

1 **CKS1-dependent proteostatic regulation has dual roles combating acute**
2 **myeloid leukemia whilst protecting normal hematopoiesis**
3

4 **Running Title: Dual roles for CKS1 in AML**
5

6 Grey, W.^{1,*}, Rio-Machin, A². Casado-Izquierdo, P.³, Miettinen, J.J.⁴, Copley, F.²,
7 Parsons, A.⁴, Heckman, C.A.⁴, Cutillas, P.³, Gribben, J.⁵, Fitzgibbon, J.², Bonnet,
8 D.^{1,*}

9 1. Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, U.K.

10 2. Centre for Genomics and Computational Biology, Barts Cancer Institute, London,
11 U.K.

12 3. Cell signalling and proteomics group, Centre for Genomics and Computational
13 Biology, Barts Cancer Institute, London, U.K.

14 4. Institute for Molecular Medicine Finland – FINN, HiLIFE – Helsinki Institute of Life
15 Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki,
16 Helsinki, Finland.

17 5. Centre for Haemato-Oncology, Barts Cancer Institute, London, U.K.

18 * Corresponding authors: dominique.bonnet@crick.ac.uk, william.grey@crick.ac.uk

19

20

21 **Key Words: CKS1, Proteostasis, AML, Hematopoiesis, Chemotherapy**

22

23 Word count: 3,764

24 Figures: 5 main figures, 7 supplementary figures

25 Tables: 3 data tables, 1 resources table

26

27 *Abstract*

28

29 Acute myeloid leukemia (AML) is an aggressive hematological disorder comprising a
30 hierarchy of quiescent leukemic stem cells (LSCs) and proliferating blasts with
31 limited self-renewal ability. AML has a dismal prognosis, with extremely low two-year
32 survival rates in the poorest cytogenetic risk patients, primarily due to the failure of
33 intensive chemotherapy protocols unable to deplete LSCs, which reconstitute the
34 disease *in vivo*, and the significant toxicity towards healthy hematopoietic cells.
35 Whilst much work has been done to identify genetic and epigenetic vulnerabilities in
36 AML LSCs, little is known about protein dynamics and the role of protein degradation
37 in drug resistance and relapse. Here, using a highly specific inhibitor of the SCF^{SKP2-}
38 ^{CKS1} complex, we report a dual role for CKS1-dependent protein degradation in
39 reducing AML blasts *in vivo*, and importantly depleting LSCs. Whilst many AML LSC
40 targeted therapies show significant toxicity to healthy hematopoiesis, inhibition of
41 CKS1-dependent protein degradation has the opposite effect, protecting normal
42 hematopoietic cells from chemotherapeutic toxicity. Together these findings
43 demonstrate CKS1-dependent proteostasis is key for normal and malignant
44 hematopoiesis.

45

46 *Significance*

47

48 CKS1-dependent protein degradation is a specific vulnerability in AML LSCs.
49 Specific inhibition of SCF^{SKP2-CKS1} is lethal to *CKS1B*^{high} AML blasts and all AML
50 LSCs. Normal hematopoiesis is protected from chemotherapeutic toxicity by
51 inhibition of CKS1-dependent protein degradation, substantiating a dual role for
52 CKS1-dependent protein degradation in clinical treatment of AML.

53

54

55 *Introduction*

56

57 Acute myeloid leukaemia (AML) is a heterogeneous, aggressive disease of the
58 hematopoietic system, arising from hematopoietic stem/progenitor cells. In recent
59 years, several reports have demonstrated that the current approach (induction
60 chemotherapy) and new protocols (epigenetic targeting) still have severe limitations

61 due to significant plasticity in the AML epigenome, metabolic adaptions and the
62 presence of drug resistance leukemic stem cells (LSCs). With the average two-year
63 survival rate as low as 5-15% in poor risk, older patients (>65yr), there is an unmet
64 critical need for new therapeutic approaches(1). Recent developments, targeting the
65 anti-apoptotic protein BCL2, has demonstrated that therapies affecting protein
66 networks holds great promise for the poorest prognosis AMLs(2,3), yet resistance
67 still emerges for a subset of patients through mitochondrial adaptions in residual
68 leukemic cells(4,5).

69 New approaches such as BCL2 targeting in combination with classical induction
70 chemotherapy still hold excellent promise, but a critical failure is still the severe off-
71 target toxicity produced by induction chemotherapy protocols and new targeted
72 therapies alike(6). Indeed, reducing blast count with cytarabine/doxorubicin
73 treatment severely affects normal hematopoietic progenitor cells, stressing the
74 hematopoietic system(7). Whilst bone marrow transplantation remains the gold
75 standard consolidation therapy in AML(8), boosting normal hematopoiesis to
76 outcompete residual AML, combined with a reduction in severe cytopenia
77 immediately after chemotherapy, would be beneficial to overall survival.

78 A better understanding of the biological differences between normal and malignant
79 hematopoietic cells is needed to achieve selective AML targeting, without toxicity to
80 normal cells. We previously reported a proteostatic axis between the cyclin-
81 dependent kinase subunits Cks1 and Cks2, and the mixed lineage leukaemia 1
82 protein (Mll1), a key protein hijacked during neoplastic transformation of the
83 hematopoietic system(9). Cks1 and Cks2 have many overlapping and independent
84 roles in balancing protein homeostasis (proteostasis) throughout the cell cycle,
85 ensuring correct G0/G1 transition(10), chromatin separation(11-13) and DNA
86 repair(10,14,15). Whilst it was originally thought Cks1 and Cks2 function solely
87 through CDK-dependent activities(16-18), CDK-independent functions were later
88 reported, in concert with the SCF^{SKP2} and APC^{CDC20} E3 ubiquitin ligase complexes,
89 important for selective protein degradation(10,11,19).

90 The many functions of Cks1 and Cks2 place this axis at the centre of normal cell
91 growth and development, and potentially central to AML development. Here, we
92 investigated the role of CKS1-dependent protein degradation in a poor risk AML
93 cohort with few treatment options. We explored the therapeutic potential in *CKS1B*
94 expressing poor risk AML and demonstrated high efficacy in reducing total AML

95 burden in *CKS1B*^{high} expressing samples. Critically, in both *CKS1B*^{high} and *low* AML we
96 demonstrate a significant reduction of the chemotherapy refractory LSCs. In
97 contrast, CKS1 inhibition has the opposite effect on normal hematopoiesis,
98 improving stem cell functionality and conferring protection from chemotherapeutic
99 toxicity.

100

101 *Results*

102

103 *CKS1B* expression dictates the susceptibility of AML to specific chemotherapy

104 The expression of *CKS1B* varies in normal hematopoiesis, with moderate expression
105 in hematopoietic stem cells (HSCs), the highest expression in myeloid progenitors,
106 and the lowest expression in terminally differentiated cells (Supp. Fig. 1A). We
107 previously reported *CKS1B* upregulation in *MLL1*-rearranged AML, acute
108 lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) compared to
109 peripheral blood mononuclear cells (PBMCs)(9). This trend of *CKS1B* expression is
110 conserved amongst most AML cytogenetic subtypes (Supp. Fig. 1A), despite high
111 variability of *CKS1B* expression within AML subtypes, with large standard deviations
112 compared to one of its key upstream proteostatic regulation partners *SKP2* (Supp.
113 Fig. 1B). Whilst *CKS1B* expression can be prognostic in a variety of cancers(20–22),
114 it is not prognostic in AML at the RNA level (Supp. Fig. 1C).

115 Considering that the key function of CKS1 is substrate recognition, and adapting the
116 binding of phosphoproteins to their kinase or ubiquitin ligase regulators(18,19), we
117 hypothesized that high *CKS1B* AMLs may show a selective susceptibility to inhibition
118 of CKS1-dependent protein degradation (SCF^{SKP2-CKS1} E3 ligase inhibitor), and
119 inhibition of associated signalling pathways. To address this key question, we
120 screened a cohort of cytogenetically poor risk AMLs, spanning a variety of FAB and
121 molecular subtypes, with a broad range of clinically approved and early development
122 phase compounds and correlated drug sensitivity with *CKS1B* expression (Figure
123 1A-B, Supp. Table 1).

124 *CKS1B* expression significantly correlated with response to 52 individual compounds
125 including classical DNA damaging chemotherapy (e.g. Cisplatin, R=0.43 p=0.04),
126 kinase inhibitors (e.g. Ensartinib, R=0.70, p=0.001), BCL2 family inhibitors (e.g.
127 Sabutoclax, R=0.58, p=0.008) and the SCF^{SKP2-CKS1} E3 ligase inhibitor (hereafter
128 referred to as CKS1i; R=0.61, p=0.008; Figure 1B-C, Supp. Fig. 1D). Susceptibility to

129 CKS1i significantly correlated with *CKS1B* expression overall (Supp. Fig. 1D), and
130 especially well in complex karyotype patients (Supp. Fig. 1E). Separating patients at
131 the 50th percentile by *CKS1B* expression revealed significantly increased drug
132 sensitivity in *CKS1B*^{high} AML versus *CKS1B*^{low} AML patients (Figure 1D-E), indicating
133 that RNA expression of *CKS1B* can be a selection criterion for targeting SCF^{SKP2-CKS1}
134 dependent protein degradation in AML.

135 The susceptibility of patient AML samples to CKS1i based on *CKS1B* expression is
136 well conserved in cell lines used to study molecular characteristics of AML. Dose
137 dependent response (IC₅₀) was lower in *CKS1B*^{high} AML cell lines THP-1 (*MLL-AF9*)
138 and KOPN-8 (*MLL-ENL*) than in *CKS1B*^{low} cell lines ML-1 (*MLL-AF6*) and HL60
139 (*cMyc*, Figure 1F) and IC₅₀ values correlate well with *CKS1B* expression (Figure 1G).
140 At higher doses, CKS1i induces cell death in both high and low *CKS1B* cell lines
141 (5μM; Figure 1H), a dose permissive to healthy cells *in vitro*(9). Susceptibility of AML
142 cell lines to CKS1i is maintained *in vivo* accordingly with *CKS1B* expression.
143 *CKS1B*^{high} THP-1 and *CKS1B*^{low} HL60 cells engrafted in immunodeficient mice
144 (NSG) showed similarly diverging sensitivity to a single course of CKS1i treatment
145 (10mg/kg, 5 days I.P.). THP-1 leukemic burden in NSG mice was significantly
146 reduced by CKS1i treatment (Figure 1I), whereas in HL60, leukemic burden
147 remained similar between control and CKS1i treated mice (Figure 1J). Interestingly,
148 despite the difference in overall tumor burden after chemotherapy, both xenograft
149 models showed significant overall improved survival when treated with CKS1i
150 compared to controls (Figure 1K).

151 In order to investigate the effect of CKS1i on primary patient AML *in vivo*, we
152 selected five primary patient samples with a range of *CKS1B* expression (Figure 2A,
153 Supp. Table 1), for which we have previously reported robust engraftment in NSG
154 mice(23,24) (Figure 2B). A single course of CKS1i (10mg/kg, 5 days I.P.) was
155 administered and significantly reduced the AML burden in patients with the highest
156 *CKS1B* expression (AML12 and AML21). A trend towards reduced AML burden was
157 seen at an intermediate level of *CKS1B* expression (AML26), but had no significant
158 effect was seen on patients with the lowest *CKS1B* expression (AML27 and AML32).
159 As such, *CKS1B* expression levels correlated well with outcome (R=-0.446; Figure
160 2C, Supp. Fig 2A). In agreement with our observations of AML cell line *in vivo*
161 responses, all CKS1i treated AML xenografts showed significantly improved overall

162 survival compared to untreated controls (Figure 2D), indicating that overall survival
163 conferred by CKS1i was not only due to changes in bulk leukemic burden.
164 Whilst reducing leukemic blast count is the current backbone of clinical
165 chemotherapeutic protocols, typically these approaches do not clear the most
166 quiescent leukemic stem cells, the subset of cells at the origin of relapse *in*
167 *vivo*(25,26). The observed effect on overall survival upon CKS1i treatment in
168 *CKS1B*^{low} AMLs, without significant reduction of leukemic burden could indicate a
169 direct effect of CKS1i on LSCs. We sought to assess this by using a leukemic-long-
170 term culture initiating cell assay (L-LTC-IC)(27).
171 We selected seven patients with a range of *CKS1B* expression (Figure 2E) for ex
172 *vivo* study (Figure 2F). After treatment, all surviving cells were re-plated at limiting
173 dilution to assay the frequency of L-LTC-IC between control and CKS1i-treated cells.
174 All patient samples showed significant reduction in L-LTC-IC frequency, regardless
175 of bulk *CKS1B* expression at the start of the experiment (Figure 2G-H, Supp. Fig.
176 2B-C).
177 These data indicate that CKS1i can target *CKS1B*^{high} AML blasts, but more
178 importantly is efficient at targeting the leukemic stem cell compartment. Considering
179 these results, we hypothesized that the overall survival advantage *in vivo* of both
180 *CKS1B*^{high} and *CKS1B*^{low} AMLs is likely due to depletion of LSCs, and therefore a
181 smaller residual pool of these cells able to repopulate the AML overtime.
182

183 **Normal and malignant hematopoietic cells have divergent responses to CKS1i**
184 To understand the key mechanisms by which CKS1i kills AML, and what effects
185 CKS1i has on normal hematopoietic cells, we performed mass spectrometry on
186 *CKS1B*^{high} THP-1 AML cells and umbilical cord blood derived healthy CD34⁺ HSPCs
187 (hereafter referred to as CD34⁺) pre- and post-treatment with CKS1i *in vitro* (1 μ M;
188 Figure 3A).
189 Upon CKS1i treatment, the majority of differentially expressed proteins in THP-1
190 cells were phosphoproteins (387), which can be alternatively spliced at the RNA
191 level (375) and also may be acetylated (257), demonstrating integration with post-
192 translational modification (Figure 3B). CKS1i treatment induced divergent proteomic
193 profiles in THP-1 and CD34⁺ cells, with differentially abundant proteins
194 predominantly independent between healthy and malignant cells (Figure 3C-E).

