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Abstract

Single cell RNA sequencing (scRNA-Seq) has been widely used in biomedical research and generated
enormous volume and diversity of data. The raw data contain multiple types of noise and
technical artifacts and need thorough cleaning. The existing denoising and imputation methods
largely focus on a single type of noise (i.e. dropouts) and have strong distribution assumptions
which greatly limit their performance and application. We designed and developed the
AutoClass model, integrating two deep neural network components, an autoencoder and a
classifier, as to maximize both noise removal and signal retention. AutoClass is free of
distribution assumptions, hence can effectively clean a wide range of noises and artifacts.
AutoClass outperforms the state-of-art methods in multiple types of scRNA-Seq data analyses,
including data recovery, differential expression analysis, clustering analysis and batch effect
removal. Importantly, AutoClass is robust on key hyperparameter settings including bottleneck
layer size, pre-clustering number and classifier weight. We have made AutoClass open source at:

https://github.com/datapplab/AutoClass.

Introduction
scRNA-Seq has been widely adopted in biological and medical research’™ as an ultra-high
resolution and ultra-high throughput transcriptome profiling technology. Enormous amount of

data has been generated providing great opportunities and challenges in data analytics.
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First of all, scRNA-Seq data come with multiple types of noise and quality issues. Some are
issues associated with gene expression profiling in general, including RNA amplification bias,
uneven library size, sequencing and mapping error, etc. Others are specific to single cell assays.
For example, extremely small sample quantity and low RNA capture rate result in large number
of false zero expression or dropout®. Individual cells vary in differentiation or cell cycle stages’,
health conditions or stochastic transcription activities, which are biological differences but
irrelevant in most studies. In addition, substantial batch effects are frequently observed® due to
inconsistence in sample batches and experiments. Most of these noises and variances are not
dropout and may follow Gaussian, Poisson or more complex distributions depending on the
source of the variances. All of these variances need to be corrected and cleaned so that

biologically relevant differences can be reconstructed and analyzed accurately.

Multiple statistical methods have been developed to impute and denoise scRNA-Seq data. Most
of these methods rely on distribution assumptions on scRNA-Seq data matrix. For example,
deep count autoencoder (DCA)° assumes negative binomial distribution with or without zero
inflation, SAVER™ assumes negative binomial distribution, and scimpute® uses a mixture of
Gaussian and Gamma model. Currently, there is no consensus on the distribution of sScRNA-Seq
data. Method with inaccurate distribution assumptions*? may not denoise properly, but rather
introduce new complexities and artifacts. Importantly, these methods largely focus on dropouts
and ignore other types of noise and variances, which hinders accurate analysis and

interpretation of the data.

To address these issues, we developed AutoClass, a neural network-based method. AutoClass
integrates two neural network components: an autoencoder and a classifier (Figure 1a and
Methods). The autoencoder itself consists of two parts: an encoder and a decoder. The encoder
reduces data dimension and compresses the input data by decreasing hidden layer size
(number of neurons). The decoder, in the opposite, expands data dimension and reconstructs
the original input data from the compressed data by increasing hidden layer size. Note the
encoder and decoder are symmetric in both architecture and function. The data is most
compressed at the so-called bottleneck layer between the encoder and the decoder. The

autoencoder itself, as an unsupervised data reduction method, is not sufficient in separating
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signal from noise (Figure 1b). To ensure the encoding process filter out noise and retain signal,
we add a classifier branch from the bottleneck layer (Figure 1a and Methods). When cell classes
are unknown, virtual class labels are generated by pre-clustering. Therefore, AutoClass is a
composite deep neural network with both unsupervised (autoencoder) and supervised
(classifier) learning components. AutoClass does not presume any type of data distribution,
hence has the potential to correct a wide range noises and non-signal variances. In addition, it
can model non-linear relationships between genes with non-linear activation functions. In this
study, we extensively evaluated AutoClass against existing methods using multiple simulated
and real datasets. We demonstrated AutoClass can better reconstruct scRNA-Seq data and
enhance downstream analysis in multiple aspects. In addition, AutoClass is robust over

hyperparameter settings and the default setting applies well in various datasets and conditions.

