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Abstract

Sex steroid hormones have been shown to alter regional brain activity, but the extent to which they modulate
connectivity within and between large-scale functional brain networks over time has yet to be characterized. Here, we
applied dynamic community detection techniques to data from a highly sampled female with 30 consecutive days of
brain imaging and venipuncture measurements to characterize changes in resting-state community structure across
the menstrual cycle. Four stable functional communities were identified consisting of nodes from visual, default
mode, frontal control, and somatomotor networks. Limbic, subcortical, and attention networks exhibited higher than
expected levels of nodal flexibility, a hallmark of between-network integration and transient functional reorganization.
The most striking reorganization occurred in a default mode subnetwork localized to regions of the prefrontal cortex,
coincident with peaks in serum levels of estradiol, luteinizing hormone, and follicle stimulating hormone. Nodes
from these regions exhibited strong intra-network increases in functional connectivity, leading to a split in the stable
default mode core community and the transient formation of a new functional community. Probing the spatiotemporal
basis of human brain–hormone interactions with dynamic community detection suggests that ovulation results in a
temporary, localized patterns of brain network reorganization.
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Author Summary 1

Sex steroid hormones influence the central nervous sys- 2

tem across multiple spatiotemporal scales. Estrogen 3

and progesterone concentrations rise and fall through- 4

out the menstrual cycle, but it remains poorly under- 5

stood how day-to-day fluctuations in hormones shape 6

human brain dynamics. Here, we assessed the structure 7

and stability of resting-state brain network activity in 8

concordance with serum hormone levels from a female 9

who underwent fMRI and venipuncture for 30 con- 10

secutive days. Our results reveal that while network 11

structure is largely stable over the menstrual cycle, 12

there is temporary reorganization of several large-scale 13

functional brain networks during the ovulatory window. 14

In particular, a default mode subnetwork exhibits in- 15

creased connectivity with itself and with regions from 16

temporoparietal and limbic networks, providing novel 17

perspective into brain-hormone interactions. 18

Introduction 19

The application of network science techniques to the 20

study of the human brain has revealed a set of large- 21

scale functional brain networks that meaningfully re- 22

organize both intrinsically and in response to external 23

task demands [1]. One technique, dynamic community 24

detection (DCD), has emerged as a powerful tool for 25

conceptualizing and quantifying changes in mesoscale 26

brain network connectivity patterns by identifying sets 27

of nodes (communities) with strong intra-community 28

connections [2] to enable identification of communities 29

that persist or change over time. DCD complements 30

other statistical approaches used in fMRI data anal- 31

ysis by identifying when functionally coupled brain 32

regions undergo sufficiently large changes in connec- 33

tivity to warrant re-assignment to separate functional 34

communities. Additionally, this method provides an 35

interpretable summary of whether strongly connected 36

sets of brain regions undergo transient, but significant, 37

changes that could be missed when time-averaging data 38

within and between sessions. 39

This method is particularly suited for examining 40

relationships between brain dynamics and physiologi- 41

cal variables that vary over relatively short time scales, 42

such as sex hormone fluctuations over the human men- 43

strual cycle. A typical cycle, occurring every 25–30 44

days, is characterized by significant rises in estradiol 45

(∼12-fold) and progesterone (∼ 800-fold), both of which 46

are powerful neuromodulators that have a widespread 47

influence on the central nervous system [3]. Converg- 48

ing evidence from animal studies has established sex 49

hormones’ influence on regions supporting higher-order 50

cognition, including the prefrontal cortex (PFC) and 51

hippocampus [4, 5]. Within these regions, fluctua- 52

tions in estradiol enhance spinogenesis and synaptic 53

plasticity while progesterone largely abolishes this ef- 54

fect [6, 7]. Importantly, sex hormones are expressed 55

broadly throughout the cerebellum and cerebrum, sug- 56

gesting that whole-brain effects might be observed be- 57

yond the regions targeted in these studies. 58

Human neuroimaging studies have demonstrated 59

that sex hormones influence brain activity across broad 60

regions of cortex [8, 9]. Additionally, a handful of 61

studies have demonstrated that menstrual cycle stage 62

uniquely alters resting-state functional connectivity 63

(rs-fc) [10–13]. However, these studies typically in- 64

volve group-based or sparse-sampling (2–4 time points) 65

designs that are unable to capture transient day-to- 66

day relationships between sex hormones and functional 67

brain dynamics, and this relatively low temporal reso- 68

lution has led to inconsistencies in the literature [14]. 69

Therefore, new approaches are needed that can address 70

these spatial and temporal limitations, as doing so will 71

provide novel perspectives on human brain–hormone 72

interactions. 73

Recently, Pritschet et al. applied a “dense sam- 74

pling” approach [15,16] to a naturally-cycling female 75

who underwent 30 consecutive days of brain imaging 76

and venipuncture to capture rs-fc variability over a 77

complete menstrual cycle (Fig 1). The authors found 78

day-to-day fluctuations in estradiol to be associated 79

with widespread increases in rs-fc across the whole 80

brain, with progesterone showing an opposite, negative 81

relationship. Using time series modeling and graph 82

theoretical analysis, they also found that estradiol 83

drives variation in topological network states, specif- 84

ically within-network connectivity (global efficiency) 85

of default mode and dorsal attention networks that 86

encompass regions rich with estrogen receptors (ER). 87

These findings have important implications for the 88

field of network neuroscience where dense-sampling, 89

deep-phenotyping approaches have emerged to aid in 90

understanding sources of intra/inter-individual vari- 91

ability in functional brain networks over days, weeks, 92

months, and years [16–18]. 93

Pritschet and colleagues’ approach identified node- 94

averaged trends in rs-fc changes within canonical func- 95

tional networks across the cycle, but questions remain 96

regarding whether and where functional reorganization 97

takes place between large-scale networks. As changes 98

in edge weight can result in the formation of func- 99

tional “communities” not captured by traditional rs-fc 100

methods, complementary approaches are needed to 101
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Fig 1. 28andMe dataset. A. Subject LP (naturally cycling female, age 23) participated in a month-long “dense
sampling” experimental protocol to provide a multimodal, longitudinal dataset referred to as 28andMe [19]. The
subject completed daily assessments of diet, mood, and sleep, provided blood for assessment of serum hormone
concentrations, and underwent a 10 minute resting-state fMRI scan. B. For each resting-state scan, functional
connectivity matrices were constructed by calculating the pairwise mean magnitude-squared coherence between each
region from the entire 10-minute scan. The result is a 415 × 415 × 30 data structure, in which each entry indicates
the coherence between two nodes on a given day. C. The brain was parcellated into 415 regions and regions were
assigned to one of nine networks based on previously identified anatomical and functional associations [20]. Colors
indicate regional network membership.