195 Deeper pathway analysis of CKS1i-induced proteomic changes in THP-1 cells
196 identified the upregulation of the small GTP-binding molecular switch protein RAC1,
197 and its associated upstream and downstream regulators (Figure 3F-G), that are part
198 of a pathway known to be involved in regulating cell growth and survival in response
199 to a variety of external factors(28,29), and important for HSC homing and HSC/LSC
200 niche interactions(30). Although multiple guanine nucleotide exchange factors
201 (GEFs) are downregulated in CKS1i treated THP-1 cells, upregulation of the GTP
202 loaders CRK and Paxillin indicate potential hyperactivity of RAC1, and in keeping
203 with this, downstream MAP2K3 is also upregulated (Figure 3G).
204 The relative lack of RAC1 signalling pathway member changes in CD34⁺ proteomes
205 are in keeping with RAC1-GTPase activity being upregulated in neoplastic
206 transformation of hematopoiesis(30) and may identify a specific molecular switch in
207 AML vulnerable to CKS1 inhibition.

208

209 CKS1i drives RAC1-dependent ROS accumulation in AML

210 The active GTP-bound form of RAC1 is known to bind to p67^{Phox} and catalyzes
211 NADP/NADPH production. This in turn can lead to upregulation of intracellular
212 reactive oxygen species (ROS), a process that has been shown to drive apoptosis
213 and eliminate quiescent LSCs (Figure 3H)(31–33). In AML cell lines, CKS1i
214 increased total NADP/NADPH levels in a dose dependent manner (Figure 3I, Supp.
215 Fig. 3A), by increasing the total amount of NADPH compared to control (Figure 3J,
216 Supp. Fig. 3B). The accumulation of NADPH in AML cell lines can partially be
217 rescued by inhibiting RAC1 activity (Figure 3I-J, Supp. Fig. 3A-B), validating
218 increased RAC1-GTP/p67^{Phox} activity upon CKS1 inhibition.

219 CKS1i-induced NADPH accumulation lead to significantly increased intracellular
220 ROS in all AML cell lines at sublethal doses of CKS1i, regardless of CKS1B
221 expression (Figure 3K-L). Reversal of this phenotype, by RAC1 inhibition, was most
222 significant in CKS1B^{high} cell lines (Figure 3K-L). Finally, the reduction in AML cell line
223 viability could be rescued by RAC1 inhibition, with CKS1B^{high} cell lines showing the
224 strongest sensitivity (Supp. Fig. 3C-F). These data indicate that AML requires
225 SCF^{SKP2-CKS1} functions to regulate RAC1 activity and maintain the fine balance of
226 intracellular ROS, which are critical for LSC viability.

227

228 CKS1 inhibition protects normal hematopoiesis from stress

229 Since CKS1i is able to selectively kill *CKS1B*^{high} bulk AML, reduce the LSC
230 compartment, and prolong AML xenograft survival regardless of leukemic reduction
231 (Figure 2D), we hypothesized that normal hematopoiesis is spared by CKS1i
232 treatment.

233 Proteomic analyses of CD34⁺ cells treated with CKS1i revealed a clear separation
234 from THP-1 AML cells (Figure 3C-E). Key proteins differentially abundant in CD34⁺
235 cells and not THP-1 cells were integrated in three fundamental pathways in normal
236 hematopoiesis: Wnt signalling, cell cycle and NFkB signalling (Supp. Fig. 4A-D). The
237 changes in cell cycle are also consistent with previous reports of *Cks1*^{-/-} and CKS1i
238 cellular phenotypes(10,34), and our previously reported suppression of Wnt
239 signalling in *Cks1*^{-/-} mouse embryonic fibroblasts(9). The substantial change of
240 proteins in these key pathways are hallmarks of growth suppression and
241 differentiation, rather than an induction of cell death by CKS1i, and indeed, treatment
242 of CD34⁺ cells *in vitro* with CKS1i resulted in reduced overall cell growth, with a
243 blockage in cell cycle resulting in increased quiescence of CD34⁺ cells (Figure 4A-
244 B).

245 Considering that suppression of the cell cycle in CD34⁺ by CKS1i would reduce the
246 potential for integration of nucleotide analogues and the requirement for
247 topoisomerase activity, we hypothesized that CKS1i treatment may be “chemo-
248 protective” for normal hematopoietic cells. To test this, we engrafted normal CD34⁺
249 cells in NSG mice and treated mice with the clinical chemotherapy protocol of
250 cytarabine plus doxorubicin (as has been previously published; 5+3(35)), with or
251 without CKS1i (Figure 4C). Human CD45⁺ bone marrow engraftment increased in
252 untreated control mice between weeks 4 and 6 (Figure 4D). Treatment at week 4,
253 with doxorubicin/cytarabine (DA) significantly reduced bone marrow engraftment by
254 week 6, but addition of CKS1i (DAC) was able to rescue this effect, returning
255 engraftment to comparable levels to control (Figure 4E-G). Better engraftment at
256 week 6 was complemented by a reduction in apoptotic human CD45 cells in the
257 bone marrow of recipient mice (Figure 4H-I), indicating that CKS1i treatment
258 prevents DA-induced cell death in normal hematopoietic cells.

259 Mechanistically, mass cytometric analysis of CKS1i-treated CD34⁺ cells revealed a
260 conserved reduction in key active signalling and transcriptional components that we
261 recently reported to be important for proliferation and differentiation of HSPCs during
262 *in vitro* amplification, including NFkB, PU.1, CREB and mTOR (Supp. Fig. 5)(36),

263 further indicating an overall block in normal hematopoietic stem cell function. Indeed,
264 it is important to note that whilst classical cell cycle phosphorylation marks (e.g.
265 CDK1^{PT14/Y15}) are reduced, the protein levels of differentiation regulators are also
266 reduced (e.g. CREB, PU.1), indicating a potential block in differentiation as well as
267 growth (Supp. Fig. 5). Additionally, fewer cells have active β -catenin, indicating that
268 the Wnt pathway – a fundamental pathway that requires a tight balance for normal
269 hematopoiesis to proceed(37) – is also suppressed (Figure 4J-K). Further
270 suppression of markers of metabolically active cells (e.g. mTOR^{PS2448}), inflammatory
271 responses (e.g. NFkB^{PS529}), and suppression of translation machinery in our mass
272 spectrometry analyses, lead to a reduction in protein production in CKS1i treated
273 CD34⁺ cells (Figure 4L-M). Together, these signalling pathways are fundamentally
274 linked to the control of ROS accumulation in HSCs, with high activity in these
275 pathways leading to high intracellular ROS, reduced cell viability and reduced stem
276 cell potential(38). In agreement, CKS1i treatment reduced intracellular ROS in
277 cultured CD34⁺ cells (Figure 4N-O) and ex vivo CKS1i treatment increased LTC-IC
278 frequency by more than two-fold (1 in 1232 vs 1 in 2650, Figure 4P).
279 Together, these data indicate that the temporary suppression of HSPC activity
280 conferred by CKS1i leads to suppression of cell growth, protection from general
281 metabolic stress, improved stem cell functionality and overall increased healthy
282 hematopoietic capacity during induction chemotherapy.

283
284 Combining CKS1 inhibition with induction chemotherapy protects normal
285 hematopoiesis, reduces leukemic stem cells and improves overall survival
286 The current frontline chemotherapeutic protocols for AML include the use of DA as
287 induction therapy agents. To test the potential for combining classical DA
288 chemotherapy with CKS1i *in vivo*, we transplanted NSG mice with primary AML
289 samples with varying CKS1B expression (Figure 5A-B), and after stratifying for
290 engraftment at week 4, we treated the mice with either DA or DAC. One-week post
291 chemotherapy, xenografts showed strong reduction in leukemic burden in both DA
292 and DAC treatment for all AMLs, regardless of CKS1B expression, indicating that
293 CKS1i does not interfere with normal chemotherapeutic killing (Figure 5C). At the
294 same time point, resident murine CD45 cells co-extracted from aspirated tibias had
295 significantly higher colony forming potential upon the addition of CKS1i compared to

untreated mice and DA treated mice (Figure 5D), indicating that CKS1i treatment can both selectively reduce AML, whilst protecting normal hematopoiesis from chemotherapeutic toxicity. Overall, all xenografts showed a trend towards improved overall survival with DA treatment, and in all patients this was significantly improved by the addition of CKS1i, in line with *CKS1B* expression of these patients (Figure 5E-H).

Examination of the normal hematopoietic compartment of xenografted mice at the end point of survival, revealed a severe reduction in total number of long-term HSCs (SLAM/LT-HSC) in the DA treated group, whereas addition of CKS1i to DA abolished this effect (Figure 5I). In addition, serial colony forming ability of normal murine hematopoietic cells was improved in DAC conditions, indicating that rescued LT-HSCs are still functional (Figure 5J).

We and others have well documented the refractory nature of LSCs to induction chemotherapy(24,39), and here we set out to investigate the potential conflict or beneficial contribution between DA enrichment of LSCs and CKS1i depletion of LSCs. In *ex vivo* conditions, *CKS1B* high and low AMLs (Figure 5K) showed significant reduction in total cell number one week after DA or DAC treatment (Figure 5L), yet whilst DA treatment enriched for L-LTC-IC frequency in three of the six patients, CKS1i markedly reduced L-LTC-IC frequency in all patients (DAC; Figure 5M & Supp. Fig 6A-B).

Finally, to test the reduction in LSC frequency conferred by CKS1i *in vivo*, we engrafted AML cells obtained from AML26 and AML32 (which had the smallest improvement in overall survival after chemotherapy) in secondary recipients in a limiting dilution manner. Whilst control AMLs retained strong LSC frequency and show robust engraftment after 6 weeks, this was increased by DA treatment in AML26 and was notably reduced in AML32 (Figure 5N-O, Supp. Fig. 7A-B). The addition of CKS1i counteracted the effect of DA by decreasing the LSC frequency in AML26 and further reducing LSC frequency in AML32 compared to control mice, demonstrating strong reduction in LSCs after CKS1i treatment (Figure 5N-O, Supp. Fig. 7A-B). Overall survival was tested for AML32, with DA-AML mice surviving significantly longer than controls, and DAC-AML mice demonstrating a further improvement, with no overt signs of sickness at 120 days in all but one case at the highest cell dose (Figure 5P).

329 Together, these data indicate that inhibition of the SCF^{SKP2-CKS1} complex has dual
330 roles, reducing the viability of AML, and importantly of the LSC fraction, whilst
331 protecting normal HSPCs from chemotherapeutic stress.

332

333 *Discussion*

334

335 In this study, we demonstrate that proteostatic targeting of the SCF^{SKP2-CKS1} E3
336 ubiquitin ligase complex selectively eliminates *CKS1B*^{high} AML blasts and reduced
337 the LSCs compartment of *CKS1B*^{high & low} AMLs, while sparing normal hematopoietic
338 cells from chemotherapeutic toxicity.

339 Poor risk AML is a heterogeneous group that includes patients with different
340 cytogenetic abnormalities, very limited treatment options and extremely low overall
341 survival rates(1,40), even accounting for newer therapies (Venetoclax plus
342 Azacitidine)(2,3). The selective reduction in viability of *CKS1B*^{high} AML blasts by
343 CKS1 inhibition (Figure 1D) indicate that, whilst *CKS1B* is not predictive of overall
344 survival at the RNA level, proteostatic vulnerabilities exist in AML and can be
345 identified through better understanding of leukemic proteomes. While gene
346 expression profiles, particularly those with single cell resolution, are improving our
347 understanding of AML heterogeneity, the origins of leukemic relapse and revealing
348 new clinical targets(25,26), the role of proteostasis has been comparatively
349 understudied(41,42).

