneuraminate) utilization in combination with
consumption of the nucleotide precursor cytidine that corresponded with lower levels of sporulation. While not
typically considered a carbon source for C. difficile, laboratory testing confirmed that C. difficile can indeed use
cytidine for energy, and along with N-acetylneuraminate, decreases in sporulation. Intentional control of
sporulation is an exciting prospect as spores are considered the transmissive form of C. difficile, so these
results may prove valuable for downstream targeted manipulation of C. difficile virulence factor expression. Our
results also supported a role for some level of amino acid fermentation across all conditions tested. This
phenotype is a hallmark of C. difficile physiology and reinforced the validity of the other predictions. These
results indicate a complex relationship with environmental nutrient concentrations and likely competition with
the gut microbiota that all inform the regulation of C. difficile virulence expression. Additionally, in vivo
context-specific gene essentiality also predicted proline racemase to be critical for growth during infection, yet
it was previously found to be dispensable in an animal model using a forward genetic screen (90). This result
may be attributable to the specific conditions of that infection and may vary across distinct host gut
environments, leading to possible implications in personalized medicine and novel approaches to curbing the

expression of virulence factors by influencing environmental conditions to favor certain forms of metabolism
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over others. This study represents the first time that context-specific models of bacterial metabolism have been
generated and used to augment discoveries for metabolic control over virulence expression in the laboratory.

While the majority of predictions followed experimental results, several areas of possible expansion and
curation are present in both GENREs. First, while the scope of total genes included in iCdG709 and iCdR703
may be more limited than previous network reconstructions, we elected to focus on those gene sets where the
greatest amount of evidence and annotation data could be found to maximize confidence in functionality.
Consequently, both GENREs consistently underpredict the impact of some metabolite groups, primarily
nucleotides and carboxylic acids, which could be due to the absence of annotation or overall knowledge of the
relevant cellular machinery. Furthermore, more complex regulatory networks ultimately determine final
expression of virulence factors, and these may be needed additions in the future to truly understand the
interplay of metabolism and pathogenicity in C. difficile. Despite these potential shortcomings, both iCdG709
and iCdR703 produced highly accurate metabolic predictions for their respective strains as well as novel
predictions for metabolism as it relates to C. difficile virulence expression, making both strong candidate
platforms for directing future studies of C. difficile metabolic pathways.

Systems-biology approaches have enabled the assessment of fine-scale changes to metabolism of
single species within complex environments that may have downstream implications on health and disease.
Overall, the combined in vitro- and in vivo-based results demonstrated that our GENREs are effective platforms
for gleaning additional understanding from omics datasets, outside of the standard analyses. Both GENREs
were able to accurately predict complex metabolic phenotypes when provided context-specific omics data, and
ultimately underscores the metabolic plasticity of C. difficile. The reciprocal utilization of glycolysis and amino
acid fermentation indeed support regimes of distinct metabolic programming associated with C. difficile
pathogenicity. Finding core metabolic properties in C. difficile strains may be key in identifying potential
probiotic competitor strains or even molecular inhibitors of metabolic components. The current study is an
example of the strength that systems-level analyses have in contributing to more rapid advancements in

biological understanding. In the future, the metabolic network reconstructions presented here are well-suited to

accelerate research efforts toward the discovery of more targeted therapies. Overall, GENREs have had


https://doi.org/10.1101/2020.11.09.373480
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.09.373480; this version posted July 9, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.
limited impact to date in real mechanistic understanding of infectious disease and the current study represents

a significant advance in this application.

