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Abstract

The pathogen Clostridioides difficile causes toxin-mediated diarrhea and is the leading cause of

hospital-acquired infection in the US. Due to growing antibiotic resistance and recurrent infection, targeting C.

difficile metabolism presents a new approach to combat this infection. Genome-scale metabolic network

reconstructions (GENREs) have been used to identify therapeutic targets and uncover properties that

determine cellular behaviors. Thus, we constructed C. difficile GENREs for a hyper-virulent isolate (str.

R20291) and a historic strain (str. 630), validating both with in vitro and in vivo datasets. Growth simulations

revealed significant correlations with measured carbon source usage (PPV ≥ 92.7%), and single-gene deletion

analysis showed >89.0% accuracy. Next, we utilized each GENRE to identify metabolic drivers of both

sporulation and biofilm formation. Through contextualization of each model using transcriptomes generated

from in vitro and infection conditions, we discovered reliance on the Pentose Phosphate Pathway as well as

increased usage of cytidine and N-acetylneuraminate when virulence expression is reduced, which was

subsequently supported experimentally. Our results highlight the ability of GENREs to identify novel metabolite

signals in bacterial pathogenesis.

Importance

Clostridioides difficile is a Gram-positive, sporulating anaerobe that has become the leading cause of

hospital-acquired infections. Numerous studies have demonstrated the importance of specific metabolic

pathways in aspects of C. difficile pathophysiology, from initial colonization to regulation of virulence factors. In

the past, genome-scale metabolic network reconstruction (GENRE) analysis of bacteria has enabled

systematic investigation of the genetic and metabolic properties that contribute to downstream virulence

phenotypes. With this in mind, we generated and extensively curated C. difficile GENREs for both a

well-studied laboratory strain (str. 630) as well as a more recently characterized hyper-virulent isolate (str.

R20291). In silico validation of both GENREs revealed high degrees of agreement with experimental gene

essentiality and carbon source utilization datasets. Subsequent exploration of context-specific metabolism

during both in vitro growth and infection revealed consistent patterns of metabolism which corresponded with
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experimentally measured increases in virulence factor expression. Our results support that differential C.

difficile virulence is associated with distinct metabolic programs related use of carbon sources and provides a

platform for identification of novel therapeutic targets.

Introduction

Clostridioides difficile is a Gram-positive, sporulating anaerobic bacterium that remains a critical

problem in healthcare facilities across the developed world (1, 2). Susceptibility to C. difficile infection (CDI) is

most frequently preceded by exposure to antibiotic therapy (3). While these drugs are life-saving they also

diminish the abundance of other bacteria in the microbiota, altering the metabolic environment of the gut,

leaving it susceptible to colonization by C. difficile (4–6). Recently, we observed that C. difficile adapts

transcription of distinct catabolic pathways to the unique conditions in susceptible gut environments following

different antibiotic pretreatments (7, 8). These transcriptional shifts indicated that C. difficile must coordinate

metabolic activity accordingly to compete within new hosts. In spite of these differences, there are known core

elements of C. difficile metabolism across different environments including carbohydrate and amino acid

fermentation (9). It is known that specific growth nutrients influence expression of virulence genes in C. difficile

(9, 10). Given these findings, targeted therapeutic strategies that alter active metabolism and downregulate

virulence may be possible without continued exposure to antibiotics. This form of treatment would be especially

beneficial as there have been stark increases in the prevalence of antibiotic resistance and hyper-virulence

among C. difficile clinical isolates (11, 12).

Genome-scale metabolic network reconstructions (GENREs) are mathematical formalizations of

metabolic reactions encoded in the genome of an organism. These models are subsequently constrained by

known biological and physical parameters such as membrane transport and enzyme kinetics. GENREs can be

utilized to interrogate the metabolic capability of a given organism, as well as providing a means to simulate

growth and assess the impact of genotype on metabolism. GENREs have been implemented in directing

genetic engineering efforts (13) and accurately predicting auxotrophies and interactions between species for

growth substrates (14, 15). These platforms also create improved context for the interpretation of omics data

(16), and have provided powerful utility for identification of novel drug and gene targets accelerating
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downstream laboratory testing (17). This concept is especially critical when delineating a complex array of

signals from communities of organisms like the gut microbiome (18). Leveraging these tools, several recent

studies have identified nodes of metabolism that promise to provide novel therapeutic targets in

clinically-relevant pathogens including Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus

mutans (17, 19, 20). However, there has been limited progress to date applying GENREs to obtain mechanistic

understanding for metabolism during infection as they relate to colonization and virulence. Taken together,

these principles make GENREs strong platforms for deciphering novel metabolic drivers of

virulence-associated phenotypes in C. difficile.

We began by generating new GENREs for two strains of C. difficile including a highly-characterized

laboratory strain C. difficile str. 630 (21), as well as a more recently isolated hyper-virulent strain R20291 (22).

De novo reconstruction for both models was followed by extensive literature-driven manual curation of

catabolic pathways and related metabolite transport, with specific emphasis on Stickland fermentation for ATP

generation and C. difficile-specific redox maintenance (23). Additionally, both GENREs contain a tailored

biomass objective function (an in silico proxy for bacterial growth, requiring synthesis of major macromolecular

components) which accounts for codon biases and amino acid balance, and cell wall structure. Growth

simulations from both GENREs were compared against in vitro gene essentiality and carbon utilization

screens, which indicated significant levels of agreement across all validation datasets.

To assess potential mechanisms of metabolic control of virulence, we then created context-specific

models of C. difficile metabolism by integrating transcriptomic data collected from both laboratory culture and

infection conditions where differential expression of C. difficile virulence factors was observed. Overall, during

increased virulence expression both strains of C. difficile were predicted to favor increased fermentation of

amino acids and decreased reliance carbohydrate usage. Specifically in the hyper-virulent strain R20291

during states of phase variation, we found efflux of the biofilm component N-acetylglucosamine in variants

known to produce significantly more biofilm experimentally. Additionally, this state was predicted to have

increased reliance on glucose to fuel nucleotide synthesis, instead of ATP generation. When tested in vitro, we

indeed found that the colony morphology associated with this phase variant was dependent on environmental

glucose availability. Alternatively in infection-specific models of strain 630, we identified consistent patterns of
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proline and ornithine fermentation in states of both high and low sporulation, which agreed with metabolomic

analysis of each condition. However, in instances of lower spore burden our model predicted significantly

greater usage of the host-derived glycan N-Acetylneuraminate and the nucleotide precursor cytidine as primary

sources of carbon. In subsequent laboratory testing we were able to show that not only can C. difficile use the

substrates for growth, but both also lead to lower quantities of spores, which are essential for transmission of

the pathogen (24, 25). This work is the first time that contextualized GENREs of a pathogen have been utilized

to identify new metabolite signals of virulence regulation. As such, the high-quality GENREs described here

can greatly augment the discovery of novel metabolism-directed therapeutics to treat CDI. Moreover, our

results demonstrate that GENREs provide an advantage for delineating complex patterns in transcriptomic and

metabolomic datasets into tractable experimental targets.

