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Abstract
Humans and non-human animals show great flexibility in spatial navigation, including the ability to return to specific
locations based on as few as one single experience. To study spatial navigation in the laboratory, watermaze tasks,
in which rats have to find a hidden platform in a pool of cloudy water surrounded by spatial cues, have long been
used. Analogous tasks have been developed for human participants using virtual environments. Spatial learning in
the watermaze is facilitated by the hippocampus. In particular, rapid, one-trial, allocentric place learning, as measured
in the Delayed-Matching-to-Place (DMP) variant of the watermaze task, which requires rodents to learn repeatedly
new locations in a familiar environment, is hippocampal dependent. In this article, we review some computational
principles, embedded within a Reinforcement Learning (RL) framework, that utilise hippocampal spatial representations
for navigation in watermaze tasks. We consider which key elements underlie their efficacy, and discuss their limitations
in accounting for hippocampus-dependent navigation, both in terms of behavioural performance (i.e., how well do
they reproduce behavioural measures of rapid place learning) and neurobiological realism (i.e., how well do they
map to neurobiological substrates involved in rapid place learning). We discuss how an actor-critic architecture,
enabling simultaneous assessment of the value of the current location and of the optimal direction to follow, can
reproduce one-trial place learning performance as shown on watermaze and virtual DMP tasks by rats and humans,
respectively, if complemented with map-like place representations. The contribution of actor-critic mechanisms to DMP
performance is consistent with neurobiological findings implicating the striatum and hippocampo-striatal interaction in
DMP performance, given that the striatum has been associated with actor-critic mechanisms. Moreover, we illustrate
that hierarchical computations embedded within an actor-critic architecture may help to account for aspects of flexible
spatial navigation. The hierarchical RL approach separates trajectory control via a temporal-difference error from goal
selection via a goal prediction error and may account for flexible, trial-specific, navigation to familiar goal locations, as
required in some arm-maze place memory tasks, although it does not capture one-trial learning of new goal locations,
as observed in open field, including watermaze and virtual, DMP tasks. Future models of one-shot learning of new goal
locations, as observed on DMP tasks, should incorporate hippocampal plasticity mechanisms that integrate new goal
information with allocentric place representation, as such mechanisms are supported by substantial empirical evidence.
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1 Introduction

Successful spatial navigation is required for many everyday
tasks: animals have to find food and shelter and remember
where and how to find these, humans need to navigate
to work, home or to the supermarket. Since natural
environments are inherently heterogeneous and subject to
continuous change, animal brains have evolved robust and
flexible solutions to solve challenges in spatial navigation.

In the mammalian brain, and to some extent also the
avian brain (Colombo and Broadbent 2000; Bingman and
Sharp 2006), the hippocampus has long been recognised to
play a central role in place learning, memory and spatial
navigation, based on the behavioural effects of lesions
and other manipulations of the hippocampus (Morris et al.
1982, 1986, 1990) and based on the spatial tuning of certain
hippocampal neurons, so-called place cells (O’Keefe and
Dostrovsky 1971; Moser et al. 2017; O’Keefe 2014; Jeffery
2018). Studies combining hippocampal manipulations

with behavioural testing in rodents have revealed that the
hippocampus is particularly important for flexible spatial
navigation based on rapid allocentric place learning, in
which places are learned based on their relationship to
environmental cues (Morris et al. 1990; Eichenbaum 1990;
Steele and Morris 1999; Bast et al. 2009).

Animal experiments on spatial navigation have been
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complemented by tools from theoretical and computational
neuroscience. Many theoreticians have targeted spatial
navigation problems, either trying to reproduce behaviours
(Dayan 1991; Banino et al. 2018) or to explain properties
of neurons that show spatial tuning, including hippocampal
place cells (Samsonovich and McNaughton 1997; O’Keefe
and Burgess 1996; Fuhs and Touretzky 2006; Widloski and
Fiete 2014; Banino et al. 2018). Some have also studied
the functional properties of network representations of
neural computations. For example, exploring how static
attributes such as place coding can lead to or be integrated
within network dynamics (Kanitscheider and Fiete 2017), or
have probed the storage capacity of spatial representations
(Battaglia and Treves 1998).

In a spatial navigation context, most real-world situations
involve choosing a behavioural response that leads to a
goal location associated with a reward. These could be
direct rewards, such as food, or escape from an unpleasant
situation, e.g. escape from water in the watermaze.
Successful navigation requires animals to distinguish diverse
cues in their environment, to encode their own current
position, to access a memory of where the goal is, to
choose an appropriate trajectory and to recognise the goal
and its vicinity. Learning how to reach a goal location
is a problem that, in principle, fits very well within a
Reinforcement Learning (RL) context. RL commonly refers
to a computational framework that studies how intelligent
systems learn to associate situations with actions in order
to maximise the rewards within an environment (Sutton
and Barto 2018). When applied to spatial navigation, a RL
model can be used to infer how neuronal representations
of space, as revealed by electrophysiological recordings,
may serve to maximise reward (Foster et al. 2000; Banino
et al. 2018; Gerstner and Abbott 1997; Corneil and Gerstner
2015; Russek et al. 2017; Dollé et al. 2018). RL models have
led to numerous successes in understanding how biological
networks could produce observed behaviours (Haferlach
et al. 2007; Frankenhuis et al. 2019), yet there are still
substantial challenges in using RL approaches to account for
animal behaviour, such as hippocampus-dependent flexible
navigation based on rapid place learning.

The aim of this paper is to review RL models that may
account for hippocampus-dependent rapid place learning,
especially as seen in the watermaze DMP task. We will
especially focus on an exemplar approach to this problem
proposed by Foster et al. (2000). In section 2, we review
briefly some key experimental findings on the involvement
of the hippocampus in spatial navigation tasks in the
watermaze, highlighting its particular importance in rapid
place learning. Section 3 contains an overview of the
key concepts in RL. Section 4 describes the first part of
the model by Foster et al. (2000), a RL architecture that
provides a computational approach to how a place can
become associated with a reward. We present a detailed
description of the computations underlying the behaviour of
the model and their possible biological substrates, which we
hope may make the model more accessible to neuroscientists
without a strong neurocomputational background. Then,
we focus on two minimal extensions to this architecture
that enable adaptation to a changing reward location. The
first one involves a map-like representation of location

that enables vector-based navigation and was proposed
by Foster et al. (2000), we show that this extension can
reproduce key measures of rapid place learning performance
on the DMP task, including sharp latency reductions from
trial 1 to 2 (Steele and Morris 1999), and also the more
recent finding that rats show search preference for the
correct location within one trial (Bast et al. 2009). The
second uses ideas drawn from hierarchical RL (Botvinick
et al. 2009; Schweighofer and Doya 2003), in which
adding layers of control allows the agent more flexible
behaviours. We discuss details of these computations,
their correspondence to neurobiological findings, and the
plausibility of their implementation, in particular to account
for rapid place learning within an artificial watermaze
set-up. In the concluding section 5, we emphasise some of
the computational principles that we propose hold particular
promise for neuropsychologically realistic models of rapid
place learning in the watermaze.

2 Flexible hippocampal spatial navigation

Humans and other animals show remarkable flexibility
in spatial navigation. In this context, flexibility refers to
the ability to adjust to a changing environment, such as
the variation in the goal or start location (Tolman 1948).
Watermaze tasks, in which rodents learn to find a hidden
escape platform in a circular pool of water surrounded by
spatial cues (Morris 2008), have been important tools to
study the neuropsychological mechanisms of such flexible
spatial navigation in rodents. In the original task, the
platform location remains the same over many trials and
days of training. The animals can incrementally learn the
place of the hidden platform using distal cues surrounding
the watermaze, and then navigate to it from different start
positions (Morris 1981). Learning is reflected by a reduction
in the time taken to reach the platform location (“escape
latencies”) across trials and a search preference for the
vicinity of the goal location when the platform is removed
in probe trials.

Rapid place learning can be assessed in the watermaze
through the delayed-matching-to-place (DMP) task, where
the location of the platform remains constant during trials
within a day (typically four trials per day), but is changed
every day (Fig. 1a, Steele and Morris (1999); Bast et al.
(2009)). A key observation from the behaviour of rats
on the DMP task is that a single trial to a new goal
location is sufficient for the animal to learn this location and
subsequently to navigate to it efficiently (Steele and Morris
1999). This phenomenon is therefore commonly referred to
as “one-shot” or “one-trial” place learning. Such one-trial
place learning is reflected by a marked latency reduction
between the first and second trials to a new goal location
(Fig. 1b), with little further improvement on subsequent
trials, and by a marked search preference for the vicinity of
the correct location when trial 2 is run as probe (Fig. 1c)
with the platform removed (Bast et al. 2009). Buckley and
Bast (2018) reverse-translated the watermaze DMP task into
a task for human participants, using a virtual environment
presented on a computer screen, and have shown that human
participants exhibit similar one-trial place learning to rats.
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(a)

(b)

(c)

Figure 1. One-shot place learning by rats in the delayed-
matching-to-place (DMP) watermaze task. (a) Rats have to learn
a new goal location (location of escape platform) every day, and
complete four navigation trials to the new location on each day.
(b) The time taken to find the new location reduces markedly
from trial 1 to 2, with little further improvements on trials 3 and
4, and minimal interference between days. (c) When trial 2 is
run as a probe trial, during which the platform is unavailable,
rats show marked search preference for the vicinity of the goal
location. To measure search preference, the watermaze surface
is divided in eight equivalent symmetrically arranged zones
(stippled lines in sketch), including the ’correct zone’ centred on
the goal location (black dot). The search preference corresponds
to time spent searching in the ’correct zone’, expressed as
a percentage of time spent in all eight zones together. The
chance level corresponds to 12.5%, corresponding to the rat
spending the same time in each of the eight zones depicted
in the sketch. These behavioural measures highlight successful
one-shot place learning. Figure adapted from Fig. 2 in (Bast et al.
2009)

On the incremental place learning task in the watermaze,
hippocampal lesions are known to disrupt rats’ performance
(Morris et al. 1982), slowing down learning (Morris et al.
1990) and severely limiting rats’ ability to navigate to
the goal from variable start positions (Eichenbaum 1990).
However, rats with partial hippocampal lesions sparing
less than half of the hippocampus can show relatively
intact performance on the incremental place learning task
(de Hoz et al. 2003; Moser et al. 1995), and even rats
with complete hippocampal lesions can show intact place
memory following extended incremental training (Bast
et al. 2009; Morris et al. 1990). Rats can also show
intact incremental place learning on the watermaze with
blockade of hippocampal synaptic plasticity if they received
pretraining (Bannerman et al. 1995; Inglis et al. 2013). These
findings suggest that incremental place learning, although
normally facilitated by hippocampal mechanisms, can partly
be sustained by extra-hippocampal mechanisms.

