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Abstract

Sex steroid hormones have been shown to alter regional brain activity, but the extent to which they modulate
connectivity within and between large-scale functional brain networks over time has yet to be characterized. Here, we
applied dynamic community detection techniques to data from a highly sampled female with 30 consecutive days of
brain imaging and venipuncture measurements to characterize changes in resting-state community structure across
the menstrual cycle. Four stable functional communities were identified consisting of nodes from visual, default
mode, frontal control, and somatomotor networks. Limbic, subcortical, and attention networks exhibited higher than
expected levels of nodal flexibility, a hallmark of between-network integration and transient functional reorganization.
The most striking reorganization occurred in a default mode subnetwork localized to regions of the prefrontal cortex,
coincident with peaks in serum levels of estradiol, luteinizing hormone, and follicle stimulating hormone. Nodes
from these regions exhibited strong intra-network increases in functional connectivity, leading to a split in the stable
default mode core community and the transient formation of a new functional community. Probing the spatiotemporal
basis of human brain—hormone interactions with dynamic community detection suggests that ovulation results in a
temporary, localized patterns of brain network reorganization.
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Author Summary

Sex steroid hormones influence the central nervous sys-
tem across multiple spatiotemporal scales. Estrogen
and progesterone concentrations rise and fall through-
out the menstrual cycle, but it remains poorly under-
stood how day-to-day fluctuations in hormones shape
human brain dynamics. Here, we assessed the structure
and stability of resting-state brain network activity in
concordance with serum hormone levels from a female
who underwent fMRI and venipuncture for 30 con-
secutive days. Our results reveal that while network
structure is largely stable over the menstrual cycle,
there is temporary reorganization of several large-scale
functional brain networks during the ovulatory window.
In particular, a default mode subnetwork exhibits in-
creased connectivity with itself and with regions from
temporoparietal and limbic networks, providing novel
perspective into brain-hormone interactions.

Introduction

The application of network science techniques to the
study of the human brain has revealed a set of large-
scale functional brain networks that meaningfully re-
organize both intrinsically and in response to external
task demands [1]. One technique, dynamic community
detection (DCD), has emerged as a powerful tool for
conceptualizing and quantifying changes in mesoscale
brain network connectivity patterns by identifying sets
of nodes (communities) with strong intra-community
connections [2] to enable identification of communities
that persist or change over time. DCD complements
other statistical approaches used in fMRI data anal-
ysis by identifying when functionally coupled brain
regions undergo sufficiently large changes in connec-
tivity to warrant re-assignment to separate functional
communities. Additionally, this method provides an
interpretable summary of whether strongly connected
sets of brain regions undergo transient, but significant,
changes that could be missed when time-averaging data
within and between sessions.

This method is particularly suited for examining
relationships between brain dynamics and physiologi-
cal variables that vary over relatively short time scales,
such as sex hormone fluctuations over the human men-
strual cycle. A typical cycle, occurring every 25-30
days, is characterized by significant rises in estradiol
(~12-fold) and progesterone (~ 800-fold), both of which
are powerful neuromodulators that have a widespread
influence on the central nervous system [3]. Converg-
ing evidence from animal studies has established sex

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

hormones’ influence on regions supporting higher-order
cognition, including the prefrontal cortex (PFC) and
hippocampus [4,[5]. Within these regions, fluctua-
tions in estradiol enhance spinogenesis and synaptic
plasticity while progesterone largely abolishes this ef-
fect [6,/7). Importantly, sex hormones are expressed
broadly throughout the cerebellum and cerebrum, sug-
gesting that whole-brain effects might be observed be-
yond the regions targeted in these studies.

Human neuroimaging studies have demonstrated
that sex hormones influence brain activity across broad
regions of cortex [89]. Additionally, a handful of
studies have demonstrated that menstrual cycle stage
uniquely alters resting-state functional connectivity
(rs-fc) [10H13]. However, these studies typically in-
volve group-based or sparse-sampling (2—4 time points)
designs that are unable to capture transient day-to-
day relationships between sex hormones and functional
brain dynamics, and this relatively low temporal reso-
lution has led to inconsistencies in the literature [14].
Therefore, new approaches are needed that can address
these spatial and temporal limitations, as doing so will
provide novel perspectives on human brain—hormone
interactions.

Recently, Pritschet et al. applied a “dense sam-
pling” approach [15,/16] to a naturally-cycling female
who underwent 30 consecutive days of brain imaging
and venipuncture to capture rs-fc variability over a
complete menstrual cycle (Fig 1). The authors found
day-to-day fluctuations in estradiol to be associated
with widespread increases in rs-fc across the whole
brain, with progesterone showing an opposite, negative
relationship. Using time series modeling and graph
theoretical analysis, they also found that estradiol
drives variation in topological network states, specif-
ically within-network connectivity (global efficiency)
of default mode and dorsal attention networks that
encompass regions rich with estrogen receptors (ER).
These findings have important implications for the
field of network neuroscience where dense-sampling,
deep-phenotyping approaches have emerged to aid in
understanding sources of intra/inter-individual vari-
ability in functional brain networks over days, weeks,
months, and years [16118].