characterize trends in brain connectivity at intermedi- 102

ate spatial and temporal scales. Examining mesoscale 103

networks has further revealed fundamental principles 104

of functional brain networks, such as the modular, 105

integrated architecture underpinning flexible task per- 106

formance [21,22]. Additionally, a better understanding 107

of mesoscale connectivity may provide an avenue for 108

improving personalized medicine by increasing the effi- 109

cacy of targeted therapeutic interventions [23]. 110

Here, we applied DCD to examine whole-brain dy- 111

namics in relation to sex hormone fluctuations across 112

a menstrual cycle. Our results reveal that a stable set 113

of “core” communities persist over the course of a men- 114

strual cycle, primarily consisting of nodes belonging 115

to distinct a priori defined functional–anatomical net- 116

works, namely visual, somatomotor, attention, default 117

mode, and control networks. Though these core com- 118

munities were largely stable, nodes from limbic, subcor- 119

tical, attention, and control networks changed commu- 120

nity affiliation (referred to as flexibility) at higher rates 121

than expected compared to a null hypothesis. DCD also 122

identified a transient split of the DMN core into two 123

smaller subcommunities concurrent with peaks in estra- 124

diol, luteinizing hormone (LH), and follicle stimulating 125

hormone (FSH) levels defining the ovulatory window. 126

This community split was driven by strong increases of 127

within-network integration between prefrontal nodes 128

of the DMN, which subsided immediately after the 129

ovulatory window. The default mode, temporopari- 130

etal, limbic, and subcortical networks also exhibited 131

significantly increased flexibility during ovulation, sug- 132

gesting a role for estradiol, LH, and FSH in regulating 133

localized, temporary changes in regional connectivity 134

patterns. Taken together, while a large degree of func- 135

tional brain network stability was observed across the 136

menstrual cycle, peaks in sex hormones over the ovu- 137

latory window resulted in temporary brain network 138

reorganization, suggesting sex hormones may have the 139

ability to rapidly modulate rs-fc on shorter time scales 140

than previously documented. 141

Results 142

A single female underwent brain imaging and venipunc- 143

ture for 30 consecutive days. For each session, the 144

brain was parcellated into 400 cortical regions from 145

the Schaefer atlas and 15 subcortical regions from 146

the Harvard-Oxford atlas (Fig. 1C) and 415 x 415 147

functional association matrices were constructed via 148

magnitude-squared coherence [20]. Dynamic commu- 149

nity detection was applied to this data, revealing a 150

stable set of communities that persist over the course 151

of a menstrual cycle. However, significant transient 152

changes in community structure occurred within the 153
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default mode network during the ovulatory window con- 154