Results

Validation of the classifier component

The unique part of AutoClass is the classifier branch from the bottleneck layer. Since encoding
process losses information in the input data, the classifier branch is added to make sure
relevant information or signal is sufficiently retained. To show that the classifier is needed, we
simulated a scRNA-Seq Dataset 1 (see Methods and Supplementary Table 2) using Splatter®®
with 1,000 genes and 500 cells in 6 groups, with and without dropout. Applied both AutoClass
and a regular autoencoder without the classifier on the data with dropout, the results are
illustrated in two-dimensional t-SNE (see Methods) plots in Figure 1b. AutoClass but not the
regular autoencoder was able to recover cell type pattern, indicating the classifier component is

necessary for reconstructing scRNA-Seq data.
Gene expression data recovery

We evaluated expression value recovery on simulated scRNA-Seq data with different noise
types or distributions. We generated and scRNA-Seq dataset using Splatter with 500 cells, 1000
genes in five cell groups with (raw data, Dataset 2) and without dropout (true data). From the

same true data, we also generated 5 additional raw datasets by adding noise following different
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distributions which are representative and commonly seen, including random uniform (Dataset
3), Gaussian (Dataset 4), Gamma (Dataset 5), Poisson (Dataset 6) and negative binomial

(Dataset 7) (details in Methods and Supplement Table 2 and 3).

As expected, dropout noise greatly reduced the data quality and obscured the signal or
biological differences such as distinction between cell types (Figure 2a). All other noise types
had similar effect on the data (Figure2b-2c and Supplementary Figure 1). With t-SNE
transformation on Dataset 2-7, the true data without noise showed distinct cell types, but not
the raw data with noises (Figure 2a-c and Supplementary Figure 1). The average Silhouette
width®* (ASW) on the t-SNE plot is a measurement of distance between groups, ranges from -1
to 1, where higher values indicate more confident clustering. ASW dropped greatly from 0.64 to
around 0 in all raw datasets. After imputation by AutoClass, the cell type pattern was recovered
and ASW increased back substantially to 0.2-0.5. In contrast, all published control methods
(DCA, MAGIC®, scimpute and SAVER) were unable to recover the original cell type pattern
(Figure 2a-c and Supplementary Figure 1) and ASW scores remained low (Figure 2d) for all noise

types.

We also measure the data recovery quality using other metrics. The mean squared error (MSE)
between the true data and imputed/denoised data for Dataset 3-7 (5 noise types other than
dropout) were also computed (Figure 2e). Among the 5 tested methods, AutoClass consistently
achieved the smallest MSE for all noise types (Figure 2e). Dropout noise (Dataset 2) is very
different from all other noise types (Dataset 3-7) in both distribution form and generation
mechanism, and MSE was not an informative measurement of data recovery. We computed the
average recovered values of dropout zeros and those of true zeros (Figure 2f) instead. An ideal
imputation method can distinguish between these two types of zeros, i.e. impute dropout zeros
while retain true zeros (Figure 2f). While SAVER was too conservative in imputing both types of
0 values, DCA and MAGIC were too aggressive. AutoClass and sclmpute both achieved good
balance between imputing dropout Os and retaining true Os, yet only the former but bot the
later was able to recover the biological difference or distinct cell type clustering (Figure 2a-c

and Supplementary Figurel).


https://doi.org/10.1101/2020.12.04.412247
http://creativecommons.org/licenses/by/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.04.412247; this version posted December 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Differential expression analysis

Differential expression (DE) analysis is by far the most common analysis of scRNA-Seq and gene
expression data. To study the performance of AutoClass in DE analysis, we simulated a scRNA-
Seq Dataset 8 using Splatter with 1,000 genes and 500 cells in two cell groups. Here the ground
truth of truly differentially expressed genes is known. We applied Two-sample T-test to the true,
raw and imputed data using different methods. The median value of t-statistics for the truly
differentially expressed genes dropped from 5.79 in the true data to 2.11 in the raw data, and
increased back to 5.86 upon imputation by AutoClass, which was almost the same as in the true
data and higher than in all control methods (Figure 3 a - b). As shown by ROC curves and area
under the curves (AUC), AutoClass also was the best at balancing true positives and false

negatives (Figure 3 c - d).

Similarly, AutoClass can improve DE analysis in data with Gaussian noise. We manually added
Gaussian noise to the true data of Dataset 8 to generate the raw data of Dataset 9. The DE

analysis results can be found in Supplementary Figure 2.

AutoClass also improves marker gene expression analysis. Baron dataset'® provides known
marker gene lists for related cell types in pancreatic islets. AutoClass imputed data increased

both t-statistics and fold changes of the marker genes (Figure 3 e - f).