In contrast to incremental place learning, rapid place
learning, based on one or a few experiences, may
absolutely require the hippocampus, with extra-hippocampal
mechanisms unable to sustain such learning (Bast 2007).
Studies in rodents have shown that spatial navigation based

on one-trial place learning on the DMP watermaze task is
highly sensitive to hippocampal dysfunction that may leave
incremental place learning performance in the watermaze
relatively intact.

Specifically, one-trial place learning performance on the
watermaze DMP test is severely impaired, and often virtually
abolished, by complete and partial hippocampal lesions (Bast
et al. 2009; De Hoz et al. 2005; Morris et al. 1990), as
well as by disruption of hippocampal plasticity mechanisms
(Inglis et al. (2013); Nakazawa et al. (2003); O’Carroll
et al. (2006); Pezze and Bast (2012); Steele and Morris
(1999), also compare similar findings by (Bast et al. 2005)
in a dry-land food-reinforced DMP task) or by aberrant
hippocampal firing patterns (McGarrity et al. 2017). Rats
with hippocampal lesions and NMDA receptor blockade
show similar swim paths on trial 1 and trial 2 to the same
goal location, swimming in circles over large areas of the
watermaze surface (Steele and Morris 1999; Redish and
Touretzky 1998), suggesting that they do not have or cannot
access information about the recent goal location and/or to
the history of their positions.

Consistent with findings in rats that watermaze DMP
performance is highly hippocampus-dependent, human
participants’ 1-trial place learning performance on the virtual
DMP task is strongly associated with theta oscillations
in the medial temporal lobe (including the hippocampus)
(Bauer and Bast 2020). Overall, the findings reviewed above
suggest that the DMP paradigm is a more sensitive assay of
hippocampus-dependent navigation than incremental place
learning paradigms, as good performance on the DMP
task may absolutely require the hippocampus, with extra-
hippocampal mechanisms unable to sustain such learning
(Bast 2007). In the following sections, we will review
some RL approaches that link spatial representations in
the hippocampus with successful navigation. We will focus
on the performance and limitations of these methods
in accounting for navigation based on rapid, one-trial,
hippocampal place learning, especially as assessed by the
watermaze and virtual DMP tasks in rodents and humans,
respectively.

3 Reinforcement Learning for spatial
navigation

Typical RL problems involve four components: states,
actions, values and policy (Sutton and Barto 2018), as shown
in Fig. 2a. In spatial navigation, states usually represent
the agent location, but can be extended to describe more
abstract concepts such as contexts or stimuli (Sutton and
Barto 2018). Actions are decisions to transition between
states (i.e. a decision to move from one location to another).
Values quantify the mean expected reward to be obtained
under a given state or action. Rewards are scalars usually
given at certain spatial locations, mimicking goal locations
in navigation tasks. The value function can be a function of
(i.e. dependent upon) the state alone, in which case it refers
to the discounted total amount of reward that an agent can
expect to receive in the future from a current state s at time
t. Alternatively, the value can also refer to the state-action
pair, in which case it refers to the value of taking a particular
action at a certain state. The value function is given by
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(a)

(b)

Figure 2. Basic principles of Reinforcement Learning (RL). (a)
Key components of RL models. An agent in the state st (which
in spatial context often corresponds to a specific location in the
environment) associated with the reward rt takes the action
at to move from one state to another within its environment.
Depending on the available routes and on the rewards in the
environment, this action leads to the reception of a potential
reward rt+1 in the subsequent state (or location) st+1. (b) Model-
free versus model-based approaches in RL. In model-free RL
(right), an agent learns the values of the states on the fly, i.e. by
trial and error, and adjusts its behaviour accordingly (in order
to maximise its expected rewards). In model-based RL (left),
the agent learns or is given the transition probabilities between
states within an environment and the rewards associated with
the states (a “model” of the environment), and uses this
information to plan ahead and select the most successful
trajectory.

V (s) = E[rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · · |st = s].
(1)

In equation (1), the value of state s, V (s), is computed
by summing all future rewards rj that will be received at
time j, j > 0 discounted by a factor γ, which quantifies the
extent to which immediate rewards are favoured compared
to delayed ones of the same magnitude. E[· ] refers to the
expectation, which sums the possible rewards depending
on their associated probability. A policy is a probability
distribution over the set of possible actions. This defines
which actions are more likely to be chosen in a certain
location, and has to be learned in order to maximise the
value function (i.e. to maximise the expected amount of
reward).

Mathematically, the problem can be represented as
a Markov decision process, equipped with transition
probabilities between states that shapes the way actions
change states, and a reward function that maps states to
reward (see, for example, Howard (1960) for more details).
In a spatial navigation context, the transition probabilities

typically depend on the spatial structure of the environment,
and the latter can also vary temporally in certain contexts,
as routes might open or close on particular occasions,
for example. The probabilities of transition between
states/locations in an environment and the rewards available
at every location form a model of the environment.

In model-free reinforcement learning (Fig. 2b, right),
the model is unknown and the agent must discover its
environment, and associated rewards, and learn how to
optimise behaviour on the fly, through trial and error.
Conversely, in model-based RL approaches (Fig. 2b, left),
the agent has access to the model, from which a tree of
possible chains of actions and states can be built and used
for planning. In this way the best possible chain of actions
can be defined, for example using Dynamic Programming,
which selects at every location the optimal action, using
one-step transition probabilities (Sutton and Barto 2018).

We can assess whether humans and animals use
model-free or model-based strategies by comparing their
performance to both types of agent on a two-step decision
task (Da Silva and Hare 2019; Miller et al. 2017; Daw
et al. 2011). In this task, participants first choose between
2 states, both of which afterwards lead to final states with
different probabilities, making one transition “rare” and the
other “common”. The final states have unbalanced reward
probability distributions (see e.g Fig. 1.a. in Miller et al.
(2017) for a diagram of the task). Investigating how subjects
adjust to rare transition outcomes indicates whether they
have access to the model or not. A model-free agent will
adjust its behaviour only based on the outcome, whereas
a model-based agent will adjust also according to the
probability of this transition. Both humans and animals
show behavioural correlates of model-based and model-free
agents (Yin and Knowlton 2006; Keramati et al. 2011;
Gershman 2017; Daw et al. 2011; Miller et al. 2017).

Model-based approaches require the calculation and
storage of the transition probability matrix and tree-search
computations (Huys et al. 2013). As the number of states can
be very high, depending on the complexity of the problem
and the precision required, model-based methods are usually
computationally costly (Huys et al. 2013). However, as they
contain exhaustive information about the available routes
between states, they are more flexible towards changing
goal locations than model-free approaches (Keramati et al.
2011). A study of spatial navigation in human participants
showed that, although paths to the goal were shorter, choice
times were higher in trials when the behaviour matches that
of a model-based agent compared to trials where it matches
that of a model-free agent (Anggraini et al. 2018). In studies
involving rats in a T-maze, Vicarious Trial and Error (VTE)
behaviour, short pauses that rats make at decision points,
tend to get shorter with repetitive exposure to the same goal
location (Redish 2016). Experimental studies suggest that
VTE behaviour reflects simulations of scenarios of future
trajectories in order to make a decision (Redish 2016), which
would correspond to a model-based approach of task solving
(Pezzulo et al. 2017; Penny et al. 2013). This suggests
that model-based strategies require more processing time
than model-free strategies, which is thought to represent
“planning” time (Keramati et al. 2011).

The control of behaviour could be coordinated between
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model-free and model-based systems, either depending on
uncertainty (Daw et al. 2005), depending on a trade-off
between the cost of engaging in complex computations
and the associated improvement in the value of decisions
(Pezzulo et al. 2013), or depending on how well the different
systems perform on a task (Dollé et al. 2018). Moreover,
the state and action representations that enable solution
of a task seem to dynamically evolve on the timescale
of learning in order to adjust to the task requirements
(Dezfouli and Balleine 2019). When the task gives an
illusion of determinism - for example when the task is
overtrained - the neural representations and the behaviour
shift from model-based, purposeful, behaviour, to habitual
behaviour, which is faster but less flexible to any change
(Smith and Graybiel 2013). When the situation is inherently
stochastic, for example when the task evolves to incorporate
more steps and complexity, the neural representations and
behaviour evolve to incorporate the multi-step dependencies,
and simultaneously prune the tree of possible outcomes
depending on the most likely scenarios (Tomov et al. 2020).
The adaption of neural representations to task demand
suggests that a continuum of state and action representations
for behavioural control, between the two extremes of model-
based and model-free systems, exists in the brain (Dezfouli
and Balleine 2019).

The rapidity with which rats adjust to a changing goal
location in the DMP task (one exposure only, as discussed in
section 2) indicates that some kind of “model” is being used
to enable adaptive route selection. In fact, a model-based
approach has recently been proposed to solve a range of
spatial learning tasks including the watermaze DMP task
(Dollé et al. 2018). Dollé et al. (2018) investigated the
interaction between model-free and model-based strategies
using a model-free controller to gate interactions between
the two. The controller learns to select one of the two
strategies depending on the reward in the current task.
The model reproduced the flexibility towards new goal
locations in the watermaze DMP task, through the gating
mechanism, which switched to the model-based strategy for
this particular task.