Pritschet and colleagues’ approach identified node-
averaged trends in rs-fc changes within canonical func-
tional networks across the cycle, but questions remain
regarding whether and where functional reorganization
takes place between large-scale networks. As changes
in edge weight can result in the formation of func-
tional “communities” not captured by traditional rs-fc
methods, complementary approaches are needed to
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Fig 1. 28andMe dataset. A. Subject LP (naturally cycling female, age 23) participated in a month-long “dense
sampling” experimental protocol to provide a multimodal, longitudinal dataset referred to as 28andMe . The
subject completed daily assessments of diet, mood, and sleep, provided blood for assessment of serum hormone
concentrations, and underwent a 10 minute resting-state fMRI scan. B. For each resting-state scan, functional
connectivity matrices were constructed by calculating the pairwise mean magnitude-squared coherence between each
region from the entire 10-minute scan. The result is a 415 x 415 x 30 data structure, in which each entry indicates
the coherence between two nodes on a given day. C. The brain was parcellated into 415 regions and regions were
assigned to one of nine networks based on previously identified anatomical and functional associations . Colors

indicate regional network membership.

characterize trends in brain connectivity at intermedi-
ate spatial and temporal scales. Examining mesoscale
networks has further revealed fundamental principles
of functional brain networks, such as the modular,
integrated architecture underpinning flexible task per-
formance . Additionally, a better understanding
of mesoscale connectivity may provide an avenue for
improving personalized medicine by increasing the effi-
cacy of targeted therapeutic interventions .

Here, we applied DCD to examine whole-brain dy-
namics in relation to sex hormone fluctuations across
a menstrual cycle. Our results reveal that a stable set
of “core” communities persist over the course of a men-
strual cycle, primarily consisting of nodes belonging
to distinct a priori defined functional-anatomical net-
works, namely visual, somatomotor, attention, default
mode, and control networks. Though these core com-
munities were largely stable, nodes from limbic, subcor-
tical, attention, and control networks changed commu-
nity affiliation (referred to as flexibility) at higher rates
than expected compared to a null hypothesis. DCD also
identified a transient split of the DMN core into two
smaller subcommunities concurrent with peaks in estra-
diol, luteinizing hormone (LH), and follicle stimulating
hormone (FSH) levels defining the ovulatory window.
This community split was driven by strong increases of
within-network integration between prefrontal nodes
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of the DMN, which subsided immediately after the
ovulatory window. The default mode, temporopari-
etal, limbic, and subcortical networks also exhibited
significantly increased flexibility during ovulation, sug-
gesting a role for estradiol, LH, and FSH in regulating
localized, temporary changes in regional connectivity
patterns. Taken together, while a large degree of func-
tional brain network stability was observed across the
menstrual cycle, peaks in sex hormones over the ovu-
latory window resulted in temporary brain network
reorganization, suggesting sex hormones may have the
ability to rapidly modulate rs-fc on shorter time scales
than previously documented.

Results

A single female underwent brain imaging and venipunc-
ture for 30 consecutive days. For each session, the
brain was parcellated into 400 cortical regions from
the Schaefer atlas and 15 subcortical regions from
the Harvard-Oxford atlas (Fig. 1C) and 415 x 415
functional association matrices were constructed via
magnitude-squared coherence . Dynamic commu-
nity detection was applied to this data, revealing a
stable set of communities that persist over the course
of a menstrual cycle. However, significant transient
changes in community structure occurred within the

317

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153


https://doi.org/10.1101/2020.06.29.178152
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.29.178152; this version posted June 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

default mode network during the ovulatory window con-
comitant with peaks in estradiol, luteinizing hormone,
and follicle stimulating hormone.

Stable functional cores persisted over the
course of one menstrual cycle

The degree to which functional brain network connec-
tivity changes over the course of a human menstrual
cycle has yet to be fully characterized. Here, dynamic
community detection (also referred to as multislice or
multilayer modularity maximization [24]) consistently
identified four functional communities that were largely
stable in a naturally cycling female over 30 consecutive
days. In this context, “community” refers to a set
of nodes whose intra-set connections are significantly
stronger than would be expected when compared to
an appropriate null model. A representative example
of this consensus temporal community structure (the
community designation that best matches the output of
50 runs of the non-deterministic community detection
algorithm) is shown in Fig. 2C. This structure was con-
served over a range of community detection parameter
values that, roughly speaking, must be defined to set
the “spatial” and “temporal” resolutions of community
identification (see Methods for detailed description).
Across all temporal resolutions considered here, con-
sensus community partitions with a spatial resolution
parameter 0.975 < v < 1.01 possessed exactly four
communities.