Results

C. difficile metabolic network generation, gap-filling, and curation

The emergence of hypervirulent strains of C. difficile that have unique metabolism and virulence factors

highlights the importance for the in-depth study of metabolic pathways to understand and identify targets within

these isolates. Core metabolic processes also present an attractive target for novel antimicrobial measures as

they may be less likely to allow for acquired antibiotic resistance (26). With these concepts in mind, we focused

on the most well-characterized hypervirulent isolate, str. R20291. However, to maximize the utility of the bulk of

published C. difficile metabolic research, we elected to generate a reconstruction for the lab-adapted str. 630 in

parallel. This focus afforded the ability to continuously cross-reference curations between the models and to

more readily identify emergent differences that are specifically due to genomic content.

We began the reconstruction process by accessing the re-annotated genome of str. 630 (27) and the

published str. R20291 genome (22), both available on the Pathosystems Resource Integration Center

database (PATRIC) (28). Following an established protocol for creating high-quality genome-scale models (29),

and utilizing the ModelSEED framework and modified reaction database (30), we created scaffold

reconstructions for both strains. We subsequently performed complete translated proteome alignment between

str. 630 and str. R20291, resulting in 684 homologous metabolic gene products and 22 and 33 unique gene
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products, respectively (Table S2). Among the distinctive features were additional genes for dipeptides import in

str. 630 and glycogen import and utilization in str. R20291, which have both been linked to modulated levels of

virulence across strains of C. difficile (31, 32).

Manual curation is required to ultimately produce high-quality GENREs and make meaningful biological

predictions (33). As such, we proceeded to manually incorporate 259 new reactions (with associated genes

and metabolites) and altered the conditions of an additional 312 reactions already present within each GENRE

prior to gap-filling (Table S1). Primary targets and considerations for the manual curation of the C. difficile

GENREs included:

● Anaerobic glycolysis, fragmented TCA-cycle, and known molecular oxygen detoxification (23, 34)

● Minimal media components and known auxotrophies (35–37)

● Aminoglycan and dipeptide catabolism (38–40)

● Numerous Stickland fermentation oxidative and reductive pathways (Table S2) (41–52)

● Carbohydrate fermentation and short-chain fatty acid metabolism (41, 53–55)

● Elements of the Wood-Ljungdahl pathway (56)

● Energy metabolite reversibility (e.g. ATP, GTP, FAD, etc. (57))

● Structural components including teichoic acid, peptidoglycan, and isoprenoid biosynthesis

● Additional pathogenicity-associated metabolites (e.g. p-cresol (44) and ethanolamine (58))

Following the outlined manual additions, we created a customized biomass objective function with

certain elements tailored to each strain of C. difficile. Our biomass objective function formulation was initially

adapted from the well-curated GENRE of the close phylogenetic relative Clostridium acetobutylicum (59) with

additional considerations for tRNA synthesis and formation of cell wall macromolecules, including teichoic acid

and peptidoglycan (Table S1). Coefficients within the formulations of DNA replication, RNA replication, and

protein synthesis component reactions were adjusted by genomic nucleotide abundances and codon

frequencies to yield strain-specific biomass objective functions (60). To successfully simulate growth, we next

performed an ensemble-based pFBA gap-filling approach (61, 62), utilizing a metabolic reaction database

centered on Gram-positive anaerobic bacterial metabolism (see Materials & Methods). Gap-filling refers to the

automated process of identifying incomplete metabolic pathways due to an absence of genetic evidence that
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are necessary for in silico growth, and addition of the minimal functionality needed to achieve flux through

these pathways (63). We performed gap-filling across six distinct and progressively more limited media

conditions; complete medium, Brain-Heart Infusion (BHI (64)), C. difficile Defined Medium +/- glucose (CDM

(37)), No Carbohydrate Minimal Medium (NCMM (5)), and Basal Defined Medium (BDM (35)) (Table S1) which

added a total of 68 new reactions that allowed for robust growth across all conditions.

The final steps of the curation process were focused on limiting the directionality of reactions known to

be irreversible, extensive balancing of the remaining incorrect reaction stoichiometries, and adding annotation

data for all network components. We repeated the assessments that were performed for the earlier

reconstructions and found that our GENREs had substantial improvements in all metrics including few, if any,

flux or mass inconsistencies and now each received a cumulative MEMOTE score of 86% (Table S1). The new

network reconstructions were designated iCdG709 (str. 630) and iCdR703 (str. R20291).

C. difficile GENRE validation against laboratory measurements

A standard measurement of GENRE performance is the comparison of predicted essential genes for

growth in silico and those found to be essential experimentally through forward genetic screens (65). For a

gene to be considered essential, less than 1% of optimal biomass can be produced by a given mutant (the

equivalent of no observable growth) during single-gene knockout simulations (66). Recently a large-scale

transposon mutagenesis screen was published for str. R20291 (67), and as such we utilized the proteomic

alignment from the previous section to determine homologs in str. 630. Simulating growth in BHI rich medium

we identified essential genes for both models, which revealed overall accuracies of 89.1% and 88.9%, with

negative-predictive values as high as 90.0% for iCdR703 and 89.9% for iCdG709 (Figure S1A). This high

degree of agreement supported that metabolic pathways in the new GENREs were structured correctly, and

are more likely to provide useful downstream predictions

To then assess if GENRE requirements reflected the components of minimal medium derived

experimentally, we identified the minimum subset of metabolites necessary for growth. Through systematic

limitation of extracellular metabolites, we were able to determine the impact of each component on achieving

some level of biomass flux (Figure S1C). This analysis revealed that most metabolites found to be essential

during growth simulation have also been shown experimentally to be required for in vitro growth. Interestingly,
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while growth simulations indicated that neither iCdG709 (str. 630) nor iCdR703 (str. R20291) were auxotrophic

for methionine, the published formulation of BDM indicates methionine is found to be largely growth-enhancing

but not essential for small levels of growth (36). Additionally, it has been demonstrated in the laboratory that C.

difficile is able to harvest sufficient bioavailable sulfur from excess cysteine instead of methionine (37, 68),

further supporting growth simulation results. Similarly, the published formulation of BDM indicates that

pantothenate (vitamin B5) only appears to enhance growth rate in vitro and is not necessarily required to

support slow growth rates. Our results also indicated that iCdR703 was not auxotrophic for isoleucine relative

to iCdG709, and indeed contained additional genes coding for synthesis of a precursor

(3S)-3-methyl-2-oxopentanoate (ilvC, a ketol-acid reductoisomerase) which were not present in its counterpart

GENRE (Table S2). In summary, the in silico minimal requirements for iCdG709 and iCdR703 closely mirrored

experimental results for both strains of C. difficile in the laboratory.

We next assessed additional carbon sources that impact the growth yield predictions for both GENREs.