350 *In vivo*, AML blasts and LSCs are relatively quiescent compared to AML cell lines
351 and patient samples screened *in vitro*, so the consistently high sensitivity of
352 *CKS1B*^{high} AMLs observed *in vivo* (Figure 2C) and the reduction of LSC frequency
353 regardless of the bulk *CKS1B* expression (Figure 2E-H), demonstrates a role for the
354 SCF^{SKP2-CKS1} complex beyond targeting highly proliferative cells. Therefore, the role
355 of CKS1 likely reaches further than cell cycle regulation, as has been previously
356 reported(10,43). Here we provide evidence for CKS1 regulating RAC1/NADPH/ROS
357 signalling (Figure 3H), a fundamental pathway involved in amplifying extrinsic and
358 intrinsic signals in normal hematopoiesis and AML(4,44). The balance of intracellular
359 ROS in normal and malignant hematopoietic cells has been of great interest in
360 recent years(33,38), and changes in mitochondrial functions due to *RAS* mutations
361 and nicotinamide-NAD metabolism underline the critical role for this pathway in
362 primary patient resistance to Venetoclax(4,5). The induction of ROS in AML cell lines

363 upon CKS1 inhibition, regardless of *CKS1B* expression, demonstrates that the
364 balance of CKS1-dependent protein degradation is key to maintaining stress
365 responses in AML. This, together with LSCs requiring low ROS to maintain their
366 stem cell potential, would explain the strong reduction in LSC frequency conferred by
367 CKS1i in primary patient AML (Figure 2G-H & 5M-O).

368 The effect of CKS1i on normal hematopoiesis is clearly separate to AML (Figure 3C).
369 Indeed, cell cycle blockage was suggested by the relatively few protein changes
370 induced by CKS1i in CD34⁺ but not AML cells. This is highly beneficial, as patients
371 treated with induction chemotherapy, which targets cycling cells, suffer from severe
372 toxicity and cytopenia upon treatment. Classical induction chemotherapy is known to
373 reduce the pool of hematopoietic progenitors, whilst quiescent HSCs are refractory
374 to treatment, but ultimately undergo senescence(7,45). We found that cell cycle
375 arrest of HSPCs by CKS1i could prevent DA reduction of normal cells *in vivo* (Figure
376 4D-G), and in the context of AML could rescue the reduction in HSCs induced by
377 chemotherapy (Figure 5I). Importantly, CKS1i treatment also induced changes in
378 fundamental HSPC signalling pathways known to be involved in stem cell potency
379 and response to stress. Indeed, we have previously shown that activating NF κ B
380 signalling can reduce intracellular ROS and improve HSC outgrowth *in vitro*(36). The
381 overall suppression of key growth and activation cellular markers lead to an opposite
382 phenotype to that seen in AML cells, with a reduction in intracellular ROS and an
383 increase in normal HSC frequency (Figure 4N-P). These divergent phenotypes
384 between normal and malignant hematopoietic cells indicate that CKS1-dependent
385 protein degradation is required for the growth of normal cells and that CKS1
386 suppression pushes cells towards quiescence while retaining stem cell functions. On
387 the other hand, inhibiting CKS1-dependent protein degradation in AML can lead to
388 incorrect regulation of signalling, ultimately causing cellular toxicity, as shown before
389 for more broader regulators of the SCF complex(46).

390 The backbone of clinical chemotherapeutic protocols has largely remained
391 unchanged over the last 20 years, with induction chemotherapy reducing AML blasts
392 to prolong survival(47). Whilst reduction of AML burden is beneficial, classical
393 chemotherapy actually maintains or even enriches for LSCs and results in relapsed
394 AML, often with increased mutational burden(48). The addition of CKS1i to DA
395 results in a significant reduction in LSC frequency. Considering that resistant LSCs

396 can be traced as the origin of relapse(25,26), and constitute a key route to
397 chemoresistance in AML, CKS1 inhibition has excellent promise for eradicating
398 these cells.

399 The inhibition of CKS1-dependent protein degradation holds excellent promise for
400 AML therapy, both as a targeted agent towards *CKS1B*^{high} AML, and in combination
401 with induction chemotherapy where protection of healthy cells is key. Reports of
402 *CKS1B* overexpression correlating with outcome in other solid cancer
403 types(20,22,49) and novel ways to modulate CKS1 function(50), together with our
404 findings of a dual role for CKS1 inhibition in AML and the development of more
405 clinically ready molecules to target CKS1(51), indicate that proteostatic targeting,
406 through the CKS1/CKS2 axis, holds much hope for future cancer therapy.

407

408 *Methods (online unlimited)*

409

410 Primary AML and UCB samples

411

412 AML samples were obtained after informed consent at St Bartholomew's Hospital
413 (London, U.K.) at the time of diagnosis as part of the Bart's Cancer Institute Poor-
414 Risk AML consortium. Full details of patient information are provided in
415 Supplementary Table 1. Live mononuclear cells (MNCs) were isolated by density
416 centrifugation using Ficoll-Paque (GE healthcare). Prior to culture or
417 xenotransplantation AML cells were depleted for T-cells using the Easysep T-cell
418 depletion kit (StemCell Technologies). Umbilical Cord Blood (UCB) was obtained
419 from full term donors after informed consent at the Royal London Hospital (London,
420 U.K.). MNCs were isolated by density centrifugation using Ficoll-Paque (GE
421 healthcare). Cells were selected for CD34⁺ using the Easysep CD34⁺ enrichment kit
422 (StemCell Technologies). Purity was confirmed by flow cytometry.

423

424 Drug sensitivity and resistance testing (DSRT)

425

426 Single drug DSRT was performed as described previously(52). In brief, 35 different
427 compounds, each with 7 different concentrations (Supp. Table. 2), were pre-plated
428 using an acoustic liquid handling Echo 550 (Labcyte) to 384-well plates. Drug plate
429 well annotations and drug concentrations are presented in Supp. Table. 3. Primary

430 AML cells were suspended in conditioned medium (RPMI 1640 supplemented with
431 10% foetal bovine serum, 2mM L-glutamine, penicillin-100U/ml, streptomycin-
432 100ug/ml and 12.5% conditioned medium from HS-5 human bone marrow stromal
433 cells), DNase I treated for 4h (Promega), filtered through a 70 μ m cell strainer (Fisher
434 Scientific) to remove possible cell clumps, and viable cells were counted. Pre-plated
435 compounds in each 384-well plate were dissolved in 5ul of conditioned medium
436 using a MultiDrop Combi peristaltic dispenser (Thermo Scientific) and shaken for 5
437 minutes to dissolve the compounds. AML cells were plated at 5,000 cells/well in
438 20ul, leading to a final volume of 25ul/well. Plates were gently shaken for 5 minutes
439 to mix the cells with the compounds and incubated for 72 hours at 37C, 5% CO₂.
440 Cell viability was measured using the CellTiter-Glo assay (Promega) with a
441 PHERAstar microplate reader (BMG-labtech). Data was normalised to negative
442 (DMSO only) and positive control wells (100uM benzethonium chloride) and dose
443 response curves calculated.
444 *Ex vivo* drug sensitivity of AML cells to the tested drugs was calculated using a drug
445 sensitivity score (DSS), a modified form of the area under the inhibition curve
446 calculation that integrates multiple dose response parameters for each of the tested
447 drugs, as previously described(53).
448

449 AML cell line, UCB CD34⁺ and MS-5 culture

450
451 All AML cell lines and MS-5 stromal cells were originally obtained from the ATCC
452 and maintained by the Francis Crick Cell Services. All AML cell lines were cultured in
453 RPMI 1640, 10% heat-inactivated FBS and 1% penicillin/streptomycin (Life
454 Technologies) at 37C, 5% CO₂. Umbilical cord blood CD34⁺ cells were cultured in
455 StemSpan SFEMMII (StemCell Technologies) supplemented with Human SCF
456 (150ng/ml), Human FLT3 ligand (150ng/ml) and Human TPO (20ng/ml; all
457 Peprotech) at 2x10⁵ cells/ml at 37C, 5% CO₂. For relative viability, apoptosis and
458 IC₅₀ calculations cell lines were seeded in 96 well plates at a concentration of 2x10⁵
459 cells/ml with the indicated dose of drug. Measurements of viability (% reduction O₂)
460 or apoptosis (Annexin V positivity) were taken at 48 hours post treatment. MS-5
461 stromal cells were cultured in IMDM, 10% heat-inactivated FBS and 2%
462 penicillin/streptomycin (Life Technologies) at 37C, 5% CO₂.

463

464 Publicly available datasets

465

466 *CKS1B* expression in normal and malignant hematopoiesis was obtained through
467 Bloodspot.eu. Overall survival and stratification for *CKS1B* expression was
468 calculated from data obtained from The Cancer Genome Atlas (TCGA). AML cell line
469 RNA sequencing data was obtained from the EBI Expression Atlas (RNA-seq of 934
470 Human cancer cell lines from the Cancer Cell Line Encyclopedia).

471

472 Leukemic/Normal Long-term culture initiating cell (L-LTC-IC) assay

473

474 These experiments were performed as originally published by our group(27).
475 For all co-culture experiments, MS-5 stromal cells were seeded two days prior to
476 AML/UCB cell addition at 4×10^5 cells/ml to reach confluence at the time of irradiation.
477 One day prior to AML/UCB addition, MS-5 stromal cells were irradiated with 7Gy and
478 culture media was exchanged. On the day of starting co-culture, AML cells were
479 plated at 2×10^5 cells/ml in myelocult H5100 (StemCell Technologies) supplemented
480 with IL-3, G-CSF and TPO (all 20ng/ml; Peprotech). UCB cells were plated at 2×10^5
481 cells/ml in myelocult H5100 (StemCell Technologies). Half media changes were
482 performed once per week without disrupting the feeder layer. At the start of week
483 two, indicated drug treatments were added at 2x concentration in the half media
484 change.

485 For LTC-CAFC assays, all cells were harvested at day 14 and sorted for live
486 hCD45⁺mSca-1⁻ cells. Resulting cells were seeded in co-culture with fresh MS-5
487 stromal cells in a 96 well plate in a limiting dilution range (200,000 to 1,000) in 10
488 replicates and cultured for a further 5 weeks. At the end of the co-culture period
489 cobblestone area forming cells were scored and L-LTC-IC frequency was calculated
490 using the ELDA (Extreme Limiting Dilution Analysis) function in the Statmod R
491 package.

492 For LTC-IC assays, media was continuous changed each week until week five
493 Cultures were harvested and sorted for live hCD45⁺mSca-1⁻ cells. Resulting cells
494 were seeded in co-culture with fresh MS-5 stromal cells in a 96 well plate in a limiting
495 dilution range (10,000 to 100) in 10 replicates and cultured for a further three weeks.
496 At week eight, myelocult H5100 was replaced with Methocult methycellulose

497 (StemCell Technologies H4434) for a further two weeks, after which wells were
498 scored for colony-forming units and LTC-IC frequency was calculated using the
499 ELDA (Extreme Limiting Dilution Analysis) function in the Statmod R package.

500

501 Patient derived xenografts (PDX) and *in vivo* drug treatment

502

503 Primary AML samples (1×10^6 – 5×10^6 cells total) or UCB-CD34 $^+$ (5×10^4 cells total)
504 were injected intravenously (I.V.) into unconditioned 10-12 week old female or male
505 NOD-SCID IL2Rnull (NSG) mice (The Jackson laboratory). After 4 weeks
506 engraftment was assessed by bone marrow aspiration from long bones whilst mice
507 were under isoflurane anaesthesia. Mice were stratified according to engraftment
508 and sex and assigned to treatment and control groups accordingly. Mice were
509 treated as indicated with 10mg/kg CKS1i (Skp2-Cks1 E3 ligase inhibitor, Merck
510 Millipore) intraperitoneal injection (I.P.) for 5 days, DA (doxorubicin/cytarabine,
511 1.5mg/kg/10mg/kg respectively, Sigma Aldrich), doxorubicin on days 1-3, cytarabine
512 on days 1-5 co-injected I.V.(35). Mice were scored for engraftment over the
513 experimental course by bone marrow aspiration and for overall survival according to
514 U.K. home office license protocols and following CRUK guidance (>20% peak body
515 weight loss, overt signs of sickness/mortality).

516

517 AML cell line *in vivo* experimentation

518

519 AML cell lines were transduced with GFP-Luciferase containing vectors as per our
520 previous reports(24). For both cell lines (THP-1 and HL60) 2×10^6 cells were injected
521 I.V. into unconditioned 10-12 weeks old female or male NOD-SCID IL2Rnull (NSG)
522 mice (The Jackson laboratory). After 7 days engraftment was assessed by
523 bioluminescence imaging. Isoflurane anaesthetised mice were imaged 5-10 minutes
524 post D-luciferin injection I.P. (15mg.kg; Caliper life sciences) using the Xenogen IVIS
525 imaging system. Photons emitted were expressed as Flux (photons/s/cm 2), and
526 quantified and analysed using “living image” software (Caliper life sciences).

