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Inter-individual variability in the functional organization of the brain presents a major obstacle
to identifying generalizable neural coding principles. Functional alignment—a class of methods that
matches subjects’ neural signals based on their functional similarity—is a promising strategy for
addressing this variability. To date, however, a range of functional alignment methods have been
proposed and their relative performance is still unclear. In this work, we benchmark five functional
alignment methods for inter-subject decoding on four publicly available datasets. Specifically, we
consider three existing methods: piecewise Procrustes, searchlight Procrustes, and piecewise Op-
timal Transport. We also introduce and benchmark two new extensions of functional alignment
methods: piecewise Shared Response Modelling (SRM), and intra-subject alignment. We find that
functional alignment generally improves inter-subject decoding accuracy though the best performing
method depends on the research context. Specifically, SRM and Optimal Transport perform well
at both the region-of-interest level of analysis as well as at the whole-brain scale when aggregated
through a piecewise scheme. We also benchmark the computational efficiency of each of the sur-
veyed methods, providing insight into their usability and scalability. Taking inter-subject decoding
accuracy as a quantification of inter-subject similarity, our results support the use of functional align-
ment to improve inter-subject comparisons in the face of variable structure-function organization.

We provide open implementations of all methods used.
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1. Introduction

A core challenge for cognitive neuroscience is to find
similarity across neural diversity (Churchland 1998);
that is, to find shared or similar neural processes
supporting the diversity of individual cognitive expe-
rience. Anatomical variability and limited structure-
function correspondence across cortex (Paquola et al.
2019, Vézquez-Rodriguez et al. 2019) make this goal chal-
lenging (Rademacher et al. 1993, Thirion et al. 2006).
Even after state-of-the-art anatomical normalization to a
standard space, we still observe differences in individual-
level functional activation patterns that hinder cross-
subject comparisons (Langs et al. 2010, Sabuncu et al.
2010). With standard processing pipelines, it is there-
fore difficult to disentangle whether individuals are en-
gaging in idiosyncratic cognitive experience or if they are
engaging in shared functional states that are differently
encoded in the supporting cortical anatomy.

To address this challenge, functional alignment is an
increasingly popular family of methods for functional
magnetic resonance imaging (fMRI) analysis: from the
initial introduction of hyperalignment in Haxby et al.
2011, the range of associated methods has grown to in-
clude Shared Response Modelling (SRM; Chen et al.
2015) and Optimal Transport (Bazeille et al. 2019)
with many variations thereof (see e.g. Xu et al. 2018,
Yousefnezhad and Zhang 2017, among others). Although
this class of methods is broadly referred to as both func-
tional alignment methods and hyperalignment methods,
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we adopt the term functional alignment methods to bet-
ter distinguish from the specific Procrustes-based hyper-
alignment implementation in use in the literature.

The conceptual shift from anatomically-based to
functionally-driven alignment has opened new avenues
for exploring neural similarity and diversity. In particu-
lar, by aligning activation patterns in a high-dimensional
functional space (i.e., where each dimension corresponds
to a voxel), we can discover shared representations that
show similar trajectories in functional space but rely on
unique combinations of voxels across subjects. For a re-
view of current applications of functional alignment, see

Haxby et al. 2020.

Nonetheless, it remains unclear how researchers should
choose among the available functional alignment methods
for a given research application. We therefore aimed to
benchmark performance of existing functional alignment
methods on several publicly accessible fMRI datasets,
with the goal of systematically evaluating their usage
for a range of research questions. We consider perfor-
mance to include both (1) improving inter-subject simi-
larity while retaining individual signal structure as well as
(2) computational efficiency, as the latter is an important
consideration for scientists who may not have access to
specialized hardware. Here, we specifically focus on pair-
wise alignments wherein subjects are directly aligned to
a target subject’s functional activations. An alternative
approach is known as template-based alignment, wherein
a group-level functional template is first created and then
used as a reference space to which individual functional
activations are aligned. Although template-based ap-
proaches are an important area of research—particularly
for datasets with a large number of subjects—the ques-
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tion of how best to generate the reference template is
distinct from its alignment and beyond the scope of
the current work. For all alignment methods consid-
ered here, technically up-to-date and efficient implemen-
tations to reproduce these results are provided at https:
//github.com /neurodatascience/fmralign-benchmark.

1.1. Defining levels of analysis: region-of-interest
or whole-brain

Functionally aligning whole-brain response patterns at
the voxel level is computationally demanding and may
yield biologically implausible transformations (e.g., align-
ing contralateral regions). Therefore, currently available
functional alignment methods generally define transfor-
mations within a sub-region. This constraint acts as
a form of regularization, considering local inter-subject
variability rather than global changes such as large-scale
functional reorganization. It also divides the computa-
tionally intractable problem of matching the whole-brain
into smaller, more tractable sub-problems.

An important consideration, then, is how to define a
local neighborhood. Broadly, two main strategies exist:
(1) considering voxels within a given region of interest
(ROI) that reflects prior expectations on the predictive
pattern or (2) grouping or parcellating voxels into a col-
lection of subregions across the whole-brain. Existing
functional alignment methods have been proposed us-
ing both approaches. For example, the initial introduc-
tion of hyperalignment in Haxby et al. 2011 was eval-
uated within a ventral temporal cortex ROI and was
later extended to aggregate many local alignments into
larger transforms using a Searchlight scheme (Guntupalli
et al. 2016). Other methods such as Optimal Trans-
port have been evaluated on whole-brain parcellations
(Bazeille et al. 2019), where transforms are derived for
each parcel in parallel and then aggregated into a single
whole-brain transform. Throughout this work, we there-
fore consider functional alignment methods at both the
ROI and aggregated whole-brain level of analysis.

1.2. Quantifying the accuracy of functional

alignment

1.2.1. Image-based statistics
A key question is how to objectively measure the per-
formance of functional alignment. One approach is to
consider alignment as a reconstruction problem, where
we aim to learn a functional alignment transformation
that allows us to impute missing images in a target
subject using data from source subjects. These func-
tionally aligned maps can then be compared with held-
out ground-truth maps from the target subject. We
can quantify this comparison using image-based statistics
such as the correlation of voxel activity profiles across
tasks (Guntupalli et al. 2016, Jiahui et al. 2020), spa-
tial correlation or Dice coefficient between estimated and
held-out brain maps (Langs et al. 2014) or other met-

rics such as reconstruction ratio (Bazeille et al. 2019).
However, these image-based statistics are sensitive to
low-level image characteristics (e.g., smoothness, scal-
ing), and their values can therefore reflect trivial image
processing effects (such as the smoothness introduced by
resampling routines) rather than meaningful activity pat-
terns.