Utilizing previously published results for both C. difficile strains in a high-throughput screen (69), we simulated

growth for each carbon source individually in background minimal medium and calculated the shift in optimal

growth rate. Importantly, C. difficile is auxotrophic for specific amino acids (e.g. proline; Fig S1C) that it is also

able to catabolize through Stickland fermentation (70), so the background medium must be supplemented with

small concentrations of each. As such, the values are reported as the ratio of the final optical density for growth

with the given metabolite versus low levels of growth observed in the background medium alone. Through

correlation of the results from these two comparisons, we were able to assess how well in silico predictions

matched experimental results. Across all the 116 total metabolites that were in both the in vitro screen as well

as the C. difficile GENREs, we identified significant predictive correlations in the amount of growth

enhancement for iCdG709 and iCdR703 (p-values < 0.001) (Figure 1A & 1B). This relationship was even more

pronounced for carbohydrates and amino acids, the primary carbon sources for C. difficile. When these

predictions were reduced to binary interpretations of either enhancement or non-enhancement of growth, we

found that iCdG709 predicted 92.8% and iCdR703 predicted 96.6% true-positive enhancement calls (Figure

S1B). This metric is most valuable here as it indicates that each GENRE possesses the necessary machinery
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for catabolizing a given metabolite. Collectively, these data strongly indicated that both GENREs were

well-suited for prediction of growth substrate utilization in either strain of C. difficile.

Finally, we also compared our results against existing C. difficile GENREs. The primary focus of curated

C. difficile metabolic modeling efforts has been on the first fully sequenced strain of C. difficile, str. 630. The

first reconstruction effort (iMLTC806cdf (71)) and subsequent revision (icdf834 (71, 72)), were followed by a

recent de novo creation following updated genome curation (iCN900 (73)) (27). Another GENRE was

developed for str. 630Δerm (iHD992 (74)), a strain derived from str. 630 by serial passage until erythromycin

resistance was lost (75). Four additional C. difficile strain GENREs were generated as a part of an effort to

generate numerous new reconstructions for members of the gut microbiota (76); these reconstructions

received only semi-automated curation performed without C. difficile-specific considerations. To establish a

baseline for the metabolic predictions possible with current C. difficile GENREs, we selected common criteria

with large impacts on the quality of subsequent predictions for model performance (Table S3). The first of these

metrics is the level of consistency in the stoichiometric matrix (57, 77, 78), which reflects proper conservation

of mass and that no metabolites are incorrectly created or destroyed during simulations. The next metric is a

ratio for the quantity of metabolic reactions lacking gene-reaction rules to those possessing associated genes

(79), which may indicate an overall confidence in the annotation of the reactions. These features reflect the

importance of mass conservation and deliberate gene/reaction annotation which each drive confidence in

downstream metabolic predictions, omics data integration, and likelihood for successful downstream

experimentation. We found unique challenges within each GENRE which made comparing simulation results

across models difficult. Neither iMLTC806cdf nor iHD994 have any detectable gene annotations associated

with the reactions they contain. A high degree of stoichiometric matrix inconsistency was detected across

icdf834, iHD992, and iCN900; with iHD992 many intracellular metabolites were able to be generated without

acquiring necessary precursors from the environment. We also detected structural inconsistencies across

several GENREs. For example, those GENREs acquired from the AGORA database possessed several

intracellular metabolic products not adequately accounted for biologically (Table S3), as well as mitochondrial

compartments despite being bacteria. Additionally, several key C. difficile metabolic pathways either were

incomplete or absent from the curated models including multi-step Stickland fermentation,
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membrane-dependent ATP synthase, dipeptide and aminoglycan utilization, and a variety of saccharide

fermentation pathways (23). Considering each of these factors, the C. difficile GENREs generated here correct

numerous mass and annotation inconsistencies, contain key functional capacities, and phenotypically mimic C.

difficile.

Context-specific modeling to capture virulence-associated metabolism

Following validation, we sought to utilize each GENRE to predict in situ metabolic phenotypes that

correspond with expression of known virulence traits in C. difficile. As previously stated, GENREs have

provided powerful platforms for the integration of transcriptomic data, creating greater context for the shifts

observed between conditions and capturing the potential influence of pathways not obviously connected (80).

With this application in mind, we chose to generate context-specific models for both in vitro and in vivo

experimental conditions characterized with RNA-Seq analysis utilizing a recently published unsupervised

transcriptomic data integration method (18). Briefly, the algorithm calculates the most cost-efficient usage of

the metabolic network to achieve growth given the pathway investments indicated by the transcriptomic data.

This approach is in line with the concept that natural selection generally selects against wasteful production of

cellular machinery (81). The output models contain only those metabolic reactions that are most likely to be

active under the given conditions, whose ranges of metabolic reaction activity were subsequently deeply

sampled to assess for distinct yet equally optimal combinations of active pathways. Analysis of these

distributions affords the ability to make much more fine-scale predictions of metabolic changes that C. difficile

undergoes as it activates pathogenicity. The patterns of active pathways also reveal critical elements within

context-specific metabolism that could lead to targeted strategies for intentional downregulation of virulence

factors through metabolite-focused interventions.

Phase variation in C. difficile str. R20291 is sensitive to carbohydrate availability

C. difficile is known to utilize phase variation, a reversible mechanism employed by many bacterial

pathogens to generate phenotypic and metabolic heterogeneity to maximize overall fitness of the population.

Phase variation has been shown to also influence virulence expression in C. difficile str. R20291 (82). One

aspect of this phase variation manifests as a rough or smooth-edged colony morphology on solid agar; the

morphologies can be propagated via subculture and are associated with distinct motility behaviors and altered
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virulence (83). The colony morphology variants are generated through the phase variable (on/off) expression of

the cmrRST genes. Toward understanding this phenotype, we experimentally generated rough and smooth

phase variants of C. difficile str. R20291 grown on solid BHIS rich medium for 48 hours and sequenced

transcriptomes from both groups. Utilizing these data, we generated context-specific versions of iCdR703 in

simulated rich media conditions and deeply sampled the resultant metabolic flux distributions to assess all

possible forms of metabolism given the new constraints.

While it has been previously shown that mutation of cmr-family genes does not significantly alter growth

rate in vitro (83), the contextualized models predicted significantly increased biomass flux generation (reflective

of growth rate) with smooth colony-associated metabolism (Figure S2A). This result fits with experimental

findings as the rough-edged phenotype only emerges after long periods of incubation on solid agar when

growth rate is measurably slowed (43). We moved on to evaluate structural differences between the

context-specific models and identified those metabolic reactions predicted to be active in only the Smooth or

Rough context-specific model. With this analysis we found 19 reactions that were distinctly active between

conditions (Figure 2A). We then calculated median absolute activity for each reaction which indicated the

magnitude at which each reaction contributed to optimal growth in each model. This investigation revealed

proline or ornithine fermentation were present and active in either model (Figure 2A). C. difficile is capable of

easily converting ornithine into proline (52), which is subsequently fermented to 5-aminovalerate for energy.

