

Pollutants in Hong Kong Soils: Organochlorine Pesticides and Polychlorinated Biphenyls

M.K. Chung[†], R. Hu[‡], K.C. Cheung[†], and M.H. Wong^{†*}

[†] Croucher Institute for Environmental Sciences and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, PR China

[‡] Institute of Hydrobiology and Aquatic Ecosystems, Jinan University, Guangzhou, PR China

* Corresponding author. E-mail: mhwong@hkbu.edu.hk (M.H. Wong); tel.: +852-3411-7746; fax: +852-3411-7743

23 **Pollutant in Hong Kong soils series:**

24

25 1.

26 Chung, M. K., Hu, R., Cheung, K. C. & Wong, M. H. Pollutants in Hong Kong soils:

27 Polycyclic aromatic hydrocarbons. Chemosphere 67, 464–473 (2007).

28 <http://doi.org/10.1016/j.chemosphere.2006.09.062>

29

30 2.

31 Chung, M. K., Cheung, K. C. & Wong, M. H. Pollutants in Hong Kong Soils: As, Cd,

32 Cr, Cu, Hg, Pb and Zn

33 <https://doi.org/10.1101/2020.02.16.951558>

34

35 3.

36 Chung, M. K., Hu, R., Cheung, K. C. & Wong, M. H. Pollutants in Hong Kong Soils:

37 Organochlorine Pesticides and Polychlorinated Biphenyls

38 <https://doi.org/10.1101/2020.02.16.951541>

39

40

41 **Current first author contact:**

42 Ming-Kei CHUNG; mingk@alumni.cuhk.net

43

44

45

46

47 Abstract

48 Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were
49 investigated in 138 soil samples collected in Hong Kong. Results showed that within
50 the selected OCPs, only DDT and its metabolites (DDD and DDE) were frequently
51 detected. Of 138 soil samples, 18% were non-detected for any DDT residues, while
52 25% were contaminated sporadically with DDT only (non-detected to 1090 $\mu\text{g kg}^{-1}$)
53 and 57% contained various combinations of DDT, DDD and DDE (2.03 to 1118 $\mu\text{g kg}^{-1}$).
54 In contrast, total PCBs (\sum 66 congeners) contamination was distributed more evenly
55 (0.22 to 154 $\mu\text{g kg}^{-1}$) than DDTs, but serious contamination was found in industrial
56 areas and soils collected near highways. Concentrations of 7 indicator PCBs ranged
57 between non-detected to 34.5 $\mu\text{g kg}^{-1}$. The ratios of DDT/metabolites were typically
58 greater than 1, thus suggesting recent application of DDT. Medium-range deposition
59 from industrial areas within as well as away from the city is also suspected to be the
60 origins of DDTs and PCBs found in Hong Kong soils. The concentrations of DDTs
61 and PCBs in all soil samples did not exceed the recommended values in soil quality
62 guidelines except 3 samples for DDT from locations far away from densely populated
63 districts such as Tuen Mun and Tin Shui Wai. Therefore, DDTs and PCBs were not of
64 significant concern in terms of their impacts on public health and environment.

65

66

67

68

69 *Keywords: Persistent Toxic Substances (PTS), South China, Persistent Organic
70 Pollutants (POPs), Urban Soils.*

71

72

73

74

75

76

77 **1. Introduction**

78 Polychlorinated biphenyls (PCBs) and a number of organochlorine pesticides (OCPs)
79 such as dichlorodiphenyltrichloroethane (*p,p'*-DDT) and hexachlorocyclohexanes
80 (HCHs) are candidates of designated 12 Stockholm Convention persistent organic
81 pollutants (POPs). These anthropogenic chemicals, unlike other nature contaminants
82 that can be degraded by physiochemical or biological means, are much more persistent
83 in the environment. Their potential carcinogenicities and the possibility of resulting
84 more toxic metabolites have spotlight attention of the general public in recent years
85 (Connell *et al.*, 2003; Megharaj *et al.*, 1999).

86

87 PCBs were first commercially produced in 1929 (Mai *et al.*, 2005) and cumulative
88 production has been estimated as much as 1.2 million tonnes around the world (Harrad
89 *et al.*, 1994). The primary uses of PCBs included congener-mixture in dielectric fluids,
90 flame retardants, and industrial lubricant fluids in transformers and capacitors
91 (Schuhmacher *et al.*, 2004). They are organochlorine chemicals that have 209
92 congeners. Among these congeners, 12 are especially dangerous for their dioxin-like
93 (DL) activities (van den Berg *et al.*, 1998). Their residues have been found in the
94 environment and have been either banned or restricted on production or usage in many
95 countries since 1970s (Harrad *et al.*, 1994).

96

97 DDT was first synthesized in 1874 and the discovery of DDT's insecticidal activity by
98 Paul Müller in 1939 subsequently led to his award of the Nobel Prize (Carson *et al.*,
99 1962). After World War II, it was applied on agricultural crops world wide and
100 stimulated the synthesis and development of other organochlorine pesticides. However,
101 later evidences showed its detrimental effects on non-target organisms (Carson *et al.*,
102 1962; Christen, 1999), leading to the restriction on its production and usage in many
103 countries. Nevertheless, several tropical and subtropical countries are being exempted
104 for using DDT for public health purpose to control the spread of malaria (World
105 Wildlife Fund, 2004).

106

107 In Asia, Japan and Korea have banned the use of DDT in the 1970s (Phillips and
108 Tanabe, 1989), whereas DDT production was prohibited in China in 1983 (Wolfe *et*
109 *al.*, 1984). PCBs have been banned or regulated in China in early 1980s (Mai *et al.*,
110 2005). Nevertheless being officially regulated for more than 20 years, PCBs, DDTs

111 and other OCPs such as HCH were still being detected in various environmental
112 compartments throughout China (Ding *et al.*, 2005; Fung *et al.*, 2004; Mai *et al.*, 2005;
113 Wu *et al.*, 1999; Yuan *et al.*, 2001), but overall the PCB levels were relatively low and
114 serious contaminations were highly restricted in area such as storage locations of PCBs
115 (Xing *et al.*, 2005). In Hong Kong, the production and use of DDT have been banned
116 since 1988, however, there is no legislation to ban the production of PCBs as no record
117 of such industrial activity by the Hong Kong government. Instead, historical
118 equipments with PCBs such as transformers and capacitors are being phased out
119 voluntarily by their owners (Hong Kong Environmental Protection Department, 2002).

120

121 In the Pear River Delta (PRD) where Hong Kong is located, Lingding Yang was
122 reported to be one of the hotspot sites polluted with OCPs in the Pearl River Estuarine
123 (Fang, 2004), which might transport pollutants to coastal areas of Hong Kong.
124 Contamination of PCBs and DDTs in mussels farmed in Hong Kong was reported as
125 early as 1990s (Phillips, 1989). DDT levels in human milk collected from both
126 Guangzhou and Hong Kong were generally higher when compared with 19 countries
127 (Wong *et al.*, 2005). Recent studies indicated that several freshwater fishes cultivated
128 in fish ponds around the PRD and purchased from local markets all contained DDTs
129 (Cheung *et al.*, 2006), and in particular the Mandarin fish (*Siniperca kneri*) are of actual
130 concern, which could contain DDTs up to 4.3 times higher (62 $\mu\text{g kg}^{-1}$ wet wt.) than
131 the recommended value set by USEPA (14.4 $\mu\text{g kg}^{-1}$ DDTs, wet wt.) (Kong *et al.*,
132 2005).

133

134 The major objectives of this paper are to study the contemporary levels of edaphic
135 OCPs and PCBs and assess their potential risks to general public in Hong Kong. It is
136 hoped that the data would serve as a valuable reference for redeveloping of some areas
137 which were affected by various industries in the past, as well as fulfilling part of the
138 obligation imposed by the Stockholm Convention on POPs and the duty of monitoring
139 POPs in the environment. In addition to these, potential sources of OCPs and PCBs
140 were also discussed.

141

142 **2. Materials and Methods**

143 *2.1 Sampling, Preparation and Analysis*

144 Ten land use categories had been designated to reveal the pollution impacts from
145 various human activities. These included urban park, greening area, country park, rural
146 area, restored landfill, agricultural farmland, orchard farm, crematorium, industrial area
147 and nearby highway. There were totally 138 composite soil samples collected in early
148 2003 at various locations in Hong Kong. Surface soils (0-5 cm depth) were taken by
149 using a stainless steel soil core with the uppest organic vegetative materials were
150 removed in advance. Samples were air-dried and sieved through a 2-mm mesh.

151

152 Extraction of OCPs and PCBs from soil samples were performed according to the US
153 EPA Standard Method 3540C (U.S. Environmental Protection Agency, 1996a).
154 Briefly, 10 g of soil sample was transferred into a soxhlet apparatus and extracted by
155 80 ml acetone (pesticide grade, Tedia) and dichloromethane (DCM) (pesticide grade,
156 Tedia) mixture (1:1, v:v) for 18 h. Florisil columns were used to minimize interferences
157 to target compounds.