1.2.2.  Adopting a predictive framework to quantify
alignment accuracy

Rather than using image-based statistics, an alterna-
tive approach is to test functional alignment accuracy
in a predictive framework. Prior work adopting this
framework has used tests such as time-segment matching
from held-out naturalistic data (e.g., Chen et al. 2015,
Guntupalli et al. 2016). However, because time-segment
matching relies on the same stimulus class to train and
test the alignment, it is unclear whether the learnt func-
tional transformations extend to other, unrelated tasks—
particularly tasks with low inter-subject correlation (Nas-
tase et al. 2019). We are therefore specifically interested
in predictive frameworks that probe model validity by
measuring accuracy on held-out data from a different
stimulus class, with or without functional alignment.

Inter-subject decoding is a well-known problem in the
literature aimed at uncovering generalizable neural cod-
ing principles. More in detail, in inter-subject decod-
ing one learns a predictive model on a set of subjects
and then test that model on held-out subjects, mea-
suring the extent to which learned representations gen-
eralize across individuals. In an information-mapping
framework (Kriegeskorte and Diedrichsen 2019), decod-
ing allows one to assess the mutual information be-
tween task conditions. Alternate information-mapping
approaches include Representational Similarity Analysis
(Kriegeskorte et al. 2008), which assesses similarities be-
tween relative patterns of activations across task condi-
tions. In this context, functional alignment should fa-
cilitate information-mapping by increasing the similarity
of condition-specific representations across subjects, thus
improving their decoding.

Although the link between mutual information and de-
coding accuracy is non-trivial (Olivetti et al. 2011), we
consider that measuring alignment with decoding accu-
racy on unseen subjects better fulfils neuroscientists’ ex-
pectations of inter-subject alignment in two main ways.
First, decoding accuracy provides a more interpretable
assessment of performance than other measures such as
mutual information estimates. Second, decoding accu-
racy on a held-out sample provides insight into the ex-
ternal validity and therefore generalizability of derived
neural coding principles. Compared to image-based mea-
sures, decoding accuracy is thus a more rigorous measure
of whether functional alignment improves the similarity
of brain signals across subjects while also preserving their
structure and usability for broader research use cases.
In this work, we therefore quantify functional alignment
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accuracy by assessing improvements in inter-subject de-
coding when using functional alignment over and above
anatomical alignment. That is, the field-standard ap-
proach of normalizing subjects to a standardized anatom-
ical template using diffeomorphic registrations, as imple-
mented in e.g. fMRIPrep (Esteban et al. 2019).

1.3. The present study

Using this inter-subject decoding framework, we: (1)
establish that functional alignment improves decoding
accuracy above anatomical-only alignment, (2) investi-
gate the impact of common methodological choices such
as whether alignment is learned in subregions across the
whole brain or in a pre-defined region-of-interest (ROI),
and (3) compare the impact of specific alignment meth-
ods in whole-brain and ROI-based settings. We then
provide a qualitative comparison of the transformations
learnt by each method to “open the black box” and
provide insights into how potential accuracy gains are
achieved. Finally, we discuss the availability, usability
and scalability of current implementations for each of the
methods considered.

2. Materials and Methods

In this section, we first consider frameworks for aggre-
gating local functional alignment transformations into a
single, larger transform (Section 2.1.1) that can be ap-
plied at a whole-brain scale. We then proceed by intro-
ducing mathematical notations for functional alignment,
as well as the alignment methods included in our bench-
mark (Section 2.2). We next describe our procedure to
quantify alignment performance using inter-subject de-
coding (Section 2.3) and a series of experiments aimed
at investigating the impact of functional alignment on
decoding accuracy (Section 2.4). Finally, we describe the
datasets (Section 2.5) and implementations used to run
each experiment (Section 2.6).

2.1. Aggregating local alignments

2.1.1. Comparing searchlight and piecewise schemes

As discussed in Section 1.1, alignment methods are
closely linked with the definition of local correspondence
models. To align the entire cortex across subjects, two
main frameworks have been proposed: searchlight and
piecewise aggregation schemes. Each of these frame-
works use functional alignment methods to learn local
transformations and aggregate them into a single large-
scale alignment; however, searchlight and piecewise differ
in how they aggregate transforms, as illustrated in Fig-
ure 2. The searchlight scheme (Kriegeskorte et al. 2006),
popular in brain imaging (Guntupalli et al. 2018, 2016),
has been used as a way to divide the cortex into small
overlapping spheres of a fixed radius. This method al-
lows researchers to remain agnostic as to the location of

functional or anatomical boundaries, such as those sug-
gested by parcellation-based approaches. A local trans-
form can then be learnt in each sphere and the full align-
ment is obtained by aggregating (e.g. summing as in
Guntupalli et al. 2016 or averaging) across overlapping
transforms. Importantly, the aggregated transformation
produced is no longer guaranteed to bear the type of reg-
ularity (e.g orthogonality, isometry, or diffeomorphicity)
enforced during the local neighborhood fit.

An alternative scheme, piecewise alignment (Bazeille
et al. 2019), uses non-overlapping neighborhoods either
learnt from the data using a parcellation method—such
as k-means—or derived from an a priori functional or
anatomical atlas. Local transforms are derived in each
neighborhood and concatenated to yield a single large-
scale transformation. Unlike searchlight, this returns
a transformation matrix with the desired regularities.
This framework might induce staircase effects or other
functionally-irrelevant discontinuities in the final trans-
formation due to the underlying boundaries.

2.1.2. Aggregation schemes used in this benchmark

In the literature to date, searchlight and piecewise ag-
gregation schemes have both been used in conjunction
with Generalized Procrustes Analysis (detailed in section
2.2) under the names hyperalignment (Guntupalli et al.
2016) and scaled orthogonal alignment (Bazeille et al.
2019), respectively. We therefore include both search-
light Procrustes and piecewise Procrustes in our bench-
mark. Every other method is regularized at the whole-
brain level of analysis through piecewise aggregation.

As piecewise alignment is learnt within a parcellation,
an important question is: which brain atlas should be
used for piecewise alignment? In Section S4 we com-
pare results from the Schaefer et al. 2018 atlases to those
from parcellations derived directly on the alignment data.
By default, the results presented below are derived with
the 300 ROI parcellation of the Schaefer atlas unless
noted otherwise. In the case of searchlight Procrustes,
we selected searchlight parameters to match those used
in Guntupalli et al. 2016; that is, each searchlight had 5
voxel radius, with a 3 voxel distance between searchlight
centers. All searchlight analyses were implemented using
PyMVPA (Hanke et al. 2009).