comitant with peaks in estradiol, luteinizing hormone, 155

and follicle stimulating hormone. 156

Stable functional cores persisted over the 157

course of one menstrual cycle 158

The degree to which functional brain network connec- 159

tivity changes over the course of a human menstrual 160

cycle has yet to be fully characterized. Here, dynamic 161

community detection (also referred to as multislice or 162

multilayer modularity maximization [24]) consistently 163

identified four functional communities that were largely 164

stable in a naturally cycling female over 30 consecutive 165

days. In this context, “community” refers to a set 166

of nodes whose intra-set connections are significantly 167

stronger than would be expected when compared to 168

an appropriate null model. A representative example 169

of this consensus temporal community structure (the 170

community designation that best matches the output of 171

50 runs of the non-deterministic community detection 172

algorithm) is shown in Fig. 2C. This structure was con- 173

served over a range of community detection parameter 174

values that, roughly speaking, must be defined to set 175

the “spatial” and “temporal” resolutions of community 176

identification (see Methods for detailed description). 177

Across all temporal resolutions considered here, con- 178

sensus community partitions with a spatial resolution 179

parameter 0.975 ≤ γ ≤ 1.01 possessed exactly four 180

communities. 181

For the standard parameter choice (temporal and 182

spatial resolution parameters both set to 1), the four 183

identified communities had distinct compositional char- 184

acteristics. These communities were largely bilaterally 185

symmetric, with analogous brain regions in each hemi- 186

sphere assigned to the same community 71% of the 187

time. The four communities correspond roughly to a 188

visual core, a somatomotor-attention core, a default 189

mode core, and a control core. The compositions of 190

these four communities are shown in Fig. 3A. The 191

composition value was calculated by summing the total 192

number of instances in which a node belonging to an 193

a priori functional-anatomical network [20] also be- 194

longed to the community identified in the consensus 195

community partition. 196

The core communities identified here were named 197

based on the highest representation of nodes belonging 198

to a priori functional networks. The visual core was 199

81% composed of visual network nodes and had an av- 200

erage size of 51.5 nodes per day. The somato-attention 201

core was composed of 52% somatomotor, 27% salience- 202

ventral attention, and 13% dorsal attention network 203

nodes and had an average size of 134.1 nodes per day. 204

The default mode core consisted of 56% DMN nodes 205

and approximately 10% of each control, limbic, and 206

temporoparietal network nodes and contained 132.9 207

nodes on average per day. Finally, the control core 208

consisted of 48% control and 28% dorsal attention net- 209

work nodes and contained 96.5 nodes on average per 210

day. Importantly, for all parameter combinations in 211

which four communities were detected, the composition 212

of these communities was consistent (Supplementary 213

Information). These community partitions were also 214

stable across the entire menstrual cycle. Specifically, 215

315 of the 415 nodes (75.9%) did not change community 216

affiliation across the 30-day experiment. 217

Taken together, these results suggest the presence 218

of a stable solution to the dynamic community de- 219

tection algorithm and a reliable coarse-grained com- 220

munity architecture present in the data. In several 221

functional–anatomical networks, there was little to no 222

modification of network architecture over time; for 223

instance, greater than 85% of nodes in each of the so- 224

matomotor, default mode, temporoparietal, and visual 225

networks did not change community affiliation over the 226

entire menstrual cycle. The strong day-to-day correla- 227

tions between edge weights in these networks (Fig. 3B) 228

reinforce the existence of these stable cores. 229

Functional-anatomical networks exhibited 230

distinct patterns of flexibility 231

Though network community structure was stable over 232

a complete menstrual cycle when classifying nodes into 233

four communities, specific nodes did change commu- 234

nity affiliation at levels above chance when modifying 235

the sensitivity of the community detection algorithm. 236

Specifically, when γ, the spatial resolution parameter, 237

was increased, the dynamic community detection al- 238

gorithm subdivided the four core communities into 239

smaller communities, providing a finer-grained classi- 240

fication of subnetwork structure. At an intermediate 241

parameter combination (ω = 1, γ = 1.05), nine com- 242

munities significant at the p < .05 level were identified 243

over the course of the experiment, as visualized in Fig. 244

2C (blue outlines). The subsequent analysis uses com- 245

munity partitions at this parameter combination, but 246

the results were consistent across a range of neighboring 247

parameter values (Supplementary Information). 248

This “higher-resolution” partition revealed trends 249

in functional organization over time that were not ob- 250

servable with coarser partitions. First, inspecting the 251

median flexibility value, or the proportion of times a 252

node changed community affiliation out of the total 253
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Fig 2. Dynamic community detection identified changing modular structure over time at multiple
scales. A. A toy network example illustrates the dynamic community detection algorithm. For each time point,
every node is assigned to a community so as to maximize the strength of intra-community connections relative to
inter-community links while also taking community assignments over time into account (Eq. 1). In this case, three
communities are identified and denoted by color. B. To assess temporal structure in the 28andMe resting-state fMRI
data, community assignments were calculated for a range of parameter values. In this procedure, two parameters, ω
and γ, specify the temporal and spatial scales of analysis, respectively. After performing 50 runs of the community
detection algorithm for each parameter combination, the statistical significance of each community partition relative
to a random null model was calculated. The color for each entry in the heat map indicates the proportion of
communities at that parameter combination which are significant at the p < .05 level. C. Consensus partition
structure varied according to the choice of resolution parameters. The example network community structure (left)
changes at each time point, with node community assignment given by color on the y-axis and time indicated on the
x-axis. For three different parameter combinations (outlined in red, blue, and green, respectively), the consensus
partitions varied in the total number of communities identified, ranging from four to fifteen, with more communities
identified when the temporal resolution was low and the spatial resolution was high.
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Fig 3. Dynamic community detection uncovered stable cores across a complete menstrual cycle. A.
Four core communities (y-axis) were consistently identified in the 28andMe dataset across spatial and temporal
resolution parameter values. For these parameter combinations, the compositions of the visual, default mode, control,
and somatomotor-attention network cores are shown as a heat map, with color corresponding to the percentage of
nodes in a community belonging to a functional-anatomical network. B. The four networks that constituted the hubs
of the core communities possessed stable pairwise connectivity between nodes across days. Scatter plots show the
day-to-day correspondence between edge weights for all of the nodes of the somatomotor, default mode,
temporoparietal, and visual networks on days t and t+ 1. These network edges had Pearson correlation coefficients of
0.379, 0.573, 0.590, and 0.538, respectively. C. The subcortical, limbic, and dorsal attention networks exhibited the
highest median node flexibility. Top: Normalized flexibility values for each node over the entire cycle are plotted as
points, with color indicating network affiliation. Thick horizontal lines on box plots indicate median values. A
flexibility value of 1 indicates that a node changes community assignment at each possible time point, whereas a
value of 0 indicates that the node never changes community assignment. Bottom: A 95% cutoff value is calculated
using the flexibility values for each node over all 50 community detection runs. For each functional-anatomical
network, the blue bar indicates the number of nodes belonging to that network which have flexibility values above the
cutoff threshold. The red bars indicate the proportion of nodes in each network that surpass the cutoff value (i.e. the
value for each blue bar is normalized by the number of nodes in the network). Once again, limbic, subcortical, dorsal
attention, and control networks contained the highest proportion of highly flexible nodes.
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possible number of changes, demonstrates that func- 254