158

159 Fifteen OCPs were analyzed: α -HCH, β -HCH, δ -HCH, heptachlor, aldrin, heptachlor
160 expoxide, endosulfan I, endosulfan II, dieldrin, *p,p'*-DDE, endrin, *p,p'*-DDD, endrin
161 aldehyde, endosulfan sulphate and *p,p'*-DDT. For PCBs, 66 of the congeners were
162 quantified. Using the IUPAC nomenclature, they are 1, 2, 3 (total mono-PCBs), 4, 6,
163 8, 9, 15 (total di-PCBs), 16, 18, 19, 20, 22, 25, 27, 28, 29, 34 (total tri-PCBs), 40, 42,
164 44, 47, 52, 56, 66, 67, 69, 71, 74 (total tetra-PCBs), 82, 87, 92, 93, 99, 101, 105, 110,
165 118, 119 (total penta-PCBs), 128, 134, 136, 138, 144, 146, 147, 151, 153, 157, 158
166 (total hexa-PCBs), 173, 174, 177, 179, 180, 187, 190, 191 (total hepta-PCBs), 194, 195,
167 199, 203 (total octa-PCBs), 206, 207, 208 (total nona-PCBs) and 209 (total deca-PCBs).
168 Σ PCBs is defined as the sum of the concentration of 66 congeners. Standards for OCPs
169 and PCBs congeners mixtures were purchased from ChemService Inc. and AccuStand
170 Inc. respectively.

171

172 The analytical methods were based on using GC-MS (Gas Chromatography-Mass
173 Spectrometry) instrument (U.S. Environmental Protection Agency, 1996b). In short,
174 OCPs and PCBs were quantitatively analyzed by a Hewlett Packard (HP) 6890 GC
175 system equipped with an HP 5973 mass selective detector (MS) and a 30m \times 0.25mm
176 \times 0.25 μ m DB-5 capillary column (J & W Scientific) with helium as the carrier.

177

178 Limit of detection (LOD) for OCPs was: 2 µg kg⁻¹ for *p,p'*-DDD and *p,p'*-DDE, 20 µg
179 kg⁻¹ for DDT and 10 µg kg⁻¹ for the rest of OCPs. LOD for PCBs varied, and a universal
180 safe value for mono to penta PCBs was set to 0.5 µg kg⁻¹ while 1 µg kg⁻¹ for the rest of
181 the PCBs.

182

183 2.2 *Quality Control*

184 Laboratory analytical blank and Certified Reference Material (CRM) CRM105-100
185 (Resource Technology) and HS-2 (Institute for Marine Biosciences) were included in
186 every 2 batches (14 samples) of soxhlet extraction to assess the recoveries and
187 performance for measurement of OCPs and PCBs respectively. None of the analytical
188 blanks were found to have detectable contamination of the monitoring OCPs and PCBs.
189 Average individual OCPs recoveries were: 88 ± 3% (*p,p'*-DDT), 92 ± 6% (*p,p'*-DDD),
190 86 ± 2% (*p,p'*-DDE), 67 ± 4% (dieldrin), 64 ± 7% (endosulfan I), 72 ± 6% (endosulfan
191 II), 59 ± 9% (endrin). While average individual PCBs recoveries were: 77 ± 3%
192 (IUPAC 101), 89 ± 5% (IUPAC 138), 87 ± 5% (IUPAC 151), 103 ± 9% (IUPAC 153),
193 76 ± 12% (IUPAC 180), 82 ± 3% (IUPAC 194), 86 ± 10% (IUPAC 199), 78 ± 9%
194 (IUPAC 209). Mean recovery for OCPs and PCBs were > 75% and >84% respectively
195 and all samples were not corrected.

196

197 2.3 *Data Analyses*

198 Statistical analyses were calculated using Statistica (version 6.0, StaSoft). Kriging
199 maps were developed using SADA (version 4.0, University of Tennessee) and
200 graphical plots of data were produced by either Statistica or SigmaPlot (version 8.0,
201 Systat). Not detected values were substituted with half of LOD only for descriptive
202 statistics.

203

204 3. Results and Discussion

205 3.1 *Spatial values*

206 In general, most OCPs were not detected except DDTs, and their mean concentrations
207 are listed in Table 1. Two locations were found to have endosulfan sulfate at
208 concentration about 12 µg kg⁻¹ while heptachlor epoxide was found in 1 soil sample.
209 This finding is in HK is in line with the observation that DDTs were the mostly
210 predominant OCPs in tropical Asia (Kannan *et al.*, 1995). Uneven distribution of
211 DDTs was observed, with 18% of soil samples showing no detectable DDTs. Areas

212 near highways had higher concentrations of DDT when compared to other land use
213 categories (median 77.8 $\mu\text{g kg}^{-1}$). DDT concentrations decreased according to the
214 following pattern: areas near highways > urban park > crematorium > orchard farm >
215 rural area > agricultural farmland > greening area > industrial area > country parks >
216 restored landfills. The variation in concentrations was greatest for DDT, ranged from
217 not detected to 1000 $\mu\text{g kg}^{-1}$, whereas not detected to around 200 $\mu\text{g kg}^{-1}$ for DDD and
218 DDE.

219

220 To assess the spatial distribution of individual DDTs in Hong Kong, kriging maps
221 (Figure 1) were constructed by interpolating the data from various locations (ordinary
222 kriging). A single hotspot for DDT, DDD and DDE contamination was observed in the
223 southern tip of Tsing Yi island. Another hotspot for DDT compounds was found in the
224 roadside located in Lung Kwu Tan, where no DDD and DDE were detected. The half
225 life of DDTs ranges from a few months to 30 years, or even up to centuries (Aigner *et*
226 *al.*, 1998; Dimond and Owen, 1996). The traffic in the aforementioned locations was
227 mainly contributed by trucks powered by diesel engine, which may release high levels
228 of toxic pollutants such as PAHs and lead, creating an adverse condition which is
229 unfavorable to biodegradation, and thus slow down the biodegradation of DDTs in the
230 vicinity.

231

232 In Hong Kong, relatively high levels of DDTs (2.87 mg kg^{-1} fat) and β -HCH (0.95 mg
233 kg^{-1} fat) were found in human milk (Wong *et al.*, 2002), whereas the mean
234 concentration of DDTs in whale and dolphin found in local water was 46 mg kg^{-1} wet
235 wt. (Minh *et al.*, 1999). The present results indicated that the mean edaphic DDT
236 concentrations was 72 $\mu\text{g kg}^{-1}$, while levels of DDTs in river sediments and tilapia of
237 the inland water systems in Hong Kong were 2.8 to 8.6 and 28 to 40 $\mu\text{g kg}^{-1}$ dry wt.
238 respectively (Zhou *et al.*, 1999), and average DDT levels in surface sediment of Mai
239 Po marsh was 8.15 $\mu\text{g kg}^{-1}$ dry wt (Zheng *et al.*, 2000). It can be seen that there are up
240 to 1000 folds of difference in DDT concentrations between the backgrounds and living
241 organisms, and this implied that DDTs are being accumulated into organisms and
242 finally reaching human beings through various pathways including ingestion of
243 contaminated food and soil particles, and inhalation of dust. Being a large agricultural
244 country, China has produced and used a large quantity of DDTs not until early 1980s
245 when DDT was banned for agriculture application (Wong *et al.*, 2005). The level of

246 DDTs in China is highly varied, from maximum values below 100 $\mu\text{g kg}^{-1}$ in crop soils
247 of PRD (5 to 80 $\mu\text{g kg}^{-1}$) (Fu *et al.*, 2003), to below 1000 $\mu\text{g kg}^{-1}$ in Tianjin (0.35 to
248 963 $\mu\text{g kg}^{-1}$) (Gong *et al.*, 2004) and above 1000 $\mu\text{g kg}^{-1}$ in outskirts of Beijing (0.77 to
249 2178 $\mu\text{g kg}^{-1}$) (Zhu *et al.*, 2005). Large difference between the minimum and maximum
250 values is also observed in the current study (Table 1).