For the standard parameter choice (temporal and
spatial resolution parameters both set to 1), the four
identified communities had distinct compositional char-
acteristics. These communities were largely bilaterally
symmetric, with analogous brain regions in each hemi-
sphere assigned to the same community 71% of the
time. The four communities correspond roughly to a
visual core, a somatomotor-attention core, a default
mode core, and a control core. The compositions of
these four communities are shown in Fig. 3A. The
composition value was calculated by summing the total
number of instances in which a node belonging to an
a priori functional-anatomical network [20] also be-
longed to the community identified in the consensus
community partition.

The core communities identified here were named
based on the highest representation of nodes belonging
to a priori functional networks. The visual core was
81% composed of visual network nodes and had an av-
erage size of 51.5 nodes per day. The somato-attention
core was composed of 52% somatomotor, 27% salience-
ventral attention, and 13% dorsal attention network
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nodes and had an average size of 134.1 nodes per day.
The default mode core consisted of 56% DMN nodes
and approximately 10% of each control, limbic, and
temporoparietal network nodes and contained 132.9
nodes on average per day. Finally, the control core
consisted of 48% control and 28% dorsal attention net-
work nodes and contained 96.5 nodes on average per
day. Importantly, for all parameter combinations in
which four communities were detected, the composition
of these communities was consistent (Supplementary
Information). These community partitions were also
stable across the entire menstrual cycle. Specifically,
315 of the 415 nodes (75.9%) did not change community
affiliation across the 30-day experiment.

Taken together, these results suggest the presence
of a stable solution to the dynamic community de-
tection algorithm and a reliable coarse-grained com-
munity architecture present in the data. In several
functional-anatomical networks, there was little to no
modification of network architecture over time; for
instance, greater than 85% of nodes in each of the so-
matomotor, default mode, temporoparietal, and visual
networks did not change community affiliation over the
entire menstrual cycle. The strong day-to-day correla-
tions between edge weights in these networks (Fig. 3B)
reinforce the existence of these stable cores.
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Functional-anatomical networks exhibited 2o

distinct patterns of flexibility

Though network community structure was stable over
a complete menstrual cycle when classifying nodes into
four communities, specific nodes did change commu-
nity affiliation at levels above chance when modifying
the sensitivity of the community detection algorithm.
Specifically, when ~, the spatial resolution parameter,
was increased, the dynamic community detection al-
gorithm subdivided the four core communities into
smaller communities, providing a finer-grained classi-
fication of subnetwork structure. At an intermediate
parameter combination (w = 1, v = 1.05), nine com-
munities significant at the p < .05 level were identified
over the course of the experiment, as visualized in Fig.
2C (blue outlines). The subsequent analysis uses com-
munity partitions at this parameter combination, but
the results were consistent across a range of neighboring
parameter values (Supplementary Information).

This “higher-resolution” partition revealed trends
in functional organization over time that were not ob-
servable with coarser partitions. First, inspecting the
median flexibility value, or the proportion of times a
node changed community affiliation out of the total
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Fig 2. Dynamic community detection identified changing modular structure over time at multiple
scales. A. A toy network example illustrates the dynamic community detection algorithm. For each time point,
every node is assigned to a community so as to maximize the strength of intra-community connections relative to
inter-community links while also taking community assignments over time into account (Eq. 1). In this case, three
communities are identified and denoted by color. B. To assess temporal structure in the 28andMe resting-state fMRI
data, community assignments were calculated for a range of parameter values. In this procedure, two parameters, w
and +, specify the temporal and spatial scales of analysis, respectively. After performing 50 runs of the community
detection algorithm for each parameter combination, the statistical significance of each community partition relative
to a random null model was calculated. The color for each entry in the heat map indicates the proportion of
communities at that parameter combination which are significant at the p < .05 level. C. Consensus partition
structure varied according to the choice of resolution parameters. The example network community structure (left)
changes at each time point, with node community assignment given by color on the y-axis and time indicated on the
x-axis. For three different parameter combinations (outlined in red, blue, and green, respectively), the consensus
partitions varied in the total number of communities identified, ranging from four to fifteen, with more communities
identified when the temporal resolution was low and the spatial resolution was high.
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Fig 3. Dynamic community detection uncovered stable cores across a complete menstrual cycle. A.
Four core communities (y-axis) were consistently identified in the 28andMe dataset across spatial and temporal
resolution parameter values. For these parameter combinations, the compositions of the visual, default mode, control,
and somatomotor-attention network cores are shown as a heat map, with color corresponding to the percentage of
nodes in a community belonging to a functional-anatomical network. B. The four networks that constituted the hubs
of the core communities possessed stable pairwise connectivity between nodes across days. Scatter plots show the
day-to-day correspondence between edge weights for all of the nodes of the somatomotor, default mode,
temporoparietal, and visual networks on days ¢t and ¢ 4+ 1. These network edges had Pearson correlation coefficients of
0.379, 0.573, 0.590, and 0.538, respectively. C. The subcortical, limbic, and dorsal attention networks exhibited the
highest median node flexibility. Top: Normalized flexibility values for each node over the entire cycle are plotted as
points, with color indicating network affiliation. Thick horizontal lines on box plots indicate median values. A
flexibility value of 1 indicates that a node changes community assignment at each possible time point, whereas a
value of 0 indicates that the node never changes community assignment. Bottom: A 95% cutoff value is calculated
using the flexibility values for each node over all 50 community detection runs. For each functional-anatomical
network, the blue bar indicates the number of nodes belonging to that network which have flexibility values above the
cutoff threshold. The red bars indicate the proportion of nodes in each network that surpass the cutoff value (i.e. the
value for each blue bar is normalized by the number of nodes in the network). Once again, limbic, subcortical, dorsal
attention, and control networks contained the highest proportion of highly flexible nodes.
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possible number of changes, demonstrates that func-
tional-anatomical networks possessed distinct flexibil-
ity distributions (Fig. 3C, top). The limbic, subcortical,
dorsal attention, and control networks were overrepre-
sented in terms of highly flexible nodes relative to a
null hypothesis (Fig. 3C, bottom).