2.2. Description of the benchmarked methods

As we use inter-subject decoding to compare functional
alignment methods, we only consider methods that meet
the following two criteria. First, the alignment transfor-
mations should be learnt on activations evoked during
temporally synchronized (i.e., co-occuring) task data, or
on contrasts matched across individuals. Second, the
learnt transformations must be invertible or almost in-
vertible linear mappings and applicable as-is on unseen
data with a different task structure. These two crite-
ria exclude several methods currently used in the lit-
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drawn from two subjects: from a source subject to a target subject using their synchronized alignment data A. In this
paper, each subject comes with additional decoding task data D. Red arrows describe functional alignment methods where
correspondence is learnt from A*°“"°¢ to A'*79¢ while blue arrow describes intra-subject alignment method, where we learn
correlation structure from A®°“"“® to D®*°“"““. Solid arrows indicate a transformation learnt during training. Dashed arrows
indicate when the previously learnt transformation is applied in prediction to estimate D‘*"9¢¢,
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FIG. 2. Comparing piecewise and searchlight align-
ment. In this illustration, transformations are derived for
the blue, green, and red areas separately. Note that the piece-
wise alignment does not include a green area, as this corre-
sponds to a searchlight overlapping both the red and blue
areas. For non-overlapping parcels, these transformations are
stacked into a larger orthogonal matrix. For the overlapping
searchlight, these transformations are aggregated, with over-
lapping values averaged. Note that the final transformation
for the searchlight alignment is no longer orthogonal in this
example.

erature such as regularized canonical correlation anal-
ysis (rCCA; Bilenko and Gallant 2016), gradient hyper-
alignment (Xu et al. 2018), connectivity hyperalignment
(Guntupalli et al. 2018), and methods based on Laplacian
embeddings (Langs et al. 2014).

In our whole-brain benchmark, we consider five dif-
ferent alignment methods: searchlight Procrustes (Gun-
tupalli et al. 2016, Haxby et al. 2011), piecewise Pro-
crustes, piecewise Optimal Transport (Bazeille et al.
2019), piecewise Shared Response Modelling (SRM; Chen
et al. 2015), and intra-subject correlations across tasks

(Tavor et al. 2016), here referred to as “intra-subject
alignment.” We provide a brief summary of these meth-
ods below.

2.2.1. General notations

Assume that for every subject we have alignment data
A € RP*" and decoding task data D € RP*? where n
is the number of alignment time points or frames, d is
the number of decoding task images and p is the number
of voxels. The alignment and decoding task data are
collected for both source and target subjects, which we
denote with superscripts.

In general, functional alignment methods learn a trans-
formation matrix R € RP*P that best maps functional
signals from a source subject to those of a target subject.
To do so, R can be seen as a linear mixing of source vox-
els signals such that RA%°“"¢ best matches A/79¢ R is
then applied on separate, held-out data from the source
subject, D*°%"¢¢ to estimate D?**79¢¢, Because we are only
learning an estimate of that held-out decoding task data,
we denote this Dfr9et. Thus, Dterget — RDsouree,

We consider one method, intra-subject alignment,
which uses the same alignment and decoding task data to
learn a different transformation than the one described
above. Specifically, in intra-subject alignment we are in-
terested in learning R¥™"® ¢ R™*#; that is, the “intra-
subject” correlations between A*°“"““ and D®**""*. We
can then use R™7? to output Dfer9ct = Rintre Aterget,
Thus, the main distinction here is that intra-subject
alignment does not learn a source-target mapping; in-
stead, it learns a A to D mapping within-subjects. These
notations are illustrated in Figure 1.
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2.2.2.  Procrustes

Generalized Procrustes analysis, introduced to the cog-
nitive neuroscience literature as hyperalignment (Haxby
et al. 2011), searches for an orthogonal local transfor-
mation R to align subject-level activation patterns such
that:

Rmnl.{/[ ||RA301“"567A““‘9575H%, s e R+, M c RPXP (1)
=s

where p is the number of voxels in a given region, such
that

M™™ =1, (2)

This transform can be seen as a rotation matrix mix-
ing signals of voxels in AS°"® to reconstruct the sig-
nal of voxels in A%2r8et a5 accurately as possible. We
note that hyperalignment as defined in (Haxby et al.,
2011) uses a three stage alignment-and-averaging proce-
dure to extend these Procrustes transformations into a
group-level, template-based method. In the context of
pairwise alignments, however, this method is naturally
equivalent to Procrustes. Thus, in the rest of this work
we use the terms “hyperalignment” and “Procrustes” in-
terchangeably. As described in Section 2.1.2, we compare
two whole-brain implementations of this method: piece-
wise Procrustes and searchlight Procrustes, that differ in
the way local transformations are aggregated.

2.2.8.  Optimal Transport

Optimal transport—first introduced as a functional
alignment method in Bazeille et al. 2019—estimates
a local transformation R that aligns subject-level ac-
tivation patterns at a minimal overall cost. Specifi-
cally, we can compute the cost of aligning two subject-
level activation patterns as Tr(R-C), where C is
the functional dissimilarity—or difference in activation
patterns—between source and target, as measured by a

pairwise functional distance matrix. Thus, for voxel 7 in
Asouree and voxel j in Atareet:

Ci,j (Asource, Atarget) — ||Afource _ A?argetH (3)

Importantly, the resulting matching is constrained to
exhaustively map all source voxels to all target voxels,
with every voxel having an equal weight. This implicitly
yields an invertible and strongly constrained transform,
preserving signal structure as much as possible. To allow
for a more efficient estimation, we slightly relax this con-
straint with an additional entropic smoothing term. As
introduced in Cuturi 2013, we can then find R, the reg-
ularized Optimal Transport plan by finding a minimum
for Equation 4 through the Sinkhorn algorithm.

min Tr(R-C) — eH(R) (4)
RER+I]XP;
R1=1/p, 1R =1/p

where € > 0, and the discrete entropy of the transfor-
mation H(R) is defined as:

HR) < — Y R ;(log(Ri,) — 1) (5)

.3

This method differs from Procrustes analysis in that it
yields a sparser mapping between source and target vox-
els with high functional similarity, making it less sensitive
to noisy voxels on both ends. The level of sparsity is con-
trolled by €, a user-supplied hyper-parameter, which we
set to 0.1 throughout our experiments. For our imple-
mentation, we rely on the fmralign package. Optimal
transport transformations are calculated in a piecewise
fashion, following Bazeille et al. 2019.

2.2.4. Shared Response Model

The Shared Response Model (SRM), introduced in
Chen et al. 2015, differs from Procrustes analysis and
Optimal Transport in that it naturally provides a de-
composition of all subjects’s activity at once, rather than
requiring pairwise transformations. Specifically, SRM (in
its deterministic formulation) estimates a common shared
response S € RF*™ and a per-subject orthogonal basis
Wi € RP*F from subject-level alignment data A’ such
that:

min Al - WiS|F 6
w0, 31 13 (6)

where n is the number of time points, p is the number
of voxels, and k is a hyper-parameter indexing the dimen-
sionality. The subject-specific basis W* has orthonormal
columns such that :

WITW! =1, Vi (7)

We specifically use the FastSRM implementation pro-
posed by Richard et al. 2019 and available in the
BrainlAK library (RRID: SCR.01 4824), that approx-
imates this calculation with an emphasis on improved
computational performance. For full details on the com-
putational advantages of FastSRM, we direct the reader
to their work.