251

252 The concentrations of total PCBs, dioxin like (DL) and non-dioxin like (NDL) PCBs in
253 soil samples are shown in Table 1. Concentrations of total PCBs could be grouped into
254 3 categories: The most contaminated which included industrial and areas near highway
255 (median concentration around 8 $\mu\text{g kg}^{-1}$); followed by urban park and greening area (5
256 $\mu\text{g kg}^{-1}$) and the rest of the land uses which contained the lowest concentration (3 to 4
257 $\mu\text{g kg}^{-1}$). The PCB toxicity is expressed as toxic equivalent quantity (TEQ) and is
258 calculated according to toxic equivalency factor (TEF) stated by World Health
259 Organization (WHO). It represents the total toxicity of a mixture of related substances
260 that equal to their combined toxic effects. Median PCB WHO-TEQs (calculated from
261 3 DL PCBs) in all the land use categories were below 0.06 ng kg^{-1} . Zhao *et al.* (2006)
262 reported that the PCB WHO-TEQs (9 DL PCBs) of soils collected from a polluted and
263 abandoned farmland in southern China was 57 ng kg^{-1} , whereas the PCB WHO-TEQs
264 equaled to 5.13 ng kg^{-1} , which is much higher than the corresponding data of the present
265 study. Among the 3 DL-PCBs, PCB-157 was contributing greater than 40% in all land
266 use categories, followed by PCB-118 and PCB-105. For the sum of 6 and 7 NDL-
267 PCBs, PCB-52 was the most dominant congener (usually greater than 35% of total
268 NDL-PCBs), while PCB-101 was the lowest among the indicator PCBs. It was reported
269 that \sum 13 PCBs ranged from 0.051 to 22 $\mu\text{g kg}^{-1}$ in soils of United Kingdom and
270 Norway (Meijer *et al.*, 2002), while concentration of \sum 7 PCBs ranged from 0.09 to 150
271 $\mu\text{g kg}^{-1}$ (Seine River basin) in France (Motelay-Massei *et al.*, 2004). In addition, \sum 6
272 PCBs in Moscow soils were found between 2 to 34 $\mu\text{g kg}^{-1}$ (Wilcke *et al.*, 2006). PCBs
273 in soils from Shenyang, China ranged from 6.4 to 15.2 $\mu\text{g kg}^{-1}$, but the polluted areas
274 in southeast coast of China where PCBs related activities such as dismantling of PCB-
275 containing transformers reached 788 $\mu\text{g kg}^{-1}$ (Xing *et al.*, 2005). The PCB
276 concentrations in Hong Kong soils were within the lower range of the levels reported,
277 because of a lack of PCB related industry.

278

279 3.2 Sources

280 Correlation matrixes for DDTs in different land use categories are presented in Table
281 2. In most cases DDD were significantly correlated to DDE ($p<0.05$). Since DDT
282 could be degraded to DDE and then DDD in the environment, or directly to DDD
283 (Agency for Toxic Substances and Disease Registry, 2002), the positive correlation of
284 DDD and DDE suggested that DDE to DDD was not an important pathway for DDT
285 degradation. The results also showed that DDT had a significant correlation with its
286 metabolites in agricultural farmlands, industrial areas and restored landfills, thus a slow
287 but continuous input of DDT to these areas is suspected, as increase in metabolites
288 should be accompany with a decrease in parent compound.

289

290 Various DDT ratios could be used to assess any recent inputs of DDT in our
291 environment (Kong *et al.*, 2005). These include DDD/DDT, DDE/DDT and
292 DDT/(DDE+DDD) ratios. Table 3 presents the various calculated ratios for DDTs in
293 each soil land use category. Metabolite(s) (DDD, DDE, DDE+DDD) to parent
294 compound (DDT) ratios were less than 0.15 on average. In contrast,
295 DDT/(DDE+DDD) ratios were much higher, particular in the vicinity of highways.
296 Two hot spots (in Tsing Yi island, 796 $\mu\text{g kg}^{-1}$ and Lung Kwu Tan, 1090 $\mu\text{g kg}^{-1}$)
297 identified in the kriged map (Figure 1) were both located adjacent to industrial
298 activities, e.g. power station/oil depot/chemical plants/machinery factories in Tsing Yi
299 island, and steel mill/power station/cement plant in Lung Kwu Tan. Out of the 138 soil
300 samples collected, 18% of them did not show detectable level of neither DDT nor its
301 metabolites. In addition, DDT without metabolites was detected in 25% of the 138
302 samples. These results suggested 2 possibilities: 1) there was still a small-scale,
303 localized non-mobile DDT input or 2) the highly heterogeneous soil micro-
304 environment could either promote degradation of DDT or it could inhibit the
305 degradation of organic compounds, depending on the sampling locations. Photo-
306 oxidation and volatilization of DDT are possible mechanisms for the loss of DDT
307 (Hussain *et al.*, 1994), but the principal pathway for the loss of DDT in soils is mainly
308 through microbial actions (Mohn and Tiedje, 1992).

309

310 The current official use of DDT is for the control of disease vectors in indoor house
311 spraying as specified by the World Health Organization (WHO) (World Wildlife Fund,
312 2005). Apart from DDT, *p,p'*-DDD was also used as an insecticide but it is not as
313 common as DDT (Agency for Toxic Substances and Disease Registry, 2002).

314

315 In Hong Kong, DDT is not a registered pesticide and has been banned for use since the
316 beginning of 1988. Currently, it can be traded only under permit in Hong Kong (UNEP
317 Chemicals, 2002). Between 1979 to 1982, about 5,023 to 5,996 kg of DDT pesticide
318 was imported annually (Morton, 1990) and the existence of residual DDT and its
319 metabolites in soils are therefore expected.

320

321 OCPs are routinely found in the atmosphere (Cortes *et al.*, 1998). A recent study
322 observed that OCPs like α -HCH, hexachlorobenzene, DDT, DDE, heptachlor, and
323 endosulfan I were detected in local atmospheric compartment at relatively low
324 concentrations 0.02–0.23 ng m⁻³ (Louie and Sin, 2003). It was proved that the northeast
325 monsoon wind can bring air pollutants from China to Hong Kong (Lee and Hills, 2003),
326 and it is reasonable to deduce that pollutants such as DDTs bound in fine particles could
327 also be a potential source in Hong Kong soils via atmospheric deposition of dust
328 particles from the PRD.

329

330 Dicofol is an organochlorine acaricide (a chemical that kills mites) which is highly toxic
331 to aquatic life and can cause egg-shell thinning in some bird species. As Dicofol is
332 manufactured from technical DDT in China, it also contributes to the sources of fresh
333 DDT in the surrounding (Qiu *et al.*, 2005). Though DDT is also released to the
334 environment by pyrogenic degradation of animal fat in food during cooking in PRD,
335 but its contribution to the edaphic environment is expected to be comparatively low
336 (Cheng *et al.*, 2000). In addition, some OCPs (such as DDT and HCH) may still be
337 illegally used for agricultural purpose in the PRD (Wong and Poon, 2003).

338

339 PCB homologues profile for corresponding land use categories is plotted in Figure 2.
340 PCB patterns were not characterized in terms of lower or higher chlorinated biphenyl,
341 but by individual homologues. Di-PCBs was the most dominant homologue, together
342 with tetra- and octa-PCBs, they accounted for more than 70% of all the investigated
343 PCBs. Aroclor is a commercial mixture of PCBs that has been used intensively.
344 Homologue composition of Arochlor such as Arochlor 1016, 1242, 1254 and 1260
345 showed domination of tri- to hexa-PCBs (U.S. Environmental Protection Agency,
346 2005). However, the present results revealed that the major homologue was di-PCBs
347 and thus rule out the possibility of recent Arochlor contamination. Interestingly, the

348 contribution of octa-PCB accounted for more than 40% of total PCBs found in
349 industrial areas. The greater distribution of heavier homologues is possibly due to the
350 preferential atmospheric deposition in the vicinity of the source (Meijer *et al.*, 2002).
351 It has been reported that combustion process such as municipal solid waste incineration,
352 automobile exhaust are potential sources of PCBs (Granier and Chevreuil, 1991; Mai
353 *et al.*, 2005) and the industrial activities, with mobile trucks could be the major
354 contributor to PCBs in industrial areas.

355

356 The general domination of di-PCB contaminations could be originated from the short-
357 range atmospheric transport from industrial sites (Motelay-Massei *et al.*, 2004), and
358 medium-range regional atmospheric deposition is also suspected (Wilcke *et al.*, 2006).
359 Volatization and re-deposition during dredging of contaminated sediments is also a
360 possible source of PCBs in soils (Vorhees *et al.*, 1999). However, a study indicated
361 that total PCBs (Σ 112 congeners) in the sediments of PRD was in the range of 26 to 32
362 $\mu\text{g kg}^{-1}$, with tri- to hexa-PCBs accounted for more than 80% of total PCBs (Mai *et al.*,
363 2005), thus this volatization and re-deposition pathway from sediment is unlikely to
364 play a crucial role in PCB contaminations in soils.

365

366

367 3.3 Cleanup guidelines

368 The guideline values for DDTs and PCBs from various countries are listed in Table 4.
369 In general, concentrations of DDT obtained in the present study were below the soil
370 quality limits imposed by Netherlands (Ministry of Housing Spatial Planning and
371 Environment, 2000), Denmark (Danish Environmental Protection Agency, 2002),
372 Canada (Environment Canada, 2003) and China (State Environmental Protection
373 Administration of China, 1995) except samples from southern Tsing Yi island (796 μg
374 kg^{-1}) and Lung Kwu Tan (1090 $\mu\text{g kg}^{-1}$). For total DDTs (DDT + DDE + DDD), only
375 one sample from Lung Kwu Tan (1090 $\mu\text{g kg}^{-1}$) was slightly above of the guideline
376 values from Denmark (1000 $\mu\text{g kg}^{-1}$) while the rest of 137 samples were below the
377 safety values from Netherlands, Denmark and China. In contrast to the sporadic
378 occurrence of hazardous samples concerning DDTs, none of the samples was found to
379 contain PCBs at alarming concentration when benchmarking with the soil quality
380 guidelines from the aforementioned countries. In a word, the potential risks to human
381 and ecosystem imposed by the investigated OC chemicals are minimum.