Fine-scale community reorganization occurred on
experiment day 23 and persisted until day 25, as il-
lustrated in Fig. 4A. Across these days, 62 nodes
belonging to the default mode core community split
from the default mode core community to transiently
form a small, strongly connected community. This was
the only large-scale reorganization event detected dur-
ing the experiment, as indicated by the nodal flexibility
values illustrated in Fig. 4B. Global flexibility was sig-
nificantly higher (Wilcoxon rank-sum test, p < .05)
during ovulation (days 23-25) than during follicular
or luteal phases (days 11-22 and 26-10, respectively).
Specifically, global mean flexibility during the ovulatory
window was 0.142, whereas flexibility during follicular
and luteal phases was 0.049 and 0.050, respectively.

Notably, 31 (50%) of the nodes in the community
that emerged during the ovulatory window belonged to
the DMN, 12 nodes (19%) belonged to the temporopari-
etal network, and 7 (11%) were subcortical regions (as
defined by functional-anatomical atlases [20}25], Fig.
5A). The functional-anatomical network memberships
of the node—node pairs exhibiting the strongest in-
creases in coherence (top 5%) indicated that enhanced
connectivity between DMN nodes drove this community
split, as opposed to DMN nodes being “converted” to a
new community via increased connectivity to non-DMN
regions (Supplementary Information). More specif-
ically, nodes within prefrontal regions belonging to
DMN subnetwork B drove this reorganization event, as
118 of the 371 (32%) strongest increases in coherence
occurred between nodes in this subnetwork.

Network reorganization timing coincided
with peaks in hormone levels during ovu-
lation

Mean flexibility of each network over a 5-day sliding
window is depicted in Fig. 6A. The DMN, temporopari-
etal, subcortical, and limbic networks exhibited peaks
in flexibility at days 23 and 24 of the experiment, coin-
cident with the peaks in estradiol, LH, and FSH which
are a hallmark signals of the ovulatory window (Fig.
6B). To determine whether the bifurcation of the de-
fault mode core community was significantly associated
with sex hormones, we compared functional-anatomical
network flexibility values to serum hormone levels.
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To assess the temporal relationship between network
flexibility values and sex hormones, cross-covariance
structure between each time series was calculated. The
control, default mode, limbic, salience/ventral atten-
tion, subcortical, and temporoparietal networks had
maximum cross-variance values greater than 0.6 (where
maximum value of 1 indicates fully shared covariance
structure and 0 indicates no covariance) with estra-
diol, which were significant when compared to cross-
covariance values for a null model of time-permuted
estradiol levels (Bonferroni-corrected at p < .05). Each
network except for the control and attention networks
had maximum cross-variance values greater than 0.6
with LH as well (permutation test, p < .05 after Bon-
ferroni correction). In each case, maximum cross-
covariance values occurred at lags less than 2 days and
no other significant cross-covariance structure existed,
indicating that most functional communities exhibited
changes in composition concurrent with significant rises
in estradiol and LH levels.

Discussion

In this study, we applied DCD to data from a densely
sampled female who underwent 30 consecutive days
of brain imaging and venipuncture to investigate the
extent of intrinsic spatiotemporal functional reorgani-
zation over a menstrual cycle. We identified four stable
community cores across the cycle, represented here as
visual, somatomotor, default mode, and control net-
work cores; interestingly, the exception to this stability
occurred simultaneously with peaks in estradiol, LH
and FSH. During this event, we observed a transient
reorganization of the default mode core into a newly
formed community, as well as increases in nodal flexi-
bility among prefrontal, limbic, and subcortical nodes.
Taken together, our results suggest that the interplay
between the nervous and endocrine systems over a men-
strual cycle result in temporary, localized patterns of
brain network reorganization occurring during ovula-
tion. These results highlight DCD as a new avenue
for investigating the intricate relationship between sex
hormones and human brain dynamics.