Materials & Methods

C. difficile GENRE construction: We utilized PATRIC reference genomes from Clostridioides difficile str.
630 and Clostridioides difficile str. R20291 as initial reconstruction templates for the automated ModelSEED
pipeline (28, 91, 92). The ModelSEED draft network reconstruction was converted utilizing the Mackinac
pipeline (https://github.com/mmundy42/mackinac) into a form more compatible with the COBRA toolbox (93).
Upon removal of GENRE components lacking genetic evidence (i.e. gap-filled), extensive manual curation was
performed in accordance with best practices agreed upon by the community (94). We subsequently performed
ensemble gap-filling as previously described, utilizing a stoichiometrically consistent anaerobic, Gram-positive
universal reaction collection curated for this purpose and available alongside code associated with this study.
Next, we corrected reaction inconsistencies and incorrect physiological properties (e.g. ensured free water
diffusion across compartments). Final transport reactions were then validated with TransportDB (95). All
formulas are mass and charged balanced at an assumed pH of 7.0 using the ModelSEED database in order to
maintain a consistent and supported namespace to augment GENRE interpretability and future curation efforts.
We then collected annotation data for all model components (genes, reactions, and metabolites) from SEED
(94, 96), KEGG (97), PATRIC, RefSeq (98), EMBL (99), and BiGG (100) databases and integrated it into the
annotation field dictionary now supported in the most recent SBML version (101). Complete MEMOTE quality
reports for both C. difficile GENREs are also available in the GitHub repository associated with this study, as
well as full pipelines for model generation.

Growth simulations, flux-based analyses, and GENRE quality assessment: All modeling analyses were

carried out using the COBRA toolbox implemented in python (102). The techniques utilized included:
flux-balance analysis, flux-variability analysis (103), gapsplit flux-sampler (104), and minimal_medium on
exhaustive search settings. GENRE quality assessment tools were also developed in python and are fully
available in the project Github repository. MEMOTE quality reports were generated using the web-based

implementation found at https://memote.io/.
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C. difficile str. R20291 in vitro growth and microscopy: C. difficile str. R20291 growth was maintained in

an anaerobic environment of 85% N,, 5% CO,, and 10% H,. The strain was grown on BHIS-agar (37 g/L Bacto
brain heart infusion, 5 g/L yeast extract, 1.5% agar) medium at 37 °C for 48 hours to obtain isolated colonies.
Rough and smooth colonies were chosen for propagation on BHI-agar to ensure colony morphology
maintenance (83). Basal Defined Medium (BDM) was formulated as previously published (35) with the addition
of 1.5% agar for plates, and incubated for 48 hours at 37 °C to generate isolated colonies. Microscopy images
were taken on an EVOS XL Core Cell Imaging System at 4x magnification. Colony dimensions determined
using ImageJ (https://imagej.nih.gov/ij/).

C. difficile str. 630 in vitro growth and sporulation assay: C. difficile str. 630 growth was maintained in
an anaerobic environment of 85% N,, 5% CO,, and 10% H,. Liquid BDM formulated as previously described
with the indicated combinations of D-glucose (10 mg/ml), N-acetylneuraminic acid (10 mg/ml), and cytidine (10
mg/ml). Overnight BHI liquid cultures of C. difficile str. 630 were back-diluted 1:3 in fresh anaerobic BHI and
incubated for 1 hour at 37 °C at which point 5 yL was inoculated into 1 mL of each media condition. After 18
hours anaerobic incubation at 37 °C, serial dilutions in anaerobic Phosphate Buffered Saline of these cultures
were plated on BHIS-agar (37 g/L Bacto brain heart infusion, 5 g/L yeast extract, 1.5% agar) plates to quantify
vegetative cell abundance, then treated with 50% EtOH for 30 minutes(105) and serial dilutions in anaerobic
Phosphate Buffered Saline were subsequently plated on BHIS-agar + 1.0% taurocholate plates to measure
spore abundance. Plates were incubated for an additional 24 hours at 37 °C, at which point CFUs were
quantified. For anaerobic growth curves, 250 yL of each medium was inoculated with 5 uL of the back-dilution
and the OD600 was measured every 5 minutes for 18 hours (Tecan Infinite M200 Pro).