527

528 RNA extraction, reverse transcription and real time quantitative PCR (RT-qPCR)

529

530 Total RNA was isolated from patient samples after thawing, density centrifugation
531 and T-cell depletion, using a RNeasy mini kit (Qiagen). Resulting RNA was reverse
532 transcribed to produce cDNA using the Superscript III reverse transcriptase kit
533 (Thermo Scientific) with oligoDT₂₀ primers (Sigma Aldrich). RT-qPCR experiments
534 were performed with an ABI-7500 FAST Thermal Cycler (Applied Biosystems) using
535 SYBR Green (Thermo Scientific). RNA abundance was quantified by the
536 Comparative CT method with two independent control genes (*GAPDH* and *B-ACTIN*,
537 *GAPDH* presented). The CT values used for each patient sample were the result of
538 three technical triplicates. Primers are described in the resources table.

539

540 Mass Spectrometry

541

542 THP-1 AML cell lines and UCB CD34⁺ cells were cultured as per culture and drug
543 treatment above. Cells were recovered for 24 hours in their respective media
544 followed by sub-lethal AML doses of CKS1i (1µM) for 12 hours. All cells were
545 retrieved from wells, washed three times in ice-cold PBS and snap frozen in liquid
546 nitrogen as dry pellets.

547 Cell pellets were lysed in 100 µL of urea buffer (8 M urea in 20 mM HEPES, pH:

548 8.0), lysates were further homogenized by sonication (30 cycles of 30s on 30s off;
549 Diagenode Bioruptor® Plus) and insoluble material was removed by centrifugation.

550 Protein amount was quantified using BCA (Thermo Fisher Scientific). Then, 100 and
551 20 µg of protein for THP-1 and CD34⁺ samples, respectively, were diluted in urea
552 buffer to a final volume of 300 µL and subjected to cysteine alkylation using

553 sequential incubation with 10 mM dithiothreitol (DDT) and 16.6 mM iodoacetamide
554 (IAM) for 1 h and 30 min, respectively, at 25 °C with agitation. Trypsin beads (50%

555 slurry of TLCK-trypsin; Thermo-Fisher Scientific; Cat. #20230) were equilibrated with
556 3 washes with 20 mM HEPES (pH 8.0), the urea concentration in the protein

557 suspensions was reduced to 2 M by the addition of 900 µL of 20 mM HEPES (pH
558 8.0), 100 µL of equilibrated trypsin beads were added and samples were incubated

559 overnight at 37°C. Trypsin beads were removed by centrifugation (2000 xg at 5°C for
560 5 min) and the resulting peptide solutions were desalting using carbon C18 spin tips

561 (Glygen; Cat. # TT2MC18). Briefly, spin tips were activated twice with 200 µL of
562 Elution Solution (70% ACN, 0.1% TFA) and equilibrated twice with 200 µL of Wash

563 Solution (1% ACN, 0.1% TFA). Samples were loaded and spin tips were washed
564 twice with 200 μ L of Wash Solution. Peptides were eluted into fresh tubes from the
565 spin tips with 4 times with 50 μ L of Elution Solution. In each of the desalting steps,
566 spin tips were centrifuged at 1,500xg at 5C for 3 min. Finally, samples were dried in
567 a SpeedVac and peptide pellets were stored at –80°C.
568 For mass spectrometry identification and quantification of proteins, samples were run
569 twice in a LC-MS/MS platform. Briefly, peptide pellets were resuspended in 100 μ L
570 and 20 μ L of reconstitution buffer (20 fmol/ μ L enolase in 3% ACN, 0.1% TFA) for
571 THP-1 and CD34 $^+$ samples, respectively. Then, 2 μ L were loaded onto an LC-
572 MS/MS system consisting of a Dionex UltiMate 3000 RSLC coupled to a Q
573 Exactive $^{\text{TM}}$ Plus Orbitrap Mass Spectrometer (Thermo Fisher Scientific) through an
574 EASY-Spray source (Cat. # ES081, Thermo Fisher Scientific). Mobile phases for the
575 chromatographic separation of the peptides consisted in Solvent A (3% ACN: 0.1%
576 FA) and Solvent B (99.9% ACN; 0.1% FA). Peptides were loaded in a micro-pre-
577 column (Acclaim $^{\text{TM}}$ PepMap $^{\text{TM}}$ 100 C18 LC; Cat. # 160454, Thermo Fisher Scientific)
578 and separated in an analytical column (Acclaim $^{\text{TM}}$ PepMap $^{\text{TM}}$ 100 C18 LC; Cat. #
579 164569, Thermo Fisher Scientific) using a gradient running from 3% to 23% over 120
580 min. The UPLC system delivered a flow of 2 μ L/min (loading) and 300 nL/min
581 (gradient elution). The Q-Exactive Plus operated a duty cycle of 2.1s. Thus, it
582 acquired full scan survey spectra (m/z 375–1500) with a 70,000 FWHM resolution
583 followed by data-dependent acquisition in which the 15 most intense ions were
584 selected for HCD (higher energy collisional dissociation) and MS/MS scanning (200–
585 2000 m/z) with a resolution of 17,500 FWHM. A dynamic exclusion period of 30s was
586 enabled with a m/z window of \pm 10 ppms.
587 Peptide identification from MS data was automated using a Mascot Daemon 2.5.0
588 workflow in which Mascot Distiller v2.5.1.0 generated peak list files (MGFs) from
589 RAW data and the Mascot search engine (v2.5) matched the MS/MS data stored in
590 the MGF files to peptides using the SwissProt Database (SwissProt_2016Oct.fasta).
591 Searches had a FDR of ~1% and allowed 2 trypsin missed cleavages, mass
592 tolerance of \pm 10 ppm for the MS scans and \pm 25 mmu for the MS/MS scans,
593 carbamidomethyl Cys as a fixed modification and PyroGlu on N-terminal Gln and
594 oxidation of Met as variable modifications. Identified peptides were quantified using
595 Pescal software in a label free procedure based on extracted ion chromatograms

596 (XICs). Thus, the software constructed XICs for all the peptides identified across all
597 samples with mass and retention time windows of ± 7 ppm and ± 2 min, respectively
598 and calculated the area under the peak. Individual peptide intensity values in each
599 sample were normalized to the sum of the intensity values of all the peptides
600 quantified in that sample. Data points not quantified were given a peptide intensity
601 value equal to the minimum intensity value quantified in the sample divided by 10.
602 Protein intensity values were calculated by adding the individual normalized
603 intensities of all the peptides comprised in a protein and values of 2 technical
604 replicates per sample were averaged. Protein score values were expressed as the
605 maximum Mascot protein score value obtained across samples. The mass
606 spectrometry proteomics data have been deposited to the ProteomeXchange
607 Consortium via the PRIDE partner repository (PXD022754 and
608 10.6019/PXD022754).

609

610 Flow Cytometry, apoptosis and cell cycle assays

611

612 Flow cytometry analysis was performed using a BD Fortessa flow cytometer (BD
613 biosciences). Cells were prepared by washing in PBS + 1% FBS three times before
614 staining in the same media with the indicated cell surface antibodies (resources
615 table) for 1 hour at 4C. For apoptosis assays, cells were incubated with annexin V
616 binding buffer in addition to the washing media (BD biosciences), washed three
617 times in PBS + 1% FBS + 1x annexin V binding buffer and incubated with 0.1 μ g/ml
618 DAPI prior to flow cytometry analysis. For cell cycle analysis, cells were washed
619 three times in PBS + 1% FBS and fixed in BD fix/perm buffer (BD biosciences) for 20
620 minutes at room temperature. Cells were washed three times in BD perm/wash
621 buffer (BD biosciences) and incubated with anti-Ki67 antibody for 4 hours at 4C.
622 Cells were washed three times in BD perm/wash buffer and 0.5 μ g/ml DAPI was
623 added for 15 minutes prior to analysis. For all flow cytometry, cells were initially
624 identified based on forward and side scatter.

625

626 Viability assays

627

628 Relative cell viability was assessed by % reduction O₂ in culture wells using the
629 Alamar blue cell viability reagent (Life Technologies). Cells were seeded in 96 well
630 plates at 2x10⁵ cells/ml and the indicated dose of drugs were added on top and
631 incubated for 48 hours. Alamar blue reagent was added on top of cells and they
632 were continued to be incubated for 4 hours under the same conditions (37C, 5%
633 CO₂). Plates were read on a spectramax plate reader (Biostars) at 570nm and
634 600nm and % reduction O₂ was calculated as per the manufacturer's instructions.

635

636 NADP/NADPH assays

637

638 Total NADP⁺ and NADP/H were measured using the NADP/NADPH colorimetric
639 assay kit (Abcam). AML cell lines were seeded at 2x10⁵ cells/ml one day prior to
640 treatment with the indicated drugs (day 0). The following day (day 1), the indicated
641 concentration of drugs were added to culture wells. The next day (day 2) all cells
642 were collected from the wells and washed three times in ice-cold PBS. Cells were
643 lysed in NADP/NADPH extraction buffer by performing two freeze/thaw cycles (20
644 mins on dry ice followed by 10 mins at room temperature). Lysates were centrifuged
645 at 13,000g for 10minutes and the supernatant was retained. Lysate supernatant was
646 split in half, with one half remaining on ice and the other half incubated at 60C for
647 30mins to remove NADP⁺. Total NADP/H (NADPt) and NADPH only lysates were
648 run in 96 well plates with freshly made standards as per the manufacturers'
649 instructions. NADP/NADPH ratio was calculated as (NADPt-NADPH)/NADPH.

650

651 Intracellular ROS staining

652

653 Intracellular reactive oxygen species were assayed using the CellRox deep red
654 reagent (Life Technologies). AML cell lines were seeded at 2x10⁵ cells/ml one day
655 prior to treatment with the indicated drugs (day 0). The following day (day 1), the
656 indicated concentration of drugs were added to culture wells. The next day (day 2),
657 CellRox deep red was added to each well at a final concentration of 5uM and
658 verapamil was added at a final concentration of 50 μ M. Cells were continued to be
659 incubated in the same conditions (37C, 5% CO₂) for 1hr. After incubation, cells were
660 collected from wells and washed three times in PBS + 1%FBS + 50 μ M verapamil

661 and finally resuspended in PBS + 1% FBS + 50 μ M verapamil + DAPI (0.1 μ g/ml)
662 before analysis on a BD Fortessa FACS analyser.

663

664 Mass Cytometry

665

666 CyTOF preparation and analysis was carried out as per our previous publication(36).
667 Cultured cells were washed in ice-cold PBS three times and incubated with 5uM
668 Cisplatin (Fluidigm) to mark dead cells. Cells were washed three times in ice-cold
669 PBS and fixed in 1.6% formaldehyde (Sigma Aldrich). Fixed cells were surface
670 stained with the relevant antibodies (resources table) for two hours at room
671 temperature followed by three washes with PBS. Cells were permeabilised in 1ml
672 Perm buffer III (BD biosciences) on ice for 30mins, washed three times in ice-cold
673 PBS and incubated with the relevant intracellular antibodies (resources table)
674 overnight at 4C with gentle rotation. Resulting cells were wash three times in ice-cold
675 PBS and stained with 100nM Iridium in PBS + 0.1% Saponin (Riedel-de Haen)
676 overnight before analysis on a Helios Mass Cytometer (Fluidigm).

677

678 Protein translation assays

679

680 Protein translation was measured using the OP-Puromycin protein translation kit
681 (Life Technologies). AML cell lines were seeded at 2×10^5 cells/ml one day prior to
682 treatment with the indicated drugs (day 0). The following day (day 1), the indicated
683 concentration of drugs were added to culture wells. The next day (day 2), 10 μ M OP-
684 Puromycin was added to culture wells for one hour under culture conditions (37C,
685 5% CO_2). Cells were washed three times in ice-cold PBS and fixed in 4%
686 paraformaldehyde (Sigma Aldrich) at room temperature for 15 mins in the dark. Cells
687 were washed three times in PBS and permeabilised in PBS + 0.5% Triton X-100
688 (Sigma Aldrich) for 15 mins. Cells were washed twice in Click-IT reaction buffer wash
689 solution and stained as per the manufacturer's instructions (Life Technologies).
690 Abundance of OP-Puromycin was assessed using flow cytometry.

691

692 Colony forming units

693

694 For resident mouse hematopoietic cell response to 5-FU', CKS1i, DA and DAC,
695 colony forming ability was assessed in methylcellulose (StemCell Technologies
696 M3434-GF). 10^4 mCD45 $^+$ cells were sorted from PDX mice at the indicated points
697 and seeded in methylcellulose and scored to colony forming units after 7 days.
698 Cultures were dissolved in PBS, counted and 10^4 cells were re-seeded for passage
699 2 and passage 3.

700

701 Statistics and data interpretation

702

703 Results shown are +/-SEM unless otherwise indicated. To compare treatment versus
704 control in all *in vitro* and *in vivo* experiments, a Student's *t*-test was used as indicated
705 in the figure legend with N number indicated. For all comparisons, unpaired *t*-tests
706 were undertaken unless otherwise indicated. All repeat samples presented are from
707 biological replicates of distinct samples/xenotransplantations.

708 Survival analyses were carried out using the "survminer" package on R to calculate
709 significance between Kaplan-Meier curves and Hazard ratios. Kaplan Meier graphs
710 were plotted using Graphpad Prism.