tional–anatomical networks possessed distinct flexibil- 255

ity distributions (Fig. 3C, top). The limbic, subcortical, 256

dorsal attention, and control networks were overrepre- 257

sented in terms of highly flexible nodes relative to a 258

null hypothesis (Fig. 3C, bottom). 259

Fine-scale community reorganization occurred on 260

experiment day 23 and persisted until day 25, as il- 261

lustrated in Fig. 4A. Across these days, 62 nodes 262

belonging to the default mode core community split 263

from the default mode core community to transiently 264

form a small, strongly connected community. This was 265

the only large-scale reorganization event detected dur- 266

ing the experiment, as indicated by the nodal flexibility 267

values illustrated in Fig. 4B. Global flexibility was sig- 268

nificantly higher (Wilcoxon rank-sum test, p < .05) 269

during ovulation (days 23–25) than during follicular 270

or luteal phases (days 11–22 and 26–10, respectively). 271

Specifically, global mean flexibility during the ovulatory 272

window was 0.142, whereas flexibility during follicular 273

and luteal phases was 0.049 and 0.050, respectively. 274

Notably, 31 (50%) of the nodes in the community 275

that emerged during the ovulatory window belonged to 276

the DMN, 12 nodes (19%) belonged to the temporopari- 277

etal network, and 7 (11%) were subcortical regions (as 278

defined by functional–anatomical atlases [20,25], Fig. 279

5A). The functional–anatomical network memberships 280

of the node–node pairs exhibiting the strongest in- 281

creases in coherence (top 5%) indicated that enhanced 282

connectivity between DMN nodes drove this community 283

split, as opposed to DMN nodes being “converted” to a 284

new community via increased connectivity to non-DMN 285

regions (Supplementary Information). More specif- 286

ically, nodes within prefrontal regions belonging to 287

DMN subnetwork B drove this reorganization event, as 288

118 of the 371 (32%) strongest increases in coherence 289

occurred between nodes in this subnetwork. 290

Network reorganization timing coincided 291

with peaks in hormone levels during ovu- 292

lation 293

Mean flexibility of each network over a 5-day sliding 294

window is depicted in Fig. 6A. The DMN, temporopari- 295

etal, subcortical, and limbic networks exhibited peaks 296

in flexibility at days 23 and 24 of the experiment, coin- 297

cident with the peaks in estradiol, LH, and FSH which 298

are a hallmark signals of the ovulatory window (Fig. 299

6B). To determine whether the bifurcation of the de- 300

fault mode core community was significantly associated 301

with sex hormones, we compared functional–anatomical 302

network flexibility values to serum hormone levels. 303

To assess the temporal relationship between network 304

flexibility values and sex hormones, cross-covariance 305

structure between each time series was calculated. The 306

control, default mode, limbic, salience/ventral atten- 307

tion, subcortical, and temporoparietal networks had 308

maximum cross-variance values greater than 0.6 (where 309

maximum value of 1 indicates fully shared covariance 310

structure and 0 indicates no covariance) with estra- 311

diol, which were significant when compared to cross- 312

covariance values for a null model of time-permuted 313

estradiol levels (Bonferroni-corrected at p < .05). Each 314

network except for the control and attention networks 315

had maximum cross-variance values greater than 0.6 316

with LH as well (permutation test, p < .05 after Bon- 317

ferroni correction). In each case, maximum cross- 318

covariance values occurred at lags less than 2 days and 319

no other significant cross-covariance structure existed, 320

indicating that most functional communities exhibited 321

changes in composition concurrent with significant rises 322

in estradiol and LH levels. 323

Discussion 324

In this study, we applied DCD to data from a densely 325

sampled female who underwent 30 consecutive days 326

of brain imaging and venipuncture to investigate the 327

extent of intrinsic spatiotemporal functional reorgani- 328

zation over a menstrual cycle. We identified four stable 329

community cores across the cycle, represented here as 330

visual, somatomotor, default mode, and control net- 331

work cores; interestingly, the exception to this stability 332

occurred simultaneously with peaks in estradiol, LH 333

and FSH. During this event, we observed a transient 334

reorganization of the default mode core into a newly 335

formed community, as well as increases in nodal flexi- 336

bility among prefrontal, limbic, and subcortical nodes. 337

Taken together, our results suggest that the interplay 338

between the nervous and endocrine systems over a men- 339

strual cycle result in temporary, localized patterns of 340

brain network reorganization occurring during ovula- 341

tion. These results highlight DCD as a new avenue 342

for investigating the intricate relationship between sex 343

hormones and human brain dynamics. 344

Dynamic community detection character- 345

izes network-specific functional stability 346

across a menstrual cycle 347

Dense-sampling, deep-phenotyping studies offer new 348

ways to investigate intra/inter-individual variability in 349

functional brain networks by identifying features of rs-fc 350

that are stable traits within an individual or change in 351
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Fig 4. Fine-grain community partitioning revealed a bifurcation in the default mode core during
ovulation. A. When the spatial resolution parameter (which alters the size of communities identified by dynamic
community detection) was increased from the standard value, the four core communities identified previously were
subdivided into smaller subcommunities (reproduced from Fig. 2C). Here, a split in the default mode core community
(light blue) appeared at day 22 (red-orange), concomitant with ovulation and a spike in sex hormones. This
community (red) rejoined the default mode core on day 25. For illustrative purposes, only the consensus partition for
one parameter value is shown, but this trend was consistent across nearby parameter combinations (Supplementary
Information). B. Shown are flexibility values for each node by menstrual cycle phase. Color in each region indicates
flexibility value, with hotter colors indicating higher values. The following days of the experiment corresponded to
the phases of the menstrual cycle: follicular, days 11-22; ovulatory, days 23-25; luteal, days 1-10 and 26-30. Flexibility
values are noticeably higher in many regions from the temporoparietal, limbic, subcortical, and default mode
networks during the ovulatory phase compared to the follicular and luteal phases.
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Fig 5. Nodes in a default mode subnetwork drove community bifurcation via strong increases in
coherence. A. The newly formed functional community on day 23 and 24 contained 62 nodes that belonged to the
community on both days. The functional-anatomical network and subnetwork affiliations of these nodes are shown on
the left and right, respectively. The new community contained 31 DMN nodes (50%), 12 temporoparietal nodes
(19%), and 7 subcortical nodes (11%). B. The edges that exhibited large weight changes from day 22 to day 23 (top
5% of changes, left) were predominantly within-network connections between DMN network nodes (118/371).
Examining subnetwork structure reveals that all of the strongly enhanced connections between nodes in the DMN
belonged to subnetwork B, indicating that this subnetwork, which consists of regions in prefrontal cortex, drove the
default mode core community bifurcation at ovulation (Supplemental Information).
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Fig 6. Community reorganization was temporally localized to ovulation. Changes in community
assignment (A) were coordinated and closely tracked the timing of spikes in serum hormone concentrations (B).
Prior to day 20 of the experiment, all networks except for the subcortical network exhibited low baseline rates of
flexibility (mean = 0.04). However, several networks exhibited sharp increases in flexibility between days 20 and 26,
indicating brain-wide functional reorganization during the ovulatory window. The pattern of flexibility shown here
corresponds to the network reorganization observed for dynamic community detection performed with the parameter
combination ω = 1, γ = 1.05 (blue outline in Fig. 2). To note, flexibility is calculated over a 5 day sliding window.
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conjunction with biological factors and state-dependent 352