Dynamic community detection character-
izes network-specific functional stability
across a menstrual cycle

Dense-sampling, deep-phenotyping studies offer new
ways to investigate intra/inter-individual variability in
functional brain networks by identifying features of rs-fc
that are stable traits within an individual or change in
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Community partition, [w,y] = [1,1.05]
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Fig 4. Fine-grain community partitioning revealed a bifurcation in the default mode core during

Flexibilig

0.0 0.5 1.0

ovulation. A. When the spatial resolution parameter (which alters the size of communities identified by dynamic
community detection) was increased from the standard value, the four core communities identified previously were
subdivided into smaller subcommunities (reproduced from Fig. 2C). Here, a split in the default mode core community

(light blue) appeared at day 22 (red-orange), concomitant with ovulation and a spike in sex hormones. This

community (red) rejoined the default mode core on day 25. For illustrative purposes, only the consensus partition for
one parameter value is shown, but this trend was consistent across nearby parameter combinations (Supplementary
Information). B. Shown are flexibility values for each node by menstrual cycle phase. Color in each region indicates
flexibility value, with hotter colors indicating higher values. The following days of the experiment corresponded to

the phases of the menstrual cycle: follicular, days 11-22; ovulatory, days 23-25; luteal, days 1-10 and 26-30. Flexibility

values are noticeably higher in many regions from the temporoparietal, limbic, subcortical, and default mode

networks during the ovulatory phase compared to the follicular and luteal phases.
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Fig 5. Nodes in a default mode subnetwork drove community bifurcation via strong increases in
coherence. A. The newly formed functional community on day 23 and 24 contained 62 nodes that belonged to the
community on both days. The functional-anatomical network and subnetwork affiliations of these nodes are shown on
the left and right, respectively. The new community contained 31 DMN nodes (50%), 12 temporoparietal nodes
(19%), and 7 subcortical nodes (11%). B. The edges that exhibited large weight changes from day 22 to day 23 (top

5% of changes, left) were predominantly within-network connections between DMN network nodes (118/371).

Examining subnetwork structure reveals that all of the strongly enhanced connections between nodes in the DMN
belonged to subnetwork B, indicating that this subnetwork, which consists of regions in prefrontal cortex, drove the

default mode core community bifurcation at ovulation (Supplemental Information).
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Fig 6. Community reorganization was temporally localized to ovulation. Changes in community
assignment (A) were coordinated and closely tracked the timing of spikes in serum hormone concentrations (B).
Prior to day 20 of the experiment, all networks except for the subcortical network exhibited low baseline rates of
flexibility (mean = 0.04). However, several networks exhibited sharp increases in flexibility between days 20 and 26,
indicating brain-wide functional reorganization during the ovulatory window. The pattern of flexibility shown here
corresponds to the network reorganization observed for dynamic community detection performed with the parameter
combination w = 1, v = 1.05 (blue outline in Fig. 2). To note, flexibility is calculated over a 5 day sliding window.
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conjunction with biological factors and state-dependent
variables [16L[18]. Recent dense-sampling studies have
shown that frontoparietal regions/networks exhibit
high degrees of intra-individual rs-fc stability while
also being characteristically unique across individuals,
suggesting that these higher-order regions may be es-
pecially critical for uncovering individual differences
in brain function and improving applications into per-
sonalized medicine [18}26]. Our findings provide new
insight towards the ongoing explorations into stabil-
ity within functional brain networks. In this dataset,
frontal control and DMN nodes exhibited high day-to-
day connection weight correlations and low propensity
to change functional community membership over the
experiment (Fig. 3), while, on average, somatomotor,
temporoparietal, visual, and salience/ventral attention
networks were also largely stable. Therefore, our re-
sults align with previous research suggesting both a
high degree of network stability in resting-state net-
works over a menstrual cycle [14] and in individuals
over time [16,/1826].

In conjunction with this observed stability, network-
specific changes in functional community organization
were also identified. Control subnetwork C, encompass-
ing posterior cingulate cortex/precuneus regions, was
the most flexible functional subnetwork identified, with
10 of the 12 nodes exhibiting significantly higher than
expected flexibility (i.e. how often a node switches
community affiliation, see Supplementary Information).
Limbic and subcortical networks displayed intermediate
levels of flexibility. Regions from these systems receive
input from and project to many cortical areas and are
implicated in functions such as sensorimotor integration
via the cortico-basal ganglia-thalamo-cortical loop [27];
therefore, the high degree of flexibility observed here
may reflect the tendency of these systems to serve as
relays between functionally segregated communities.