Clustering analysis

Clustering analysis is frequently done on scRNA-seq data as to identify cell types or
subpopulations. To evaluate AutoClass for clustering analysis, we used four real datasets,
including two small datasets: the Buettner dataset? (182 cells) and the Usoskin dataset'’ (622
cells) and two large datasets: the Lake dataset'® (8,592 cells) and the Zeisel dataset™ (3,005
cells). Detailed information for these datasets can be found in Methods and Supplementary

Table 1.
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We compared K-means clustering results on the 200 highest variable genes. The ground truth
or the actual number of cell types were used as number of clusters. Clustering results were
evaluated by four different metrics: adjusted Rand index?® (ARI), Jaccard Index*! (JI), normalized
mutual information? (NMI) and purity score”® (PS). All of them range from 0 to 1, with 1
indicating a perfect match to the true groups. AutoClass is the only method improving all four
metrics from the raw data. In addition, AutoClass achieved the best clustering results for 3 out

of 4 datasets (Table 1).

metric | dataset | Raw | AutoClass | DCA | MAGIC | scimpute | SAVER
Buettner | 0.023 | 0.372 0.288 | 0.213 | 0.039 0.016
AR Usoskin | 0.221 | 0.869 0.234 1 0.813 | 0.067 0.317
Lake 0.403 | 0.557 0.572 | 0.440 |0.313 0.465
Zeisel 0.737 | 0.793 0.753 1 0.433 |0.623 0.763
Buettner | 0.242 | 0.409 0.363 | 0.368 | 0.262 0.247
I Usoskin | 0.324 | 0.830 0.284 | 0.764 | 0.266 0.351
Lake 0.323 (1 0.439 0.453 | 0.346 | 0.254 0.364
Zeisel 0.646 | 0.713 0.664 | 0.370 |0.679 0.677
Buettner | 0.035 | 0.395 0.33310.335 |0.075 0.038
NM| Usoskin | 0.225 | 0.829 0.253 1 0.771 | 0.048 0.431
Lake 0.611 | 0.667 0.676 | 0.601 | 0.500 0.642
Zeisel 0.747 | 0.784 0.746 | 0.598 | 0.798 0.762
Buettner | 0.434 | 0.720 0.648 | 0.599 | 0.445 0.423
PS Usoskin | 0.545 | 0.937 0.579 | 0.913 |0.416 0.682
Lake 0.723 | 0.772 0.766 | 0.693 | 0.610 0.742
Zeisel 0.894 | 0.917 0.880 | 0.763 | 0.548 0.897

Table 1 Evaluation of clustering results of four real scRNA-Seq datasets. The four metrics are adjusted Rand index (ARI), Jaccard
Index (JI), normalized mutual information (NMI) and purity score (PS). Highest value in each row was highlighted in boldface.

For the Usoskin dataset, out of all tested methods, only AutoClass and MAGIC reconstructed
distinct clusters (Figure 4a). But MAGIC likely generated false positive signals, given that the
between-group cell-to-cell correlation are almost the same as within-group correlation, and
both are close to 1 (Figure 4b). AutoClass was the only method differentiating within-group vs

between-group correlation as informative metrics for signal vs noise (Figure 4b).
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Batch effect removal

Batch effect rises from different individual cell donors, sample groups, or experiment conditions
and can severely affect downstream analysis. We analyzed two real datasets with major batch
effect. The Villani dataset®® sequenced 768 human blood dendritic cells (DC) in 2 batched using

Smart-Seq2. The Baron dataset includes 7,162 pancreatic islet cells from 3 healthy individuals.

Similar to Tran et al.?, we evaluated the performance of batch effect correction as the ability to
merge different batches of the same cell type while keeping different cell types separate. We
did t-SNE transformation on the data first (Figure 5a and Supplementary Figure 3), then applied
the four metrics above mentioned, i.e. ASW, ARI, NMI and PS on both cell types and batches.
While cell-type-level metrics measure cell type separation, 1 - batch level metrics measure the

merging between batches of same cell type (Figure 5b and Supplementary Figure 4).

In the Villani dataset (Figure 5), the raw data shows clear separation in both cell types and
sample batches. After imputation by AutoClass, while cell types remained well separated, the
two batches were evenly mixed up within each cell type. In contrast, SAVER failed to reduce the

batch effect, while all other methods even aggravated it (Figure 5).