variables [16,18]. Recent dense-sampling studies have 353

shown that frontoparietal regions/networks exhibit 354

high degrees of intra-individual rs-fc stability while 355

also being characteristically unique across individuals, 356

suggesting that these higher-order regions may be es- 357

pecially critical for uncovering individual differences 358

in brain function and improving applications into per- 359

sonalized medicine [18,26]. Our findings provide new 360

insight towards the ongoing explorations into stabil- 361

ity within functional brain networks. In this dataset, 362

frontal control and DMN nodes exhibited high day-to- 363

day connection weight correlations and low propensity 364

to change functional community membership over the 365

experiment (Fig. 3), while, on average, somatomotor, 366

temporoparietal, visual, and salience/ventral attention 367

networks were also largely stable. Therefore, our re- 368

sults align with previous research suggesting both a 369

high degree of network stability in resting-state net- 370

works over a menstrual cycle [14] and in individuals 371

over time [16,18,26]. 372

In conjunction with this observed stability, network- 373

specific changes in functional community organization 374

were also identified. Control subnetwork C, encompass- 375

ing posterior cingulate cortex/precuneus regions, was 376

the most flexible functional subnetwork identified, with 377

10 of the 12 nodes exhibiting significantly higher than 378

expected flexibility (i.e. how often a node switches 379

community affiliation, see Supplementary Information). 380

Limbic and subcortical networks displayed intermediate 381

levels of flexibility. Regions from these systems receive 382

input from and project to many cortical areas and are 383

implicated in functions such as sensorimotor integration 384

via the cortico-basal ganglia-thalamo-cortical loop [27]; 385

therefore, the high degree of flexibility observed here 386

may reflect the tendency of these systems to serve as 387

relays between functionally segregated communities. 388

Particular changes in rs-fc were significantly related 389

to the sharp rises in sex hormones seen across the 390

ovulatory window. During this time, we observed a 391

spatially-specific transient reorganization of the DMN, 392

during which nodes from the temporoparietal, limbic, 393

subcortical, and default mode networks split from the 394

default mode core to form a short-lived community 395

(2 days) before rejoining the original core community. 396

Using time-lagged analyses, Pritschet and colleagues 397

previously reported that within-network connectivity 398

of the DMN was regulated by previous states of estra- 399

diol [19]. Here, we expand on this finding and identify 400

a subnetwork of the DMN that is likely driving this 401

reorganization. Notably, regions constituting this new 402

community are located in PFC, an area exquisitely sen- 403

sitive to sex steroid hormones [28] where, for instance, 404

nearly 50% of pyramidal neurons in the dorsolateral 405

PFC (dlPFC) express ER-alpha [4]. Together, this 406

presents the possibility that endocrine signaling may, 407

in part, regulate intrinsic brain dynamics within the 408

frontal cortex. 409

Neurobiological interpretations of sex hor- 410

mones on PFC function 411

Cross-species investigations have established estrogen’s 412

ability to shape the PFC [9,28–31]. In rodents, estradiol 413

increases fast-spiking interneuron excitability in deep 414

cortical layers [32]; in non-human primates, estradiol 415

treatment increases dendritic spine density in dlPFC 416

neurons [33] and this potentiation is observed only if 417

the treatment is administered in the typical cyclical 418

pattern observed across a menstrual cycle. In parallel, 419

human brain imaging studies have implicated estradiol 420

in enhancing the efficiency of PFC-based circuits. In cy- 421

cling women performing a working memory task, PFC 422

activity is exaggerated under low estradiol conditions 423

and reduced under high estradiol conditions [9]. Sim- 424

ilarly, when estradiol declines across the menopausal 425

transition, working-memory related PFC activity be- 426

comes more exaggerated despite no differences in task 427

performance [31]. Examining rs-fc across the cycle, 428

Petersen and colleagues found that women in the late 429

follicular stage (near ovulation) showed increased co- 430

herence within the default mode and executive control 431

networks compared to those in luteal stages [10]. Our 432

findings extend this body of work by demonstrating 433

that dlPFC nodal flexibility tracks significantly with 434

sharp increases in estradiol and LH across the cycle, 435

which may support the brain’s ability to reorganize at 436

the mesoscale level. 437

This tight temporal coupling highlights the poten- 438

tial for a mechanistic link between endocrine signaling 439

and large-scale network reorganization. While future 440

multimodal brain imaging studies are needed to estab- 441

lish this link, one possible neurobiological mechanism 442

of action may be through estradiol’s interaction with 443

the dopaminergic system. For instance, the PFC is 444

innervated by midbrain dopaminergic neurons that 445

enhance the signal-to-noise ratio of PFC pyramidal 446

neurons and drives cortical efficiency [34]. In turn, 447

estradiol enhances dopamine release and modifies the 448

basal firing rate of dopaminergic neurons, providing 449

one explanation for how alterations in estradiol could 450

impact cortical efficiency. 451
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Implications for cognition and disease 452