Generally, current model-based approaches, including the
one proposed by Dollé et al. (2018), have several limitations
in accounting for watermaze DMP task performance in
a neuropsychologically realistics way. First, unlike what
would be expected based on model-based mechanisms,
rats do not reach optimal trajectories in the DMP task, as
reflected by the observation that escape latencies on trials
2 to 4 remain higher than would typically be observed
following incremental place learning in the watermaze
(compare Morris et al. (1986), Steele and Morris (1999)
and Bast et al. (2009)) and than would be expected from
a model-based agent (Sutton and Barto 2018). Findings in
humans by Anggraini et al. (2018) suggest that participants
that used more model-based approaches more often took
the shortest path to goal locations. Second, classical model-
based approaches are currently mostly implemented in
discrete state space, although they can be approximated to
continuous spaces (Jong and Stone 2007). The size of the
graph to model the environment, requiring a high number
of states for fine discretisation to mimic continuity, and the
width and depth of the trees to search at possible decision

points (for example, at the start location) that would be
required to account for such behaviours (every possible
trajectories) suggest that a long planning time would be
required at a start of every trial (Keramati et al. 2011),
which does not fit with the behaviour of rats and human
participants, who take off virtually immediately at the start
of the second trial to the new goal location on the DMP
task in the watermaze and virtual maze, respectively (Steele
and Morris 1999; Buckley and Bast 2018). Dollé et al.
(2018) overcome this problem using an approximation: the
chosen trajectory between the current position and the goal
location is in fact the trajectory between their respective
closest nodes within the graph. Overall, this suggests that
the control in the watermaze DMP task cannot be explained
by a model-free RL mechanism alone, but also is unlikely to
be fully model-based.

Lying in between model-free and model-based
approaches, the Successor Representation (SR)
(Dayan 1993) enables more flexibility than model-
free computational approaches, but without the heavy
computational requirement of a model-based agent
(Ducarouge and Sigaud 2017). In the SR, the link between
two states depends on how many times the agent can
expect to visit one state when starting from the other in the
future. It is therefore a predictive representation of space
occupancy. Properties of place cell firing, such as shaping
of the activity profile by changes in the environment, have
been linked to key features of the SR (Stachenfeld et al.
2017; Gershman 2018). The SR can be computed from the
transition probability matrix, but also can be computed by
online learning, usually through counting the occupancy
of states (Dayan 1993; Russek et al. 2017). Connecting
place cells, using this representation, within an attractor
network allows one to generate trajectories from any starting
location to any goal location within a maze (Corneil and
Gerstner 2015). The SR can be adapted to a continuous
state representation (Jong and Stone 2007; Barreto et al.
2017). However, the SR still represents a complex state
representation, since the size of the SR matrix is similar to
the size of the model-based representation. In the following
section, we present two minimal extensions to a model-free
architecture that enable flexibility. We will provide an in
depth discussion of the underlying computations and of their
possible neurobiological substrates.

4 A model-free agent using an actor-critic
architecture

4.1 An actor critic network model for
incremental learning

4.1.1 Learning through temporal difference error
Temporal difference (TD) learning refers to a class of

model-free RL methods, that improve the estimate of the
value function using successive comparison of its value,
called the TD error (this approach is commonly referred
to as “bootstrapping”). In traditional TD learning, the
agent follows a fixed policy and discovers how good this
policy is through the computation of the value function
(Sutton and Barto 2018). Conversely, in an actor-critic
learning architecture, an agent explores the environment and
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progressively forms a policy that maximises expected reward
using a TD error. Interactions with the environment allow
simultaneous sampling of the rewards (obtained at certain
locations) and of the effect of the policy (when there is no
reward, the effect of a policy can be judged depending on
the difference in value between two consecutive locations),
thereby appraising predictions of values and actions, so that
both can be updated accordingly. The “actor” refers to the
part of the architecture that learns and executes the policy,
and the “critic” to the part that estimates the value function
(Fig. 3a).

Foster et al. (2000) proposed an actor-critic framework to
perform spatial learning in a watermaze equivalent (Fig. 3a).
The agent’s location is represented through a network of
units mimicking hippocampal place cells, which have a
Gaussian type of activity around their preferred location (the
further the agent is from the place cell’s preferred location,
the less active the unit will be). Each place cell projects
to an actor network and a critic unit, or network in other
related models, e.g. in Frémaux et al. (2013), through plastic
connections (respectively denoted Zt and Wt in Fig. 3a).

The actor network activity defines which action is optimal,
with each unit in the network coding for motion in a
particular direction, together covering a 360◦angle. In Foster
et al. (2000) this angular direction is quantised, whereas
in Frémaux et al. (2013), using a more detailed spiking
neuron model, the action network codes for continuous
movement directions (although finely quantised in numerical
simulations). The action is chosen according to the activity
of the actor, so that directions corresponding to more active
cells are prioritised. In Foster et al. (2000), the action
corresponding to the maximum of a softmax probability
distribution of the activities is selected. In Frémaux et al.
(2013), the activities of the units of the network are used
as weights to sum all possible directions, giving rise to
a mean vector that defines the chosen direction. If the
motion leads to the goal location, a reward is obtained. In
the case of computational models of the watermaze task,
the reward is only delivered when the agent is within a
small circle representing the platform (see Fig. 3a). This
reward information, encoded within the environment is used
along with the difference in the successive critic activities to
compute the TD error δt, via

δt = r(st+1) + γV (st+1)− V (st). (2)

In equation 2, the reward observed after a move r(st+1)
along with the discounted value of the new state γV (st+1)
is compared to the prior prediction V (st). The TD error
contains two pieces of information: it reflects both how good
is the decision that was just taken, and the accuracy of the
critic at estimating the value of the state.

To reduce the TD error, the model simultaneously updates
the connections weights Zt andWt via defined learning rules
in order to improve the actor and the critic. The learning rule
updates the connection weights according to the current error
and the place cell activity, such that the probability of taking
the same decision in the current state/location increases if
it leads to a new position that has a higher value, and

decreases otherwise (see Doya (2000) for example learning
rules). Using the model proposed by Foster et al. (2000),
we can reproduce their finding that within a few trials,
the agent reaches the goal using an almost optimal path,
reflected by low latencies to reach the goal, in a watermaze-
like environment (Fig. 3b). The full model can be found in
appendix A.

4.1.2 Important variables for learning: discount factor
for value propagation, and spatial scale of place cells
representations for experience generalisation
The previous section illustrated how place cells can be

integrated into a network for spatial navigation through the
association of values and actions within a RL framework.
A benefit of this approach is that i) it allows for relatively
fast learning, within only a few trials agents reach “short”
average escape latencies and ii) the agent obtains information
about which action could lead to the goal from variable and
distal start positions. These two properties rely on two major
components that enable learning and influence the learning
speed (i.e., how fast latencies reduce).

First, the TD error allows to “back-propagate” value
information from successive states, with the speed of this
backpropagation modulated by the discount factor γ. The
update of the state value V (st) and of the policy at state
st, after having moved to the new state st+1, depends on
the TD error. Let us consider the latter, defined by equation
(2): the TD error is the difference between the received
reward and the discounted value at the next state (given by
r(st+1) + γV (st+1), the first two terms in Eq.(2)), and the
value at the current state (V (st), the last term in Eq.(2)).
Note that the update of the state value is performed “in the
future” for “the past”: the value underlying the decision
taken at the time t will only be updated at the time t+ 1.
Moreover, the extent to which the future is taken into
account is modulated by the parameter γ.

Let us consider the extreme cases. If γ = 0, the only
update takes place when the reward is found, and the
location updated is the one immediately prior to the reward.
All the other locations, which do not precede the reward
reception, will never be associated with a non-zero value.
If γ = 1, the state value V (st) will be updated until it is
equal to V (st+1). This leads to a constant value function
over the maze (i.e. all locations have the same value). In
both cases, the value function being uniform, the actor
computes all actions as equally good (except very near
the goal in the case where γ = 0), as it moves through the
environment. Therefore, only intermediate values of γ allow
the model to learn, and its value defines how fast it learns.
Ideally, one wants to adjust the discount factor γ in order to
maximise the slope of the value function, so that the policy
is “concentrated” on the optimal choice, and to obtain a
uniform slope across the space, as this guarantees that the
agent has good information on which to base its decision
from any location within the environment.

Second, the spatial scale of the place cell representation,
determined by the width of these neurons’ place fields,
strongly affects speed and precision of place learning.
The state representation through place cells enables the
generalisation of learning from a single experience across
states, i.e. to update information on many locations based on
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(a)

(b)

Figure 3. a) Classical actor-critic architecture for a temporal-
difference (TD) agent learning to solve a spatial navigation
problem in the watermaze, as proposed by Foster et al. (2000).
The state (location of the agent (x(t), y(t))) is encoded within
a neural network (in this case, the units mimic place cells in the
hippocampus). State information is fed into an action network,
which computes the best direction to go next, and to a critic
network that computes the value of the states encountered. The
difference in critic activity along with the reception or not of the
reward (given at the goal location) are used to compute the TD
error δt, such that successful moves (that lead to a positive
TD error) are more likely to be taken again in the future, and
less likely otherwise. Simultaneously, the critic’s estimation of the
value function is adjusted in order to be more accurate. These
updates occur through changing the critic and actor weights,
respectively Wt and Zt. The goal location, marked as a circle
within the maze, is the only location in which a reward is given.
b) Performance of the agent, obtained by implementing the
model from Foster et al. (2000). The time that the agent requires
to get to the goal (“Latencies”, vertical axis) reduces with trials
(horizontal axis) and reaches almost a minimum (after trial 5).
When the goal changes (on trial 20), the agent takes a very long
time to adapt to this new goal location.

the experience within one particular location. Every update
amends the value and policy for all states depending on the
current place cell activity, such that more distal locations are
less concerned by the update than proximal ones. The spatial
reach of a particular update increases with the width of the
place cell activity profiles. This process speeds up learning,
because when the agent encounters a location with similar
place cell representation to those already encountered, the
prior experiences have already shaped the current policy and
value function and can be used to inform subsequent actions.

Let us consider the extreme cases. If the width is very
small, the agent cannot generalise enough from experience,
and this considerably slows down learning, as the agent
must comprehensively search the environment in order to
learn. At the opposite extreme, if the activity profile is very
wide, generalisation occurs where it is not appropriate: for
example at opposite ends of the goal, when the best actions
to choose would be opposite to each other, as at the North
end it would be best to go South, whereas at the South end
it would be best to go North. The optimal width, therefore,
lies in a trade-off between speed of learning and precision of
knowledge: it should be scaled to the size of the environment
in order to speed up learning, and is constrained by the
size of the goal. Optimising these parameters allows one
to reduce the number of trials to obtain good performance.
Appendix B shows how changing these parameters affects
learning.