This finding illustrated that proline Stickland fermentation was an integral part of C. difficile metabolism across

conditions. The finding that N-acetylglucosamine transport only present within the Smooth variant

context-specific model was striking as this phase has been previously associated with significantly increased

biofilm formation (83), in which N-acetyl-D-glucosamine is the primary component (84). Observing the

predicted reaction activity, N-acetylglucosamine transport was not only present exclusively in the Smooth

variant context-specific model, but this reaction was extremely active under these conditions (Figure 2C).

Furthermore, efflux of the related metabolite D-glucosamine was also significantly increased in the Smooth

model (Figure 2D; p-value < 0.001). These results supported that the differences in context-specific model

structure seen between phase variants likely represented real variation in active metabolism.
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To then compare metabolic activity effectively between context-specific models, we next focused our

analysis on shared non-biomass associated reactions across context-specific models which we referred to as

“core” metabolism within each subsequent analysis. We first employed unsupervised machine learning for flux

samples from core reactions using Non-Metric Multidimensional Scaling (NMDS) ordination of Bray-Curtis

dissimilarities (Figure S2B). This analysis revealed significantly different patterns of core metabolic activity

between smooth and rough context-specific models (p-value = 0.001). To further explore the specific

differences within active metabolism between phase variants, we utilized a supervised machine learning

approach with Random Forest to discriminate between Rough and Smooth core metabolic activity (Figure 2B).

Several of the metabolic reactions with highest mean decrease accuracies are involved in alanine transport

and utilization. Further examination of alanine transport reaction fluxes revealed that import and utilization of

alanine was only predicted in the Smooth context (Figure 2E). Alanine has been previously identified as having

a strong impact on C. difficile life cycle physiology (85), and has also been shown to be essential for proper

biofilm formation in other Gram-positive pathogens (86). Our results indicate that utilization of alanine may also

play a role in biofilm formation and phase variation in C. difficile.

Both the network topology and metabolic activity-based analyses indicated that a large number of

reactions relating to glycolysis were differentially active. To more closely investigate the relative importance of

these metabolic pathways between phase variants, we performed gene essentiality analysis for both models

and cross-referenced the results for metabolic reactions associated with the uptake and utilization of glucose

(Fig 3A). Through this comparison, we found numerous reactions that were essential only in the Smooth

context-specific model which included multiple steps in the Pentose Phosphate Pathway (involved in

nucleotide synthesis and NADPH balance) as well the reactions bridging Glycolysis with Fatty Acid Synthesis.

Strikingly, no reactions in either pathway were found to be uniquely essential in the rough context-specific

model. Although some components of Glycolysis were essential in both contexts, including pyruvate kinase,

the penultimate step with the bulk of the ATP production, was detected at the transcriptional level at nearly

identical levels between the rough and smooth isolates (Table S4). These findings together signified that ATP

generation from Glycolysis was important in both contexts, but the nucleotide precursors and redox potential

generated from the Pentose Phosphate Pathway were necessary for the Smooth variant-specific metabolism.
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In line with this observation, the Rough context-specific model indeed generated a greater fraction of NADH

from Stickland fermentation (Table S4). Based on these data, we hypothesized that this additional dependence

on glucose was critical in the Smooth variants and without glucose colony morphology would transition toward

a more Rough phenotype.

To test this hypothesis, we generated colonies of either Rough or Smooth morphology using C. difficile

str. R20291, grown anaerobically for 48 hours on BHIS agar (Figure S3A). We found that the hallmark metric of

Rough morphology is a significant increase in colony perimeter (Figure 3D), and used this measurement for

determining subsequent shifts between the phenotypes. Both phase variants were subcultured onto BDM agar

plates both with and without 2 mg/ml glucose (Figure 3B, 3C). Following anaerobic incubation for 48 hours we

found that rough variants maintained their morphology across both media, with the rough phenotype even

exacerbated on the minimal medium. However, while the Smooth variant largely maintained its colony

morphology upon subculture onto BDM + glucose, the colonies became significantly Rough when glucose was

absent (Figure 3E). The inverse was also true in that the Rough colonies maintained their morphology in the

absence of glucose, but significantly decreased in perimeter on BDM + glucose, appearing more Smooth

(Figure 3F). Further subculture of each altered morphology from minimal media back onto rich BHI medium

also appeared to support consistent switching between the respective morphologies (Figure S3B). Our data

supported that the Smooth phase variants relied on glucose for more than strictly ATP generation, and that the

Rough morphology is apparent only after extended incubation when C. difficile may be locally activating

starvation responses and switching toward alternative energy sources. Additionally, when glucose is available

C. difficile will opt to generate redox potential more efficiently through the Pentose Phosphate Pathway.

Furthermore, these results are consistent with the hypothesis that carbohydrate availability impacts phase

variation in C. difficile, and that environmental stress due to limited nutrients may be a key factor in driving the

shift between phases.

Utilization of N-acetylneuraminic acid and cytidine decreases sporulation in C. difficile str. 630

While laboratory conditions are highly informative, it is even more critical to examine metabolism for this

pathogen during infection as it can more readily lead to novel therapeutic interventions. It has been previously

shown that different classes of antibiotics have distinct impacts on the structure of the gut microbiota while
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inducing similar sensitivity to colonization by C. difficile (87). Along these lines, one published study assessed

differential transcriptional activity of C. difficile str. 630 in the gut during infection in a mouse model pretreated

with the antibiotics cefoperazone or clindamycin. Crucially, these treatments resulted in highly dissimilar levels

of sporulation (another phenotype linked to C. difficile virulence) where cefoperazone had largely undetectable

spore Colony forming units (CFUs), clindamycin had significantly higher levels at the same time point (7).

These experiments included paired, untargeted metabolomic analysis of intestinal content to correlate the

transcriptional activity of metabolic pathways with changes in the abundance of their respective substrates.

Included in the analysis were both mock-infected and C. difficile-colonized groups (both treated by the

respective antibiotics) to extract the specific impact of the infection on the gut environment, making this dataset

extremely valuable.

We first compared predicted biomass objective flux in the sampled context-specific flux distributions

(Figure S4A) which revealed no significant difference between high and low sporulation conditions. However,

ordination analysis, performed as in the previous section, indeed revealed significant differences in predicted

core metabolic activity (Figure 4A; p-value = 0.001). In agreement with these findings, supervised machine

learning analysis indicated numerous differences in reactions associated with metabolizing host-derived

glycans and nucleotide precursors (Figure S4B). To focus this assessment on growth substrates that may be

differentially impacting the observed levels of sporulation we assessed each context-specific model by

sequentially limiting the ability to import or export each extracellular metabolite to 1% of its optimal rate and

measured the impact on overall biomass production (Figure 4B & 4C). Paired metabolomic analysis of each

metabolite identified this way were then compared within each condition for relative change in concentration

following infection, represented as colored squares along the right margin. Many metabolites had no effect on

biomass when their exchange rates were limited, and simply rerouted metabolism elsewhere to achieve similar

levels of growth which indicated a high degree of metabolic plasticity remaining in each context-specific model.