Note that AutoClass corrects the batch effect without knowing the actual number of cell types.
Here, we used the default number of clusters in the pre-clustering step, i.e., [8, 9, 10] (see
Methods). This is close to the number of spurious groups counting batches (i.e., 8), but far away
from the actual number of cell types, or 4. In other words, AutoClass was not misled by the pre-

clustering number and correctly recovered the actual cluster number.

In Baron dataset (Supplementary Figure 3 and 4), AutoClass reduced the batch effect and
increased cell type separation simultaneously with the default pre-clustering number too.
MAGIC dramatically reduced the differences in both batches and cell type. The batch effect

correction by other methods were limited.

Robustness over major hyperparameters
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AutoClass, as a composite deep neural network, has multiple hyperparameters. Among them,
the most important ones are bottleneck layer size, number of pre-clusters and classifier weight.
Bottleneck layer plays an important role in autoencoders, it is the narrowest part of the
network and the size (humber of neurons) controls how much the input data is compressed.
The number of clusters (K) in the pre-clustering step is specific to the classifier of AutoClass.
AutoClass uses three consecutive cluster numbers [K — 1, K, K + 1], and the final imputation
output is the average over three predictions using these three clustering numbers (see
Methods). In addition, the classifier weight w (see Equation (4) and Methods) is another
AutoClass specific hyperparameter which balance the ratio between autoencoder loss and the

classifier loss.

AutoClass is robust over a wide range of bottleneck layer sizes, pre-clustering K values (Figure 6
and Supplementary Figure 5-6) and classifier weight w (Supplementary Figure 7). The t-SNE
clustering patterns, clustering metrics (ASW and ARI), MSE and imputed dropout0Os/true Os ratio
remained the same when bottleneck layer size increase from 16 to 256 (Figure 6a, 6c,
Supplementary Figure 6a). However, these results or metrics varied heavily in the same analysis
using DCA, another autoencoder based method (Figure 6b, 6¢c, Supplementary Figure 6a).
Likewise, AutoClass also achieved stable results over the range of K values - 4-8 (Figure 6d,
Supplementary Figure 5, Supplementary Figure 6b) and the range of classifier weight w values -

0.1-0.9 (Supplementary Figure 7).

Discussion

In this work, we proposed and developed a deep learning- based method AutoClass for
thorough cleaning of scRNA-Seq data. AutoClass integrates two neural network components, an
autoencoder and a classifier. This composite network architecture is essential for filtering out
noise and retaining signal effectively. Unlike many other scRNA-Seq imputation methods,
AutoClass does not rely on any distribution assumption, and fully counts the non-linear
interactions between genes. With these properties, AutoClass effectively models and cleans a
wide range of noises and artifacts in scRNA-Seq data including dropouts, random uniform,

Gaussian, Gamma, Poisson and negative binomial noises, as well as batch effects. These are the

8
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most common and representative types of noises and artifacts. Any other types not directly
tested would likely be cleaned with the same efficiency because they are similar in distribution
and source and AutoClass has no assumption on the noise forms. Such in-depth cleaning led to
consistent and substantial improvement of the data quality and downstream analyses including
differential expression and clustering, as shown by a range of experiments with both simulated

and real datasets.

Hyperparameter tuning is an important yet tedious step for training neural network models.
Inadequate tuning of hyperparameters may lead to suboptimal results. Remarkably, AutoClass
is robust with key hyperparameters including bottleneck layer size (n), pre-clustering number
(K) and classifier weight (w). The default setting withn = 128, K = 9,w = 0.9 works well for
most scRNA-Seq datasets and conditions. This robustness makes AutoClass an appealing method

for both performance and practical uses.

Methods

Architecture of AutoClass

AutoClass integrates two neural network components, an autoencoder and a classifier, to
impute scRNA-seq data (Figure 1a). The classifier branch is necessary to preserve signals or

biological differences (cell type patterns etc.) from loss in data compression by the encoder.

When cell classes are unknown, virtual class labels are generated by pre-clustering using K-
means method. The total loss of the entire network is the weighted sum of classifier loss (cross-
entropy or CE) and the autoencoder loss (MSE). The activation functions in the hidden layers
are all rectified linear unit (ReLU), the activation functions for the output layer of autoencoder

and classifier are SoftPlus and SoftMax, respectively.