382

383

384 **4. Conclusions**

385 In the present study of DDT and PCB concentration in Hong Kong soils, sporadic
386 contamination of DDTs and its metabolites were found at a range of 0.22 to 154 μg
387 kg^{-1} and the concentration was found to be highest in industrial areas. There were
388 widespread but low levels of PCB contamination (0.22 to 154 $\mu\text{g kg}^{-1}$), while the
389 highest level was observed in industrial areas. PCB-157 was the most active DL-PCBs
390 among 3 (PCB -105, 118, and 157) that have been investigated and contributed more
391 than 40% of WHO-TEQ in all land use categories, while PCB-152 was the most
392 dominant congener among the 6 or 7 indicator PCBs. The current levels of DDT and
393 PCB in Hong Kong were within the guideline values of the soil quality guidelines
394 adopted in countries such as Netherlands and Denmark. However, 3 out of 138 samples
395 exceeded DDT(s) concentrations but their potential hazards were minimal as the sites
396 were located in remote areas. It is advised that a thorough site investigation on DDTs
397 should be made prior to any residential development in these locations.

398

399

400 **Acknowledgments**

401 The authors are grateful to Mr. Y.Y. Chin from Leisure and Cultural Services
402 Department (LCSD, HKSAR) for providing technical assistance. Financial supports
403 from the Strategic Research Fund from the Science Faculty, HKBU and the Area of
404 Excellence (AoE) Scheme under the University Grants Committee of the Hong Kong
405 Special Administrative Region (CITYU/AoE/03-04/02) are also gratefully
406 acknowledged.

407

408

409

410

411 **List of Figures:**

412 Figure 1. Kriged maps DDT (DDT, DDD, DDE and total DDTs) and PCB (3-PCBs
413 WHO-TEQ congeners, 6 indicator PCBs, 7 indicator PCBs and sum of 66 PCB
414 congeners) levels ($\mu\text{g}/\text{kg}$) in surface soils of Hong Kong. The 3-PCBs WHO-TEQ is
415 in ng kg^{-1} scale.

416

417 Figure 2. Homologue profiles of PCBs in corresponding land uses in Hong Kong.

418 Total PCBs is sum of 66 selected congeners.

419

Table 1. Mean concentrations of DDTs and PCBs of soils in Hong Kong. Units are in $\mu\text{g kg}^{-1}$ except for the WHO-TEQ PCBs.

Classified soil categories	Sample no.	DDT			DDD			DDE			Total DDTs			
		M*	Medi*	Range	M*	Medi*	Range	M*	Medi*	Range	M*	Medi*	Range	
		Concentration in soils ($\mu\text{g/kg}$)												
Urban park	39	39.7	34.2	[N.D. - 160]	4.4	4.4	[N.D. - 27.9]	2.5	2.3	[N.D. - 8.3]	2.5	2.3	[N.D. - 165]	
Greening area	14	24.4	14.3	[N.D. - 162]	3.8	4.5	[N.D. - 6.4]	1.6	2.1	[N.D. - 4.1]	1.6	2.1	[N.D. - 169]	
Country park	9	18.1	2.0	[N.D. - 51]	0.8	0.2	[N.D. - 3.5]	0.2	0.2	[N.D. - 1.7]	0.2	0.2	[N.D. - 51]	
Rural area	19	35.9	19.4	[N.D. - 252]	1.3	0.2	[N.D. - 4.4]	0.7	0.2	[N.D. - 2.4]	0.7	0.2	[N.D. - 253]	
Restored landfill	11	4.0	2.0	[N.D. - 31.5]	2.5	0.2	[N.D. - 7.7]	1.3	0.2	[N.D. - 3.8]	1.3	0.2	[N.D. - 43]	
Agricultural farmland	9	42.0	19.0	[7.8 - 125]	3.5	3.6	[N.D. - 7.5]	3.8	2.1	[0.75 - 15.7]	3.8	2.1	[8.71 - 149]	
Orchard farm	5	35.0	19.8	[16.3 - 67.2]	6.3	3.9	[N.D. - 19.4]	21.9	1.9	[N.D. - 103]	21.9	1.9	[20.2 - 190]	
Crematorium	10	22.0	21.1	[N.D. - 54.1]	1.9	2.4	[N.D. - 3.6]	1.0	1.2	[N.D. - 2.1]	1.0	1.2	[4.03 - 55]	
Industrial area	18	257.0	12.7	[N.D. - 1090]	25.5	2.6	[N.D. - 215]	12.8	0.2	[N.D. - 108]	12.8	0.2	[N.D. - 1118]	
Nearby Highway	4	103.0	77.8	[22.6 - 232]	1.4	0.2	[N.D. - 5.4]	0.8	0.3	[N.D. - 2.6]	0.8	0.3	[23 - 241]	
Classified soil categories	Sample no.	PCB 105 (DL)			PCB 118 (DL)			PCB-157 (DL)			Total 3 DL PCBs		ng PCB WHO-TEQ kg^{-1}	
		M*	Medi*	Range	M*	Medi*	Range	M*	Medi*	Range	M*	Medi*	Range	
		Concentration in soils ($\mu\text{g/kg}$)												Concentration (ng/kg)
Urban park	39	0.11	N.D.	[N.D. - 0.68]	0.18	0.1	[N.D. - 1.05]	0.05	N.D.	[N.D. - 0.4]	0.34	0.1	[N.D. - 2]	0.05 0.02 [N.D. - 0.36]
Greening area	14	0.15	0.1	[N.D. - 0.8]	0.2	0.1	[N.D. - 1.24]	0.04	N.D.	[N.D. - 0.16]	0.39	0.2	[N.D. - 2.12]	0.05 0.03 [N.D. - 0.24]
Country park	9	N.D.	N.D.	[N.D. - N.D.]	N.D.	N.D.	[N.D. - N.D.]	N.D.	N.D.	[N.D. - N.D.]	N.D.	N.D.	[N.D. - N.D.]	N.D. N.D. [N.D. - N.D.]
Rural area	19	0.04	N.D.	[N.D. - 0.12]	0.07	0.1	[N.D. - 0.3]	0.02	N.D.	[N.D. - 0.11]	0.13	0.1	[N.D. - 0.48]	0.02 0.02 [N.D. - 0.09]
Restored landfill	11	0.04	N.D.	[N.D. - 0.12]	0.09	0.1	[N.D. - 0.24]	0.01	N.D.	[N.D. - 0.06]	0.14	0.1	[N.D. - 0.42]	0.02 0.01 [N.D. - 0.07]
Agricultural farmland	9	0.05	N.D.	[N.D. - 0.2]	0.06	N.D.	[N.D. - 0.25]	0.02	N.D.	[N.D. - 0.06]	0.13	N.D.	[N.D. - 0.47]	0.02 N.D. [N.D. - 0.07]
Orchard farm	5	0.05	N.D.	[N.D. - 0.12]	0.04	N.D.	[N.D. - 0.12]	N.D.	N.D.	[N.D. - N.D.]	0.1	0.1	[N.D. - 0.25]	0.01 0.01 [N.D. - 0.03]
Crematorium	10	0.03	N.D.	[N.D. - 0.11]	0.05	0.0	[N.D. - 0.11]	N.D.	N.D.	[N.D. - N.D.]	0.09	0.1	[N.D. - 0.22]	0.01 0.01 [N.D. - 0.03]
Industrial area	18	0.04	N.D.	[N.D. - 0.22]	0.07	N.D.	[N.D. - 0.43]	0.01	N.D.	[N.D. - 0.1]	0.13	N.D.	[N.D. - 0.66]	0.02 N.D. [N.D. - 0.08]
Nearby Highway	4	0.16	0.1	[N.D. - 0.44]	0.51	0.3	[N.D. - 1.53]	0.16	0.1	[N.D. - 0.51]	0.83	0.4	[N.D. - 2.48]	0.15 0.06 [N.D. - 0.45]

Values in square brackets represent range of concentration. *M=Mean, Medi=Median. †: Not included for total 6 NDL PCBs. ‡:Calculated from sum of PCB 105, 118 and 157.