All metabolites highlighted by this analysis that were measured by the metabolomics screen followed the

model-predicted directional change in concentration, supporting the hypothesis that C. difficile itself is

responsible for the observed differences (Figure 4B & 4C). The peptides proline, ornithine, and serine were

found to have an impact on the ability to grow across both context-specific models. Of this subset of amino
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acids, only proline is an auxotrophy and all are usable by C. difficile in Stickland fermentation. Following the

catabolism of proline, its Stickland fermentation byproduct 5-aminovalerate was predicted to be an important

efflux metabolite in both conditions and had concordant significant increases in concentration following

infection in each group (Figure S4C). Alternatively, isovalerate efflux was found to only be critical in higher

sporulation context (Figure 4B). This short-chain fatty acid has been primarily associated with leucine

fermentation in C. difficile, supporting an elevated dependence on Stickland fermentation as sporulation

increases. Intestinal concentrations of leucine have indeed been shown to significantly decrease following

infection by C. difficile in vivo (7), supporting its importance during infection. The most distinguishing features

were the importance of N-acetylneuraminate (Neu5Ac) and cytidine only in the lower sporulation

context-specific model (Figure 4C). N-acetylneuraminate is a host-derived component of sialic acid that C.

difficile readily uses as a carbon source for growth (7), and cytidine is an integral component of RNA synthesis.

However, neither had been previously associated with directly influencing virulence factor expression in C.

difficile. Furthermore, while N-acetylneuraminate significantly decreases during infection in the lower

sporulation context (7), cytidine also appears to decrease under these conditions implying consumption by C.

difficile (Figure S4D & S4E).

We first sought to measure if C. difficile str. 630 could utilize both N-acetylneuraminate and cytidine as

carbon sources, and if together they exerted a combined effect on growth. Both N-acetylneuraminate and

cytidine were supplemented (10 mg/ml each) in liquid BDM in parallel with liquid BDM with no additional

substrate and BDM + D-glucose (10 mg/ml) controls, into which C. difficile str. 630 was inoculated and

incubated for 18 hours and OD600 was measured every 5 minutes (Figure 5A). This assay revealed that C.

difficile str. 630 could indeed use N-acetylneuraminate and cytidine as carbon sources independently, as each

condition allowed for significantly more growth than background BDM alone (p-values < 0.05). Additionally,

there was no discernible effect on growth when both substrates were added simultaneously. Utilization of the

nucleotide precursor cytidine as a carbon source during infection has never been previously described in C.

difficile, which further supported the utility of our models as a platform for augmenting discovery.

To then assess the effect of N-acetylneuraminate and cytidine on sporulation in C. difficile str. 630, we

performed a growth and sporulation assay targeting these substrates using the same defined medium
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conditions described previously (Figure 5B). Following 18 hours of anaerobic growth, cultures were plated on

BHIS-agar plates lacking a germination agent to quantify specifically vegetative cell CFU abundance.

Remaining liquid cultures were then treated with a final concentration of 50% ethanol for 60 minutes to

eliminate vegetative cells, and then plated on BHIS-agar with 1% taurocholate added to quantify exclusively

spore CFU. The resultant abundances were then converted to an overall spore to vegetative cell ratio to

suggest the fraction of the population undergoing sporulation. After overnight incubation, the group that

received any combination of N-acetylneuraminate or cytidine had significantly decreased levels of sporulation

ratios relative to the no additive control (p-values < 0.05), but no significant change when compared to the

glucose-added control (Figure 5B). Importantly, there were significantly more vegetative cells in all additive

conditions relative to BDM alone (Figure S5; p-values < 0.05). As was the case in the growth curve results,

there was no difference between N-acetylneuraminate and cytidine when added alone versus their combined

effect. Collectively, these results support that both N-acetylneuraminate and cytidine utilization by C. difficile

inhibit progression through its lifecycle toward spore formation. More broadly, our results support these

GENREs as an advantageous discovery platform for novel elements of C. difficile metabolism and physiology.

Discussion

The control for much of C. difficile’s physiology and pathogenicity is subject to a coalescence of

metabolic signals from both inside and outside of the cell. Historically, C. difficile research has suffered from a

shortage of molecular tools and high-quality predictive models for highlighting new potential therapies. Over

the previous decade, GENREs have become powerful tools for connecting genotype with phenotype and

provided platforms for defining novel metabolic targets in biotechnology and improving interpretability of

high-dimensional omics data. These factors make GENRE-based analyses extremely promising for directing

and accelerating identification of possible therapeutic targets as well as a deeper understanding of the

connections between C. difficile virulence and metabolism. Furthermore, as much of bacterial pathogenicity is

now being attributed to shifts in metabolism the analyses described here may provide large benefits to the

identification of possible treatment targets in C. difficile and other recalcitrant pathogens (88). In the current

study, we develop and validate two highly-curated genome-scale metabolic network reconstructions for a
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well-described laboratory strain (str. 630) in addition to a more recently characterized hyper-virulent strain (str.

R20291) of C. difficile. Validation results from both models indicated significant agreement with both gene

essentiality and carbon utilization screens, indicating a high degree of confidence in subsequent predictions for

active metabolism.

We next employed a recently published technique for transcriptome contextualization with datasets

from in vitro and in vivo systems to evaluate potential emergent metabolic drivers of virulence. These

combined analyses revealed differential reliance on glycolysis-related metabolism during periods of increased

virulence expression. Specifically, in states of elevated biofilm formation C. difficile str. R20291 we found that

glucose is necessary for nucleotide synthesis and redox balance through the Pentose Phosphate Pathway,

despite still being utilized for ATP in conditions associated with reduced biofilm. These findings were

subsequently supported by direct testing in vitro, and agreed with recent work which supports that access to

glycolysis intermediates actually induces C. difficile biofilm formation (89). Alternatively, during infection with

str. 630 we identified patterns of host-derived glycan (N-acetylneuraminate) utilization in combination with

consumption of the nucleotide precursor cytidine that corresponded with lower levels of sporulation. While not

typically considered a carbon source for C. difficile, laboratory testing confirmed that C. difficile can indeed use

cytidine for energy, and along with N-acetylneuraminate, decreases in sporulation. Intentional control of

sporulation is an exciting prospect as spores are considered the transmissive form of C. difficile, so these

results may prove valuable for downstream targeted manipulation of C. difficile virulence factor expression. Our

results also supported a role for some level of amino acid fermentation across all conditions tested. This

phenotype is a hallmark of C. difficile physiology and reinforced the validity of the other predictions. These

results indicate a complex relationship with environmental nutrient concentrations and likely competition with

the gut microbiota that all inform the regulation of C. difficile virulence expression. Additionally, in vivo

context-specific gene essentiality also predicted proline racemase to be critical for growth during infection, yet

it was previously found to be dispensable in an animal model using a forward genetic screen (90). This result

may be attributable to the specific conditions of that infection and may vary across distinct host gut

environments, leading to possible implications in personalized medicine and novel approaches to curbing the

expression of virulence factors by influencing environmental conditions to favor certain forms of metabolism
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over others. This study represents the first time that context-specific models of bacterial metabolism have been

generated and used to augment discoveries for metabolic control over virulence expression in the laboratory.