The formulation of AutoClass architecture is:

B, = Encoder(X) (1)
Y, = Decoder(By,) (2)
Cy = Classifier(By,) (3)
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Ly =w x CE(Cy, C) + (4)
(1 —w) x MSE(X, ;)
Where By, Yy, Ci, and L;, are the bottleneck representation, the output of the decoder hence
the autoencoder, the output of the classifier and total loss, respectively. Ck is the pre-clustering
cell type labels for k clusters. X is the input of AutoClass, and has been normalized over library

size and followed by a log, transformation with pseudo count 1:

X =log, (diag(s;) "X + 1) (5)
X is the raw count matrix and the size factor s; for cell i is equal to the library size divided by

the median library size across cells. Library size is defined as the total number of counts per cell.

The final imputed data is the average prediction of the autoencoder over different cluster

numbers in pre-clustering:

Y = E(Y|k) (6)
For all datasets in this manuscript, we used 3 consecutive cluster numbers, or k =
[K — 1,K,K + 1], the default value is K = 9. The final imputation result was the average

results over different K.
AutoClass Implementation and hyperparameter settings

AutoClass is implemented in Python 3 with Keras. Adam is used for optimizer with default
learning rate 0.001. Learning rate is multiplied by 0.1 if validation loss does not improve for 15

epochs. The training stops if there is no improvement for 30 epochs.

Although AutoClass works well for small bottleneck layer sizes (n = 16, 32 or similar), we set
the default value to be n = 128, as be conservative and to avoid potential information loss in

data compression. This default value was used in all datasets in this paper.

AutoClass is stable over different choices of K in pre-clustering as long as K is not extremely far
away from the true number of cell clusters. The default value K = 9 was used in all datasets in
this paper except simulated Dataset 8 and 9, since the true number of cell clusters in these two
datasets is 2 which is far smaller than default value 9. Hyperparameter K can be chosen based

on prior knowledge of the data or statistical methods like elbow method® and Silhouette

10
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method*®. K used in Dataset 8 and 9 was the average of estimations by elbow method and

Silhouette method.

AutoClass is stable on classifier weight w in the range of 0.1-0.9 (supplementary Figure 7). We
found that in general classification loss is far smaller than reconstruction loss (Supplementary
Figure 8), to have a better balance between those two losses, we set the default value to be

w = 0.9. This default value was used in all the datasets in this paper.

In addition, overfitting is a common problem in neural network models. Dropout of neurons® in
the bottleneck layer is used in AutoClass to prevent overfitting. Interestingly, a relatively high
dropout rate in AutoClass also helps to correct batch effect. In the batch effect removal
analyses, we set dropout rate to be 0.5 in AutoClass, and to be fair, also in DCA. But DCA was
unable to remove batch effect (Figure 5, Supplementary Figure 3-4). The default dropout rate

0.1 in AutoClass was used in all the other datasets and analyses in this paper.

AutoClass hyperparameter settings for all the datasets can be found in Supplementary Table 1-

3.
Analysis details

Noise types other than dropout: Dataset 3-7 and Dataset 9 were generated by manually adding

noise to the true data of Dataset 2 and Dataset 8, respectively. The noise was first generated by
Python numpy.random package with different noise distributions (details in Supplementary
Table 3), and then centered (so that noise mean is 0). The noise was then added to true data,
all values were rounded to be integers and negative values set to 0, since scRNA-Seq data raw

counts are positive integers.

Highly variable genes: The highly variable genes in each dataset are ranked by the ratio

between gene-wise variance vs mean computed from non-zero values.

t-Distributed stochastic neighbor embedding (t-SNE): We applied t-SNE? to visualize

datasets. We first reduce the number of data dimensions by using the top 50 principle
components, and then use TSNE function in the sklearn.manifold package with default settings

to further reduce the dimension to 2 for visualization.

11
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Batch effect removal score: Four clustering metrics ASW, ARI, NMI and PS were used to

measure the performance of batch effect correction. We applied ASW to the t-SNE transformed
data, and batch effect removal was scored by both cell-type-wise ASW vs 1 — batch-wise ASW
(Figure 5b and Supplementary Figure 4). Higher values in both dimensions together denote
better batch effect removal. ARI, NMI and PS metrics are used and plotted in the same fashion
as ASW. To compute ARI, NMI and PS, K-means clustering was performed first to obtain cluster
labels, which were then compared to batch labels and cell type labels. The batch indices were
computed for each individual cell type first, and take weighted sum across cell types. The

weight for each cell type is proportional to the number of cells.
Control methods

DCA (version 0.2) was downloaded from https://github.com/theislab/dca

Magic (version 0.1.0) was downloaded from https://github.com/KrishnaswamylLab/MAGIC

sclmpute (version 0.0.5) was downloaded from https://github.com/Vivianstats/scimpute.