Particular changes in rs-fc were significantly related
to the sharp rises in sex hormones seen across the
ovulatory window. During this time, we observed a
spatially-specific transient reorganization of the DMN,
during which nodes from the temporoparietal, limbic,
subcortical, and default mode networks split from the
default mode core to form a short-lived community
(2 days) before rejoining the original core community.
Using time-lagged analyses, Pritschet and colleagues
previously reported that within-network connectivity
of the DMN was regulated by previous states of estra-
diol [19]. Here, we expand on this finding and identify
a subnetwork of the DMN that is likely driving this
reorganization. Notably, regions constituting this new
community are located in PFC, an area exquisitely sen-
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sitive to sex steroid hormones [28] where, for instance,
nearly 50% of pyramidal neurons in the dorsolateral
PFC (dIPFC) express ER-alpha [4]. Together, this
presents the possibility that endocrine signaling may,
in part, regulate intrinsic brain dynamics within the
frontal cortex.

Neurobiological interpretations of sex hor-
mones on PFC function

Cross-species investigations have established estrogen’s
ability to shape the PFC [928H31]. In rodents, estradiol
increases fast-spiking interneuron excitability in deep
cortical layers [32]; in non-human primates, estradiol
treatment increases dendritic spine density in dIPFC
neurons [33] and this potentiation is observed only if
the treatment is administered in the typical cyclical
pattern observed across a menstrual cycle. In parallel,
human brain imaging studies have implicated estradiol
in enhancing the efficiency of PFC-based circuits. In cy-
cling women performing a working memory task, PFC
activity is exaggerated under low estradiol conditions
and reduced under high estradiol conditions [9]. Sim-
ilarly, when estradiol declines across the menopausal
transition, working-memory related PFC activity be-
comes more exaggerated despite no differences in task
performance [31]. Examining rs-fc across the cycle,
Petersen and colleagues found that women in the late
follicular stage (near ovulation) showed increased co-
herence within the default mode and executive control
networks compared to those in luteal stages |[10]. Our
findings extend this body of work by demonstrating
that dIPFC nodal flexibility tracks significantly with
sharp increases in estradiol and LH across the cycle,
which may support the brain’s ability to reorganize at
the mesoscale level.

This tight temporal coupling highlights the poten-
tial for a mechanistic link between endocrine signaling
and large-scale network reorganization. While future
multimodal brain imaging studies are needed to estab-
lish this link, one possible neurobiological mechanism
of action may be through estradiol’s interaction with
the dopaminergic system. For instance, the PFC is
innervated by midbrain dopaminergic neurons that
enhance the signal-to-noise ratio of PFC pyramidal
neurons and drives cortical efficiency [34]. In turn,
estradiol enhances dopamine release and modifies the
basal firing rate of dopaminergic neurons, providing
one explanation for how alterations in estradiol could
impact cortical efficiency.
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Implications for cognition and disease

Several studies have begun utilizing DCD to relate
“task-free” and “task-based” functional network reor-
ganization to cognitive performance. High levels of
nodal flexibility have been associated with enhanced
performance on working memory tasks [35], improved
learning of a motor task [36], and visual cue learn-
ing [37]. In each study, flexibility was associated with
performance in regions known to underlie each task,
implicating frontal, motor, and visual cortical cortices
and subcortical structures such as thalamus and stria-
tum. Notably, similar associations were not observable
when analyzing these experiments through region-based
activation patterns alone, indicating that temporal or-
ganization of brain-wide functional activity (e.g. dy-
namic community structure) may provide important
information related to cognitive functioning that might
be missed with traditional analyses.

Indeed, Mattar et al. used DCD to characterize
cognitive systems like those defined here [20] in a 64-
task battery, demonstrating that functional networks
fluidly reconfigure to form new cohesive communities
under different task settings [38]. Similar work has re-
vealed that primary motor, visual, and auditory regions
typically participate in a single or a small number of
functional networks during various tasks, whereas “hub”
regions in frontal cortex, including precuneus and pos-
terior cingulate gyrus participate in multiple functional
networks [39]. Together, these studies indicate that
network-specific temporal reconfiguration of functional
connectivity has implications for a wide variety of cog-
nitive functions. While whole-brain activity patterns
during task-free states differ from that of goal-directed
cognitive states, the capacity for the brain to fluctuate
between integrated and segregated (modular) states at
rest allows for rapid and efficient transitions to various
task states [40-42|. Here, we leverage these techniques
to characterize the brain’s response to both subtle and
pronounced hormonal changes typical of a menstrual
cycle.

Highly flexible nodes were identified in precuneus
and posterior cingulate gyrus, with changes in com-
munity affiliation occurring simultaneously with sharp
peaks in estradiol and LH levels, raising the possi-
bility that hormonal fluctuations could also be asso-
ciated with task-based network reorganization. For
instance, if high levels of estradiol increase nodal flexi-
bility among hub regions in the PFC, one would predict
that performance on PFC-dependent tasks will improve.
Further, pregnancy—a period of profound hormonal
change—leads to long-lasting gray matter reductions
in regions within the default mode network [43]. There-
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fore, future work examining whether task-based func-
tional brain networks undergo transient changes in
flexibility and community structure both across the
menstrual cycle and during other hormonal transition
periods, and whether this impacts cognitive perfor-
mance, will be imperative.