While the majority of predictions followed experimental results, several areas of possible expansion and

curation are present in both GENREs. First, while the scope of total genes included in iCdG709 and iCdR703

may be more limited than previous network reconstructions, we elected to focus on those gene sets where the

greatest amount of evidence and annotation data could be found to maximize confidence in functionality.

Consequently, both GENREs consistently underpredict the impact of some metabolite groups, primarily

nucleotides and carboxylic acids, which could be due to the absence of annotation or overall knowledge of the

relevant cellular machinery. Furthermore, more complex regulatory networks ultimately determine final

expression of virulence factors, and these may be needed additions in the future to truly understand the

interplay of metabolism and pathogenicity in C. difficile. Despite these potential shortcomings, both iCdG709

and iCdR703 produced highly accurate metabolic predictions for their respective strains as well as novel

predictions for metabolism as it relates to C. difficile virulence expression, making both strong candidate

platforms for directing future studies of C. difficile metabolic pathways.

Systems-biology approaches have enabled the assessment of fine-scale changes to metabolism of

single species within complex environments that may have downstream implications on health and disease.

Overall, the combined in vitro- and in vivo-based results demonstrated that our GENREs are effective platforms

for gleaning additional understanding from omics datasets, outside of the standard analyses. Both GENREs

were able to accurately predict complex metabolic phenotypes when provided context-specific omics data, and

ultimately underscores the metabolic plasticity of C. difficile. The reciprocal utilization of glycolysis and amino

acid fermentation indeed support regimes of distinct metabolic programming associated with C. difficile

pathogenicity. Finding core metabolic properties in C. difficile strains may be key in identifying potential

probiotic competitor strains or even molecular inhibitors of metabolic components. The current study is an

example of the strength that systems-level analyses have in contributing to more rapid advancements in

biological understanding. In the future, the metabolic network reconstructions presented here are well-suited to

accelerate research efforts toward the discovery of more targeted therapies. Overall, GENREs have had
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limited impact to date in real mechanistic understanding of infectious disease and the current study represents

a significant advance in this application.

Materials & Methods

C. difficile GENRE construction: We utilized PATRIC reference genomes from Clostridioides difficile str.

630 and Clostridioides difficile str. R20291 as initial reconstruction templates for the automated ModelSEED

pipeline (28, 91, 92). The ModelSEED draft network reconstruction was converted utilizing the Mackinac

pipeline (https://github.com/mmundy42/mackinac) into a form more compatible with the COBRA toolbox (93).

Upon removal of GENRE components lacking genetic evidence (i.e. gap-filled), extensive manual curation was

performed in accordance with best practices agreed upon by the community (94). We subsequently performed

ensemble gap-filling as previously described, utilizing a stoichiometrically consistent anaerobic, Gram-positive

universal reaction collection curated for this purpose and available alongside code associated with this study.

Next, we corrected reaction inconsistencies and incorrect physiological properties (e.g. ensured free water

diffusion across compartments). Final transport reactions were then validated with TransportDB (95). All

formulas are mass and charged balanced at an assumed pH of 7.0 using the ModelSEED database in order to

maintain a consistent and supported namespace to augment GENRE interpretability and future curation efforts.

We then collected annotation data for all model components (genes, reactions, and metabolites) from SEED

(94, 96), KEGG (97), PATRIC, RefSeq (98), EMBL (99), and BiGG (100) databases and integrated it into the

annotation field dictionary now supported in the most recent SBML version (101). Complete MEMOTE quality

reports for both C. difficile GENREs are also available in the GitHub repository associated with this study, as

well as full pipelines for model generation.

Growth simulations, flux-based analyses, and GENRE quality assessment: All modeling analyses were

carried out using the COBRA toolbox implemented in python (102). The techniques utilized included:

flux-balance analysis, flux-variability analysis (103), gapsplit flux-sampler (104), and minimal_medium on

exhaustive search settings. GENRE quality assessment tools were also developed in python and are fully

available in the project Github repository. MEMOTE quality reports were generated using the web-based

implementation found at https://memote.io/.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2020.11.09.373480doi: bioRxiv preprint 

https://paperpile.com/c/bcuLgy/NeV1+vKjk+eFPI
https://paperpile.com/c/bcuLgy/HkUi
https://paperpile.com/c/bcuLgy/z6SR
https://paperpile.com/c/bcuLgy/yte3
https://paperpile.com/c/bcuLgy/z6SR+8s9e
https://paperpile.com/c/bcuLgy/W6yQ
https://paperpile.com/c/bcuLgy/yhG1
https://paperpile.com/c/bcuLgy/63Em
https://paperpile.com/c/bcuLgy/H3oY
https://paperpile.com/c/bcuLgy/QUCe
https://paperpile.com/c/bcuLgy/hGyW
https://paperpile.com/c/bcuLgy/fcQw
https://paperpile.com/c/bcuLgy/oRsJ
https://doi.org/10.1101/2020.11.09.373480
http://creativecommons.org/licenses/by/4.0/


C. difficile str. R20291 in vitro growth and microscopy: C. difficile str. R20291 growth was maintained in

an anaerobic environment of 85% N2, 5% CO2, and 10% H2. The strain was grown on BHIS-agar (37 g/L Bacto

brain heart infusion, 5 g/L yeast extract, 1.5% agar) medium at 37 °C for 48 hours to obtain isolated colonies.

Rough and smooth colonies were chosen for propagation on BHI-agar to ensure colony morphology

maintenance (83). Basal Defined Medium (BDM) was formulated as previously published (35) with the addition

of 1.5% agar for plates, and incubated for 48 hours at 37 °C to generate isolated colonies. Microscopy images

were taken on an EVOS XL Core Cell Imaging System at 4x magnification. Colony dimensions determined

using ImageJ (https://imagej.nih.gov/ij/).

C. difficile str. 630 in vitro growth and sporulation assay: C. difficile str. 630 growth was maintained in

an anaerobic environment of 85% N2, 5% CO2, and 10% H2. Liquid BDM formulated as previously described

with the indicated combinations of D-glucose (10 mg/ml), N-acetylneuraminic acid (10 mg/ml), and cytidine (10

mg/ml). Overnight BHI liquid cultures of C. difficile str. 630 were back-diluted 1:3 in fresh anaerobic BHI and

incubated for 1 hour at 37 °C at which point 5 µL was inoculated into 1 mL of each media condition. After 18

hours anaerobic incubation at 37 °C, serial dilutions in anaerobic Phosphate Buffered Saline of these cultures

were plated on BHIS-agar (37 g/L Bacto brain heart infusion, 5 g/L yeast extract, 1.5% agar) plates to quantify

vegetative cell abundance, then treated with 50% EtOH for 30 minutes(105) and serial dilutions in anaerobic

Phosphate Buffered Saline were subsequently plated on BHIS-agar + 1.0% taurocholate plates to measure

spore abundance. Plates were incubated for an additional 24 hours at 37 °C, at which point CFUs were

quantified. For anaerobic growth curves, 250 µL of each medium was inoculated with 5 µL of the back-dilution

and the OD600 was measured every 5 minutes for 18 hours (Tecan Infinite M200 Pro).