SAVER (version 0.3.0) was downloaded from https://github.com/mohuangx/SAVER.

Real scRNA-seq datasets

We collected and analyzed multiple real scRNA datasets from published studies. These datasets
have been well established, widely used and tested as shown in literature. While major

technical attributes are summarized in Supplementary Table 1, below are more details.

Baron Study

Human pancreatic islets cells data were obtained from 3 healthy individuals, which provided
gene expression profiles for 17,434 genes in 7,729 cells. We filtered out genes expressed in less
than 5 cells, removed cell types less than 1% of the cell population. Analysis was restricted to

top 1,000 highly variable genes. Final dataset contained 7,162 cells with 8 different cell types.

The raw counts data are available at

https://shenorrlab.github.io/bseqsc/vignettes/pages/data.html.
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Villani Study

The human blood dendritic data contained 26,593 genes in 1,140 cells. We kept batch 1 (plate
id: P10, P7, P8 and P9) batch 2 (plate id P3, P4, P13, P14) cells, and filtered out genes expressed
in less than 5 cells. Analysis was restricted to top 1,000 highly variable genes. Final dataset
contained 768 cells with 4 different cell types in 2 batches. The raw data are available at GEO

accession GSE80171.

Lake Study

Human brain frontal cortex data contained 34,305 genes in 10,319 cells. We filtered out genes
expressed in less than 5 cells, removed cell types h less than 3% of the cell population. Analysis
was restricted to top 1,000 highly variable genes. Final dataset contained 8,592 cells with 11

different cell types. The raw data are available at GEO accession GSE97930.

Zeisel Study

Mouse cortex and hippocampus data contained 19,972 genes in 3,005 cells. We filtered out
genes expressed in less than 5 cells. Analysis was restricted to top 1,000 highly variable genes.
Final dataset contained 3,005 cells with 9 different cell types. Annotated data are available at

http://linnarssonlab.org/cortex.

Buettner Study:

Mouse embryonic stem cells contained 8,989 genes in 182 cells. We filtered out genes
expressed in less than 5 cells. Final dataset contained 8,985 genes and 182 cells in 3 cells lines.
The full dataset was deposited at ArrayExpress: E-MTAB-2805. The normalized data can be

obtained from https://www.nature.com/articles/nbt.3102.

Usoskin Study

Neuronal data contained 17,772 genes in 622 cells. We filtered out genes expressed in less than
5 cells. Analysis was restricted to top 1,000 highly variable genes. Final dataset contains 622
cells with 4 different cell types. The normalized data can be obtained from

https://www.nature.com/articles/nbt.3102.
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Simulated scRNA-seq datasets

Splatter R (version v1.2.2) package was used to simulate scRNA-seq datasets with dropout
values. Gaussian noise was manually added when needed. Genes expressed in less than 3 cells
were filtered out before analysis. The parameter settings for simulation are summarized in

Supplementary Table 2 and 3.
Code availability

AutoClass python module, documentation, tutorial with example, and code to reproduce the

main results in the manuscript are available online: https://github.com/datapplab/AutoClass.

Data availability

All simulated datasets can be generated using the parameters specified in the Simulated scRNA-
Seq datasets subsection, all the real datasets are publicly available as mentioned in the Real
scRNA-Seq datasets subsection. In addition, multiple simulated and real datasets were provided

in the GitHub repository above as demo datasets, ready for analysis.
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Figure 2 Gene expression data recovery after imputation. a, b and c¢ t-SNE plots for Dataset 2 (dropout noise), Dataset 4
(Gaussian noise) and Dataset 7 (negative binomial noise), respectively. d Average Silhouette width based on t-SNE plot for
Dataset 2-7. e Mean squared error between true data and imputed data for Dataset 3-7. f Average recovered values of dropout
0Os and true Os for different imputation methods.
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changes and T-statistics of marker genes in the Baron dataset.
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