In order to align our SRM implementation with the
other considered alignment algorithms, we introduce a
new piecewise SRM method to aggregate SRM transfor-
mations across the whole brain. Thus within each parcel
or across an a priori ROI, SRM decomposes the signal of
many subjects in a common basis, with the same orthog-
onality constraint as Procrustes. This ability to jointly fit
inter-subject data through orthogonal transforms makes
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it reminiscent of Procrustes, with a caveat: SRM is ef-
fective if the number of components & is large enough to
capture all distinct components in the signal.

Given the strong dependency of SRM performance
on the selected hyper-parameter k, this parameter re-
quires additional experimenter consideration. For piece-
wise SRM, we perform a grid search to select the relevant
Schaefer parcellation resolution and number of compo-
nents k (see Section S5). From these results, we chose to
use Schaefer atlas 700 and run one SRM on each parcel
searching for 50 components—or equal to the number of
voxels if less than 50 voxels are in a given parcel. For
ROI-based analyses, we set k£ to 50 components as in
our piecewise analyses and matching the original SRM
benchmarks provided in Chen et al. (2015).

2.2.5. Intra-subject alignment

Another alternative to pairwise functional alignment
has been proposed in Tavor et al. 2016. In their paper,
Tavor and colleagues show that while individual activity
patterns in each task may appear idiosyncratic, corre-
spondences learnt across different tasks using a general
linear model (e.g., to predict task data from resting-state
derived features) display less across-subject variability
than individual activity maps. This provides an inter-
esting twist on the typical functional alignment workflow:
while most methods learn alignments within a single task
and across subjects, we can instead learn within-subject
correlations across tasks. The structure of learnt task-
specific correlations should then hold in new, unseen sub-
jects. We include here a method for learning these intra-
subject correlations in a piecewise fashion, which we call
intra-subject alignment.

Figure 3 illustrates how we can learn the local-level
correlation structure between two independent tasks
Asource ¢ Rpxn pysource ¢ RPXd within a single source
subject. We denote the mapping between these tasks as
Rt to distinguish it from mappings that are learnt
between pairs of subjects.

From preliminary analyses we observed that—unlike
other piecewise techniques (Section S4)—the decoding
accuracy for intra-subject alignment strictly improved
parcellation resolution so we use the highest resolution
Schaefer atlas available (Schaefer et al. 2018). Thus,
we first divide alignment and decoding data into 1000
parcels. On a local parcel i, each voxel is considered a
sample and we train RI""® € R"*4 through ridge regres-
sion:

R{™" = arg min [|A;*""“R;—D;*""*| [} +al Ry |7 (8)
The hyperparameter « is chosen with nested cross-
validation among five values scaled between 0.1 and 1000
logarithmically.

After repeating this procedure for all source subjects,
we then use R to estimate decoding data for target
subject as Dtarget — AtargetRintra  Ag with other func-
tional alignment methods, we can evaluate the quality

of our estimation using an inter-subject decoding frame-
work.

2.3. Experimental procedure

For each dataset considered (described in Section 2.5),
we calculated the inter-subject decoding accuracy for
anatomical-only alignment and for each of the five con-
sidered functional alignment methods.

To calculate inter-subject decoding accuracy, we took
the trial- or condition-specific beta maps generated for
each dataset (see Section 2.5 for full details on beta-
map generation) and fit a linear Support Vector Ma-
chine (SVM). In order to ensure fair comparisons of de-
coding accuracy across experiments, we chose a classi-
fier with no feature selection and default model regu-
larization (C' = 1.0). Classifiers were implemented in
scikit-learn (Pedregosa et al. 2011), and decoding ac-
curacy was assessed using a leave-one-subject-out cross-
validation scheme. That is, the linear SVM was trained
to classify condition labels on all-but-one subject and the
resulting trained classifier was used without retraining on
the held-out subject, providing an accuracy score for that
cross-validation fold.

For each dataset, we first calculated the inter-subject
decoding accuracy using anatomical alignment. This
served as a baseline accuracy against which we could
compare each functional alignment method. Using align-
ment data, functional alignment transformations were
then learnt for each pairwise method, where the left-out
subject for that cross-validation fold was the target sub-
ject for functional alignment. Inter-subject decoding ac-
curacy was then re-calculated after applying functional
alignment transformations to the decoding beta maps.

In the special case of SRM—which allows for calcu-
lating an alignment from all provided subjects in a sin-
gle decomposition—we withheld the left-out subject from
the shared response estimation step to avoid data leak-
age. The projection of the left-out subject is then learnt
from previously estimated shared space. Finally, the
learnt projections are applied to the decoding data, and
decoding is performed on the projected data.

For each cross-validation fold, we report the inter-
subject decoding accuracy of a given functional align-
ment method after subtracting the baseline, anatomical-
only accuracy for that same fold. An overview of the
experimental procedures is provided in Figure 4.

2.4. Main experiments

FExperiment 1 uses the experimental procedure de-
scribed previously to assess accuracy gains provided by
alignment methods with respect to anatomical alignment
when applied on whole-brain images. We benchmarked
the five methods described in Section 2.2: piecewise Pro-
crustes, searchlight Procrustes, piecewise Optimal Trans-
port, piecewise SRM, and intra-subject alignment, with
relevant hyperparameters selected as described previ-
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FIG. 3. Intra-subject alignment. Using intra-subject alignment to learn piecewise correlations between a single subject’s
alignment and decoding task data. As with other piecewise methods, this mapping is learnt separately for all parcels i...j
of the chosen parcellation. For the ith parcel, voxels are samples used to train a cross-validated ridge regression R’ to map
between the two task conditions—alignment data A; and independent decoding task data Dj;—for this source subject. We
then aggregate these piecewise predictions into a single, whole-brain prediction D. In training, this prediction can be directly

compared to the ground-truth decoding data, D. When testing, we would have access to the target subject’s alignment data
A but not their decoding task data, D.
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FIG. 4. Analysis pipeline. (A) First-level general linear models are fit for each subject to derive trial- or condition-specific
beta-maps for each session. (B) These beta maps and their matching condition labels are used to train a linear SVM on the
training set of subjects. (C) The trained classifier is applied on a held-out test subject, and accuracy is assessed by comparing
the predicted and actual condition labels. (D) On a separate task, we compare subject-level activation patterns as trajectories
in the high-dimensional voxel space. This allows us to learn functional alignment transformations that maximize the similarity
of these high-dimensional spaces. (E) These voxel-wise transformations are applied on the decoding beta maps, and a new

linear SVC is trained to predict condition labels. This trained classifier can then be applied to the held-out test subject and
decoding accuracy assessed as in (C).
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ously. Results of this benchmark (on five tasks from
four datasets as described in Section 2.5) are presented
in Section 3.1. For each method, we also assessed its
computation time relative to piecewise Procrustes align-
ment. Piecewise Procrustes provides a reasonable com-
putational baseline as it is the only considered align-
ment method that does not include a hyperparameter
and therefore shows a stable computation time across
experiments.