Along the hippocampal longitudinal axis, places are
represented over a continuous range of spatial scales, with
the width of place cell activity profiles gradually increasing
from the dorsal (also known as septal) towards the ventral
(also known as temporal) end of the hippocampus in
rats (Kjelstrup et al. 2008). A recent RL model suggests
that smaller scales of representation would support the
generation of optimal path length, whereas larger scales
would enable faster learning, defining a trade-off between
path optimality and speed of learning (Scleidorovich et al.
2020). In Fig. 6 of appendix B, for the actor-critic model,
we also see that a wide activity profile of place cells leads
to suboptimal routes, characterised by escape latencies that
stay high.

Bast et al. (2009) found that the intermediate hippocampus
is critical to maintain DMP performance in the watermaze,
particularly search preference. Moreover, the trajectories
used by rats in the watermaze DMP task are suboptimal,
i.e. path lengths are higher, compared to the incremental
learning task (compare results in Morris et al. (1990), Steele
and Morris (1999) and Bast et al. (2009)). These findings
may partly reflect that place neurons in the intermediate
hippocampus, which show place fields of an intermediate
width and, thereby, may deliver a trade off between fast and
precise learning, are particularly important for navigation
performance during the first few trials of learning a new
place, as on the DMP task. Another potential explanation for
the importance of the intermediate hippocampus is that this
region combines sufficiently accurate place representations,
provided by place cells with intermediate-width place
fields, with strong connectivity to prefrontal and subcortical
sites that support use of these place representations for
navigation (Bast et al. 2009; Bast 2011), including striatal
RL mechanisms (Humphries and Prescott 2010). With
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incremental learning of a goal location, spatial navigation
can become more precise, with path lengths getting shorter
and search preference values increasing (Bast et al. 2009).
Interestingly, the model by Scleidorovich et al. (2020)
suggests that such precise incremental place learning
performance may be particularly dependent on narrow
place fields, which are shown by place cells in the dorsal
hippocampus (Kjelstrup et al. 2008). This may help to
understand why incremental place learning performance
has been found to be particularly dependent on the dorsal
hippocampus (Moser et al. 1995).

4.1.3 Using eligibility traces allows to update past
decisions according to the current experience
The particular actor-critic implementation proposed by

Foster et al. (2000) and described above involves a one-
step update: only the value and policy of the state that the
agent just left are updated. The weight associated to the
value of the following state for any update depends on γ, as
described in the previous section. However, past decisions
sometimes affect current situations, and one-step updates
only improve the last choice and estimate. This can be
addressed by incorporating past decisions when performing
the current update, weighted according to an eligibility trace
(Sutton and Barto 2018). Eligibility traces keep a record of
how much past decisions influence the current situation. This
makes possible to update value functions and policies from
previous states of the same trajectory according to the current
outcome.

The most commonly known example of the use of
eligibility traces is TD(λ) learning, which updates the value
and policy of previous states within the same trajectory
according to the outcome observed after a certain subsequent
period, weighted by a decay rate λ. λ refers to how far in
the past the current situation affects previous states’ value
and policy. One extreme is TD(0) in which the only step
updated is the state the agent just left, as described in section
4.1. When λ increases toward 1, more events within the
trajectory are taken into account, and the method becomes
more reminiscent of a Monte-Carlo approach (Sutton and
Barto 2018), where all the states and actions encountered
during the trial are updated at every step. In (Scleidorovich
et al. 2020), the authors show that the optimal value of λ
depends on the width of the place cell activity distributions:
for wide place fields, adding eligibility traces does not speed
up learning much (i.e. reducing the number of trials needed
to reach asymptotic performance), but it does for narrower
place fields.

4.1.4 Striatal and dopaminergic mechanisms as candi-
date substrates for the actor and critic components
In the RL literature, the ventral striatum is often considered

to play the role of the “critic” (Humphries and Prescott 2010;
Khamassi and Humphries 2012; O’Doherty et al. 2004; van
Der Meer and Redish 2011). The firing of neurons in the
ventral striatum ramps up when rats approach a goal location
in a T-maze (van Der Meer and Redish 2011), consistent
with the critic activity representing the value function in
actor-critic models of spatial navigation (Foster et al. 2000;
Frémaux et al. 2013). Striatal activity also correlates with
action selection (Kimchi and Laubach 2009), and with action

specific reward values (Roesch et al. 2009; Samejima et al.
2005).

In line with the architecture proposed in the model by
Foster et al. (2000) (Fig.3a), there are hippocampal pro-
jections to the ventral and medial dorsal striatum (Groe-
newegen et al. 1987; Humphries and Prescott 2010). Studies
combining watermaze testing with manipulations of ventral
and medial dorsal striatum support the notion that these
regions are required for spatial navigation. Lesions of the
ventral striatum (Annett et al. 1989) and of the medial dorsal
striatum (Devan and White 1999) have been reported to
impair spatial navigation on the incremental place learning
task. In addition, crossed unilateral lesions disconnecting
hippocampus and medial dorsal striatum also impair incre-
mental place learning performance, suggesting hippocampo-
striatal interactions are required (Devan and White 1999). To
our knowledge, it has not been tested experimentally if there
is a dichotomy between “actor” and “critic”. The experimen-
tal evidence outlined above is consistent with both actor and
critic roles of the striatum (van Der Meer and Redish 2011),
but whether distinct or the same striatal neurons or regions
act as actor and critic needs to be addressed.

Li and Daw (2011) address a related dichotomy in a study
on human participants who have to choose between two arms
associated with reward probabilities on a bandit task. The
participants are given the outcomes of their decision after
their choice: namely how much they win and how much
they would have won if they had selected the other arm. Li
and Daw (2011) compare two ways of updating the weights
which determine which arm to choose: one compares the
reward to the predicted value (“value update”), and the other
one compares the reward to the forgone reward (“policy
update”). They show that striatal BOLD activity correlates
more with “policy” than “value” update, and correlates posi-
tively with the chosen reward, and negatively with the reward
that was not chosen. They also show correlation with a value-
based decision variable, the difference between the action
value of the chosen and the arm not chosen. The translation
of their analysis to spatial navigation in the watermaze is not
straightforward. First, in the two armed bandit task, there
are no states, but only actions. Although the design of the
analysis by Li and Daw (2011) allows one to disentangle
the rewards from the predicted values, it does not allow one
to separate action from state value in a spatial navigation
context, if it makes sense at all to separate the two. In spatial
navigation, as states can be passed through to reach any goal,
it seems to be more efficient not to separate actions and
values. However, it is interesting to see an experimental set-
up aimed at testing such a dichotomoty. Perhaps, an architec-
ture such as SARSA (State–Action–Reward–State–Action,
Sutton and Barto (2018)), in which the values of a state action
pair are learned instead of the values of states only, could
be considered, as it unites the actor and critic computation
within the same network.

Phasic dopamine release from dopaminergic midbrain
projections to the striatum has long been suggested to reflect
reward prediction errors (Schultz et al. 1997; Glimcher
2011), which correspond to the TD error in the model in
Fig.3a, and dopamine release in the striatum shapes action
selection (Gerfen and Surmeier 2011; Morris et al. 2010;
Humphries et al. 2012). Direct optogenetic manipulation
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of striatal neurons expressing dopamine receptors modified
decisions (Tai et al. 2012), consistent with the actor activity
in actor-critic models of spatial navigation (Foster et al.
2000; Frémaux et al. 2013). Moreover, 6-hydroxydopamine
lesions to the striatum, depleting striatal dopamine (and,
although to a lesser extent, also dopamine in other regions,
including hippocampus) impaired spatial navigation on the
incremental place learning task in the watermaze (Braun
et al. 2012). These findings suggest that aspects of the
dopaminergic influence on striatal activity could be consis-
tent with the modulation of action selection by the TD errors
in an actor-critic architecture.

However, although there is long term potentiation (LTP)-
like synaptic plasticity at hippocampo-ventral striatal con-
nections, consistent with the plastic connections between the
place cell network and the critic and actor in the model by
Foster et al. (2000), a recent study failed to provide evidence
that this plasticity depends on dopamine (LeGates et al.
2018). Absence of dopamine modulation of hippocampo-
striatal plasticity contrasts with the suggested modulation
of connections between place cell representations and the
critic and actor components by the TD error signal in the
RL model. Thus, currently available evidence fails to support
one key feature of the architecture described in section 4.1
(Foster et al. 2000).

4.1.5 Requirement of hippocampal plasticity
In the implementation of the model described above,

plasticity takes place within the feedforward connections
from the place cell network modelling the hippocampus
and the actor and critic networks that, as discussed above,
could correspond to parts of the striatum. The model
does not capture the finding that hippocampal NMDA
receptor-dependent plasticity is required for incremental
place learning in the watermaze if rats have not been
pretrained on the task (Morris et al. 1986, 1989; Nakazawa
et al. 2004).

4.1.6 The agent is less flexible than animals in adapting
to changing goal locations
When the goal changes (on trial 20 in Fig. 3b), the

agent takes many trials to adapt and takes more than 10
trials to reach asymptotic performance levels (also see
Fig.4a in Foster et al. (2000)). The high accuracy, but
limited flexibility with overtraining, are well known features
of TD RL methods (e.g. discussed in Sutton and Barto
(2018); Gershman (2017); Gershman et al. (2014); Botvinick
et al. (2019)). These cached methods have been proposed
to account for the progressive development of habitual
behaviours (Balleine 2019). TD learning is essentially an
implementation of Thorndike’s law of effect (Thorndike
1927), which increases the probability of reproducing an
action if it is positively rewarded. In the RL model
discussed above (Fig. 3a), a particular location, represented
by activities of place cells with overlapping place fields,
is associated with only one “preferred action”, due to the
unique weights that need to be fully relearned when the goal
changes. Therefore, the way actions and states are linked
only allows navigation to one specific goal location.

The model produces a general control mechanism, that,
in this example, makes it possible to generate trajectories to
a particular goal location. This control mechanism could be

integrated within an architecture that allows more flexibility,
for example the goal location may be represented by different
means than a unique value function computed via slow and
incremental steps from visits to single goal locations. The
next section considers how the RL model of Fig.3a can be
used, along with a uniform representation of both the agent
and the goal location, to reproduce the flexibility shown
by rats and humans towards changing goal locations in the
watermaze DMP task.