RNA isolation, and transcriptome sequencing: For RNA isolation, rough and smooth isolates were

subcultured in BHIS broth (37 g/L Bacto brain heart infusion, 5 g/L yeast extract) overnight (16-18 h) at 37 °C,

then 5 µL of the cultures were spotted on BHIS agar (1.5% agar). After 24 h, the growth was collected and

suspended in 1:1 ethanol:acetone for storage at -20 °C until subsequent RNA isolation. Cells stored in

ethanol:acetone were pelleted by centrifugation and washed in TE (10 mM Tris, 1 mM EDTA, pH 7.6) buffer.

Cell pellets were suspended in 1 mL Trisure reagent. Silica‐glass beads (0.1 mm) were added and cells were

disrupted using bead beating (3800 rpm) for 1.5 minutes. Nucleic acids were extracted using chloroform,
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purified by precipitation in isopropanol followed by washing the cold 70% ethanol, and suspended in

nuclease-free water. Samples were submitted to Genewiz, LLC (South Plainfield, NJ, USA) for quality control

analysis, DNA removal, library preparation, and sequencing. RNA sample quantification was done using a

Qubit 2.0 fluorometer (Life Technologies), and RNA quality was assessed with a 4200 TapeStation (Agilent

Technologies). The Ribo Zero rRNA Removal Kit (Illumina) was used to deplete rRNA from the samples. RNA

sequencing library preparation was done using the NEBNext Ultra RNA Library Prep Kit for Illumina (NEB)

according to the manufacturer’s protocol. Sequencing libraries were checked using the Qubit 2.0 Fluorometer.

The libraries were multiplexed for clustering on one lane of the Illumina HiSeq flow cell. The samples were

sequenced using a 2x150 paired-end configuration on an Illumina HiSeq 2500 instrument. Image analyses and

base calling were done using the HiSeq Control Software. The resulting raw sequence data files (.bcl) were

converted to the FASTQ format and de-multiplexed with bcl2fastq 2.17 software (Illumina). One mismatch was

permitted for index sequence identification. Data were analyzed using CLC Genomics Workbench v. 20

(Qiagen). Reads were mapped to the C. difficile R20291 genome (FN545816.1) using the software’s default

scoring penalties for mismatch, deletion, and insertion differences. All samples yielded over 22 million total

reads, with over 20 million mapped to the reference (>93% of total reads, and >90% reads in pairs). Transcript

reads for each gene were normalized to the total number of reads and gene length (expressed as reads per

kilobase of transcript per million mapped reads, RPKM).

Genomic and transcriptomic data processing: Alignment of C. difficile str. 630 and str. R20291 peptide

sequences was performed using bidirectional BLASTp. RNA-Seq reads were first quality-trimmed with Sickle

with a cutoff ≧Q30 (Joshi & Fass, 2011(106). Mapping curated reads to the respective C. difficile genome was

then performed with Bowtie2 (107). MarkDuplicates then removed optical & PCR duplicates

(broadinstitute.github.io/picard/), and mappings were converted to idxstats format using SAMtools (108).

Abundances were then normalized to both read and target lengths. Transcriptomic integration and

context-specific model generation were performed with RIPTiDe using the maxfit_contextualize() function on

the default settings (18).

Statistical methods: All statistical analysis was performed in R v3.2.0. Non-metric multidimensional

scaling of Bray-Curtis dissimilarity and perMANOVA analyses were accomplished using the vegan R package
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(109). Significant differences for single reaction flux distributions, metabolite concentrations, spore CFU, and

growth over time were determined by Wilcoxon signed-rank test. Supervised machine-learning was

accomplished with the implementation of AUC-Random Forest also in R (110). Dissimilarity between C. difficile

str. 630 growth curves determined using Dynamic Time Warping (111).

Data availability: Genomic and proteomic data for the strains Clostridioides difficile str. 630 (PATRIC ref.

272563.8) and Clostridioides difficile str. R20291 (PATRIC ref. 645463.3) was downloaded from the PATRIC

database (91). Transcriptomic data was downloaded in raw FASTQ format from the NCBI Sequence Read

Archive (PRJNA415307 and PRJNA354635) and the Gene Expression Omnibus (GSE158225).

Code availability: Github repository for this study, with all programmatic code and GENREs described

here, can be found at: https://github.com/mjenior/Jenior_CdifficileGENRE_2021.

Author Contributions

MLJ - Conceptualization. Data generation and analysis. Drafting manuscript.

JLL - Conceptualization. Data generation. Editing manuscript.

DAP - Data generation and analysis. Editing manuscript.

EMG - Conceptualization. Data generation. Editing manuscript.

KAW - Data generation. Editing manuscript.

MED - Data analysis. Editing manuscript.

WAP - Supervision. Editing manuscript.

RT - Supervision. Data generation. Editing manuscript.

JP - Funding acquisition. Supervision. Drafting and editing manuscript.

Acknowledgements

The authors would like to acknowledge Bonnie Dougherty, Laura Dunphy, and Dawson Payne for their

input and feedback on modeling parameters and biomass objective function formatting. We would also like to

thank Alex Smith and Joe Zackular for discussions on specifics of C. difficile metabolism. The authors have

declared that no competing interests exist. This work was supported by funding from The U.S. National

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2020.11.09.373480doi: bioRxiv preprint 

https://paperpile.com/c/bcuLgy/vg7W
https://paperpile.com/c/bcuLgy/JrzB
https://paperpile.com/c/bcuLgy/vxmh
https://paperpile.com/c/bcuLgy/NeV1
https://doi.org/10.1101/2020.11.09.373480
http://creativecommons.org/licenses/by/4.0/


Institutes of Health awards R01AT010253 to JP, R01Al143638 to RT, to 5R01AI124214 WP, and

DK124048-01A1 to JL, as well as a pilot grant from the UVA Trans-University Microbiome Initiative to MJ. The

funding agency had no role in study design, data collection/analysis, or preparation of the manuscript.

Figure & Table Legends

Figure 1) Carbon source utilization prediction profiles accurately reflect laboratory measurements.

Results from previous phenotypic screen of 115 metabolites for both str. 630 and str. R20291 were compared

against in silico results for each corresponding GENRE. Ratios of overall in vitro growth enhancement by each

metabolite were correlated with the corresponding results from growth simulations in the same media for (A)

iCdG709 (str. 630) and (B) iCdR703 (str. R20291). Points are colored by their biochemical grouping, fit and

significance determined by Spearman correlation.
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Figure 2) Metabolism significantly varies between phase variants of C. difficile str. R20291.