We estimate the noise ceiling for this task as within-
subject decoding accuracy. Within-subject decoding was
calculated separately for each subject as the average
leave-one-session-out decoding accuracy. We can then
directly compare this accuracy value to the inter-subject
decoding accuracy when that subject is the target—that
is, the left-out—subject. The difference between within-
and anatomical inter-subject decoding accuracies, then,
is a good approximation of the decoding accuracy lost
due to inter-subject variability; therefore, it provides a
range of possible accuracy gains that can be expected
from functional alignment.

We then conducted Fxperiment 2 to understand how
whole-brain results compare to ROI-based analyses.
Specifically, we replicated Ezperiment 1 within selected
ROIs, such that local alignment methods were applied
directly without any aggregation scheme. ROIs were cho-
sen based on a priori expectations of each decoding task
(see Section 2.5 for details for each dataset). Results from
Experiment 2 are shown in Section 3.2.

Experiment 3 tackles the notoriously hard problem of
understanding how each of the considered methods align
subjects by examining qualitatively their impact on ac-
tivity patterns across individuals. To “open the black-
box,” we reused IBC dataset full-brain alignments learnt
in Ezperiment 1. Specifically, we consider the transfor-
mation to sub-04’s activity pattern from all other sub-
jects’s functional data. With these transformations, we
align two contrasts from each of the two decoding tasks
of the IBC dataset: Rapid Serial Visual Presentation of
words (RSVP language task) and sound listening. Fi-
nally, we run a group conjunction analysis (Heller et al.
2007) on these four aligned contrasts and visualize the
results. This statistical analysis, more sensitive than its
random effect equivalent on small samples, allows one to
infer that every subject activated in the region with a
proportion v showing the effect considered. Here we use
v = 0.25 to recover all regions selectively activated by at
least a few subjects, and we show in Section 3.3 how this
group functional topography is modified by alignment.

2.4.1. Control analyses

In addition to our three main experiments, we ran
three additional control analyses on the IBC dataset.
First, we aimed to assess the impact of the brain parcella-
tion and its resolution on piecewise alignment by compar-
ing whole-brain decoding accuracy for two IBC dataset
tasks using piecewise Procrustes across both data-driven

and pre-defined parcellations (Section S4). As piecewise
SRM displays an interaction between parcellation resolu-
tion and the method-specific hyperparameter k, we ran
an additional grid search for this algorithm to determine
its optimal experimental parameters (Section S5).

Second, we calculated inter-subject decoding perfor-
mance after applying Gaussian smoothing kernels of sev-
eral widths on both IBC dataset decoding tasks (Sec-
tion S6). Gaussian smoothing is of particular interest as
a comparison to functional alignment, as it is commonly
used to facilitate inter-subject comparisons by smoothing
over residual variance in functional mappings. Finally,
in a third control experiment, we assessed the impact of
whether data is represented on the surface or the volume
and resolution on decoding accuracy in the IBC RSVP
language task (Section S7).

2.5. Datasets and preprocessing

In order to assess the performance of each functional
alignment method in a range of applications, we searched
for publicly accessible datasets that included both a task
suitable to learn the alignment (e.g. naturalistic or local-
izer protocols) as well as an independent decoding task
on which we could evaluate functional alignment perfor-
mance. After discarding datasets where we could not
obtain above-chance accuracy levels for within-subject
decoding, we retained four datasets: BOLD5000 (Chang
et al. 2019), Courtois-NeuroMod (Boyle et al. 2020), In-
dividual Brain Charting (IBC; Pinho et al. 2018), and
Study Forrest (Hanke et al. 2016). For the IBC dataset,
we included both a language (RSVP language) and audi-
tory (Sounds dataset) decoding task, yielding a total of
five decoding tasks that probe visual, auditory and lan-
guage systems. For a complete description of the align-
ment and decoding data included in each experiment,
please see Table 1.

BOLD5000, StudyForrest and Courtois-NeuroMod
were preprocessed with fMRIPrep (Esteban et al. 2019),
while IBC data were preprocessed using an SPM-based
pipeline as described in Pinho et al. 2018. A complete
description of the fMRIPrep preprocessing procedures is
available in the appendix (Section S1). Preprocessed
data were then masked using a grey matter mask, de-
trended, and standardized using Nilearn (Abraham et al.
2014). To reduce the computational cost of functional
alignment, we downsampled all included datasets to 3mm
resolution. Both alignment and decoding task data were
then additionally smoothed with a 5mm Gaussian ker-
nel. A general linear model (GLM) was fit to each de-
coding task run to derive trial-specific beta maps (or
condition-specific beta maps for the Courtois Neuromod
and IBC Sounds tasks), which were carried forward for
inter-subject decoding.

As described in Section 2.3, Experiment 2 uses pre-
defined regions of interest (ROIs). We selected large,
task-relevant ROIs to ensure that sufficient signal was
available when decoding. A large visual region, extracted
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9
Dataset S Alignment data Decoding task Decoding categories d
Individual Brain 10 Contrast maps from HCP and RSVP Language | Words, Non-Words, Consonants, 360
Charting ARCHI task batteries Sentences, Jabberwocky
Sounds dataset Voice, Nature, Animal, Music, 72
Speech, Tools
BOLD5000 4 COCO, ImageNet, and Scenes Imagenet images Plant, Animal, Food, Artifact 350
images content
Forrest 10 Forrest Gump audio-movie 1600 Music genre Country, Metal, Ambient, 200
listening Symphonic, Rock
Courtois 6 Life movie watching 2008 | Visual n-back Body 0-back, Body 2-back, Face 72
Neuromod condition 0-back, Face 2-back, Place 0-back,
Place 2-back, Tools 0-back, Tools
2-back

TABLE I. Datasets used to benchmark alignment methods. The four datasets used in this benchmark, where each
dataset consists of S subjects. We note the alignment data used for each dataset and p the number of timeframes it comprises.
These datasets show the range of possible task structures which work for alignment—from static images for BOLD5000, to
statistical contrast maps for IBC, to complex audio or audio-visual movies for Forrest and Courtois Neuromod. A full listing of
included 53 contrast maps for IBC is included in Section S8. We also include the decoding task(s) used for each dataset. Each
subject’s decoding task data comprises d images evenly divided across the listed stimulus categories (except for BOLD5000
categories that are unbalanced). Of note, IBC dataset has two independent decoding tasks, bringing the total number of

decoding tasks to five.

from the Yeo7 (Buckner et al. 2011) atlas was used for
the visual tasks in BOLD5000 and Courtois-NeuroMod.
For Forrest and IBC Sounds—which are auditory tasks—
we took the Neuroquery (Dockes et al. 2020) predicted
response to the term “auditory”. We then compared this
predicted response with the BASC (Bootstrap Analysis
of Stable Clusters) atlas (at scale 36; Bellec et al. 2010)
and took the parcel most overlapping with the predicted
response; namely, parcel 25. For IBC RSVP, which is
a reading task, we extracted the BASC (at scale 20)
atlas components most overlapping with MSDL (Multi-
Subject Dictionary Learning; Varoquaux et al. 2011) at-
las parcels labeled as left superior temporal sulcus, Broca
and left temporo-parietal junction: namely, the 8 and 18
BASC components. We then kept only the largest con-
nected component. All included ROIs are displayed in
Figure 7.