Examining how large-scale brain networks are dis-
rupted between healthy and patient populations may
enhance our understanding of neurological conditions
[44]. Notable intrinsic connectivity differences within
the DMN are observed among individuals with de-
pression [45] and Alzheimer’s disease [46]— two con-
ditions that display a sex-skewed prevalence towards
women [47]. Recent studies have applied DCD methods
to characterize functional brain network reconfigura-
tions in different disease states: region-specific flexi-
bility at rest has been linked to symptom severity in
autism spectrum disorder [48] and a recent investiga-
tion used DCD to associate pronounced community
reorganization during seizures with poorer surgical out-
comes [49]. Here, using similar methods, we demon-
strate that high estradiol days are associated with
significant reorganization of the default mode network
and increased flexibility of several brain networks. Un-
derstanding the relationship between brain network
reconfiguration (time-varying communities) and the en-
docrine system (dynamic fluctuations in sex hormones)
may offer new ways to understand complex neurolog-
ical conditions, especially those with pronounced sex
differences in disease prevalence.

Limitations and future directions

The following limitations should be taken into consid-
eration. First, this study involved densely sampling a
single female over one complete menstrual cycle, hin-
dering our ability to generalize these findings to other
individuals. Therefore, it is critical for this approach to
be extended to a larger and more diverse set of women
to establish the consistency of these results while taking
individual differences into consideration. Second, we
used a well-established group-based atlas to mitigate
the limitations inherent to a single-subject design and
improve generalizability [20]. However, recent work
has demonstrated that group-based atlases can lead to
loss in individual-level specificity and overlook mean-
ingful spatial reconfigurations in parcellations them-
selves [50]. Future work using an individual-derived
atlas is needed to confirm whether these results are sta-
ble across various parcellation applications. Finally, an
ongoing debate in network neuroscience surrounds test-
retest reliability and what constitutes a “substantial”
amount of data per individual. While some studies
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suggest that large amounts of data (> 20 minutes)
is needed [18], others contend that shorter durations
(5-15 minutes) of sampling is sufficient to achieve relia-
bility |17,[51]. Repeating this experiment under longer
scanning durations (>10 minutes per day) will be criti-
cal for exploring the degree of network stability across
the menstrual cycle.

Conclusion

In sum, we demonstrate that resting-state functional
connectivity is largely stable within an individual over
the course of a complete menstrual cycle. The ex-
ception to this stability occurs around the ovulatory
window, during which peaks in sex hormones result
in temporary patterns of brain network reorganization
largely localized within areas of the default mode net-
work. Historically, brain-level phenomena resulting
from hormone fluctuations have been treated as an
unwanted source of variance in population studies and,
consequently, studies of this relationship are sparse and
underpowered. This work demonstrates that dynamic
network methods can reveal important, transient effects
of sex hormones that may be overlooked by traditional
approaches and provides a novel template for examining
the nature of human brain—endocrine relationships.

Methods

28andMe experimental protocol

Data was collected and preprocessed as reported in [19];
methods briefly reproduced here. The participant was
a right-handed Caucasian female, aged 23 years for
duration of the study. The participant had no history of
neuropsychiatric diagnosis, endocrine disorders, or prior
head trauma. She had a history of regular menstrual
cycles (no missed periods, cycle occurring every 2628
days) and had not taken hormone-based medication in
the 12 months prior to the study. The participant gave
written informed consent and the study was approved
by the University of California, Santa Barbara Human
Subjects Committee.

The participant underwent daily testing for 30 con-
secutive days, with the first test session determined
independently of cycle stage for maximal blindness to
hormone status. The participant began each test ses-
sion with a daily questionnaire (9:00am) followed by a
time-locked blood sample collection 10:00am (+30 min).
Endocrine samples were collected, at minimum, after
two hours of no food or drink consumption (excluding
water). This was followed by a one-hour MRI session
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(11:00am) consisting of structural and functional MRI
sequences. To note, the participant refrained from con-
suming caffeinated beverages before each test session.