Several studies have begun utilizing DCD to relate 453

“task-free” and “task-based” functional network reor- 454

ganization to cognitive performance. High levels of 455

nodal flexibility have been associated with enhanced 456

performance on working memory tasks [35], improved 457

learning of a motor task [36], and visual cue learn- 458

ing [37]. In each study, flexibility was associated with 459

performance in regions known to underlie each task, 460

implicating frontal, motor, and visual cortical cortices 461

and subcortical structures such as thalamus and stria- 462

tum. Notably, similar associations were not observable 463

when analyzing these experiments through region-based 464

activation patterns alone, indicating that temporal or- 465

ganization of brain-wide functional activity (e.g. dy- 466

namic community structure) may provide important 467

information related to cognitive functioning that might 468

be missed with traditional analyses. 469

Indeed, Mattar et al. used DCD to characterize 470

cognitive systems like those defined here [20] in a 64- 471

task battery, demonstrating that functional networks 472

fluidly reconfigure to form new cohesive communities 473

under different task settings [38]. Similar work has re- 474

vealed that primary motor, visual, and auditory regions 475

typically participate in a single or a small number of 476

functional networks during various tasks, whereas “hub” 477

regions in frontal cortex, including precuneus and pos- 478

terior cingulate gyrus participate in multiple functional 479

networks [39]. Together, these studies indicate that 480

network-specific temporal reconfiguration of functional 481

connectivity has implications for a wide variety of cog- 482

nitive functions. While whole-brain activity patterns 483

during task-free states differ from that of goal-directed 484

cognitive states, the capacity for the brain to fluctuate 485

between integrated and segregated (modular) states at 486

rest allows for rapid and efficient transitions to various 487

task states [40–42]. Here, we leverage these techniques 488

to characterize the brain’s response to both subtle and 489

pronounced hormonal changes typical of a menstrual 490

cycle. 491

Highly flexible nodes were identified in precuneus 492

and posterior cingulate gyrus, with changes in com- 493

munity affiliation occurring simultaneously with sharp 494

peaks in estradiol and LH levels, raising the possi- 495

bility that hormonal fluctuations could also be asso- 496

ciated with task-based network reorganization. For 497

instance, if high levels of estradiol increase nodal flexi- 498

bility among hub regions in the PFC, one would predict 499

that performance on PFC-dependent tasks will improve. 500

Further, pregnancy—a period of profound hormonal 501

change—leads to long-lasting gray matter reductions 502

in regions within the default mode network [43]. There- 503

fore, future work examining whether task-based func- 504

tional brain networks undergo transient changes in 505

flexibility and community structure both across the 506

menstrual cycle and during other hormonal transition 507

periods, and whether this impacts cognitive perfor- 508

mance, will be imperative. 509

Examining how large-scale brain networks are dis- 510

rupted between healthy and patient populations may 511

enhance our understanding of neurological conditions 512

[44]. Notable intrinsic connectivity differences within 513

the DMN are observed among individuals with de- 514

pression [45] and Alzheimer’s disease [46]– two con- 515

ditions that display a sex-skewed prevalence towards 516

women [47]. Recent studies have applied DCD methods 517

to characterize functional brain network reconfigura- 518

tions in different disease states: region-specific flexi- 519

bility at rest has been linked to symptom severity in 520

autism spectrum disorder [48] and a recent investiga- 521

tion used DCD to associate pronounced community 522

reorganization during seizures with poorer surgical out- 523

comes [49]. Here, using similar methods, we demon- 524

strate that high estradiol days are associated with 525

significant reorganization of the default mode network 526

and increased flexibility of several brain networks. Un- 527

derstanding the relationship between brain network 528

reconfiguration (time-varying communities) and the en- 529

docrine system (dynamic fluctuations in sex hormones) 530

may offer new ways to understand complex neurolog- 531

ical conditions, especially those with pronounced sex 532

differences in disease prevalence. 533

Limitations and future directions 534

The following limitations should be taken into consid- 535

eration. First, this study involved densely sampling a 536

single female over one complete menstrual cycle, hin- 537

dering our ability to generalize these findings to other 538

individuals. Therefore, it is critical for this approach to 539

be extended to a larger and more diverse set of women 540

to establish the consistency of these results while taking 541

individual differences into consideration. Second, we 542

used a well-established group-based atlas to mitigate 543

the limitations inherent to a single-subject design and 544

improve generalizability [20]. However, recent work 545

has demonstrated that group-based atlases can lead to 546

loss in individual-level specificity and overlook mean- 547

ingful spatial reconfigurations in parcellations them- 548

selves [50]. Future work using an individual-derived 549

atlas is needed to confirm whether these results are sta- 550

ble across various parcellation applications. Finally, an 551

ongoing debate in network neuroscience surrounds test- 552

retest reliability and what constitutes a “substantial” 553

amount of data per individual. While some studies 554
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suggest that large amounts of data (> 20 minutes) 555