2.6. Implementation

With the exception of Courtois Neuromod, all other
included datasets are available on OpenNeuro (Poldrack
et al. 2013) under the following identifiers: ds000113
(Study Forrest), ds001499 (BOLD5000), and ds002685
(IBC). Courtois Neuromod 2020-alpha2 release will be
available under a data usage agreement as outlined on
https://docs.cneuromod.ca.

Our pipeline entirely relies on open-source Python soft-
ware, particularly the SciPy stack (Virtanen et al. 2020).
All included methods are implemented in fmralign or
accessed through their original, open source implementa-
tions as described in Section 2.2. To ease replication and

extension of the presented results, we have created the
fmralign-benchmark repository under https://github.
com/neurodatascience/fmralign-benchmark. This repos-
itory provides an implementation of the procedures
adopted in these experiments, building on fmralign and
previously cited tools.

3. Results

3.1. Functional alignment improves inter-subject
decoding

The left panel of Figure 5 displays absolute decod-
ing accuracy change brought by each functional align-
ment method relative to anatomical alignment on whole-
brain images. As every method is trained and tested
on the same cross-validation folds, we report the fold-
by-fold performance change. The right panel displays
each method’s relative computation time compared to
piecewise Procrustes alignment. For each panel, each
point displayed is the result for one leave-one-subject-
out cross validation fold and each color corresponds to
one of the five decoding tasks. Note that these timings
are based on available implementations — fmralign for
piecewise alignment methods, pymvpa2 for searchlight,
and BrainIAK for SRM— and are therefore subject to
change as implementations improve. Nonetheless, these
estimates provide insight into the current state-of-the-
art.
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FIG. 5. Decoding accuracy improvement and computation time after whole-brain functional alignment. In the
left panel, we show decoding accuracy improvement for each of the considered functional alignment methods at the whole-
brain level of analysis. Each dot represents a single subject, and subjects are colored according to their decoding task. To
aggregate results across datasets, we show accuracy scores after subtracting inter-subject decoding accuracy for the same leave-
one-subject-out cross-validation fold with anatomical-only alignment. In the right panel, we show the computational time for
each of the considered methods. All computation times are depicted as relative to piecewise Procrustes. For both panels, each
box plot describes the distribution of values across datasets, where the green line indicates the median. All methods seem
to improve decoding accuracy across datasets, especially piecewise Shared Response Model, piecewise Optimal Transport and
piecewise Procrustes. We also see that piecewise Optimal Transport and searchlight Procrustes are respectively 7 and 25 times

slower than piecewise Procrustes.

3.1.1. Alignment substantially improves inter-subject

decoding accuracy

Overall, we see that most functional alignment meth-
ods consistently improve decoding accuracy, with gains
from 2-5% over baseline. This trend is relatively consis-
tent across datasets and target subjects. Thus, alignment
methods manage to reliably reduce individual signal vari-
ability while preserving task-relevant information in a va-
riety of conditions. Although there is noticeable variance
in performance across data sets, these methods generally
show significant effects on inter-subject decoding accu-
racies. As reported in Table S1, baseline accuracy is
around 20% above chance on average. In this setting,
the observed 5% average improvement across datasets is
a substantial increase in performance.

In order to provide further context for these results, we
also estimated the noise ceiling for inter-subject decod-
ing. Figure 6 reports that across datasets, the leave-one-
session-out (i.e., within-subject) decoding accuracy for
the target subject is on average 8.5% higher than the cor-
responding leave-one-subject-out (i.e., inter-subject) de-
coding accuracy after anatomical alignment for the same
target subject. Thus, we expect that functional align-
ment methods will achieve at most an 8.5% increase in
inter-subject decoding accuracy over anatomical align-
ment. In this light, we can see that the best functional

alignment method recovers more than half of the decod-
ing accuracy lost to inter-subject variability.

Additional control analyses suggest that this effect can-
not be explained by smoothing (Section S6). We further
find that the presented results are largely insensitive both
to whether the data is represented on the cortical surface
or in volumetric space as well as to the parcellation res-
olution used (see section S7).

3.1.2. Piecewise methods show computational and accuracy
advantages

Procrustes alignment results in better inter-subject de-
coding accuracies when performed in a piecewise as com-
pared to a searchlight approach. Specifically, searchlight
Procrustes shows lower decoding accuracies on average,
suggesting that its internal averaging destroys part of the
signal structure recovered by Procrustes. With respect
to computational cost, we can see that searchlight Pro-
crustes is 25 times slower on average than piecewise Pro-
crustes. These results suggest that piecewise alignment
is a better choice when calculating functional alignment
transformations on full-brain data. Moreover, Section S4
shows that gains from piecewise alignment are largely in-
sensitive to the resolution and type of parcellation used;
i.e., taken from an atlas or learnt directly from subject
data.
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FIG. 6. Within-subject minus inter-subject decod-
ing accuracy. We show the difference between the average
leave-one-session-out within-subject decoding accuracy and
anatomically-aligned leave-one-subject-out inter-subject de-
coding accuracy, when that target subject is left-out. Thus,
each dot corresponds to a single subject, and the dot’s color
indicates the decoding task. Of note, BOLD5000 was dropped
as it did not have independent folds, and therefore could not
be used for within-subject cross-validation. The box plot de-
scribes the distribution of differences, where the green line
represents the median value. Considering that this differ-
ence approximates the effects of inter-individual variability,
the best average accuracy improvement one can hope for us-
ing functional alignment is around 9%.

The two best performing alignment methods also use
a piecewise aggregation scheme. Specifically, piecewise
SRM and Optimal Transport yield the highest decoding
scores, with a slightly lower standard deviation in accu-
racy scores than Procrustes.

Piecewise SRM is the best performing method and
faster to train than piecewise Procrustes for a fixed set
of hyperparameters; however, identifying the ideal hyper-
parameters for a new dataset requires a computationally
costly grid-search. Our results (see Section S5) suggest
that, in general, a large number of components k and a
high-resolution parcellation are likely to give reasonable
performance across datasets.

The second best performing method, Optimal Trans-
port, gives non-trivial accuracy gains in most config-
urations and only rarely decreases decoding accuracy,
likely because of the stronger constraints that it imposes.
However, this extra-performance comes at a computa-
tional cost: it is on average 7 times slower than Pro-
crustes. For data sets without sufficient data or compu-
tational power to perform a hyper-parameter grid search
for piecewise SRM, we suggest that Optimal Transport
offers robust decoding performance with little hyper-
parameter tuning. It remains, however, more compu-
tationally costly than the reference implementation of
piecewise Procrustes.