4.2 Map-like representation of locations for
goal-directed trajectories

The RL architecture discussed above (Fig. 3a) cannot
reproduce rapid learning of a new location as observed
in the DMP watermaze task, but instead there is
substantial interference between successive goal locations,
with latencies increasing across goal locations, and only a
gradual small decrease in latencies across the four trials
to the same goal location (see Foster et al. (2000), Fig.
4b). To reproduce flexible spatial navigation based on one-
trial place learning as observed on the DMP task, Foster
et al. (2000) proposed to incorporate a coordinate system
into their original actor critic architecture (Fig.4a). This
coordinate system is composed of two additional cells X̂
and Ŷ that learn to estimate the real coordinates x and y
throughout the maze. These cells receive input from the
place cell network through plastic connectionsW x

t ,W
y
t . The

connections evolve dependent on a TD error that represents
the difference between the displacement estimated from the
coordinate cells and the real displacement of the agent. The
weights between place cells and the coordinate cells are
reduced if the estimated displacement is higher than the
actual displacement, and increased if it is lower, so that the
estimated coordinates progressively become consistent with
the real coordinates (see Fig.8 in Appendix D).

Foster et al. (2000) added an additional action to the set
of actions already available. Instead of defining movement
in specific allocentric directions, as the other action cells do,
going North, East, etc..., that we will refer to as “allocentric
direction cells”, the coordinate action cell acoord points
the agent in the direction of the estimated goal location.
The estimates of x and y are used to compare the agent’s
estimated position X̂t, Ŷt to the estimated goal location
X̂goal, Ŷgoal (which is stored after the first trial of every
day) in order to form a vector leading to the estimated goal
location (Fig.4a).

The agent very quickly adapts to new goal locations,
reproducing performance similar to rats and humans on
the watermaze (Fig. 1) and virtual (Buckley and Bast
2018) DMP task, respectively. Using the model by Foster
et al. (2000), we can replicate their finding that the model
reproduces the characteristic pattern of latencies shown
by rats and human on the DMP task, i.e. a marked
reduction from trial 1 to 2 to a new goal location and
no interference between successive goal location (Fig.4b).
Moreover, extending the findings of Foster et al. (2000), we
find that the model also reproduces markedly above-chance
search preference for the vicinity of the goal location when
trial 2 to a new goal location is run as probe trial where the
platform is removed (Fig.4c).
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(a)

(b)
(c)

Figure 4. (a) Architecture of the coordinate-based navigation
system, which was added to the actor-critic system shown in Fig.
3a to reproduce accurate spatial navigation based on one-trial
place learning, as observed in the watermaze DMP task (Foster
et al. 2000). Place cells are linked to coordinate estimators
through plastic connectionsW x

t ,W
y
t . The estimated coordinates

X̂, Ŷ are used to compare the estimated location of the goal
X̂goal, Ŷgoal to the agent estimated location X̂t, Ŷt in order to
form a vector towards the goal, that is being followed when
choosing the “coordinate action” acoord. The new action acoord
is integrated into the actor network described in Fig.3a. (b,c)
Performance of the extended model using coordinate-based
navigation. (b) Escape latencies of the agent when the goal
location is changed every four trials, mimicking the watermaze
DMP task. (c) “Search preference” for the area surrounding the
goal location, as reflected by the percentage of time the agent
spends in an area centered around the goal location when the
second trial to a new goal location is run as probe trial, with the
goal removed (stippled line indicates percentage of time spent in
the correct zone by chance, i.e. if the agent had no preference for
any particular area), computed for the second and the seventh
goal locations. One-trial learning of the new goal location is
reflected by the marked latency reduction from trial 1 to trial 2
to a new goal location (without interference between successive
goal locations), and by the marked search preference for the new
goal location when trial 2 is run as probe. The data in (b) were
obtained by computing the model in (Foster et al. 2000), and the
data in (c) by adapting the model in order to reproduce search
preference measures when trial 2 was run as a probe trial. The
increase in search preference observed between the second and
seventh goal location is addressed in section 4.2.1.

4.2.1 Limitations of the model in reproducing DMP
behaviour in rats and humans
The “coordinate” approach relies on computational “tricks”

that are are required to make the approach work, but for

which plausible neurobiological substrates remain to be
identified. Early in training, movement of the agent is based
on activity of the “allocentric direction cells”, which are used
to lead the exploration of the environment. This exploratory
phase allows learning of the coordinates. As the estimated
coordinates X̂, Ŷ become more consistent with the real
coordinates, the coordinate action acoord becomes more
reliable, as it will always lead the agent in the direction
of the goal. During the first trial to a new goal location,
the coordinate action cell encodes random displacement,
until the goal is found and its estimated location is stored.
During this trial, the coordinate action is not reinforced, a
trick that prevents its devaluation. On the subsequent trials,
the coordinate action encodes the displacement towards the
stored estimated goal location (as described before) and
is reinforced. Therefore, the probability of choosing the
coordinate action gradually becomes one, and it comes to be
the only action followed.

One consequence of this is that, unlike in rats and
people, the agent’s performance both in terms of latency
reduction and in terms of search preference gradually
improves across successive new goal locations (see Fig.4b
and 4c). The gradual improvement of latency reductions
and search preferences contrasts with behaviour shown by
rats (Fig. 1 and see Fig.3. b. and c. in Bast et al. (2009)
for search preference across days) and human participants
(Buckley and Bast 2018). More specifically, in the model,
latency reductions from trial 1 to 2 gradually increase across
successive new goal locations, and the latencies on trial 2
to 4 to a new goal location gradually decrease (Fig. 4b). In
contrast, rats basically reach asymptotic performance levels
with no systematic increases in latency reductions from trial
1 to 2 or decreases in latency values on trial 2 to 4 after
a few successive goal locations; in the example shown in
Fig. 1b, asymptotic performance levels are reached from
about day 4. It should also be noted that the overall latency
reductions across the first few locations in rats is likely to
mainly reflect procedural learning, with rats learning that
they cannot escape by climbing the wall of the pool or
by diving. Human participants on the virtual DMP task,
who do not need to learn the task requirements because
they receive task instructions, show virtually asymptotic
latency and path lengths values from the first new goal
locations, with hardly any improvements across successive
goal locations (Buckley and Bast 2018). Moreover, search
preference for the correct location substantially increases
across successive probe trials in the model (Fig. 4c), whereas
in rats and humans search preference remains stable across
successive new goal locations on the DMP task (Bast et al.
2009; Buckley and Bast 2018).

In addition, the random search during trial 1 in the model
is inconsistent with the finding that rats on the DMP task
(but not human participants, (Buckley and Bast 2018)) tend
to go towards the previous goal location on trial 1 to a
new goal location (Steele and Morris (1999); Pearce et al.
(1998), and our own unpublished observations); in addition,
both rats and human participants show systematic search
patterns on trial 1 (Buckley and Bast 2018; Gehring et al.
2015). The random search in the model during trial 1 leads
to consistently and similarly high trial 1 latencies (Fig. 4b).
In contrast, in rats, trial 1 latencies are more variable (Fig.

Prepared using sagej.cls

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.07.30.229005doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.229005
http://creativecommons.org/licenses/by-nc-nd/4.0/


RL agents for rapid hippocampal place learning 11

1b); this partly reflects procedural learning across the first
few new goal locations, which results in reductions of trial
1 latencies, and the different spatial relationship between
the start location and the previous and current goal location
affecting trial 1 latencies (e.g., if the current goal location
lies on the path from the start location to the previous goal
location, rats are more likely to “bump” into the current
goal location on trial 1, leading to lower trial 1 latencies).
The adjustment of the policy when the predicted goal is not
encountered is not addressed in the current approach, a point
that section 4.3 will address.

4.2.2 The model’s actor-critic component and striatal
contributions to DMP performance
Given the association of actor-critic mechanisms with

the striatum (Joel et al. 2002; Khamassi and Humphries
2012; O’Doherty et al. 2004; van Der Meer and Redish
2011), the actor-critic component in the model is consistent
with our recent findings that the striatum is associated
with rapid place learning performance on the DMP task.
More specifically, using functional inhibition of the ventral
striatum in rats, we have shown that the ventral striatum
is required for one-trial place learning performance on
the watermaze DMP task (Seaton 2019); moreover, using
high-density electroencephalogram (EEG) recordings with
source reconstruction in human participants, we found that
theta oscillations in a circuit including both temporal lobe
and striatum are associated with one-trial place learning
performance on the virtual DMP task (Bauer and Bast 2020).

The model suggests that, after a few trials, once the action
probability for the coordinate action has reached the value 1,
the movement is predefined by following a vector pointing
to the goal location. The critic becomes inconsistent, as the
action now does not follow the value gradient anymore, and,
therefore, there is no control over the behaviour by the TD
error. The continued association of the striatum with DMP
performance, beyond the first few trials, is consistent with
the role of the striatum as the “actor” (van Der Meer and
Redish 2011), and the model would suggest that the striatum
reads out estimated locations and computes a vector towards
the estimated goal location.

4.2.3 Neural substrates of the goal representation and
hippocampal plasticity required for rapid learning of new
goal locations
Notwithstanding some limitations, findings with this model

support the important idea that, embedded within a model-
free RL framework, a map-like representation of locations
within an environment may allow computations by the
agent to produce efficient navigation to new goal locations
within as little as one trial. This idea is also present
in recently proposed agents that are capable of flexible
spatial navigation based on a RL system complemented
by path integration mechanisms to derive a grid-like map
of the environment (which resembles entorhinal grid cell
representations) that can be used to compute trajectories
from the agent’s location to the goal (Banino et al. 2018)
and has also lead the watermaze DMP task to be solved
using a graph search algorithm in Dollé et al. (2018). The
findings of goal-vector cells in the bat hippocampus (Sarel
et al. 2017) and of “predictive reward place cells” in mouse
hippocampus (Gauthier and Tank 2018) support the idea

implemented in the model that consistency of representations
- unified representations of goals and locations across tasks
and environment - could help goal-directed navigation. In
particular, egocentric boundary encoding neurons have been
found in the striatum of rats, although in the dorso-medial
striatum (Hinman et al. 2019). As rats navigate in the
watermaze using surrounding cues, these cells could inform
striatal navigation in the DMP task (Bicanski and Burgess
2020).