RNA isolation, and transcriptome sequencing: For RNA isolation, rough and smooth isolates were
subcultured in BHIS broth (37 g/L Bacto brain heart infusion, 5 g/L yeast extract) overnight (16-18 h) at 37 °C,
then 5 pL of the cultures were spotted on BHIS agar (1.5% agar). After 24 h, the growth was collected and
suspended in 1:1 ethanol:acetone for storage at -20 °C until subsequent RNA isolation. Cells stored in
ethanol:acetone were pelleted by centrifugation and washed in TE (10 mM Tris, 1 mM EDTA, pH 7.6) buffer.
Cell pellets were suspended in 1 mL Trisure reagent. Silica-glass beads (0.1 mm) were added and cells were

disrupted using bead beating (3800 rpm) for 1.5 minutes. Nucleic acids were extracted using chloroform,
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purified by precipitation in isopropanol followed by washing the cold 70% ethanol, and suspended in
nuclease-free water. Samples were submitted to Genewiz, LLC (South Plainfield, NJ, USA) for quality control
analysis, DNA removal, library preparation, and sequencing. RNA sample quantification was done using a
Qubit 2.0 fluorometer (Life Technologies), and RNA quality was assessed with a 4200 TapeStation (Agilent
Technologies). The Ribo Zero rRNA Removal Kit (lllumina) was used to deplete rRNA from the samples. RNA
sequencing library preparation was done using the NEBNext Ultra RNA Library Prep Kit for lllumina (NEB)
according to the manufacturer’s protocol. Sequencing libraries were checked using the Qubit 2.0 Fluorometer.
The libraries were multiplexed for clustering on one lane of the lllumina HiSeq flow cell. The samples were
sequenced using a 2x150 paired-end configuration on an lllumina HiSeq 2500 instrument. Image analyses and
base calling were done using the HiSeq Control Software. The resulting raw sequence data files (.bcl) were
converted to the FASTQ format and de-multiplexed with bcl2fastq 2.17 software (lllumina). One mismatch was
permitted for index sequence identification. Data were analyzed using CLC Genomics Workbench v. 20
(Qiagen). Reads were mapped to the C. difficile R20291 genome (FN545816.1) using the software’s default
scoring penalties for mismatch, deletion, and insertion differences. All samples yielded over 22 million total
reads, with over 20 million mapped to the reference (>93% of total reads, and >90% reads in pairs). Transcript
reads for each gene were normalized to the total number of reads and gene length (expressed as reads per

kilobase of transcript per million mapped reads, RPKM).

Genomic and transcriptomic data processing: Alignment of C. difficile str. 630 and str. R20291 peptide

sequences was performed using bidirectional BLASTp. RNA-Seq reads were first quality-trimmed with Sickle
with a cutoff =Q30 (Joshi & Fass, 2011(106). Mapping curated reads to the respective C. difficile genome was
then performed with Bowtie2 (107). MarkDuplicates then removed optical & PCR duplicates
(broadinstitute.github.io/picard/), and mappings were converted to idxstats format using SAMtools (108).
Abundances were then normalized to both read and target lengths. Transcriptomic integration and
context-specific model generation were performed with RIPTiDe using the maxfit_contextualize() function on
the default settings (18).

Statistical methods: All statistical analysis was performed in R v3.2.0. Non-metric multidimensional

scaling of Bray-Curtis dissimilarity and perMANOVA analyses were accomplished using the vegan R package
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(109). Significant differences for single reaction flux distributions, metabolite concentrations, spore CFU, and
growth over time were determined by Wilcoxon signed-rank test. Supervised machine-learning was
accomplished with the implementation of AUC-Random Forest also in R (110). Dissimilarity between C. difficile
str. 630 growth curves determined using Dynamic Time Warping (111).

Data availability: Genomic and proteomic data for the strains Clostridioides difficile str. 630 (PATRIC ref.
272563.8) and Clostridioides difficile str. R20291 (PATRIC ref. 645463.3) was downloaded from the PATRIC
database (91). Transcriptomic data was downloaded in raw FASTQ format from the NCBI Sequence Read
Archive (PRJNA415307 and PRJNA354635) and the Gene Expression Omnibus (GSE158225).