Table 1 (con't)

Classified soil categories	Sample	PCB-28 (NDL)			PCB-52 (NDL)			PCB-101 (NDL)			†PCB-118 (NDL)			PCB-138 (NDL)		
	no.	M*	Medi*	Range	M*	Medi*	Range	M*	Medi*	Range	M*	Medi*	Range	M*	Medi*	Range
Concentration in soils (µg/kg)																
Urban park	39	0.33	0.2	[0.09 - 5.19]	0.5	0.5	[N.D. - 0.98]	0.16	0.1	[N.D. - 2.45]	0.18	0.1	[N.D. - 1.05]	1.61	0.3	[N.D. - 13.89]
Greening area	14	0.36	0.2	[N.D. - 2.49]	0.66	0.4	[0.09 - 2.8]	0.14	0.1	[N.D. - 0.91]	0.2	0.1	[N.D. - 1.24]	0.39	0.3	[N.D. - 1.52]
Country park	9	0.13	0.1	[0.07 - 0.39]	0.41	0.4	[0.24 - 0.76]	N.D.	N.D.	[N.D. - N.D.]	N.D.	N.D.	[N.D. - N.D.]	0.04	N.D.	[N.D. - 0.12]
Rural area	19	0.23	0.2	[N.D. - 1.42]	0.48	0.5	[N.D. - 1.2]	0.06	0.1	[N.D. - 0.24]	0.07	0.1	[N.D. - 0.3]	0.32	0.3	[N.D. - 1.03]
Restored landfill	11	0.19	0.2	[0.1 - 0.3]	0.57	0.6	[0.26 - 0.89]	0.07	N.D.	[N.D. - 0.29]	0.09	0.1	[N.D. - 0.24]	0.29	0.1	[N.D. - 1.11]
Agricultural farmland	9	0.14	0.1	[0.07 - 0.32]	0.44	0.4	[0.28 - 0.69]	0.04	N.D.	[N.D. - 0.15]	0.06	N.D.	[N.D. - 0.25]	0.18	0.1	[N.D. - 0.62]
Orchard farm	5	0.13	0.2	[0.07 - 0.17]	0.37	0.4	[0.32 - 0.41]	0.04	N.D.	[N.D. - 0.08]	0.04	N.D.	[N.D. - 0.12]	0.15	0.1	[N.D. - 0.34]
Crematorium	10	0.16	0.1	[0.06 - 0.51]	0.49	0.4	[0.31 - 0.73]	0.05	N.D.	[N.D. - 0.19]	0.05	0.0	[N.D. - 0.11]	0.28	0.2	[0.13 - 0.88]
Industrial area	18	0.23	0.1	[N.D. - 1.86]	0.38	0.4	[N.D. - 1.03]	0.05	N.D.	[N.D. - 0.36]	0.07	N.D.	[N.D. - 0.43]	0.16	0.1	[N.D. - 0.64]
Nearby Highway	4	0.5	0.2	[0.09 - 1.58]	2.34	0.7	[0.42 - 7.47]	0.36	0.2	[N.D. - 1.02]	0.51	0.3	[N.D. - 1.53]	1.03	1.0	[0.11 - 1.91]
Classified soil categories	Sample	PCB-153 (NDL)			PCB-180 (NDL)			Total 6 NDL PCBs			Total 7 NDL PCBs			Total 66 PCB congeners		
	no.	M*	Medi*	Range	M*	Medi*	Range	M*	Medi*	Range	M*	Medi*	Range	M*	Medi*	Range
Concentration in soils (µg/kg)																
Urban park	39	0.94	N.D.	[8.28 - 0.22]	1.21	0.2	[N.D. - 9.52]	4.76	1.4	[0.22 - 33.77]	4.94	1.5	[0.23 - 34.58]	6.44	5.0	[3.21 - 25.42]
Greening area	14	0.27	N.D.	[1.04 - 0.22]	0.22	0.2	[N.D. - 0.49]	2.04	1.3	[0.15 - 9.15]	2.24	1.5	[0.16 - 10.39]	5.87	5.2	[0.93 - 14.73]
Country park	9	0.09	N.D.	[0.35 - N.D.]	0.04	N.D.	[N.D. - 0.11]	0.73	0.7	[0.38 - 1.26]	0.74	0.7	[0.39 - 1.27]	4.01	3.7	[2.79 - 6.31]
Rural area	19	0.24	N.D.	[1.04 - 0.2]	0.31	0.2	[N.D. - 1.41]	1.65	1.4	[0.39 - 4.35]	1.72	1.5	[0.43 - 4.65]	4.67	3.9	[2.13 - 13.52]
Restored landfill	11	0.27	N.D.	[0.83 - 0.25]	0.21	0.1	[N.D. - 0.84]	1.61	1.3	[0.73 - 4.06]	1.7	1.4	[0.74 - 4.29]	4.49	4.4	[2.84 - 5.92]
Agricultural farmland	9	0.24	N.D.	[0.81 - 0.08]	0.1	N.D.	[N.D. - 0.51]	1.13	0.9	[0.46 - 2.71]	1.19	0.9	[0.47 - 2.97]	3.84	3.7	[2.39 - 5.12]
Orchard farm	5	0.09	N.D.	[0.24 - N.D.]	0.09	0.1	[N.D. - 0.23]	0.86	0.6	[0.53 - 1.38]	0.91	0.6	[0.54 - 1.5]	5.09	4.0	[3.79 - 9.84]
Crematorium	10	0.25	0.1	[0.83 - 0.17]	0.22	0.2	[0.06 - 0.74]	1.45	1.4	[0.87 - 3.01]	1.5	1.5	[0.88 - 3.12]	3.48	3.2	[2.18 - 5.64]
Industrial area	18	0.1	N.D.	[0.39 - N.D.]	0.09	0.0	[N.D. - 0.32]	1.01	0.8	[N.D. - 4.16]	1.07	0.8	[N.D. - 4.29]	33.13	7.1	[0.22 - 154.11]
Nearby Highway	4	0.63	0.1	[1.11 - 0.67]	0.44	0.4	[0.15 - 0.8]	5.3	3.1	[1.17 - 13.89]	5.81	3.3	[1.18 - 15.43]	24.78	8.7	[7.34 - 74.49]

Values in square brackets represent range of concentration. *M=Mean, Medi=Median. †: Not included for total 6 NDL PCBs. ‡:Calculated from sum of PCB 105, 118 and 157.

1 **Table 2. Correlation matrix of DDT concentrations for each individual land use**
2 **in Hong Kong.**

Greening area	Urban park			Agricultural farmland			
	DDT	DDD	DDE	Orchard farm	DDT	DDD	DDE
	DDT	0.001	0.30		DDT	0.63	0.70*
	DDD	0.27	0.43*		DDD	0.82	0.74*
	DDE	0.27	0.63*		DDE	0.77	0.98**
Country park			Crematorium				
Rural area	DDT	DDD	DDE	Industrial area	DDT	DDD	DDE
	DDT	0.35	-0.01		DDT	-0.31	-0.24
	DDD	0.08	0.66		DDD	0.48*	0.48
	DDE	0.08	0.98*		DDE	0.48*	1.00**
Restored landfill							
Nearby highway	DDT	DDD	DDE				
	DDT	0.71*	0.68*				
	DDD	0.89	1.00*				
	DDE	0.85	0.99*				

3 Pearson correlation coefficients were shown. Values with * indicated that significant
4 correlations were found at $p=0.05$, and values with ** indicated that significant
5 correlations were found at $p=0.01$.

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31 **Table 3. Various ratios for DDT and its metabolites calculated for each land use**
32 **in Hong Kong soil.**

33

Land uses	DDD / DDT	DDE / DDT	DDT / (DDD+DDE)
Urban park	0.17 ± 0.30 (a)	0.08 ± 0.08 (a)	6.33 ± 5.96 (a)
Greening area	0.15 ± 0.10 (a)	0.09 ± 0.08 (a)	4.35 ± 6.54 (a)
Country park	0.07 ± 0.10 (a)	0.02 ± 0.05 (a)	8.38 ± 7.14 (a)
Rural area	0.06 ± 0.08 (a)	0.03 ± 0.04 (a)	9.45 ± 7.67 (a)
Restored landfill	0.38 ± 0.19 (a)	0.20 ± 0.11 (ab)	0.80 ± 1.21 (a)
Agricultural farmland	0.12 ± 0.11 (a)	0.12 ± 0.07 (a)	6.92 ± 5.07 (a)
Orchard farm	0.16 ± 0.11 (a)	0.36 ± 0.66 (b)	3.56 ± 2.76 (a)
Crematorium	0.10 ± 0.10 (a)	0.05 ± 0.05 (a)	4.79 ± 4.00 (a)
Industrial area	0.20 ± 0.19 (a)	0.08 ± 0.09 (a)	4.84 ± 5.92 (a)
Nearby highway	0.01 ± 0.01 (a)	0.01 ± 0.01 (a)	58.73 ± 42.14 (b)