3.1.83. Task-specific mappings can be learnt within subjects

The intra-subject alignment approach differs from
other considered functional alignment methods in that it
learns mappings between the alignment data and decod-
ing task data, with the assumption that these mappings
can be generalized across subjects. Our results support
this assumption, although this method yields gains half
as large as the best performing alignment method and
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comes with a significant computational cost. Part of this
cost can be accounted for by the increase in the num-
ber of parcels that are used to preserve signal specificity.
Nonetheless, using task-specific mappings as a functional
alignment method suggests that future work on refining
related methods may be a promising direction of research.

3.2. Whole-brain alignment outperforms
ROI-based alignment

The left panel of Figure 7 displays the performance of
each functional alignment method relative to anatomi-
cal alignment within task-relevant ROIs. The right panel
displays each method’s relative computation time com-
pared to piecewise Procrustes alignment.

When visually compared to Figure 5, ROI-based de-
coding accuracies appear to be slightly lower than whole-
brain decoding accuracies for most of the methods con-
sidered. We directly compare ROI-based and whole-brain
alignment in a supplementary analysis, depicted in Fig-
ure S1, confirming that ROI-based decoding accuracies
are in fact lower on average for the datasets considered
in this work. Our results support previous work from
the inter-subject decoding literature (Chang et al. 2015,
Schrouff et al. 2018) and suggest that full-brain piece-
wise alignment yields the best overall decoding pipeline,
though we note that this conclusion may change depend-
ing on the exact research context.

8.2.1. Optimal Transport and SRM show high ROI
performance

Overall, we find that the best performing methods
bring a 3-5% improvement in decoding accuracy at the
ROI level of analysis. Specifically, Optimal Transport
is on average the best performing method, with a me-
dian accuracy increase of 5% within task-relevant ROIs.
Here, we see that baseline decoding accuracy is less than
10% above chance in all datasets (with the exception of
Courtois Neuromod; see Table S2 for exact accuracy val-
ues). Thus, the 5% accuracy increase brought by Optimal
Transport represents a strong effect.

SRM yields the second best performance within ROIs,
showing reasonable decoding accuracy gains on most
datasets. It shows more variance across datasets, how-
ever, than the other considered methods. In particular,
SRM decreases inter-subject decoding accuracy on the
visual ROI for Courtois Neuromod, with accuracy values
dropping by approximately -20% compared to anatomical
alignment (see Table S2). Performance was not signifi-
cantly improved by using a higher number (up to 600)
components, highlighting the unique difficulty in iden-
tifying well-suited hyper-parameters for SRM. Interest-
ingly, Procrustes shows substantially lower performance
on average in the ROI compared to the whole-brain level
of analysis, especially on large ROIs, possibly due to its
weak regularization.

Computationally, we see that SRM is the fastest
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method and runs roughly 3 times faster than Procrustes,
while Optimal Transport remains 10 times slower than
Procrustes.

We also note that—on average—intra-subject align-
ment does not show increased inter-subject decoding ac-
curacy within task-relevant ROIs. We suspect that this
is likely because when restricting the learnt relationship
between data types (e.g. movie-watching to classification
task data) to a single ROI, the low number of predicted
features precludes the identification of stable multivari-
ate patterns that can transfer across subjects.

3.3. Qualitative display of transformations learnt
by various methods

Understanding the effects of high-dimensional
transformations—such as those wused in functional
alignment—is non-trivial. To aid in this process, we
“open the black box” by functionally aligning a group
of subjects to an individual target subject’s functional
space and depict the resulting maps in Figure 8. Here,
we reuse whole-brain alignments learnt in Fxperiment 1.

We also display the ground-truth individual activation
maps in panel A, in order to better highlight how each
method affects the signal distribution. As a reminder,
the contrast data displayed here was not used to learn
alignments, so it means that alignment learnt on various
task data, not specifically related to language nor audi-
tion carried enough information for fine-grain registration
of these networks.

We can see that overall, functional alignment methods
enhance group-level contrasts compared to anatomical-
only alignment; i.e., activation maps are more similar
across functionally-aligned subjects. This result is not at
the expense of signal specificity, since the aligned group
topographies are still sharp. From the comparison be-
tween panels A and B, one can also conclude that align-
ment methods bring group topography much closer to
the targeted subject topography across the considered
contrasts. Nonetheless, one can still observe that there
seems to be a trade-off between sharpness of activation
(low smoothness of image, due to low variance across
aligned subjects) with Optimal Transport, and accuracy
of their location compared to the target ones (low bias
introduced by the matching) with searchlight Procrustes.

4. Discussion

In this work, we have proposed a new procedure to
measure the information recovered through functional
alignment using inter-subject decoding, and we subse-
quently used this framework to benchmark five functional
alignment methods on five distinct decoding tasks across
four publicly available datasets.

In general, we find that functional alignment improves
inter-subject decoding accuracy in both whole-brain and
ROTI settings. These results, combined with our quali-
tative visualization of the effects of functional alignment
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on signal structure, suggest that functional alignment im-
proves inter-subject correspondence while matching sig-
nal to realistic functional topographies. This finding ex-
tends and supports conclusions from earlier work (Giigli
and van Gerven 2015, Guntupalli et al. 2016).

At a whole-brain scale, the best performing methods
are piecewise SRM, piecewise Optimal Transport, and
piecewise Procrustes which each bring 5% improvement
over baseline on average. As the baseline inter-subject
decoding accuracy is roughly 20% above chance across
datasets (Table S1), this 5% increase represents a sub-
stantial improvement. We also note that this represents
recovering more than half of the accuracy lost to inter-
subject variability.

The considered functional alignment methods also im-
prove decoding performance when applied without an ag-
gregation scheme (i.e., piecewise or searchlight aggrega-
tion) within task-relevant ROIs. Here, Optimal Trans-
port and SRM bring 5% and 3% improvement in inter-
subject decoding accuracy, respectively, over a baseline
accuracy which is on average 10-15% above chance across
datasets (Table S2).

From our control analyses, we observe that these in-
creases in decoding accuracy were reliably greater than
the effect of Gaussian smoothing (see section S6). In a
minimalistic replication, this effect seems to hold for both
volumetric and surface data and at different parcellation
resolutions (see section S7; cf. Oosterhof et al. 2011).

Our benchmark also brings new evidence that the la-
tent correspondences that can be learnt between differ-
ent tasks display less inter-individual variability than the
task-specific activation maps (Tavor et al. 2016). Ex-
periment 1 indeed showed that such correspondences
could even be used at a whole-brain scale to transfer
signals subjects to solve an inter-subject decoding prob-
lem, which is—to the best of our knowledge—an original
experimental result. By releasing efficient and accessible
implementations of these methods in the fmralign pack-
age, we hope to facilitate future cognitive neuroscience
research using functional alignment methods.