In the extension to the classical TD architecture (Foster
et al. 2000), the encounter with a new goal location
does not involve a change in place cell representation,
and the formation of the memory of the new goal
location is not addressed. Experimental evidence suggests
that a goal representation could lie within hippocampal
representations themselves (Hok et al. 2007; Poucet and
Hok 2017; McKenzie et al. 2013; Gauthier and Tank
2018). McKenzie et al. (2013) studied hippocampal CA1
representations during learning of new goal locations in an
environment where previous places were already associated
with goals. They showed that neurons coding for existing
goals would also encode new goal locations, and that
these representations progressively separate with repetitive
learning of the new goal location, but maintain an overlap of
representations between all goal locations. Moreover, Hok
et al. (2007) observed an increase in firing rate around goal
locations outside of place cells’ main firing field, and Dupret
et al. (2010) showed that learning of new goal locations by
rats in a food-reinforced dry-land DMP task is associated
with an increase in the number of CA1 neurons that have
a place field around the goal location. Furthermore, Dupret
et al. (2010) showed that both this accumulation of place
fields around the goal location and rapid learning of new goal
locations is disrupted by systemic NMDA receptor blockade.
These findings suggest that goal representation can be
embedded within the hippocampus, that new goal locations
are represented within similar networks as previous goal
locations, and that the hippocampal remapping emerging
from new goal locations is linked to behavioural performance
and may depend on NMDA-receptor mediated synaptic
plasticity.

In line with this suggestion, studies, combining intra-
hippocampal infusion of an NMDA receptor antagonist with
behavioural testing and electrophysiological measurements
of hippocampal LTP, showed that hippocampal NMDA-
receptor dependent LTP-like synaptic plasticity is required
during trial 1 for rats to learn a new goal location in the
watermaze DMP task (Steele and Morris 1999) and in a dry-
land DMP task (Bast et al. 2005). LTP-like synaptic plasticity
may give rise to changes in place cell representations
(Dragoi et al. 2003), which could contribute to changes in
hippocampal place cell networks associated with the learning
of new goal locations (Dupret et al. 2010).

Map-like representations of locations, integrated within
a RL architecture, may be part of neural mechanisms
that enable flexibility to changing goal locations in the
watermaze DMP task. However, cartesian coordinates are
convenient here because the task is implemented within an
open field arena, but do not seem to provide a biologically
realistic implementation of spatial navigation problems in
general. For example, they do not allow navigation in an
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environment with walls, for which geodesic coordinates
would be more appropriate (Gustafson and Daw 2011).
Moreover, the approach described here does not address how
the goal representation comes about, and the model does
not specify how the policy adjusts when the agent does
not encounter the predicted goal. The next section describes
how a hierarchical architecture can provide a solution to this
problem.

4.3 Hierarchical control to flexibly adjust to
task requirements

The actor-critic approach described in section 4.1 requires
many trials to adjust to changes in goal locations partly
because there is only one possible association between
location and action, which depends upon a particular goal
(4.1.6). However, brains are able to perform multiple
tasks in the same environment. Those tasks often involve
sequential behaviour at multiple timescales (Bouchacourt
et al. 2019). Pursuing goals sometimes requires following a
sequence of sub-routines, with short-term/interim objectives,
themselves divided into elemental skills (Botvinick et al.
2019). Hierarchically organised goal-directed behaviours
allow computational RL agents to be more flexible (Dayan
and Hinton 1993; Botvinick et al. 2009).

In the watermaze DMP task, rats tend to navigate to
the previous goal location on trial 1 with a new goal
location (Steele and Morris (1999); Pearce et al. (1998),
and our own unpublished observations), and then find out
that this remembered goal location is not the current goal.
This suggests that preexisting goal networks can flexibly
adjust to errors, and are linked to control mechanisms over
shorter timescales that allow movement realisation in order
to navigate to the new goal location. The critic controls the
selection of direction at every time step, finely chosen to
mimic the generation of a smooth trajectory. The critic sits
at an intermediary level of control: It does not perform the
lower level of the control, the motor mechanisms responsible
for the generation of the limb movements, but also does not
control the choice or retrieval process of the goal that is being
pursued. The critic allows progressive decisions in order to
reach one particular goal (van Der Meer and Redish 2011).

We hypothesise that the computation of a goal prediction
error within a hierarchical architecture could enable
flexibility towards changing goal locations. We implemented
a hierarchical agent, but the architecture itself does not
perform hierarchical learning. In Botvinick (2012) agents
are trained to find sub-routines, for example through looking
for bottleneck states in a graph. In our implementation,
we simply added a layer, which selects which one of the
subroutines is most suited for the current situation.

In our implementation of a hierarchical RL architecture
to allow for flexible one-trial place learning, we consider
familiar goal locations, i.e. although the goal location
changes every four trials, the goal locations are always
chosen from a set of 8 locations where the agent has learned
to navigate to the goal during a pretraining period. This
contrasts with the most commonly used watermaze DMP
procedure where the goal locations are novel (e.g., (Steele
and Morris 1999; Bast et al. 2009)), although there are
also DMP variations where the platform location changes

daily, but is always chosen from a limited number of
platform locations (Whishaw 1985). Pre-trained, familiar,
goal locations are also a feature of delayed-non matching-to-
place (DNMP) tasks in the radial maze (e.g., Lee and Kesner
(2002), Floresco et al. (1997)), where rats are first pre-trained
to learn that food can be found in any of 8 arms (i.e., these
are familiar goal locations); after this, the rats are required to
use a ’non-matching-to-place’ rule to chose between several
open arms during daily test trials, based on whether they
found food in the arms during a daily study or sample trial:
arms that contained food during the sample trial will not
contain food during the test trial and vice versa. Based on
work by Schweighofer and Doya (2003), we propose that
the agent’s behaviour could be shaped by the chosen policy
depending on how confident the agent is about the policy
leading to the goal.

The agent learns different policies and value functions
using the model described in section 4.1, each of them
associated with one of eight possible goal locations presented
in the DMP task (which would be at the centre of the eight
zones shown in Fig. 1c). After multiple trials necessary to
learn the actor and critic weights (as presented in section
4.1) for each goal location, the policies and value functions
associated with each one of them are stored. We refer to the
value and associated policy as a “strategy”. The choice of a
strategy depends on a goal prediction error δGt = δt − δjt (see
Fig. 5a). The goal prediction error is used to compute a level
of confidence that the agent has in the strategy it follows.
When the strategy followed does not lead to the goal, the
confidence level decreases, leading to more exploration of
the environment until the goal is discovered. Once the goal
is discovered, the strategy that minimises the prediction error
is selected. Fig. 5b represents the latencies of the agent.
The agent can quickly adapt to changing goal locations, as
reflected by the steep reduction in latencies between trial 1
and 2 of the new goal location.

Prefrontal areas have been proposed to carry out meta
learning computations, integrating information over multiple
trials to perform computations related to a rule or a
specific task (Wang et al. 2018). Neurons in prefrontal areas
seem to carry goal information (Poucet and Hok 2017;
Hok et al. 2005), and their population activity dynamic
correlates with the adoption of new behavioural strategies
(Maggi et al. 2018). In previous work, prefrontal areas
have been modelled as defining the state-action-outcomes
contingencies according to the rule requirement (Rusu and
Pennartz 2020; Daw et al. 2005). Moreover, prefrontal
dopaminergic activity affects flexibility towards changing
rules (Goto and Grace 2008; Ellwood et al. 2017), and frontal
dopamine concentration increases during reversal learning
and rule changes (van der Meulen et al. 2007). Therefore,
the goal prediction error that shapes which goal location is
pursued according to our hierarchical RL model could be
computed by frontal areas from dopaminergic signals.

4.3.1 Limitations in accounting for open field DMP
performance
We present this approach as an illustration of how a

hierarchical agent could be more flexible by separating
the computation of the choice of the goal from the
computation of the choice of the actions to reach it.
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(a)

(b)

Figure 5. a) Hierarchical RL model.
The agent has learned the critic and action connection weights
(Zj and W j , respectively) for each goal j red circles around the
maze. The actor and critic networks together, as represented in
Fig. 3a, form the strategy j. A goal prediction error δG is used to
compute a confidence parameter σ, which measures how good
the current strategy is in reaching the current goal location. The
confidence level shapes the degree of exploitation of the current
strategy β through a sigmoid function of confidence. When the
confidence level is very high, the strategy chosen is closely
followed, as shown by a high exploitation parameter β. On the
contrary, a low confidence level leads to more exploration of the
environment.
b) Performance of the hierarchical agent. The model is able to
adapt to changing goal locations, as seen in the reduction of
latencies to reach the goal.

However, the model has several features that limit its use
to provide a neuropsychologically plausible explanation
of the computations underlying DMP performance in the
watermaze and related open-field environments. First, the
agent has to learn beforehand the connections between place
cells and action and critic cells that lead to successful
navigation towards every possible goal location of the
maze. This would involve pretraining with the possible goal
locations, whereas the agent would fail to learn a completely
new goal location within 1 trial (i.e., return to a location
that contained the goal for the very first time). Hence, the
model can be considered as a model of one shot recall, rather

than one-shot learning. This cannot account for the one-
trial place learning performance shown by rats and human
participants on DMP tasks towards new goal locations, rather
than familiar ones (Bast et al. 2009; Buckley and Bast 2018).
One discrepancy between the model’s behaviour and rats
can be seen during the first few trials, in which the agent
automatically shows adaptation to the new goal location (as
reflected by sharp latency reductions from trial 1 to 2; Fig.
5b), whereas rats need a few trials to learn the task (Fig.
1b). However, the hierarchical RL model may account for
one-trial place learning performance on the DMP task when
the changing goal locations are familiar goal locations, i.e.
always chosen from a limited number of locations (Whishaw
(1985), see the third point below).

Second, if the agent does not find the goal in the location
to which its current strategy leads, it starts exploring the
maze randomly until it finds the current goal location and
selects a strategy that predicted it the best. This results in
consistently high latencies during the first trial of every
new goal location (Fig. 5b). In contrast, the trial 1 latencies
of rats are more variable (Fig. 1b), for reasons considered
in section 4.2 (last paragraph). On probe trials, removing
the goal location would lead the agent to start exploring,
therefore failing to reproduce the search preference as shown
in open field DMP tasks in the watermaze (Bast et al. 2009),
virtual maze (Buckley and Bast 2018) and in a dry-land arena
(Bast et al. 2005). Interestingly, this suggests that rats may
not show search preference during probe trials when they
are tested on a DMP task variant that uses familiar goal
location (Whishaw 1985) and, therefore, may be solved by
a hierarchical RL mechanism.