is needed [18], others contend that shorter durations 556

(5–15 minutes) of sampling is sufficient to achieve relia- 557

bility [17, 51]. Repeating this experiment under longer 558

scanning durations (>10 minutes per day) will be criti- 559

cal for exploring the degree of network stability across 560

the menstrual cycle. 561

Conclusion 562

In sum, we demonstrate that resting-state functional 563

connectivity is largely stable within an individual over 564

the course of a complete menstrual cycle. The ex- 565

ception to this stability occurs around the ovulatory 566

window, during which peaks in sex hormones result 567

in temporary patterns of brain network reorganization 568

largely localized within areas of the default mode net- 569

work. Historically, brain-level phenomena resulting 570

from hormone fluctuations have been treated as an 571

unwanted source of variance in population studies and, 572

consequently, studies of this relationship are sparse and 573

underpowered. This work demonstrates that dynamic 574

network methods can reveal important, transient effects 575

of sex hormones that may be overlooked by traditional 576

approaches and provides a novel template for examining 577

the nature of human brain–endocrine relationships. 578

Methods 579

28andMe experimental protocol 580

Data was collected and preprocessed as reported in [19]; 581

methods briefly reproduced here. The participant was 582

a right-handed Caucasian female, aged 23 years for 583

duration of the study. The participant had no history of 584

neuropsychiatric diagnosis, endocrine disorders, or prior 585

head trauma. She had a history of regular menstrual 586

cycles (no missed periods, cycle occurring every 26–28 587

days) and had not taken hormone-based medication in 588

the 12 months prior to the study. The participant gave 589

written informed consent and the study was approved 590

by the University of California, Santa Barbara Human 591

Subjects Committee. 592

The participant underwent daily testing for 30 con- 593

secutive days, with the first test session determined 594

independently of cycle stage for maximal blindness to 595

hormone status. The participant began each test ses- 596

sion with a daily questionnaire (9:00am) followed by a 597

time-locked blood sample collection 10:00am (±30 min). 598

Endocrine samples were collected, at minimum, after 599

two hours of no food or drink consumption (excluding 600

water). This was followed by a one-hour MRI session 601

(11:00am) consisting of structural and functional MRI 602

sequences. To note, the participant refrained from con- 603

suming caffeinated beverages before each test session. 604

A licensed phlebotomist inserted a saline-lock intra- 605

venous line into the dominant or non-dominant hand 606

or forearm daily to evaluate hypothalamic-pituitary- 607

gonadal axis hormones, including serum levels of go- 608

nadal hormones (17β-estradiol, progesterone and testos- 609

terone) and the pituitary gonadotropins luteinizing 610

hormone (LH) and follicle stimulating hormone (FSH). 611

One 10cc mL blood sample was collected in a vacutainer 612

SST (BD Diagnostic Systems) each session. The sample 613

clotted at room temperature for 45 min. until centrifu- 614

gation (2,000 g for 10 minutes) and was then aliquoted 615

into three 1 ml microtubes. Serum samples were stored 616

at −20 C until assayed. Serum concentrations were 617

determined via liquid chromatography-mass spectrome- 618

try (for all steroid hormones) and immunoassay (for all 619

gonadotropins) at the Brigham and Women’s Hospital 620

Research Assay Core. 621

fMRI data acquisition and preprocessing 622

The participant underwent a daily magnetic resonance 623

imaging scan on a Siemens 3T Prisma scanner equipped 624

with a 64-channel phased-array head coil. First, high- 625

resolution anatomical scans were acquired using a T1- 626

weighted magnetization prepared rapid gradient echo 627

(MPRAGE) sequence (TR = 2500 ms, TE = 2.31 ms, 628

TI = 934 ms, flip angle = 7°; 0.8 mm thickness) fol- 629

lowed by a gradient echo fieldmap (TR = 758 ms, TE1 630

= 4.92 ms, TE2 = 7.38 ms, flip angle = 60°). Next, 631

the participant completed a 10-minute resting-state 632

fMRI scan using a T2 -weighted multiband echo-planar 633

imaging (EPI) sequence sensitive 468 to the blood oxy- 634

genation level–dependent (BOLD) contrast (TR = 720 635

ms, TE = 37 ms, flip angle = 56°, multiband factor = 636

8; 72 oblique slices, voxel size = 2 mm). In an effort 637

to minimize motion, the head was secured with a cus- 638

tom, 3D-printed foam head case (https://caseforge.co/) 639

(days 8–30 of Study 1). Overall motion (mean frame- 640

wise displacement) was negligible, with fewer than 130 641

microns of motion on average each day. 642

Initial preprocessing was performed using the Sta- 643

tistical Parametric Mapping 12 software (SPM12, Well- 644

come Trust Centre for Neuroimaging, London) in MAT- 645

LAB. Functional data were realigned and unwarped to 646

correct for head motion and the mean motion-corrected 647

image was coregistered to the high-resolution anatomi- 648

cal image. All scans were then registered to a subject- 649

specific anatomical template created using Advanced 650

Normalization Tools (ANTs) multivariate template 651

construction. A 5 mm full-width at half-maximum 652
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(FWHM) isotropic Gaussian kernel was subsequently 653

applied to smooth the functional data. Further prepa- 654

ration for resting-state functional connectivity was im- 655

plemented using in-house MATLAB scripts. Global 656

signal scaling (median = 1,000) was applied to account 657

for fluctuations in signal intensity across space and 658

time, and voxelwise timeseries were linearly detrended. 659

Residual BOLD signal from each voxel was extracted 660

after removing the effects of head motion and five phys- 661

iological noise components (CSF + white matter sig- 662

nal). Motion was modeled using a Volterra expansion 663

of translational/rotational motion parameters, account- 664

ing for autoregressive and nonlinear effects of head 665

motion on the BOLD signal. All nuisance regressors 666

were detrended to match the BOLD timeseries. 667

Functional network nodes were defined based on 668

a 400-region cortical parcellation and 15 regions from 669

the Harvard–Oxford subcortical atlas. For each day, a 670

summary timecourse was extracted per node by tak- 671

ing the first eigenvariate across functional volumes. 672

These regional timeseries were then decomposed into 673

several frequency bands using a maximal overlap dis- 674

crete wavelet transform. Low-frequency fluctuations 675

in wavelets 3–6 (0.01–0.17 Hz) were selected for sub- 676

sequent connectivity analyses. Finally, we estimated 677

the spectral association between regional timeseries 678

using magnitude-squared coherence: this yielded a 415 679

x 415 functional association matrix each day, whose 680

elements indicated the strength of functional connec- 681

tivity between all pairs of nodes (FDR-thresholded at 682

q < .05). 683

Dynamic community detection and anal- 684

ysis 685

Communities in resting-state connectivity were identi- 686

fied by maximizing multislice modularity, given by 687

Q =
1

2µ

∑
ijlr

((Aijl−γlPijl)δlr + δijωjlr)δ(gil, gjr), (1)

where µ is the total edge weight in the network, i 688

and j index nodes in slices l and r, A is the adja- 689

cency matrix containing edge weights between nodes 690

and slices, γ is the structural resolution parameter, 691

P is the optimization null model adjacency matrix, 692

δ is the Kronecker delta, ω is the temporal resolu- 693

tion parameter, and g is the community assignment 694

index [24]. Community assignments that maximize 695

modularity were determined 50 times over a grid of 696

parameter values (γ,ω) = [.95, 1.1]x[.8, 1.2] using the 697

genlouvain function from Jeub et al. in MATLAB 698

2019a [52]. From these community assignments, the 699

consensus partition for each parameter combination 700

was determined using the consensus similarity func- 701

tion from the Network Connectivity Toolbox (NCT, 702

http://commdetect.weebly.com/). 703

Node flexibility is defined as the proportion of times 704

a node changes community assignment out of all pos- 705

sible opportunities to change its assignment. Thus, a 706

flexibility value of 1 indicates that a node changes com- 707

munity membership at every time step and a value of 0 708

indicates that it never changes communities. Partition 709

significance, node flexibility, and persistence were also 710

calculated using functions from the NCT [36]. Cross- 711

covariance values were calculated and statistical tests 712

were performed using built-in MATLAB functions. 713
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12. K Arélin, K Mueller, C Barth, PV Rekkas,
J Kratzsch, I Burmann, A Villringer, and
J Sacher. Progesterone mediates brain
functional connectivity changes during the
menstrual cycle - a pilot resting state mri study.
Frontiers in Neuroscience, 9(44):doi:
10.3389/fnins.2015.00044, 2015.

13. N Lisofsky, J Martensson, A Eckert,
U Lindenberger, J Gallinat, and S Kuhn.
Hippocampal volume and functional
connectivity changes during the female
menstrual cycle. NeuroImage, 118:154–162,
2015.

14. H Hjelmervik, M Hausmann, B Osnes,
R Westerhausen, and K Specht. Resting states
are resting traits - an fmri study of sex

differences and menstural cylcle effects in
resting state cognitive control network. PLoS
One, 9(7):e103492, 2014.

15. TO Laumann et al. Functional system and areal
organization of a highly sampled individual
human brain. Neuron, 87(3):657–670, 2015.

16. R Poldrack, T Laumann, and O Koyejo et al.
Long-term neural and physiological
phenotyping of a single human. Nat Commun,
6(8885):doi:10.1038/ncomms9885, 2015.