A licensed phlebotomist inserted a saline-lock intra-
venous line into the dominant or non-dominant hand
or forearm daily to evaluate hypothalamic-pituitary-
gonadal axis hormones, including serum levels of go-
nadal hormones (173-estradiol, progesterone and testos-
terone) and the pituitary gonadotropins luteinizing
hormone (LH) and follicle stimulating hormone (FSH).
One 10cc mL blood sample was collected in a vacutainer
SST (BD Diagnostic Systems) each session. The sample
clotted at room temperature for 45 min. until centrifu-
gation (2,000 g for 10 minutes) and was then aliquoted
into three 1 ml microtubes. Serum samples were stored
at —20 C until assayed. Serum concentrations were
determined via liquid chromatography-mass spectrome-
try (for all steroid hormones) and immunoassay (for all
gonadotropins) at the Brigham and Women’s Hospital
Research Assay Core.

fMRI data acquisition and preprocessing

The participant underwent a daily magnetic resonance
imaging scan on a Siemens 3T Prisma scanner equipped
with a 64-channel phased-array head coil. First, high-
resolution anatomical scans were acquired using a T1-
weighted magnetization prepared rapid gradient echo
(MPRAGE) sequence (TR = 2500 ms, TE = 2.31 ms,
TI = 934 ms, flip angle = 7°; 0.8 mm thickness) fol-
lowed by a gradient echo fieldmap (TR = 758 ms, TE1
= 4.92 ms, TE2 = 7.38 ms, flip angle = 60°). Next,
the participant completed a 10-minute resting-state
fMRI scan using a T2 -weighted multiband echo-planar
imaging (EPI) sequence sensitive 468 to the blood oxy-
genation level-dependent (BOLD) contrast (TR = 720
ms, TE = 37 ms, flip angle = 56°, multiband factor =
8; 72 oblique slices, voxel size = 2 mm). In an effort
to minimize motion, the head was secured with a cus-
tom, 3D-printed foam head case (https://caseforge.co/)
(days 8-30 of Study 1). Overall motion (mean frame-
wise displacement) was negligible, with fewer than 130
microns of motion on average each day.

Initial preprocessing was performed using the Sta-
tistical Parametric Mapping 12 software (SPM12, Well-
come Trust Centre for Neuroimaging, London) in MAT-
LAB. Functional data were realigned and unwarped to
correct for head motion and the mean motion-corrected
image was coregistered to the high-resolution anatomi-
cal image. All scans were then registered to a subject-
specific anatomical template created using Advanced
Normalization Tools (ANTSs) multivariate template
construction. A 5 mm full-width at half-maximum
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(FWHM) isotropic Gaussian kernel was subsequently
applied to smooth the functional data. Further prepa-
ration for resting-state functional connectivity was im-
plemented using in-house MATLAB scripts. Global
signal scaling (median = 1,000) was applied to account
for fluctuations in signal intensity across space and
time, and voxelwise timeseries were linearly detrended.
Residual BOLD signal from each voxel was extracted
after removing the effects of head motion and five phys-
iological noise components (CSF + white matter sig-
nal). Motion was modeled using a Volterra expansion
of translational /rotational motion parameters, account-
ing for autoregressive and nonlinear effects of head
motion on the BOLD signal. All nuisance regressors
were detrended to match the BOLD timeseries.

Functional network nodes were defined based on
a 400-region cortical parcellation and 15 regions from
the Harvard—Oxford subcortical atlas. For each day, a
summary timecourse was extracted per node by tak-
ing the first eigenvariate across functional volumes.
These regional timeseries were then decomposed into
several frequency bands using a maximal overlap dis-
crete wavelet transform. Low-frequency fluctuations
in wavelets 3-6 (0.01-0.17 Hz) were selected for sub-
sequent connectivity analyses. Finally, we estimated
the spectral association between regional timeseries
using magnitude-squared coherence: this yielded a 415
x 415 functional association matrix each day, whose
elements indicated the strength of functional connec-
tivity between all pairs of nodes (FDR-thresholded at
q < .05).

Dynamic community detection and anal-
ysis

Communities in resting-state connectivity were identi-
fied by maximizing multislice modularity, given by

1
Q=5 Z((Aijl —NPij1)01r + 03w )6(gits gjr), (1)

ijlr

where p is the total edge weight in the network,
and j index nodes in slices [ and r, A is the adja-
cency matrix containing edge weights between nodes
and slices, «v is the structural resolution parameter,
P is the optimization null model adjacency matrix,
¢ is the Kronecker delta, w is the temporal resolu-
tion parameter, and g is the community assignment
index [24]. Community assignments that maximize
modularity were determined 50 times over a grid of
parameter values (y,w) = [.95,1.1]x[.8, 1.2] using the
genlouvain function from Jeub et al. in MATLAB
2019a [52]. From these community assignments, the

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

consensus partition for each parameter combination
was determined using the consensus_similarity func-
tion from the Network Connectivity Toolbox (NCT,
http://commdetect.weebly.com/).

Node flexibility is defined as the proportion of times
a node changes community assignment out of all pos-
sible opportunities to change its assignment. Thus, a
flexibility value of 1 indicates that a node changes com-
munity membership at every time step and a value of 0
indicates that it never changes communities. Partition
significance, node flexibility, and persistence were also
calculated using functions from the NCT [36]. Cross-
covariance values were calculated and statistical tests
were performed using built-in MATLAB functions.
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