34 Values in parenthesis represent grouping by one way ANOVA analysis (Tukey HSD,
35 p<0.05).

36

37

38

39

40

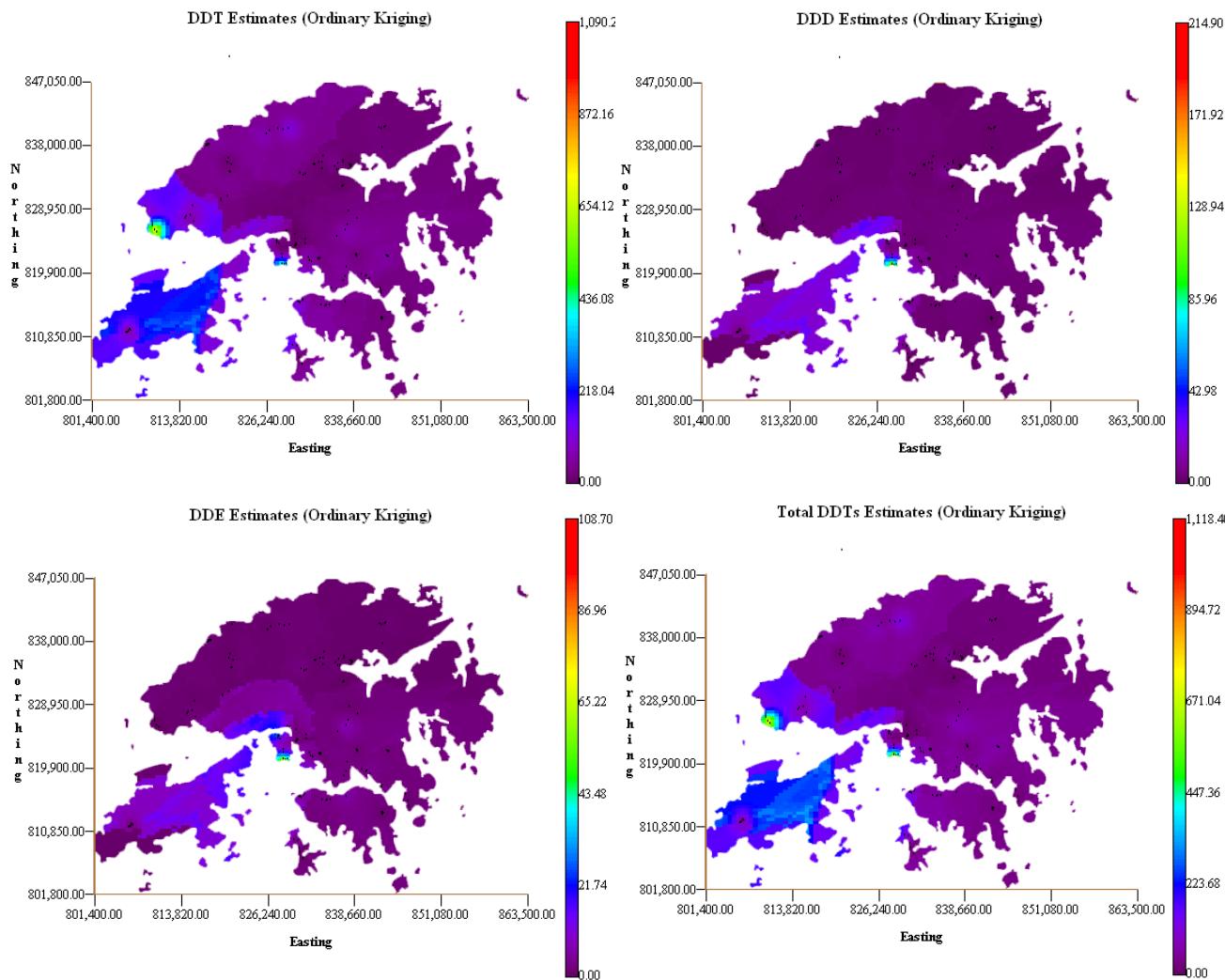
41

42 **Table 4. Soil quality guidelines and their criteria for DDTs and PCBs in various**
43 **countries.**

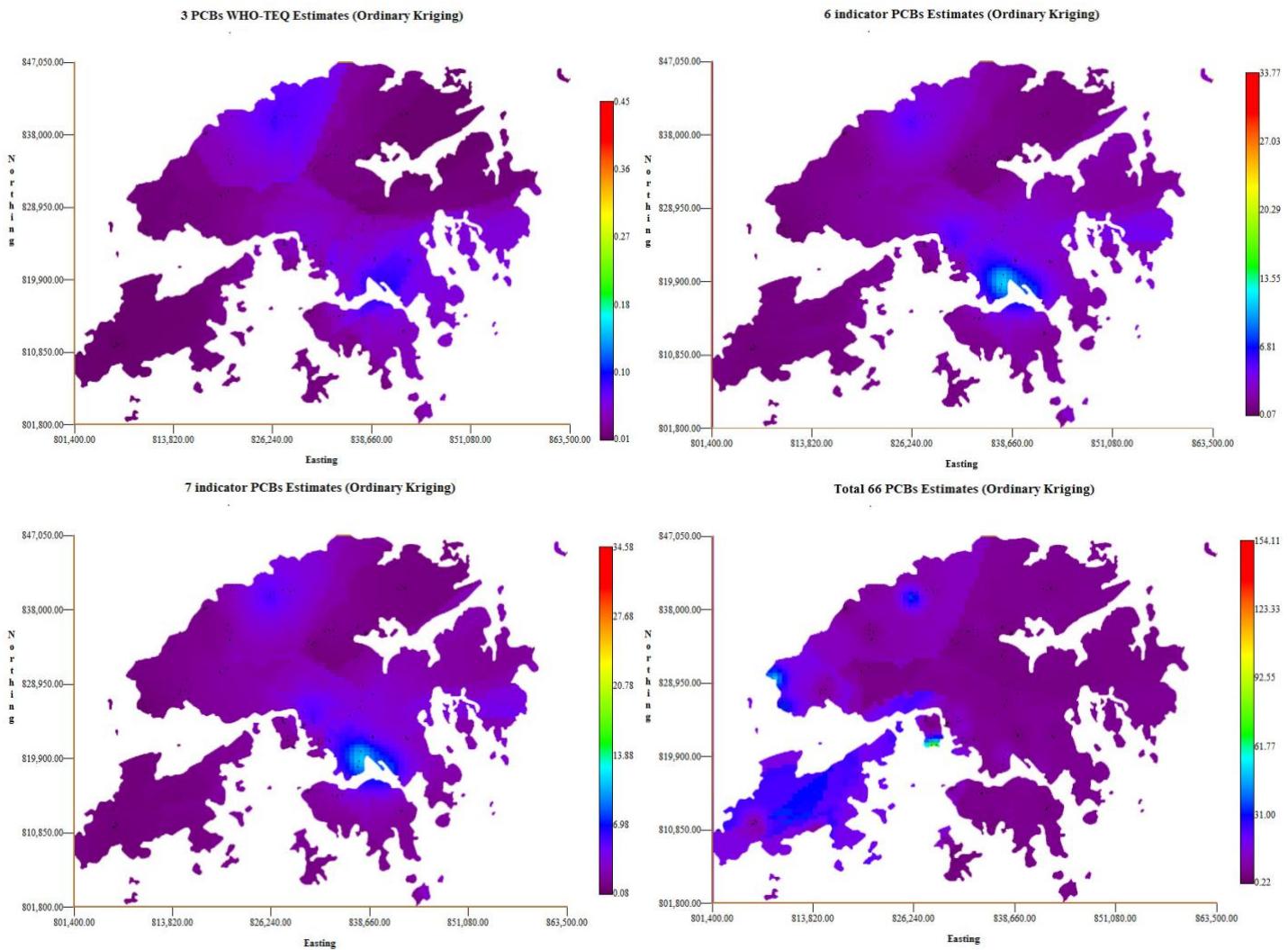
44

Country of implementation	Quality guidelines	DDT	DDD	DDE	Total DDTs	PCBs
		Concentration in soils (µg/kg)				
Netherlands	Dutch target value	N.A.	N.A.	N.A.	10*	20‡
	Dutch intervention value	N.A.	N.A.	N.A.	4000*	1000‡
Denmark	Danish soil quality criteria	N.A.	N.A.	N.A.	1000#	N.A.
Canada	Canadian environmental quality guidelines	700†	N.A.	N.A.	N.A.	(500) 1300†
China	Environmental quality standard	N.A.	N.A.	N.A.	N.A.	N.A.

45


46 * Sum of DDT, DDD and DDE.

47 # Quality criteria for soil in areas with very sensitive land use.


48 † Values in parenthesis represent criteria for agricultural land uses; values without
49 parenthesis represent criteria for residential/parkland uses.

50 ‡ Intervention value means sum of 7 PCB congeners: PCB-28, -52, -101, -118, -138, -
51 153 and -180. Target value refers to total PCBs excluding PCB-118.

52

Figure 1. Kriged maps DDT (DDT, DDD, DDE and total DDTs) and PCB (3-PCBs WHO-TEQ congeners, 6 indicator PCBs, 7 indicator PCBs and sum of 66 PCB congeners) levels ($\mu\text{g}/\text{kg}$) in surface soils of Hong Kong. The 3-PCBs WHO-TEQ is in ng kg^{-1} scale.