17. B Chen, T Xu, C Zhou, L Wang, N Yang, and
Z Wang et al. Individual variability and
test-retest reliability revealed by ten repeated
resting-state brain scans over one month. PLoS
ONE, 10(12):e0144963, 2015.

18. C Gratton et al. Functional brain networks are
dominated by stable group and individual
factors, not cognitive or daily variation. Neuron,
98(2):439–452, 2018.

19. L Pritschet, T Santander, E Layher, CM Taylor,
S Yu, MB Miller, ST Grafton, and EG Jacobs.
Functional reorganization of brain networks
across the human menstrual cycle. bioRxiv,
page doi: https://doi.org/10.1101/866913, 2019.

20. A Schaefer, R Kong, EM Gordon,
TO Laumann, XN Zuo, AJ Holmes,
SB Eickhoff, and BTT Yeo. Local-global
parcellation of the human cerebral cortex from
intrinsic functional connectivity mri. Cereb.
Cortex, 28(9):3095–3114, 2018.

21. MA Bertolero, BTT Yeo, and M D’Esposito.
The modular and integrative functional
architecture of the human brain. PNAS,
112(49):E6798–E6807, 2015.

22. AN Khambhati, AE Sizemore, RF Betzel, and
DS Bassett. Modeling and interpreting
mesoscale network dynamics. NeuroImage,
180:337–349, 2018.

23. S Gu, F Pasqualetti, M Cieslak, QK Telesford,
AB Yu, AE Kahn, JD Medaglia, JM Vettel,
MB Miller, ST Grafton, and DS Bassett.
Controllability of structural brain networks.
Nature Comm., 6:8414, 2015.

24. DS Bassett, MA Porter, NF Wymbs,
ST Grafton, JM Carlson, and PJ Mucha.
Robust detection of dynamic community
structure in networks. Chaos, 23:01342, 2013.

15/17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.29.178152doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.29.178152
http://creativecommons.org/licenses/by-nc-nd/4.0/


25. M Jenkinson, CF Beckmann, TEJ Behrens,
MW Woolrich, and SM Smith. Fsl. Neuroimage,
62(2):782–790, 2012.

26. C Horien, X Shen, D Scheinost, and
RT Constable. The individual functional
connectome is unique and stable over months to
years. NeuroImage, 189:676–687, 2019.

27. PT Bell and JM Shine. Subcortical
contributions to large-scale network
communication. Neuro. & Biobehav. Rev.,
71:313–322, 2016.

28. S Shanmugan and CN Epperson. Estrogen and
the prefrontal cortex: Towards a new
understanding of estrogen’s effects on executive
functions in the menopause transition. Human
Brain Mapping, 35(3):847–865, 2014.

29. C Galvin and Ninan I. Regulation of the mouse
medial prefrontal cortical synapses by
endogenous estradiol. Neuropsychopharm.,
39(9):2086–2094, 2014.

30. Y Hara, F Yuk, R Puri, WGM Janssen,
PR Rapp, and JH Morrison. Estrogen restores
multisynaptic boutons in the dorsolateral
prefrontal cortex while promoting working
memory in aged rhesus monkeys. Journal of
Neuroscience, 36(3):901–910, 2016.

31. EG Jacobs, B Weiss, N Makris,
S Whitfield-Gabrieli, SL Buka, A Klibanski,
and JM Goldstein. Reorganization of functional
networks in verbal working memory circuitry in
early midlife: The impact of sex and
menopausal status. Cerebral Cortex,
25(5):2857–2870, 2017.

32. AM Clemens, C Lenschow, P Beed, L Li,
R Sammons, RK Naumann, H Wang,
D Schmitz, and M Brecht. Estrus-cycle
regulation of cortical inhibition. Current
Biology, 29(4):605–615, 2019.

33. J Hao, PR Rapp, AE Leffler, SR Leffler, WGM
Janssen, W Lou, H McKay, JA Roberts,
SL Wearne, PR Hof, and JH Morrison.
Estrogen alters spine number and morphology
in prefrontal cortex of aged female rhesus
monkeys. J. Neurosci., 26(9):2571–2578, 2006.

34. GV Williams and PS Goldman-Rakic.
Modulation of memory fields by dopamine d1
receptors in prefrontal cortex. Nature,
376(6541):572–575, 1995.

35. U Braun et al. Dynamic reconfiguration of
frontal brain networks during executive
cognition in humans. PNAS,
112(37):11678–11683, 2015.

36. DS Bassett, NF Wymbs, MA Porter, PJ Mucha,
JM Carlson, and ST Grafton. Dynamic
reconfiguration of human brain networks during
learning. PNAS, 108(18):7641–7646, 2011.

37. RT Gerraty, JY Davidow, K Foerde, A Galvan,
DS Bassett, and D Shohamy. Dynamic
flexibility in striatal-cortical circuits supports
reinforcement learning. J. Neurosci.,
38(10):2442–2453, 2018.

38. MG Mattar, MW Cole, SL Thompson-Schill,
and DS Bassett. A functional cartography of
cognitive systems. PLoS Comp. Biol.,
11(12):e1004533.
doi:10.1371/journal.pcbi.1004533, 2015.

39. MP van den Heuvel and O Sporns. Network
hubs in the human brain. Trends in Cogn. Sci.,
17(12):683–696, 2013.

40. A Kabbara, WEL Falou, M Khalil,
KF Wendling, and M. Hassan. The dynamic
functional core network of the human brain at
rest. Sci. Repor., 7:2936, 2017.

41. JM Shine, PG Bissett, PT Bell, O Koyejo,
JH Balsters, KJ Gorgolewski, CA Moodie, and
RA. Poldrack. Dynamics of functional brain
networks: Integrated network states during
cognitive task performance. Neuron,
92(2):544–554, 2016.

42. A Zalesky, A Fornito, L Cocchi, LL Gollo, and
M Breakspear. Time-resolved resting-state
brain networks. Proc. Natl. Acad. Sci.,
111(28):10341–10346, 2014.

43. E Hoekzema, E Barba-Müller, C Pozzobon,
M Picado, F Lucco, D Garćıa-Garćıa, and
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