711 Correlation analyses were carried out using the "performance analytics" and
712 "corplot" packages in R. Multiple DSS comparisons with *CKS1B* expression were
713 carried out with pairwise complete observations using Spearman, Pearson and
714 Kendall correlation coefficients. Individual correlations for *CKS1B* vs DSS or IC₅₀
715 were plotted using Graphpad Prism.

716 Stem cell frequency was calculated using the extreme limiting dilution analysis
717 (ELDA) function in the "statmod" R package(54).

718 Pathway analysis and enrichment was run through MetaCore (genego.com) and
719 network interactions produced on String (string-db.org)

720

721 *Acknowledgements*

722 We would like to acknowledge the Francis Crick core flow cytometry and biological
723 research facility STPs. The Francis Crick Institute receives its core funding from
724 Cancer Research UK (FC001115), the UK Medical Research Council (FC001115)
725 and the Wellcome Trust (FC001115). We would like to acknowledge Drs E.

726 Grönroos, R. Hynds, S Ali and H Wood & Prof. P. Parker for their critical feedback on
727 the manuscript.

728

729 *Author Contributions*

730 W.G. Conceived the study, designed and carried out experiments, analyzed data
731 and wrote the manuscript. A.R-M. Analyzed patient data. P.C-I. Carried out mass
732 spectrometry analyses. J.J.M. Designed and carried out experiments. F.C. Analyzed
733 patient data. A.P. Designed and carried out experiments. C.A.H. Supervised drug
734 screening. P.C. Supervised mass spectrometry analyses. J.G. Provided patient
735 samples and data. J.F. Provided patient samples and data. D.B. Conceived, write
736 manuscript and supervised the study. All authors provided critical feedback on the
737 manuscript pre-submission.

738

739 *References*

740

- 741 1. Döhner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. Longo DL,
742 editor. *N Engl J Med* 2015;373:1136–52. Available from:
743 <http://www.nejm.org/doi/10.1056/NEJMra1406184>
- 744 2. DiNardo CD, Tiong IS, Quagliari A, MacRaid S, Loghavi S, Brown FC, et al.
745 Molecular patterns of response and treatment failure after frontline venetoclax
746 combinations in older patients with AML. *Blood* 2020;135:791–803. Available
747 from: <http://ashpublications.org/blood/article-pdf/135/11/791/1718665/bloodbld2019003988.pdf>
- 748 3. DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al.
749 Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia.
750 *N Engl J Med* 2020;383:617–29. Available from:
751 <https://www.nejm.org/doi/full/10.1056/NEJMoa2012971>
- 752 4. Jones CL, Stevens BM, Pollyea DA, Culp-Hill R, Reisz JA, Nemkov T, et al.
753 Nicotinamide Metabolism Mediates Resistance to Venetoclax in Relapsed
754 Acute Myeloid Leukemia Stem Cells. *Cell Stem Cell*. 2020
- 755 5. Stevens BM, Jones CL, Pollyea DA, Culp-Hill R, D'Alessandro A, Winters A, et
756 al. Fatty acid metabolism underlies venetoclax resistance in acute myeloid
757 leukemia stem cells. *Nat Cancer* 2020;1–12. Available from:
758

759 <http://www.nature.com/articles/s43018-020-00126-z>

760 6. Estey E, Levine RL, Löwenberg B. Current challenges in clinical development
761 of “targeted therapies”: The case of acute myeloid leukemia. *Blood*. 2015.

762 7. Shao L, Wang Y, Chang J, Luo Y, Meng A, Zhou D. Hematopoietic stem cell
763 senescence and cancer therapy-induced long-term bone marrow injury. *Transl
764 Cancer Res*. 2013;

765 8. Vyas P, Appelbaum FR, Craddock C. Allogeneic hematopoietic cell
766 transplantation for acute myeloid leukemia. *Biol. Blood Marrow Transplant*.
767 2015.

768 9. Grey W, Ivey A, Milne TA, Haferlach T, Grimwade D, Uhlmann F, et al. The
769 Cks1/Cks2 axis fine-tunes Mll1 expression and is crucial for MLL-rearranged
770 leukaemia cell viability. *Biochim Biophys Acta - Mol Cell Res* 2018;1865:105–
771 16. Available from:
772 <http://linkinghub.elsevier.com/retrieve/pii/S0167488917302525>

773 10. Frontini M, Kukalev A, Leo E, Ng Y-MM, Cervantes M, Cheng C-WW, et al.
774 The CDK Subunit CKS2 Counteracts CKS1 to Control Cyclin A/CDK2 Activity
775 in Maintaining Replicative Fidelity and Neurodevelopment. *Dev Cell*
776 2012;23:356–70. Available from:
777 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dop=t=AbstractPlus&list_uids=22898779

779 11. Wolthuis R, Clay-Farrace L, van Zon W, Yekezare M, Koop L, Ogink J, et al.
780 Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin
781 A. *Mol Cell* 2008;30:290–302. Available from:
782 <http://www.ncbi.nlm.nih.gov/pubmed/18471975>

783 12. Martinsson-Ahlzen HS, Liberal V, Grunenfelder B, Chaves SR, Spruck CH,
784 Reed SI, et al. Cyclin-dependent kinase-associated proteins Cks1 and Cks2
785 are essential during early embryogenesis and for cell cycle progression in
786 somatic cells. *Mol Cell Biol* 2008;28:5698–709. Available from:
787 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dop=t=AbstractPlus&list_uids=22898779

788 13. Morris MC, Kaiser P, Rudyak S, Baskerville C, Watson MH, Reed SI. Cks1-
789 dependent proteasome recruitment and activation of CDC20 transcription in
790 budding yeast. *Nature*. 2003;423:1009–13. Available from:
791 <http://www.ncbi.nlm.nih.gov/pubmed/12827207>

793 14. Del Rincón S V, Widschwendter M, Sun D, Ekholm-Reed S, Tat J, Teixeira LK,
794 et al. Cks overexpression enhances chemotherapeutic efficacy by overriding
795 DNA damage checkpoints. *Oncogene* 2014;1–7. Available from:
796 <http://www.ncbi.nlm.nih.gov/pubmed/24858038>

797 15. Liberal V, Martinsson-Ahlzén H-S, Liberal J, Spruck CH, Widschwendter M,
798 McGowan CH, et al. Cyclin-dependent kinase subunit (Cks) 1 or Cks2
799 overexpression overrides the DNA damage response barrier triggered by
800 activated oncoproteins. *Proc Natl Acad Sci U S A* 2012;109:2754–9. Available
801 from:
802 <http://www.ncbi.nlm.nih.gov/pubmed/2286935>&tool=pmc
803 entrez&rendertype=abstract

804 16. Patra D, Wang SX, Kumagai a, Dunphy WG. The *xenopus* Suc1/Cks protein
805 promotes the phosphorylation of G(2)/M regulators. *J Biol Chem*
806 1999;274:36839–42. Available from:
807 <http://www.ncbi.nlm.nih.gov/pubmed/10601234>

808 17. Patra D, Dunphy WG. Xe-p9, a *Xenopus* Suc1/Cks homolog, has multiple
809 essential roles in cell cycle control. *Genes Dev* 1996;10:1503–15. Available
810 from: <http://www.ncbi.nlm.nih.gov/pubmed/8830000>

811 18. McGrath D a, Balog ERM, Kõivomägi M, Lucena R, Mai M V, Hirschi A, et al.
812 Cks confers specificity to phosphorylation-dependent CDK signaling pathways.
813 *Nat Struct Mol Biol* 2013;20:1407–14. Available from:
814 <http://www.ncbi.nlm.nih.gov/pubmed/24186063>

815 19. Spruck C, Strohmaier H, Watson M, Smith APL, Ryan A, Krek W, et al. A
816 CDK-independent function of mammalian Cks1: Targeting of SCFSkp2 to the
817 CDK inhibitor p27Kip1. *Mol Cell* 2001;7:639–50.

818 20. Shen D-YY, Fang Z-XX, You P, Liu P-GG, Wang F, Huang C-LL, et al. Clinical
819 significance and expression of cyclin kinase subunits 1 and 2 in hepatocellular
820 carcinoma. *Liver Int* 2010;30:119–25. Available from:
821 <http://www.ncbi.nlm.nih.gov/pubmed/20845855>

822 21. Kitajima S, Kudo Y, Ogawa I, Bashir T, Kitagawa M, Miyauchi M, et al. Role of
823 Cks1 overexpression in oral squamous cell carcinomas: cooperation with Skp2
824 in promoting p27 degradation. *Am J Pathol* 2004;165:2147–55.

825 22. Masuda T-A, Inoue H, Nishida K, Sonoda H, Yoshikawa Y, Kakeji Y, et al.
826 Cyclin-dependent kinase 1 gene expression is associated with poor prognosis

827 in gastric carcinoma. *Clin Cancer Res.* 2003;9:5693–8.

828 23. Passaro D, Di Tullio A, Abarategi A, Rouault-Pierre K, Foster K, Ariza-
829 McNaughton L, et al. Increased Vascular Permeability in the Bone Marrow
830 Microenvironment Contributes to Disease Progression and Drug Response in
831 Acute Myeloid Leukemia. *Cancer Cell* 2017;32:324-341.e6. Available from:
832 <http://www.ncbi.nlm.nih.gov/pubmed/28870739>

833 24. Tullio A Di, Rouault-Pierre K, Abarategi A, Mian S, Grey W, Gribben J, et al.
834 The combination of CHK1 inhibitor with G-CSF overrides cytarabine resistance
835 in human acute myeloid leukemia. *Nat Commun* 2017;8:1679. Available from:
836 <http://www.ncbi.nlm.nih.gov/pubmed/29162833>

837 25. Boyd AL, Aslostovar L, Reid J, Ye W, Tanasijevic B, Porras DP, et al.
838 Identification of Chemotherapy-Induced Leukemic-Regenerating Cells Reveals
839 a Transient Vulnerability of Human AML Recurrence. *Cancer Cell*. 2018;

840 26. Galen P Van, Hovestadt V, li MHW, Aster JC, Lane AA, Bernstein BE, et al.
841 Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease
842 Progression and Immunity Article Single-Cell RNA-Seq Reveals AML
843 Hierarchies Relevant to Disease Progression and Immunity. *Cell*. 2019;

844 27. Griessinger E, Anjos-Afonso F, Pizzitola I, Rouault-Pierre K, Vargaftig J,
845 Taussig D, et al. A niche-like culture system allowing the maintenance of
846 primary human acute myeloid leukemia-initiating cells: a new tool to decipher
847 their chemoresistance and self-renewal mechanisms. *Stem Cells Transl Med*
848 2014;3:520–9. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/24493855>

849 28. Michaelson D, Abidi W, Guardavaccaro D, Zhou M, Ahearn I, Pagano M, et al.
850 Rac1 accumulates in the nucleus during the G2 phase of the cell cycle and
851 promotes cell division. *J Cell Biol* 2008;181:485–96. Available from:
852 [/pmc/articles/PMC2364699/?report=abstract](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364699/?report=abstract)

853 29. Murga C, Zohar M, Teramoto H, Gutkind JS. Rac1 and RhoG promote cell
854 survival by the activation of PI3K and Akt, independently of their ability to
855 stimulate JNK and NF- κ B. *Oncogene*. 2002;21:207–16. Available from:
856 www.nature.com/onc

857 30. Chen S, Li H, Li S, Yu J, Wang M, Xing H, et al. Rac1 GTPase Promotes
858 Interaction of Hematopoietic Stem/Progenitor Cell with Niche and Participates
859 in Leukemia Initiation and Maintenance in Mouse. *Stem Cells* 2016;34:1730–
860 41. Available from: [http://doi.wiley.com/10.1002/stem.2348](https://doi.wiley.com/10.1002/stem.2348)

861 31. Sallmyr A, Fan J, Datta K, Kim KT, Grosu D, Shapiro P, et al. Internal tandem
862 duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA
863 damage, and misrepair: Implications for poor prognosis in AML. *Blood*
864 2008;111:3173–82. Available from: www.amaxa.com

865 32. Jeanne M, Lallemand-Breitenbach V, Ferhi O, Koken M, Le Bras M, Duffort S,
866 et al. PML/RARA Oxidation and Arsenic Binding Initiate the Antileukemia
867 Response of As₂O₃. *Cancer Cell*. Cell Press; 2010;18:88–98.