Code availability: Github repository for this study, with all programmatic code and GENREs described

here, can be found at: https://github.com/mjenior/Jenior_CdifficileGENRE_2021.
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Figure & Table Legends
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Figure 1) Carbon source utilization prediction profiles accurately reflect laboratory measurements.
Results from previous phenotypic screen of 115 metabolites for both str. 630 and str. R20291 were compared
against in silico results for each corresponding GENRE. Ratios of overall in vitro growth enhancement by each
metabolite were correlated with the corresponding results from growth simulations in the same media for (A)
iCdG709 (str. 630) and (B) iCdR703 (str. R20291). Points are colored by their biochemical grouping, fit and

significance determined by Spearman correlation.
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Figure 2) Metabolism significantly varies between phase variants of C. difficile str. R20291.
Transcriptomes were collected from Rough or Smooth colony morphology clones grown on BHIS agar for 48
hours, and subsequently used to generate context-specific models of C. difficile str. R20291. Subnetworks of
metabolism that were predicted to be unused in each context were inactivated for subsequent growth
simulations. (A) Metabolic reactions that are uniquely active in each context-specific model and the associated
median absolute reaction activities. (B) Utilizing Random Forest supervised machine learning sampled activity
for shared non-biomass metabolic reactions between both Rough and Smooth context-specific models (i.e.
core metabolism). Shown are the Mean Decrease Accuracy for the top 15 most differentiating reactions. (C &
D) Export exchange reaction flux samples (n = 500) between phase variants for N-Acetylglucosamine and
Glucosamine (p-value < 0.001). (E) Import exchange reaction absolute fluxes between phase variants for
Alanine (p-value < 0.001). Inactive label denotes reactions pruned during transcriptome contextualization and

all significant differences determined by Wilcoxon rank-sum test.
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Figure 3) Glucose utilization through the Pentose Phosphate Pathway is essential in the Smooth phase
variants of str. R20291. (A) Gene and reaction essentiality results for Glycolysis and the Pentose Phosphate
Pathway across both the Rough and Smooth phase variant context-specific models. Components were
deemed essential if models failed to generate < 1% of optimal biomass flux. (B & C) Colony morphologies
resulting from smooth and rough variants of C. difficile str. R20291 grown on either BHI or BDM +/- glucose (2
mg/ml) after 48 hours of growth (Phase contrast 20/40, 4X magnification). Defined medium colonies were then
subcultured onto BHI medium for an additional 24 hours as indicated. Increased colony perimeter was found to
be the defining characteristic of the Rough colony morphology. This feature was quantified for multiple colonies
under each permutation of colony variant and growth medium (n = 4). (D) Colony perimeter for Smooth and

Rough progenitor colony variants grown on BHIS (p-value < 0.001). (E) Smooth or (F) Rough colony variant
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perimeter during subculture onto each of the BDM carbon source media formulations (p-values < 0.05).

Significant differences determined by Wilcoxon rank-sum test with Benjamini-Hochberg correction when

necessary.
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Figure 4) Predicted differences in C. difficile str. 630 carbon source usage correspond with lowered

rates of sporulation. Transcriptomic integration and predictions with iCdG709, 18 hours post-infection with str.

630 across infections with either high or low levels of sporulation were detected in the cecum. (A) NMDS

ordination of Bray-Curtis dissimilarities for flux distributions shared reactions following sampling of

context-specific models. Significant difference calculated by PERMANOVA. lterative growth simulations for (B)

higher sporulation context-specific model and (C) in the lower sporulation context-specific model, displaying
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metabolites with any impact on biomass production when consumption or production capability was restricted

to 1.0% of optimal in a given context-specific model. Along the right margin is paired-LCMS analysis from cecal

content of mice with and without C. difficile str. 630 infection in antibiotic pretreatment groups that resulted in

either high or low cecal spore CFU

s for metabolites highlighted by growth simulation analysis. Each is colored

by mean decrease/increase in concentration between mock and infected groups, and stars indicate significant