4.1. Combining local alignment models

Across datasets, we find that the aggregation scheme
for alignment significantly affects subsequent perfor-
mance. Notably, piecewise Procrustes outperforms
searchlight Procrustes, both in terms of accuracy as well
as computational performance. The methodological dif-
ference between these aggregation schemes is whether
alignment transformations are learnt within overlapping
neighborhoods (as in searchlight Procrustes) or not (as
in piecewise Procrustes). Searchlight alignment suffers in
that the overlap between searchlights requires multiple
computations for a given neighborhood, and the aggre-
gated transformation is no longer guaranteed to reflect
properties of the original transforms, e.g. orthogonality.
Although piecewise aggregation may theoretically intro-
duce discontinuities at parcel boundaries, in our results
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FIG. 7. Decoding accuracy improvement and computation time after ROI-based functional alignment. In the left
panel, we show decoding accuracy for each of the considered local functional alignment methods at the ROI level of analysis.
The ROIs used for each dataset are displayed on the far right. Each dot represents a single subject, and subjects are colored
according to their decoding task. Rather than raw values, we show accuracy scores after subtracting inter-subject decoding
accuracy for the same leave-one-subject-out cross-validation fold with anatomical-only alignment. Note that all methods are
applied without aggregation, so only the method name is given. In the right panel, we show the computational time for each
of the considered methods. All computation times are depicted as relative to piecewise Procrustes. For both panels, each box
plot describes the distribution of values where the green line indicates the median.

we do not find evidence of this effect and indeed find
that piecewise aggregation overall benefits decoding per-
formance. Importantly, we found that the improved per-
formance of piecewise Procrustes was largely insensitive
to parcel size and definition (see Figure S2).

4.2. Evaluating alignment performance with
decoding

We use inter-subject decoding to quantify the amount
of information recovered by functional alignment meth-
ods. In general, identifying publicly available datasets
with tasks appropriate for both inter-subject decoding as
well as functional alignment remains a challenge. Beyond
the four datasets included in these results, we investi-
gated several other publicly available datasets such as the
Neuroimaging Analysis Replication and Prediction Study
(NARPS; Botvinik-Nezer et al. 2020),the Healthy Brain
Network Serial Scanning Initiative (HBN-SSI; O’Connor
et al. 2017), the interTVA dataset (Aglieri et al. 2019,
available as Openneuro ds001771) and the Dual Mecha-
nisms of Cognitive Control Project (DMCC, Etzel et al.
2021).

We had difficulties in achieving sufficient baseline ac-
curacy levels in these and other datasets, and we there-
fore chose not to include them in the present study.
This suggests that the amount of signal discriminating
complex experimental conditions is not strong enough

to find inter-subject patterns robust to variability in
many publicly available datasets, likely due to lim-
ited sample sizes and unoptimized experimental de-
signs. We hope that broader recognition of the ben-
efits of using inter-subject decoding to uncover neural
coding principles across subjects—using functional align-
ment if necessary—will encourage investigators to collect
and share more datasets supporting this type of anal-
ysis. Greater data availability will encourage robust,
principled comparisons of alignment methods and foster
progress in the field.

4.3. Study limitations and future directions

Although our study provides a broad evaluation of
the performance of several functional alignment methods,
there are several dimensions which we hope future work
will better address. Notably, we did not thoroughly inves-
tigate how alignment performance is impacted by image
resolution and whether data are represented on the sur-
face or the volume. Using volumetric images downsam-
pled to a standard resolution of 3mm isotropic enabled
us to make fair comparisons across datasets at a reason-
able computational cost. We also show in Section S7 that
results from piecewise Procrustes alignment on the IBC
dataset hold in a higher resolution, surface-based setting.
Nonetheless, other functional alignment methods might
show different patterns of performance in this setting or
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FIG. 8. Comparison of alignment methods geometrical effects. (A) Activation patterns for the Target subject (IBC
sub-04) for two contrasts from the IBC Sounds task (Speech > Silence, Voice > Silence) and IBC RSVP task (Sentence >
Word, Word > Consonants). Here, we only show contrast maps from a sub-region of the temporal lobe containing contrast-
relevant information. Note that this sub-region differs slightly between the Sounds and RSVP task. (B) Visualization of a group
conjunction analysis of all IBC subjects after alignment to the target subject for each of the considered methods. We used a
~ value of 0.25 in the group conjunction analysis, which corresponds to at least 25% of the IBC sample showing activation in
this temporal region after alignment. For ease of comparison, the colorbar for each contrast and method was scaled to show
the full range of values (i.e., the colorbar spans different interval across methods and contrasts) and so is not included here. All
displayed maps were thresholded at 1/3 of their maximum value. We see that functional alignment yields stronger contrasts
overall when compared to anatomical alignment. Piecewise Procrustes and piecewise Optimal Transport yield less smooth
representations, better preserving signal specificity.

at different resolution levels. Moreover, applying these Model—seem to be particularly promising directions.

methods on high-resolution images is an exciting perspec-
tive to better understand how brain function details vary
across subjects. To progress in this direction, a stronger
focus on developing computationally efficient methods
will be needed. The use of high-resolution parcellations—
combined with more efficient implementations of piece-
wise Optimal Transport or a piecewise Shared Response

We have not examined either the impact of alignment
data on the learnt transformations or whether this im-
pact varies across cortex. That is, we could further ask
whether certain kinds of stimuli may produce more ac-
curate functional alignments for specialized functional
regions. In general, the surveyed functional alignment
methods view each subject alignment image as a sam-
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ple, and the resulting transformation is trained to match
corresponding samples across subjects. If some training
images lack stable signal in a given ROI, functional align-
ment methods are unlikely to learn meaningful transfor-
mations in this region. Finally this benchmark largely
focused on pairwise alignment models. Template-based
models—beyond latent factor models as SRM—are an
important area of research to further improve the us-
ability of functional alignment methods, particularly in
research settings with a large number of subjects. In fu-
ture work, we intend to address the above questions to
learn more about when functional alignment methods are
most appropriate.

5. Conclusion

In the present work, we have provided an extensive
benchmark of five popular functional alignment meth-
ods across five unique experimental tasks from four pub-
licly available datasets. Assessing each method in an
inter-subject decoding framework, we show that both
Shared Response Modelling (SRM) and Optimal Trans-
port perform well at a region-of-interest level of analy-
sis, as well as at the whole-brain scale when aggregated
through a piecewise scheme. Our results support pre-
vious work proposing functional alignment to improve
across-subject comparisons, while providing nuance that
some alignment methods may be most appropriate for a
given research question. We further suggest that identi-
fied improvements in inter-subject decoding demonstrate
the potential of functional alignment to identify general-
izable neural coding principles across subjects.
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