868 33. Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, et
869 al. BCL-2 inhibition targets oxidative phosphorylation and selectively
870 eradicates quiescent human leukemia stem cells. *Cell Stem Cell*. 2013;

871 34. Pavlides SC, Huang K-T, Reid DA, Wu L, Blank S V, Mittal K, et al. Inhibitors
872 of SCF-Skp2/Cks1 E3 ligase block estrogen-induced growth stimulation and
873 degradation of nuclear p27kip1: therapeutic potential for endometrial cancer.
874 *Endocrinology* 2013;154:4030–45. Available from:
875 [/pmc/articles/PMC3800755/?report=abstract](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800755/?report=abstract)

876 35. Wunderlich M, Mizukawa B, Chou FS, Sexton C, Shrestha M, Saunthararajah
877 Y, et al. AML cells are differentially sensitive to chemotherapy treatment in a
878 human xenograft model. *Blood*. 2013;

879 36. Grey W, Chauhan R, Piganeau M, Huerga Encabo H, Garcia-Albornoz M,
880 McDonald NQ, et al. Activation of the receptor tyrosine kinase, RET, improves
881 long-term hematopoietic stem cell outgrowth and potency. *Blood*. 2020;

882 37. Luis TC, Ichii M, Brugman MH, Kincade P, Staal FJT. Wnt signaling strength
883 regulates normal hematopoiesis and its deregulation is involved in leukemia
884 development. *Leukemia* 2012;26:414–21. Available from:
885 [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378318/?tool=pmcentrez&rendertype=abstract](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378318/?tool=pmcentrez&rendertype=abstract)

886 38. Ludin A, Gur-Cohen S, Golan K, Kaufmann KB, Itkin T, Medaglia C, et al.
887 Reactive oxygen species regulate hematopoietic stem cell self-renewal,
888 migration and development, as well as their bone marrow microenvironment.
889 *Antioxidants Redox Signal*. 2014.

890 39. Ye H, Adane B, Khan N, Stranahan AW, Park CY, Jordan CT, et al. Leukemic
891 Stem Cells Evade Chemotherapy by Metabolic Adaptation to an Adipose
892 Tissue Niche Article Leukemic Stem Cells Evade Chemotherapy by Metabolic
893 Adaptation to an Adipose Tissue Niche. *Cell Stem Cell*. 2016;

895 40. Kadia T, Kantarjian H, Garcia-Manero G, Borthakur G, Wang X, Patel K, et al.
896 Prognostic significance of the Medical Research Council cytogenetic
897 classification compared with the European LeukaemiaNet risk classification
898 system in acute myeloid leukaemia. *Br. J. Haematol.* 2015.

899 41. Raffel S, Klimmeck D, Falcone M, Demir A, Pouya A, Zeisberger P, et al.
900 Quantitative proteomics reveals specific metabolic features of Acute Myeloid
901 Leukemia stem cells. *Blood.* 2020;

902 42. Aasebø E, Brenner A, Berven F, Bruserud Ø, Selheim F, Hernandez-
903 Valladares M. Proteomic Profiling of Primary Human Acute Myeloid Leukemia
904 Cells Does Not Reflect Their Constitutive Release of Soluble Mediators.
905 *Proteomes.* 2018;7:1.

906 43. Kukalev A, Ng Y-M, Ju L, Saidi A, Lane S, Mondragon A, et al. Deficiency of
907 Cks1 Leads to Learning and Long-Term Memory Defects and p27 Dependent
908 Formation of Neuronal Cofilin Aggregates. *Cereb Cortex.* 2017;27:11–23.
909 Available from: <https://academic.oup.com/cercor/article/2573019/Deficiency>

910 44. Mulloy JC, Cancelas JA, Filippi MD, Kalfa TA, Guo F, Zheng Y. Rho GTPases
911 in hematopoiesis and hemopathies. *Blood.* 2010.

912 45. Ford CD, Green W, Warenski S, Petersen FB. Effect of prior chemotherapy on
913 hematopoietic stem cell mobilization. *Bone Marrow Transplant.* 2004;

914 46. Lin JJ, Milhollen MA, Smith PG, Narayanan U, Dutta A. NEDD8-targeting drug
915 MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering
916 checkpoint activation, apoptosis, and senescence in cancer cells. *Cancer Res.*
917 2010;

918 47. Burnett AK, Russell NH, Hills RK, Kell J, Cavenagh J, Kjeldsen L, et al. A
919 randomized comparison of daunorubicin 90 mg/m² vs 60 mg/m²in AML
920 induction: Results from the UK NCRI AML17 trial in 1206 patients. *Blood.*
921 2015;

922 48. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal
923 evolution in relapsed acute myeloid leukaemia revealed by whole-genome
924 sequencing. *Nature.* 2012;

925 49. Kitajima S, Kudo Y, Ogawa I, Bashir T, Kitagawa M, Miyauchi M, et al. Role of
926 Cks1 Overexpression in Oral Squamous Cell Carcinomas. *Am J Pathol.*
927 2004;165:2147–55.

928 50. Hamdi A, Lesnard A, Suzanne P, Robert T, Miteva M a, Pellerano M, et al.

929 Tampering with cell division by using small-molecule inhibitors of CDK-CKS
930 protein interactions. *Chembiochem* 2015;16:432–9. Available from:
931 <http://www.ncbi.nlm.nih.gov/pubmed/25619419>

932 51. Lough L, Hao B, Sherman D, Ni E, Young LM. ubiquitylation and degradation.
933 Royal Society of Chemistry; 2018;1.

934 52. Pemovska T, Kontro M, Yadav B, Edgren H, Edfors S, Szwajda A, et al.
935 Individualized systems medicine strategy to tailor treatments for patients with
936 chemorefractory acute myeloid leukemia. *Cancer Discov*; 2013;3:1416–29.
937 Available from: <https://pubmed.ncbi.nlm.nih.gov/24056683/>

938 53. Yadav B, Pemovska T, Szwajda A, Kulesskiy E, Kontro M, Karjalainen R, et al.
939 Quantitative scoring of differential drug sensitivity for individually optimized
940 anticancer therapies. *Sci Rep* 2014;4. Available from:
941 <https://pubmed.ncbi.nlm.nih.gov/24898935/>

942 54. Hu Y, Smyth GK. ELDA: Extreme limiting dilution analysis for comparing
943 depleted and enriched populations in stem cell and other assays. *J Immunol
944 Methods* 2009;347:70–8. Available from:
945 <http://www.ncbi.nlm.nih.gov/pubmed/19567251>

946

947 *Figure Legends*

948

949 **Figure 1. CKS1B expression status can predict sensitivity to inhibition of**
950 **CKS1-dependent protein degradation in AML. A.** Expression of *CKS1B* (relative
951 to *GAPDH*) in a poor risk AML cohort. FAB and p53 status are indicated for each
952 patient (FAB color coded, p53 status: white = WT; black = mutant; N=32). **B.**
953 Pearson's correlation of *CKS1B* expression versus DSS for a panel of clinically
954 available and investigational compounds. Red indicates significant correlations
955 above $R^2=0.5$. Blue indicates *CKS1i* (N=21). **C.** Diagram of action for *CKS1i* binding
956 and inhibition of the $SCF^{SKP2-CKS1}$ ubiquitin ligase complex **D.** Percentage of viability
957 of example patient AML samples cultured for 72 hours with indicated doses of
958 *CKS1i*. **E.** Allocation of patient AML in high or low *CKS1B* expression (50th
959 percentile) and compared for *CKS1i* DSS (N=21). **F.** Percentage viability of AML cell
960 lines cultured for 48 hours with indicated doses of *CKS1i* (N=3 for all cell lines on
961 graph). **G.** Correlation between AML cell line *CKS1i* IC₅₀ and *CKS1B* expression.
962 95% confidence intervals presented. Pearson's correlation coefficient was calculated

963 for correlation (R^2). **H.** Representative FACS plots for induction of apoptosis in the
964 indicated AML cell lines by presence of annexin V at the cell surface in response to
965 CKS1i (5 μ M) at 48 hours. Fold change *in vivo* leukemic burden of **I.** THP-1 (Ctrl N=6,
966 CKS1i N=7) and **J.** HL60 (Ctrl N=5, CKS1i N=6) cells day 21 (9 days post-CKS1i)
967 versus day 7 (pre-CKS1i) expressed as bioluminescent total flux intensity. **K.** Overall
968 survival of xenografts carrying THP-1 and HL60 cell lines control or treated with
969 CKS1i. A Student's *t*-test was used to calculate significance of difference for all
970 graphs unless otherwise stated. ** p<0.005; **** p<0.0001.

971

972 **Figure 2. Inhibition of CKS1-dependent protein degradation selectively kills**
973 **bulk AML *in vivo* and depletes leukemic stem cell potential. A.** CKS1B
974 expression (relative to GAPDH) for patient AMLs tested *in vivo* (N=5). **B.** Illustration
975 of *in vivo* engraftment of patient AMLs indicating bone marrow aspiration time points
976 and treatment interval. Each arrow for CKS1i treatment refers to one day. **C.**
977 Percentage of human CD45 $^+$ cells of total CD45 $^+$ cells in mouse bone marrow
978 aspirations one week after chemotherapy (week 6). **D.** Kaplan-Meier survival curve
979 and p value calculated for each individual PDX Control and CKS1i treated. Each
980 data point represents one mouse. **E.** CKS1B expression (relative to GAPDH) for
981 patient AMLs tested under L-LTC-LIC conditions (N=7). **F.** Illustration of treatment
982 time points, treatment and readout for *ex vivo* L-LTC-IC. **G.** Fold change L-LTC-IC
983 frequency, CKS1i treatment versus control, after 7 weeks of co-culture. **H.** Individual
984 1/L-LTC-IC frequencies with upper and lower limits for each patient tested. A
985 Student's *t*-test was used to calculate significance of difference for all graphs unless
986 otherwise stated.

987 * p<0.05; **p<0.01; *** p< 0.001.

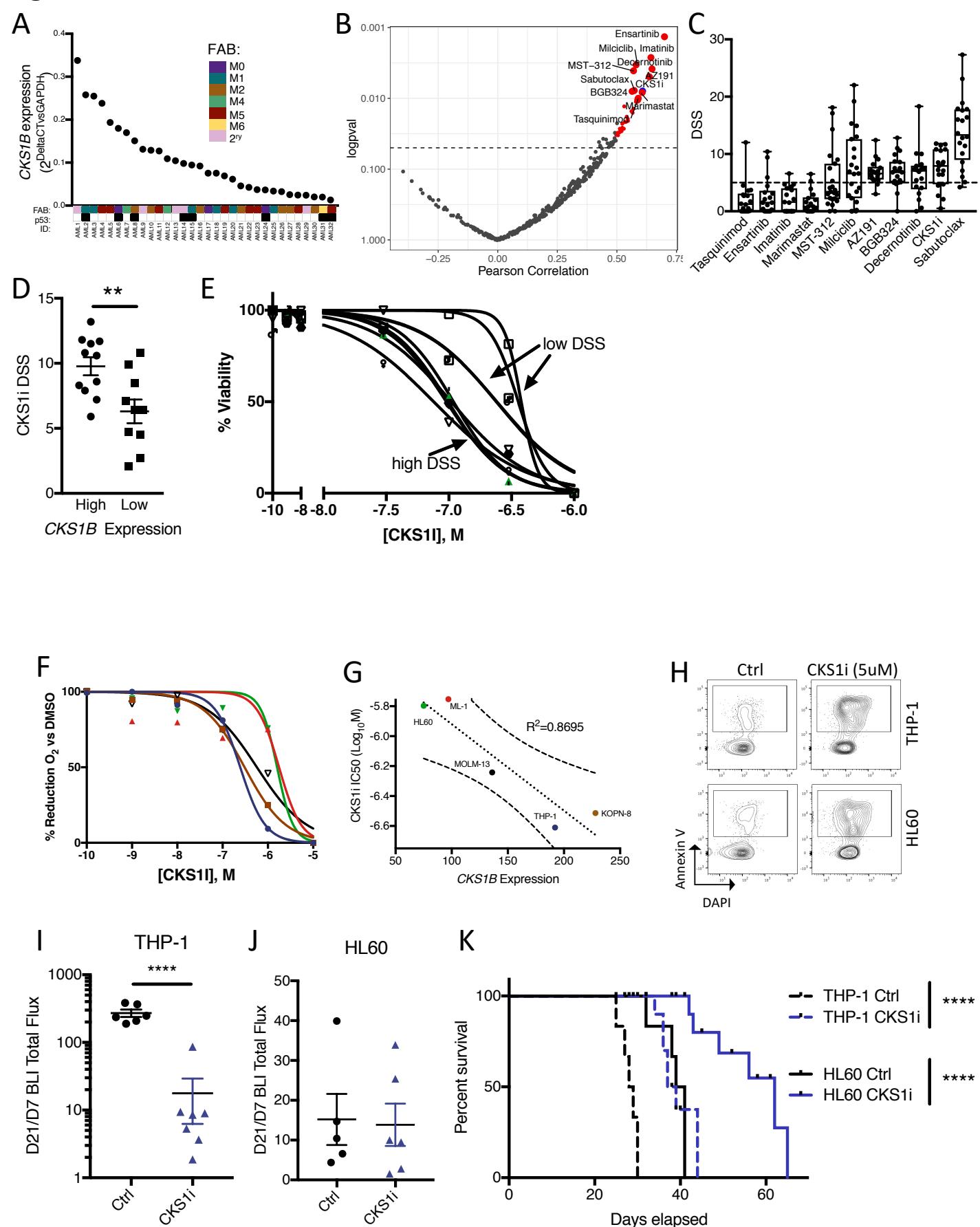
988

989 **Figure 3. Divergent responses to CKS1i lead to RAC1-dependent induction of**
990 **lethal ROS in AML. A.** Workflow for timescale of cell preparation for mass
991 spectrometry analysis. **B.** UNIPROT keywords for significantly enriched proteins in
992 THP-1 (purple) and CD34 $^+$ (Green) cells in CKS1i treated conditions versus control.
993 **C.** Venn diagram depicting overlap of differentially expressed proteins between THP-
994 1 and CD34 $^+$ cells. Volcano plots for changes in protein abundance (CKS1i vs
995 Control) in **D.** THP-1 and **E.** CD34 $^+$ cells. Red dots indicate significantly upregulated