Third, a lesion study (Jo et al. 2007), as well as our own
inactivation studies (McGarrity et al. 2015), in rats indicate
that prefrontal areas are not required for successful one-
shot learning of new goal locations, or the expression of
such learning, in the watermaze DMP task, and frontal areas
were also not among the brain areas where EEG oscillations
were associated with virtual DMP performance in our recent
study in human participants (Bauer and Bast 2020). This
contrasts with the hierarchical RL model, which implicates
“meta-control” processes that may be associated with the
prefrontal cortex. However, on a DMP task variant that uses
familiar goal location (Whishaw 1985) and, therefore, may
be solved by this hierarchical agent, prefrontal contributions
may become more important, a hypothesis that remains to
be tested. This suggests that the two DMP variants may rely
on different neuro-behavioural mechanisms. Interestingly,
the prefrontal cortex and hippocampo-prefrontal interactions
are required for one-trial place learning performance on
radial maze (Seamans et al. 1995; Floresco et al. 1997)
and T-maze (Spellman et al. 2015) DNMP tasks, which
involve daily changing familiar goal locations and, hence,
may be supported by hierarchical RL mechanisms similar
to our model (see section 4.3). Moreover, on the T-
maze DNMP task, Spellman et al. (2015) found that
hippocampal projections to mPFC are especially important
during encoding of the reward-place association, but less so
during retrieval and expression of this association. This is
partly in line with the behaviour of the model, as the goal
prediction error is important to select the appropriate strategy
when the agent finds the correct goal location during the
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sample trial. However, hippocampal-prefrontal interactions
are not yet considered in the model.

Fourth, hippocampal plasticity is required in open field
DMP tasks (Steele and Morris 1999; Bast et al. 2005).
The current approach suggests that the adaptation necessary
during trial 1 gives rise to the selection of a set of
actor and critic weights that lead to the goal through the
computation of a goal prediction error. The model does
not explain how the computation of the goal prediction
error would be linked to hippocampal mechanisms. It is
possible that a positive prediction error would make the
current event (being in the right goal location) salient
enough to affect its neural representation to stay in memory,
for example. In a spatial navigation task in which rats
had to remember reward locations chosen according to
different rules, McKenzie et al. (2014) have shown that
hippocampal representations are hierarchical depending on
the task requirement: if the context was determining the
reward location, the context would be the most discriminant
factor within hippocampal representations. Recent work
Sanders et al. (2020) suggests that hierarchical inference
could be used to explain remapping processes. It may be
that a hierarchical representation of the task within the
hippocampus could help adaptation to new goal locations
through remapping processes. Hok et al. (2013) found
that prefrontal lesions decreased variability of hippocampal
place cell firing and hypothesised that this was linked to
flexibility mechanisms and rule-based object associations
(Navawongse and Eichenbaum 2013) within hippocampal
firing patterns. This finding shows that the prefrontal cortex
can modulate hippocampal place cell activity. If the goal
prediction error is coded by the prefrontal cortex, these
findings imply that the goal prediction error could act on
hippocampal representations in order to incorporate new task
requirements (e.g. information about the new goal location)
and modify expectations.

4.3.2 A potential account of arm-maze DNMP
performance?
Although the hierarchical RL approach may be limited in

accounting for key features of performance on DMP tasks
using novel goal locations, it may have more potential in
accounting for flexible trial-dependent behaviour displayed
by rats on DNMP tasks in the radial arm maze, which involve
trial-dependent choices between familiar goal locations.
DNMP performance in radial maze tasks requires NMDA
receptors, including in the hippocampus, during pretraining,
although after pretaining, and contrary to the watermaze
(Steele and Morris 1999) and event arena DMP tasks (Bast
et al. 2005), rats can acquire and maintain trial-specific place
information independent of hippocampal NMDA receptor
mediated plasticity, even though the hippocampus is still
required (Lee and Kesner 2002; Shapiro and O’Connor
1992; Caramanos and Shapiro 1994). The hierarchical RL
architecture may account for this phase of acquisition of
arm-reward association via pretraining to the eight possible
goal locations, via the formation of actor and critic weights
of every strategy. However, the plasticity considered in
the hierarchical model is more consistent with changes in
hippocampal-striatal connections, whereas the model does
not address the role of plasticity within the hippocampus

during this phase. Moreover, the hierarchical RL model also
fits with the requirement of the prefrontal cortex for flexible
spatial behaviour on arm-maze tasks, as described in the
previous section.

However, to test if a hierarchical RL architecture
can reproduce behaviour on DNMP arm-maze task, our
implementation of a hierarchical RL model outlined above
(see Fig. 5a) would need to be adapted to the arm-maze
environments, to the DNMP rule and to an error measure
of performance that is typically used in arm maze tasks
(Seamans et al. 1995; Floresco et al. 1997). The goal-
prediction error would drive exploration to other arms and
provide a long term control allowing to carry memories of
previously visited goals.

5 Conclusions

We presented an actor-critic architecture, which leads to
action selection based on the difference of estimated rewards
to be received. The model (Foster et al. 2000) uses an esti-
mate of the value function over the maze to drive behaviour,
through a critic network that receives place cell activities
as input. It can successfully learn to select which action is
best through an actor network, which also receives place
cell input and is trained to follow the gradient of the value
function from the critic difference in successive activities.
This agent can follow trajectories towards a particular, fixed,
goal location, that corresponds to the maximum of the value
function. However, when the goal location changes, the
model needs many trials to adjust in order to accurately nav-
igate to the new goal, which is in marked contrast with real
DMP performance of rats (Fig. 1b) and humans (Buckley and
Bast 2018).

To account for one-trial place learning performance on the
DMP task, a possible extension to the actor-critic approach
is to learn map-like representation of locations throughout
the maze that facilitate the direct comparison between the
goal location and the agent’s location. This enables the com-
putation of a goal-directed displacement towards any new
goal location throughout the maze and reproduces flexibility
shown by humans and animals towards new goal location, as
reflected by sharp latency reductions from trial 1 to 2 to a
new goal location and marked search preference for the new
goal location when trial 2 is run as probe (Fig. 4b;4c).

Given that the striatum has been associated with
actor-critic mechanisms (Joel et al. 2002; Khamassi and
Humphries 2012; O’Doherty et al. 2004; van Der Meer and
Redish 2011), using an actor-critic agent for flexible spatial
navigation is consistent with empirical evidence associating
striatal regions with place learning performance on both
incremental (Annett et al. 1989; Devan and White 1999;
Braun et al. 2010) and DMP ((Seaton 2019) and Bauer and
Bast (2020)) tasks. However, contrasting with the coordi-
nate extension to the actor-critic architecture, experimental
evidence suggest that goal location memory may lie within
hippocampal place cell representations (McKenzie et al.
2013; Dupret et al. 2010) and that one-trial place learning
performance on DMP tasks in rats requires NMDA receptor
dependent LTP-like hippocampal synaptic plasticity (Steele
and Morris 1999; Bast et al. 2005).
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Finally, we illustrated how flexibility may be generated
through hierarchical organisation of task control (Balleine
et al. 2015; Botvinick et al. 2009; Dayan and Hinton 1993).
In an extension of Foster et al. (2000), we separated the
selection of the goal from the control of the displacement
towards it by means of a different readout of the TD error by
the different control systems. The agent first learns different
“strategies”, each of which correspond to a different critic-
actor component that leads to one of the possible goal
locations. The critic and actor are used to perform the
displacement to the goal location. An additional hierarchical
layer is added to compute a goal prediction error which
compares location of the goal predicted from the strategies
to the real goal location and selects a strategy accordingly.
The agent follows its strategy depending on a confidence
parameter that integrates goal prediction errors information
over multiple trials. This hierarchical RL agent can adapt to
changing goal locations, although these goal locations need
to be familiar, whereas in open field DMP tasks the changing
goal locations are new (Bast et al. 2005, 2009). However, the
hierarchical RL approach may be more suitable to account
for situation when trial-specific memories of familiar goal
location need to be formed, as on arm-maze DNMP tasks
(section 4.3.2)

To conclude, elements of an actor-critic architecture may
account for some important aspects of rapid place learning
performance in the DMP watermaze task. Together with
a map-like representation of location, an actor-critic archi-
tecture can support the efficient, fast, goal-directed compu-
tations required for such performance, and a hierarchical
structure is useful for efficient, distributed, control. Future
models of hippocampus-dependent flexible spatial naviga-
tion should involve LTP-like plasticity mechanisms and goal
location representation within the hippocampus, which have
been implicated in trial-specific place memory by substantial
empirical evidence.
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A Actor-critic equations, based on (Foster
et al. 2000)

Place cell activity:
The NP place cells have Gaussian activation profiles:

fi(pt) = exp

(
−||pt − ci||

2

2σ2

)
, for i = 1 . . . NP . (A.1)

Here pt = (xt, yt) ∈ R2 represents the position of the rat at
time t, ci ∈ R2 denotes the centre of the ith place cell and σ
the width of the activity profile.
Critic:
The agent has an estimate of the value of its current state.
This estimation is provided by a critic cell, whose activity is
computed according to:

C(pt,Wt) =

NP∑
i=1

W t
i fi(pt), (A.2)

where W t
i is the weight from the ith place cell to the critic

cell.
Actor:
The actor network is composed of NA = 8 units, which
represent 8 possible directions (north, north-east, east, south-
east, south, south-west, west and north-west). The activity of
the jth action cell is computed according to:

aj(pt, Zt) =

NP∑
i=1

Ztjifi(pt), for j = 1 . . . NA, (A.3)

where Ztji is the connection weight form the ith place cell to
the jth action cell.