55 Figure 1 (Con't)

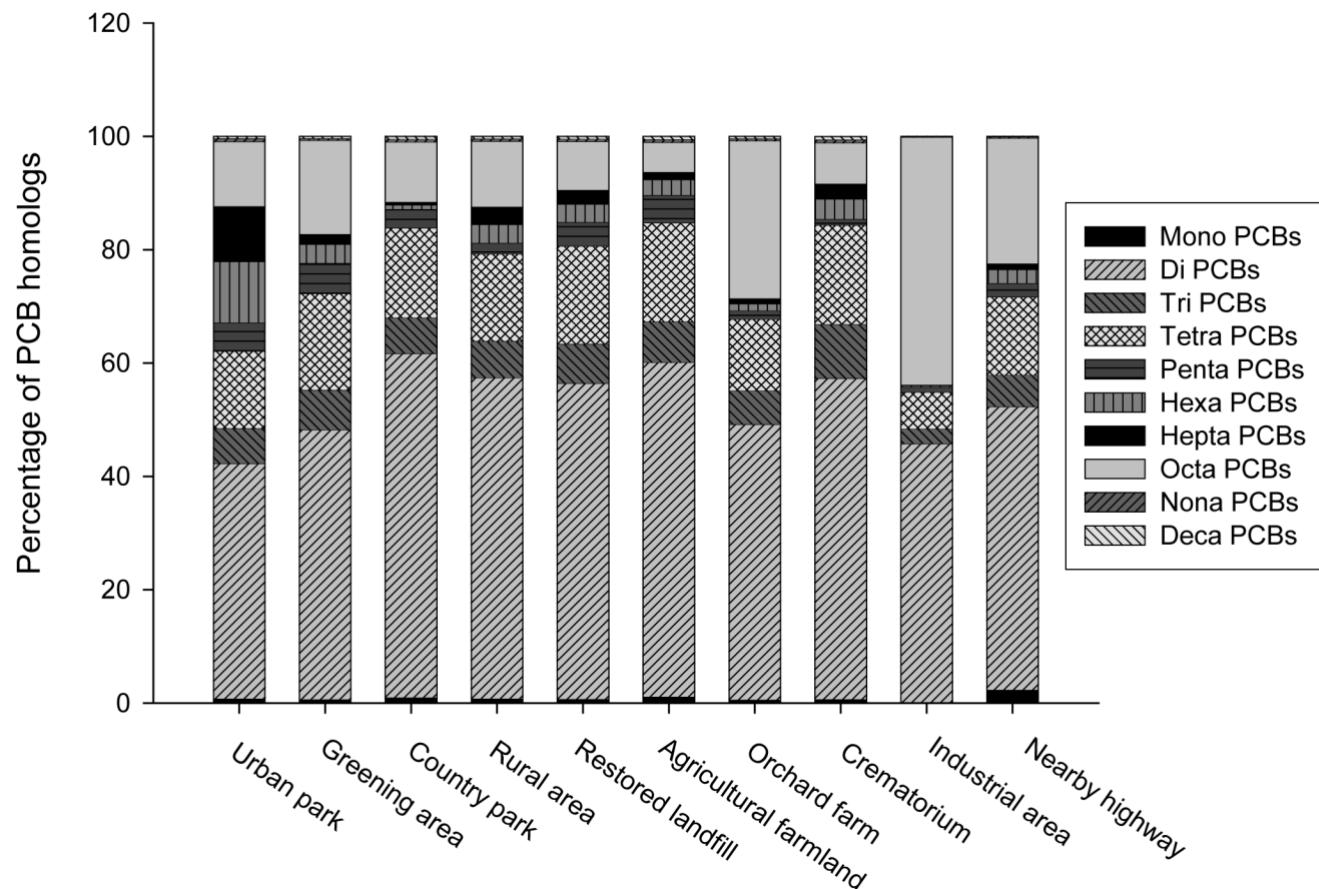


Figure 2. Homologue profiles of PCBs in corresponding land uses in Hong Kong. Total PCBs is sum of 66 selected congeners

References

59

60

61 Agency for Toxic Substances and Disease Registry. (2002). Toxicological Profile for
62 DDT, DDE, and DDD Retrieved January 25, 2005, from Agency for Toxic
63 Substances and Disease Registry Web site: <http://www.atsdr.cdc.gov/toxprofiles/>
64 tp35.html

65 Aigner, E.J., Leone, A.D., Falconer, R.L. (1998). Concentrations and enantiomeric
66 ratios of organochlorine pesticides in soil from the US Corn Belt. *Environ. Sci.
67 Technol.*, 32(9), 1162-1168.

68 Carson, R., Darling, L., Darling, L. (1962). *Silent Spring*. Boston: Houghton Mifflin ;.

69 Cheng, Y., Sheng, G.Y., Shao, B., Lin, Z., Min, Y.S., Fu, J.M. (2000). Characterisitc
70 and sources of organochlorine pesticides from cooking smoke and aerosols. *China
71 Environ. Sci.*, 20(1), 18-22.

72 Cheung, K.C., Leung, H.M., Kong, K.Y., Wong, M.H. (2006). Residual levels of DDTs
73 and PAHs in freshwater and marine fish from Hong Kong markets and their health
74 risk assessment. *Chemosphere*, In press.

75 Christen, K. (1999). UN negotiations on POPs snag on malaria. *Environ. Sci. Technol.*,
76 33, 444A-445A.

77 Connell, D.W., Fung, C.N., Minh, T.B., Tanabe, S., Lam, P.K.S., Wong, B.S.F., Lam,
78 M.H.W., Wong, L.C., Wu, R.S.S., Richardson, B.J. (2003). Risk to breeding
79 success of fish-eating Ardeids due to persistent organic contaminants in Hong
80 Kong: Evidence from organochlorine compounds in eggs. *Water Res.*, 37(2), 459.

81 Cortes, D.R., Basu, I., Sweet, C.W., Brice, K.A., Hoff, R.M., Hites, R.A. (1998).
82 Temporal trends in gas-phase concentrations of chlorinated pesticides measured at
83 the shores of the Great Lakes. *Environ. Sci. Technol.*, 32(13), 1920-1927.

84 Danish Environmental Protection Agency, 2002. Guidelines on remediation of
85 contaminated sites. Danish Environmental Protection Agency, Denmark.

86 Dimond, J.B., Owen, R.B. (1996). Long-term residue of DDT compounds in forest soils
87 in Maine. *Environ. Pollut.*, 92(2), 227-230.

88 Ding, H., Li, X.G., Liu, H., Wang, J., Shen, W.R., Sun, Y.C., Shao, X.L. (2005).
89 Persistent organochlorine residues in sediments of Haihe River and Dagu Drainage
90 River in Tianjin, China. *J. Environ. Sci. (China)*, 17(5), 731-735.

91 Environment Canada, 2003. Canadian soil quality guidelines. Environment Canada,
92 Canada.

93 Fang, Z.Q. (2004). Organochlorines in sediments and mussels collected from coastal
94 sites along the Pearl River Delta, South China. *J. Environ. Sci. (China)*, 16(2), 321-
95 327.

96 Fu, J.M., Mai, B.X., Sheng, G.Y., Zhang, G., Wang, X.M., Peng, P.A., Xiao, X.M.,
97 Ran, R., Cheng, F.Z., Peng, X.Z., Wang, Z.S., Tang, U.W. (2003). Persistent
98 organic pollutants in environment of the Pearl River Delta, China: An overview.
99 *Chemosphere*, 52(9), 1411-1422.

100 Fung, C.N., Lam, J.C.W., Zheng, G.J., Connell, D.W., Monirith, I., Tanabe, S.,
101 Richardson, B.J., Lam, P.K.S. (2004). Mussel-based monitoring of trace metal and
102 organic contaminants along the east coast of China using *Perna viridis* and *Mytilus
103 edulis*. *Environ. Pollut.*, 127(2), 203-216.

104 Gong, Z.M., Tao, S., Xu, F.L., Dawson, R., Liu, W.X., Cui, Y.H., Cao, J., Wang, X.J.,
105 Shen, W.R., Zhang, W.J., Qing, B.P., Sun, R. (2004). Level and distribution of DDT
106 in surface soils from Tianjin, China. *Chemosphere*, 54(8), 1247-1253.

107 Granier, L., Chevreuil, M. (1991). Automobile traffic: A source of PCBs to the
108 atmosphere. *Chemosphere*, 23(6), 785-788.

109 Harrad, S.J., Sewart, A.P., Alcock, R., Boumphrey, R., Burnett, V., Duarte-Davidson,
110 R., Halsall, C., Sanders, G., Waterhouse, K., Wild, S.R., Jones, K.C. (1994).
111 Polychlorinated biphenyls (PCBs) in the British environment: Sinks, sources and
112 temporal trends. *Environ. Pollut.*, 85(2), 131-146.

113 Hong Kong Environmental Protection Department. (2002). PCB Symposium 2002 in
114 Japan Retrieved June 6, 2006, from The Japan Offspring Fund Web site:
115 http://tabemono.info/chosa/chikyukan/2003/5/5_2_7/e_1.html

116 Hussain, A., Maqbool, U., Asi, M. (1994). Studies on dissipation and degradation of
117 ^{14}C -DDT and ^{14}C -DDE in Pakistani soils under field conditions. *J. Environ. Sci.
118 Health Part B Pestic. Food Contam. Agric. Wastes*, 29(1), 1-15.

119 Kannan, K., Tanabe, S., Tatsukawa, R. (1995). Geographical distribution and
120 accumulation features of organochlorine residues in fish in tropical Asia and
121 Oceania. *Environ. Sci. Technol.*, 29(10), 2673-2683.

122 Kong, K.Y., Cheung, K.C., Wong, C.K., Wong, M.H. (2005). The residual dynamic of
123 polycyclic aromatic hydrocarbons and organochlorine pesticides in fishponds of the
124 Pearl River delta, South China. *Water Res.*, 39(9), 1831-1843.