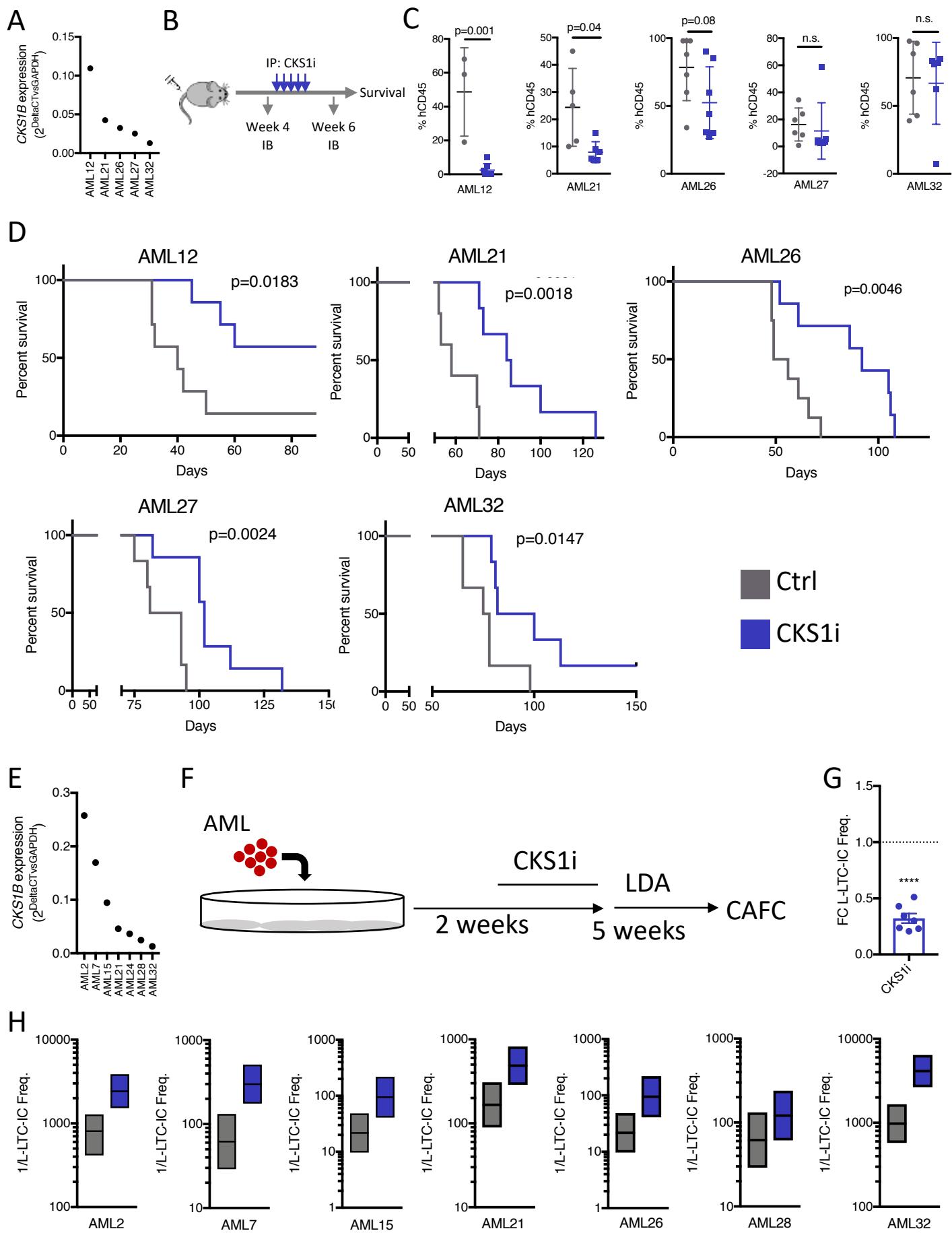
996 proteins, blue dots indicate significantly downregulated proteins (N=4 per cell line
997 and treatment). **F.** String network analysis (Red = increased abundance, Blue =
998 decreased abundance) and **G.** Protein abundance of key RAC1 pathway members
999 differentially abundant in THP-1 but not CD34⁺ cells. **H.** Illustration of
1000 RAC1/NADPH/ROS pathway, indicating mode of action for RAC1 inhibitor
1001 NSC23766 (NSC). **I.** Fold change total NADP/NADPH and **J.** fold change NADPH in
1002 THP-1 cells treated with the indicated doses of CKS1i (+ = 1 μ M, ++ = 5 μ M) or NSC
1003 (+ = 0.1 μ M) versus control for 24 hours (N=4 per cell line and treatment). **K.**
1004 Representative flow plots and **L.** quantified mean fluorescence intensity of
1005 intracellular reactive oxygen species (ROS) in the indicated cell lines in response to
1006 CKS1i (+ = 1 μ M) and NSC (+ = 0.1 μ M) treatment (N=3 per cell line and treatment).
1007 A Student's *t*-test was used to calculate significance of difference for all graphs. *
1008 p<0.05; **p<0.01; *** p< 0.001; **** p<0.0001.

1009

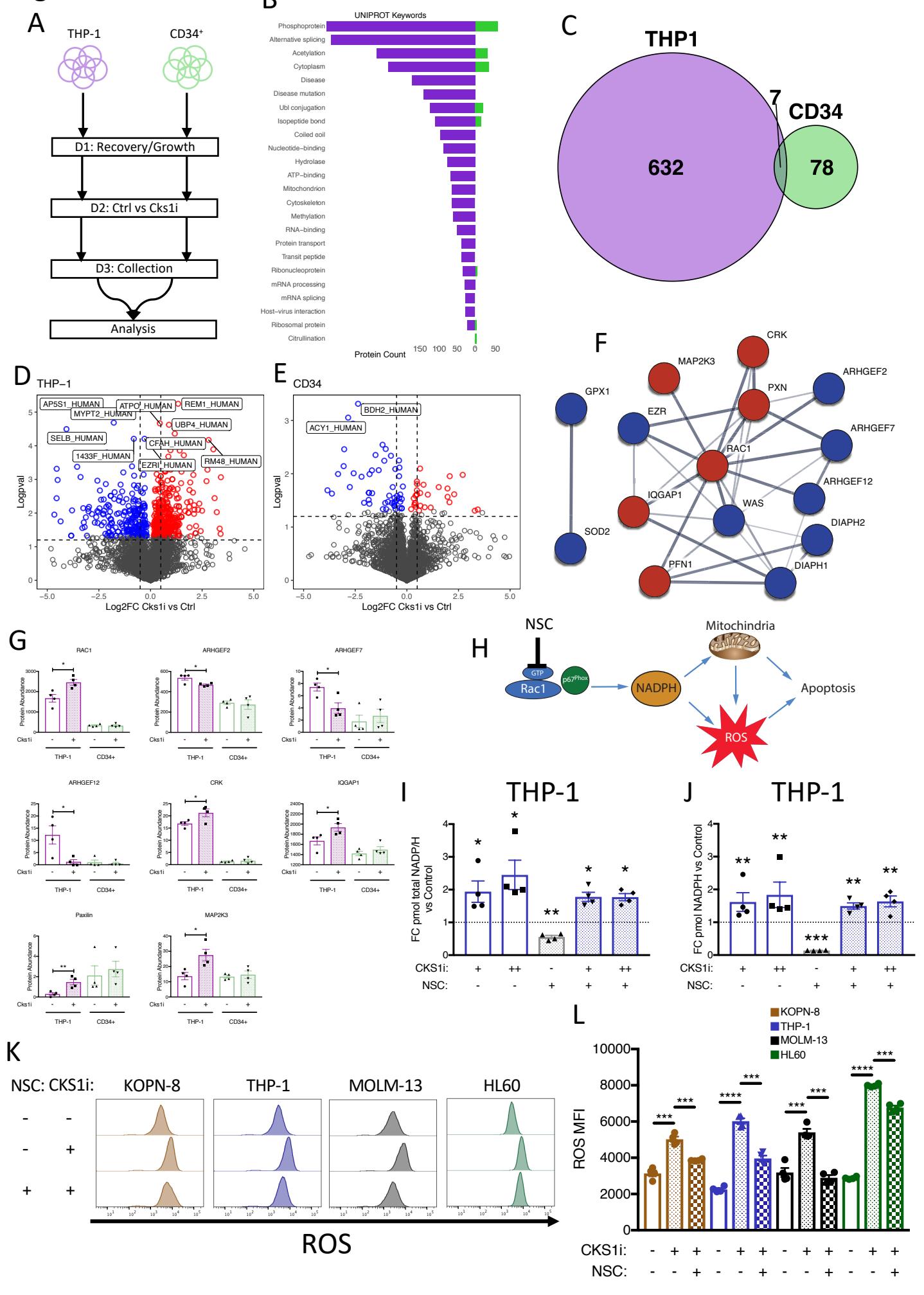
1010


1011 **Figure 4. CKS1i protects normal hematopoietic cells from chemotherapeutic**
1012 **toxicity by suppressing key signalling pathways.** **A.** Live cell count (N=6); **B.**
1013 Quantified cell cycle proportions of CD34⁺ cells grown for 48 hours in control
1014 conditions or treated with CKS1i. **C.** Illustration of CD34⁺ engraftment and
1015 chemotherapeutic treatment in NSG mice. Each dot corresponds to one mouse.
1016 Change in percentage human CD45⁺ of total CD45 at the indicated time points for **D.**
1017 Control, **E.** Doxorubicin/Cytarabine (DA) and **F.** Doxorubicin/Cytarabine plus CKS1i
1018 (DAC) treatments. **G.** Fold change % human CD45 cells week 4 to 6 for the indicated
1019 treatments. **H.** Representative flow plots and **I.** % total cells annexin V positive after
1020 6 weeks *in vivo* for human CD45 cells with the indicated treatment conditions (Ctrl
1021 N=5, DA N=3, DAC N=3). **J.** Representative flow plots and **K.** quantified mean
1022 fluorescence intensity for non-phosphorylated β -catenin in CD34⁺ cells grown for 48
1023 hours in control conditions or treated with CKS1i (N=4). **L.** Representative flow plots
1024 (including cells grown without OP-Puromycin; -OPP) and **M.** % total OP-Puromycin
1025 incorporation in CD34⁺ cells grown for 48 hours in control conditions or treated with
1026 CKS1i. OP-Puromycin was added 1hr prior to collection and fixation of cells (N=4).
1027 **N.** Representative flow plots and **O.** quantified mean fluorescence intensity of
1028 intracellular reactive oxygen species (ROS) in CD34⁺ cells grown for 48 hours in

1029 control conditions or treated with CKS1i (N=4). **P.** ELDA quantification plot for CD34⁺
1030 cells grown in LTC-IC under control (grey) and CKS1i (blue) treated conditions.
1031 Linear model and confidence interval are shown with estimated stem cell frequency
1032 indicated. A Student's *t*-test was used to calculate significance of difference unless
1033 otherwise stated. * p<0.05; **p<0.01; *** p< 0.001; **** p<0.0001.


1034

1035 **Figure 5. Combination induction chemotherapy and CKS1i reduces AML**
1036 **burden and leukemic stem cell potential whilst protecting resident**
1037 **hematopoietic cells. A.** CKS1B expression (relative to GAPDH) for patient AMLs
1038 tested *in vivo* (N=4). **B.** Illustration of *in vivo* engraftment of patient AMLs indicating
1039 bone marrow aspiration time points and treatment interval. Each arrow for DA and
1040 CKS1i treatment refers to one day. **C.** Percentage of human CD45⁺ cells of total
1041 CD45⁺ cells in mouse bone marrow aspirations one week after chemotherapy (week
1042 6). **D.** Colony forming units per 10,000 mouse CD45⁺ cells seeded from week 6 bone
1043 marrow aspirations. **E-H.** Kaplan-Meier survival curve and p value calculated for
1044 each individual PDX Control and treated mice. Each data point represents one
1045 mouse. **I.** Total number of murine Long-term HSCs obtained from bone marrow of
1046 mice at the final survival time point (Ctrl N=8, DA N=5, DAC N=5). **J.** Serial colony
1047 forming units per 10,000 mouse CD45⁺ cells obtained from BM of mice at the final
1048 survival time point (Ctrl N=6, DA N=5, DAC N=6). **K.** CKS1B expression (relative to
1049 GAPDH) for patient AMLs tested in L-LTC-IC (N=7). **L.** Fold change live human
1050 CD45⁺ cells, indicated treatments versus control, after two weeks of co-culture. **M.**
1051 Fold change of L-LTC-IC frequency, indicated treatment versus control, after 7
1052 weeks of co-culture. **N-O.** LSC frequency in secondary transplanted mice injected
1053 with AML26 **N.** and AML32 **O.** at limiting dilution 6 weeks post-transplantation. **P.**
1054 Kaplan-Meier survival curve for all AML32 secondary mice up to 120 days. A
1055 Student's *t*-test was used to calculate significance of difference for all graphs unless
1056 otherwise stated. * p<0.05; **p<0.01; *** p< 0.001; **** p<0.0001.