Transcriptomes were collected from Rough or Smooth colony morphology clones grown on BHIS agar for 48

hours, and subsequently used to generate context-specific models of C. difficile str. R20291. Subnetworks of

metabolism that were predicted to be unused in each context were inactivated for subsequent growth

simulations. (A) Metabolic reactions that are uniquely active in each context-specific model and the associated

median absolute reaction activities. (B) Utilizing Random Forest supervised machine learning sampled activity

for shared non-biomass metabolic reactions between both Rough and Smooth context-specific models (i.e.

core metabolism). Shown are the Mean Decrease Accuracy for the top 15 most differentiating reactions. (C &

D) Export exchange reaction flux samples (n = 500) between phase variants for N-Acetylglucosamine and

Glucosamine (p-value < 0.001). (E) Import exchange reaction absolute fluxes between phase variants for

Alanine (p-value < 0.001). Inactive label denotes reactions pruned during transcriptome contextualization and

all significant differences determined by Wilcoxon rank-sum test.
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Figure 3) Glucose utilization through the Pentose Phosphate Pathway is essential in the Smooth phase

variants of str. R20291. (A) Gene and reaction essentiality results for Glycolysis and the Pentose Phosphate

Pathway across both the Rough and Smooth phase variant context-specific models. Components were

deemed essential if models failed to generate < 1% of optimal biomass flux. (B & C) Colony morphologies

resulting from smooth and rough variants of C. difficile str. R20291 grown on either BHI or BDM +/- glucose (2

mg/ml) after 48 hours of growth (Phase contrast 20/40, 4X magnification). Defined medium colonies were then

subcultured onto BHI medium for an additional 24 hours as indicated. Increased colony perimeter was found to

be the defining characteristic of the Rough colony morphology. This feature was quantified for multiple colonies

under each permutation of colony variant and growth medium (n ≥ 4). (D) Colony perimeter for Smooth and

Rough progenitor colony variants grown on BHIS (p-value < 0.001). (E) Smooth or (F) Rough colony variant
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perimeter during subculture onto each of the BDM carbon source media formulations (p-values < 0.05).

Significant differences determined by Wilcoxon rank-sum test with Benjamini-Hochberg correction when

necessary.

Figure 4) Predicted differences in C. difficile str. 630 carbon source usage correspond with lowered

rates of sporulation. Transcriptomic integration and predictions with iCdG709, 18 hours post-infection with str.

630 across infections with either high or low levels of sporulation were detected in the cecum. (A) NMDS

ordination of Bray-Curtis dissimilarities for flux distributions shared reactions following sampling of

context-specific models. Significant difference calculated by PERMANOVA. Iterative growth simulations for (B)

higher sporulation context-specific model and (C) in the lower sporulation context-specific model, displaying
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metabolites with any impact on biomass production when consumption or production capability was restricted

to 1.0% of optimal in a given context-specific model. Along the right margin is paired-LCMS analysis from cecal

content of mice with and without C. difficile str. 630 infection in antibiotic pretreatment groups that resulted in

either high or low cecal spore CFUs for metabolites highlighted by growth simulation analysis. Each is colored

by mean decrease/increase in concentration between mock and infected groups, and stars indicate significant

differences determined by Wilcoxon rank-sum test (p-values ≤ 0.05).

Figure 5) N-Acetylneuraminic acid and cytidine drive changes in str. 630 growth and sporulation. (A)
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18-hour anaerobic C. difficile str. 630 growth measured at OD600 in defined minimal media (BDM) formulated

with the indicated carbon sources (10 mg/mL each; n = 4). Significant differences determined using

PERMANOVA of Dynamic Time Warping distances (p-values < 0.05). (B) Median and IQR for the

log-transformed C. difficile str. 630 spore to vegetative cell CFU ratio after 18-hour incubation in rich medium or

defined minimal media (BDM) formulated with the indicated carbon sources (n = 4). Differential plating

performed on BHIS-agar +/- taurocholate (1.0%). Significance determined by Wilcoxon rank-sum test with

Benjamini-Hochberg correction (p-values < 0.05).

Figure S1) Additional C. difficile GENRE validation against laboratory measurements. (A) in silico gene

essentiality predictions for both GENREs cross-referenced with the Dembek et al. transposon screen for str.

R20291 (iCdG709 (str. 630) utilizes homologs from the genome of str. R20291). (B) Binary quantification for
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metabolite growth enhancement shown for both strains/GENREs in Figure 1. Positive predictive values were

95.1% for iCdR703 and 92.3% for iCdG703. (C) Computationally determined minimum growth substrates for

both GENREs compared with experimentally determined C. difficile minimal medium components across three

previously published studies. Essentiality was determined for those genes and metabolites that when absent

resulted in a yield of <1.0% of optimal biomass flux during growth simulation utilizing components of the

corresponding media used experimentally.

Figure S2) Predicted core metabolic activity significantly differs between str. 630 phase variants. (A)

Sampled biomass objective flux distributions from each context-specific model. Significance determined by

Wilcoxon rank-sum test (p-value < 0.001). (B) Analysis limited to non-biomass reactions shared across

context-specific models of iCdR703. NMDS ordination of Bray-Curtis dissimilarities for flux sampling results

from core metabolic reactions. Significant difference determined by PERMANOVA.
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Figure S3) Additional microscopy of phase variant colony morphologies. (A) C. difficile str. R20291

phase variant progenitor colonies generated on solid BHIS agar following 48 hours of growth at 37° C under

anaerobic conditions. These colonies were subcultured and utilized for all subsequent defined minimal medium

experiments. (B) Subcultured colonies from the indicated conditions in Figure 3B&C onto BHIS rich agar

medium, incubated at 37° C for 48 hours anaerobically.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2020.11.09.373480doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.373480
http://creativecommons.org/licenses/by/4.0/


Figure S4) Strain 630 growth simulation and infection metabolomic results. (A) Sampled biomass

objective flux distributions from each context-specific model. Significant difference tested using Wilcoxon

rank-sum test (p-value = n.s.). (B) Mean Decrease Accuracy for top 10 most differentiating features/reactions

from Random Forest supervised machine learning for shared non-biomass reactions across context-specific

models of iCdG709. (C) Cecal concentrations of 5-aminovalerate in mock and C. difficile str. 630 infected mice

pretreated with streptomycin, 18 hours after initial colonization. Significance determined by Wilcoxon rank-sum

test; p-values = 0.003 (High spores) & 0.0001 (Low spores).
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Figure S5) Raw C. difficile str. 630 spore and vegetative cell quantification in defined media sporulation

assay. Median and IQR of C. difficile str. 630 vegetative cells and spore CFU (n = 4) after 18 hour incubation in

rich medium or minimal media (BDM) formulated with the indicated additional carbon sources (10 mg/mL

each). Significant differences calculated with Wilcoxon rank-sum test with Benjamini-Hochberg correction

(p-values < 0.05).

Table S1) GENRE creation steps, Biomass formulation, Gap-filling media compositions, and GENRE statistics.

Table S2) C. difficile 630 and R20291 PATRIC protein sequence alignment results.

Table S3) Topology summary statistics for C. difficile GENREs from AGORA and those generated here.

Table S4) Rough vs Smooth context-specific analysis of iCdR703 (str. R20291)

Table S5) High sporulation vs Low sporulation context-specific analysis of iCdG709 (str. 630).
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