To determine the probability of taking the jth action, given
the activities aj , a softmax probability distribution of the
activities is computed according to:

P tj =
exp(βatj)∑NA

k=1 expβ(atk)
. (A.4)

In (A.4), the parameter β acts as an inverse temperature.
Small values lead to a more uniform probability distribution,
increasing randomness, and therefore promoting exploration
of the environment. Larger values lead to more exploitation
of known state-action pairs.
Evolution of position:
After the selection of the jth action, the animal moves
according to:

pt+1 = pt + α

[
cos(θj)
sin(θj)

]
,

where θj denotes the angle of the selected jth action cell, and
α is the speed of the agent.
Reward:
After having moved to the location pt+1, the agent receives a
reward rt = 1 if it has reached the goal location (representing
the platform in a watermaze experiment), and rt = 0
otherwise.
TD error:
The agent can compare the value of its current state against
its prediction through the following TD error:

Prepared using sagej.cls

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.07.30.229005doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.229005
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 Journal Title XX(X)

δt = rt + γC(pt+1,Wt)− C(pt,Wt), (A.5)

where C(pt+1,Wt) refers to the estimated value of the
current state pt+1 from the weights at the previous time t
(see equation (A.2)).
Learning:
The error (A.5) is used to improve the estimator by updating
the weights from place cells to the critic (A.2) via W t+dt

i =
W t
i + ∆W t

i , using:

∆W t
i = χC δtfi(pt), (A.6)

where χC is the learning rate. The actor network is also
updated in order to improve the policy. The actor weight
Zji between the jth action cell and the ith place cell evolves
according to Zt+dt

ji = Ztji + ∆Ztji, using:

∆Ztji = χAδtfi(pt)gj(t), (A.7)

where χA is the learning rate, gj(t) = 1 if the jth action is
chosen and is 0 otherwise. The connection between a place
cell and an action cell is strengthened if taking the action at
the given location results in an increase in the value function,
and is weakened if this results in a decrease in the value
function.
Parameters:
To give appropriate feedback to the actor, the critic must
be accurate. To help achieve this, it is useful to set the
critic learning faster than the actor. This way, the TD error
can more rapidly reflect the actual change in value between
two consecutive states. Here we choose χActor = 0.01 and
χCritic = 0.1.
The discount factor γ must be quite high to ensure
backpropagation of information to the boundaries of the
maze. Here we choose γ = 0.98.
All the other parameter values are chosen as in Foster et al.
(2000).

B Actor-critic component: effect of
changing the place cell activity width
and the discount factor on incremental
learning towards the goal location

(a)
(b)

(c)
(d)

Figure 6. Effect on goal location learning of changing the
width of the place cell activity distribution. Value functions
(a,c), and latencies (b,d), for high σ (a,b) and low σ (c,d). A
too high value of σ leads to a less sharp increase in the value
function. The agent learns slightly, but its performance is limited
by the opposing updates that it gets when approaching the goal
form different directions. A low value of σ gives a narrow value
update, not allowing any generalisation about which action is
optimal. The agent needs many more trajectories to the goal to
learn the policy from any starting location.

σ affects the generalisation between states: if a decision
leads to an update in value and policy at a certain state, this
decision also updates the value and policy at neighbouring
states, the extent to which is weighted by σ. In the case
where the place cell activity profile is wide, the value
function peak is broad (Fig. 6a). The agent cannot reach
optimal performance, as can be seen from the latencies, that
decrease through time (Fig. 6b), showing that the agent still
is able to learn, but the latencies obtained exceed those for
intermediate choices of σ. For very narrow place cell activity
profiles, the information provided by the value function
remains concentrated near the goal location only. The
updates cannot be generalised across the space. Therefore
it does not provide information of utility for the agent to
navigate successfully to the goal from more distant locations.
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(a)
(b)

(c)
(d)

Figure 7. Effect of the discount factor on learning. Low γ
(a,b) compared to optimal γ (c,d), quite high value (0.98). Too
low γ leads to more narrow value function (a). The agent is
not able to backprogagate to previous states about the value
of the future state. This leads to the agent not having enough
information about optimal actions at the borders of the maze,
and prevents learning, as can be seen on the latencies (b). The
optimal learning rate in this task should be high enough so that
the information is transmitted as fast as possible to the borders
of the maze, but cannot be 1 otherwise the same value will be
reached across the whole maze, and all actions would be equally
optimal.

The discount factor defines how much the estimation of
the future value function is taken into account in comparison
of the estimation of the current value in the TD error. A
low γ leads to consequent update only when the agent
reaches the goal. The agent is not able to backprogagate
the information about the reception of the reward to
previous states. This leads to the value function having a
steep increase close to the goal location (a), whereas the
optimal value function (c) requires a progressive gradient
everywhere to guide the actor. The actor therefore does
not have a clear information about where to go when it is
away form the goal. This is reflected by latencies that stay
large (Fig. 7b), showing that the agent does not learn the task.

Codes availability:
All codes implemented in Julia are available at https:
//github.com/charlinetess/FMD_SMT

C Coordinate navigation - equations and
supplementary figures

C.1 Equations
In this section, we describe the equations used to compute the
estimates of the x and y coordinates, as described in section
4.2. Similarly to section A, the positioning system uses place
cell activity as input to compute X̂ and Ŷ , the estimate of the

current x and y coordinates at every timestep:

X̂(pt) =

NP∑
i=1

wxi (t)fi(pt), Ŷ (pt) =

NP∑
i=1

wyi (t)fi(pt).

(C.1)
this estimator augments the original model presented in
section A. A coordinate action cell computing the direction
towards the goal location is added to the existing action cells
(see figure 4a). The weights between the position cells and
the place cells are updated using self-motion information,
according to wx/y,t+dti = w

x/y,t
i + ∆w

x/y,t
i , using:

∆wx,ti = χCoord(∆x̂t + x(pt+1)− x(pt))
t∑

k=1

λt−kfi(pk),

∆ŵy,ti = χCoord(∆yt + y(pt+1)− y(pt))
t∑

k=1

λt−kfi(pk),

(C.2)

in which χCoord defines the learning rate for the coordinates,
and ∆x̂t and ∆ŷt represent the self-motion estimate in the
x and y directions, i.e. the difference between the estimated
position at the previous location and at the current position,
using the previous estimator. They are computed according
to:

∆x̂t =

NP∑
i=1

∆wx,ti fi(pt+dt),

∆ŷt =

NP∑
i=1

∆wy,ti fi(pt+dt),

(C.3)

and x(pt+1)− x(pt) and y(pt+1)− y(pt) refers to the
real displacement along the x and y direction. The term∑t
k=1 λ

t−kfi(pk) acts as an eligibility trace (Sutton and
Barto 2018), adding more importance to the most visited
locations. Every time the goal location is encountered, its
estimated position (X̂G, ŶG) is stored (see figure 4a). Thus,
during the subsequent trials, the agent has an estimate of its
current location and of the location of the goal at every time
step.

To perform navigation, a ninth action cell is added to the
original set of eight cells (see figure 4a). Its activity is
computed according to equation (A.3) and the probability of
selecting it according to equation (A.4). However, contrary
to the other direction cells associated to angles that represent
different cardinal directions, this action cell is not linked
to any particular angle, but drives the agent towards the
estimated platform location. If we denote X̄t = (X̂t, Ŷt)
the current estimated coordinates and X̄G = (X̂G, ŶG) the
current estimate of the goal location, the selection of the
coordinate action induces the following change in position:

pt+1 = pt + α
X̄G − X̄t∥∥X̄G − X̄t

∥∥ (C.4)

A further distinguishing feature of this action cell is in the
update of weights linked to this cell. The learning rule does
not depend on position; instead, the weight between the 9th
action cell and the i place cell is computed according to
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zt+dt
9i = zt9i + ∆zt9i:

∆zt9i = χCoordActδtg9(t), for i = 1 . . . NP , (C.5)

where g9(t) = 1 if the 9th action cell has been selected
and zero otherwise, and δt refers to the error computed
from equation A.5. When there is no goal coordinate in
memory, the direction is chosen at random among the 8
other directions and the coordinate action cell weights are
not updated. All of the other weights zji, j = 1 . . . 8, i =
1 . . . NP , evolve according to equation A.7.
Parameters:
Discount factor: = 0.99, Learning rate for coordinates :
χCoord = 0.05, Eligibility trace parameter: λ = 0.8.
Codes availability:
All codes are implemente din Julia and available at https:
//github.com/charlinetess/FMD_DMP

C.2 Supplementary figures

Figure 8. Coordinates estimation throughout the maze. Up: Ŷ ,
Down: X̂. Left: very early on learning, the coordinates are
not consistent throughout the maze. Right: after learning, the
estimates follow a consistent gradient compared to the real
coordinates, which enables correct computation of the motion
toward the goal.

D Hierarchical model - equations
In this approach, the agent learns the weights corresponding
to 8 different goal positions throughout the maze, using
the model from Appendix A. This gives rise to 8 possible
strategies, each providing a control mechanism to produce
trajectories to a given location.

At the start, a strategy j is selected at random. The
observed error δt is the error computed from the critic of
the j-th strategy but the reward component refers to the
real reward received, whereas the error computed from the
strategy j refers to the predicted reward. Symbolically, we
have that:

δt = rt + γC(pt+1,W
j
t )− C(pt,W

j
t ), (D.1)

and

δjt = rjt + γC(pt+1,W
j
t )− C(pt,W

j
t ), (D.2)

where rjt refers to the predicted rewards according to strategy
j, and rt refers to the reward available in the environment.
The strategy prediction error if currently following strategy
j is computed from the difference of the two errors:

δG = δt − δjt .

The strategy prediction error is used to shape the dynamic of
a confidence level σt that evolves according to:

dσt
dt

= −σt
τσ

+ δG (D.3)

The temporal evolution captures the fact that error in
predictions should lead to a transient reduction in the
confidence of the agent in this particular strategy. The
confidence level determines how the agent’s actual behaviour
respects the defined policy. The temperature parameter from
equation (A.4) now becomes dependent on the confidence
level:

βt = f(σt), (D.4)

where f is a Sigmoid function given by:

f(σ) =
ρ

exp (−ω(σ − h))
. (D.5)

Here, ρ defines the gain factor, h the cut threshold (point
of highest slope in the sigmoid). ω defines the steepness
of the function around the cut threshold, which shapes how
fast the exploitation parameter evolves when the confidence
parameter becomes higher or lower than the cut threshold.
When the goal is not found in the location estimated by
the followed strategy, the confidence parameter decreases,
allowing exploration of the environment, until the goal is
eventually found. When the goal is found, the strategy j
which minimises the goal prediction error is selected. This
leads to the confidence parameter to start ramping up again.
Parameters:
We use ω=5, h=-0.2, ρ=2, τσ=15.
Codes availability:
All codes implemented in Julia are available at https:
//github.com/charlinetess/MetaTD
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