125 Lee, Y.C., Hills, P.R. (2003). Cool season pollution episodes in Hong Kong, 1996-
126 2002. *Atmos. Environ.*, 37(21), 2927-2939.

127 Louie, P.K.K., Sin, D.W.M. (2003). A preliminary investigation of persistent organic
128 pollutants in ambient air in Hong Kong. *Chemosphere*, 52(9), 1397-1403.

129 Mai, B., Zeng, E.Y., Luo, X., Yang, Q., Zhang, G., Li, X., Sheng, G., Fu, J. (2005).
130 Abundances, depositional fluxes, and homologue patterns of polychlorinated
131 biphenyls in dated sediment cores from the Pearl River Delta, China. *Environ. Sci.
132 Technol.*, 39(1), 49-56.

133 Megharaj, M., Boul, H.L., Thiele, J.H. (1999). Effects of DDT and its metabolites on
134 soil algae and enzymatic activity. *Biol. Fertil. Soils*, 29(2), 130-134.

135 Meijer, S.N., Steinnes, E., Ockenden, W.A., Jones, K.C. (2002). Influence of
136 environmental variables on the spatial distribution of PCBs in Norwegian and U.K.
137 soils: Implications for global cycling. *Environ. Sci. Technol.*, 36(10), 2146-2153.

138 Minh, T.B., Watanabe, M., Nakata, H., Tanabe, S., Jefferson, T.A. (1999).
139 Contamination by Persistent Organochlorines in Small Cetaceans from Hong Kong
140 Coastal Waters. *Mar. Pollut. Bull.*, 39(1-12), 383-392.

141 Ministry of Housing Spatial Planning and Environment, 2000. Circular on target values
142 and intervention values for soil remediation. Ministry of Housing, Spatial Planning
143 and Environment, Netherlands.

144 Mohn, W.W., Tiedje, J.M. (1992). Microbial reductive dehalogenation. *Microbiol.
145 Rev.*, 56, 182-507.

146 Morton, B. (1990). The Marine Flora and Fauna of Hong Kong and Southern China II:
147 Proceedings of the Second International Marine Biological Workshop: The Marine
148 Flora and Fauna of Hong Kong and Southern China. Hong Kong: Hong Kong
149 University Press.

150 Motelay-Massei, A., Ollivon, D., Garban, B., Teil, M.J., Blanchard, M., Chevreuil, M.
151 (2004). Distribution and spatial trends of PAHs and PCBs in soils in the Seine River
152 basin, France. *Chemosphere*, 55(4), 555-565.

153 Phillips, D.J.H. (1989). Trace metals and organochlorines in the coastal waters of Hong
154 Kong. *Mar. Pollut. Bull.*, 20(7), 319-327.

155 Phillips, D.J.H., Tanabe, S. (1989). Aquatic pollution in the Far East. *Mar. Pollut. Bull.*,
156 20(7), 297-303.

157 Qiu, X., Zhu, T., Yao, B., Hu, J., Hu, S. (2005). Contribution of dicofol to the current
158 DDT pollution in China. *Environ. Sci. Technol.*, 39(12), 4385-4390.

159 Schuhmacher, M., Nadal, M., Domingo, J.L. (2004). Levels of PCDD/Fs, PCBs, and
160 PCNs in soils and vegetation in an area with chemical and petrochemical industries.
161 Environ. Sci. Technol., 38(7), 1960-1969.

162 State Environmental Protection Administration of China, 1995. Environmental quality
163 standard for soils. State Environmental Protection Administration of China, China.

164 U.S. Environmental Protection Agency, 1996a. Method 3540C: Soxhlet extraction.
165 SW-846. Test methods for evaluating solid wastes. Physical/chemical methods.
166 U.S. Environmental Protection Agency, Washington, DC.

167 U.S. Environmental Protection Agency, 1996b. Method 8270C: Semivolatile organic
168 compounds by Gas Chromatography/Mass Spectrometry (GC/MS). SW-846. Test
169 methods for evaluating solid wastes. Physical/chemical methods. U.S.
170 Environmental Protection Agency, Washington, DC.

171 U.S. Environmental Protection Agency. (2005). PCB ID - Composition of PCB
172 (Aroclor) mixtures Retrieved January 23, 2006, from U.S. Environmental
173 Protection Agency, Web site: http://www.epa.gov/toxteam/pcbid/aroclor_comp.htm

175 UNEP Chemicals, 2002. Regionally based assessment of persistent toxic substances.
176 Central and north east Asia regional report UNEP Chemicals, Châtelaine, GE.

177 van den Berg, M., Birnbaum, L., Bosveld, A.T., Brunstrom, B., Cook, P., Feeley, M.,
178 Giesy, J.P., Hanberg, A., Hasegawa, R., Kennedy, S.W., Kubiak, T., Larsen, J.C.,
179 van Leeuwen, F.X., Liem, A.K., Nolt, C., Peterson, R.E., Poellinger, L., Safe, S.,
180 Schrenk, D., Tillitt, D., Tysklind, M., Younes, M., Waern, F., Zacharewski, T.
181 (1998). Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans
182 and wildlife. Environ. Health Perspect., 106(12), 775-792.

183 Vorhees, D.J., Cullen, A.C., Altshul, L.M. (1999). Polychlorinated biphenyls in house
184 dust and yard soil near a superfund site. Environ. Sci. Technol., 33(13), 2151-2156.

185 Wilcke, W., Krauss, M., Safronov, G., Fokin, A.D., Kaupenjohann, M. (2006).
186 Polychlorinated biphenyls (PCBs) in soils of the Moscow region: Concentrations
187 and small-scale distribution along an urban-rural transect. Environ. Pollut., 141(2),
188 327-335.

189 Wolfe, D.A., Champ, M.A., Cross, F.A., Kester, D.R., Park, P.K., Swanson, R.L.
190 (1984). Marine pollution research facilities in the People's Republic of China. Mar.
191 Pollut. Bull., 15(6), 207-212.

192 Wong, C.K.C., Leung, K.M., Poon, B.H.T., Lan, C.Y., Wong, M.H. (2002).
193 Organochlorine hydrocarbons in human breast milk collected in Hong Kong and
194 Guangzhou. Arch. Environ. Contam. Toxicol., 43(3), 364-372.

195 Wong, M.H., Leung, A.O.W., Chan, J.K.Y., Choi, M.P.K. (2005). A review on the
196 usage of POP pesticides in China, with emphasis on DDT loadings in human milk.
197 Chemosphere, 60(6), 740-752.

198 Wong, M.H., Poon, B.H.T. (2003). Sources, fates and effects of persistent organic
199 pollutants in China, with emphasis on the Pearl River Delta. In: Fiedler, H. (Ed.),
200 Persistent organic pollutants (pp. 355-369). Berlin Heidelberg: Springer-Verlag.

201 World Wildlife Fund. (2004). Factsheet: DDT Retrieved July 12, 2004, from WWF
202 Web site: http://www.worldwildlife.org/toxics/pubs/fact_ddt.pdf

203 World Wildlife Fund. (2005). WWF's efforts to phase out DDT Retrieved July 12,
204 2004, from WWF Web site: http://www.panda.org/about_wwf/what_we_do/toxics/problems/ddt/index.cfm

206 Wu, Y., Zhang, J., Zhou, Q. (1999). Persistent organochlorine residues in sediments
207 from Chinese river/estuary systems. Environ. Pollut., 105(1), 143-150.

208 Xing, Y., Lu, Y., Dawson, R.W., Shi, Y., Zhang, H., Wang, T., Liu, W., Ren, H. (2005).
209 A spatial temporal assessment of pollution from PCBs in China. *Chemosphere*,
210 60(6), 731-739.

211 Yuan, D., Yang, D., Wade, T.L., Qian, Y. (2001). Status of persistent organic pollutants
212 in the sediment from several estuaries in China. *Environ. Pollut.*, 114(1), 101-111.

213 Zhao, X., Zheng, M., Zhang, B., Zhang, Q., Liu, W. (2006). Evidence for the transfer
214 of polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and
215 polychlorinated dibenzofurans from soil into biota. *Sci. Total Environ.*, Article in
216 Press, Corrected Proof.

217 Zheng, G.J., Lam, M.H.W., Lam, P.K.S., Richardson, B.J., Man, B.K.W., Li, A.M.Y.
218 (2000). Concentrations of persistent organic pollutants in surface sediments of the
219 mudflat and mangroves at Mai Po marshes nature reserve, Hong Kong. *Mar. Pollut.
220 Bull.*, 40(12), 1210-1214.

221 Zhou, H.Y., Cheung, R.Y., Wong, M.H. (1999). Residues of organochlorines in
222 sediments and tilapia collected from inland water systems of Hong Kong. *Arch.
223 Environ. Contam. Toxicol.*, 36(4), 424-431.

224 Zhu, Y., Liu, H., Xi, Z., Cheng, H., Xu, X. (2005). Organochlorine pesticides (DDTs
225 and HCHs) in soils from the outskirts of Beijing, China. *Chemosphere*, 60(6), 770-
226 778.

227

228