Figure 1.

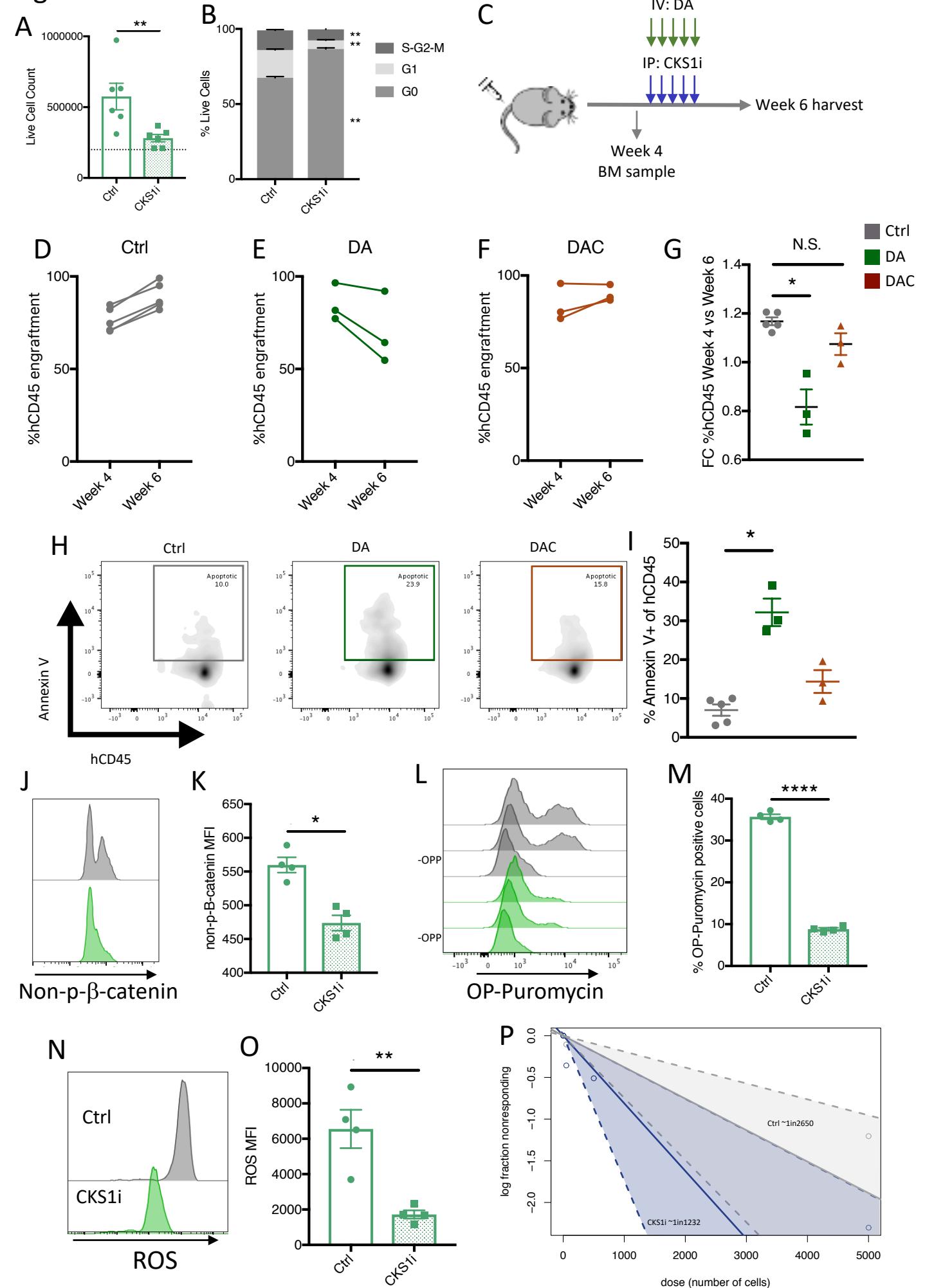

Figure 2.

Figure 3.

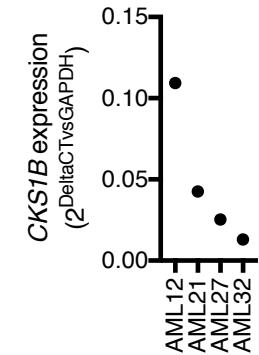


Figure 4

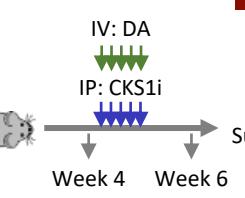
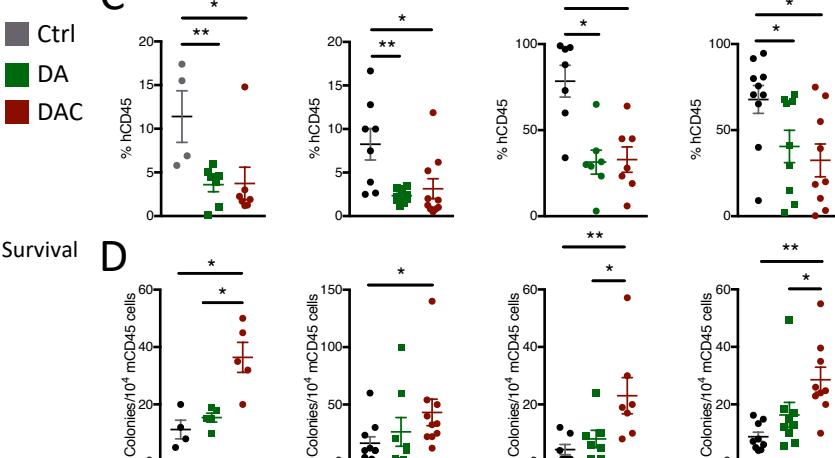
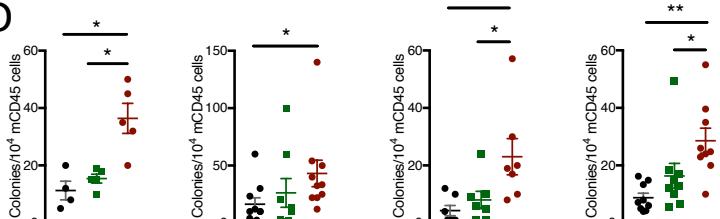
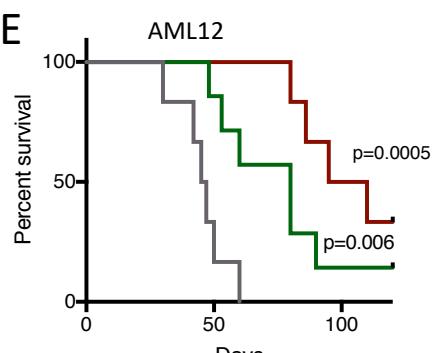
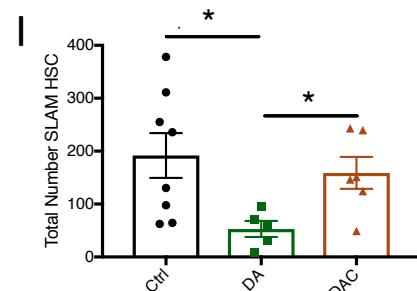
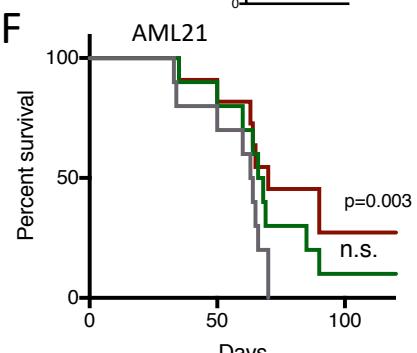


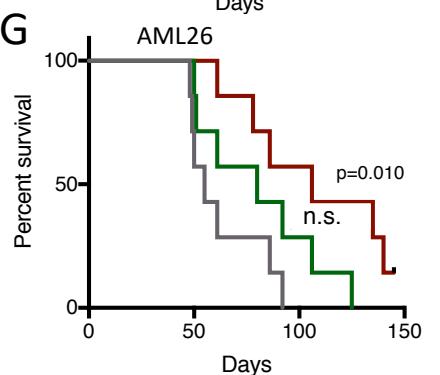
Figure 5.

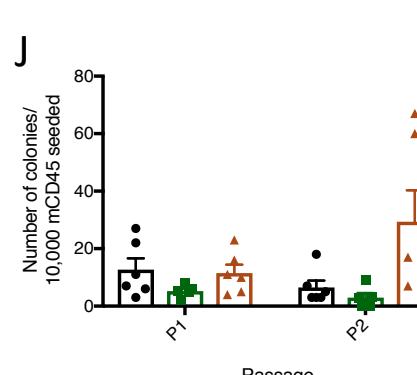
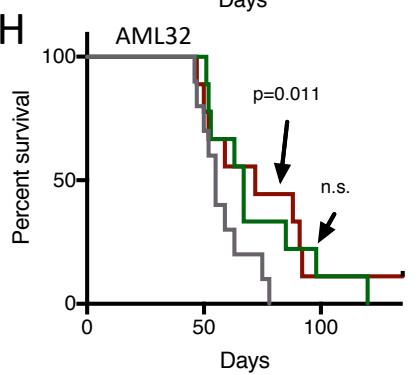

A

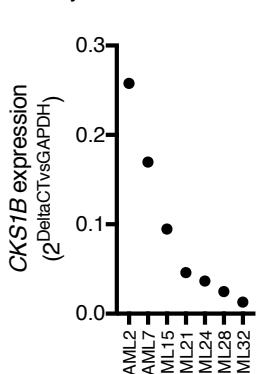

B

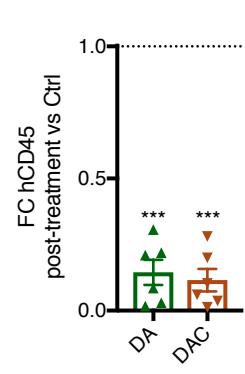

C

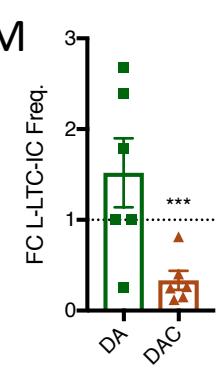


D

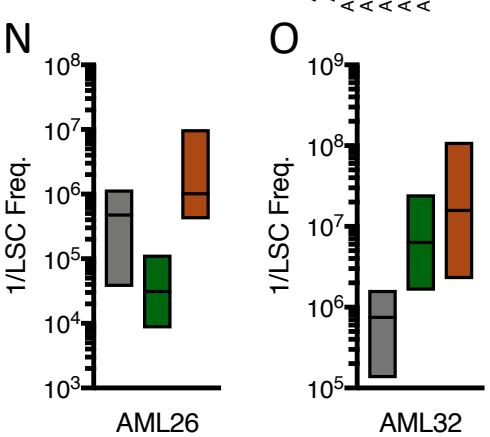

E

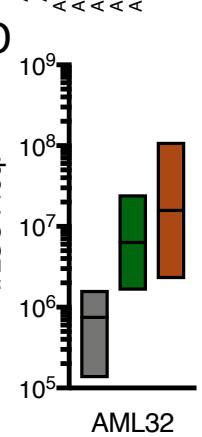


F

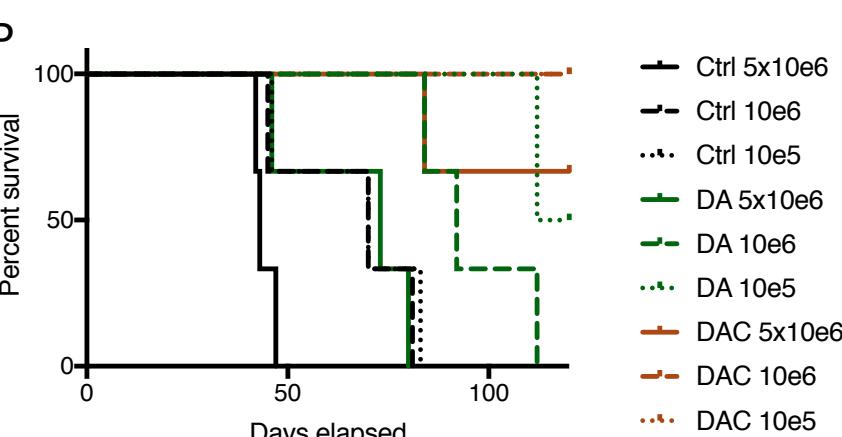

G


H


K


L


M


N

O

P