differences determined by Wilcoxon

rank-sum test (p-values < 0.05).
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Figure 5) N-Acetylneuraminic acid and cytidine drive changes in str. 630 growth and sporulation. (A)
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18-hour anaerobic C. difficile str. 630 growth measured at OD600 in defined minimal media (BDM) formulated
with the indicated carbon sources (10 mg/mL each; n = 4). Significant differences determined using
PERMANOVA of Dynamic Time Warping distances (p-values < 0.05). (B) Median and IQR for the
log-transformed C. difficile str. 630 spore to vegetative cell CFU ratio after 18-hour incubation in rich medium or
defined minimal media (BDM) formulated with the indicated carbon sources (n = 4). Differential plating

performed on BHIS-agar +/- taurocholate (1.0%). Significance determined by Wilcoxon rank-sum test with

Benjamini-Hochberg correction (p-values < 0.05).
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Figure S1) Additional C. difficile GENRE validation against laboratory measurements. (A) in silico gene
essentiality predictions for both GENREs cross-referenced with the Dembek et al. transposon screen for str.

R20291 (iCdG709 (str. 630) utilizes homologs from the genome of str. R20291). (B) Binary quantification for
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metabolite growth enhancement shown for both strains/GENREs in Figure 1. Positive predictive values were
95.1% for iCdR703 and 92.3% for iCdG703. (C) Computationally determined minimum growth substrates for
both GENREs compared with experimentally determined C. difficile minimal medium components across three

previously published studies. Essentiality was determined for those genes and metabolites that when absent

resulted in a yield of <1.0% of optimal biomass flux during growth simulation utilizing components of the

corresponding media used experimentally.
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Figure S2) Predicted core metabolic activity significantly differs between str. 630 phase variants. (A)
Sampled biomass objective flux distributions from each context-specific model. Significance determined by
Wilcoxon rank-sum test (p-value < 0.001). (B) Analysis limited to non-biomass reactions shared across
context-specific models of iCdR703. NMDS ordination of Bray-Curtis dissimilarities for flux sampling results

from core metabolic reactions. Significant difference determined by PERMANOVA.
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Figure S3) Additional microscopy of phase variant colony morphologies. (A) C. difficile str. R20291
phase variant progenitor colonies generated on solid BHIS agar following 48 hours of growth at 37° C under
anaerobic conditions. These colonies were subcultured and utilized for all subsequent defined minimal medium
experiments. (B) Subcultured colonies from the indicated conditions in Figure 3B&C onto BHIS rich agar

medium, incubated at 37° C for 48 hours anaerobically.
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Figure S4) Strain 630 growth simulation and infection metabolomic results. (A) Sampled biomass
objective flux distributions from each context-specific model. Significant difference tested using Wilcoxon
rank-sum test (p-value = n.s.). (B) Mean Decrease Accuracy for top 10 most differentiating features/reactions
from Random Forest supervised machine learning for shared non-biomass reactions across context-specific
models of iCdG709. (C) Cecal concentrations of 5-aminovalerate in mock and C. difficile str. 630 infected mice
pretreated with streptomycin, 18 hours after initial colonization. Significance determined by Wilcoxon rank-sum

test; p-values = 0.003 (High spores) & 0.0001 (Low spores).
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Figure S5) Raw C. difficile str. 630 spore and vegetative cell quantification in defined media sporulation
assay. Median and IQR of C. difficile str. 630 vegetative cells and spore CFU (n = 4) after 18 hour incubation in
rich medium or minimal media (BDM) formulated with the indicated additional carbon sources (10 mg/mL
each). Significant differences calculated with Wilcoxon rank-sum test with Benjamini-Hochberg correction

(p-values < 0.05).

Table S1) GENRE creation steps, Biomass formulation, Gap-filling media compositions, and GENRE statistics.
Table S2) C. difficile 630 and R20291 PATRIC protein sequence alignment results.

Table S3) Topology summary statistics for C. difficile GENREs from AGORA and those generated here.

Table S4) Rough vs Smooth context-specific analysis of iCAR703 (str. R20291)

Table S5) High sporulation vs Low sporulation context-specific analysis of iCdG709 (str. 630).
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